Sample records for cold-work tool steels

  1. A comprehensive review on cold work of AISI D2 tool steel

    NASA Astrophysics Data System (ADS)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  2. The fracture toughness of borides formed on boronized cold work tool steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ugur; Sen, Saduman

    2003-06-15

    In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compactmore » and smooth.« less

  3. Boriding of high carbon high chromium cold work tool steel

    NASA Astrophysics Data System (ADS)

    Muhammad, W.

    2014-06-01

    High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.

  4. Prediction of ttt curves of cold working tool steels using support vector machine model

    NASA Astrophysics Data System (ADS)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    The cold working tool steels are of high carbon steels with metallic alloy additions which impart higher hardenability, abrasion resistance and less distortion in quenching. The microstructure changes occurring in tool steel during heat treatment is of very much importance as the final properties of the steel depends upon these changes occurred during the process. In order to obtain the desired performance the alloy constituents and its ratio plays a vital role as the steel transformation itself is complex in nature and depends very much upon the time and temperature. The proper treatment can deliver satisfactory results, at the same time process deviation can completely spoil the results. So knowing time temperature transformation (TTT) of phases is very critical which varies for each type depending upon its constituents and proportion range. To obtain adequate post heat treatment properties the percentage of retained austenite should be lower and metallic carbides obtained should be fine in nature. Support vector machine is a computational model which can learn from the observed data and use these to predict or solve using mathematical model. Back propagation feedback network will be created and trained for further solutions. The points on the TTT curve for the known transformations curves are used to plot the curves for different materials. These data will be trained to predict TTT curves for other steels having similar alloying constituents but with different proportion range. The proposed methodology can be used for prediction of TTT curves for cold working steels and can be used for prediction of phases for different heat treatment methods.

  5. The effect of boriding on wear resistance of cold work tool steel

    NASA Astrophysics Data System (ADS)

    Anzawa, Y.; Koyama, S.; Shohji, I.

    2017-05-01

    Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ~ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement.

  6. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    NASA Astrophysics Data System (ADS)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  7. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming... works from cold rolling and cold working pipe and tube operations in which unheated steel is passed... controlled mechanical properties in the steel. (b) The limitations and standards set out below for cold...

  8. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    NASA Astrophysics Data System (ADS)

    Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S. A.

    2013-01-01

    D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.

  9. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  10. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  11. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  12. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  13. Work Hardening Behavior of 1020 Steel During Cold-Beating Simulation

    NASA Astrophysics Data System (ADS)

    CUI, Fengkui; LING, Yuanfei; XUE, Jinxue; LIU, Jia; LIU, Yuhui; LI, Yan

    2017-03-01

    The present research of cold-beating formation mainly focused on roller design and manufacture, kinematics, constitutive relation, metal flow law, thermo-mechanical coupling, surface micro-topography and microstructure evolution. However, the research on surface quality and performance of workpieces in the process of cold-beating is rare. Cold-beating simulation experiment of 1020 steel is conducted at room temperature and strain rates ranging from 2000 to 4000 s-1 base on the law of plastic forming. According to the experimental data, the model of strain hardening of 1020 steel is established, Scanning Electron Microscopy(SEM) is conducted, the mechanism of the work hardening of 1020 steel is clarified by analyzing microstructure variation of 1020 steel. It is found that the strain rate hardening effect of 1020 steel is stronger than the softening effect induced by increasing temperatures, the process of simulation cold-beating cause the grain shape of 1020 steel significant change and microstructure elongate significantly to form a fibrous tissue parallel to the direction of deformation, the higher strain rate, the more obvious grain refinement and the more hardening effect. Additionally, the change law of the work hardening rate is investigated, the relationship between dislocation density and strain, the relationship between work hardening rate and dislocation density is obtained. Results show that the change trend of the work hardening rate of 1020 steel is divided into two stages, the work hardening rate decreases dramatically in the first stage and slowly decreases in the second stage, finally tending toward zero. Dislocation density increases with increasing strain and strain rate, work hardening rate decreases with increasing dislocation density. The research results provide the basis for solving the problem of improving the surface quality and performance of workpieces under cold-beating formation of 1020 steel.

  14. Parametric Optimization of Wire Electrical Discharge Machining of Powder Metallurgical Cold Worked Tool Steel using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Sudhakara, Dara; Prasanthi, Guvvala

    2017-04-01

    Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hoyoung; Korea Institute of Materials Science, 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam 642-831; Kang, Jun-Yun, E-mail: firice@kims.re.kr

    This study aimed to present the complete history of carbide evolution in a cold-work tool steel along its full processing route for fabrication and application. A sequence of processes from cast to final hardening heat treatment was conducted on an 8% Cr-steel to reproduce a typical commercial processing route in a small scale. The carbides found at each process step were then identified by electron diffraction with energy dispersive spectroscopy in a scanning or transmission electron microscope. After solidification, MC, M{sub 7}C{sub 3} and M{sub 2}C carbides were identified and the last one dissolved during hot compression at 1180 °C.more » In a subsequent annealing at 870 °C followed by slow cooling, M{sub 6}C and M{sub 23}C{sub 6} were added, while they were dissolved in the following austenitization at 1030 °C. After the final tempering at 520 °C, fine M{sub 23}C{sub 6} precipitated again, thus the final microstructure was the tempered martensite with MC, M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbide. The transient M{sub 2}C and M{sub 6}C originated from the segregation of Mo and finally disappeared due to attenuated segregation and the consequent thermodynamic instability. - Highlights: • The full processing route of a cold-work tool steel was simulated in a small scale. • The carbides in the tool steel were identified by chemical–crystallographic analyses. • MC, M{sub 7}C{sub 3}, M{sub 2}C, M{sub 6}C and M{sub 23}C{sub 6} carbides were found during the processing of the steel. • M{sub 2}C and M{sub 6}C finally disappeared due to thermodynamic instability.« less

  16. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    NASA Astrophysics Data System (ADS)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher susceptibility to SCC when they were cold-rolled and cold-expanded. The research found that surface compressive stresses have an effect on the SCC behavior of casing and tubing steels. The CO2 corrosion behavior and atomic processes at the corroding interface were investigated at laboratory temperature using electrochemical techniques. Cold-work was found to have an influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. These behaviors were found to be material and process dependent. Surface evaluation techniques such as field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) analysis did not detect formation of a protective scale. X-ray diffraction and X-ray photoelectron spectroscopy (XPS) analysis both detected the appearance of a scale that was traced back to magnetite.

  17. Experimental evaluation of tool wear throughout a continuous stroke blanking process of quenched 22MnB5 ultra-high-strength steel

    NASA Astrophysics Data System (ADS)

    Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.

    2017-09-01

    Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.

  18. On the lightweighting of automobile engine components : forming sheet metal connecting rod

    NASA Astrophysics Data System (ADS)

    Date, P. P.; Kasture, R. N.; Kore, A. S.

    2017-09-01

    Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.

  19. Microstructure Evolution During Creep of Cold Worked Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Krishan Yadav, Hari; Ballal, A. R.; Thawre, M. M.; Vijayanand, V. D.

    2018-04-01

    The 14Cr–15Ni austenitic stainless steel (SS) with additions of Ti, Si, and P has been developed for their superior creep strength and better resistance to void swelling during service as nuclear fuel clad and wrapper material. Cold working induces defects such as dislocations that interact with point defects generated by neutron irradiation and facilitates recombination to make the material more resistant to void swelling. In present investigation, creep properties of the SS in mill annealed condition (CW0) and 40 % cold worked (CW4) condition were studied. D9I stainless steel was solution treated at 1333 K for 30 minutes followed by cold rolling. Uniaxial creep tests were performed at 973 K for various stress levels ranging from 175-225 MPa. CW4 samples exhibited better creep resistance as compared to CW0 samples. During creep exposure, cold worked material exhibited phenomena of recovery and recrystallization wherein new strain free grains were observed with lesser dislocation network. In contrast CW0 samples showed no signs of recovery and recrystallization after creep exposure. Partial recrystallization on creep exposure led to higher drop in hardness in cold worked sample as compared to that in mill annealed sample. Accelerated precipitation of carbides at the grain boundaries was observed during creep exposure and this phenomenon was more pronounced in cold worked sample.

  20. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    NASA Astrophysics Data System (ADS)

    Gregorčič, Peter; Sedlaček, Marko; Podgornik, Bojan; Reif, Jürgen

    2016-11-01

    Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete - erasing the previous orientation - after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  1. Evaluation of Crack Arrest Toughness ( K IA) of P91 Steel in Various Cold Worked and Thermally Aged Conditions

    NASA Astrophysics Data System (ADS)

    Sathyanarayanan, S.; Moitra, A.; Sasikala, G.; Bhaduri, A. K.

    2015-02-01

    K IA is increasingly being regarded as a characteristic fracture toughness below which cleavage fracture does not occur. Its evaluation from small-sized Charpy specimens would be advantageous for applications in power plant industries. In this study, K IA has been evaluated for P91 steel in various cold worked and thermally aged conditions. Evaluation of K IA requires determination of crack arrest load( P arrest) and crack arrest length( a arrest). The main challenge is in the determination of a arrest due to the non-availability of standard methodologies and the absence of unequivocal microstructural signatures on the fracture surface in this steel to identify crack arrest. a arrest has been determined using the analytical Key- Curve methodology which has proven successful for this steel in unaged condition. The applicability of the Key- Curve method is validated by the good agreement of the determined final crack length with that measured optically on unbroken specimens of N&T and subsequently 15% cold-worked P91 steel which had been previously aged at 650 °C for 5000 h. Mean K IA varies from 47.46 MPa√m (NT steel aged at 600 °C for 5000 h) to 69.85 MPa√m(NT + 15% cw steel aged at 650 °C for 10000 h) for the various cold worked and aged datasets. K IA is found to be an average property unlike initiation toughness ( K Jd) which shows statistical scatter. Mean K IA is found to be in reasonable agreement with the lower bound values of cleavage initiation toughness ( K Jd) for the datasets in this study.

  2. Model for texture evolution in cold rolling of 2.4 wt.-% Si non-oriented electrical steel

    NASA Astrophysics Data System (ADS)

    Wei, X.; Hojda, S.; Dierdorf, J.; Lohmar, J.; Hirt, G.

    2017-10-01

    Iron loss and limited magnetic flux density are constraints for NGO electrical steel used in highly efficient electrical machinery cores. The most important factors that affect these properties are the final microstructure and the texture of the NGO steel. Reviewing the whole process chain, cold rolling plays an important role because the recrystallization and grain growth during the final heat treatment can be strongly affected by the stored energy and microstructure of cold rolling, and some texture characteristics can be inherited as well. Therefore, texture evolution during cold rolling of NGO steel is worth a detailed investigation. In this paper, texture evolution in cold rolling of non-oriented (NGO) electrical steel is simulated with a crystal plasticity finite element method (CPFEM) model. In previous work, a CPFEM model has been implemented for simulating the texture evolution with periodic boundary conditions and a phenomenological constitutive law. In a first step the microstructure in the core of the workpiece was investigated and mapped to a representative volume element to predict the texture evolution. In this work an improved version of the CPFEM model is described that better reflects the texture evolution in cold rolling of NGO electrical steel containing 2.4 wt.-% Si. This is achieved by applying the deformation gradient and calibrating the flow curve within the CPFEM model. Moreover, the evolution of dislocation density is calculated and visualized in this model. An in depth comparison of the numerical and experimental results reveals, that the improved CPFEM model is able to represent the important characteristics of texture evolution in the core of the workpiece during cold rolling with high precision.

  3. Creep-Rupture Behavior and Recrystallization in HR6W and Haynes Alloy 230 Cold-Bent Boiler Tubing for Ultrasupercritical (USC) Steam Boiler Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shingledecker, John P

    2007-01-01

    Creep-rupture experiments were conducted on HR6W and Haynes 230, candidate Ultrasupercritical (USC) alloys, tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of themore » creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.« less

  4. Cold-workability limits for carbon and alloy steels

    NASA Astrophysics Data System (ADS)

    El-Domiaty, A.

    1999-04-01

    In metalforming, the success in accomplishing the required deformation without failure of the forming tools or cracking of the work material represents the major concern for manufacture and design engineers. The degree of deformation that can be achieved in a particular metalworking process without creating an undesirable condition is defined as workability. In the present work, an experimental investigation was carried out to determine the cold-workability limits for five different types of steel: AISI 1018, 1045, 1078, 4140, and 4340. The upset (compression) test was used to determine the workability limit for each type. The upset dies and specimen geometries were designed to give different strain paths covering the range from homogeneous deformation (ɛz/ɛθ=-2.0) to close to plane-strain condition (ɛz/ɛθ=0.0). Grid pattern was printed on the specimen surface in order to measure the axial and hoop strain components during deformation. Specific elements were selected on the specimen surface, and their strain paths were determined. Each strain path was terminated once surface cracking had been observed. The ends of the strain paths, at which macrocracks were observed, were connected to obtain the workability limit on the forming-limit diagram. The workability limit of AISI 1018 is the highest among the other types of steel.

  5. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  6. Environment-Assisted Cracking in Custom 465 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lee, E. U.; Goswami, R.; Jones, M.; Vasudevan, A. K.

    2011-02-01

    The influence of cold work and aging on the environment-assisted cracking (EAC) behavior and mechanical properties of Custom 465 stainless steel (SS) was studied. Four sets of specimens were made and tested. All specimens were initially solution annealed, rapidly cooled, and refrigerated (SAR condition). The first specimen set was steel in the SAR condition. The second specimen set was aged to the H1000 condition. The third specimen set was 60 pct cold worked, and the fourth specimen set was 60 pct cold worked and aged at temperatures ranging from 755 K to 825 K (482 °C to 552 °C) for 4 hours in air. The specimens were subsequently subjected to EAC and mechanical testing. The EAC testing was conducted, using the rising step load (RSL) technique, in aqueous solutions of NaCl of pH 7.3 with concentrations ranging from 0.0035 to 3.5 pct at room temperature. The microstructure, dislocation substructure, and crack paths, resulting from the cold work, aging, or subsequent EAC testing, were examined by optical microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The aging of the cold-worked specimens induced carbide precipitation within the martensite lath, but not at the lath or packet boundaries. In the aged specimens, as aging temperature rose, the threshold stress intensity for EAC (KIEAC), elongation, and fracture toughness increased, but the strength and hardness decreased. The KIEAC also decreased with increasing yield strength and NaCl concentration. In the SAR and H1000 specimens, the EAC propagated along the prior austenite grain boundary, while in the cold-worked and cold-worked and aged specimens, the EAC propagated along the martensite lath, and its packet and prior austenite grain boundaries. The controlling mechanism for the observed EAC was identified to be hydrogen embrittlement.

  7. The effect of hold-times on the fatigue life of 20% cold-worked Type 316L stainless steel under deuteron irradiation

    NASA Astrophysics Data System (ADS)

    Scholz, R.

    1995-09-01

    Strain-controlled fatigue tests have been performed in torsion on 20% cold-worked Type 316L stainless steel specimens during irradiation with 19 MeV deuterons. A hold-time was imposed at the minimum strain value in the loading cycle. The irradiation creep induced stress relaxation led to the buildup of a mean stress. The number of cycles to failure may be significantly reduced in comparison to analogous continuous cycling tests under thermal conditions.

  8. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-03-01

    Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

  9. Study on the effectiveness of Extreme Cold Mist MQL system on turning process of stainless steel AISI 316

    NASA Astrophysics Data System (ADS)

    Jamaludin, A. S.; Hosokawa, A.; Furumoto, T.; Koyano, T.; Hashimoto, Y.

    2018-03-01

    Cutting process of difficult-to-cut material such as stainless steel, generates immensely excessive heat, which is one of the major causes related to shortening tool life and lower quality of surface finish. It is proven that application of cutting fluid during the cutting process of difficult-to-cut material is able to improve the cutting performance, but excessive application of cutting fluid leads to another problem such as increasing processing cost and environmental hazardous pollution of workplace. In the study, Extreme Cold Mist system is designed and tested along with various Minimum Quantity Lubrication (MQL) systems on turning process of stainless steel AISI 316. In the study, it is obtained that, Extreme Cold Mist system is able to reduce cutting force up to 60N and improve the surface roughness of the machined surface significantly.

  10. Cold pressure welding of aluminium-steel blanks: Manufacturing process and electrochemical surface preparation

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2018-05-01

    In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.

  11. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    NASA Astrophysics Data System (ADS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  12. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raab, A. E.; Berger, E.; Freudenthaler, J.

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesivemore » and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.« less

  13. Effects of Thermo-Mechanical Treatments on Deformation Behavior and IGSCC Susceptibility of Stainless Steels in Pwr Primary Water Chemistry

    NASA Astrophysics Data System (ADS)

    Nouraei, S.; Tice, D. R.; Mottershead, K. J.; Wright, D. M.

    Field experience of 300 series stainless steels in the primary circuit of PWR plant has been good. Stress Corrosion Cracking of components has been infrequent and mainly associated with contamination by impurities/oxygen in occluded locations. However, some instances of failures have been observed which cannot necessarily be attributed to deviations in the water chemistry. These failures appear to be associated with the presence of cold-work produced by surface finishing and/or by welding-induced shrinkage. Recent data indicate that some heats of SS show an increased susceptibility to SCC; relatively high crack growth rates were observed even when the crack growth direction is orthogonal to the cold-work direction. SCC of cold-worked SS in PWR coolant is therefore determined by a complex interaction of material composition, microstructure, prior cold-work and heat treatment. This paper will focus on the interactions between these parameters on crack propagation in simulated PWR conditions.

  14. Microstructures, Mechanical Properties, and Strain Hardening Behavior of an Ultrahigh Strength Dual Phase Steel Developed by Intercritical Annealing of Cold-Rolled Ferrite/Martensite

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.

    2015-07-01

    A dual phase (DP) steel was produced by a new process utilizing an uncommon cold-rolling and subsequent intercritical annealing of a martensite-ferrite duplex starting structure. Ultrafine grained DP steels with an average grain size of about 2 μm and chain-networked martensite islands were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructure. The strength of the low carbon steel with the new DP microstructure was reached about 1300 MPa (140 pct higher than that of the as-received state, e.g., 540 MPa), without loss of ductility. Tensile testing revealed good strength-elongation balance for the new DP steels (UTS × UE ≈ 11,000 to 15,000 MPa pct) in comparison with the previous works and commercially used high strength DP steels. Two strain hardening stages with comparable exponents were observed in the Holloman analysis of all DP steels. The variations of hardness, strength, elongation, and strain hardening behavior of the specimens with thermomechanical parameters were correlated to microstructural features.

  15. Improvement of mechanical properties on metastable stainless steels by reversion heat treatments

    NASA Astrophysics Data System (ADS)

    Mateo, A.; Zapata, A.; Fargas, G.

    2013-12-01

    AISI 301LN is a metastable austenitic stainless steel that offers an excellent combination of high strength and ductility. This stainless grade is currently used in applications where severe forming operations are required, such as automotive bodies. When these metastable steels are plastically deformed at room temperature, for example by cold rolling, austenite transforms to martensite and, as a result, yield strength increases but ductility is reduced. Grain refinement is the only method that allows improving strength and ductility simultaneously. Several researchers have demonstrated that fine grain AISI 301LN can be obtained by heat treatment after cold rolling. This heat treatment is called reversion because it provokes the reversion of strain induced martensite to austenite. In the present work, sheets of AISI 301LN previously subjected to 20% of cold rolling reduction were treated and a refined grain austenitic microstructure was obtained. Mechanical properties, including fatigue limit, were determined and compared with those corresponding to the steel both before and after the cold rolling.

  16. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  17. Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid

    2014-04-01

    High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.

  18. Tribological investigations of the applicability of surface functionalization for dry extrusion processes

    NASA Astrophysics Data System (ADS)

    Teller, Marco; Prünte, Stephan; Ross, Ingo; Temmler, André; Schneider, Jochen M.; Hirt, Gerhard

    2017-10-01

    Cold extrusion processes are characterized by large relative contact stresses combined with a severe surface enlargement of the workpiece. Under these process conditions a high risk for galling of workpiece material to the tool steel occurs especially in processing of aluminum and aluminum alloys. In order to reduce adhesive wear lubricants for separation of workpiece and tool surfaces are used. As a consequence additional process steps (e.g. preparation and cleaning of workpieces) are necessary. Thus, the realization of a dry forming process is aspired from an environmental and economic perspective. In this paper a surface functionalization with self-assembled-monolayers (SAM) of the tool steels AISI D2 (DIN 1.2379) and AISI H11 (DIN 1.2343) is evaluated by a process-oriented tribological test. The tribological experiment is able to resemble and scale the process conditions of cold extrusion related to relative contact stress and surface enlargement for the forming of pure aluminum (Al99.5). The effect of reduced relative contact stress, surface enlargement and relative velocity on adhesive wear and tool lifetime is evaluated. Similar process conditions are achievable by different die designs with decreased extrusion ratios and adjusted die angles. The effect of surface functionalization critically depends on the substrate material. The different microstructure and the resulting differences in surface chemistry of the two tested tool steels appear to affect the performance of the tool surface functionalization with SAM.

  19. The mechanical properties of austenite stainless steel 304 after structural deformation through cold work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarok, Naila; Manaf, Azwar, E-mail: azwar@ui.ac.id; Notonegoro, Hamdan Akbar

    The 304 stainless steel (SS) type is widely used in oil and gas operations due to its excellent corrosion resistance. However, the presence of the fine sand particles and H{sub 2}S gas contained in crude oil could lead the erosion and abrasion in steel. In this study, cold rolled treatments were conducted to the 304 SS in order to increase the wear resistance of the steel. The cold work has resulted in thickness reduction to 20%, 40% and 60% of the original. Various microstructural characterizations were used to analyze the effect of deformation. The hardness characterization showed that the initialmore » hardness value increased from 145 HVC to 395 HVC as the level of deformation increase. Further, the wear resistance increased with the deformation rate from 0% to 40% and subsequently decreased from 40% to 60% deformation rate. Microstructural characterization shows that the boundary change to coincide by 56 µm, 49 µm, 45 µm, and 43 µm width and the grain go to flatten and being folded like needles. The effect of deformation on the grain morphology and structure was also studied by optical metallography and X-Ray Diffraction. It is shown that the deformation by means of a cold rolled process has transformed the austenite structure into martensitic structure.« less

  20. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  1. The effect of a Cr addition and transformation temperature on the mechanical properties of cold drawn hyper-eutectoid steel wires

    NASA Astrophysics Data System (ADS)

    Song, Hyung Rak; Kang, Eui Goo; Bae, Chul Min; Lee, Choong Yeol; Lee, Duk Lak; Nam, Won Jong

    2006-06-01

    The effects of a Cr addition and transformation temperature on the strength and work hardening behavior of cold drawn hyper-eutectoid steel wires are investigated in this study. The Cr addition was found to be effective for increasing the tensile strength and work hardening rate, k/(2 λ°)1/2, due to the refinement of the initial interlamellar spacing and the increment of the Hall-Petch parameter. While the work hardening rate, k/(2 λ°)1/2, was significantly influenced by the magnitude of the interlamellar spacing, the Hall-Petch parameter, k, was not affected by the interlamellar spacing. Additionally, the refinement of the interlamellar spacing due to the low transformation temperature and the Cr addition caused an increase of the RA in drawn pearlitic steels.

  2. Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2017-03-01

    Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size <1 µm) and a small fraction of the inter lath films of retained austenite. The UFG DP steel produced through intercritical annealing at 1013 K (740 °C) has good combination of strength (1295 MPa) and ductility (uniform elongation, 13 pct). The nanoscale V- and Nb-based carbides/carbonitrides and spheroidized cementite particles have played a crucial role in achieving UFG DP microstructure and in improving the strength and work hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard-Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.

  3. Effect of Deep Cryogenic treatment on AISI A8 Tool steel & Development of Wear Mechanism maps using Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    Tool steels are widely classified according to their constituents and type of thermal treatments carried out to obtain its properties. Viking a special purpose tool steel coming under AISI A8 cold working steel classification is widely used for heavy duty blanking and forming operations. The optimum combination of wear resistance and toughness as well as ease of machinability in pre-treated condition makes this material accepted in heavy cutting and non cutting tool manufacture. Air or vacuum hardening is recommended as the normal treatment procedure to obtain the desired mechanical and tribological properties for steels under this category. In this study, we are incorporating a deep cryogenic phase within the conventional treatment cycle both before and after tempering. The thermal treatments at sub zero temperatures up to -195°C using cryogenic chamber with liquid nitrogen as medium was conducted. Micro structural changes in its microstructure and the corresponding improvement in the tribological and physical properties are analyzed. The cryogenic treatment leads to more conversion of retained austenite to martensite and also formation of fine secondary carbides. The microstructure is studied using the micrographs taken using optical microscopy. The wear tests are conducted on DUCOM tribometer for different combinations of speed and load under normal temperature. The wear rates and coefficient of friction obtained from these experiments are used to developed wear mechanism maps with the help of fuzzy c means clustering and probabilistic neural network models. Fuzzy C means clustering is an effective algorithm to group data of similar patterns. The wear mechanisms obtained from the computationally developed maps are then compared with the SEM photographs taken and the improvement in properties due to this additional cryogenic treatment is validated.

  4. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  5. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2014-07-01

    This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of Controlled Cooling-Induced Ferrite-Pearlite Microstructure on the Cold Forgeability of XC45 Steel

    NASA Astrophysics Data System (ADS)

    Hu, Chengliang; Chen, Lunqiang; Zhao, Zhen; Gong, Aijun; Shi, Weibing

    2018-05-01

    The combination of hot/warm and cold forging with an intermediate controlled cooling process is a promising approach to saving costs in the manufacture of automobile parts. In this work, the effects of the ferrite-pearlite microstructure, which formed after controlled cooling, on the cold forgeability of a medium-carbon steel were investigated. Different specimens for both normal and notched tensile tests were directly heated to high temperature and then cooled down at different cooling rates, producing different ferrite volume fractions, ranging from 6.69 to 40.53%, in the ferrite-pearlite microstructure. The yield strength, ultimate tensile strength, elongation rate, percentage reduction of area, and fracture strain were measured by tensile testing. The yield strength, indicating deformation resistance, and fracture strain, indicating formability, were used to evaluate the cold forgeability. As the ferrite volume fraction increased, the cold forgeability of the dual-phase ferritic-pearlitic steel improved. A quantitatively relationship between the ferrite volume fraction and the evaluation indexes of cold forgeability for XC45 steel was obtained from the test data. To validate the mathematical relationship, different tensile specimens machined from real hot-forged workpieces were tested. There was good agreement between the predicted and measured values. Our predictions from the relationship for cold forgeability had an absolute error less than 5%, which is acceptable for industrial applications and will help to guide the design of combined forging processes.

  7. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C

    NASA Astrophysics Data System (ADS)

    Lambrinou, Konstantina; Charalampopoulou, Evangelia; Van der Donck, Tom; Delville, Rémi; Schryvers, Dominique

    2017-07-01

    This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253-3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was non-uniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.

  8. Six years of evidence-based adult dissection tonsillectomy with ultrasonic scalpel, bipolar electrocautery, bipolar radiofrequency or 'cold steel' dissection.

    PubMed

    Ragab, S M

    2012-10-01

    To conduct an adequately powered, prospective, randomised, controlled trial comparing adult dissection tonsillectomy using either ultrasonic scalpel, bipolar electrocautery, bipolar radiofrequency or 'cold steel' dissection. Three hundred patients were randomised into four tonsillectomy technique groups. The operative time, intra-operative bleeding, post-operative pain, tonsillar fossa healing, return to full diet, return to work and post-operative complications were recorded. The bipolar radiofrequency group had a shorter mean operative time. The mean intra-operative blood loss during bipolar radiofrequency tonsillectomy was significantly less compared with cold dissection and ultrasonic scalpel tonsillectomy. Pain scores were significantly higher after bipolar electrocautery tonsillectomy. Patients undergoing bipolar electrocautery tonsillectomy required significantly more days to return to full diet and work. The bipolar electrocautery group showed significantly reduced tonsillar fossa healing during the first and second post-operative weeks. In this adult series, bipolar radiofrequency tonsillectomy was superior to ultrasonic, bipolar electrocautery and cold dissection tonsillectomies. This method combines the advantages of 'hot' and 'cold' tonsillectomy.

  9. Influence of Punch Geometry on Process Parameters in Cold Backward Extrusion

    NASA Astrophysics Data System (ADS)

    Plančak, M.; Barišić, B.; Car, Z.; Movrin, D.

    2011-01-01

    In cold extrusion of steel tools make direct contact with the metal to be extruded. Those tools are exposed to high contact stresses which, in certain cases, may be limiting factors in applying this technology. The present paper was bound to the influence of punch head design on radial stress at the container wall in the process of cold backward extrusion. Five different punch head geometries were investigated. Radial stress on the container wall was measured by pin load cell technique. Special tooling for the experimental investigation was designed and made. Process has been analyzed also by FE method. 2D models of tools were obtained by UGS NX and for FE analysis Simufact Forming GP software was used. Obtained results (experimental and obtained by FE) were compared and analyzed. Optimal punch head geometry has been suggested.

  10. Relief of Residual Stress in Streamline Tie Rods by Heat Treatment

    NASA Technical Reports Server (NTRS)

    Pollard, R E; Reinhart, Fred M

    1941-01-01

    About two-thirds of the residual stress in cold-worked SAE 1050 steel tie rods was relieved by heating 30 minutes at 600 degrees Fahrenheit. Cold-worked austenitic stainless-steel tie rods could be heated at temperatures up to 1000 degrees Fahrenheit without lowering the important physical properties. The corrosion resistance, in laboratory corrosion test, of straight 18:8 and titanium-treated 18:8 materials appeared to be impaired after heating at temperatures above 800 degrees or 900 degrees fahrenheit. Columbium-treated and molybdenum-treated 18:8 steel exhibited improved stability over a wide range of temperatures. Tie rods of either material could be heated 30 minutes with safety at any temperature up to 1000 degrees Fahrenheit. At this temperature most of the residual stress would be relieved.

  11. Effect of Post-deformation Annealing Treatment on the Microstructural Evolution of a Cold-Worked Corrosion-Resistant Superalloy (CRSA) Steel

    NASA Astrophysics Data System (ADS)

    Mirzaei, A.; Zarei-Hanzaki, A.; Mohamadizadeh, A.; Lin, Y. C.

    2018-03-01

    The post-deformation annealing treatments of a commercial cold-worked corrosion-resistant superalloy steel (Sanicro 28 steel) were carried out at different temperatures in the range of 900-1100 °C for different holding durations of 5, 10, and 15 min. The effects of post-deformation annealing time and temperature on the microstructural evolution and subsequent mechanical properties of the processed Sanicro 28 steel were investigated. The observations indicated that twin-twin hardening in cold deformation condition mainly correlates with abundant nucleation of mechanical twins in multiple directions resulting in considerable strain hardening behavior. Microstructural investigations showed that the static recrystallization takes place after isothermal holding at 900 °C for 5 min. Increasing the annealing temperature from 900 to 1050 °C leads to recrystallization development and grain refinement in the as-recrystallized state. In addition, an increase in annealing duration from 5 to 15 min leads to subgrain coarsening and subsequently larger recrystallized grains size. The occurrence of large proportion of the grain refinement, which is achieved in the first annealing stage at 1050 °C after 5 min, is considered as the main factor for the maximum elongation at this stage.

  12. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    NASA Astrophysics Data System (ADS)

    Durmaz, M.; Kilinc, B.; Abakay, E.; Sen, U.; Sen, S.

    2015-03-01

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr2N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV0.025. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.

  13. Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durmaz, M., E-mail: mdurmaz@sakarya.edu.tr; Abakay, E.; Sen, U.

    2015-03-30

    In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layermore » formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.« less

  14. 40 CFR 420.107 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...

  15. 40 CFR 420.107 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...

  16. 40 CFR 420.107 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...

  17. 40 CFR 420.107 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...

  18. 40 CFR 420.107 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420...) Cold rolling mills—(1) Recirculation—single stand. Subpart J Pollutant or pollutant property BCT...) (1) 1 Within the range of 6.0 to 9.0. (b) Cold worked pipe and tube—(1) Using water. Subpart J...

  19. Tool Steel Heat Treatment Optimization Using Neural Network Modeling

    NASA Astrophysics Data System (ADS)

    Podgornik, Bojan; Belič, Igor; Leskovšek, Vojteh; Godec, Matjaz

    2016-11-01

    Optimization of tool steel properties and corresponding heat treatment is mainly based on trial and error approach, which requires tremendous experimental work and resources. Therefore, there is a huge need for tools allowing prediction of mechanical properties of tool steels as a function of composition and heat treatment process variables. The aim of the present work was to explore the potential and possibilities of artificial neural network-based modeling to select and optimize vacuum heat treatment conditions depending on the hot work tool steel composition and required properties. In the current case training of the feedforward neural network with error backpropagation training scheme and four layers of neurons (8-20-20-2) scheme was based on the experimentally obtained tempering diagrams for ten different hot work tool steel compositions and at least two austenitizing temperatures. Results show that this type of modeling can be successfully used for detailed and multifunctional analysis of different influential parameters as well as to optimize heat treatment process of hot work tool steels depending on the composition. In terms of composition, V was found as the most beneficial alloying element increasing hardness and fracture toughness of hot work tool steel; Si, Mn, and Cr increase hardness but lead to reduced fracture toughness, while Mo has the opposite effect. Optimum concentration providing high KIc/HRC ratios would include 0.75 pct Si, 0.4 pct Mn, 5.1 pct Cr, 1.5 pct Mo, and 0.5 pct V, with the optimum heat treatment performed at lower austenitizing and intermediate tempering temperatures.

  20. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    NASA Astrophysics Data System (ADS)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  1. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Tanhaei, S.; Gheisari, Kh.; Alavi Zaree, S. R.

    2018-06-01

    This study has evaluated the effect of different levels of cold rolling (from 0 to 50%) on the microstructural, magnetic, and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in NaCl (1 mol/L) + H2SO4 (0.5 mol/L) solution. Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process. Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagnetic α'-martensite phase under the stresses applied during cold rolling. This finding is in agreement with magnetic measurements using a vibrating sample magnetometer. Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage, representing a reduction in the material's work-hardening ability. Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy. In contrast to the uniform corrosion, wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects, the passive potential range and breakdown potential increased by cold working, showing greater resistance to pit nucleation. Although pits were formed, the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop, as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.

  2. AISI/DOE Technology Roadmap Program: Cold Work Embrittlement of Interstitial Free Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John T Bowker; Pierre Martin

    2002-10-31

    This work addresses the issues of measurement of secondary cold work embrittlement (SCWE) of an IF steel in deep-drawn parts using laboratory tests, and its correlation with real part fracture. It aimed at evaluating the influence of the steel chemistry and processing condition, microstructure, and test conditions, on SCWE as well as the effect of SCWE on fatigue properties. Size 6-in. cups produced with various draw ratios or trimmed at different heights were tested to determine the ductile-to-brittle-transition temperature (DBTT) as a function of strain. The 2-in. cup/expansion test, bend test and fracture of notched specimens were also used tomore » generate information complementary to that provided by the 6-inch cup/expansion test. The relationship between laboratory tests and fracture in real parts was established by testing large-scale parts. The fatigue behavior was investigated in the as-rolled and deep drawn (high stain) conditions, using prestrained specimens taken from the wall of a formed part.« less

  3. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it; Pellizzari, M.; Zadra, M.

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles.more » X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.« less

  4. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    NASA Astrophysics Data System (ADS)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  5. Investigation of multi-stage cold forward extrusion process using coupled thermo-mechanical finite element analysis

    NASA Astrophysics Data System (ADS)

    Görtan, Mehmet Okan

    2018-05-01

    Cold extrusion processes are distinguished by their low material usage as well as great efficiency in the production of mid-range and large component series. Although majority of the cold extruded parts are produced using die systems containing multiple forming stages, this subject has rarely been investigated so far. Therefore, the characteristics of multi-stage cold forward rod extrusion is studied in the current work using thermo-mechanically coupled finite element (FE) analysis. A case hardening steel, 16MnCr5 (1.7131) was used as experimental material. Its strain, strain rate and temperature dependent mechanical characteristics were determined using compression testing and modeled in FE simulations via a Johnson-Cook material model. Friction coefficients for the same material while in contact with a tool steel (1.2379) were determined dependent on temperature and contact pressure using sliding compression test (SCT) and modeled by an adaptive friction model developed by the author. In the first set of simulations, rod material with a diameter of 14.9 mm was extruded down to a diameter of 9.6 mm in a single step using three different die opening angles (2α); 20°, 40° and 60°. In the second set of investigations, the same rod was reduced first to 12 mm and then to 9.6 mm in two steps within the same forming die. Press forces, contact normal stresses between extruded material and forming die, material temperature and axial stresses are compared in these two set of simulations and the differences are discussed.

  6. The effect of some heat treatment parameters on the dimensional stability of AISI D2

    NASA Astrophysics Data System (ADS)

    Surberg, Cord Henrik; Stratton, Paul; Lingenhöle, Klaus

    2008-01-01

    The tool steel AISI D2 is usually processed by vacuum hardening followed by multiple tempering cycles. It has been suggested that a deep cold treatment in between the hardening and tempering processes could reduce processing time and improve the final properties and dimensional stability. Hardened blocks were then subjected to various combinations of single and multiple tempering steps (520 and 540 °C) and deep cold treatments (-90, -120 and -150 °C). The greatest dimensional stability was achieved by deep cold treatments at the lowest temperature used and was independent of the deep cold treatment time.

  7. Development of nano/sub-micron grain structures in metastable austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Rajasekhara, Shreyas

    2007-12-01

    This dissertation is a part of a collaborative work between the University of Texas, Austin-Texas, the University of Oulu, Oulu-Finland, and Outokumpu Stainless Oy, Tornio-Finland, to develop commercial austenitic stainless steels with high strength and ductility. The idea behind this work involves cold-rolling a commercial metastable austenitic stainless steel - AISI 301LN stainless steel to produce strain-induced martensite, followed by an annealing treatment to generate nano/sub-micron grained austenite. AISI 301LN stainless steel sheets are cold-rolled to 63% reduction and subsequently annealed at 600°C, 700°C, 800°C, 900°C and 1000°C for 1, 10 and 100 seconds. The samples are analyzed by X-Ray diffraction, SQUID, transmission electron microscopy, and tensile testing to fundamentally understand the microstructural evolution, the mechanism for the martensite → austenite reversion, the formation of nano/sub-micron austenite grains, and the relationship between the microstructure and the strength obtained in this stainless steel. The results show that cold-rolled AISI 301LN stainless steel consist of dislocation-cell martensite, heavily deformed lath-martensite and austenite shear bands. Subsequent annealing at 600°C for short durations of 1 and 10 seconds leads to negligible martensite to austenite reversion. These 600°C samples exhibit a similar microstructure to the cold-rolled sample. However, for samples annealed at 600°C for 100 seconds and those annealed at higher temperatures (700°C, 800°C, 900°C and 1000°C) exhibit equiaxed austenitic grains of sizes 0.2mum-10mum and secondary phase precipitates. The microstructural analysis also reveals that the martensite → austenite reversion occurs via a diffusion-type reversion mechanism. In this regard, a generalized form of Avrami's equation is used to model the kinetics of martensite → austenite phase reversion. The results from the model agree reasonably well with the experiments. Furthermore, the activation energy for grain growth in nano/sub-micron grained AISI 301LN stainless steel is found to be ˜ 205kJ/mol, which is comparable to values observed in coarse grained commercial stainless steels (AISI 304, 316). However, the driving force for grain growth in nano/sub-micron grained AISI 301LN stainless steel is considerably higher when compared to other stainless steels. Finally, the average grain sizes in AISI 301LN stainless steels are related to the mechanical properties obtained, through the Hall-Petch relationship.

  8. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

    2018-02-01

    The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

  9. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

    2017-12-01

    The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

  10. Enhancement and Prediction of Adhesion Strength of Copper Cold Spray Coatings on Steel Substrates for Nuclear Fuel Repository

    NASA Astrophysics Data System (ADS)

    Fernández, R.; MacDonald, D.; Nastić, A.; Jodoin, B.; Tieu, A.; Vijay, M.

    2016-12-01

    Thick copper coatings have been envisioned as corrosion protection barriers for steel containers used in repositories for nuclear waste fuel bundles. Due to its high deposition rate and low oxidation levels, cold spray is considered as an option to produce these coatings as an alternative to traditional machining processes to create corrosion protective sleeves. Previous investigations on the deposition of thick cold spray copper coatings using only nitrogen as process gas on carbon steel substrates have continuously resulted in coating delamination. The current work demonstrates the possibility of using an innovative surface preparation process, forced pulsed waterjet, to induce a complex substrate surface morphology that serves as anchoring points for the copper particles to mechanically adhere to the substrate. The results of this work show that, through the use of this surface preparation method, adhesion strength can be drastically increased, and thick copper coatings can be deposited using nitrogen. Through finite element analysis, it was shown that it is likely that the bonding created is purely mechanical, explaining the lack of adhesion when conventional substrate preparation methods are used and why helium is usually required as process gas.

  11. Scientific and Technological Principles of Development of New Cold-Resistant Arc-Steels (Steels for Arctic Applications)

    NASA Astrophysics Data System (ADS)

    Sych, O. V.; Khlusova, E. I.; Yashin, E. A.

    2017-12-01

    The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.

  12. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  13. Assessing edge cracking resistance in AHSS automotive parts by the Essential Work of Fracture methodology

    NASA Astrophysics Data System (ADS)

    Frómeta, D.; Tedesco, M.; Calvo, J.; Lara, A.; Molas, S.; Casellas, D.

    2017-09-01

    Lightweight designs and demanding safety requirements in automotive industry are increasingly promoting the use of Advanced High Strength Steel (AHSS) sheets. Such steels present higher strength (above 800 MPa) but lower ductility than conventional steels. Their great properties allow the reduction of the thickness of automobile structural components without compromising the safety, but also introduce new challenges to parts manufacturers. The fabrication of most cold formed components starts from shear cut blanks and, due to the lower ductility of AHSS, edge cracking problems can appear during forming operations, forcing the stop of the production and slowing down the industrial process. Forming Limit Diagrams (FLD) and FEM simulations are very useful tools to predict fracture problems in zones with high localized strain, but they are not able to predict edge cracking. It has been observed that the fracture toughness, measured through the Essential Work of Fracture (EWF) methodology, is a good indicator of the stretch flangeability in AHSS and can help to foresee this type of fractures. In this work, a serial production automotive component has been studied. The component showed cracks in some flanged edges when using a dual phase steel. It is shown that the conventional approach to explain formability, based on tensile tests and FLD, fails in the prediction of edge cracking. A new approach, based on fracture mechanics, help to solve the problem by selecting steel grades with higher fracture toughness, measured by means of EWF. Results confirmed that fracture toughness, in terms of EWF, can be readily used as a material parameter to rationalize cracking related problems and select AHSS with improved edge cracking resistance.

  14. A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders.

    DTIC Science & Technology

    1981-12-01

    structures, HIP or HIP and hot-worked high speed tool steels and powder forgings of low and medium alloy steels for load- bearing automotive...M7, M7S, M41, M42, M43S, T15 and M50 . These P/M tool steels exhibit a degree of alloy homogeneity and a fineness/uniformity of carbide dispersion...AD-AIl2 758 DREXEL UNIV PHILADEL.PH IA PA DEPT OF MATERIALS ENGINEERING F/6 11/6 A FUNDAMENTAL STUDY OF TOOL STEELS PROCESSED FROM L DEC 81 A

  15. Effect of the determination method of the material parameters on the accuracy of the hole expansion simulation for cold rolled steel sheet

    NASA Astrophysics Data System (ADS)

    Nakano, Hayato; Hakoyama, Tomoyuki; Kuwabara, Toshihiko

    2017-10-01

    Hole expansion forming of a cold rolled steel sheet is investigated both experimentally and analytically to clarify the effects of material models on the predictive accuracy of finite element analyses (FEA). The multiaxial plastic deformation behavior of a cold rolled steel sheet with a thickness of 1.2 mm was measured using a servo-controlled multiaxial tube expansion testing machine for the range of strain from initial yield to fracture. Tubular specimens were fabricated from the sheet sample by roller bending and laser welding. Many linear stress paths in the first quadrant of stress space were applied to the tubular specimens to measure the contours of plastic work in stress space up to a reference plastic strain of 0.24 along with the directions of plastic strain rates. The anisotropic parameters and exponent of the Yld2000-2d yield function (Barlat et al., 2003) were optimized to approximate the contours of plastic work and the directions of plastic strain rates. The hole expansion forming simulations were performed using the different model identifications based on the Yld2000-2d yield function. It is concluded that the yield function best capturing both the plastic work contours and the directions of plastic strain rates leads to the most accurate predicted FEA.

  16. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel

    PubMed Central

    Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos

    2015-01-01

    In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel. PMID:28793647

  17. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel.

    PubMed

    Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos

    2015-11-04

    In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel.

  18. Mechanical properties of low-nickel stainless steel

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  19. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    NASA Astrophysics Data System (ADS)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  20. Controlling the mechanical properties of carbon steel by thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Balavar, Mohsen; Mirzadeh, Hamed

    2018-01-01

    The effect of thermomechanical processing and heat treatment on the microstructure and mechanical properties of low carbon steel was studied. It was revealed that the dual phase ferritic-martensitic microstructure shows a good combination of tensile strength and ductility along with superior work hardening response. On the other hand, the bimodal-sized structure containing ultrafine grained (UFG) and micron-sized ferrite phase can be easily produced by cold rolling and annealing of the dual phase starting microstructure. This steel showed high yield stress, tensile strength, and ductility, but poor work hardening ability. The full annealed ferritic-pearlitic sheet with banded morphology exhibited low strength and high total elongation with the appearance of the yield point phenomenon. The martensitic steels, however, had high tensile strength and low ductility. By comparing the tensile properties of these steels, it was shown that it is possible to control the mechanical properties of low carbon steel by simple processing routes.

  1. A Study of the Cold Resistance of Pipe Coiled Stock Produced at Foundry-Rolling Works. Part 2

    NASA Astrophysics Data System (ADS)

    Bagmet, O. A.; Naumenko, V. V.; Smetanin, K. S.

    2018-03-01

    Results of a study of coiled stock from low-carbon steels alloyed with manganese and silicon and different additives of niobium and titanium are presented. The coiled stock is produced at foundry-rolling works by the method of direct rolling of thin slabs right after their continuous casting. The microdeformation of the crystal lattice and the crystallographic texture are determined. The conditions of formation of the most favorable structure and texture in the steels are specified.

  2. Microscopic Observations of Adiabatic Shear Bands in Three Different Steels

    DTIC Science & Technology

    1988-09-01

    low thermal conductivity, and a high thermal softening rate. Examples include alloys of titanium. aluminum, copper , as well as steels [5-221... steels : 1 (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and deformation in shear was impo.ed to produce shear bands...stecls: (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and (3) an AISI 4340 VAR steel tempered

  3. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

    NASA Astrophysics Data System (ADS)

    Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.

    2014-12-01

    The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

  4. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    PubMed

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.

  5. Technology and equipment based on induction melters with ``cold'' crucible for reprocessing active metal waste

    NASA Astrophysics Data System (ADS)

    Pastushkov, V. G.; Molchanov, A. V.; Serebryakov, V. P.; Smelova, T. V.; Shestoperov, I. N.

    2000-07-01

    The paper discusses specific features of technology, equipment and control of a single stage RAMW decontamination and melting process in an induction furnace equipped with a "cold" crucible. The calculated and experimental data are given on melting high activity level stainless steel and Zr simulating high activity level metal waste. The work is under way in SSC RF VNIINM.

  6. Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P.

    2018-01-01

    Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.

  7. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-05-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  8. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-07-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  9. Final Report: Self-Consolidating Concrete Construction for Modular Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentry, Russell; Kahn, Lawrence; Kurtis, Kimberly

    This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed “self-compacting concrete” or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed andmore » validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This “self-roughening” was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by Westinghouse and similar in construction to the steel composite modules being assembled at the Vogtle and V.C. Summer plant expansions. The final test showed that the roughened cold-joint showed excellent shear and flexural capacity, and substantial ductility, when used in conjunction with steel composite construction.« less

  10. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  11. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  12. Finite element analysis of composite beam-to-column connection with cold-formed steel section

    NASA Astrophysics Data System (ADS)

    Firdaus, Muhammad; Saggaff, Anis; Tahir, Mahmood Md

    2017-11-01

    Cold-formed steel (CFS) sections are well known due to its lightweight and high structural performance which is very popular for building construction. Conventionally, they are used as purlins and side rails in the building envelopes of the industrial buildings. Recent research development on cold-formed steel has shown that the usage is expanded to the use in composite construction. This paper presents the modelling of the proposed composite connection of beam-to-column connection where cold-formed steel of lipped steel section is positioned back-to-back to perform as beam. Reinforcement bars is used to perform the composite action anchoring to the column and part of it is embedded into a slab. The results of the finite element and numerical analysis has showed good agreement. The results show that the proposed composite connection contributes to significant increase to the moment capacity.

  13. On electrical resistivity of AISI D2 steel during various stages of cryogenic treatment

    NASA Astrophysics Data System (ADS)

    Lomte, Sachin Vijay; Gogte, Chandrashekhar Laxman; Peshwe, Dilip

    2012-06-01

    The effect of dislocation densities and residual stresses is well known in tool steels. Measurement of electrical resistivity in order to monitor dislocation densities or residual stresses has seldom been used in investigating the effect of cryogenic treatment on tool steels. Monitoring residual stresses during cryogenic treatment becomes important as it is directly related to changes due to cryogenic treatment of tool steels. For high carbon high chromium (HCHC- AISI D2) steels, not only wear resistance but dimensional stability is an important issue as the steels are extensively used in dies, precision measuring instruments. This work comprises of study of measurement of electrical resistivity of AISI D2 steel at various stages of cryogenic treatment. Use of these measurements in order to assess the dimensional stability of these steels is discussed in this paper.

  14. Application of statistical methods to reveal and remove the causes of welding of coil laps upon annealing of cold-rolled steel strips

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Diligenskii, E. V.; Antonov, P. V.; Shalaevskii, D. L.; Dyatlov, I. A.

    2017-09-01

    The factors of the process of production of cold-rolled steel strips that promote and hinder the appearance of a coil lap welding defect upon annealing in bell-type furnaces are analyzed using statistical methods. The works dealing with this problem are analytically reviewed to reveal the problems to be studied and refined. The ranking of the technological factors according to the significance of their influence on the probability of appearance of this defect is determined and supported by industrial data, and a regression equation is derived to calculate this probability. The process of production is improved to minimize the rejection of strips caused by the welding of coil laps.

  15. Dust Explosion Characteristics of Aluminum, Titanium, Zinc, and Iron-Based Alloy Powders Used in Cold Spray Processing

    NASA Astrophysics Data System (ADS)

    Sakata, K.; Tagomori, K.; Sugiyama, N.; Sasaki, S.; Shinya, Y.; Nanbu, T.; Kawashita, Y.; Narita, I.; Kuwatori, K.; Ikeda, T.; Hara, R.; Miyahara, H.

    2014-01-01

    Compared to conventional thermal spray coating, cold spray processing typically employs finer, smaller-diameter metal powders. Furthermore, cold-sprayed particles exhibit fewer surface oxides than thermally sprayed particles due to the absence of particle melting during spraying. For these reasons, it is important to consider the potential for dust explosions or fires during cold spray processing, for both industrial and R&D applications. This work examined the dust explosion characteristics of metal powders typically used in cold spray coating, for the purpose of preventing dust explosions and fires and thus protecting the health and safety of workers and guarding against property damage. In order to safely make use of the new cold spray technology in industrial settings, it is necessary to manage the risks based on an appropriate assessment of the hazards. However, there have been few research reports focused on such risk management. Therefore, in this study, the dust explosion characteristics of aluminum, titanium, zinc, carbonyl iron, and eutectoid steel containing chromium at 4 wt.% (4 wt.% Cr-eutectoid steel) powders were evaluated according to the standard protocols JIS Z 8818, IEC61241-2-3(1994-09) section 3, and JIS Z 8817. This paper reports our results concerning the dust explosion properties of the above-mentioned metal powders.

  16. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold-rolling material and Ti-6Al-4V and INCONEL 718 were selected as typical hot-rolling and cold-rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape-rolling process were developed. These models utilize the upper-bound and the slab methods of analysis, and are capable of predicting the lateral spread, roll-separating force, roll torque and local stresses, strains and strain rates. This computer-aided design (CAD) system is also capable of simulating the actual rolling process and thereby designing roll-pass schedule in rolling of an airfoil or similar shape. The predictions from the CAD system were verified with respect to cold rolling of mild steel plates. The system is being applied to cold and hot isothermal rolling of an airfoil shape, and will be verified with respect to laboratory experiments under controlled conditions.

  17. Influence of combined thermomechanical treatment on impurity segregation in ferritic-martensitic and austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ilyin, A. M.; Neustroev, V. S.; Shamardin, V. K.; Shestakov, V. P.; Tazhibaeva, I. L.; Krivchenkoa, V. A.

    2000-12-01

    In this study 13Cr2MoVNb ferritic-martensitic steel (FMS) and 16Cr15Ni3MoNb austenitic stainless steel (ASS) tensile specimens were subjected to standard heat treatments and divided into two groups. Specimens in group 1 (FMS only) were aged at 400°C in a stress free and in an elastically stressed state with a tensile load (100 MPa) then doped with hydrogen in an electrolytic cell. Specimens in group 2 were subjected to cold work (up to 10%) and exposed to short-time heating at 500° for 0.5 h. All specimens were fractured at room temperature in an Auger spectrometer and Auger analysis of the fracture surfaces was performed in situ after fracturing. A noticeable increase of N and P segregation levels and a widening of the depth distribution on the grain boundary facets were observed in the FMS after aging in the stressed state. Cold-worked FMS and ASS showed a ductile dimple mode of fracture, but relatively high levels of S, P and N were observed on the dimple surfaces. We consider the origin of such effects in terms of the stressed state and plastic-deformation-enhanced segregation.

  18. Cold Saw Operator (iron & steel) 6-88.651; Cold Sizing Mill Operator (iron & steel) 4-88.315; Decambering Mill Operator (iron & steel) 6-88.346; Flying Cut-Off Machine Operator (iron & steel) 6-88.655; Rotary Straightener Operator (iron & steel) 6-88.346; Straightener Machine Operator (iron & steel) 6-88.354; Tube Straightener Operator (iron & steel) 6-88.346; Welder (iron & steel) 4-88.343; Welder, Assistant (iron & steel) 4-88.344--Technical

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. U.S. Training and Employment Service.

    The United States Training and Employment Service General Aptitude Test Battery (GATB), first published in 1947, has been included in a continuing program of research to validate the tests against success in many different occupations. The GATB consists of 12 tests which measure nine aptitudes: General Learning Ability; Verbal Aptitude; Numerical…

  19. Microstructure and Texture Development during Cold Rolling in UNS S32205 and UNS S32760 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khatirkar, Rajesh Kisni; Chalapathi, Darshan; Kumar, Gulshan; Suwas, Satyam

    2017-05-01

    In the present study, microstructure and texture evolution during cold rolling in UNS S32205 and UNS S32760 duplex stainless steel was investigated. Both steels were unidirectionally cold rolled up to 80 pct thickness reduction. Scanning electron microscopy and electron backscattered diffraction (EBSD) were used for microstructural characterization, while X-ray diffraction (XRD) was used for the measurement of bulk texture. Strain-induced martensite (SIM) was identified and quantified with the help of magnetic measurements (B-H curve and magnetization saturation). With the increase in plastic strain, the grains became morphologically elongated along the rolling direction with the reduction in average band thickness and band spacing. SIM increased with the increase in deformation and was found to be a function of strain and the SFE of austenite. The increase in SIM was much more pronounced in UNS S32205 steel as compared to UNS S32760 steel. After cold rolling, strong α-fiber (RD//<110>) texture was developed in ferrite, while brass texture was dominant in austenite for both steels. The strength of texture components and fibers was stronger in UNS S32760 steel. Another significant feature was the development of weak γ-fiber (ND//<111>) in UNS S32760 steel at intermediate deformation.

  20. Comparative Study of Hardening Mechanisms During Aging of a 304 Stainless Steel Containing α'-Martensite

    NASA Astrophysics Data System (ADS)

    Jeong, S. W.; Kang, U. G.; Choi, J. Y.; Nam, W. J.

    2012-09-01

    Strain aging and hardening behaviors of a 304 stainless steel containing deformation-induced martensite were investigated by examining mechanical properties and microstructural evolution for different aging temperature and time. Introduced age hardening mechanisms of a cold rolled 304 stainless steel were the additional formation of α'-martensite, hardening of α'-martensite, and hardening of deformed austenite. The increased amount of α'-martensite at an aging temperature of 450 °C confirmed the additional formation of α'-martensite as a hardening mechanism in a cold rolled 304 stainless steel. Additionally, the increased hardness in both α'-martensite and austenite phases with aging temperature proved that hardening of both α'-martensite and austenite phases would be effective as hardening mechanisms in cold rolled and aged 304 stainless steels. The results suggested that among hardening mechanisms, hardening of an α'-martensite phase, including the diffusion of interstitial solute carbon atoms to dislocations and the precipitation of fine carbide particles would become a major hardening mechanism during aging of cold rolled 304 stainless steels.

  1. Behavior of helium gas atoms and bubbles in low activation 9Cr martensitic steels

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Shiraishi, Haruki; Matsui, Hideki; Abe, Katsunori

    1994-09-01

    The behavior of helium-gas release from helium-implanted 9Cr martensitic steels (500 appm implanted at 873 K) during tensile testing at 873 K was studied. Modified 9Cr-1Mo, low-activation 9Cr-2W and 9Cr-0.5V were investigated. Cold-worked AISI 316 austenitic stainless steel was also investigated as a reference which was susceptible helium embrittlement at high temperature. A helium release peak was observed at the moment of rupture in all the specimens. The total quantity of helium released from these 9Cr steels was in the same range but smaller than that of 316CW steel. Helium gas in the 9Cr steels should be considered to remain in the matrix at their lath-packets even if deformed at 873 K. This is the reason why the martensitic steels have high resistance to helium embrittlement.

  2. Effects of Annealing Treatment Prior to Cold Rolling on Delayed Fracture Properties in Ferrite-Austenite Duplex Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Sohn, Seok Su; Song, Hyejin; Kim, Jung Gi; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak

    2016-02-01

    Tensile properties of recently developed automotive high-strength steels containing about 10 wt pct of Mn and Al are superior to other conventional steels, but the active commercialization has been postponed because they are often subjected to cracking during formation or to the delayed fracture after formation. Here, the delayed fracture behavior of a ferrite-austenite duplex lightweight steel whose microstructure was modified by a batch annealing treatment at 1023 K (750 °C) prior to cold rolling was examined by HCl immersion tests of cup specimens, and was compared with that of an unmodified steel. After the batch annealing, band structures were almost decomposed as strong textures of {100}<011> α-fibers and {111}<112> γ-fibers were considerably dissolved, while ferrite grains were refined. The steel cup specimen having this modified microstructure was not cracked when immersed in an HCl solution for 18 days, whereas the specimen having unmodified microstructure underwent the delayed fracture within 1 day. This time delayed fracture was more critically affected by difference in deformation characteristics such as martensitic transformation and deformation inhomogeneity induced from concentration of residual stress or plastic strain, rather than the difference in initial microstructures. The present work gives a promise for automotive applications requiring excellent mechanical and delayed fracture properties as well as reduced specific weight.

  3. Materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramley, A.N.

    1985-01-01

    This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less

  4. The effect of hold-times on the fatigue behavior of type AISI 316L stainless steel under deuteron irradiation

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.

    1998-10-01

    Strain controlled fatigue tests have been performed in torsion at 400°C on type 316L stainless steel samples in both 20% cold worked and annealed conditions during an irradiation with 19 MeV deuterons. A hold-time was imposed in the loading cycle. For the cold worked (cw) material, at shear strain ranges of 1.13% and 1.3%, irradiation creep induced stress relaxation led to the built up of a mean stress. The fatigue life was significantly reduced in comparison to thermal control tests. For the annealed (ann) material, tested under similar experimental conditions, irradiation creep effects were negligibly small compared to cyclic and irradiation hardening. The fatigue life was only slightly reduced. Continuous cycling tests conducted under irradiation conditions lay in the scatter band of the thermal control tests. The difference in fatigue life between continuous cycling and hold-time tests is attributed mainly to the observed difference in irradiation hardening.

  5. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel

    NASA Astrophysics Data System (ADS)

    Koneshlou, Mahdi; Meshinchi Asl, Kaveh; Khomamizadeh, Farzad

    2011-01-01

    This paper focuses on the effects of low temperature (subzero) treatments on microstructure and mechanical properties of H13 hot work tool steel. Cryogenic treatment at -72 °C and deep cryogenic treatment at -196 °C were applied and it was found that by applying the subzero treatments, the retained austenite was transformed to martensite. As the temperature was decreased more retained austenite was transformed to martensite and it also led to smaller and more uniform martensite laths distributed in the microstructure. The deep cryogenic treatment also resulted in precipitation of more uniform and very fine carbide particles. The microstructural modification resulted in a significant improvement on the mechanical properties of the H13 tool steel.

  6. Internal strains after recovery of hardness in tempered martensitic steels for fusion reactors

    NASA Astrophysics Data System (ADS)

    Brunelli, L.; Gondi, P.; Montanari, R.; Coppola, R.

    1991-03-01

    After tempering, with recovery of hardness, MANET steels present internal strains; these residual strains increase with quenching rate prior to tempering, and they remain after prolonged tempering times. On account of their persistence, after thermal treatments which lead to low dislocation and sub-boundary densities, the possibility has been considered that the high swelling resistance of MANET is connected with these centres of strain, probably connected with the formation, in ferrite, of Cr-enriched and contiguous Cr-depleted zones which may act as sinks for interstitials. Comparative observations on the internal strain behaviour of cold worked 316L stainless steel appear consistent with this possibility.

  7. Strain Evolution in Cold-Warm Forged Steel Components Studied by Means of EBSD Technique

    PubMed Central

    Bonollo, Franco; Bassan, Fabio; Berto, Filippo

    2017-01-01

    Electron BackScatter Diffraction (EBSD) in conjunction with Field-Emission Environmental Scanning Electron Microscopy (FEG-ESEM) has been used to evaluate the microstructural and local plastic strain evolution in different alloys (AISI 1005, AISI 304L and Duplex 2205) deformed by a single-stage cold and warm forging process. The present work is aimed to describe the different behavior of the austenite and ferrite during plastic deformation as a function of different forging temperatures. Several topological EBSD maps have been measured on the deformed and undeformed states. Then, image quality factor, distributions of the grain size and misorientation have been analyzed in detail. In the austenitic stainless steel, the γ-phase has been found to harden more easily, then α-phase and γ-phase in AISI 1005 and in duplex stainless steel, sequentially. Compared to the high fraction of continuous dynamic recrystallized austenitic zones observed in stainless steels samples forged at low temperatures, the austenitic microstructure of samples forged at higher temperatures, 600–700 °C, has been found to be mainly characterized by large and elongated grains with some colonies of fine nearly-equiaxed grains attributed to discontinuous dynamic recrystallization. PMID:29258249

  8. Low-temperature creep of austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  9. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  10. Multi objective Taguchi optimization approach for resistance spot welding of cold rolled TWIP steel sheets

    NASA Astrophysics Data System (ADS)

    Tutar, Mumin; Aydin, Hakan; Bayram, Ali

    2017-08-01

    Formability and energy absorption capability of a steel sheet are highly desirable properties in manufacturing components for automotive applications. TWinning Induced Plastisity (TWIP) steels are, new generation high Mn alloyed steels, attractive for the automotive industry due to its outstanding elongation (%40-45) and tensile strength (~1000MPa). So, TWIP steels provide excellent formability and energy absorption capability. Another required property from the steel sheets is suitability for manufacturing methods such as welding. The use of the steel sheets in the automotive applications inevitably involves welding. Considering that there are 3000-5000 welded spots on a vehicle, it can be interpreted that one of the most important manufacturing method is Resistance Spot Welding (RSW) for the automotive industry. In this study; firstly, TWIP steel sheet were cold rolled to 15% reduction in thickness. Then, the cold rolled TWIP steel sheets were welded with RSW method. The welding parameters (welding current, welding time and electrode force) were optimized for maximizing the peak tensile shear load and minimizing the indentation of the joints using a Taguchi L9 orthogonal array. The effect of welding parameters was also evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results.

  11. Effect of Various Heat Treatment Processes on Fatigue Behavior of Tool Steel for Cold Forging Die

    NASA Astrophysics Data System (ADS)

    Jin, S. U.; Kim, S. S.; Lee, Y. S.; Kwon, Y. N.; Lee, J. H.

    Effects of various heat treatment processes, including "Q/T (quenching and tempering)", "Q/CT/T (Quenching, cryogenic treatment and tempering)", "Q/T (quenching and tempering) + Ti-nitriding" and "Q/CT/T (Cryogenic treatment and tempering) + Ti-nitriding", on S-N fatigue behavior of AISI D2 tool steel were investigated. The optical micrographs and Vicker's hardness values at near surface and core area were examined for each specimen. Uniaxial fatigue tests were performed by using an electro-magnetic resonance fatigue testing machine at a frequency of 80 Hz and an R ratio of -1. The overall resistance to fatigue tends to decrease significantly with Ti-nitriding treatment compared to those for the general Q/T and Q/CT/T specimens. The reduced resistance to fatigue with Ti-nitriding is discussed based on the microstructural and fractographic analyses.

  12. Use of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions

    DOT National Transportation Integrated Search

    2017-12-24

    This report documents and presents the use of steel fiber-reinforced rubberized concrete (SFRRC) in cold regions. Further investigation of SFRRC use was conducted with the wheel tracker rut and freeze-thaw laboratory testing procedures at the Univers...

  13. Studying damage accumulation in martensitic corrosion-resistant steel under cold radial reduction

    NASA Astrophysics Data System (ADS)

    Karamyshev, A. P.; Nekrasov, I. I.; Nesterenko, A. V.; Parshin, V. S.; Smirnov, S. V.; Shveikin, V. P.; Fedulov, A. A.

    2017-12-01

    Cold radial reduction of specimens made of the Kh17N2 corrosion-resistant martensitic steel is studied on a lever-type radial-forging machine (RFM). The mechanical properties of the deformed specimens, the "damage accumulation - strain" relation in the specimens are obtained with the application of hydrostatic and fractographic methods for fractured specimens. The damage of the Kh17N2 corrosion-resistant steel is evaluated as a result of an experimental study considering the data of simulation by a complex finite element model of cold deformation on a lever-type RFM.

  14. Mechanical Properties of Steel Encapsulated Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fudger, Sean; Klier, Eric; Karandikar, Prashant; McWilliams, Brandon; Ni, Chaoying

    This research evaluates a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress approach as a means of improving the ductility of metal matrix composites (MMCs). MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient strength and ductility for many structural applications. By combining MMCs with high strength steels in a hybridized, macro composite materials system that exploits the CTE mismatch, materials systems with improved strength, damage tolerance, and structural efficiency can be obtained. Macro hybridized systems consisting of steel encapsulated light metal MMCs were produced with the goal of creating a system which takes advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Aluminum and magnesium based particulate reinforced MMCs combine many of the desirable characteristic of metals and ceramics, particularly the unique ability to tailor their CTE. This work aims to compare the performance of macro hybridized material systems consisting of aluminum or magnesium MMCs reinforced with Al2O3, SiC, or B4C particles and encapsulated by A36 steel, 304 stainless steel, or cold worked Nitronic® 50 stainless steels.

  15. Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    NASA Technical Reports Server (NTRS)

    Mebs, R W; Mcadam, D J

    1947-01-01

    A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were removed. Comparison is also obtained between the variation of the several properties, as measured in tension and in shear. The rise of proof stress with extension is studied, and the work-hardening rates of the various metals evaluated. The ratio between the tensile and shear proof stresses for the various annealed and cold-worked tubular metals is likewise calculated. The influence of annealing or tempering temperature on the proof stresses and moduli for the cold-worked metals and for air-hardened 13:2 Cr-Ni steel is investigated. An improvement of elastic strength generally is obtained, without important loss of yield strength, by annealing at suitable temperature. The variation of the proof stress and modulus of elasticity with plastic deformation or annealing temperature is explained in terms of the relative dominance of three important factors: namely, (a) internal stress, (b) lattice-expansion or work-hardening, and (c) crystal reorientation. Effective values of Poisson's ratio were computed from tensile and shear moduli obtained on tubular specimens. The variation of Poisson's ratio with plastic deformation and annealing temperature is explained in terms of the degree of anisotropy produced by changes of (a) internal stress and (b) crystal orientation.

  16. Gage for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-02-27

    A gage for measuring the contour of the surface of an element of a micromachining tool system and of a work piece machined by the micromachining tool system. The gage comprises a glass plate containing two electrical contacts and supporting a steel ball resting against the contacts. As the element or workpiece is moved against the steel ball, the very slight contact pressure causes an extremely small movement of the steel ball which breaks the electrical circuit between the two contacts. The contour information is supplied to a dedicated computer controlling the micromachining tool so that the computer knows the contour of the element and the work piece to an accuracy of .+-. 25 nm. The micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nanometers (nm) and surface waviness of no more than 0.8 nm RMS.

  17. Mechanical properties of Fe -10Ni -7Mn martensitic steel subjected to severe plastic deformation via cold rolling and wire drawing

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nanesa, H.; Nili-Ahmadabadi, M.; Shirazi, H.

    2010-07-01

    Fe-Ni-Mn martensitic steels are one of the major groups of ultra-high strength steels that have good mechanical properties and ductility in as annealed condition but they suffer from severe inter-granular embitterment after aging. In this paper, the effect of heavy shaped cold rolling and wire drawing on the mechanical properties of Fe-Ni-Mn steel was investigated. This process could provide a large strain deformation in this alloy. The total strain was epsilon ~7. Aging behavior and tensile properties of Fe-10Ni-7Mn were studied after aging at 753 K. The results showed that the ultimate tensile strength and ductility after cold rolling, wire drawing and aging increased up to 2540 MPa and 7.1 %, respectively, while the conventional steels show a premature fracture stress of 830 MPa with about zero ductility after aging.

  18. The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use

    NASA Technical Reports Server (NTRS)

    Hwang, S. K.; Morris, J. W., Jr.

    1977-01-01

    An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.

  19. Cold resistant nickel-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legostaev, Yu.L.; Karchevskaya, N.I.; Karchevnikov, V.P.

    1988-05-01

    Low-alloy cold-resistant steel 10GNB was developed for the construction of ships and floating drill rigs. The optimal heat-treatment regime for the steel was refinement. Reducing the carbon content improved its weldability and toughness properties. Optical metallography and electron microscopy established that the optimal structure was a tempered martensitic-bainitic mixture with uniformly distributed particles of disperse special niobium carbides NbC. The substructure and the processes of carbide and carbonitride phase segregation were studied by transmission and extraction electron microscopy. In mechanical tests the steel exhibited high resistance to brittle failure. In terms of corrosion resistance the steel corresponds to the requirementsmore » set forth for shipbuilding steels.« less

  20. On the possibility of producing piston pins for diesel engines from steel 18KhGT with the use of mechanical and chemical heat treatment

    NASA Astrophysics Data System (ADS)

    Zolot'ko, V. A.

    1997-06-01

    At the present time pisto pins of highly loaded diesel engines are produced by mechanical treatment from tube preforms of steel 12KhN3A and carburized by subsequent heat treatment. The high cost of domestic steel and the absence of preforms of the requisite size make it necessary to choose a less scare material and develop a treatment process that would provide the requisite operational characteristics of the parts. The present work is devoted to a study of the possibility of using for the purpose steel 18KhGT in a state of substructural toughening created by cold plastic straining (CPS) and a stabilizing heat treatment with subsequent ion nitriding.

  1. Utilization of FEM model for steel microstructure determination

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotěborský, R.; Linda, M.; Hromasová, M.

    2018-02-01

    Agricultural tools which are used in soil processing, they are worn by abrasive wear mechanism cases by hard minerals particles in the soil. The wear rate is influenced by mechanical characterization of tools material and wear rate is influenced also by soil mineral particle contents. Mechanical properties of steel can be affected by a technology of heat treatment that it leads to a different microstructures. Experimental work how to do it is very expensive and thanks to numerical methods like FEM we can assumed microstructure at low cost but each of numerical model is necessary to be verified. The aim of this work has shown a procedure of prediction microstructure of steel for agricultural tools. The material characterizations of 51CrV4 grade steel were used for numerical simulation like TTT diagram, heat capacity, heat conduction and other physical properties of material. A relationship between predicted microstructure by FEM and real microstructure after heat treatment shows a good correlation.

  2. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    NASA Astrophysics Data System (ADS)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03-7971-2013 about Cold formed steel.

  3. Experimental Study of Axially Tension Cold Formed Steel Channel Members

    NASA Astrophysics Data System (ADS)

    Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia

    2017-12-01

    Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971- 2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03- 7971-2013 about Cold formed steel.

  4. A Fine Grain, High Mn Steel with Excellent Cryogenic Temperature Properties and Corresponding Constitutive Behaviour

    PubMed Central

    Wang, Yuhui; Shi, Baodong; He, Yanming; Zhang, Hongwang; Peng, Yan

    2018-01-01

    A Fe-34.5 wt % Mn-0.04 wt % C ultra-high Mn steel with a fully recrystallised fine-grained structure was produced by cold rolling and subsequent annealing. The steel exhibited excellent cryogenic temperature properties with enhanced work hardening rate, high tensile strength, and high uniform elongation. In order to capture the unique mechanical behaviour, a constitutive model within finite strain plasticity framework based on Hill-type yield function was established with standard Armstrong-Frederick type isotropic hardening. In particular, the evolution of isotropic hardening was determined by the content of martensite; thus, a relationship between model parameters and martensite content is built explicitly. PMID:29414840

  5. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    NASA Astrophysics Data System (ADS)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  6. Research on the Microstructures and Mechanical Properties of Ti Micro-Alloyed Cold Rolled Hot-Dip Galvanizing DP980 Steel

    NASA Astrophysics Data System (ADS)

    Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui

    Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.

  7. Effect of Cyclic Thermal Process on Ultrafine Grain Formation in AISI 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, B.; Mahato, B.; Sharma, Sailaja; Sahu, J. K.

    2009-12-01

    As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85- μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.

  8. Processing of fine grained AISI 304L austenitic stainless steel by cold rolling and high-temperature short-term annealing

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-05-01

    An advanced thermomechanical process based on the formation and reversion of deformation-induced martensite was used to refine the grain size and enhance the hardness of an AISI 304L austenitic stainless steel. Both low and high reversion annealing temperatures and also the repetition of the whole thermomechanical cycle were considered. While a microstructure with average austenite grain size of a few micrometers was achieved based on cold rolling and high-temperature short-term annealing, an extreme grain refinement up to submicrometer regime was obtained by cold rolling followed by low-temperature long-term annealing. However, the required annealing time was found to be much longer, which negates its appropriateness for industrial production. While a magnificent grain refinement was achieved by one pass of the high-temperature thermomechanical process, the reduction in grain size was negligible by the repetition of the whole cycle. It was found that the hardness of the thermomechanically processed material is much higher than that of the as-received material. The results of the present work were shown to be compatible with the general trend of grain size dependence of hardness for AISI 304L stainless steel based on the Hall-Petch relationship. The results were also discussed based on the X-ray evaluation of dislocation density by modified Williamson-Hall plots.

  9. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  10. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    DTIC Science & Technology

    2016-06-01

    Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC

  11. 29 CFR 1926.751 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process of erection. Steel joist means an open web, secondary load-carrying member of 144 feet (43.9 m) or... structural steel trusses or cold-formed joists. Steel joist girder means an open web, primary load-carrying... structural steel trusses. Steel truss means an open web member designed of structural steel components by the...

  12. 29 CFR 1926.751 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process of erection. Steel joist means an open web, secondary load-carrying member of 144 feet (43.9 m) or... structural steel trusses or cold-formed joists. Steel joist girder means an open web, primary load-carrying... structural steel trusses. Steel truss means an open web member designed of structural steel components by the...

  13. Bending Distortion Analysis of a Steel Shaft Manufacturing Chain from Cold Drawing to Grinding

    NASA Astrophysics Data System (ADS)

    Dias, Vinicius Waechter; da Silva Rocha, Alexandre; Zottis, Juliana; Dong, Juan; Epp, Jérémy; Zoch, Hans Werner

    2017-04-01

    Shafts are usually manufactured from bars that are cold drawn, cut machined, induction hardened, straightened, and finally ground. The main distortion is characterized by bending that appears after induction hardening and is corrected by straightening and/or grinding. In this work, the consequence of the variation of manufacturing parameters on the distortion was analyzed for a complete manufacturing route for production of induction hardened shafts made of Grade 1045 steel. A DoE plan was implemented varying the drawing angle, cutting method, induction hardening layer depth, and grinding penetration depth. The distortion was determined by calculating curvature vectors from dimensional analysis by 3D coordinate measurements. Optical microscopy, microhardness testing, residual stress analysis, and FEM process simulation were used to evaluate and understand effects of the main carriers of distortion potential. The drawing process was identified as the most significant influence on the final distortion of the shafts.

  14. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    NASA Astrophysics Data System (ADS)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  15. The Corrosion Behavior of Cold Sprayed Zinc Coatings on Mild Steel Substrate

    NASA Astrophysics Data System (ADS)

    Chavan, Naveen Manhar; Kiran, B.; Jyothirmayi, A.; Phani, P. Sudharshan; Sundararajan, G.

    2013-04-01

    Zinc and its alloy coatings have been used extensively for the cathodic protection of steel. Zinc coating corrodes in preference to the steel substrate due to its negative corrosion potential. Numerous studies have been conducted on the corrosion behavior of zinc and its alloy coatings deposited using several techniques viz., hot dip galvanizing, electrodeposition, metalizing or thermal spray etc. Cold spray is an emerging low temperature variant of thermal spray family which enables deposition of thick, dense, and pure coatings at a rapid rate with an added advantage of on-site coating of steel structures. In the present study, the corrosion characteristics of cold sprayed zinc coatings have been investigated for the first time. In addition, the influence of heat treatment of zinc coating at a temperature of 150 °C on its corrosion behavior has also been addressed.

  16. Study of Cold Coiling Spring Steel on Microstructure and Cold Forming Performance

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Liang, Y. L.; Ming, Y.; Zhao, F.

    2017-09-01

    Medium-carbon cold-coiling locomotive spring steels were treated by a novel Q-P-T (quenching-partitioning-tempering) process. Scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD) were used to characterize the relevant parameters of the steel. Results show that the microstructure of tested steel treated by Q-P-T process is a complex microstructures composed of martensite, bainite and retained austenite. The volume fraction of retained austenite (wt.%) is up to 31%. After pre-deforming and tempering again at 310°C, the plasticity of samples treated by Q-P-T process is still well. Fracture images show that the Q-P-T samples are ductile fracture. It is attributed to the higher volume fraction of the retained austenite and the interactions between the multi-phases in Q-P-T processed sample.

  17. Improvement of the technique of calculating the energy-force parameters of pinch-pass mills for increasing the efficiency of producing cold-rolled strips

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Timofeeva, M. A.

    2016-11-01

    New propositions are introduced into the technique of energy-force calculation of pinch-pass mills in order to determine the energy-force and technological parameters of skin rolling of cold-rolled steel strips at the minimum errors. The application of these propositions decreases the errors of calculating the forces and torques in a working stand by a factor of 3-5 as compared to the calculation according to the well-known technique, saves the electric power in the existing mills, and demonstrates the possibility of decreasing the dimensions of working stands and the power of the rolling mill engine.

  18. The effect of microstructure on abrasive wear of steel

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  19. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, Robert; Halkyard, John; Johnson, Peter

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to finalmore » design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.« less

  20. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    PubMed Central

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-01-01

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles. PMID:28773603

  1. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    PubMed

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  2. Development of a Hybrid Deep Drawing Process to Reduce Springback of AHSS

    NASA Astrophysics Data System (ADS)

    Boskovic, Vladimir; Sommitsch, Christoph; Kicin, Mustafa

    2017-09-01

    In future, the steel manufacturers will strive for the implementation of Advanced High Strength Steels (AHSS) in the automotive industry to reduce mass and improve structural performance. A key challenge is the definition of optimal and cost effective processes as well as solutions to introduce complex steel products in cold forming. However, the application of these AHSS often leads to formability problems such as springback. One promising approach in order to minimize springback is the relaxation of stress through the targeted heating of materials in the radius area after the deep drawing process. In this study, experiments are conducted on a Dual Phase (DP) and TWining Induced Plasticity (TWIP) steel for the process feasibility study. This work analyses the influence of various heat treatment temperatures on the springback reduction of deep drawn AHSS.

  3. Excimer laser decoating of chromium titanium aluminium nitride to facilitate re-use of cutting tools

    NASA Astrophysics Data System (ADS)

    Sundar, M.; Whitehead, D.; Mativenga, P. T.; Li, L.; Cooke, K. E.

    2009-11-01

    This work reports on the technical feasibility and establishment of a process window for removing chromium titanium aluminium nitride (CrTiAlN) coating from steel substrates by laser irradiation. CrTiAlN coating has high hardness and oxidation resistance, with applications for use with cutting tools. The motivation for removing such coatings is to facilitate re-use of tooling by enabling regrinding or reshaping of a worn tool and hence promote sustainable material usage. In this work, laser decoating was performed using an excimer laser. The effect of laser fluence, number of pulses, frequency, scanning speed and laser beam overlap on the decoating performance was investigated in detail. The minimum threshold laser fluence for removing the CrTiAlN coating was lower than that of the steel substrate and this factor is beneficial in controlling the decoating process. Successful laser removal of CrTiAlN coating without noticeable damage to the steel substrate was demonstrated.

  4. Cold work study on a 316LN modified alloy for the ITER TF coil conduit

    DOE PAGES

    Walsh, Robert; Toplosky, V. J.; McRae, D. M.; ...

    2012-06-01

    The primary structural component of the cable-in-conduit conductor (CICC) magnets, such as the ITER TF coils is the conduit. This function creates requirements for 4 K strength, toughness, fatigue crack resistance, and ductility after exposure to the superconductor's reaction heat treatment. The tensile ductility of a steel is a quality factor related to fatigue and fracture resistance that can be evaluated more economically with tensile tests rather than fatigue and fracture tests. We subject 316LN modified base metal and welds to a range of cold work from 0% to 20% and a subsequent Nb 3Sn reaction heat treatment to evaluatemore » the effects on the tensile properties. With the addition of cold work, the 4 K yield strength increases while tensile elongation decreases in both the base metal and weld. Our results are compared to previously published data on the same alloy to evaluate the use of tensile ductility parameters as a materials qualification specification in magnet design.« less

  5. Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying

    NASA Astrophysics Data System (ADS)

    Henao, John; Concustell, Amadeu; Dosta, Sergi; Cinca, Núria; Cano, Irene G.; Guilemany, Josep M.

    2016-06-01

    Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s-1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.

  6. Use of cold-bonded, waste oxide briquettes at U.S. Steel Mon Valley BOP shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiCaprio, V.; Howell, K.; Harris, R.

    1995-09-01

    In attempts to avoid the escalated costs and environmental concerns associated with taking waste oxide materials to a landfill, National Recovery Systems Inc., in conjunction with US Steel, built a waste oxide briquetting facility at the USS Mon Valley works (Edgar Thomson plant) to recycle various sludges and scales. The waste oxide briquette is currently a blend of BOP classifier sludge, BOP filter drum sludge, casterscale and hot strip mill scale. In addition to the landfill cost avoidance, the waste oxide briquette is also a low cast, steel scrap supplement. This paper describes the production of the waste oxide briquettemore » and the use of the recycled material at the Edgar Thomson BOP shop.« less

  7. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    NASA Astrophysics Data System (ADS)

    Gong, Yu

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance. At the beginning of this thesis, compositions with a common base but containing various additions of V or Nb with or without high N were designed and subjected to Gleeble simulations of different galvanizing(GI), galvannealing(GA) and supercooling processing. The results revealed the phase balance was strongly influenced by the different microalloying additions, while the strengths of each phase were somewhat less affected. Our research revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). In the late part of this thesis, the base composition was a low carbon steel which would exhibit good spot weldability. To this steel were added two levels of Cr and Mo for strengthening the ferrite and increasing the hardenability of intercritically formed austenite. Also, these steels were produced with and without the addition of vanadium in an effort to further increase the strength. Since earlier studies revealed a relationship between the nature of the starting cold rolled microstructure and the response to CGL processing, the variables of hot band coiling temperature and level of cold reduction prior to annealing were also studied. Finally, in an effort to increase strength and ductility of both the final sheet (general formability) and the sheared edges of cold punched holes (local formability), a new thermal path was developed that replaced the conventional GI ferrite-martensite microstructure with a new ferrite-martensite-tempered martensite and retained austenite microstructure. The new microstructure exhibited a somewhat lower strength but much high general and local formabilities. In this thesis, both the physical and mechanical metallurgy of these steels and processes will be discussed. This research has shown that simple compositions and processes can result in DP steels with so-called Generation III properties.

  8. FUEL ELEMENT AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.

    1961-04-25

    A nuclear fuel element in the form of a wire is reported. A bar of uranium is enclosed in a thin layer of aluminum and the composite is sheathed in beryllium, zirconium, or stainnless steel. The sheathed article is then drawn to wire form, heated to alloy the aluminum with both uranium and sheath, and finally cold worked.

  9. Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Burford, Pattie Lewis

    2011-01-01

    Zinc primer systems are currently used across NASA and AFSPC for corrosion protection of steel. AFSPC and NASA have approved the use of Thermal Spray Coatings (TSCs) as an environmentally preferable alternative. TSCs are approved in NASA-STD-5008 and AFSPC and KSC is currently looking for additional applications in which TSC can be used. Gas Dynamic Spray (GDS, also known as Cold Spray) is being evaluated as a means of repairing TSCs and for areas such as corners and edges where TSCs do not work as well. Other applications could include spot repair/maintenance of steel on structures, facilities, and ground support equipment.

  10. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  11. High strength, low carbon, dual phase steel rods and wires and process for making same

    DOEpatents

    Thomas, Gareth; Nakagawa, Alvin H.

    1986-01-01

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  12. 24 CFR 3280.304 - Materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: Aluminum Aluminum Design Manual, Specifications and Guidelines for Aluminum Structures, Part 1-A, Sixth Edition, October 1994, and Part 1-B, First Edition, October 1994. Steel Specification for Structural Steel...-Formed Steel Structural Members—AISI-1996. Specification for the Design of Cold-Formed Stainless Steel...

  13. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less

  14. Experimental and numerical analysis of web stiffened cold-formed steel channel column with various types of edge stiffener

    NASA Astrophysics Data System (ADS)

    Manikandan, P.; Balaji, S.; Sukumar, S.; Sivakumar, M.

    2017-06-01

    This paper presents the strength and behaviour of web stiffened cold formed steel channel column with various types of edge stiffener under axial compression. An accurate finite element model is developed to simulate the tests results of the proposed section. The finite element model is verified by the test results and good correlation is achieved. The failure modes local, distortional, flexural buckling as well as the interaction between these modes is found in this study. The column strength predicted from the parametric study is compared with the nominal strength calculated by using the direct strength method for cold formed steel members. The reliability of this method is evaluated and suitable modification factor is proposed.

  15. The effect of low dose rate irradiation on the tensile properties and microstructure of austenitic stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, T. R.; Tsai, H.; Cole, J. I.

    2002-09-17

    To assess the effects of long-term, low-dose-rate neutron exposure on mechanical strength and ductility, tensile properties were measured on 12% and 20% cold-worked Type 316 stainless steel. Samples were prepared from reactor core components retrieved from the EBR-II reactor following final shutdown. Sample locations were chosen to cover a dose range of 1-56 dpa at temperatures from 371-440 C and dose rates from 0.5-5.8 x10{sup -7} dpa/s. These dose rates are approximately an order of magnitude lower than those of typical EBR-II test sample locations. The tensile tests for the 12% CW material were performed at 380 C and 430more » C while those for the 20% CW samples were performed at 370 C. In each case, the tensile test temperature approximately matched the irradiation temperature. To help understand the tensile properties, microstructural samples with similar irradiation history were also examined. The strength and loss of work hardening increase the fastest as a function of irradiation dose for the 12% CW material irradiated at lower temperature. The decrease in ductility with increasing dose occurs more rapidly for the 12% CW material irradiated at lower temperature and the 20% cold-worked material. Post-tensile test fractography indicates that at higher dose, the 20% CW samples begin a shift in fracture mode from purely ductile to mainly small facets and slip bands, suggesting a transition toward channel fracture. The fracture for all of the 12% cold-worked samples was ductile. For both the 12% and 20% CW materials, the yield strength increases correlate with changes in void and loop density and size.« less

  16. Control of surface thermal scratch of strip in tandem cold rolling

    NASA Astrophysics Data System (ADS)

    Chen, Jinshan; Li, Changsheng

    2014-07-01

    The thermal scratch seriously affects the surface quality of the cold rolled stainless steel strip. Some researchers have carried out qualitative and theoretical studies in this field. However, there is currently a lack of research on effective forecast and control of thermal scratch defects in practical production, especially in tandem cold rolling. In order to establish precise mathematical model of oil film thickness in deformation zone, the lubrication in cold rolling process of SUS410L stainless steel strip is studied, and major factors affecting oil film thickness are also analyzed. According to the principle of statistics, mathematical model of critical oil film thickness in deformation zone for thermal scratch is built, with fitting and regression analytical method, and then based on temperature comparison method, the criterion for deciding thermal scratch defects is put forward. Storing and calling data through SQL Server 2010, a software on thermal scratch defects control is developed through Microsoft Visual Studio 2008 by MFC technique for stainless steel in tandem cold rolling, and then it is put into practical production. Statistics indicate that the hit rate of thermal scratch is as high as 92.38%, and the occurrence rate of thermal scratch is decreased by 89.13%. Owing to the application of the software, the rolling speed is increased by approximately 9.3%. The software developed provides an effective solution to the problem of thermal scratch defects in tandem cold rolling, and helps to promote products surface quality of stainless steel strips in practical production.

  17. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    NASA Astrophysics Data System (ADS)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  18. Interior of shop, showing the reheat furnaces; the vehicle in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of shop, showing the reheat furnaces; the vehicle in the center is a charging machine the operator of which manipulates steel ingots in the furnace, as well as in the adjacent forging hammers - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  19. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    NASA Astrophysics Data System (ADS)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily available gas-quenching, whereas the other new grade enables a faster manufacturing of the tool at reduced cost by eliminating the time and money consuming high temperature hardening altogether. The latter newly developed grade can be hardened from a soft delivery state for easy machining to 52 HRc by way of a simple low temperature precipitation hardening. In this work, these new grades and the role of the tool material’s thermal, mechanical and tribological properties as well as their processing features will be discussed in light of enabling the manufacture of intelligent hot stamping tools.

  20. 29 CFR 1926.1400 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... loads. (3) Automotive wreckers and tow trucks when used to clear wrecks and haul vehicles. (4) Digger... not limited to: Precast concrete members or panels, roof trusses (wooden, cold-formed metal, steel, or... structural steel member (for example, steel joists, beams, columns, steel decking (bundled or unbundled) or a...

  1. Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinesh Agrawal; Paul Gigl; Mahlon Dennis

    2006-02-01

    The objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration. The current process of the manufacture long tubular steel products consists of shaping the tube from flat strip, welding the seam and sections into lengths that can be miles long, and coiling onto reels. However, the welds, that are a weak point, now limit the performance of the coil tubing. This is not only from a toughness standpoint but also frommore » a corrosion standpoint. By utilizing the latest developments in the sintering of materials with microwave energy and powder metal extrusion technology for the manufacture of seamless coiled tubing and other tubular products, these problems can be eliminated. The project is therefore to develop a continuous microwave process to sinter continuously steel tubulars and butt-join them using microwave/induction process. The program started about three years ago and now we are in the middle of Phase II. In Phase I (which ended in February 2005) a feasibility study of the extrusion process of steel powder and continuously sinter the extruded tubing was conducted. The research program has been based on the development of microwave technology to process tubular specimens of powder metals, especially steels. The existing microwave systems at the Materials Research Laboratory (MRL) and Dennis Tool Company (DTC) were suitably modified to process tubular small specimens. The precursor powder metals were either extruded or cold isostatically pressed (CIP) to form tubular specimens. After conducting an extensive and systematic investigation of extrusion process for producing long tubes, it was determined that there were several difficulties in adopting extrusion process and it cannot be economically used for producing thousands of feet long green tubing. Therefore, in the Phase II the approach was modified to the microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave). This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. This report summarizes the progress made to-date in this new approach. The final steel composition matching with the Quality tubing's QT-16Cr80 was short listed and used for all experiments. Bonding experiments using 4 different braze powders were conducted and the process optimized to obtain high degree of bonding strength. For fabrication of green tubulars a large CIP unit was acquired and tested. This equipment is located at the Dennis Tool facility in Houston. Microwave sintering experiments for continuous processing of the CIPed tubes are under progress in order to identify the optimum conditions. There have been some reproducibility problems and we are at present working to resolve these problems.« less

  2. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect

    PubMed Central

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-01-01

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips. PMID:29883387

  3. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect.

    PubMed

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-05-21

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.

  4. Application of dynamic milling in stainless steel processing

    NASA Astrophysics Data System (ADS)

    Shan, Wenju

    2017-09-01

    This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.

  5. Cyclic Deformation Microstructure in Heavily Cold-Drawn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xie, Xingfei; Ning, Dong; Sun, Jian

    2018-04-01

    Cyclic deformation microstructure of the heavily cold-drawn austenitic stainless steel is significantly influenced by the spacing between mechanical twins introduced by prior cold drawing. Well-developed dislocation cells form between mechanical twins with the spacing larger than about 800 nm. Persistent slip band (PSB)-like structure with ladders takes place between mechanical twins spacing from 300 to 800 nm. Few dislocations occur between neighboring mechanical twins with spacing less than about 100 nm. Pre-existing mechanical twins and deformation bands segment austenitic grains, facilitating multi-slip and consequently suppressing PSB formation.

  6. Cyclic Deformation Microstructure in Heavily Cold-Drawn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xie, Xingfei; Ning, Dong; Sun, Jian

    2018-07-01

    Cyclic deformation microstructure of the heavily cold-drawn austenitic stainless steel is significantly influenced by the spacing between mechanical twins introduced by prior cold drawing. Well-developed dislocation cells form between mechanical twins with the spacing larger than about 800 nm. Persistent slip band (PSB)-like structure with ladders takes place between mechanical twins spacing from 300 to 800 nm. Few dislocations occur between neighboring mechanical twins with spacing less than about 100 nm. Pre-existing mechanical twins and deformation bands segment austenitic grains, facilitating multi-slip and consequently suppressing PSB formation.

  7. Preliminary evaluation of cavitation resistance of type 316LN stainless steel in mercury using a vibratory horn

    NASA Astrophysics Data System (ADS)

    Pawel, S. J.; Manneschmidt, E. T.

    2003-05-01

    Type 316LN stainless steel in a variety of conditions (annealed, cold-worked, surface-modified) was exposed to cavitation conditions in stagnant mercury using a vibratory horn. The test conditions included peak-to-peak displacement of the specimen surface of 25 μm at a frequency of 20 kHz and a mercury temperature in the range -5 to 80 °C. Following a brief incubation period in which little or no damage was observed, specimens of annealed 316LN exhibited increasing weight loss and surface roughening with increasing exposure times. Examination of test surfaces with the scanning electron microscope revealed primarily general/uniform wastage in all cases but, for long exposure times, a few randomly oriented 'pits' were also observed. Type 316LN that was 50% cold-worked was considerably more resistant to cavitation erosion damage than annealed material, but the surface modifications (CrN coating, metallic glass coating, laser treatment to form a diamond-like surface) provided little or no protection for the substrate. In addition, the cavitation erosion resistance of other materials - Inconel 718, Nitronic 60, and Stellite 3 - was also compared with that of 316LN for identical screening test conditions.

  8. Shear punch and ball microhardness measurements of 14 MeV neutron irradiation hardening in five metals

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Lucas, G. E.; Odette, G. R.

    1985-08-01

    The irradiation hardening response of five metals irradiated in RTNS-II was investigated using a combination of ball microhardness and shear punch test techniques. The specimens were transmission electron microscopy disks of pure nickel, Ni-5wt%Si, pure iron, solution annealed prime candidate alloy (PCA) for Path A, and 40% cold worked MFE 316 stainless steel. Specimens were irradiated in RTNS-II to fluences in the range 6 × 10 16 to 6 × 10 17 n/cm 2. Only limited ball microhardness data could be obtained because of disk thickness. However, the ball microhardness data obtained were in good agreement with shear punch data. It was found that the pure metals exhibited little hardening after exposure to fluences of ~1 × 10 17 n/cm 2, but Ni-5 Si exhibited significant hardening after 6 × 10 17 n/cm 2. Hardening in PCA was similar to that observed in solution annealed 316 stainless steel; and hardening in 40% cold worked MFE 316 was relatively small after 6 × 10 17 n/cm 2. The Ni-5 Si response may be due to irradiation induced precipitation.

  9. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants.

    PubMed

    Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar

    2015-05-01

    The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37±1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of Sn Micro-alloying on Recrystallization Nucleation and Growth Processes of Ferritic Stainless Steels

    NASA Astrophysics Data System (ADS)

    He, Tong; Bai, Yang; Liu, Xiuting; Guo, Dan; Liu, Yandong

    2018-04-01

    We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and then annealed at 740-880 °C for 5 min. The cold rolling and recrystallization microstructures and micro-textures of Sn-containing and Sn-free ferritic stainless steels were all determined by electron backscatter diffraction. Our Results show that Sn micro-alloying has important effects on recrystallization nucleation and growth processes of ferritic stainless steels. Sn micro-alloying conduces to grain fragmentation in the deformation band, more fragmented grains are existed in Sn-containing cold rolled sheets, which provides more sites for recrystallization nucleation. Sn micro-alloying also promotes recrystallization process and inhibits the growth of recrystallized grains. The recrystallization nucleation and growth mechanism of Sn-containing and Sn-free ferritic stainless steels are both characterized by orientation nucleation and selective growth, but Sn micro-alloying promotes the formation of γ-oriented grains. Furthermore, Sn micro-alloying contributes to the formation of Σ13b CSL boundaries and homogeneous γ-fiber texture. Combining the results of microstructure and micro-texture, the formability of Sn-containing ferritic stainless steels will be improved to some extent.

  11. Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier

    2017-10-01

    Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.

  12. Thermomechanical modelling of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  13. 76 FR 72721 - Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ...)] Galvanized Steel Wire From China and Mexico; Scheduling of the Final Phase of Countervailing Duty and... galvanized steel wire, provided for in subheading 7217.20 of the Harmonized Tariff Schedule of the United... merchandise as galvanized steel wire which is a cold- drawn carbon quality steel product in coils, of solid...

  14. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of this...

  15. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of this...

  16. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of this...

  17. 40 CFR 420.100 - Applicability; description of the cold forming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the cold... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.100 Applicability; description of the cold forming subcategory. (a) The provisions of this...

  18. Metallographic examination of the structure of the metal of cold arms of the nineteenth-early twentieth centuries made at the Zlatoust arms factory

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Rodionov, D. P.; Gerasimov, V. Yu.; Khlebnikova, Yu. V.

    2010-11-01

    Data are given concerning the structure and the chemical composition of carbon steel used for making cold arms, which was produced at the Zlatoust arms factory in the nineteenth and early twentieth centuries. The results of the analysis of the structure of metal demonstrates the general trend of the development of metallurgy both at the Ural plants and in the world: from the creation of the crucible methods of production of cast steel to the mass production of cast steel by the Bessemer and Martin methods.

  19. Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin

    2017-07-01

    Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.

  20. Stainless steels for cryogenic bolts and nuts (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, F.; Rabbe, P.; Odin, G.

    1975-03-01

    Stainless steel for cryogenic applications are generally austenitic steels which, under the effect of cold-drawing, can or cannot undergo a partial martensitic transformation according to their composition. It has been shown that very high ductility and endurance characteristics at low temperatures, together with very high yield strength and resistances values, can be attained with grades of nitrogenous steels of types Z2CN18-10N and Z3CMN18-8-6N. Optimum ductility values are obtained by employing to the best possible, the martensitic transformations which develop during cold-drawing. From the plotting of the rational traction curves, it is possible to analyse very simply the influence of themore » composition on the martensitic transformations. (FR)« less

  1. Metallization of Various Polymers by Cold Spray

    NASA Astrophysics Data System (ADS)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  2. Characterization of commercially cold sprayed copper coatings and determination of the effects of impacting copper powder velocities

    NASA Astrophysics Data System (ADS)

    Jakupi, P.; Keech, P. G.; Barker, I.; Ramamurthy, S.; Jacklin, R. L.; Shoesmith, D. W.; Moser, D. E.

    2015-11-01

    Copper coated steel containers are being developed for the disposal of high level nuclear waste using processes such as cold spray and electrodeposition. Electron Back-Scatter Diffraction has been used to determine the microstructural properties and the quality of the steel-copper coating interface. The influence of the nature of the cold-spray carrier gas as well as its temperature and pressure (velocity) on the coating's plastic strain and recrystallization behaviour have been investigated, and one commercially-produced electrodeposited coating characterized. The quality of the coatings was assessed using the coincident site lattice model to analyse the properties of the grain boundaries. For cold spray coatings the grain size and number of coincident site lattice grain boundaries increased, and plastic strain decreased, with carrier gas velocity. In all cases annealing improved the quality of the coatings by increasing texture and coincidence site-lattices, but also increased the number of physical voids, especially when a low temperature cold spray carrier gas was used. Comparatively, the average grain size and number of coincident site-lattices was considerably larger for the strongly textured electrodeposited coating. Tensile testing showed the electrodeposited coating was much more strongly adherent to the steel substrate.

  3. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    NASA Astrophysics Data System (ADS)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  4. Thermal-Fatigue Crack-Growth Characteristics and Mechanical Strain Cycling Behavior of A-286 Discaloy, and 16-25-6 Austenitic Steels

    NASA Technical Reports Server (NTRS)

    Smith, Robert W.; Smith, Gordon T.

    1960-01-01

    Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.

  5. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    PubMed Central

    Okazaki, Yoshimitsu

    2012-01-01

    The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.

  6. THE EFFECT OF LASER SHOCK PEENING ON THE LIFE AND FAILURE MODE OF A COLD PILGER DIE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavender, Curt A.; Hong, Sung-tae; Smith, Mark T.

    2008-08-11

    The laser shock peening process was used to increase fatigue life of pilger dies made of A2 tool steel by imparting compressive residual stresses to fatigue prone areas of the dies. The result of X-Ray diffraction analysis indicated that deep, high- magnitude compressive residual stresses were generated by the laser shock peening process, and the peened dies exhibited a significant increase of in-service life. Fractography of the failed dies indicates that the fracture mechanism was altered by the peening process.

  7. Electrochemical investigations of Cr-Ni-Mo stainless steel used in urology

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.

    2011-05-01

    The influence of chemical passivation process on physical and chemical characteristics of samples made of X2CrNiMo 17-7-2 steel with differentiated hardening, in the solution simulating the environment of human urine was analysed in the study. Wire obtained in cold drawing process is used for the production of stents and appliances in urological treatment. Proper roughness of the surface was obtained through mechanical working - grinding (Ra = 0,40 μn) and electrochemical polishing (Ra = 0,12 μn). Chemical passivation process was carried out in 40% solution of HN03 within 60 minutes in the temperature of 65°C. The tests of corrosion resistance were made on the ground of registered anodic polarisation curves and Stern method. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied.

  8. Innovative residential floor construction: Structural evaluation of steel joists with pre-formed web openings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhajj, N.R.

    1999-03-01

    Since 1992, the US Department of Housing and Urban Development has sponsored numerous studies to identify, evaluate, and implement innovative structural materials, such as cold-formed steel (CFS), in the residential market. The use of CFS is still very limited, partly because steel is not being effectively integrated into conventional home construction. One of the major barriers to the use of CFS floor joists is the impact it has on placement of large waste drains and ductwork installed in floor systems. This report provides an overview of tests conducted by the NAHB to integrate these systems with CFS. A brief literaturemore » review of relevant work followed by a detailed overview of the experimental and analytical approach are also provided. The report recommends adoption of the research findings in residential and commercial applications.« less

  9. Through-process characterization of local anisotropy of Non-oriented electrical steel using magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    He, Youliang; Mehdi, Mehdi; Hilinski, Erik J.; Edrisy, Afsaneh

    2018-05-01

    Magnetic Barkhausen noise (MBN) signals were measured on a non-oriented electrical steel through all the thermomechanical processing stages, i.e. hot rolling, hot band annealing, cold rolling and final annealing. The temperature of the final annealing was varied from 600 °C to 750 °C so that the steel consisted of partially or completely recrystallized microstructures and different levels of residual stresses. The angular MBNrms (root mean square) values were compared to the texture factors in the same directions, the latter being calculated from the crystallographic texture measured by electron backscatter diffraction (EBSD). It was found that, in the cold-rolled, hot-rolled and completely recrystallized steels, the angular MBNrms followed a cosine function with respect to the angle of magnetization, while in partially recrystallized state such a relation does not exist. After cold rolling, the maximum MBNrms was observed in the rolling direction (RD) and the minimum MBNrms was in the transverse direction (TD), which was inconsistent with the magnetocrystalline anisotropy as indicated by the texture factor. After hot rolling, the maximum and minimum MBNrms values were observed in the TD and RD, respectively, exactly opposite to the cold-rolled state. If the steel was completely recrystallized, the maximum MBNrms was normally observed at a direction that was 15-30° from the minimum texture factor. If the steel was partially recrystallized, both the magnetocrystalline anisotropy of the material and the residual stress contributed to the angular MBNrms, which resulted in the deviation of the relationship from a cosine function. The relative strength of the two factors determined which factor would dominate the overall magnetic anisotropy.

  10. Design and implementation of ergonomic performance measurement system at a steel plant in India.

    PubMed

    Ray, Pradip Kumar; Tewari, V K

    2012-01-01

    Management of Tata Steel, the largest steel making company of India in the private sector, felt the need to develop a framework to determine the levels of ergonomic performance at its different workplaces. The objectives of the study are manifold: to identify and characterize the ergonomic variables for a given worksystem with regard to work efficiency, operator safety, and working conditions, to design a comprehensive Ergonomic Performance Indicator (EPI) for quantitative determination of the ergonomic status and maturity of a given worksystem. The study team of IIT Kharagpur consists of three faculty members and the management of Tata Steel formed a team of eleven members for implementation of EPI model. In order to design and develop the EPI model with total participation and understanding of the concerned personnel of Tata Steel, a three-phase action plan for the project was prepared. The project consists of three phases: preparation and data collection, detailed structuring and validation of EPI model. Identification of ergonomic performance factors, development of interaction matrix, design of assessment tool, and testing and validation of assessment tool (EPI) in varied situations are the major steps in these phases. The case study discusses in detail the EPI model and its applications.

  11. 75 FR 32366 - Certain Steel Grating From the People's Republic of China: Final Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ...: (202) 482-3936. SUPPLEMENTARY INFORMATION: Case History The period of investigation (``POI'') is... slit and expanded, and does not involve welding or joining of multiple pieces of steel. The scope of... cold formed, and does not involve welding or joining of multiple pieces of steel. Certain steel grating...

  12. Volatile organic compound constituents from an integrated iron and steel facility.

    PubMed

    Tsai, Jiun-Horng; Lin, Kuo-Hsiung; Chen, Chih-Yu; Lai, Nina; Ma, Sen-Yi; Chiang, Hung-Lung

    2008-09-15

    This study measured the volatile organic compound (VOC) constituents of four processes in an integrated iron and steel industry; cokemaking, sintering, hot forming, and cold forming. Toluene, 1,2,4-trimethylbenzene, isopentane, m,p-xylene, 1-butene, ethylbenzene, and benzene were the predominant VOC species in these processes. However, some of the chlorinated compounds were high (hundreds ppbv), i.e., trichloroethylene in all four processes, carbon tetrachloride in the hot forming process, chlorobenzene in the cold forming process, and bromomethane in the sintering process. In the sintering process, the emission factors of toluene, benzene, xylene, isopentane, 1,2,4-trimethylbenzene, and ethylbenzene were over 9 g/tonne-product. In the vicinity of the manufacturing plant, toluene, isopentane, 1,2,4-trimethylbenzene, xylene and ethylbenzene were high. Toluene, 1,2,4-trimethylbenzene, xylene, 1-butene and isopentane were the major ozone formation species. Aromatic compounds were the predominant VOC groups, constituting 45-70% of the VOC concentration and contributing >70% to the high ozone formation potential in the stack exhaust and workplace air. The sequence of VOC concentration and ozone formation potential was as follows: cold forming>sintering>hot forming>cokemaking. For the workplace air, cokemaking was the highest producer, which was attributed to the fugitive emissions of the coke oven and working process release.

  13. Study of the performances of nano-case treatment cutting tools on carbon steel work material during turning operation

    NASA Astrophysics Data System (ADS)

    Afolalu, S. A.; Okokpujie, I. P.; Salawu, E. Y.; Abioye, A. A.; Abioye, O. P.; Ikumapayi, O. M.

    2018-04-01

    The degree of holding temperature and time play a major role in nano-case treatment of cutting tools which immensely contributed to its performance during machining operation. The objective of this research work is to carryout comparative study of performance of nano-case treatment tools developed using low and medium carbon steel as work piece. Turning operation was carried out under two different categories with specific work piece on universal lathe machine using HSS cutting tools 100 mm × 12mm × 12mm that has been nano-case treated under varying conditions of temperatures and timeof 800,850, 900, 950°C and 60, 90, 120 mins respectively. The turning parameters used in evaluating this experiment were cutting speed of 270, 380 and 560mm/min, feed rate of 0.15, 0.20 and 0.25 mm/min, depth of cut of 2mm, work piece diameter of 25mm and rake angle of 7° each at three levels. The results of comparative study of their performances revealed that the timespent in the machining of low carbon steel material at a minimum temperature and time of 800°C, 60 mins were1.50, 2.17 mins while at maximum temperature and time of 950°C, 120 mins were 1.19, 2.02 mins. It was also observed that at a corresponding constant speed of 270,380 and 560mm/min at higher temperature and time, a relative increased in the length of cut were observed. Critical observation of the result showed that at higher case hardening temperature and time (950°C/120mins), the HSS cutting tool gave a better performance as lesser time was consumed during the turning operation.

  14. 75 FR 847 - Certain Steel Grating From the People's Republic of China: Preliminary Determination of Sales at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... that has been slit and expanded, and does not involve welding or joining of multiple pieces of steel... pierced and cold formed, and does not involve welding or joining of multiple pieces of steel. Certain...

  15. 24 CFR 3280.304 - Materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for Aluminum Structures, Part 1-A, Sixth Edition, October 1994, and Part 1-B, First Edition, October 1994. Steel Specification for Structural Steel Buildings—Allowable Stress Design and Plastic Design..., 2.4, 2.8 through 2.10. Specification for the Design of Cold-Formed Steel Structural Members—AISI...

  16. Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan

    2013-12-01

    Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.

  17. Modern trends in increasing the quality of the steels intended for cutting and metal-working tools: I. Improvement of granule metallurgy processes

    NASA Astrophysics Data System (ADS)

    Belyanchikov, L. N.

    2008-12-01

    The following new technological processes for producing fine gas-atomized powders of tool and high-speed steels with a low content of nonmetallic inclusions are considered: the process designed by Böhler Uddeholm Powder Technology (Austria) and processes involving a heated gas. In the former process, a metal is poured from a ladle with electroslag heating, and the atomizing unit consists of three injectors. A new process of producing tools from fine powders by three-dimensional printing, i.e., so-called 3D-printing, is described.

  18. Controlling the type and the form of chip when machining steel

    NASA Astrophysics Data System (ADS)

    Gruby, S. V.; Lasukov, A. A.; Nekrasov, R. Yu; Politsinsky, E. V.; Arkhipova, D. A.

    2016-08-01

    The type of the chip produced in the process of machining influences many factors of production process. Controlling the type of chip when cutting metals is important for producing swarf chips and for easing its utilization as well as for protecting the machined surface, cutting tool and the worker. In the given work we provide the experimental data on machining structural steel with implanted tool. The authors show that it is possible to control the chip formation process to produce the required type of chip by selecting the material for machining the tool surface.

  19. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-03-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  20. The effects of cold work on the microstructure and mechanical properties of intermetallic strengthened alumina-forming austenitic stainless steels

    DOE PAGES

    Hu, Bin; Baker, Ian; Miller, Michael K.; ...

    2015-06-12

    In order to achieve energy conversion efficiencies of >50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at >973 K (700 °C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni 3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanical performance. These reducedmore » the grain size significantly to the nanoscale (~100 nm) and the room temperature yield strength to above 1000 MPa. Lastly, a solutionizing anneal at 1473 K (1200 °C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting.« less

  1. Evolution of microstructure and residual stress during annealing of austenitic and ferritic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wawszczak, R.; Baczmański, A., E-mail: Andrzej.Baczmanski@fis.agh.edu.pl; Marciszko, M.

    2016-02-15

    In this work the recovery and recrystallization processes occurring in ferritic and austenitic steels were studied. To determine the evolution of residual stresses during material annealing the nonlinear sin{sup 2}ψ diffraction method was used and an important relaxation of the macrostresses as well as the microstresses was found in the cold rolled samples subjected to heat treatment. Such relaxation occurs at the beginning of recovery, when any changes of microstructure cannot be detected using other experimental techniques. Stress evolution in the annealed steel samples was correlated with the progress of recovery process, which significantly depends on the value of stackingmore » fault energy. - Highlights: • X-ray diffraction was used to determine the first order and second order stresses. • Diffraction data were analyzed using scale transition elastoplastic models model. • Stress relaxation in annealed ferritic and austenitic steels was correlated with evolution of microstructure. • Influence of stacking fault energy on thermally induced processes was discussed.« less

  2. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  3. 40 CFR 420.101 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...

  4. 40 CFR 420.101 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...

  5. 40 CFR 420.101 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...

  6. 40 CFR 420.101 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...

  7. Effects of the annealing temperature and time on the microstructural evolution and corresponding the mechanical properties of cold-drawn steel wires

    NASA Astrophysics Data System (ADS)

    Park, D. B.; Lee, J. W.; Lee, Y. S.; Park, K. T.; Nam, W. J.

    2008-02-01

    The effects of the annealing temperature and annealing time on the microstructural evolution and corresponding mechanical properties of cold-drawn high carbon steel wires were investigated. During the annealing of cold-drawn steel wires, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. To investigate the mechanisms of strain ageing, a thermal analysis using DSC was performed. The mechanisms for the first and second stages were found to be the diffusion of carbon atoms to dislocations in the lamellar ferrite and the decomposition of lamellar cementite. The third peak of the DSC curves was controlled by the re-precipitation of cementite or by the spheroidization of lamellar cementite.

  8. Behaviour of thin-walled cold-formed steel members in eccentric compression

    NASA Astrophysics Data System (ADS)

    Ungureanu, Viorel; Kotełko, Maria; Borkowski, Łukasz; Grudziecki, Jan

    2018-01-01

    Thin-walled cold-formed steel structures are usually made of members of class 4 cross-sections. Since these sections are prematurely prone to local or distortional buckling and due to the fact they do not have a real post-elastic capacity, the failure at ultimate stage of those members, either in compression or bending, always occurs by forming a local plastic mechanism. The present paper investigates the evolution of the plastic mechanisms and the possibility to use them to characterise the ultimate strength of short thin-walled cold-formed steel members subjected to eccentric compression about minor axis, particularly for members with lipped channel cross-section. Five different types of plastic mechanisms for members in compression with different eccentricities are identified and examined on the basis of FE numerical simulations. Preliminary results of experimental validation of numerical results are presented. The research is based on previous studies and some new investigations of the authors.

  9. Effect of Turning and Ball Burnishing on the Microstructure and Residual Stress Distribution in Stainless Steel Cold Spray Deposits

    NASA Astrophysics Data System (ADS)

    Sova, A.; Courbon, C.; Valiorgue, F.; Rech, J.; Bertrand, Ph.

    2017-12-01

    In this paper, an experimental study of influence of machining by turning and ball burnishing on the surface morphology, structure and residual stress distribution of cold spray 17-4 PH stainless steel deposits is provided. It is shown that cold spray deposits could be machined by turning under parameters closed to turning of bulk 17-4 PH stainless steel. Ball burnishing process permits to decrease surface roughness. Cross-sectional observation revealed that the turning and ball burnishing process allowed microstructure changes in the coating near-surface zone. In particular, significant particle deformation and particle boundary fragmentation is observed. Measurements of residual stresses showed that residual stresses in the as-spray deposit are compressive. After machining by turning, tensile residual stresses in the near-surface zone were induced. Further surface finishing of turned coating by ball burnishing allowed the establishment of the compressive residual stresses in the coating.

  10. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOEpatents

    Thomas, G.; Ahn, J.H.; Kim, N.J.

    1986-10-28

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar[sub 3] temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics. 3 figs.

  11. Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes

    DOEpatents

    Thomas, Gareth; Ahn, Jae-Hwan; Kim, Nack-Joon

    1986-01-01

    An improved, energy efficient, hot rolling method for direct production of cold formable dual-phase steel is provided. The steel is heated to completely austenitize it and then continuously hot rolled and cooled down into the ferrite-austenite two phase region to a temperature which is just below the effective Ar.sub.3 temperature. The hot rolled steel is then rapidly quenched to provide an alloy containing strong, tough lath martensite (fibers) in a ductile soft ferrite matrix. The method is particularly useful for providing rods in which form the alloy is capable of being drawn into high strength wire or the like in a cold drawing operation without any intermediate annealing or patenting, and has excellent strength, ductility and fatigue characteristics.

  12. The rolling performance of Fe-6.5 wt.% Si sheets edged with stainless steel

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Ye, F.; Liang, Y. F.; Shi, X. J.; Lin, J. P.

    2017-10-01

    Compared with common electrical steel, high silicon electrical steel (Fe-6.5 wt.% Si alloy) exhibits excellent soft magnetic properties and a wide application prospect in high frequency electromagnetic fields. In the process of cold rolling Fe-6.5 wt.% Si alloy, edge-crack often occurs on the sheets due to the inadequate ductility and limited formability. It was found that the Fe-6.5 wt.% Si alloy sheet edged with 304 stainless steel by laser welding show an improved rolling performance. The composite sheet could be cold rolled to a thickness of 0.07 mm without observed edge cracks. The mechanical property of the edging material should be in an appropriate window in reference to that of the Fe-6.5 wt.% Si alloy.

  13. Nondestructive examination of recovery stage during annealing of a cold-rolled low-carbon steel using eddy current testing technique

    NASA Astrophysics Data System (ADS)

    Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.

    2018-04-01

    The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.

  14. Recrystallization characteristics and interfacial oxides on the compression bonding interface

    NASA Astrophysics Data System (ADS)

    Xie, Bijun; Sun, Mingyue; Xu, Bin; Li, Dianzhong

    2018-05-01

    Up to now, the mechanism of interface bonding is still not fully understood. This work presents interfacial characteristics of 316LN stainless steel bonding joint after cold compression bonding with subsequent annealing. EBSD analysis shows that fine recrystallization grains preferentially appear near the bonding interface and grow towards both sides of the interface. Transmission electron microscopy reveals that initial cold compression bonding disintegrates the native oxide scales and brings pristine metal from both sides of the interface come into intimate contact, while the broken oxide particles are remained at the original interface. The results indicate that partial bonding can be achieved by cold compression bonding with post-annealing treatment and recrystallization firstly occurs along the bonding interface. However, the interfacial oxides impede the recrystallization grains step over the interface and hinder the complete healing of the bonding interface.

  15. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    NASA Astrophysics Data System (ADS)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  16. Lightweight, Rack-Mountable Composite Cold Plate/Shelves

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Ruemmele, Warren; Nguyen, Hai D.; Andish, Kambiz; McCalley, Sean

    2004-01-01

    Rack-mountable composite-material structural components that would serve as both shelves and cold plates for removing heat from electronic or other equipment mounted on the shelves have been proposed as lightweight alternatives to all-metal cold plate/shelves now in use. A proposed cold plate/shelf would include a highly thermally conductive face sheet containing oriented graphite fibers bonded to an aluminum honeycomb core, plus an extruded stainless-steel substructure containing optimized flow passages for a cooling fluid, and an inlet and outlet that could be connected to standard manifold sections. To maximize heat-transfer efficiency, the extruded stainless-steel substructure would be connected directly to the face sheet. On the basis of a tentative design, the proposed composite cold plate/shelf would weigh about 38 percent less than does an all-aluminum cold plate in use or planned for use in some spacecraft and possibly aircraft. Although weight is a primary consideration, the tentative design offers the additional benefit of reduction of thickness to half that of the all-aluminum version.

  17. Evaluating Opportunities to Improve Material and Energy Impacts in Commodity Supply Chains.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanes, Rebecca J.; Carpenter, Alberta

    When evaluated at the process level, next-generation technologies may be more energy and emissions intensive than current technology. However, many advanced technologies have the potential to reduce material and energy consumption in upstream or downstream processing stages. In order to fully understand the benefits and consequences of technology deployment, next-generation technologies should be evaluated in context, as part of a supply chain. This work presents the Material Flows through Industry (MFI) scenario modeling tool. The MFI tool is a cradle-to-gate linear network model of the U.S. industrial sector that can model a wide range of manufacturing scenarios, including changes inmore » production technology, increases in industrial energy efficiency, and substitution between functionally equivalent materials. The MFI tool was developed to perform supply chain scale analyses in order to quantify the impacts and benefits of next-generation technologies and materials at that scale. For the analysis presented in this paper, the MFI tool is utilized to explore a case study comparing a steel supply chain to the supply chains of several functionally equivalent materials. Several of the alternatives to the baseline steel supply chain include next-generation production technologies and materials. Results of the case study show that aluminum production scenarios can out-perform the steel supply chain by using either an advanced smelting technology or an increased aluminum recycling rate. The next-generation material supply chains do not perform as well as either aluminum or steel, but may offer additional use phase reductions in energy and emissions that are outside the scope of the MFI tool. Future work will combine results from the MFI tool with a use phase analysis.« less

  18. 78 FR 69371 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Memorandum 1. Background 2. Scope of the Investigation 3. Respondent Selection 4. Discussion of Methodology a...: Scope of the Investigation The diffusion-annealed, nickel-plated flat-rolled steel products included in this investigation are flat-rolled, cold-reduced steel products, regardless of chemistry; whether or...

  19. Possibilities for specific utilization of material properties for an optimal part design

    NASA Astrophysics Data System (ADS)

    Beier, T.; Gerlach, J.; Roettger, R.; Kuhn, P.

    2017-09-01

    High-strength, cold-formable steels offer great potential for meeting cost and safety requirements in the automotive industry. In view of strengths of up to 1200 MPa now attainable, certain aspects need to be analysed and evaluated in advance in the development process using these materials. In addition to early assessment of crash properties, it is also highly important to adapt the forming process to match the material potential. The steel making companies have widened their portfolios of cold-rolled dual-phase steels well beyond the conventional high-strength steels. There are added new grades which offer a customized selection of high energy absorption, deformation resistance or enhanced cold-forming properties. In this article the necessary components for material modelling for finite element simulation are discussed. Additionally the required tests for material model calibration are presented and the potentials of the thyssenkrupp Steel material data base are introduced. Besides classical tensile tests at different angles to rolling direction and the forming limit curve, the hydraulic bulge test is now available for a wide range of modern steel grades. Using the conventional DP-K®60/98 and the DP-K®700Y980T with higher yield strength the method for calibrating yield locus, hardening and formability is given. With reference to the examples of an A-pillar reinforcement and different crash tests the procedure is shown how the customer can evaluate an optimal steel grade for specific requirements. Although the investigated materials have different yield strengths, no large differences in the forming process between the two steel grades can be found. However some advantages of the high-yield grade can be detected in crash performance depending on the specific boundary and loading conditions.

  20. Investigation on the cold rolling and structuring of cold sprayed copper-coated steel sheets

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.; Senge, S.; Hirt, G.

    2017-03-01

    A current driving force of research is lightweight design. One of the approaches to reduce the weight of a component without causing an overall stiffness decrease is the use of multi-material components. One of the main challenges of this approach is the low bonding strength between different materials. Focusing on steel-aluminum multi-material components, thermally sprayed copper coatings can come into use as a bonding agent between steel sheets and high pressure die cast aluminum to improve the bonding strength. This paper presents a combination of cold gas spraying of copper coatings and their subsequent structuring by rolling as surface pretreatment method of the steel inserts. Therefore, flat rolling experiments are performed with samples in “as sprayed” and heat treated conditions to determine the influence of the rolling process on the bond strength and the formability of the coating. Furthermore, the influence of the rolling on the roughness and the hardness of the coating was examined. In the next step, the coated surface was structured, to create a surface topology suited for a form closure connection in a subsequent high-pressure die casting process. No cracks were observed after the cold rolling process with a thickness reduction of up to ε = 14 % for heat treated samples. Structuring of heat treated samples could be realized without delamination and cracking.

  1. The improvement of cryogenic mechanical properties of Fe-12 Mn and Fe-8 Mn alloy steels through thermal/mechanical treatments

    NASA Technical Reports Server (NTRS)

    Hwang, S. K.; Morris, J. W., Jr.

    1979-01-01

    An investigation has been made to improve the low temperature mechanical properties of Fe-8Mn and Fe-12Mn-0.2 Ti alloy steels. A reversion annealing heat treatment in the two-phase (alpha + gamma) region following cold working has been identified as an effective treatment. In an Fe-12Mn-0.2Ti alloy a promising combination of low temperature (-196 C) fracture toughness and yield strength was obtained by this method. The improvement of properties was attributed to the refinement of grain size and to the introduction of a uniform distribution of retained austenite (gamma). It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated alpha-prime martensitic structure and absence of epsilon martensite. As a result, a significant reduction of ductile to brittle transition temperature was obtained.

  2. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    PubMed

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  3. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    DTIC Science & Technology

    2010-07-01

    a rigid material. Its density and thermal properties are set to that of AISI- H13 , the hot-worked tool steel which is often used as a FSW- tool ...joining process (Ref 1-3). Within FSW, a (typically) cylindrical tool - pin (threaded at the bottom and terminated with a circular-plate shape shoulder...applied to the shoulder and owing to frictional sliding and plastic deforma- tion, substantial amount of heat is generated at the tool /work- piece

  4. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    PubMed

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  5. Evaluation of Microstructure and Toughness of AISI D2 Steel by Bright Hardening in Comparison with Oil Quenching

    NASA Astrophysics Data System (ADS)

    Torkamani, H.; Raygan, Sh.; Rassizadehghani, J.

    2011-12-01

    AISI D2 is used widely in the manufacture of blanking and cold-forming dies, on account of its excellent hardness and wear behavior. Increasing toughness at a fixed high level of hardness is growing requirement for this kind of tool steel. Improving microstructure characteristics, especially refinement of coarse carbides, is an appropriate way to meet such requirement. In this study, morphology and size of carbides in martensite matrix were compared between two kinds of samples, which were bright hardened (quenching in hot alkaline salt bath consisting of 60% KOH and 40% NaOH) at 230 °C and quenched in oil bath at 60 °C. Results showed that morphology and distribution of carbides in samples performed by bright hardening were finer and almost spherical compared to that of oil quenched. This microstructure resulted in an improvement in toughness and tensile properties of alloy.

  6. High Energy Rate Forming Induced Phase Transition in Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Kovacs, T.; Kuzsella, L.

    2017-02-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea means indirect hardening setup. Austenitic stainless steels have high plasticity and can be cold formed easily. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness [1]. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  7. Improvement of the Mechanical Properties of 1022 Carbon Steel Coil by Using the Taguchi Method to Optimize Spheroidized Annealing Conditions.

    PubMed

    Yang, Chih-Cheng; Liu, Chang-Lun

    2016-08-12

    Cold forging is often applied in the fastener industry. Wires in coil form are used as semi-finished products for the production of billets. This process usually requires preliminarily drawing wire coil in order to reduce the diameter of products. The wire usually has to be annealed to improve its cold formability. The quality of spheroidizing annealed wire affects the forming quality of screws. In the fastener industry, most companies use a subcritical process for spheroidized annealing. Various parameters affect the spheroidized annealing quality of steel wire, such as the spheroidized annealing temperature, prolonged heating time, furnace cooling time and flow rate of nitrogen (protective atmosphere). The effects of the spheroidized annealing parameters affect the quality characteristics of steel wire, such as the tensile strength and hardness. A series of experimental tests on AISI 1022 low carbon steel wire are carried out and the Taguchi method is used to obtain optimum spheroidized annealing conditions to improve the mechanical properties of steel wires for cold forming. The results show that the spheroidized annealing temperature and prolonged heating time have the greatest effect on the mechanical properties of steel wires. A comparison between the results obtained using the optimum spheroidizing conditions and the measures using the original settings shows the new spheroidizing parameter settings effectively improve the performance measures over their value at the original settings. The results presented in this paper could be used as a reference for wire manufacturers.

  8. Comparative Mechanical Improvement of Stainless Steel 304 Through Three Methods

    NASA Astrophysics Data System (ADS)

    Mubarok, N.; Notonegoro, H. A.; Thosin, K. A. Z.

    2018-05-01

    Stainless Steel 304 (SS304) is one of stainless steel group widely used in industries for various purposes. In this paper, we compared the experimental process to enhance the mechanical properties of the surface SS304 through three different methods, cold rolled, annealed salt baht bronzing (ASB), and annealed salt baht boronizing-quench (ASB-Q). The phase change in SS304 due to the cold rolled process makes this method is to abandon. The increasing of the annealing time in the ASB method has a nonlinear relationship with the increases in hardness value. Comparing to the increases in hardness value of the ASB method, the hardness value of ASB-Q methods is still lower than that method.

  9. Analytical solution for shear bands in cold-rolled 1018 steel

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Almasri, Amin H.; Faghihi, Danial; Palazotto, Anthony N.

    2012-06-01

    Cold-rolled 1018 (CR-1018) carbon steel has been well known for its susceptibility to adiabatic shear banding under dynamic loadings. Analysis of these localizations highly depends on the selection of the constitutive model. To deal with this issue, a constitutive model that takes temperature and strain rate effect into account is proposed. The model is motivated by two physical-based models: the Zerilli and Armstrong and the Voyiadjis and Abed models. This material model, however, incorporates a simple softening term that is capable of simulating the softening behavior of CR-1018 steel. Instability, localization, and evolution of adiabatic shear bands are discussed and presented graphically. In addition, the effect of hydrostatic pressure is illustrated.

  10. Progress in development of coated indexable cemented carbide inserts for machining of iron based work piece materials

    NASA Astrophysics Data System (ADS)

    Czettl, C.; Pohler, M.

    2016-03-01

    Increasing demands on material properties of iron based work piece materials, e.g. for the turbine industry, complicate the machining process and reduce the lifetime of the cutting tools. Therefore, improved tool solutions, adapted to the requirements of the desired application have to be developed. Especially, the interplay of macro- and micro geometry, substrate material, coating and post treatment processes is crucial for the durability of modern high performance tool solutions. Improved and novel analytical methods allow a detailed understanding of material properties responsible for the wear behaviour of the tools. Those support the knowledge based development of tailored cutting materials for selected applications. One important factor for such a solution is the proper choice of coating material, which can be synthesized by physical or chemical vapor deposition techniques. Within this work an overview of state-of-the-art coated carbide grades is presented and application examples are shown to demonstrate their high efficiency. Machining processes for a material range from cast iron, low carbon steels to high alloyed steels are covered.

  11. 77 FR 32562 - Circular Welded Carbon-Quality Steel Pipe From India: Preliminary Determination of Sales at Less...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ...: Steel Concrete Reinforcing Bars From Poland, Indonesia, and Ukraine, 66 FR 8343, 8346 (January 30, 2001) (unchanged in Notice of Final Determinations of Sales at Less Than Fair Value: Steel Concrete Reinforcing..., heat exchangers, refining furnaces and feedwater heaters, whether or not cold drawn; (b) finished...

  12. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels.

    PubMed

    Sohn, Seok Su; Song, Hyejin; Jo, Min Chul; Song, Taejin; Kim, Hyoung Seop; Lee, Sunghak

    2017-04-28

    Needs for steel designs of ultra-high strength and excellent ductility have been an important issue in worldwide automotive industries to achieve energy conservation, improvement of safety, and crashworthiness qualities. Because of various drawbacks in existing 1.5-GPa-grade steels, new development of formable cold-rolled ultra-high-strength steels is essentially needed. Here we show a plausible method to achieve ultra-high strengths of 1.0~1.5 GPa together with excellent ductility above 50% by actively utilizing non-recrystallization region and TRansformation-Induced Plasticity (TRIP) mechanism in a cold-rolled and annealed Fe-Mn-Al-C-based steel. We adopt a duplex microstructure composed of austenite and ultra-fine ferrite in order to overcome low-yield-strength characteristics of austenite. Persistent elongation up to 50% as well as ultra-high yield strength over 1.4 GPa are attributed to well-balanced mechanical stability of non-crystallized austenite with critical strain for TRIP. Our results demonstrate how the non-recrystallized austenite can be a metamorphosis in 1.5-GPa-grade steel sheet design.

  13. Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses

    DTIC Science & Technology

    2011-12-30

    which reduces the need for expensive post-weld machining; and (g) low environmental impact . However, some disadvantages of the FSW process have also...next set to that of AISI- H13 , a hot-worked tool steel, frequently used as the FSW-tool material (Ref 16). The work-piece material is assumed to be

  14. Effect of Annealing on Mechanical Properties and Formability of Cold Rolled Thin Sheets of Fe-P P/M Alloys

    NASA Astrophysics Data System (ADS)

    Trivedi, Shefali; Ravi Kumar, D.; Aravindan, S.

    2016-10-01

    Phosphorus in steel is known to increase strength and hardness and decrease ductility. Higher phosphorus content (more than 0.05%), however, promotes brittle behavior due to segregation of Fe3P along the grain boundaries which makes further mechanical working of these alloys difficult. In this work, thin sheets of Fe-P alloys (with phosphorus in range of 0.1-0.35%) have been developed through processing by powder metallurgy followed by hot rolling and cold rolling. The effect of phosphorus content and annealing parameters (temperature and time) on microstructure, mechanical properties, formability in biaxial stretching and fracture behavior of the cold rolled and annealed sheets has been studied. A comparison has also been made between the properties of the sheets made through P/M route and the conventional cast route with similar phosphorus content. It has been shown that thin sheets of Fe-P alloys with phosphorous up to 0.35% possessing a good combination of strength and formability can be produced through rolling of billets of these alloys made through powder metallurgy technique without the problem of segregation.

  15. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  16. Cold Sprayability of Mixed Commercial Purity Ti Plus Ti6Al4V Metal Powders

    NASA Astrophysics Data System (ADS)

    Aydin, Huseyin; Alomair, Mashael; Wong, Wilson; Vo, Phuong; Yue, Stephen

    2017-02-01

    In the present work, metallic composite coatings of commercial purity Ti plus Ti6Al4V were produced by cold spraying to explore the effect of mixing on porosity and mechanical properties of the coatings. The coatings were deposited using N2 gas at 800 °C and 4 MPa pressure on 1020 steel substrate. Coating characteristics were studied by examining porosity percentages and Vickers's hardness. The microstructure was examined using optical and electron microscopy techniques. It was observed that mixing metal powders can lead to improvements in cold sprayability, specifically decreases in the porosity of the `matrix' powder. It is shown that a critical addition can significantly influence porosity, but above this critical level, there is a little change in porosity. Hardness differences between the two powders are considered to be the first-order influence, but differences in particle sizes and morphology may also be contributing factors.

  17. Design optimization of cold-formed steel portal frames taking into account the effect of building topology

    NASA Astrophysics Data System (ADS)

    Phan, Duoc T.; Lim, James B. P.; Sha, Wei; Siew, Calvin Y. M.; Tanyimboh, Tiku T.; Issa, Honar K.; Mohammad, Fouad A.

    2013-04-01

    Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes. A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.

  18. Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment

    NASA Astrophysics Data System (ADS)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.

    2012-01-01

    High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.

  19. Research on on-line monitoring technology for steel ball's forming process based on load signal analysis method

    NASA Astrophysics Data System (ADS)

    Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi

    2013-04-01

    This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.

  20. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part

    PubMed Central

    Fox-Rabinovich, German; Wagg, Terry

    2017-01-01

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool–chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear. PMID:29068405

  1. Rolling contact fatigue of low hardness steel for slewing ring application

    NASA Astrophysics Data System (ADS)

    Knuth, Jason A.

    This thesis discusses the rolling contact fatigue of steel utilized in anti-friction bearings, also referred to as slewing bearings. These slewing bearings are utilized in cranes, excavators, wind turbines and other similar applications. Five materials composed of two different material types were tested. The two material types were high carbon steel and medium carbon alloy steel. The test specimens were processed from forged rolled rings. Two machines were evaluated a ZF-RCF and 3-Ball test machine. The evaluation was to determine which machine can best simulate the application in which the slewing bearing is utilized. Initially, each specimen will be pretested to determine the appropriate testing direction from within the forged rolled rings. Pretesting is needed in order to establish consistent failure modes between samples. The primary goal of the test is to understand the life differences and failure modes between high carbon steel and medium carbon alloy steel. The high carbon steel ring was cut into two sections, one of which was stress relieved and the other was quenched and tempered. The medium carbon alloy steel was cut into three sections, all of which were quenched and tempered to different hardness levels. The test program was dynamically adjusted based upon the previous sample's life and load. An S-N curve was then established from the 5 materials tested at two target loads. The samples were run until the first sign of a crack was detected by an eddy current. At the completion of the rolling contact test, select sample's microstructure was evaluated for crack initiation location. The selected samples were divided into four groups which represent different maximum shear stress levels. These samples displayed indications of material deformation in which the high carbon steel experienced an increased amount of cold work when compared to medium carbon alloy steel. The life of the high carbon steel was nearly equivalent to the expected life of the medium carbon alloy. The work hardening of the high carbon steel increased the surface hardness that exceeded the medium carbon alloy steel surface hardness.

  2. High-temperature fatigue life of type 316 stainless steel containing irradiation induced helium

    NASA Astrophysics Data System (ADS)

    Grossbeck, M. L.; Liu, K. C.

    Specimens of 20%-cold-worked AISI type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at 550°C to a maximum damage level of 15 dpa and a transmutation produced helium level of 820 at. ppm. Fully reversed strain controlled fatigue tests were performed in a vacuum at 550°C. No significant effect of the irradiation on low-cycle fatigue life was observed; however, the strain range of the 10 7 cycle endurance limit decreased from 0.35 to 0.30%. The relation between total strain range and number of cycles to failure was found to be ΔEt = 0.02 Nf-0.12+ Nf-0.6 for N f < 10 7 cycles.

  3. Fatigue properties of type 316LN stainless steel in air and mercury

    NASA Astrophysics Data System (ADS)

    Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.

    2005-08-01

    An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.

  4. 75 FR 8746 - Certain Steel Grating From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... sheet or thin plate steel that has been slit and expanded, and does not involve welding or joining of..., that has been pierced and cold formed, and does not involve welding or joining of multiple pieces of...

  5. Vision-based surface defect inspection for thick steel plates

    NASA Astrophysics Data System (ADS)

    Yun, Jong Pil; Kim, Dongseob; Kim, KyuHwan; Lee, Sang Jun; Park, Chang Hyun; Kim, Sang Woo

    2017-05-01

    There are several types of steel products, such as wire rods, cold-rolled coils, hot-rolled coils, thick plates, and electrical sheets. Surface stains on cold-rolled coils are considered defects. However, surface stains on thick plates are not considered defects. A conventional optical structure is composed of a camera and lighting module. A defect inspection system that uses a dual lighting structure to distinguish uneven defects and color changes by surface noise is proposed. In addition, an image processing algorithm that can be used to detect defects is presented in this paper. The algorithm consists of a Gabor filter that detects the switching pattern and employs the binarization method to extract the shape of the defect. The optics module and detection algorithm optimized using a simulator were installed at a real plant, and the experimental results conducted on thick steel plate images obtained from the steel production line show the effectiveness of the proposed method.

  6. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels

    PubMed Central

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-01-01

    Considerable research has been conducted over recent decades on the role of non-metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc.) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades. PMID:28787969

  7. Electrochemically induced annealing of stainless-steel surfaces.

    PubMed

    Burstein, G T; Hutchings, I M; Sasaki, K

    2000-10-19

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  8. Effect of Rolling and Subsequent Annealing on Microstructure, Microtexture, and Properties of an Experimental Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mandal, Arka; Patra, Sudipta; Chakrabarti, Debalay; Singh, Shiv Brat

    2017-12-01

    A lean duplex stainless steel (LDSS) has been prepared with low-N content and processed by different thermo-mechanical schedules, similar to the industrial processing that comprised hot-rolling, cold-rolling, and annealing treatments. The microstructure developed in the present study on low-N LDSS has been compared to that of high-N LDSS as reported in the literature. As N is an austenite stabilizer, lower-N content reduced the stability of austenite and the austenite content in low-N LDSS with respect to the conventional LDSS. Due to low stability of austenite in low-N LDSS, cold rolling resulted in strain-induced martensitic transformation and the reversion of martensite to austenite during subsequent annealing contributed to significant grain refinement within the austenite regions. δ-ferrite grains in low-N LDSS, on the other hand, are refined by extended recovery mechanism. Initial solidification texture (mainly cube texture) within the δ-ferrite region finally converted into gamma-fiber texture after cold rolling and annealing. Although MS-brass component dominated the austenite texture in low-N LDSS after hot rolling and cold rolling, that even transformed into alpha-fiber texture after the final annealing. Due to the significant grain refinement and formation of beneficial texture within both austenite and ferrite, good combination of strength and ductility has been achieved in cold-rolled and annealed sample of low-N LDSS steel.

  9. The Effects of Cold Work on the Microstructure and Mechanical Properties of Intermetallic Strengthened Alumina-Forming Austenitic Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, B.; Trotter, G.; Baker, Ian

    2015-08-01

    In order to achieve energy conversion efficiencies of > 50 pct for steam turbines/boilers in power generation systems, materials are required that are both strong and corrosion-resistant at > 973 K (700 A degrees C), and economically viable. Austenitic steels strengthened with Laves phase, NiAl and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The microstructure and microchemistry of recently developed alumina-forming austenitic stainless steels have been characterized by scanning electron microscopy, transmission electron microscopy, and synchrotron X-ray diffraction. Different thermo-mechanical treatments were performed on these steels to improve their mechanicalmore » performance. These reduced the grain size significantly to the nanoscale (similar to 100 nm) and the room temperature yield strength to above 1000 MPa. A solutionizing anneal at 1473 K (1200 A degrees C) was found to be effective for uniformly redistributing the Laves phase precipitates that form upon casting. (C) The Minerals, Metals & Materials Society and ASM International 2015« less

  10. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

    NASA Astrophysics Data System (ADS)

    Wang, Wesley; Kelly, Shawn

    2016-03-01

    Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

  11. Durable nonslip stainless-steel drivebelts

    NASA Technical Reports Server (NTRS)

    Bahiman, H.

    1979-01-01

    Two toothed stainless-steel drive belt retains its strength and flexibility in extreme heat or cold, intense radiation, or under high loading. Belt does not stretch or slip and is particularly suited to machinery for which replacement is difficult or impossible.

  12. Effect of parameters on picosecond laser ablation of Cr12MoV cold work mold steel

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Zhang, Fei; Duan, Jun; Wang, Xizhao; Zeng, Xiaoyan

    2018-01-01

    Cr12MoV cold work mold steel, which is a difficult-to-machining material, is widely used in the mold and dye industry. A picosecond pulse Nd:YVO4 laser at 1064 nm was used to conduct the study. Effects of operation parameters (i.e., laser fluence, scanning speed, hatched space and number of scans) were studied on ablation depth and quality of Cr12MoV at the repetition rate of 20 MHz. The experimental results reveal that all the four parameters affect the ablation depth significantly. While the surface roughness depends mainly on laser fluence or scanning speed and secondarily on hatched space or number of scans. For laser fluence and scanning speed, three distinct surface morphologies were observed experiencing transition from flat (Ra < 1.40 μm) to bumpy (Ra = 1.40 - 2.40 μm) eventually to rough (Ra > 2.40 μm). However, for hatched space and number of scan, there is a small bumpy and rough zone or even no rough zone. Mechanisms including heat accumulation, plasma shielding and combustion reaction effects are proposed based on the ablation depth and processing morphology. By appropriate management of the laser fluence and scanning speed, high ablation depth with low surface roughness can be obtained at small hatched space and high number of scans.

  13. Computer Simulations: A Tool to Predict Experimental Parameters with Cold Atoms

    DTIC Science & Technology

    2013-04-01

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an...specifically designed to work with cold atom systems and atom chips, and is already able to compute their key properties. We simulate our experimental...also allows one to choose different physics and define the interdependencies between them. It is not specifically designed for cold atom systems or

  14. Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, R.W.; Maziasz, P.J.; Bolling, E.

    1990-05-01

    The results are summarized for a 6-year activity on advanced austenitic stainless steels for heat recovery systems. Commercial, near-commercial, and developmental alloys were evaluated relative to criteria for metallurgical stability, fabricability, weldability, and mechanical strength. Fireside and steamside corrosion were also considered, but no test data were collected. Lean stainless steel alloys that were given special attention in the study were type 316 stainless steel, fine-grained type 347 stainless steel, 17-14CuMo stainless steel, Esshete 1250, Sumitomo ST3Cu{reg sign} stainless steel, and a group of alloys identified as HT-UPS (high-temperature, ultrafine-precipitation strengthened) steels that were basically 14Cr--16Ni--Mo steels modified by variousmore » additions of MC-forming elements. It was found that, by solution treating the MC-forming alloys to temperatures above 1150{degree}C and subsequently cold or warm working, excellent metallurgical stability and creep strength could be achieved. Test data to beyond 35,000 h were collected. The ability to clad the steels for improved fireside corrosion resistance was demonstrated. Weldability of the alloys was of concern, and hot cracking was found to be a problem in the HT-UPS alloys. By reducing the phosphorous content and selecting either CRE 16-8-2 stainless steel or alloy 556 filler metal, weldments were produced that had excellent strength and ductility. The major issues related to the development of the advanced alloys were identified and ways to resolve the issues suggested. 89 refs., 45 figs., 8 tabs.« less

  15. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm.

    PubMed

    Sathiyamoorthy, V; Sekar, T; Elango, N

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models.

  16. Hot tensile behaviour in silicon-killed boron microalloyed steels

    NASA Astrophysics Data System (ADS)

    Chown, Lesley H.; Cornish, Lesley A.

    2017-10-01

    Low carbon steel for drawing and cold heading applications should have low strength, high ductility and low strain ageing rates. To achieve this, nitrogen must be removed from solid solution, which can be done by low additions of boron. A wire producer had been experiencing occasional problems with severe cracking on silicon-killed, boron steel billets during continuous casting, but the solution was not obvious. Samples from four billets, each from different casts, were removed for analysis and testing. The tested steel compositions were within the specification limits, with boron to nitrogen ratios of 0.40-1.19. Hot ductility testing was performed on a Gleeble 1500 using parameters approximating the capabilities of this particular billet caster. The steel specimens were subjected to in situ melting, then cooled at a rate of 2 C.s-1 to temperatures in the range 750-1250°C, where they were then pulled to failure at a strain rate of 8x10-4 s-1. In this work, it was found that both the boron to nitrogen ratio and the manganese to sulphur ratio influenced the hot ductility and hence the crack susceptibility. Excellent hot ductility was found for B:N ratios above 1.0, which confirmed that the B:N ratio should be above a stoichiometric value of 0.8 to remove all nitrogen from solid solution. TEM analysis showed that coarse BN precipitates nucleated on other precipitates, such as (Fe,Mn)S, which have relatively low melting points, and are detrimental to hot ductility. Low Mn:S ratios of 10 - 12 were shown to promote precipitation of FeS, so a Mn:S > 14 was recommended. A narrower billet surface temperature range for straightening was recommended to prevent transverse surface cracking. Additionally, analysis of industrial casting data showed that the scrap percentage due to transverse cracking increased significantly for Mn:S < 14. An exponential decay relationship between the manganese to sulphur ratio and the average scrap percentage due to transverse cracking was derived as a simple tool to predict, and hence mitigate, scrap levels in the casting plant.

  17. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  18. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  19. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  20. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  1. Impact resistance of materials for guards on cutting machine tools--requirements in future European safety standards.

    PubMed

    Mewes, D; Trapp, R P

    2000-01-01

    Guards on machine tools are meant to protect operators from injuries caused by tools, workpieces, and fragments hurled out of the machine's working zone. This article presents the impact resistance requirements, which guards according to European safety standards for machine tools must satisfy. Based upon these standards the impact resistance of different guard materials was determined using cylindrical steel projectiles. Polycarbonate proves to be a suitable material for vision panels because of its high energy absorption capacity. The impact resistance of 8-mm thick polycarbonate is roughly equal to that of a 3-mm thick steel sheet Fe P01. The limited ageing stability, however, makes it necessary to protect polycarbonate against cooling lubricants by means of additional panes on both sides.

  2. Experimental Study On Flexural Behaviour Of Beams Reinforced With GFRP Rebars

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, G.; Sundaravadivelu, Karthik

    2017-07-01

    In saline, moisture and cold conditions corrosion of steel is inevitable and the lot of economy is used for rehabilitation works. Corrosion of steel is nothing but oxidation of iron in moisture conditions and this corrosion leads to the spalling of concrete which intern reduces the strength of the structure. To reduce this corrosion effects, new materials with resistance against corrosion have to be introduced. Many experiments are going on using Glass Fiber Reinforced Polymer (GFRP) as alternate material for steel due to its non-corrosive nature, weight of GFRP is nearly one third of steel and ultimate tensile strength is higher than steel. In this paper, six beams are casted in which three beams are casted with steel as main and shear reinforcement and another three beams are casted with GFRP as main reinforcement with steel as shear reinforcing material. All beams casted are of same dimensions with variation in reinforcement percentage. The size of the beams casted is of length 1200 mm, breadth 100 mm and depth 200 mm. The clear cover of 25 mm is provided on top and bottom of the beam. Beams are tested under two-point loading with constant aspect ratio (a/d) and comparing the flexural strength, load deflection curves and types of failures of beams reinforced with GFRP as main reinforcement and beams reinforced with conventional steel. The final experimental results are compared with numerical results. M30 grade concrete with Conplast as a superplasticizer is used for casting beams.

  3. Vanadium Microalloyed High Strength Martensitic Steel Sheet for Hot-Dip Coating

    NASA Astrophysics Data System (ADS)

    Hutchinson, Bevis; Komenda, Jacek; Martin, David

    Cold rolled steels with various vanadium and nitrogen levels have been treated to simulate the application of galvanizing and galvannealing to hardened martensitic microstructures. Strength levels were raised 100-150MPa by alloying with vanadium, which mitigates the effect of tempering. This opens the way for new ultra-high strength steels with corrosion resistant coatings produced by hot dip galvanising.

  4. Efficient anti-corrosive coating of cold-rolled steel in a seawater environment using an oil-based graphene oxide ink.

    PubMed

    Singhbabu, Y N; Sivakumar, B; Singh, J K; Bapari, H; Pramanick, A K; Sahu, Ranjan K

    2015-05-07

    We report the production of an efficient anti-corrosive coating of cold-rolled (CR) steel in a seawater environment (∼3.5 wt% NaCl aqueous solution) using an oil-based graphene oxide ink. The graphene oxide was produced by heating Aeschynomene aspera plant as a carbon source at 1600 °C in an argon atmosphere. The ink was prepared by cup-milling the mixture of graphene oxide and sunflower oil for 10 min. The coating of ink on the CR steel was made using the dip-coating method, followed by curing at 350 °C for 10 min in air atmosphere. The results of the potentiodynamic polarization show that the corrosion rate of bare CR steel decreases nearly 10,000-fold by the ink coating. Furthermore, the salt spray test results show that the red rusting in the ink-coated CR steel is initiated after 100 h, in contrast to 24 h and 6 h in the case of oil-coated and bare CR steel, respectively. The significant decrease in the corrosion rate by the ink-coating is discussed based on the impermeability of graphene oxide to the corrosive ions.

  5. Investigation of a fatigue failure in a stainless steel femoral plate.

    PubMed

    Marcomini, J B; Baptista, C A R P; Pascon, J P; Teixeira, R L; Reis, F P

    2014-10-01

    Surgical implants are exposed to severe working conditions and therefore a wide range of failure mechanisms may occur, including fatigue, corrosion, wear, fretting and combinations of them. The mechanical failures of metallic implants may also be influenced by several other factors, including the design, material, manufacturing, installation, postoperative complications and misuse. An 83-year-old patient suffered an oblique femoral shaft fracture due to a fall at home. A stainless steel locking compression plate (LCP) employed in the fracture reduction failed after four months and was sent back to the producer. A second LCP of the same type was implanted and also failed after six months. A failure analysis of the second femoral LCP is performed in this paper. The results demonstrate that poor material quality was decisive to the failure. The chemical analysis revealed a high P content in the steel, which is not in accordance to the standards. A combination of factors lead to LCP fracture and these include: brittle crack initiation due to phosphorus, segregation at grain boundaries, crack propagation due to cyclic loading and final fast fracture favored by the loss of ductility due to cold work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Essais de fissuration a froid appliques aux metaux d'apport inoxydables martensitiques 410NiMo

    NASA Astrophysics Data System (ADS)

    Paquin, Mathieu

    Martensitic stainless steels have represented since few years a material of choice for the manufacture of mechanical parts such as hydroelectric turbines. The development of the alloy has led to grades with very low amount of carbon giving them a good weldability. The assembly of these parts, made by autogenous welding, requires the use of materials with low transformation temperature (LTT) such as 410NiMo. These filler metals are also used for assembly by heterogeneous welding of steel parts susceptible to cold cracking. The transformation of austenite to martensite occurring at low temperature, residual stresses from single-pass welding operation are different from those normally found and reduce the risk of cracking. By cons, industrial experience shows that in situation of multipass welding, the risks of cold cracking are still present. This project aimed to determine a cracking test for assessing susceptibility to cold cracking of 13%Cr-4%Ni stainless steel according to the welding procedure, in autogenous welding situation. Literature contains much information about cold cracking phenomena. That phenomena occurs under three conditions. These conditions are: a high diffusible hydrogen level, significant residual stresses and a brittle microstructure. It seems that despite the low mass ratio of carbon (0.022%C) and the low diffusible hydrogen level (< 3 ml/100g) risks of cold cracking remain present during multipass deposits. Use of cracking tests was necessary to assess the sensitivity to cracking of the martensitic stainless steel. Before the work preliminary tests have been made or tested Tekken GBOP and testing to determine that to obtain the most representative of the industrial reality results. Then they have been modified to reverse the compression stress in the seam test to tension by the addition of a second weld. This inversion occurs in multipass welding and has been targeted as an important factor in the occurrence of cold cracking phenomenon. The results of these tests show that Tekken test is not suitable for LTT testing. It was also demonstrated that GBOP test with two juxtaposed seams configuration gave results consistent with the industrial observations. The second stage of the project was to study the cracking test selected. Acoustic emission tests were done during welding and cooling of GBOP test. These tests were conducted in order to detect when the cracking of the test occurred and to validate the method of inspection. This inspection is done after separation of the specimen, by observation of the fracture surface. Usually, cliveage zone on the fracture surface can be associated with cold cracking and dimple zones can be associated with the specimen separation. Through these tests, it was possible to validate this assertion. Then the relevance of the addition of a second weld has been validated by studying the residual stress by the contour method. It was possible to observe an area of the first bead in tension, promoting cracking of the test. Finally, some test runs were made with various filler metals in order to confirm that the utilization of the modified GBOP test for 13%Cr-4%Ni was adequate. A fractographic study of some sample was also made.

  7. Deformation and damage mechanisms of zinc coatings on hot-dip galvanized steel sheets: Part II. Damage modes

    NASA Astrophysics Data System (ADS)

    Parisot, Rodolphe; Forest, Samuel; Pineau, André; Grillon, François; Demonet, Xavier; Mataigne, Jean-Michel

    2004-03-01

    Zinc-based coatings are widely used for protection against corrosion of steel-sheet products in the automotive industry. The objective of the present article is to investigate the damage modes at work in three different microstructures of a zinc coating on an interstitial-free steel substrate under tension, planestrain tension, and expansion loading. Plastic-deformation mechanisms are addressed in the companion article. Two main fracture mechanisms, namely, intergranular cracking and transgranular cleavage fracture, were identified in an untempered cold-rolled coating, a tempered cold-rolled coating, and a recrystallized coating. No fracture at the interface between the steel and zinc coating was observed that could lead to spalling, in the studied zinc alloy. A complex network of cleavage cracks and their interaction with deformation twinning is shown to develop in the material. An extensive quantitative analysis based on systematic image analysis provides the number and cumulative length of cleavage cracks at different strain levels for the three investigated microstructures and three loading conditions. Grain refinement by recrystallization is shown to lead to an improved cracking resistance of the coating. A model for crystallographic cleavage combining the stress component normal to the basal plane and the amount of plastic slip on the basal slip systems is proposed and identified from equibiaxial tension tests and electron backscattered diffraction (EBSD) analysis of the cracked grains. This analysis requires the computation of the nonlinear stress-strain response of each grain using a crystal-plasticity constitutive model. The model is then applied successfully to other loading conditions and is shown to account for the preferred orientations of damaged grains observed in the case of plane-strain tension.

  8. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy. Number 40.

    DTIC Science & Technology

    1976-11-01

    means of increasing the deformability of two- phase martensite - ferrite steels during subsequent cold rolling, as well as austenite- ferrite steels ...carbon steel , VT-4 titanium alloy and M-l copper . The specimens were placed in July 1972 and removed in April 1974. Tables are given summarizing...between the degree of development of the a -*• y conversion at the deformation focus in steels of the martensite - ferrite class and the position of

  9. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  10. Effect of young’s modulus on springback for low, medium and high carbon steels during cold drawing of seamless tubes

    NASA Astrophysics Data System (ADS)

    Karanjule, D. B.; Bhamare, S. S.; Rao, T. H.

    2018-04-01

    Cold drawing is widely used deformation process for seamless tube manufacturing. Springback is one of the major problem faced in tube drawing. Springback is due to the elastic energy stored in the tubes during forming process. It is found that this springback depends upon Young’s modulus of the material. This paper reports mechanical testing of three grades of steels viz. low carbon steel, medium carbon steel and high carbon steel to measure their Young’s modulus and corresponding springback. The results shows that there is 10-20 % variation in the Young’s modulus and inverse proportion between the springback and Young’s modulus. More the percentage of carbon, more the strength, less the value of Young’s modulus and more will springback. The study further leads to identify optimum die semi angle of 15 degree, land width of 10 mm and drawing speed of 8, 6 and 4 m/min for least springback in all the three grades respectively and die semi angle as a most dominant factor causing springback.

  11. Assessment of recovery and recrystallisation behaviours of cold rolled IF steel through non-destructive electromagnetic characterisation

    NASA Astrophysics Data System (ADS)

    Roy, Rajat K.; Dutta, Siuli; Panda, Ashis K.; Rajinikanth, V.; Das, Swapan K.; Mitra, Amitava; Strangwood, M.; Davis, Claire L.

    2018-07-01

    The recovery and recrystallisation behaviours of cold rolled IF steel have been investigated by destructive (optical microscopy and hardness) and non-destructive electromagnetic sensor, (which allows direct measurement of strip samples with no surface preparation) techniques. The onset and completion of recrystallisation are clearly monitored through destructive techniques of optical microscopy and hardness measurements. The nucleation of new recrystallised grains is observed in the sample annealed at 600 °C/15 min, while completion of recrystallisation takes place at 700 °C/15 min. The destructive techniques are not very accurate in monitoring recovery, for example, changes in hardness of <20% are seen. In contrast, the magnetic properties of annealed steel show the onsets of both recovery and recrystallisation, with recovery accounting for ≈60% change in the coercivity value. Therefore, the measurement of magnetic softening through an electromagnetic sensor acts a crucial role for understanding recovery and recrystallisation behaviours of steels during industrial processing. The present investigation is aimed not only for controlling product quality but also saving characterisation time through off line monitoring during steel processing at industry.

  12. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  13. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  14. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  15. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  16. 30 CFR 57.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  17. An investigation into the effects of conventional heat treatments on mechanical characteristics of new hot working tool steel

    NASA Astrophysics Data System (ADS)

    Fares, M. L.; Athmani, M.; Khelfaoui, Y.; Khettache, A.

    2012-02-01

    The effects of conventional heat treatments, i.e. quenching and tempering, on the mechanical characteristics of non standard hot work tool steel, close to either AISI-H11/H13 are investigated. The major elemental composition differences are in carbon, silicon and vanadium. The objective of the carried heat treatments is to obtain an efficient tool performance in terms of hardness, wear resistance and mechanical strength. Experimental results allow an explanation of the surface properties depending mainly on both chemical composition and optimised preheating parameters. After austenitizing at 1050 °C for 15 min, the as-quenched steel in oil bath exhibited the fully martensitic structure (without bainite) connected to a small fraction of retained austenite and complex carbides mainly of M23C6 type. Twice tempering at 500 °C and 600 °C resulted in initiating the precipitation processes and the secondary hardness effect. As a result, carbide content amounted to 3% while the retained austenite content decreased to 0%. Accordingly, the required mechanical properties in terms of hardness and wear are fulfilled and are adequately favourable in handling both shocks and pressures for the expected tool life. Induced microstructures are revealed using optical and scanning electron microscopes. Phase compositions are assessed by means of X-ray diffraction technique while mechanical characteristics are investigated based on hardness and abrasive wear standard tests.

  18. Comparative study of coated and uncoated tool inserts with dry machining of EN47 steel using Taguchi L9 optimization technique

    NASA Astrophysics Data System (ADS)

    Vasu, M.; Shivananda, Nayaka H.

    2018-04-01

    EN47 steel samples are machined on a self-centered lathe using Chemical Vapor Deposition of coated TiCN/Al2O3/TiN and uncoated tungsten carbide tool inserts, with nose radius 0.8mm. Results are compared with each other and optimized using statistical tool. Input (cutting) parameters that are considered in this work are feed rate (f), cutting speed (Vc), and depth of cut (ap), the optimization criteria are based on the Taguchi (L9) orthogonal array. ANOVA method is adopted to evaluate the statistical significance and also percentage contribution for each model. Multiple response characteristics namely cutting force (Fz), tool tip temperature (T) and surface roughness (Ra) are evaluated. The results discovered that coated tool insert (TiCN/Al2O3/TiN) exhibits 1.27 and 1.29 times better than the uncoated tool insert for tool tip temperature and surface roughness respectively. A slight increase in cutting force was observed for coated tools.

  19. High-pressure gas quenching in cold chambers for increased cooling capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segerberg, S.; Troell, E.

    1996-12-31

    Gas quenching for the hardening of steel parts is a lower-pollution alternative to quenching in quenchants such as oil or salt. As the surfaces of the cooled parts remain clean after gas quenching, there is no need to wash them after heat treatment, which reduces the consumption of oils and detergents. The fire risk and ventilation requirements of oil quenching are eliminated. In addition, some trials have shown that gas quenching has a positive effect on distortion, representing a saving in finishing work and thus a reduction in costs. Today, gas quenching is used almost solely in vacuum furnaces. Quenchingmore » is normally performed in the same chamber as heating, which means that besides quenching the batch, the quenching system must also remove heat from the heating elements and insulation of the furnace. Previous trials performed by IVF have shown that gas quenching with helium of ball bearing and carburizing steels (and other steels) in sizes up to 25 mm at pressures up to 20 bar in a vacuum furnace can achieve quenching rates and hardnesses similar to those achieved by hot quenching oils. This quenching performance is not, however, capable of dealing with larger sizes or lower-alloy steels. At IVF`s request, ALD Vacuum Technologies GmbH has developed a cold high-pressure gas quenching chamber that is independent of the furnace. As a result, there is no need to cool insulation or heating elements. Quenching can be carried out in the chamber at pressures of up to 40 bar for helium or up to 10 bar for nitrogen. The quenching chamber has been supplied to IVF, and has been used for experimental quenching of steel test pieces and components. Temperatures have been recorded by using some Inconel 600 test probes, {phi} 12,5 x 60 mm, with thermocouples in their centers.« less

  20. Magnetic Particle Recovery of Serial Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Utrata; M.J. Johnson

    One method used by crime labs to recover obliterated serial numbers in steel firearms (ferrous samples) is the magnetic particle technique. The use of this method is predicated on the detection of metal deformation present under stamped serial numbers after the visible stamp has been removed. Equipment specialized for this detection is not used in these attempts; a portable magnetic yoke used typically for flaw detection on large weldments or structures, along with dry visible magnetic powders, have been the tools of criminologists working in this area. Crime labs have reported low success rates using these tools [1, 2]. Thismore » is not surprising when one considers that little formal development has apparently evolved for use in such investigations since the publication of seminal work in this area some time ago [3]. The aim of this project is to investigate specific aspects of magnetic particle inspection for serial number recovery. This includes attempts to understand the magnetic characteristics of different steels that affect their performance in the test, such as varying results for carbon steels and alloy steels after different thermal and forming treatments. Also investigated are the effects of the nature of the sample magnetization (AC, rectified DC, and true DC) and the use of various detection media, such as visible powders and fluorescent sprays, on test outcome. Additionally, some aspects of surface preparation of firearm samples prior to number recovery were included in this work. The scope of this report includes a brief overview of the magnetic particle inspection method in general and its applications to forensic serial number recovery. This is followed by a description of how such investigations were simulated on lab samples, including a look at how the microstructure of a given steel will affect its performance in the test. Investigations into the serial number recovery in a series of ferromagnetic firearms (both steel and certain stainless steels) will then be presented. Recommendations for modifications to current approaches used in crime labs for serial number recovery, as well as suggestions for future work, conclude this document.« less

  1. Reverse-transformation austenite structure control with micro/nanometer size

    NASA Astrophysics Data System (ADS)

    Wu, Hui-bin; Niu, Gang; Wu, Feng-juan; Tang, Di

    2017-05-01

    To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870°C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850°C, where grains with a diameter ≤ 500 nm accounted for 30% and those with a diameter > 0.5 μm accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.

  2. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.

    The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10 –7 dpa/s and 390 °C) and thenmore » use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10 –8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni 3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.« less

  3. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation

    DOE PAGES

    Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.; ...

    2017-03-11

    The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10 –7 dpa/s and 390 °C) and thenmore » use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10 –8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni 3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.« less

  4. The Experimental Research on Seismic Capacity of the Envelope Systems with Steel Frame

    NASA Astrophysics Data System (ADS)

    Li, Jiuyang; Wang, Bingbing; Li, Hengxu

    2017-09-01

    In this paper, according to the present application situation of the external envelope systems steel frame in the severe cold region, the stuffed composite wall panels are improved, the flexible connection with the steel frame is designed, the reduced scale specimens are made, the seismic capacity test is made and some indexes of the envelope systems such as bearing capacity, energy consumption and ductility, etc. are compared, which provide reference for the development and application of the steel frame envelope systems.

  5. Microstructural investigation of D2 tool steel during rapid solidification

    NASA Astrophysics Data System (ADS)

    Delshad Khatibi, Pooya

    Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.

  6. Industrial production of RHIC magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anerella, M.D.; Fisher, D.H.; Sheedy, E.

    1996-07-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the startmore » of the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.« less

  7. Correlation of radiation-induced changes in microstructure/microchemistry, density and thermo-electric power of type 304L and 316 stainless steels irradiated in the Phénix reactor

    NASA Astrophysics Data System (ADS)

    Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît

    2015-05-01

    Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381-394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ'- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.

  8. Influence of the ferritic-pearlitic steel microstructure on surface roughness in broaching of automotive steels

    NASA Astrophysics Data System (ADS)

    Arrieta, I.; Courbon, C.; Cabanettes, F.; Arrazola, P.-J.; Rech, J.

    2017-10-01

    The aim of this work is to characterize the effect of microstructural parameters on surface roughness in dry broaching with a special emphasis on the ferrite-pearlite (FP) ratio. An experimental approach combining cutting and tribological tests has been developed on three grades 27MnCr5, C45, C60 covering a wide range of FP ratio. Fundamental broaching tests have been performed with a single tooth to analyse the resulting surface quality with uncoated M35 HSS tools. A specially designed open tribometer has been used to characterize the friction coefficient at the tool-chip-workpiece interface under appropriate conditions. Specific phenomena have been observed depending on the FP ratio and an interesting correlation with the tribological tests has been found. This clearly shows that friction has an important contribution in broaching and that phase distribution has to be highly considered when cutting a FP steel at a microscopic scale. This work also provides quantitative data of the friction coefficient depending on the sliding velocity and FP content which can be implemented in any analytical or numerical model of a broaching operation.

  9. Feasibility of Steel Fiber-Reinforced Rubberized Concrete in Cold Regions for High Volume Intersections

    NASA Astrophysics Data System (ADS)

    Abou Eid, Mahear A.

    There are many challenges faced with the use of Portland Cement Concrete (PCC) in cold regions, but with the inclusion of new technologies such as steel fibers and recycled tire crumb rubber efficient construction may be possible. Research was conducted on a modified concrete material that included both steel fibers and crumb rubber. The composite material was called Steel Fiber-Reinforced Rubberized Concrete (SFRRC). The objective of this investigation was to provide evidence showing that SFRRC can reduce tire rutting compared to asphaltic pavement. In addition, the research showed that the SFRRC could withstand freeze-thaw cycles and increase service life of roadways. Several tests were performed to determine the characteristics of the material. Freeze-thaw testing was performed to determine compressive strength loss and visual deterioration of the material. Wheel tracker rut testing was performed both with the standard steel wheel and with a modified studded rubber tire to determine plastic deformation and rut resistance. An experimental test slab was cast in place on a public approach to observe the construction procedures, the effects of studded tire wear and the frost actions in cold region conditions. Based on freeze-thaw and wheel tracker test results and observations of the experimental test slab, the SFRRC material shows viability in cold regions for resisting freeze-thaw actions. The freeze-thaw testing resulted in increased compressive strength after 300 freeze-thaw cycles and very low deterioration of material compared to standard PCC. The wheel tracker testing resulted in very low plastic deformation and minor material rutting with use of the studded rubber tire. The test slab showed very minor surface wear, no freeze-thaw cracking and no rutting after one winter of use. It is recommended that further testing of the material be conducted by means of a large-scale trial section. This would provide information with respect to cost analysis and integration of the material into the Department of Transportation construction program.

  10. Tokamak blanket design study: FY 78 summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    A tokamak blanket cylindrical module concept was designed, developed, and analyzed after review of several existing generic concepts. The design is based on use of state-of-the-art structural materials (20% cold worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders and features direct wall cooling by flowing helium between the outer (first wall) cylinder and the inner lithium containing cylinder. Each cylinder is capable of withstanding full coolant pressure for enhanced reliability. Results show that stainless steel is a viable material for a first wall subjectedmore » to 4 MW/m/sup 2/ neutron and 1 MW/m/sup 2/ particle heat flux. A lifetime analysis showed that the first wall design meets the goal of operating at 20 minute cycles with 95% duty for 10/sup 5/ cycles. The design is attractive for further development, and additional work and supporting experiments are identified to reduce analytical uncertainties and enhance the design reliability.« less

  11. Dream Machines.

    ERIC Educational Resources Information Center

    Merrow, Josh

    1998-01-01

    Junior high students designed their own bicycles from scratch and built them from steel tubing and salvaged parts. The project led to discoveries in math and physics and confidence in working with tools and materials. (Author/JOW)

  12. Corrosion-Prevention Capabilities of a Water-Borne, Silicone-Based, Primerless Coating

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubie D.

    2005-01-01

    Comparative tests have been performed to evaluate the corrosion-prevention capabilities of an experimental paint of the type described in Water-Borne, Silicone-Based, Primerless Paints, NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 30. To recapitulate: these paints contain relatively small amounts of volatile organic solvents and were developed as substitutes for traditional anticorrosion paints that contain large amounts of such solvents. An additional desirable feature of these paints is that they can be applied without need for prior application of primers to ensure adhesion. The test specimens included panels of cold-rolled steel, stainless steel 316, and aluminum 2024-T3. Some panels of each of these alloys were left bare and some were coated with the experimental water-borne, silicone-based, primerless paint. In addition, some panels of aluminum 2024-T3 and some panels of a fourth alloy (stainless steel 304) were coated with a commercial solvent-borne paint containing aluminum and zinc flakes in a nitrile rubber matrix. In the tests, the specimens were immersed in an aerated 3.5-weight-percent aqueous solution of NaCl for 168 hours. At intervals of 24 hours, the specimens were characterized by electrochemical impedance spectroscopy (EIS) and measurements of corrosion potentials. The specimens were also observed visually. As indicated by photographs of specimens taken after the 168-hour immersion (see figure), the experimental primerless silicone paint was effective in preventing corrosion of stainless steel 316, but failed to protect aluminum 2024-T3 and cold-rolled steel. The degree of failure was greater in the case of the cold-rolled steel. On the basis of visual observations, EIS, and corrosion- potential measurements, it was concluded that the commercial aluminum and zinc-filled nitrile rubber coating affords superior corrosion protection to aluminum 2024-T3 and is somewhat less effective in protecting stainless steel 304.

  13. Virtual Steel Connection Sculpture--Student Learning Assessment

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed; Drane, Denise

    2016-01-01

    A Virtual Steel Connection Sculpture was developed through a grant from the National Science Foundation. The Virtual Sculpture is an interactive tool that shows students and anyone interested in connections how steel members are connected. This tool is created to complement students' steel design courses. The features of this educational tool,…

  14. The Morphology of Intermediate Structures Formed During Bainite Transformation in HSLA Steels

    NASA Astrophysics Data System (ADS)

    Seidurov, Mikhail N.; Kovalev, Sergey V.; Zubkov, Alexander S.

    2017-10-01

    The paper deals with the structure of bainite formed under the influence of thermal deformation cycles of welding in low-carbon bainitic class steels. Morphology features associated with the formation of mesoferrite and granular bainite determines the high cold resistance of welded joints.

  15. 78 FR 42929 - Foreign-Trade Zone (FTZ) 41-Milwaukee, Wisconsin, Notification of Proposed Production Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... rubber articles, cartons, bags, corrugated boxes with fillers, instruction sheets, range hood filters, bathroom mirrors, filters for whole house ventilation systems, cold- rolled steel for manufacturing, flat..., damper or filter springs for grille, stainless steel kitchen backsplashes, brackets, aluminum stainless...

  16. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  17. Ergonomic design of crane cabins: a case study from a steel plant in India.

    PubMed

    Ray, Pradip Kumar; Tewari, V K

    2012-01-01

    The study, carried out at the Batch Annealing Furnace (BAF) shop of Cold Rolling Mill (CRM) at an integrated steel plant of India, concerns ergonomic evaluation and redesign of a manually-operated Electrical Overhead Travelling (EOT) crane cabin. The crane cabin is a complex worksystem consisting of the crane operator and twelve specific machine components embedded in a closed workspace. A crane operator has to perform various activities, such as loading and unloading of coils, setting and removal of convector plates, and routine maintenance work. Initially, an operator had to work in standing posture with bent back most of the time. Ergonomically poor design of the chair and the controls, awkward work postures, and insufficient vision angle resulting in musculoskeletal disorders (MSDs) are some of the critical problems observed.. The study, conceived as an industry-academia joint initiative, was undertaken by a design team, the members of which were drawn from both the company concerned and the institute. With the project executed successfully, a number of lessons, such as how to minimize the anthropometric mismatch, how to improve the layout of the components and controls within enclosed workspace, and how to improve work posture minimizing risk of MSDs have been learned.

  18. Application of RNAMlet to surface defect identification of steels

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Xu, Yang; Zhou, Peng; Wang, Lei

    2018-06-01

    As three main production lines of steels, continuous casting slabs, hot rolled steel plates and cold rolled steel strips have different surface appearances and are produced at different speeds of their production lines. Therefore, the algorithms for the surface defect identifications of the three steel products have different requirements for real-time and anti-interference. The existing algorithms cannot be adaptively applied to surface defect identification of the three steel products. A new method of adaptive multi-scale geometric analysis named RNAMlet was proposed. The idea of RNAMlet came from the non-symmetry anti-packing pattern representation model (NAM). The image is decomposed into a set of rectangular blocks asymmetrically according to gray value changes of image pixels. Then two-dimensional Haar wavelet transform is applied to all blocks. If the image background is complex, the number of blocks is large, and more details of the image are utilized. If the image background is simple, the number of blocks is small, and less computation time is needed. RNAMlet was tested with image samples of the three steel products, and compared with three classical methods of multi-scale geometric analysis, including Contourlet, Shearlet and Tetrolet. For the image samples with complicated backgrounds, such as continuous casting slabs and hot rolled steel plates, the defect identification rate obtained by RNAMlet was 1% higher than other three methods. For the image samples with simple backgrounds, such as cold rolled steel strips, the computation time of RNAMlet was one-tenth of the other three MGA methods, while the defect identification rates obtained by RNAMlet were higher than the other three methods.

  19. 76 FR 68148 - Certain Stilbenic Optical Brightening Agents From the People's Republic of China: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... determined that Philippines, Indonesia, Ukraine, Thailand, Colombia, and South Africa are countries... Flat-Rolled Carbon-Quality Steel Products from the Russian Federation, 65 FR 5510, 5518 (February 4...\\ See Final Determination of Sales at Less Than Fair Value: Certain Cold-Rolled Carbon Quality Steel...

  20. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  1. Rapid Prototyping: State of the Art Review

    DTIC Science & Technology

    2003-10-23

    Steel H13 Tool Steel CP Ti, Ti-6Al-4V Titanium Tungsten Copper Aluminum Nickel...The company’s LENS 750 and LENS 850 machines (both $440,000 to $640,000) are capable of producing parts in 16 stainless steel , H13 tool steel ...machining. 20 The Arcam EBM S12 model sells for $500,000 and is capable of processing two materials. One is H13 tool steel , while the other

  2. Defining the next generation munitions handler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassiday, B.K.; Koury, G.J.; Pin, F.G.

    1995-07-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop-Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the start ofmore » the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.« less

  3. Forward impact extrusion of surface textured steel blanks using coated tooling

    NASA Astrophysics Data System (ADS)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  4. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  5. Feed rate affecting surface roughness and tool wear in dry hard turning of AISI 4140 steel automotive parts using TiN+AlCrN coated inserts

    NASA Astrophysics Data System (ADS)

    Paengchit, Phacharadit; Saikaew, Charnnarong

    2018-02-01

    This work aims to investigate the effects of feed rate on surface roughness (Ra) and tool wear (VB) and to obtain the optimal operating condition of the feed rate in dry hard turning of AISI 4140 chromium molybdenum steel for automotive industry applications using TiN+AlCrN coated inserts. AISI 4140 steel bars were employed in order to carry out the dry hard turning experiments by varying the feed rates of 0.06, 0.08 and 0.1 mm/rev based on experimental design technique that can be analyzed by analysis of variance (ANOVA). In addition, the cutting tool inserts were examined after machining experiments by SEM to evaluate the effect of turning operations on tool wear. The results showed that averages Ra and VB were significantly affected by the feed rate at the level of significance of 0.05. Averages Ra and VB values at the feed rate of 0.06 mm/rev were lowest compared to average values at the feed rates of 0.08 and 0.1 mm/rev, based on the main effect plot.

  6. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    NASA Astrophysics Data System (ADS)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  7. Local heat treatment of high strength steels with zoom-optics and 10kW-diode laser

    NASA Astrophysics Data System (ADS)

    Baumann, Markus; Krause, Volker; Bergweiler, Georg; Flaischerowitz, Martin; Banik, Janko

    2012-03-01

    High strength steels enable new solutions for weight optimized car bodies without sacrificing crash safety. However, cold forming of these steels is limited due to the need of high press capacity, increased tool wear, and limitations in possible geometries. One can compensate for these drawbacks by local heat treatment of the blanks. In high-deformation areas the strength of the material is reduced and the plasticity is increased by diode laser irradiation. Local heat treatment with diode laser radiation could also yield key benefits for the applicability of press hardened parts. High strength is not desired all over the part. Joint areas or deformation zones for requested crash properties require locally reduced strength. In the research project "LOKWAB" funded by the German Federal Ministry of Education and Research (BMBF), heat treatment of high strength steels was investigated in cooperation with Audi, BMW, Daimler, ThyssenKrupp, Fraunhofer- ILT, -IWU and others. A diode laser with an output power of 10 kW was set up to achieve acceptable process speed. Furthermore a homogenizing zoom-optics was developed, providing a rectangular focus with homogeneous power density. The spot size in x- and y-direction can be changed independently during operation. With pyrometer controlled laser power the surface temperature is kept constant, thus the laser treated zone can be flexibly adapted to the needs. Deep-drawing experiments show significant improvement in formability. With this technique, parts can be manufactured, which can conventionally only be made of steel with lower strength. Locally reduced strength of press hardened serial parts was demonstrated.

  8. Thermo-mechanical treatment effects on stress relaxation and hydrogen embrittlement of cold-drawn eutectoid steels

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Atienza, J. M.; Elices, M.

    2011-12-01

    The effects of the temperature and stretching levels used in the stress-relieving treatment of cold-drawn eutectoid steel wires are evaluated with the aim of improving the stress relaxation behavior and the resistance to hydrogen embrittlement. Five industrial treatments are studied, combining three temperatures (330, 400, and 460 °C) and three stretching levels (38, 50 and 64% of the rupture load). The change of the residual stress produced by the treatments is taken into consideration to account for the results. Surface residual stresses allow us to explain the time to failure in standard hydrogen embrittlement tests.

  9. Evaluation and Control of Mechanical Degradation of Austenitic Stainless 310S Steel Substrate During Coated Superconductor Processing

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Gyu; Kim, Najung; Shim, Hyung-Seok; Kwon, Oh Min; Kwon, Dongil

    2018-05-01

    The superconductor industry considers cold-rolled austenitic stainless 310S steel a less expensive substitute for Hastelloy X as a substrate for coated superconductor. However, the mechanical properties of cold-rolled 310S substrate degrade significantly in the superconductor deposition process. To overcome this, we applied hot rolling at 900 °C (or 1000 °C) to the 310S substrate. To check the property changes, a simulated annealing condition equivalent to that used in manufacturing was determined and applied. The effects of the hot rolling on the substrate were evaluated by analyzing its physical properties and texture.

  10. Effects of laser-shock processing on the microstructure and surface mechanical properties of hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Chu, J. P.; Rigsbee, J. M.; Banaś, G.; Lawrence, F. V.; Elsayed-Ali, H. E.

    1995-06-01

    The effects of laser-shock processing (LSP) on the microstructure, hardness, and residual stress of Hadfield manganese (1 pct C and 14 pct Mn) steels were studied. Laser-shock processing was performed using a Nd: glass phosphate laser with 600 ps pulse width and up to 120 J/pulse energy at power density above 1012 W/cm2. The effects of cold rolling and shot peening were also studied for comparison. Laser-shock processing caused extensive formation of ɛ hexagonal close-packed (hep) martensite (35 vol pct), producing up to a 130 pct increase of surface hardness. The surface hardness increase was 40 to 60 pct for the shot-peened specimen and about 60 pct for the cold-rolled specimen. The LSP strengthening effect on Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to the presence of the ɛ-hcp martensite. For the cold-rolled and shot-peened specimens, the strengthening was a result of ɛ-hcp martensite and twins with dislocation effects, respectively. Shot peening resulted in a relatively higher compressive residual stress throughout the specimen than LSP.

  11. Development of Advanced Tools for Cryogenic Integration

    NASA Astrophysics Data System (ADS)

    Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.

    2004-06-01

    This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.

  12. Metafusion: A breakthrough in metallurgy

    NASA Technical Reports Server (NTRS)

    Joseph, Adrian A.

    1994-01-01

    The Metafuse Process is a patented development in the field of thin film coatings utilizing cold fusion which results in a true inter-dispersion of dissimilar materials along a gradual transition gradient through a boundary of several hundred atomic layers. The process is performed at ambient temperatures and pressures requiring relatively little energy and creating little or no heat. The process permits a remarkable range of material combinations and joining of materials which are normally incompatible. Initial applications include titanium carbide into and onto the copper resistance welding electrodes and tungsten carbide onto the cutting edges of tool steel blades. The process is achieved through application of an RF signal of low power and is based on the theory of vacancy fusion.

  13. Investigations of Low Temperature Time Dependent Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Sluys, W A; Robitz, E S; Young, B A

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity.more » The resultant data was integrated into current available life prediction tools.« less

  14. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Çiçek, Adem; Kara, Fuat; Kıvak, Turgay; Ekici, Ergün; Uygur, İlyas

    2015-11-01

    In this study, a number of wear and tensile tests were performed to elucidate the effects of deep cryogenic treatment on the wear behavior and mechanical properties (hardness and tensile strength) of AISI H13 tool steel. In accordance with this purpose, three different heat treatments (conventional heat treatment (CHT), deep cryogenic treatment (DCT), and deep cryogenic treatment and tempering (DCTT)) were applied to tool steel samples. DCT and DCTT samples were held in nitrogen gas at -145 °C for 24 h. Wear tests were conducted on a dry pin-on-disk device using two loads of 60 and 80 N, two sliding velocities of 0.8 and 1 m/s, and a wear distance of 1000 m. All test results showed that DCT improved the adhesive wear resistance and mechanical properties of AISI H13 steel. The formation of small-sized and uniformly distributed carbide particles and the transformation of retained austenite to martensite played an important role in the improvements in the wear resistance and mechanical properties. After cleavage fracture, the surfaces of all samples were characterized by the cracking of primary carbides, while the DCT and DCTT samples displayed microvoid formation by decohesion of the fine carbides precipitated during the cryo-tempering process.

  15. Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels

    NASA Astrophysics Data System (ADS)

    Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.

    2017-09-01

    The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.

  16. Improvement of thermal performance of gamma-type stirling engine

    NASA Astrophysics Data System (ADS)

    Saenyot, Khanuengchat; Chamdee, Peerapong; Raksrithong, Pawin; Locharoenrat, Kitsakorn; Lekchaum, Sarai

    2018-06-01

    The gamma-type stirling engine was designed and fabricated using three main types of the materials for the engine assembly in order to get better the heat transfer between the cold and hot sides of the engine cylinders. Stainless steel and brass were applied for the hot cylinder, whereas aluminum was used for the cold cylinder. We have achieved the indicated work, engine speed and indicated power of 71.64 mJ, 599 rpm and 0.71 J/s, respectively. Furthermore, we were able to accomplish the constant temperature difference of 300 K with the thermal efficiency of 40 %. The improvement of the engine performance was confirmed by the heat flow simulation via the Solidwork program. Our inexpensive home-made engine is expected to be very useful for the people in the rural areas where the electricity is unable to reach them.

  17. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    PubMed

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  18. Thermomechanical treatment of alloys

    DOEpatents

    Bates, John F.; Brager, Howard R.; Paxton, Michael M.

    1983-01-01

    An article of an alloy of AISI 316 stainless steel is reduced in size to predetermined dimensions by cold working in repeated steps. Before the last reduction step the article is annealed by heating within a temperature range, specifically between 1010.degree. C. and 1038.degree. C. for a time interval between 90 and 60 seconds depending on the actual temperature. By this treatment the swelling under neutron bombardment by epithermal neutrons is reduced while substantial recrystallization does not occur in actual use for a time interval of at least of the order of 5000 hours.

  19. STEEL BEAMS FOR FIRST FLOOR BEING READIED FOR CONCRETE POUR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL BEAMS FOR FIRST FLOOR BEING READIED FOR CONCRETE POUR UNDER WEATHER SHELTER DURING COLD WINTER. NOTE ABUNDANCE OF BEAMS; THE FLOOR WILL SUPPORT HEAVY LOADS. INL NEGATIVE NO. 1175. Unknown Photographer, 12/20/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Electron Beam/Laser Glazing of Iron-Base Materials.

    DTIC Science & Technology

    1981-07-01

    alloy (-l. 5wt %Cr) steels after laser and electron beam glazing. In this work it is shown that the dramatic difference in microstructure and hardness...highly alloyed tool steels can be critical in determining the complexity of the solidification route. The analyses of M2, M42 and M7 are given in...the type described in Fe- Ni alloys (1). This con- clusion is based on optical and scanning electron microscope observation unambig- uously showing

  1. Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon

    2010-02-01

    Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.

  2. Prediction on flexural strength of encased composite beam with cold-formed steel section

    NASA Astrophysics Data System (ADS)

    Khadavi, Tahir, M. M.

    2017-11-01

    A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.

  3. Verification of high efficient broad beam cold cathode ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com; Radiation Physics Department, National Center for Radiation Research and Technology; Ahmed, M. M.

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperturemore » is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.« less

  4. Measurement of heat conduction through stacked screens

    NASA Technical Reports Server (NTRS)

    Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  5. Measurement of heat conduction through stacked screens.

    PubMed

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  6. Cause-specific mortality in Finnish ferrochromium and stainless steel production workers.

    PubMed

    Huvinen, M; Pukkala, E

    2016-04-01

    Although stainless steel has been produced for more than a hundred years, exposure-related mortality data for production workers are limited. To describe cause-specific mortality in Finnish ferrochromium and stainless steel workers. We studied Finnish stainless steel production chain workers employed between 1967 and 2004, from chromite mining to cold rolling of stainless steel, divided into sub-cohorts by production units with specific exposure patterns. We obtained causes of death for the years 1971-2012 from Statistics Finland. We calculated standardized mortality ratios (SMRs) as ratios of observed and expected numbers of deaths based on population mortality rates of the same region. Among 8088 workers studied, overall mortality was significantly decreased (SMR 0.77; 95% confidence interval [CI] 0.70-0.84), largely due to low mortality from diseases of the circulatory system (SMR 0.71; 95% CI 0.61-0.81). In chromite mine, stainless steel melting shop and metallurgical laboratory workers, the SMR for circulatory disease was below 0.4 (SMR 0.33; 95% CI 0.07-0.95, SMR 0.22; 95% CI 0.05-0.65 and SMR 0.16; 95% CI 0.00-0.90, respectively). Mortality from accidents (SMR 0.84; 95% CI 0.67-1.04) and suicides (SMR 0.72; 95% CI 0.56-0.91) was also lower than in the reference population. Working in the Finnish ferrochromium and stainless steel industry appears not to be associated with increased mortality. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine.

  7. Chlorine condenser-evaporator simulation

    NASA Astrophysics Data System (ADS)

    Muraveva, E. A.

    2017-10-01

    Refrigeration machines are an integral part of chemical engineering. Coldness in mechanical engineering is used to improve the properties of steels, to stabilize the shape and size of steel parts, to restore the dimensions of worn steel hardened parts, to fasten the parts to be machined during cutting and grinding, to ensure fixed planting during assembly, bending pipelines, deep drawing and stamping parts from sheet materials, in the manufacture and processing of rubber parts, with solid anodizing of aluminum alloy parts.

  8. Mechanical properties and fracture toughness of rail steels and thermite welds at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-qing; Zhou, Hui; Shi, Yong-jiu; Feng, Bao-rui

    2012-05-01

    Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway service. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fracture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation after fracture and percentage reduction of area) and the toughness indices (Charpy impact energy A k and plane-strain fracture toughness K IC) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger A k and K IC values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.

  9. Microstructure and hardness of carbon and tool steel quenched with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Fomin, Aleksandr A.; Fedoseev, Maksim E.; Palkanov, Pavel A.; Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Zakharevich, Andrey M.; Kalganova, Svetlana G.; Rodionov, Igor V.

    2018-04-01

    In the course of high-temperature treatment with high-frequency currents (HFC) in the range from 600 to 1300 °C, carbon and tool steels are strengthened. After the heat treatment the hardness reaches 64-70 HRC for carbon steel (carbon content 0.4-0.5%) and 68-71 HRC for tool steel 1.3343 (R6M5 steel analogue with 0.9-1.0% C content, W - 5-6 wt%, Mo - 3.5-5.3 wt%, V - 1.3-1.8 wt%, Cr - 3.8-4.3 wt%, Mn+Si - 0.5-1 wt%, Fe - balance). The resulting structure is a carbide network, and in the case of tool steel - complex carbides around a high-strength martensitic phase.

  10. The compositional dependence of irradiation creep of austenitic alloys irradiated in PFR at 420{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, M.B.; Garner, F.A.; Munro, B.

    1997-04-01

    Irradiation creep data are expensive and often difficult to obtain, especially when compared to swelling data. This requires that maximum use be made of available data sources in order to elucidate the parametric dependencies of irradiation creep for application to new alloys and to new environments such as those of proposed fusion environments. One previously untapped source of creep data is that of a joint U.S./U.K. experiment conducted in the Prototype Fast Reactor (PFR) in Dounreay, Scotland. In this experiment, five austenitic steels were irradiated in a variety of starting conditions. In particular, these steels spanned a large range (15-40%)more » of nickel contents, and contained strong variations in Mo, Ti, Al, and Nb. Some alloys were solution-strengthened and some were precipitation-strengthened. Several were cold-worked. These previously unanalyzed data show that at 420{degrees}C all austenitic steels have a creep compliance that is roughly independent of the composition of the steel at 2{+-}1 x 10{sup {minus}6}MPa{sup {minus}1} dpa{sup {minus}1}. The variation within this range may arise from the inability to completely separate the non-creep strains arising from precipitation reactions and the stress-enhancement of swelling. Each of these can be very sensitive to the composition and starting treatment of a steel.« less

  11. Computational Investigation of Hardness Evolution During Friction-Stir Welding of AA5083 and AA2139 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    expensive post-weld machining; and (g) low 102 environmental impact . However, some disadvantages of the 103 FSW process have also been identified such as (a...material. Its 443 density and thermal properties are next set to that of AISI- H13 , 444 a hot-worked tool steel, frequently used as the FSW-tool 445

  12. Effects of asymmetric rolling process on ridging resistance of ultra-purified 17%Cr ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-zhuang; Li, Jing-yuan; Fang, Zhi

    2018-02-01

    In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homogeneity of the recrystallization orientation and reduce the texture gradient in ultra-purified 17%Cr ferritic stainless steel, in this work, we performed conventional and asymmetric rolling processes and conducted macro and micro-texture analyses to investigate texture evolution under different cold-rolling conditions. In the conventional rolling specimens, we observed that the deformation was not uniform in the thickness direction, whereas there was homogeneous shear deformation in the asymmetric rolling specimens as well as the formation of uniform recrystallized grains and random orientation grains in the final annealing sheets. As such, the ridging resistance of the final sheets was significantly improved by employing the asymmetric rolling process. This result indicates with certainty that the texture gradient and orientation inhomogeneity can be attributed to non-uniform deformation, whereas the uniform orientation gradient in the thickness direction is explained by the increased number of shear bands obtained in the asymmetric rolling process.

  13. Quantitative Residual Strain Analyses on Strain Hardened Nickel Based Alloy

    NASA Astrophysics Data System (ADS)

    Yonezawa, Toshio; Maeguchi, Takaharu; Goto, Toru; Juan, Hou

    Many papers have reported about the effects of strain hardening by cold rolling, grinding, welding, etc. on stress corrosion cracking susceptibility of nickel based alloys and austenitic stainless steels for LWR pipings and components. But, the residual strain value due to cold rolling, grinding, welding, etc. is not so quantitatively evaluated.

  14. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Case Studies of Fatigue Life Improvement Using Low Plasticity Burnishing in Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Prevey, Paul S.; Shepard, Michael; Ravindranath, Ravi A.; Gabb, Timothy

    2003-01-01

    Surface enhancement technologies such as shot peening, laser shock peening (LSP), and low plasticity burnishing (LPB) can provide substantial fatigue life improvement. However, to be effective, the compressive residual stresses that increase fatigue strength must be retained in service. For successful integration into turbine design, the process must be affordable and compatible with the manufacturing environment. LPB provides thermally stable compression of comparable magnitude and even greater depth than other methods, and can be performed in conventional machine shop environments on CNC machine tools. LPB provides a means to extend the fatigue lives of both new and legacy aircraft engines and ground-based turbines. Improving fatigue performance by introducing deep stable layers of compressive residual stress avoids the generally cost prohibitive alternative of modifying either material or design. The X-ray diffraction based background studies of thermal and mechanical stability of surface enhancement techniques are briefly reviewed, demonstrating the importance of minimizing cold work. The LPB process, tooling, and control systems are described. An overview of current research programs conducted for engine OEMs and the military to apply LPB to a variety of engine and aging aircraft components are presented. Fatigue performance and residual stress data developed to date for several case studies are presented including: * The effect of LPB on the fatigue performance of the nickel based super alloy IN718, showing fatigue benefit of thermal stability at engine temperatures. * An order of magnitude improvement in damage tolerance of LPB processed Ti-6-4 fan blade leading edges. * Elimination of the fretting fatigue debit for Ti-6-4 with prior LPB. * Corrosion fatigue mitigation with LPB in Carpenter 450 steel. *Damage tolerance improvement in 17-4PH steel. Where appropriate, the performance of LPB is compared to conventional shot peening after exposure to engine operating temperatures.

  16. Numerical simulation of the roll levelling of third generation fortiform 1050 steel using a nonlinear combined hardening material model

    NASA Astrophysics Data System (ADS)

    Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.; Silvestre, E.

    2017-09-01

    The roll levelling is a flattening process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process, the metal sheet is subjected to cyclic tension-compression deformations leading to a flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding reliable tools for the dimensioning of the levelling facilities. Like in other metal forming fields, finite element analysis seems to be the most widely used solution to understand the occurring phenomena and to calculate the processing loads. In this paper, the roll levelling process of the third generation Fortiform 1050 steel is numerically analysed. The process has been studied using the MSC MARC software and two different material laws. A pure isotropic hardening law has been used and set as the baseline study. In the second part, tension-compression tests have been carried out to analyse the cyclic behaviour of the steel. With the obtained data, a new material model using a combined isotropic-kinematic hardening formulation has been fitted. Finally, the influence of the material model in the numerical results has been analysed by comparing a pure isotropic model and the later combined mixed hardening model.

  17. The Combined Effect of Cold and Moisture on Manual Performance.

    PubMed

    Ray, Matthew; Sanli, Elizabeth; Brown, Robert; Ennis, Kerri Ann; Carnahan, Heather

    2018-02-01

    Objective The aim of this study was to investigate the combined effect of cold and moisture on manual performance and tactile sensitivity. Background People working in the ocean environment often perform manual work in cold and wet conditions. Although the independent effects of cold and moisture on hand function are known, their combined effect has not been investigated. Method Participants completed sensory (Touch-Test, two-point discrimination) and motor (Purdue Pegboard, Grooved Pegboard, reef knot untying) tests in the following conditions: dry hand, wet hand, cold hand, and cold and wet hand. Results For the Purdue Pegboard and knot untying tasks, the greatest decrement in performance was observed in the cold-and-wet-hand condition, whereas the decrements seen in the cold-hand and wet-hand conditions were similar. In the Grooved Pegboard task, the performance decrements exhibited in the cold-and-wet-hand condition and the cold-hand condition were similar, whereas no decrement was observed in the wet-hand condition. Tactile sensitivity was reduced in the cold conditions for the Touch-Test but not the two-point discrimination test. The combined effect of cold and moisture led to the largest performance decrements except when intrinsic object properties helped with grasp maintenance. The independent effects of cold and moisture on manual performance were comparable. Application Tools and equipment for use in the cold ocean environment should be designed to minimize the effects of cold and moisture on manual performance by including object properties that enhance grasp maintenance and minimize the fine-dexterity requirements.

  18. Structure, phase transformations, mechanical characteristics, and cold resistance of low-carbon martensitic steels

    NASA Astrophysics Data System (ADS)

    Kozvonin, V. A.; Shatsov, A. A.; Ryaposov, I. V.; Zakirova, M. G.; Generalova, K. N.

    2016-08-01

    Temper-resistant low-carbon Cr-Mn-Ni-Mo-V-Nb steels with concentrations of carbon of 0.15 and 0.27 wt % have been studied. It has been shown that, upon quenching, various morphological types of the α phase can be formed. The structure of the steels is stable in the course of heating below critical temperatures and remains a lath-type structure in the intercritical temperature range. Specific features of structural and phase transformations, as well as the dependence of the mechanical characteristics of the steels, on the tempering temperature have been determined.

  19. Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels

    NASA Astrophysics Data System (ADS)

    Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa

    2009-03-01

    The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).

  20. Ultrasonic Polishing

    NASA Technical Reports Server (NTRS)

    Gilmore, Randy

    1993-01-01

    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries.

  1. Long-Term Corrosion Fatigue of Welded Marine Steels.

    DTIC Science & Technology

    1984-01-01

    MPa ksi MPa I C API 5L Grade B 35 240 60 min. 415 mrin. ASTM A53 Grade B 35 240 60 min. 415 min. ASTM A135 Grade B 35 240 60 min. 415 min. ASTM A139...2% max. cold expansion 42 290 60 min. 415 min. API 5LX Grade X52 2% max. cold expansion 52 360 66 min. 455 min. ASTM AS00 Grade B 42-46 290-320 58 mi...Environments 3.38 " 3.5 Influence of Load Ratio on the Corrosion Fatigue Crack Growth Rates in API X-70 Linepipe Steel in 3.5% NaCl (From (3.30]) 3.39 3.6

  2. Molten salt thermal energy storage subsystem for Solar Thermal Central Receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    The development of a low-cost thermal energy storage subsystem for large solar plants is analyzed. Molten nitrate salt is used as both the plant's working fluid and as the storage medium. The storage system comprises a specially designed hot tank to hold salt at a storage temperature of 839 K (1050 F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to lower the shell temperature to 561 K (550 F) so that a low-cost carbon steel shell can be used. A preliminary design is described for a large commercial-size plant (1200 MWht). Also described are a laboratory test program for the critical components and the design, construction, and test of a small-scale research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico.

  3. Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Myeong; Kim, Sung-Joon; Kang, Nam Hyun; Cho, Kyung-Mox; Suh, Dong-Woo

    2009-12-01

    The effects of annealing conditions on microstructural evolution and mechanical properties have been investigated in low carbon, manganese TRIP (Mn TRIP) steel based on a 0.12C-6Mn-0.5Si-3Al alloy system. The microstructure of cold-rolled sheet subjected to annealing at 760 °C to 800 °C for 30 s to 1800 s consists of a recrystallized ferrite matrix and fine-grained austenite with a phase fraction of 25 % to 35 %. Variation of the annealing conditions remarkably influenced the characteristics of constituent phases and thus affected the tensile strength and elongation. Optimization of microstructural parameters such as grain size and fraction of constituent phases, which control the yield strength, overall work hardening, and the kinetics of strain-induced martensite formation, is thus critical for obtaining an exceptional mechanical balance of the alloy.

  4. Fatigue behavior of type 316 stainless steel following neutron irradiation inducing helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak fusion reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially the first wall and blanket. Type 316 stainless steel in the 20% cold-worked condition has been irradiated in the HFIR in order to introduce helium as well as displacement damage. A miniature hourglass specimen was developed for the reactor irradiations and subsequent fully reversed low cycle fatigue testing. For material irradiated and tested at 430/sup 0/C in vacuum to a damage level of 7 to 15 dpa and containing 200 to 1000 appm He, a reduction in life by amore » factor of 3 to 10 was observed. An attempt was made to predict irradiated fatigue life by fitting data from irradiated material to a power law equation similar to the universal slopes equation and using ductility ratios from tensile tests to modify the equation for irradiated material.« less

  5. Objective assessment of knife sharpness over a working day cutting meat.

    PubMed

    Savescu, Adriana; Cuny-Guerrier, Aude; Wild, Pascal; Reno, Gilles; Aublet-Cuvelier, Agnès; Claudon, Laurent

    2018-04-01

    Knife sharpness is one of multiple factors involved in musculoskeletal disorders in industrial meat cutting. The aim of this study was to objectively evaluate, in real working situations, how knife sharpness changed over a working day cutting meat, and to analyse the impact of sharpening, steeling and meat-cutting activities on these variations. Twenty-two meat-cutting workers from three different companies participated in the study. The methods included measurements of knife sharpness in relation to real work situations and consideration of the way meat-cutting and sharpening operations were organised. Results showed that the type of meat-cutting activities, the steeling strategy adopted by the worker, including the types of tool used, and the overall organisation of the sharpening task all had a significant influence on how knife sharpness evolved over a 2-h period and over an entire working day. To improve MSD prevention, sharpening and steeling operations should not be considered as independent activities, but taken into account as a continuity of working actions. Appropriate assessment of knife sharpness by meat cutters affects how they organise meat-cutting and sharpening tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bitter-type toroidal field magnet for zephyr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathrath, N.; Keinath, W.; Kobusch, W.

    1981-09-01

    A feasibility study concerning stress computations, design and material technology of a Bitter-type magnet for the ZEPHYR project conducted in West Germany is reported. The big overall dimensions of the magnet (6.50 m diam 2.80 m high), access for diagnostics and neutral injection (16 ports), the possibility of remote handling of activated parts and high forces form the main requirements for design and material. A design with 16 identical modules (coils) was chosen, each coil consisting of 16 Bitter plates, plate housings and one diagnostic/neutral injection wedge. The structural parts are connected by bolts and form the bending stiff structuremore » of the magnet. The most critical area of the magnet is the inner wedge-shaped part of the coils (''throat area'') with extremely high tension, compression and shear stress values, to which temperature effects contribute heavily. Steel-copper compounds are found to be the best Bitter-plate materials. Copper-plating austenitic steel can be done galvanically or by explosive techniques. Cold-worked austenitic steels fulfil the requirements in the throat, in the flat-plate region milder steels can be used. Different plate concepts are being considered. Plasma-sprayed Al/sub 2/O/sub 3//TiO/sub 2/ and reinforced epoxy layers are provided as insulating materials in different magnet areas.« less

  7. Adhesion Strength of TiN Coatings at Various Ion Etching Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    NASA Astrophysics Data System (ADS)

    Ali, Mubarak; Hamzah, Esah; Ali, Nouman

    Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. The coatings deposited with Cr ion etching showed poor adhesion compared with the coatings deposited with Ti ion etching. Scratch test measurements showed that the coating deposited with titanium ion etching for 16 min is the most stable coating and maintained even at the critical load of 66 N. The curve obtained via penetration depth along the scratch trace is linear in the case of HSS, whereas is slightly flexible in the case of D2 tool steel. The coatings deposited on HSS exhibit better adhesion compared with those on D2 tool steel.

  8. Challenges in Special Steel Making

    NASA Astrophysics Data System (ADS)

    Balachandran, G.

    2018-02-01

    Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.

  9. Dynamic Strain Aging Phenomena and Tensile Response of Medium-Mn TRIP Steel

    NASA Astrophysics Data System (ADS)

    Field, Daniel M.; Van Aken, David C.

    2018-04-01

    Dynamic strain aging (DSA) and rapid work hardening are typical behaviors observed in medium-Mn transformation-induced plasticity (TRIP) steel. Three alloys with manganese ranging from 10.2 to 13.8 wt pct with calculated room temperature stacking fault energies varying from - 2.1 to 0.7 mJ/m2 were investigated. Significant serrations were observed in the stress-strain behavior for two of the steels and the addition of 4.6 wt pct chromium was effective in significantly reducing the occurrence of DSA. Addition of chromium to the alloy reduced DSA by precipitation of M23(C,N)6 during batch annealing at 873 K (600 °C) for 20 hours. Three distinct DSA mechanisms were identified: one related to manganese ordering in stacking faults associated with ɛ-martensite and austenite interface, with activation energies for the onset and termination of DSA being 145 and 277 kJ/mol. A second mechanism was associated with carbon diffusion in γ-austenite where Mn-C bonding added to the total binding energy, and activation energies of 88 and 155 kJ/mol were measured for the onset and termination of DSA. A third mechanism was attributed to dislocation pinning and unpinning by nitrogen in α-ferrite with activation energies of 64 and 123 kJ/mol being identified. Tensile behaviors of the three medium manganese steels were studied in both the hot band and batch annealed after cold working conditions. Ultimate tensile strengths ranged from 1310 to 1404 MPa with total elongation of 24.1 to 34.1 pct. X-ray diffraction (XRD) was used to determine the transformation response of the steels using interrupted tensile tests at room temperature. All three of the processed steels showed evidence of two-stage TRIP where γ-austenite first transformed to ɛ-martensite, and subsequently transformed to α-martensite.

  10. Acoustic emission from single point machining: Part 2, Signal changes with tool wear

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.

    1989-01-01

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  11. Acoustic Emission Measurements for Tool Wear Evaluation in Drilling

    NASA Astrophysics Data System (ADS)

    Gómez, Martín P.; Migliori, Julio; Ruzzante, José E.; D'Attellis, Carlos E.

    2009-03-01

    In this work, the tool condition in a drilling process of SAE 1040 steel samples was studied by means of acoustic emission. The studied drill bits were modified with artificial and real failures, such as different degrees of wear in the cutting edge and in the outer corner. Some correlation between mean power of the acoustic emission parameters and the drill bit wear condition was found.

  12. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  13. Computer-aided analysis and design of the shape rolling process for producing turbine engine airfoils

    NASA Technical Reports Server (NTRS)

    Lahoti, G. D.; Akgerman, N.; Altan, T.

    1978-01-01

    Mild steel (AISI 1018) was selected as model cold rolling material and Ti-6A1-4V and Inconel 718 were selected as typical hot rolling and cold rolling alloys, respectively. The flow stress and workability of these alloys were characterized and friction factor at the roll/workpiece interface was determined at their respective working conditions by conducting ring tests. Computer-aided mathematical models for predicting metal flow and stresses, and for simulating the shape rolling process were developed. These models utilized the upper bound and the slab methods of analysis, and were capable of predicting the lateral spread, roll separating force, roll torque, and local stresses, strains and strain rates. This computer-aided design system was also capable of simulating the actual rolling process, and thereby designing the roll pass schedule in rolling of an airfoil or a similar shape.

  14. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  15. 30 CFR 56.7050 - Tool and drill steel racks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 56.7050 Section 56.7050 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for...

  16. Experimental Investigation of Tensile Test on Connection of Cold-formed Cut-curved Steel Section

    NASA Astrophysics Data System (ADS)

    Sani, Mohd Syahrul Hisyam Mohd; Muftah, Fadhluhartini; Rahman, Nurul Farraheeda Abdul; Fakri Muda, Mohd

    2017-08-01

    Cold-formed steel (CFS) is widely used as structural and non-structural components such as roof trusses and purlin. A CFS channel section with double intermediate web stiffener and lipped is chosen based on the broader usage in roof truss construction. CFS section is cut to form cold-formed pre-cut-curved steel section and lastly strengthened by several types of method or likely known as connection to establish the cold-formed cut-curved steel (CFCCS) section. CFCCS is proposed to be used as a top chord section in the roof truss system. The CFCCS is to resist the buckling phenomena of the roof truss structure and reduced the compression effect on the top chord. The tensile test connection of CFCCS section, especially at the flange element with eight types of connection by welding, plate with self-drilling screw and combination is investigated. The flange element is the weakest part that must be solved first other than the web element because they are being cut totally, 100% of their length for curving process. The testing is done using a universal testing machine for a tensile load. From the experiment, specimen with full welding has shown as a good result with an ultimate load of 13.37 kN and reported having 35.41% when compared with normal specimen without any of connection methods. Furthermore, the experimental result is distinguished by using Eurocode 3. The failure of a full welding specimen is due to breaking at the welding location. Additionally, all specimens with either full weld or spot weld or combination failed due to breaking on weld connection, but specimen with flange plate and self-drilling screw failed due to tilting and bearing. Finally, the full welding specimen is chosen as a good connection to perform the strengthening method of CFCCS section.

  17. Protective coatings of metal surfaces by cold plasma treatment

    NASA Technical Reports Server (NTRS)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  18. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    NASA Astrophysics Data System (ADS)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  19. Influence of Temperature and Grain Size on Austenite Stability in Medium Manganese Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Wang, Li; Findley, Kip O.; Speer, John G.

    2017-05-01

    With an aim to elucidate the influence of temperature and grain size on austenite stability, a commercial cold-rolled 7Mn steel was annealed at 893 K (620 °C) for times varying between 3 minutes and 96 hours to develop different grain sizes. The austenite fraction after 3 minutes was 34.7 vol pct, and at longer times was around 40 pct. An elongated microstructure was retained after shorter annealing times while other conditions exhibited equiaxed ferrite and austenite grains. All conditions exhibit similar temperature dependence of mechanical properties. With increasing test temperature, the yield and tensile strength decrease gradually, while the uniform and total elongation increase, followed by an abrupt drop in strength and ductility at 393 K (120 °C). The Olson-Cohen model was applied to fit the transformed austenite fractions for strained tensile samples, measured by means of XRD. The fit results indicate that the parameters α and β decrease with increasing test temperature, consistent with increased austenite stability. The 7Mn steels exhibit a distinct temperature dependence of the work hardening rate. Optimized austenite stability provides continuous work hardening in the temperature range of 298 K to 353 K (25 °C to 80 °C). The yield and tensile strengths have a strong dependence on grain size, although grain size variations have less effect on uniform and total elongation.

  20. Correlation of microstructure, tensile properties and hole expansion ratio in cold rolled advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Terrazas, Oscar R.

    The demand for advanced high strength steels (AHSS) with higher strengths is increasing in the automotive industry. While there have been major improvements recently in the trade-off between ductility and strength, sheared-edge formability of AHSS remains a critical issue. AHSS sheets exhibit cracking during stamping and forming operations below the predictions of forming limits. It has become important to understand the correlation between microstructure and sheared edge formability. The present work investigates the effects of shearing conditions, microstructure, and tensile properties on sheared edge formability. Seven commercially produced steels with tensile strengths of 1000 +/- 100 MPa were evaluated: five dual-phase (DP) steels with different compositions and varying microstructural features, one trip aided bainitic ferrite (TBF) steel, and one press-hardened steel tempered to a tensile strength within the desired range. It was found that sheared edge formability is influenced by the martensite in DP steels. Quantitative stereology measurements provided results that showed martensite size and distribution affect hole expansion ratio (HER). The overall trend is that HER increases with more evenly dispersed martensite throughout the microstructure. This microstructure involves a combination of martensite size, contiguity, mean free distance, and number of colonies per unit area. Additionally, shear face characterization showed that the fracture and burr region affect HER. The HER decreases with increasing size of fracture and burr region. With a larger fracture and burr region more defects and/or micro-cracks will be present on the shear surface. This larger fracture region on the shear face facilitates cracking in sheared edge formability. Finally, the sheared edge formability is directly correlated to true fracture strain (TFS). The true fracture strain from tensile samples correlates to the HER values. HER increases with increasing true fracture strain.

  1. Formation of interfacial compounds and the effects on stripping behaviors of a cold-sprayed Zn-Al coating on interstitial-free steel

    NASA Astrophysics Data System (ADS)

    Liang, Y. L.; Wang, Z. B.; Zhang, J. B.; Lu, K.

    2015-06-01

    By means of cold spray, a Zn-Al coating was successfully deposited on an interstitial-free (IF) steel sheet. The formation of interfacial compounds between the coating and the IF steel was studied during diffusion annealing at 400 °C. And its correlations with the stripping behaviors of the coating were investigated by using a three-point bending method. The results showed that Fe-Zn and Fe-Al-Zn compounds begin to form at the coating/substrate interface after an annealing duration of 60 min, and the stripping resistance increases slightly before that duration and then decreases significantly by further increasing annealing duration. The enhanced stripping resistance at the earlier stage might be due to the modifications of microstructure and deformation compatibility of the sprayed coating, while the decreased stripping resistance at the later stage is related to the high stress concentration at the interface of the formed brittle Fe-Al-Zn phase and the Zn-Al coating.

  2. Texture evolution in Oxide Dispersion Strengthened (ODS) steel tubes during pilgering process

    NASA Astrophysics Data System (ADS)

    Vakhitova, E.; Sornin, D.; Barcelo, F.; François, M.

    2017-10-01

    Oxide Dispersion Strengthened (ODS) steels are foreseen as fuel cladding material in the coming generation of Sodium Fast Reactors (SFR). Cladding tubes are manufactured by hot extrusion and subsequent cold forming steps. In this study, a 9 wt% Cr ODS steel exhibiting α-γ phase transformation at high temperature is cold formed under industrial conditions with a large section reduction in two pilgering steps. The influence of pilgering process parameters and intermediate heat treatment on the microstructure evolution is studied experimentally using Electron Backscattering Diffraction (EBSD) and X-ray Diffraction (XRD) methods. Pilgered samples show elongated grains and a high texture formation with a preferential orientation along the rolling direction. During the heat treatment, grain morphology is recovered from elongated grains to almost equiaxed ones, while the well-known α-fiber texture presents an unexpected increase in intensity. The remarkable temperature stability of this fiber is attributed to a crystallographic structure memory effect during phase transformations.

  3. Magnesium Based Composite via Friction Stir Processing

    DTIC Science & Technology

    2013-04-01

    study. FSP was carried out with a stepped spiral conical tool with a featureless shoulder and a pin length of 6.5 mm, which was made of H13 tool ...of a high strength rotating tool to locally heat the work piece and produce intense plastic deformation. The interplay between temperature and strain... steel . A set of holes with a depth of about 6 mm were drilled into the plate in the pattern shown in Fig.1 (a) and the B4C powder was then filled into

  4. Acoustic emission from single point machining: Part 2, Signal changes with tool wear. Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.

    1989-12-31

    Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.

  5. Effect of Hot Rolling Process on Microstructure and Properties of Low-Carbon Al-Killed Steels Produced Through TSCR Technology

    NASA Astrophysics Data System (ADS)

    Paul, S. K.; Ahmed, U.; Megahed, G. M.

    2011-10-01

    Low-carbon Al-killed hot rolled strips for direct forming, cold rolling, and galvanizing applications are produced from the similar chemistry at Ezz Flat Steel (EFS) through thin slab casting and rolling (TSCR) technology. The desired mechanical and microstructural properties in hot bands for different applications are achieved through control of hot rolling parameters, which in turn control the precipitation and growth of AlN. Nitrogen in solid solution strongly influences the yield strength (YS), ductility, strain aging index (SAI), and other formability properties of steel. The equilibrium solubility of AlN in austenite at different temperatures and its isothermal precipitation have been studied. To achieve the formability properties for direct forming, soluble nitrogen is fixed as AlN by coiling the strip at higher temperatures. For stringent cold forming, boron was added below the stoichiometric ratio with nitrogen, which improved the formability properties dramatically. The requirements of hot band for processing into cold rolled and annealed deep drawing sheets are high SAI and fine-grain microstructure. Higher finish rolling and low coiling temperatures are used to achieve these. Fully processed cold rolled sheets from these hot strips at customer's end have shown good formability properties. Coil break marks observed in some coils during uncoiling were found to be associated with yielding phenomenon. The spike height (difference between upper and lower yield stresses) and yield point elongation (YPE) were found to be the key material parameters for the break marks. Factors affecting these parameters have been studied and the coiling temperature optimized to overcome the problem.

  6. The Mechanical Property of Batch Annealed High Strength Low Alloy Steel HC260LA

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojiang; Xia, Mingsheng; Zhang, Hongbo; Han, Bin; Li, Guilan

    Cold rolled high strength low alloy steel is widely applied in the automotive parts due to its excellent formability and weldability. In this paper, the steel grade HC260LA according to European Norm was developed with batch annealing process. With commercial C-Mn mild steel as a benchmark, three different groups of chemistry namely C-Mn-Si, C-Mn-Nb-Ti and C-Mn-Nb were compared in terms of yield-tensile strength (Y/T) ratio. Microstructure and mechanical properties were characterized as well. Based on industrial production results, chemistry and detailed process parameters for batch annealing were identified. In the end the optimal Y/T ratio was proposed for this steel grade under batch annealing process.

  7. Development and operation of the JAERI superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  8. Effects of machining parameters on tool life and its optimization in turning mild steel with brazed carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Mukherjee, S.

    2016-09-01

    One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.

  9. Effect of cold deformation on the electrochemical behaviour of 304L stainless steel in contaminated sulfuric acid environment

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Ying, Guobing; Dong, Chaofang; Li, Xiaogang

    2017-12-01

    The effect of cold deformation on the microstructure and electrochemical corrosion behaviour of 304L stainless steel in contaminated sulfuric acid solutions (simulated proton exchange membrane fuel cells environments) were evaluated using electron backscatter diffraction analyses, electrochemical measurements, and surface analyses. The internal microstructure,including the grain sizes, angles of the grain boundaries, low coincidence site lattice boundaries, and phase transformations, was changed due to the cold deformation. No noticeable modifications of the pitting corrosion potential were observed during the various deformations, except for a slight enhancement in the passive current density with an increase in the deformation. The CrO3 and metal Ni species in the passive film were investigated after deformation. After heavy deformation (greater than 60%), nickel oxides were detected. Moreover, the Cr/Fe and O2-/OH- ratios in the passive film were higher before deformation, and they decreased with an increase in the deformation level.

  10. The Measurement of Elastic Constants for the Determination of Stresses by X-Rays

    DTIC Science & Technology

    1983-07-01

    both cases the hhh reflection is at the s.me or hlqher iN 29 value as the hkl reflection; thus any oscillations should be equally clear since the...reduct.oa 70-30 .2471" cold rolled to .02V (A-bras a 90" reduction 304 tainlaess .059’ cold re,’ .055" steel as rUI-. 1075 steel .03s " "ld rolled .03...6.85 4.83 5.54 6.14 4.36 .53 304 C 331 4.48 .20 4.01 3.82 3.92 3.13 stainless Te 222 3.75 .35 4.01 3.09 3.55 3.63 steil 3.51 .38 1075 Fe 220 4.17 .17

  11. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    NASA Astrophysics Data System (ADS)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  12. Procedure-Authoring Tool Improves Safety on Oil Rigs

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Dark, cold, and dangerous environments are plentiful in space and on Earth. To ensure safe operations in difficult surroundings, NASA relies heavily on procedures written well ahead of time. Houston-based TRACLabs Inc. worked with Ames Research Center through the SBIR program to create an electronic procedure authoring tool, now used by NASA and companies in the oil and gas industry.

  13. Structures to Resist the Effects of Accidental Explosions. Volume 5. Structural Steel Design

    DTIC Science & Technology

    1987-05-01

    STRUCTURES TO RESIST THE EFFECTS OF ACCIDENTAL EXPLOSIONS VOLUME V - STRUCTURAL STEEL DESIGN ] DAVID KOSSOVER NORVAL DOBBS AMMANN ft WHITNEY 96...STEEL DESIGN S. TYPE OF REPORT A PERIOO COVERED Special Publication Jan 85 - Apr 87 «. PERFORMING one. REPORT NUMICH 7. AuTNORf*,» David ...Connections Cold formed panels I>a«e ae»4gn Fia^meuL ymit-i^tatfln I 2a ABSTRACT rCmm^mmm —. ~< w «» «CM» m III.IIIBI mud twrnrntty »T

  14. The stability of cassette walls in compression

    NASA Astrophysics Data System (ADS)

    Voutay, Pierre-Arnaud

    Much research into the behaviour of cold formed steel columns in the last decade has focused on channel sections undergoing local, distortional and overall buckling. Light gauge steel cassette sections are a particular form of channel section which offers an alternative form of load-bearing wall assembly for use in low-rise steel framed construction. Cassette wall sections possess wide and slender flanges so that, by including intermediate stiffeners in these wide flanges, a significant increase in the ultimate load capacity may be achieved. However, the introduction of intermediate stiffeners also increases the number of buckling modes (stiffener buckling) and, therefore complicates the behaviour and increases the risk of interactive buckling between these modes. The work undertaken in this thesis aims to clarify the behaviour of wide flanges in compression with and without intermediate stiffeners. In this research, the distortional mode of web and narrow flange buckling was inhibited by connecting the narrow flanges of the cassettes together at suitable intervals. "Generalised Beam Theory" (GBT), which allows the individual buckling modes to be considered individually and in predetermined combinations, provides a particularly good tool with which to analyse and understand the buckling behaviour of cassette sections with and without intermediate stiffeners. "Generalised Beam Theory" (GBT) is used throughout this work to determine the elastic buckling stress of the sections studied (simply supported stiffened plates, as well as cassette sections). Since the economic design of cold-formed steel sections requires the consideration of post- buckling behaviour, elastic buckling values are not directly comparable with design code values which are usually based on the concept of effective width. Therefore, finite element analysis with both material and geometric nonlinearity has also been carried out in order to obtain the ultimate strength in the critical mode or mode combination. Firstly the results of experimental test are analysed and their behaviour reproduced numerically. This serves to explain the test results and verify the numerical model. Confidence in modelling non-linear instability phenomena with the finite element method is acquired. Secondly, an initial parametric study was undertaken on the behaviour of cassette sections with and without intermediate stiffeners. This study considers the effect of the length and overall buckling on the behaviour of cassette sections, the effect of load eccentricity and the effect of the rotational restraint given by the web to the stiffened wide flange. A second parametric study including 96 specimens was undertaken next. This study considered the effect of the number (up to three intermediate stiffeners) and sizes of intermediate stiffeners on slender flanges with a slenderness ratio between 150 ≤ w/t ≤ 600. A wide range of geometries was studied covering single and interactive buckling modes. Comparison of the ultimate strength obtained from finite element analysis with the ultimate strength obtained using the effective width approach of modem design codes such as Eurocode 3 part 1.3 (1996) and NAS (North American specification (2001)) was then possible. By integrating the stress distribution over the length of the specimen, the stiffened wide flange can be isolated from the rest of the section (webs and narrow flanges). Design procedures tor plate elements incorporating one or two intermediate stiffeners under compressive load are given in Eurocode 3; Part 1.3. However, cassette sections, which have wider and more slender flanges than typical sheeting and decking, are increasingly being used in practical construction. For such cases, the design procedures in Eurocode 3 are less well founded. An improvement of the Eurocode 3 procedure dealing with intermediate stiffeners is proposed and validated for one, two or three stiffeners. Throughout the work, simple expressions suitable for design calculations are presented. Modern design codes as well as Direct Strength Method are evaluated in the light of findings of this work and wherever possible suggestions for improvements are made.

  15. Characterization of the interfacial heat transfer coefficient for hot stamping processes

    NASA Astrophysics Data System (ADS)

    Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang

    2016-08-01

    In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.

  16. Behaviour of wrapped cold-formed steel columns under different loading conditions

    NASA Astrophysics Data System (ADS)

    Baabu, B. Hari; Sreenath, S.

    2017-07-01

    The use of Cold Formed Steel (CFS) sections as structural members is widely accepted because of its light nature. However, the load carrying capacity of these sections will be less compared to hot rolled sections. This study is meant to analyze the possibility of strengthening cold formed members by wrapping it with Glass Fiber Reinforced Polymer (GFRP) laminates. Light gauge steel columns of cross sectional dimensions 100mm x 50mm x 3.15mm were taken for this study. The effective length of the section is about 750mm. A total of 8 specimens including the control specimen is tested under axial and eccentric loading. The columns were tested keeping both ends hinged. For both loading cases the buckling behaviour, ultimate load carrying capacity and load-deflection characteristics of the CFS columns were analyzed. The GFRP laminates were wrapped on columns in three different ways such that wrapping the outer surface of web and flange throughout the length of specimen, wrapping the outer surface of web alone throughout the length of specimen and wrapping the outer surface of web and flange for the upper half length of the specimen where the buckling is expected. For both loading cases, the results indicated that the column with wrapping at the outer surface of web and flange throughout the length of specimen provides better strength for it.

  17. Corrosion Inhibition of Cold-rolled Low Carbon Steel with Pulse Fiber Laser Ablation in Water

    NASA Astrophysics Data System (ADS)

    Chan, Sze Ney; Wong, Wai Yin; Walvekar, Rashmi; Kadhum, Abdul Amir H.; Khalid, Mohammad; Lim, Kean Long

    2018-04-01

    This study aims at the use of a fiber laser for modifying the surface properties of cold-rolled low carbon steel via a pulse laser ablation technique in water. The effect on the corrosion behavior of the fiber laser-treated metal surface was investigated in NaCl and HCl environments. Electrochemical tests showed significant improvement in the corrosion resistance of the laser-treated sample in NaCl, with an increase in open-circuit potential (OCP) from - 0.65 to - 0.60 V and an inhibition efficiency of 89.22% as obtained from the impedance study. Such improvement was less significant in an acidic environment. Lower corrosion rates of 20.9 mpy and 5.819 × 103 mpy were obtained for the laser-treated samples in neutral and acidic electrolytes, respectively, than the corrosion rates obtained for the as-received samples (33.2 mpy and 11.98 × 103 mpy). Morphological analysis indicated a passive film built by spherical grains of regular size on the metal surface after laser treatment. The corrosion inhibition effects in NaCl were evident by the nonexistence of the common corrosion products of lepidocrocite and crystalline structures that were seen on as-received samples; only polyhedral crystals with micrograins grown on them were seen covering the laser-treated surface. Therefore, the laser treatment using a fiber laser source improved the corrosion resistance of cold-rolled low carbon steel.

  18. Investigation of machinability characteristics on EN47 steel for cutting force and tool wear using optimization technique

    NASA Astrophysics Data System (ADS)

    M, Vasu; Shivananda Nayaka, H.

    2018-06-01

    In this experimental work dry turning process carried out on EN47 spring steel with coated tungsten carbide tool insert with 0.8 mm nose radius are optimized by using statistical technique. Experiments were conducted at three different cutting speeds (625, 796 and 1250 rpm) with three different feed rates (0.046, 0.062 and 0.093 mm/rev) and depth of cuts (0.2, 0.3 and 0.4 mm). Experiments are conducted based on full factorial design (FFD) 33 three factors and three levels. Analysis of variance is used to identify significant factor for each output response. The result reveals that feed rate is the most significant factor influencing on cutting force followed by depth of cut and cutting speed having less significance. Optimum machining condition for cutting force obtained from the statistical technique. Tool wear measurements are performed with optimum condition of Vc = 796 rpm, ap = 0.2 mm, f = 0.046 mm/rev. The minimum tool wear observed as 0.086 mm with 5 min machining. Analysis of tool wear was done by confocal microscope it was observed that tool wear increases with increasing cutting time.

  19. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  20. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  1. The Work Softening by Deformation-Induced Disordering and Cold Rolling of 6.5 wt pct Si Steel Thin Sheets

    NASA Astrophysics Data System (ADS)

    Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan

    2016-09-01

    As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.

  2. Hydrogen Permeation in Cold-Rolled High-Mn Twinning-Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Han, Do Kyeong; Hwang, A. In; Byeon, Woo Jun; Noh, Seung Jeong; Suh, Dong-Woo

    2017-11-01

    Hydrogen permeation is investigated in cold-rolled Fe-0.6C-18Mn-(1.5Al) alloys. The hydrogen mobility is lower in cold-rolled alloys compared with annealed alloys. Al-containing alloy shows less deceleration of hydrogen mobility compared with the Al-free alloy. This is attributed to the reduced formation of mechanical twins and dislocations. Mechanical twins trap hydrogen strongly but are vulnerable to crack initiation; suppression of these is thought to be a major favorable influence of Al on hydrogen-induced mechanical degradation.

  3. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Field, Kevin G; Allen, Todd R.

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. Themore » preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.« less

  4. Corrosion of Type 316L stainless steel in Pb-17Li

    NASA Astrophysics Data System (ADS)

    Barker, M. G.; Lees, J. A.; Sample, T.; Hubberstey, P.

    1991-03-01

    Corrosion tests carried out in Pb-17Li in both capsules and a convection loop (hot leg temperature 768 K, cold leg temperature 748 K, flow rate 10 mm/s) have shown that Type 316 stainless steel undergoes almost complete loss of Ni and Mn, and extensive loss of Cr to form a porous ferritic zone. Ferritic zone depths measured on the loop samples exposed between 1000 and 4000 h were in good agreement with previous data. Some evidence was found for the interaction of chromium with oxygen dissolved in Pb-17Li. Examination of the cold leg samples revealed deposition products of iron and chromium but no deposits containing nickels were observed. These observations were rationalised in terms of recent measurements of the solubilities of metals in Pb-17Li.

  5. The effect of ultrasonics on the strength properties of carbon steel processed by cold plastic deformation

    NASA Technical Reports Server (NTRS)

    Atanasiu, N.; Dragan, O.; Atanasiu, Z.

    1974-01-01

    A study was made of the influence of ultrasounds on the mechanical properties of OLT 35 carbon steel tubes cold-drawn on a plug ultrasonically activated by longitudinal waves. Experimental results indicate that: 1. The reduction in the values of the flow limit and tensile strength is proportional to the increase in acoustic energy introduced into the material subjected to deformation. 2. The diminution in influence of ultrasounds on tensile strength and flow rate that is due to an increased degree of deformation is explained by a reduction in specific density of the acoustic energy at the focus of deformation. 3. The relations calculated on the basis of the variation in the flow limit and tensile strength as a function of acoustic energy intensity was verified experimentally.

  6. Fundamental studies of hydrogen attack in carbon-0.5molybdenum steel and weldments applied in petroelum and petrochemical industries

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one-sided hydrogen exposure assembly; hydrogen attack mechanism and hydrogen attack limit modeling.

  7. High Strength-High Ductility Combination Ultrafine-Grained Dual-Phase Steels Through Introduction of High Degree of Strain at Room Temperature Followed by Ultrarapid Heating During Continuous Annealing of a Nb-Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Deng, Yonggang; Di, Hongshuang; Hu, Meiyuan; Zhang, Jiecen; Misra, R. D. K.

    2017-07-01

    Ultrafine-grained dual-phase (UFG-DP) steel consisting of ferrite (1.2 μm) and martensite (1 μm) was uniquely processed via combination of hot rolling, cold rolling and continuous annealing of a low-carbon Nb-microalloyed steel. Room temperature tensile properties were evaluated and fracture mechanisms studied and compared to the coarse-grained (CG) counterpart. In contrast to the CG-DP steel, UFG-DP had 12.7% higher ultimate tensile strength and 10.7% greater uniform elongation. This is partly attributed to the increase in the initial strain-hardening rate, decrease in nanohardness ratio of martensite and ferrite. Moreover, a decreasing number of ferrite grains with {001} orientation increased the cleavage fracture stress and increased the crack initiation threshold stress with consequent improvement in ductility UFG-DP steel.

  8. Spin forming development

    NASA Astrophysics Data System (ADS)

    Gates, W. G.

    1982-05-01

    Bendix product applications require the capability of fabricating heavy gage, high strength materials. Five commercial sources have been identified that have the capability of spin forming metal thicknesses greater than 9.5 mm and four equipment manufacturers produce machines with this capability. Twelve assemblies selected as candidates for spin forming applications require spin forming of titanium, 250 maraging steel, 17-4 pH stainless steel, Nitronic 40 steel, 304 L stainless steel, and 6061 aluminum. Twelve parts have been cold spin formed from a 250 maraging steel 8.1 mm wall thickness machine preform, and six have been hot spin formed directly from 31.8-mm-thick flat plate. Thirty-three Ti-6Al-4V titanium alloy parts and 26 17-4 pH stainless steel parts have been hot spin formed directly from 31.8-mm-thick plate. Hot spin forming directly from plate has demonstrated the feasibility and favorable economics of this fabrication technique for Bendix applications.

  9. The Effects of Carbon Nanotube Reinforcement on Adhesive Joints for Naval Applications

    DTIC Science & Technology

    2009-12-01

    ACRONYMS AND ABBREVIATIONS CNT Carbon Nanotube CoNap Cobalt Naphthenate DMA Dimethylaniline IR Infared MEKP Methyl Ethyl Ketone Peroxide... removed prior to use. The selection of cold rolled steel significantly reduced the surface preparation required for each sample. The steel was one...6% Cobalt Naphthenate (CoNap), as well as an accelerator, dimethylaniline (DMA), can be varied to control gel time of the resign based on ambient

  10. Finite element method analysis of cold forging for deformation and densification of Mo alloyed sintered steel

    NASA Astrophysics Data System (ADS)

    Kamakoshi, Y.; Nishida, S.; Kanbe, K.; Shohji, I.

    2017-10-01

    In recent years, powder metallurgy (P/M) materials have been expected to be applied to automobile products. Then, not only high cost performance but also more strength, wear resistance, long-life and so on are required for P/M materials. As an improvement method of mechanical properties of P/M materials, a densification is expected to be one of effective processes. In this study, to examine behaviours of the densification of Mo-alloyed sintered steel in a cold-forging process, finite element method (FEM) analysis was performed. Firstly, a columnar specimen was cut out from the inner part of a sintered specimen and a load-stroke diagram was obtained by the compression test. 2D FEM analysis was performed using the obtained load-stroke diagram. To correct the errors of stress between the porous mode and the rigid-elastic mode of analysis software, the analysis of a polynominal approximation was performed. As a result, the modified true stress-true strain diagram was obtained for the sintered steel with the densification. Afterwards, 3D FEM analysis of backward extrusion was carried out using the modified true stress-true strain diagram. It was confirmed that both the shape and density of the sintered steel analyzed by new FEM analysis that we suggest correspond well with experimental ones.

  11. Development of Highly Ductile Spheroidized Steel from High C (0.61 wt.% C) Low-Alloy Steel

    NASA Astrophysics Data System (ADS)

    Monia, S.; Varshney, A.; Gouthama; Sangal, S.; Kundu, S.; Samanta, S.; Mondal, K.

    2015-11-01

    This research aims to develop a multiphase steel combining spheroidal cementite and bainite in ductile ferrite matrix possessing an optimal balance of reasonably high strength and excellent ductility. A high carbon (0.61 wt.%) high silicon (1.71 wt.%) EN45 spring steel was annealed to obtain ferrite pearlite microstructure. The samples were given 5 and 10% cold rolling followed by holding at temperature below Ac1 for about 3 h. The samples were then held in intercritical range at 770 °C temperature for different durations ranging from 5 to 20 min for partial re-austenitization followed by quenching in a salt bath maintained at 350 °C and holding for 10 min to get bainite. The samples were finally water quenched. Characterizations of the samples with the help of optical microscopy, x-ray diffraction, scanning electron microscopy, and atomic force microscopy were carried out. Optimal heat-treatment conditions were found out after correlating with tensile properties. The best combination of high tensile strength (~800 MPa) with very high elongation (~29%) was obtained. Effects of cold-rolled strain and holding time in the intercritical region on the mechanical properties and microstructural changes were studied. Finally, structural property correlation is established.

  12. Surface analysis of 316 stainless steel treated with cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Williams, David F.; Kellar, Ewen J. C.; Jesson, David A.; Watts, John F.

    2017-05-01

    The surface of 316 stainless steel has been modified using cold atmospheric plasma (CAP) to increase the surface free energy (by cleaning the and chemically activating the surface)IN preparation for subsequent processes such as painting, coating or adhesive bonding. The analyses carried out, on CAP treated 316 stainless steel surfaces, includes X-ray photoelectron spectroscopy (XPS), imaging XPS (iXPS), and surface free energy (SFE) analysis using contact angle measurements. The CAP treatment is shown to increase the SFE of as-received 316 stainless steel from ∼39 mJ m-1 to >72 mJ m-1 after a short exposure to the plasma torch. This was found to correlate to a reduction in adventitious carbon, as determined by XPS analysis of the surface. The reduction from ∼90 at% to ∼30% and ∼39 at%, after being plasma treated for 5 min and 15 s respectively, shows that the process is relatively quick at changing the surface. It is suggested that the mechanism that causes the increase in surface free energy is chain scission of the hydrocarbon contamination triggered by free electrons in the plasma plume followed by chemical functionalisation of the metal oxide surface and some of the remaining carbon contamination layer.

  13. Influence of intermetallic coatings of system Ti-Al on durability of slotting tool from high speed steel

    NASA Astrophysics Data System (ADS)

    Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Khusnimardanov, R. N.; Nagimov, R. Sh

    2017-05-01

    The operation conditions and mechanism of wear of slotting tools from high-speed steel was researched. The analysis of methods increasing durability was carried out. The effect of intermetallic coatings deposited from vacuum-arc discharge plasma on the physical-mechanical high-speed steel EP657MP was discovered. The pilot batch of the slotting tool and production tests were carried out.

  14. FY 2017 Status of Sodium Freezing and Remelting Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Q.; Boron, E.; Momozaki, Y.

    The Sodium Freezing and Remelting experiment facility at Argonne National Laboratory has been significantly modified and improved. The main improvement was replacement of the two original stainless steel test sections that had strain gages limited by their bonds to the stainless steel to maximum temperatures of 350°C with a single new test section with strain gages that can be utilized up to 980°C and a thin wall to enhance measured strains. Wetting of stainless steel by sodium within a practical time of one to a few days is expected to require temperatures of 450°C or greater. Thus, the higher temperaturemore » strain gages enable wetting in a short time of a few days. Wetting below 350°C would have required an impractically long time of at least weeks. Other improvements included upgrading of the loop configuration, incorporation of a cold finger to purify sodium, a new data acquisition system, and reinstallation of the many heaters, heater controllers, and thermocouples. After the loop had been heated to 400°C for about two hours, an initial sodium freezing test was conducted. It is thought that the sodium might have at least partially wetted the stainless steel wall under these conditions. The strain gage measurements indicate that an incremental step inward deformation of the test section thin wall occurred as the temperature decreased through the sodium freezing temperature. This behavior is consistent with sodium initially adhering to the stainless steel inner wall but breaking away from the wall as the freezing sodium contracted. Conduct of additional sodium freezing tests under well wetted conditions was prevented as a result of stoppage of all electrical work at Argonne by the Laboratory Director on July 25, 2017. A pathway to resuming electrical work is now in place at Argonne and additional sodium freezing testing will resume next fiscal year.« less

  15. Acoustic emission investigation of cold cracking in gas metal-arc welding of AISI 4340 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, C.K.; Kannatey-Asibu, E. Jr.; Barber, J.R.

    1995-06-01

    Acoustic emission (AE) has been used to investigate the propagation of a finite crack in a weldment subjected to nonuniform longitudinal residual stresses during gas metal arc welding (GMAW). Cold cracking in selected weldments was accelerated using the electrochemical method to cathodically charge the weldments with hydrogen in order to induce hydrogen embrittlement. Cold cracking was observed about 40 min after charging in the specimen subjected to hydrogen embrittlement, while it was observed two days after welding for the one that was left in the atmosphere. The AE signals were generated as the specimen cracked and were recorded, and themore » effects from structure and instrumentation were removed from the measured signals by deconvolution in the frequency domain. Most of the high-amplitude signal components were found to be clustered in the frequency range below 200 kHz. The experimentally obtained spectrum was compared with theoretical results derived in earlier work, and reasonable agreement with theoretical surface displacement in both time and frequency domains was obtained. The envelopes for both spectra were found to decrease with increasing frequency, while the fluctuations in each curve diminished at high frequencies.« less

  16. Fe-Mn(Al, Si) TWIP steel - strengthening characteristics and weldability

    NASA Astrophysics Data System (ADS)

    Podany, P.; Koukolikova, M.; Kubina, T.; Prochazka, R.; Franc, A.

    2017-02-01

    Twinning Induced Plasticity steel, or TWIP steel, has had increased interest in recent years from various industry sectors. This is due to it being lightweight, strong, and ductile; which are all properties that are useful in the automotive and aerospace industries. These steels potentially can offer lighter weight vehicles and parts with increased strength and other mechanical properties. This combination could offer greater fuel efficiency and performance while at the same time improving the safety features of the vehicle. This steel is characterised by being a high alloy steel, specifically having a high manganese content. It also has a fully austenitic microstructure at room temperature, which is a unique characteristic. But, for TWIP steel to be useful in various industrial sectors, it must have good weldability. This paper deals with the description of the strengthening due to the cold rolling on experimental heats of manganese steel with TRIP/TWIP effect. Impacts on microstructure, yield strength and tensile strength are described. Also, the weldability of experimental TWIP steel by studying the properties of weld joints after laser welding is described.

  17. Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve

    Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.

  18. Effect of rolling on phase composition and microhardness of austenitic steels with different stacking-fault energies

    NASA Astrophysics Data System (ADS)

    Melnikov, Eugene; Astafurova, Elena; Maier, Galina; Moskvina, Valentina

    2017-12-01

    The influence of multi-pass cold rolling on the phase composition and microhardness of austenitic Fe-18Cr-9Ni-0.21C, Fe-18Cr-9Ni-0.5Ti-0.08C, Fe-17Cr-13Ni-3Mo-0.01C (in wt %) steels with different stacking fault energies was studied. The metastable Fe-18Cr-9Ni-0.5Ti-0.08C steel undergoes γ → α' phase transformations during rolling, the volume fraction of strain-induced α'-martensite in steel structure is increased with increasing strain. Metastable austenite Fe-18Cr-9Ni-0.21C steel does not undergo the formation of an appreciable amount of strain-induced α'-martensite under rolling, but the magnetophase analysis reveals a small amount of ferrite phase in the structure of steel after rolling. The structure of stable Fe-17Cr-13Ni-3Mo-0.01C steel remains austenitic independently under strain. Investigations of microhardness of the steels show that their values are increased with strain and are dependent on propensity of steels to strain-induced martensitic transformation.

  19. Experimental and numerical investigations on the temperature distribution in PVD AlTiN coated and uncoated Al2O3/TiCN mixed ceramic cutting tools in hard turning of AISI 52100 steel

    NASA Astrophysics Data System (ADS)

    Sateesh Kumar, Ch; Patel, Saroj Kumar; Das, Anshuman

    2018-03-01

    Temperature generation in cutting tools is one of the major causes of tool failure especially during hard machining where machining forces are quite high resulting in elevated temperatures. Thus, the present work investigates the temperature generation during hard machining of AISI 52100 steel (62 HRC hardness) with uncoated and PVD AlTiN coated Al2O3/TiCN mixed ceramic cutting tools. The experiments were performed on a heavy duty lathe machine with both coated and uncoated cutting tools under dry cutting environment. The temperature of the cutting zone was measured using an infrared thermometer and a finite element model has been adopted to predict the temperature distribution in cutting tools during machining for comparative assessment with the measured temperature. The experimental and numerical results revealed a significant reduction of cutting zone temperature during machining with PVD AlTiN coated cutting tools when compared to uncoated cutting tools during each experimental run. The main reason for decrease in temperature for AlTiN coated tools is the lower coefficient of friction offered by the coating material which allows the free flow of the chips on the rake surface when compared with uncoated cutting tools. Further, the superior wear behaviour of AlTiN coating resulted in reduction of cutting temperature.

  20. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  1. Experimental research on micro-pit defects of SUS 430 stainless steel strip in cold rolling process

    NASA Astrophysics Data System (ADS)

    Li, Changsheng; Li, Miao; Zhu, Tao; Huo, Gang

    2013-05-01

    In order to improve surface glossiness of stainless steel strip in tandem cold rolling, experimental research on micro-pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The surface morphology of micro-pit defects was observed by SEM. The effects of micro-pit defects on rolling reduction, roll surface roughness and emulsion parameters were analyzed. With the pass number increasing, the quantity and surface of micro-pit defects were reduced, uneven peak was decreased and gently along rolling direction, micro-pit defects had equally distributed tendency along tranverse direction. The micro-pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. The effects of temperature 55° and 63°, concentration 3% and 6% of emulsion on micro-pit effects had not obvious difference. Maintain of micro-pit was effected by rolling oil or air in the micro-pit, the quality of oil was much more than the air in the micro-pit in lubrication rolling.

  2. Irradiation creep-fatigue interaction of type 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.

    1996-10-01

    Type 316L stainless steel samples in both, 20% cold-worked (cw) and recrystallised (rc) conditions were exposed to strain controlled fatigue cycling in torsion at 400°C during an irradiation with 19 MeV deuterons. The effect of irradiation creep induced stress relaxation on the fatigue life was studied by imposing a hold time at the minimum strain value in the loading cycle. For the cw material at strain ranges of 1.13% and 1.3%, the absolute stress values, τ H, maintained during the hold time decreased with the number of cycles due to the irradiation creep induced stress relaxation. A mean stress was built up. The number of cycles to failure was considerably reduced in comparison to continuous cycling tests under thermal conditions. For the rc material at strain ranges of 1.03% and 1.4%, the values of τ H increased with the number of cycles, despite the hold time imposed, due to irradiation and/or cyclic hardening.

  3. FABRICATION DEVELOPMENT OF UO$sub 2$-STAINLESS STEEL COMPOSITE FUEL PLATES FOR CORE B OF THE ENRICO FERMI FAST BREEDER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherubini, J.H.; Beaver, R.J.; Leitten, C.F. Jr.

    1961-04-18

    The development of an inexpensive composite fuel plate with a high burnup potential for application in a 500 deg C sodium environment as Core B of the Enrico Fermi Fast Breeder Reactor is described. The dispersion fuel product consists of 35 wt.% spheroidal UO/sub 2/ dispersed in type 347B stainless steel powder and clad with wrought type 347 stainless steel. Nominal over-all dimensions of Type II design fuel plates are 18.97 in. long x 2.406 in. wide x 0.112 in. thick with 0.005-in. cladding. Reliable processing methods for achieving a uniform distribution of spheroidal UO/sub 2/ in the matrix powdermore » and cladding the sintered powder compact by roll bonding are described. Examination of experimental plates reveals that the degree of UO/sub 2/ fragmentation and stringering encountered during processing is primarily a function of the degree of cold work employed in the finishing operation snd the starting quality of the UO/sub 2/ powder. Cladding studies indicate that a sound metallurgical bond can be achieved with an 87.5% reduction in thickness at 1200 deg C and that close processing control is required to meet the stringent tolerances specified. The developed process meets all criteria except possibly the surface finish requirement; occasionally, pitting occurs due to scale embedded during hot working. Detailed procedures covering composite plate manufacture are presented. (auth)« less

  4. Analysis of castellated steel beam with oval openings

    NASA Astrophysics Data System (ADS)

    Tudjono, S.; Sunarto; Han, A. L.

    2017-11-01

    A castellated steel beam is per definition a wide flange (WF) or I shaped steel profile with openings, to reduce self-weight and improve the effectiveness in terms of material use. Recently, extensive study on these castellated steel beams has been conducted, involving different shapes in web openings. The main goal of these research works was to evaluate and analyze its optimum opening sizes and shapes configuration. More in-depth research work to the behavior and the influence of holes to WF beams need to be conducted. In this paper, an oval shaped web opening is chosen as alternate. The study involves a modification in the variation of oval web openings both in the horizontally and vertically direction. An experimental and numerical study based on the finite element method conducted with the Abaqus/CAE 6.12 software is used to analyze the buckling behavior of the web. The obtained results from the experimental test specimens are in good agreement with the obtained results from the finite element analysis. Furthermore, the numerical model can be expanded to be used as analyzing tool in evaluating and studying the effect and influencing factors of a variation in opening’s parameters.

  5. Effects of microalloying on hot-rolled and cold-rolled Q&P steels

    NASA Astrophysics Data System (ADS)

    Azevedo de Araujo, Ana Luiza

    Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in austenite morphology from lath-like to blocky with increasing CT was observed. Hardness generally increased with decreasing CT, consistent with the increased fraction of harder phases in the microstructure. For the cold-rolled Q&P study, several combinations of quenching temperature (QT), partitioning temperature (PT), and partitioning time (t p) were examined using heat treatments in salt baths. Uniaxial tensile tests and RA measurements via x-ray diffraction (XRD) were performed for all alloys and heat treatment conditions. Scanning electron microscope (SEM) imaging and EBSD were conducted for a few select conditions. In terms of microstructure, Nb promoted an extensive refinement of the prior austenite grain size. Additions of V and Nb also seemed to affect the morphology of the microstructural constituents. It was observed that V generally increased austenite fractions at lower t p's, and the Nb-containing alloys had greater austenite fractions in most instances when compared to the Base alloy. Carbon content in austenite was usually increased or maintained with additions of Nb and V. In terms of mechanical properties, V slightly improved strength and elongation when compared to the Base alloy for most conditions. Niobium additions were somewhat more effective in improving ductility.

  6. Effects of substrate preheating during direct energy deposition on microstructure, hardness, tensile strength, and notch toughness

    NASA Astrophysics Data System (ADS)

    Baek, Gyeong Yun; Lee, Ki Yong; Park, Sang Hu; Shim, Do Sik

    2017-11-01

    This study examined the effects of substrate preheating for the hardfacing of cold-press dies using the high-speed tool steel AISI M4. The preheating of the substrate is a widely used technique for reducing the degree of thermal deformation and preventing crack formation. We investigated the changes in the metallurgical and mechanical properties of the high-speed tool steel M4 deposited on an AISI D2 substrate with changes in the substrate preheating temperature. Five preheating temperatures (100-500 °C; interval of 100 °C) were selected, and the changes in the temperature of the substrate during deposition were observed. As the preheating temperature of the substrate was increased, the temperature gradient between the melting layer and the substrate decreased; this prevented the formation of internal cracks, owing to thermal stress relief. Field-emission scanning electron microscopy showed that a dendritic structure was formed at the interface between the deposited layer and the substrate while a cellular microstructure was formed in the deposited layer. As the preheating temperature was increased, the sizes of the cells and precipitated carbides also increased. Furthermore, the hardness increased slightly while the strength and toughness decreased. Moreover, the tensile and impact properties deteriorated rapidly at excessively high preheating temperatures (greater than 500 °C). The results of this study can be used as preheating criteria for achieving the desired mechanical properties during the hardfacing of dies and molds.

  7. Applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Gelerinter, E.; Spielberg, N.

    1980-01-01

    Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.

  8. Microstructure and physical properties of steel-ladle purging plug refractory materials

    NASA Astrophysics Data System (ADS)

    Long, Bin; Xu, Gui-ying; Andreas, Buhr

    2017-02-01

    Three different castables were prepared as steel-ladle purging-plug refractory materials: corundum-based low-cement castable (C-LCC), corundum-spinel-based low-cement castable (C-S-LCC), and no-cement corundum-spinel castable (C-S-NCC) (hydratable alumina ρ-Al2O3 bonded). The properties of these castables were characterized with regard to water demand/flow ability, cold crushing strength (CCS), cold modulus of rupture (CMoR), permanent linear change (PLC), apparent porosity, and hot modulus of rupture (HMoR). The results show the CCS/CMoR and HMoR of C-LCC and C-S-LCC are greater than those of the castable C-S-NCC. According to the microstructure analysis, the sintering effect and the bonding type of the matrix material differ among the three castables. The calcium hexaluminate (CA6) phase in the matrix of C-LCC enhances the cold and hot mechanical strengths. In the case of C-S-LCC, the CA6 and 2CaO·2MgO·14Al2O3 (C2M2A14) ternary phases generated from the matrix can greatly increase the cold and hot mechanical strengths. In the case of the no-cement castable, sintering becomes difficult, resulting in a lower mechanical strength.

  9. A novel ultra-low carbon grain oriented silicon steel produced by twin-roll strip casting

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Yuan-Xiang; Lu, Xiang; Fang, Feng; Xu, Yun-Bo; Cao, Guang-Ming; Li, Cheng-Gang; Misra, R. D. K.; Wang, Guo-Dong

    2016-12-01

    A novel ultra-low carbon grain oriented silicon steel was successfully produced by strip casting and two-stage cold rolling method. The microstructure, texture and precipitate evolution under different first cold rolling reduction were investigated. It was shown that the as-cast strip was mainly composed of equiaxed grains and characterized by very weak Goss texture ({110}<001>) and λ-fiber (<001>//ND). The coarse sulfides of size 100 nm were precipitated at grain boundaries during strip casting, while nitrides remained in solution in the as-cast strip and the fine AlN particles of size 20-50 nm, which were used as grain growth inhibitors, were formed in intermediate annealed sheet after first cold rolling. In addition, the suitable Goss nuclei for secondary recrystallization were also formed during intermediate annealing, which is totally different from the conventional process that the Goss nuclei originated in the subsurface layer of the hot rolled sheet. Furthermore, the number of AlN inhibitors and the intensity of desirable Goss texture increased with increasing first cold rolling reduction. After secondary recrystallization annealing, very large grains of size 10-40 mm were formed and the final magnetic induction, B8, was as high as 1.9 T.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, M.; Soppet, W.K.; Rink, D.L.

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensilemore » properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and associated mechanical properties during long-term aging at elevated temperatures. Thermal aging experiments at different temperatures and periods of time have been completed: 550 C for up to 5000 h, 600 C for up to 7500 h, and 650 C for more than 10,000 h. Tensile properties were measured on thermally aged specimens and aging effect on tensile behavior was assessed. Effects of thermal aging on deformation and failure mechanisms were investigated by using in-situ straining technique with simultaneous synchrotron XRD measurements.« less

  11. Tensile elastic properties of 18:8 chromium-nickel steel as affected by plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcadam, D J; Mebs, R W

    1939-01-01

    The relationship between stress and strain, and between stress and permanent set, for 18:8 alloy as affected by prior plastic deformation is discussed. Hysteresis and creep and their effects on the stress-strain and stress-set curves are also considered, as well as the influence of duration of the rest interval after cold work and the influence of plastic deformation on proof stresses, on the modulus of elasticity at zero stress, and on the curvature of the stress-strain line. A constant (c sub 1) is suggested to represent the variation of the modulus of elasticity with stress.

  12. Temperature and emissivity determination of liquid steel S235

    NASA Astrophysics Data System (ADS)

    Schöpp, H.; Sperl, A.; Kozakov, R.; Gött, G.; Uhrlandt, D.; Wilhelm, G.

    2012-06-01

    Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm.

  13. High temperature corrosion of cold worked YUS409D bellows of bellow-sealed valve in LBE

    NASA Astrophysics Data System (ADS)

    Mustari1, A. P. A.; Irwanto1, D.; Takahashi, M.

    2017-01-01

    Lead-bismuth eutectic (LBE) loop test is highly contributes to the lead-alloy-cooled fast breeder reactor (LFR) and accelerator driven system (ADS) research and development by providing comprehensive results of both corrosion and erosion phenomenon. Bellows-sealed valve is a crucial part in the LBE loop test apparatus, due to its capability of preventing corrosion on valve spring, thus improves the operation time of the system. LBE is very corrosive to stainless steel by formation of oxide layer or elemental dissolution, e.g. Ni. Thus, new type of bellows for bellows-sealed valve made of nickel free material, i.e. YUS409D, is proposed to be used in the LBE. Bellows material undergo heat treatments for mechanical improvement including cold working and annealing. The thickness reduction by the heat treatments is about 90% of initial condition. Corrosion behavior of the bellows has been studied in stagnant LBE at 500 and 600 °C for 500 hours. The oxygen concentration was controlled at about 10-7 wt%. Typical oxide layers were developed on the surface. Oxidation rate was sharply increased at 600°C.

  14. Design Automation in Synthetic Biology.

    PubMed

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

    In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

  16. Simplified Methods for Improving the Blast Resistance of Cold-Formed Steel Walls

    DTIC Science & Technology

    2011-01-01

    sheathing products such as oriented strand board ( OSB ) offer a level of blast resistance that may be effective in mitigating lower-level blast...considered in order to keep designs to a minimum cost. Standard sheathing materials such as OSB , gypsum and plywood— as well as specially selected sheathing...commercially available clip connectors. Sheathing materials such as gypsum and OSB are brittle and have significantly lower capacity than sheet steel

  17. Numerical and Experimental Studies on Crash Characteristics of Closed Form Thin—Walled Steel Sections

    NASA Astrophysics Data System (ADS)

    Veerasamy, M.; Srinivasan, K.; Prakash, Raghu V.

    2010-10-01

    The crash behavior of Cold Rolled Mild Steel (CRMS) closed form thin section was studied by conducting compressive tests at loading velocities of 5 mm/min and 1000 mm/min. The numerical simulations were conducted for the same experimental conditions to understand the deformation shape, peak forces and energy absorption capacity of sections at different impact velocities. The simulation results correlated well with the experimental results.

  18. Experimental and Numerical Studies on Isothermal and Non-isothermal Deep Drawing of IS 513 CR3 Steel Sheets

    NASA Astrophysics Data System (ADS)

    Mayavan, T.; Karthikeyan, L.; Senthilkumar, V. S.

    2016-11-01

    The present work aims to investigate the effects of the temperature gradient developed within the tool profiles on the formability of IS 513 CR3-grade steel sheets using the cup drawing test. The deformation characteristics of steel sheets were analyzed by comparing the thicknesses in various regions of the formed cup and also the limiting drawing ratios (LDR). Finite element simulations were carried out to predict the behavior of the steel sheets in isothermal and non-isothermal forming using Abaqus/Standard 6.12-1. An analytical model created by Kim was used to validate the experimental and finite element analysis (FEA) results on identical process parameters. Both the FEA and analytical modeling results showed that formability improvement is possible in warm forming; the findings are in good agreement with the experimental results in determining the locations and values of excessive thinning. The results also indicated that formability improvement cannot be achieved by keeping the tooling temperature at the same level. The LDR increased by around 9.5% in isothermal forming and by 19% in non-isothermal forming (with the punch maintained at a lower temperature compared with the die and blank holder). In addition, the fractured surfaces of unsuccessfully formed samples were analyzed using scanning electron microscopy. Metallographic investigations confirmed that the fracture mechanism during the forming of IS 513 CR3-grade steel sheets depends on the brittleness, strain hardening value, forming temperature, and magnitude of stresses developed.

  19. Dehydrin expression as a potential diagnostic tool for cold stress in white clover.

    PubMed

    Vaseva, Irina Ivanova; Anders, Iwona; Yuperlieva-Mateeva, Bistra; Nenkova, Rosa; Kostadinova, Anelia; Feller, Urs

    2014-05-01

    Cold acclimation is important for crop survival in environments undergoing seasonal low temperatures. It involves the induction of defensive mechanisms including the accumulation of different cryoprotective molecules among which are dehydrins (DHN). Recently several sequences coding for dehydrins were identified in white clover (Trifolium repens). This work aimed to select the most responsive to cold stress DHN analogues in search for cold stress diagnostic markers. The assessment of dehydrin transcript accumulation via RT-PCR and immunodetection performed with three antibodies against the conserved K-, Y-, and S-segment allowed to outline different dehydrin types presented in the tested samples. Both analyses confirmed that YnKn dehydrins were underrepresented in the controls but exposure to low temperature specifically induced their accumulation. Strong immunosignals corresponding to 37-40 kDa with antibodies against Y- and K-segment were revealed in cold-stressed leaves. Another 'cold-specific' band at position 52-55 kDa was documented on membranes probed with antibodies against K-segment. Real time RT-qPCR confirmed that low temperatures induced the accumulation of SKn and YnSKn transcripts in leaves and reduced their expression in roots. Results suggest that a YnKn dehydrin transcript with GenBank ID: KC247805 and the immunosignal at 37-40 kDa, obtained with antibodies against Y- and K-segment are reliable markers for cold stress in white clover. The assessment of SKn (GenBank ID: EU846208) and YnSKn (GenBank ID: KC247804) transcript levels in leaves could serve as additional diagnostic tools. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Conceptual design study: Cold water pipe systems for self-mounted OTEC powerplants

    NASA Astrophysics Data System (ADS)

    1981-02-01

    The conceptual design and installation aspects of cold water pipes (CWP) systems for shelf mounted OTEC power plants in Puerto Rico and Hawaii are considered. The CWP systems using Fiberglass Reinforced Plastic (FRP) and steel were designed; the FRP, can be controlled by varying the core thickness; and steel is used as a structural material in offshore applications. A marine railway approach was chosen for installation of the CWP. Two methods for pulling the track for the railway down the pipe fairway to its final location are presented. The track is permanently fastened to the sloping seabed with piles installed by a remotely controlled cart that rides on the track itself. Both the marine railway and the shelf mounted platform that houses the OTEC power plant require an anodic or equivalent corrosion protection system.

  1. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  2. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, Michael; Karki, U.; Hovanski, Yuri

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN.more » Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.« less

  3. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    NASA Astrophysics Data System (ADS)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  4. Quenching and Partitioning Process Development to Replace Hot Stamping of High Strength Automotive Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Moor, Emmanuel

    The present project investigated Quenching and Partitioning (Q&P) to process cold rolled steels to develop high strength sheet steels that exhibit superior ductility compared to available grades with the intent to allow forming of high strength parts at room temperature to provide an alternative to hot stamping of parts. Hot stamping of boron alloyed steel is the current technology to manufacture thinner gauge sections in automotive structures to guarantee anti-intrusion during collisions whilst improving fuel efficiency by decreasing vehicle weight. Hot stamping involves reheating steel to 900 °C or higher followed by deformation and quenching in the die to producemore » ultra-high strength materials. Hot stamping requires significant energy to reheat the steel and is less productive than traditional room temperature stamping operations. Stamping at elevated temperature was developed due to the lack of available steels with strength levels of interest possessing sufficient ductility enabling traditional room temperature forming. This process is seeing growing demand within the automotive industry and, given the reheating step in this operation, increased energy consumption during part manufacturing results. The present research program focused on the development of steel grades via Q&P processing that exhibit high strength and formability enabling room temperature forming to replace hot stamping. The main project objective consisted of developing sheet steels exhibiting minimum ultimate tensile strength levels of 1200 MPa in combination with minimum tensile elongation levels of 15 pct using Q&P processing through judicious alloy design and heat treating parameter definition. In addition, detailed microstructural characterization and study of properties, processing and microstructure interrelationships were pursued to develop strategies to further enhance tensile properties. In order to accomplish these objectives, alloy design was conducted towards achieving the target properties. Twelve alloys were designed and laboratory produced involving melting, alloying, casting, hot rolling, and cold rolling to obtain sheet steels of approximately 1 mm thickness. Q&P processing of the samples was then conducted. Target properties were achieved and substantially exceeded demonstrating success in the developed and employed alloy design approaches. The best combinations of tensile properties were found at approximately 1550 MPa with a total elongation in excess of 20 pct clearly showing the potential for replacement of hot stamping to produce advanced high strength steels.« less

  5. Laboratory Evaluation of Expedient Low-Temperature Concrete Admixtures for Repairing Blast Holes in Cold Weather

    DTIC Science & Technology

    2013-01-08

    This re- search ignores effects on long-term durability, trafficability, temperature rebar corrosion , and other concerns that are of minimal... concrete because it can cause corrosion of steel reinforcement. However, the corrosion problem develops slowly with time; therefore, this problem has a...ER D C/ CR RE L TR -1 3- 1 Laboratory Evaluation of Expedient Low- Temperature Concrete Admixtures for Repairing Blast Holes in Cold

  6. Manufacturing Methods and Technology Project Summary Reports.

    DTIC Science & Technology

    1980-12-01

    deposition of chrome-copper (Cr- Cu ), dry-film photoresist application, photolithographic masking, spray etching, die bonding, ultrasonic...4) cold roll forging. Of these, the cold roll forging process is the most widely used for the pro- duction of steel and low alloy blades. It provides... sprayed Mo- Al -Ni both provide relatively good wear resistance, see Figure 1. The powder -flame sprayed aluminum bronze did not perform as well. 147 -S t. I

  7. Infrared Thermography as a Non-destructive Testing Solution for Thermal Spray Metal Coatings

    NASA Astrophysics Data System (ADS)

    Santangelo, Paolo E.; Allesina, Giulio; Bolelli, Giovanni; Lusvarghi, Luca; Matikainen, Ville; Vuoristo, Petri

    2017-12-01

    In this work, an infrared (IR) thermographic procedure was evaluated as a non-destructive testing tool to detect damage in thermal spray metallic coatings. As model systems, polished HVOF- and HVAF-sprayed Fe-based layers deposited onto steel plates were employed. Damage by external-object impingement was simulated through a cyclic impact-test apparatus, which induced circumferential and radial cracks across all model systems, and interface cracks of different sizes in distinct samples. Damaged and undamaged plates were bulk-heated to above 100 °C using an IR lamp; their free-convection cooling was then recorded by an IR thermocamera. The intentionally induced defects were hardly detectable in IR thermograms, due to IR reflection and artificial "hot" spots induced by residuals of transfer material from the impacting counterbody. As a micrometer-thin layer of black paint was applied, surface emissivity got homogenized and any artifacts were effectively suppressed, so that failed coating areas clearly showed up as "cold spots." This effect was more apparent when large interface cracks occurred. Finite-element modeling proved the physical significance of the IR-thermography approach, showing that failed coating areas are cooled by surrounding air faster than they are heated by conduction from the hot substrate, which is due to the insulating effect of cracks.

  8. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  9. Materials Processing Research and Development

    DTIC Science & Technology

    2001-11-01

    interface between a Ti-6Al-4V workpiece and H13 tool steel die for various combinations of lubricants and workpiece-die temperatures. The ring test was...attaching a type-K thermocouple to the sample. The samples at 400 °C were heated using band heaters attached to H13 tool steel dies, with the...Ring Tests The ring tests were performed on a 200 kip servo-hydraulic press between H13 tool steel dies heated to the prescribed die temperatures of

  10. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  11. Characterization of particle exposure in ferrochromium and stainless steel production.

    PubMed

    Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo

    2016-07-01

    This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping operations. Particle number concentration and size distribution measurements provide important information regarding exposure to ultrafine particles, which cannot be seen in particle mass measurements.

  12. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  13. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2013-03-22

    polyurethane-urea (MCPU). When scratched, the foaming action of a propellant ejects the resin from the broken tubes and completely fills the crack . No...Resistivities of Control NCP and Enhanced NCP primers are 5xl06 and UxlO6 Ohm/sq respectively indicating we may be able to use simple enamel rater...instrumentation to evaluate self-healing. 1. Enamel rater evaluation underway. 2. 1 |im films of OTS prepared on Cold Rolled Steel and Blasted Steel panels

  14. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  15. Deformability of Oxide Inclusions in Tire Cord Steels

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Guo, Changbo; Yang, Wen; Ren, Ying; Ling, Haitao

    2018-04-01

    The deformation of oxide inclusions in tire cord steels during hot rolling was analyzed, and the factors influencing their deformability at high and low temperatures were evaluated and discussed. The aspect ratio of oxide inclusions decreased with the increasing reduction ratio of the steel during hot rolling owing to the fracture of the inclusions. The aspect ratio obtained after the first hot-rolling process was used to characterize the high-temperature deformability of the inclusions. The deformation first increased and then decreased with the increasing (MgO + Al2O3)/(SiO2 + MnO) ratio of the inclusions. It also increased with the decreasing melting temperatures of the inclusions. Young's modulus was used to evaluate the low-temperature deformability of the inclusions. An empirical formula was fitted to calculate the Young's moduli of the oxides using the mean atomic volume. The moduli values of the inclusions causing wire fracture were significantly greater than the average. To reduce fracture in tire cord steel wires during cold drawing, it is proposed that inclusions be controlled to those with high SiO2 content and extremely low Al2O3 content. This proposal is based on the hypothesis that the deformabilities of oxides during cold drawing are inversely proportional to their Young's moduli. The future study thus proposed includes an experimental confirmation for the abovementioned predictions.

  16. Risk factors for Raynaud's phenomenon among workers in poultry slaughterhouses and canning factories.

    PubMed

    Kaminski, M; Bourgine, M; Zins, M; Touranchet, A; Verger, C

    1997-04-01

    Apart from the use of vibrating tools, little is known about risk factors for Raynaud's phenomenon. However, it has been hypothesized that this disorder may have a multifactorial aetiology, involving potential causal or triggering factors which can be found in the workplace. The objective of the study is to identify individual and occupational risk factors of Raynaud's phenomenon in a population of workers not exposed to vibration, but exposed to cold. The survey was carried out in 1987-1988 in 17 poultry slaughterhouses and six canning factories and included 1474 employees. Data were collected at the annual visit to the occupational health physician. Finger sensitivity to cold and Raynaud's phenomenon were identified from a list of symptoms occurring from exposure to cold. The role of potential risk factors was assessed using multiple logistic regression. A high prevalence of symptoms of finger sensitivity to cold was observed. Raynaud's phenomenon was more common in women than in men, was related to family history of the disease but not to smoking or alcohol consumption. After controlling for non-occupational factors, the following working conditions appeared as risk factors for Raynaud's phenomenon: use of plastic gloves, less than four rest breaks, breaks in an unheated place, continual repetition of the same series of operations, exertion of the arm or hand and being able to think of something else while working. The study showed that a number of working conditions were associated with an increased risk of Raynaud's phenomenon and finger sensitivity to cold. Changes in working conditions might reduce the risk of this disorder in the food processing industry.

  17. Hot Corrosion at Air-Ports in Kraft Recovery Boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2003-01-01

    Hot corrosion can occur on the cold-side of airports in Kraft recovery boilers. The primary corrosion mechanism involves the migration of sodium hydroxide and potassium hydroxide vapors through leaks in the furnace wall at the airports and their subsequent condensation. It has been reported that stainless steel is attacked much faster than carbon steel in composite tubes, and that carbon steel tubing, when used with a low-chromium refractory, does not exhibit this type of corrosion. For hot corrosion fluxing of metal oxides, either acidic or basic fluxing takes place, with a solubility minimum at the basicity of transition between themore » two reactions. For stainless steel, if the basicity of the fused salt is between the iron and chromium oxide solubility minima, then a synergistic effect can occur that leads to rapid corrosion. The products of one reaction are the reactants of the other, which eliminates the need for rate-controlling diffusion. This effect can explain why stainless steel is attacked more readily than carbon steel.« less

  18. Dry rotary swaging with structured and coated tools

    NASA Astrophysics Data System (ADS)

    Herrmann, Marius; Schenck, Christian; Kuhfuss, Bernd

    2018-05-01

    Rotary swaging is a cold bulk forming process for manufacturing of complex bar and tube profiles like axles and gear shafts in the automotive industry. Conventional rotary swaging is carried out under intense use of lubricant usually based on mineral oil. Besides lubrication the lubricant fulfills necessary functions like lubrication, flushing and cooling, but generates costs for recycling, replacement and cleaning of the workpieces. Hence, the development of a dry process design is highly desirable, both under economic and ecological points of view. Therefore, it is necessary to substitute the functions of the lubricant. This was realized by the combination of newly developed a-C:H:W coating systems on the tools to minimize the friction and to avoid adhesion effects. With the application of a deterministic structure in the forging zone of the tools the friction conditions are modified to control the axial process forces. In this study infeed rotary swaging with functionalized tools was experimentally investigated. Therefore, steel and aluminum tubes were formed with and without lubricant. Different structures which were coated and uncoated were implemented in the reduction zone of the tools. The antagonistic effects of coating and structuring were characterized by measuring the axial process force and the produced workpiece quality in terms of roundness and surface roughness. Thus, the presented results allow for further developments towards a dry rotary swaging process.

  19. Effect of formation and state of interface on joint strength in friction stir spot welding for advanced high strength steel sheets

    NASA Astrophysics Data System (ADS)

    Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji

    2014-08-01

    The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.

  20. Promising Sparingly Alloyed Boron-Bearing Steels for the Production of High-Strength Fasteners

    NASA Astrophysics Data System (ADS)

    Bobylev, M. V.; Koroleva, E. G.; Shtannikov, P. A.

    2005-05-01

    The main advantages of boron-bearing steels used for production of rolled sections at cold upset shops of Russian automotive plants are considered. A thermodynamic model for the majority of boron-bearing steels for high-strength fasteners is used to plot nomograms characterizing the effect of titanium, aluminum, nitrogen, and boron on the amount of nitrides and oxides segregated in crystallization and on the content of effective boron. The effect of effective boron on the characteristics of hardenability is estimated. The studies conducted are used for determining the range of permissible contents of titanium and aluminum ensuring through hardenability of rolled bars from steels 12G1R, 20G2R, and 30G1R up to 25 mm in diameter.

  1. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Toolmore » steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.« less

  2. Influence of Short Austenitization Treatments on the Mechanical Properties of Low-Alloy Steels for Hot Forming Applications

    NASA Astrophysics Data System (ADS)

    Holzweissig, Martin Joachim; Lackmann, Jan; Konrad, Stefan; Schaper, Mirko; Niendorf, Thomas

    2015-07-01

    The current work elucidates an improvement of the mechanical properties of tool-quenched low-alloy steel by employing extremely short austenitization durations utilizing a press heating arrangement. Specifically, the influence of different austenitization treatments—involving austenitization durations ranging from three to 15 seconds—on the mechanical properties of low-alloy steel in comparison to an industrial standard furnace process was examined. A thorough set of experiments was conducted to investigate the role of different austenitization durations and temperatures on the resulting mechanical properties such as hardness, bending angle, tensile strength, and strain at fracture. The most important finding is that the hardness, the bending angle as well as the tensile strength increase with shortened austenitization durations. Furthermore, the ductility of the steels exhibits almost no difference following the short austenitization durations and the standard furnace process. The enhancement of the mechanical properties imposed by the short heat treatments investigated, is related to a refinement of microstructural features as compared to the standard furnace process.

  3. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    tool material (AISI H13 tool steel ) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process...threads/m; (b) tool 598 material = AISI H13 tool steel ; (c) workpiece material = 599 AA5059; (d) tool rotation speed = 500 rpm; (e) tool travel 600 speed...the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13

  4. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    NASA Astrophysics Data System (ADS)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  5. Decontamination of Hospital Surfaces With Multijet Cold Plasma: A Method to Enhance Infection Prevention and Control?

    PubMed

    Cahill, Orla J; Claro, Tânia; Cafolla, Attilio A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary

    2017-10-01

    OBJECTIVE To evaluate the efficacy of a multijet cold-plasma system and its efficacy in decontaminating 2 surfaces commonly found in hospitals DESIGN An in vitro study of common causes of healthcare-acquired infection METHODS Log10 9 cultures of methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended spectrum β-lactamase-producing Escherichia coli, and Acinetobacter baumannii were applied to 5-cm2 sections of stainless steel and mattress. Human serum albumin (HSA) was used as a proxy marker for organic material, and atomic force microscopy (AFM) was used to study the impact on bacterial cell structure. The inoculated surfaces were exposed to a cold-air-plasma-generating multijet prototype for 15, 20, 30, and 45 seconds. RESULTS After 45 seconds, at least 3 to 4 log reductions were achieved for all bacteria on the mattress, while 3 to 6 log reductions were observed on stainless steel. The presence of HSA had no appreciable effect on bacterial eradication. The surfaces with bacteria exposed to AFM showed significant morphological changes indicative of "etching" due to the action of highly charged ions produced by the plasma. CONCLUSION This multijet cold-plasma prototype has the potential to augment current environmental decontamination approaches but needs further evaluation in a clinical setting to confirm its effectiveness. Infect Control Hosp Epidemiol 2017;38:1182-1187.

  6. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces

    PubMed Central

    de Candia, Silvia; Morea, Maria; Baruzzi, Federico

    2015-01-01

    This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel, and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria sp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48 h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays. The addition of naturally contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria sp. strains, led to its complete inactivation after 4 days of treatment. To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly used material in food packaging. The results of this study could be useful for reducing pathogen cross-contamination phenomena during cold food storage. PMID:26236306

  7. Cold air plasma to decontaminate inanimate surfaces of the hospital environment.

    PubMed

    Cahill, Orla J; Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary

    2014-03-01

    The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.

  8. Application of Taguchi-grey method to optimize drilling of EMS 45 steel using minimum quantity lubrication (MQL) with multiple performance characteristics

    NASA Astrophysics Data System (ADS)

    Soepangkat, Bobby O. P.; Suhardjono, Pramujati, Bambang

    2017-06-01

    Machining under minimum quantity lubrication (MQL) has drawn the attention of researchers as an alternative to the traditionally used wet and dry machining conditions with the purpose to minimize the cooling and lubricating cost, as well as to reduce cutting zone temperature, tool wear, and hole surface roughness. Drilling is one of the important operations to assemble machine components. The objective of this study was to optimize drilling parameters such as cutting feed and cutting speed, drill type and drill point angle on the thrust force, torque, hole surface roughness and tool flank wear in drilling EMS 45 tool steel using MQL. In this study, experiments were carried out as per Taguchi design of experiments while an L18 orthogonal array was used to study the influence of various combinations of drilling parameters and tool geometries on the thrust force, torque, hole surface roughness and tool flank wear. The optimum drilling parameters was determined by using grey relational grade obtained from grey relational analysis for multiple-performance characteristics. The drilling experiments were carried out by using twist drill and CNC machining center. This work is useful for optimum values selection of various drilling parameters and tool geometries that would not only minimize the thrust force and torque, but also reduce hole surface roughness and tool flank wear.

  9. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    NASA Astrophysics Data System (ADS)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  10. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu; Yao, Sheng-Jie

    2015-08-15

    In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initialmore » as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.« less

  11. Tool life and cutting speed for the maximum productivity at the drilling of the stainless steel X22CrMoV12-1

    NASA Astrophysics Data System (ADS)

    Vlase, A.; Blăjină, O.; Iacob, M.; Darie, V.

    2015-11-01

    Two addressed issues in the research regarding the cutting machinability, establishing of the optimum cutting processing conditions and the optimum cutting regime, do not yet have sufficient data for solving. For this reason, in the paper it is proposed the optimization of the tool life and the cutting speed at the drilling of a certain stainless steel in terms of the maximum productivity. For this purpose, a nonlinear programming mathematical model to maximize the productivity at the drilling of the steel is developed in the paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the numerical mathematical model. Using this proposed model allows increasing the accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The results presented in this paper can be used in the production activity, in order to increase the productivity of the stainless steels machining. Also new research directions for the specialists in this interested field may come off from this paper.

  12. In a 21-2n deformed stainless steel influence of recovery temperature

    NASA Astrophysics Data System (ADS)

    De Ita, A.; Ugalde, P.; Flores, D.

    2017-01-01

    We present the influence high heat treatment temperature of a nitrogen austenitic stainless steel, deform by cold compression, in 10 different percentages. The steel contains high chromium (19.25 %), nickel (1.5 %) and nitrogen (0.2 %). The typical applications for this alloy are automobile parts and special valves for his excellent mechanical properties and corrosion resistance. Produced by hot rolling, they were subjected homogenized treatment at 975 °C for 45 minutes. Subsequently, deformed, by cold compression. We get ten different deformations, from 3 % to 22 %. These samples then to a heat treatment at 750 °C for one, 2 and 4 hours respectively. To observe the microstructure all samples were metallographic study and measured also their Rockwell C hardness. The initial sample has an austenitic matrix with a small amount of precipitates with a 42 RC average hardness. The homogenized sample had a 39 RC hardness. The deformed samples increased their hardness with a maximum of 49 RC. The samples with the treatment, showed a lower hardness with longer time with high dispersion. The decreased of hardness is due to the elimination of residual stresses and precipitates increasing size.

  13. Microstructures and mechanical properties of duplex low carbon steel

    NASA Astrophysics Data System (ADS)

    Alfirano; Eben, U. S.; Hidayat, M.

    2018-04-01

    The microstructures behavior of duplex cold-rolled low carbon steel for automotive applications has been investigated. Intercritical annealing treatment is commonly used to develop a duplex low carbon steel containing ferrite and martensite. To get a duplex phase ferrite and martensite, the specimens were heated at inter-critical annealing temperature of 775°C - 825°C, for heating time up to 20 minutes, followed by water-quenched. The hardness of specimens was studied. The optical microscopy was used to analyze the microstructures. The optimal annealing conditions (martensite volume fraction approaching 20%) at 775°C with a heating time of 10 minutes was achieved. The highest hardness value was obtained in cold-rolled specimens of 41% in size reduction for intercritical annealing temperature of 825°C. In this condition, the hardness value was 373 HVN. The correlation between intercritical annealing temperature and time can be expressed in the transformation kinetics as fγ/fe = 1-exp(-Ktn) wherein K and n are grain growth rate constant and Avrami’s exponent, respectively. From experiment, the value of K = 0.15 and n = 0.461. Using the relationship between temperatures and heating time, activation energy (Q) can be calculated that is 267 kJ/mol.

  14. Microstructure characterization based on the type of deformed grains in cold-rolled, Cu-added, bake-hardenable steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.S.; Kim, S.I.; Choi, S.-H., E-mail: shihoon@sunchon.ac.kr

    2014-06-01

    The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on themore » Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.« less

  15. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    NASA Astrophysics Data System (ADS)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  16. Thermal stress, human performance, and physical employment standards.

    PubMed

    Cheung, Stephen S; Lee, Jason K W; Oksa, Juha

    2016-06-01

    Many physically demanding occupations in both developed and developing economies involve exposure to extreme thermal environments that can affect work capacity and ultimately health. Thermal extremes may be present in either an outdoor or an indoor work environment, and can be due to a combination of the natural or artificial ambient environment, the rate of metabolic heat generation from physical work, processes specific to the workplace (e.g., steel manufacturing), or through the requirement for protective clothing impairing heat dissipation. Together, thermal exposure can elicit acute impairment of work capacity and also chronic effects on health, greatly contributing to worker health risk and reduced productivity. Surprisingly, in most occupations even in developed economies, there are rarely any standards regarding enforced heat or cold safety for workers. Furthermore, specific physical employment standards or accommodations for thermal stressors are rare, with workers commonly tested under near-perfect conditions. This review surveys the major occupational impact of thermal extremes and existing employment standards, proposing guidelines for improvement and areas for future research.

  17. Experimental investigation on hard turning of AISI 4340 steel using cemented coated carbide insert

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, J.; Kishore, K. P.; Ranjith Kumar, M.; Saran Karthick, K. R.; Vishnu Gowtham, S.

    2018-02-01

    Hard turning is a developing technology that offers many potential advantages compared to grinding, which remains the standard finishing process for critical hardened surfaces. In this work, an attempt has been made to experimentally investigate hard turning of AISI 4340 steel under wet and dry condition using cemented coated carbide insert. Hardness of the workpiece material is tested using Brinell and Rockwell hardness testers. CNC LATHE and cemented coated carbide inserts of designation CNMG 120408 are used for conducting experimental trials. Significant cutting parameters like cutting speed, feed rate and depth of cut are considered as controllable input parameters and surface roughness (Ra), tool wear are considered as output response parameters. Design of experiments is carried out with the help of Taguchi’s L9 orthogonal array. Results of response parameters like surface roughness and tool wear under wet and dry condition are analysed. It is found that surface roughness and tool wear are higher under dry machining condition when compared to wet machining condition. Feed rate significantly influences the surface roughness followed by cutting speed. Depth of cut significantly influences the tool wear followed by cutting speed.

  18. Pin on disk against ball on disk for the evaluation of wear improvement on cryo-treated metal cutting shears

    NASA Astrophysics Data System (ADS)

    Jimbert, P.; Iturrondobeitia, M.; Ibarretxe, J.; Fernandez-Martinez, R.

    2015-03-01

    When talking about trybology, the election of the laboratory experiment type is a common problem of discussion. Laboratory wear methods are not designed to exactly reproduce the real working conditions of the analyzed part itself but serve to engineers and researcher to extrapolate the laboratory results to the real application. In order to shed some light on this issue, two wear tests have been analyzed following an ASTM standard and using the same experimental parameters and testing pair-materials in order to be able to make a comparison: Pin-on-Disk (PoD) against Ball-on-Disk (BoD). Three different tool steel have been analyzed in this study, AISI D2, AISI A8 and AISI H13, used to produce metal cutting shears. Metal on metal dry sliding tests were designed in order to reproduce the tool working conditions. These three materials were cryogenically treated and compared against no cryogenically treated ones to measure the improvement on their wear resistance due to cryogenic treatment. Finally, the wear rates obtained with both laboratory tests were compared against some real production metal cutting tools wear data. Results revealed an improvement of the wear resistance for cryo-treated samples of around 20% with the BoD test and around 6% with the PoD test. Real production tools wear was calculated for one of the tool steels and for two different applications. The improvement was approximately the one revealed by the BoD test. So, for the studied case, the BoD laboratory test gives more realistic prediction of real tool life improvement due to the cryogenic treatment.

  19. An Introduction to Structural Reliability Theory

    DTIC Science & Technology

    1989-01-01

    Test Samples psi COV Distribution Remarks Yield stress 66 (XX 0.09 assumed lognormal mill test I containment vesel SA537 GrB Yield stress 󈧗 6W8...straightened shape Tension :32 57.909 0.089 cold straightened shape Tension 9 84.039 0.1124 annealed , alloy steel Tension 9 124,9 0.1796 . quenched...alloys, annealed and quenched, and drawn samples Tension 22 29.50 X 103 0.0072 .. structural steel Compression 22 29.49 X 103 0.0146 ... structural

  20. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    NASA Astrophysics Data System (ADS)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  1. Correlation of Microstructure and Texture in a Two-Phase High-Mn Twinning-Induced Plasticity Steel During Cold Rolling

    NASA Astrophysics Data System (ADS)

    Ashiq, Mohammad; Dhekne, Pushkar; Hamada, Atef Saad; Sahu, Puspendu; Mahato, B.; Minz, R. K.; Ghosh Chowdhury, Sandip; Pentti Karjalainen, L.

    2017-10-01

    The evolution of microstructure and texture of a two-phase austenite-ferrite twinning-induced plasticity steel during cold rolling was investigated and different deformation mechanisms were found to become active with increasing thickness reductions. Optical microscopy showed the formation of brass-type shear bands across several austenite grains at reductions greater than 50 pct. TEM observations reveal the presence of deformation twinning in austenite. The austenite phase initially shows the Cu-type texture, i.e., Cu {1 1 2}〈1 1 1〉, Goss {0 1 1}〈1 0 0〉 with a spread toward Brass {1 1 0}〈1 1 2〉. With continued cold rolling, the Cu {1 1 2}〈1 1 1〉 component moves toward CuT component {552}〈115〉 and the other two components increase in intensity. There is also emergence of {111} fiber after 90 pct cold rolling. The ferrite phase exhibits the evolution of ND-rotated Cube component {001}〈110〉 along with 〈110〉 fiber at lower as well as at higher rolling reductions. An exception is at 75 pct reduction, when the ferrite texture contains {111} fiber in place of 〈110〉 fiber with a weak rotated-Cube component. Phase fraction analysis by X-ray diffraction indicates a decrease in the austenite fraction up to 75 pct reduction followed by an increase at 90 pct reduction. After 90 pct cold rolling, the phase fraction is similar to that of the "as-received" state. Elongated grains of ferrite phase in finer dimensions after 90 pct cold rolling indicate softening within that phase; at similar stage, there are finer scale austenite grains mostly at the grain boundaries. The above has been suggested to be related with the adiabatic heating during cold rolling due to the high strain hardening of the austenite phase.

  2. Grain Orientation Dependence of the Residual Lattice Strain in a Cold Rolled Interstitial-Free Steel

    DOE PAGES

    Xie, Qingge; Gorti, Sarma B.; Sidor, Jurij; ...

    2018-01-10

    The experimentally measured grain-orientation-dependent residual lattice strains, evolved in an interstitia-free steel after 70% cold rolling reduction, are studied by means of crystal elastic visco-plastic finite element simulations, which provides a very satisfactory prediction of deformation texture. The calculated residual lattice strain pole figure matches well with the experimentally measured counterpart within the highest density regions of major texture components observed. Both experimental evidence and results of modeling clearly indicate that the residual lattice strain is orientation dependent, based on comprehensive information on the evolution of residual lattice strain in various crystallographic orientations during plastic deformation. It appears that inmore » a cold rolled material, there is a general correlation between the stresses developed just prior to unloading and the residual lattice strains in particular directions. Here, it is also shown that the cumulative plastic shear does not reveal a clear correlation with the components of residual lattice strain while presented in the normal correlation plot, however, this relationship can be better understood by means of the orientation distribution function of residual lattice strain, which can be derived from the neutron or X-ray diffraction experiments.« less

  3. Grain Orientation Dependence of the Residual Lattice Strain in a Cold Rolled Interstitial-Free Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Qingge; Gorti, Sarma B.; Sidor, Jurij

    The experimentally measured grain-orientation-dependent residual lattice strains, evolved in an interstitia-free steel after 70% cold rolling reduction, are studied by means of crystal elastic visco-plastic finite element simulations, which provides a very satisfactory prediction of deformation texture. The calculated residual lattice strain pole figure matches well with the experimentally measured counterpart within the highest density regions of major texture components observed. Both experimental evidence and results of modeling clearly indicate that the residual lattice strain is orientation dependent, based on comprehensive information on the evolution of residual lattice strain in various crystallographic orientations during plastic deformation. It appears that inmore » a cold rolled material, there is a general correlation between the stresses developed just prior to unloading and the residual lattice strains in particular directions. Here, it is also shown that the cumulative plastic shear does not reveal a clear correlation with the components of residual lattice strain while presented in the normal correlation plot, however, this relationship can be better understood by means of the orientation distribution function of residual lattice strain, which can be derived from the neutron or X-ray diffraction experiments.« less

  4. Wastewater heat recovery method and apparatus

    DOEpatents

    Kronberg, J.W.

    1991-01-01

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  5. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  6. Wastewater heat recovery apparatus

    DOEpatents

    Kronberg, J.W.

    1992-09-01

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  7. Comparative Investigation on Tool Wear during End Milling of AISI H13 Steel with Different Tool Path Strategies

    NASA Astrophysics Data System (ADS)

    Adesta, Erry Yulian T.; Riza, Muhammad; Avicena

    2018-03-01

    Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.

  8. Experimental investigation and optimization of welding process parameters for various steel grades using NN tool and Taguchi method

    NASA Astrophysics Data System (ADS)

    Soni, Sourabh Kumar; Thomas, Benedict

    2018-04-01

    The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.

  9. Impact of heat treatment on HSS cutting tool (ASTM A600) and its behaviour during machining of mild steel (ASTM A36)

    NASA Astrophysics Data System (ADS)

    Afolalu, S. A.; Abioye, O. P.; Salawu, E. Y.; Okokpujie, I. P.; Abioye, A. A.; Omotosho, O. A.; Ajayi., O. O.

    2018-04-01

    Carburization is one the best heat treatment that responded well to hardening with Palm Kernel Shell giving the best hardness value. This work studied the influence of carburization on HSStool(ASTM A600) and its behaviour during machining of mild steel (ASTM A36). Composition of the samples (12 pieces of 180 × 12 × 12 mm) HSS tools were checked using UV-VIS spectrometer and the tools were carburized with PKS at holding temperatures and time of 800, 850, 900, 950 °C and 60,90 120 minutes using muffle furnance. The micro structural analysis, surface and core hardnessof the treated samples gave better results than the untreated samples when checked withsoft driven and optical microscope. It wasalso observed that increase in the feed rate and depth for length of cut of 50 mm significantly reduces the wear progression and thereby gave best machining time at maximum carburizing temperature and time(950 °C / 120 minutes) when it was used to cut mild steelon the lathe machine.

  10. Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Durga Prasada Rao, V.; Harsha, N.; Raghu Ram, N. S.; Navya Geethika, V.

    2018-02-01

    In this work, turning was performed to optimize the surface finish or roughness (Ra) of stainless steel 304 with uncoated and coated carbide tools under dry conditions. The carbide tools were coated with Titanium Aluminium Nitride (TiAlN) nano coating using Physical Vapour Deposition (PVD) method. The machining parameters, viz., cutting speed, depth of cut and feed rate which show major impact on Ra are considered during turning. The experiments are designed as per Taguchi orthogonal array and machining process is done accordingly. Then second-order regression equations have been developed on the basis of experimental results for Ra in terms of machining parameters used. Regarding the effect of machining parameters, an upward trend is observed in Ra with respect to feed rate, and as cutting speed increases the Ra value increased slightly due to chatter and vibrations. The adequacy of response variable (Ra) is tested by conducting additional experiments. The predicted Ra values are found to be a close match of their corresponding experimental values of uncoated and coated tools. The corresponding average % errors are found to be within the acceptable limits. Then the surface roughness equations of uncoated and coated tools are set as the objectives of optimization problem and are solved by using Differential Evolution (DE) algorithm. Also the tool lives of uncoated and coated tools are predicted by using Taylor’s tool life equation.

  11. European Scientific Notes. Volume 36, Number 3,

    DTIC Science & Technology

    1982-03-31

    lectures), applications on metal-forminig tools where the engineering applications (18 lectures), high substrate is typically H13 steel hardened to power...gas flow is inter- mittent. layered metal and compound coatings can be produced. This not only gives materials H13 steel was severely scored after...usually applied to Medicine, the Czechoslovak Biological Society, high-speed tool steels . Brno, and the House of Technology, Prague. For the most

  12. Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina.

    PubMed

    Hissler, Christophe; Stille, Peter; Krein, Andreas; Geagea, Majdi Lahd; Perrone, Thierry; Probst, Jean-Luc; Hoffmann, Lucien

    2008-11-01

    Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr-Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production.

  13. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  14. Molten salt thermal energy storage subsystem for solar thermal central receiver plants

    NASA Astrophysics Data System (ADS)

    Wells, P. B.; Nassopoulos, G. P.

    1982-02-01

    The development of a low cost thermal energy storage subsystem for large solar plants is described. Molten nitrate salt is used as both the solar plant working fluid and the storage medium. The storage system consists of a specially designed hot tank to hold salt at a storage temperature of 839K (1050 deg F) and a separate carbon steel cold tank to hold the salt after its thermal energy has been extracted to generate steam. The hot tank is lined with insulating firebrick to reduce the shell temperature to 561K (550 deg F) so that a low cost carbon steel shell is used. The internal insulation is protected from the hot salt by a unique metal liner with orthogonal corrugations to allow for numerous cycles of thermal expansion and contraction. A preliminary design for a large commercial size plant (1200 MWh sub +), a laboratory test program for the critical components, and the design, construction, and test of a small scale (7 MWH sub t) research experiment at the Central Receiver Test Facility in Albuquerque, New Mexico is described.

  15. Effect of the Leveling Conditions on Residual Stress Evolution of Hot Rolled High Strength Steels for Cold Forming

    NASA Astrophysics Data System (ADS)

    Park, Keecheol; Oh, Kyungsuk

    2017-09-01

    In order to investigate the effect of leveling conditions on residual stress evolution during the leveling process of hot rolled high strength steels, the in-plane residual stresses of sheet processed under controlled conditions at skin-pass mill and levelers were measured by cutting method. The residual stress was localized near the edge of sheet. As the thickness of sheet was increased, the residual stress occurred region was expanded. The magnitude of residual stress within the sheet was reduced as increasing the deformation occurred during the leveling process. But the residual stress itself was not removed completely. The magnitude of camber occurred at cut plate was able to be predicted by the residual stress distribution. A numerical algorithm was developed for analysing the effect of leveling conditions on residual stress. It was able to implement the effect of plastic deformation in leveling, tension, work roll bending, and initial state of sheet (residual stress and curl distribution). The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.

  16. Pre-processing of data coming from a laser-EMAT system for non-destructive testing of steel slabs.

    PubMed

    Sgarbi, Mirko; Colla, Valentina; Cateni, Sivia; Higson, Stuart

    2012-01-01

    Non destructive test systems are increasingly applied in the industrial context for their strong potentialities in improving and standardizing quality control. Especially in the intermediate manufacturing stages, early detection of defects on semi-finished products allow their direction towards later production processes according to their quality, with consequent considerable savings in time, energy, materials and work. However, the raw data coming from non destructive test systems are not always immediately suitable for sophisticated defect detection algorithms, due to noise and disturbances which are unavoidable, especially in harsh operating conditions, such as the ones which are typical of the steelmaking cycle. The paper describes some pre-processing operations which are required in order to exploit the data coming from a non destructive test system. Such a system is based on the joint exploitation of Laser and Electro-Magnetic Acoustic Transducer technologies and is applied to the detection of surface and sub-surface cracks in cold and hot steel slabs. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  18. Torsional Restraint Problem of Steel Cold-Formed Beams Restrained By Planar Members

    NASA Astrophysics Data System (ADS)

    Balázs, Ivan; Melcher, Jindřich; Pešek, Ondřej

    2017-10-01

    The effect of continuous or discrete lateral and torsional restraints of metal thinwalled members along their spans can positively influence their buckling resistance and thus contribute to more economical structural design. The prevention of displacement and rotation of the cross-section results in stabilization of the member. The restraints can practically be provided e.g. by planar members of cladding supported by metal members (purlins, girts). The rate of stabilization of a member can be quantified using values of shear and rotational stiffness provided by the adjacent planar members. While the lateral restraint effected by certain shear stiffness can be often considered as sufficient, the complete torsional restraint can be safely considered in some practical cases only. Otherwise the values of the appropriate rotational stiffness provided by adjacent planar members may not be satisfactory to ensure full torsional restraint and only incomplete restraint is available. Its verification should be performed using theoretical and experimental analyses. The paper focuses on problem of steel thin-walled coldformed beams stabilized by planar members and investigates the effect of the magnitude of the rotational stiffness provided by the planar members on the resistance of the steel members. Cold-formed steel beams supporting planar members of cladding are considered. Full lateral restraint and incomplete torsional restraint are assumed. Numerical analyses performed using a finite element method software indicate considerable influence of the torsional restraint on the buckling resistance of a steel thin-walled member. Utilization of the torsional restraint in the frame of sizing of a stabilized beam can result in more efficient structural design. The paper quantifies this effect for some selected cases and summarizes results of numerical analysis.

  19. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    NASA Astrophysics Data System (ADS)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-11-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  20. Advanced analysis tools and programs to accelerate the adoption of more natural structures

    Treesearch

    Christopher G. Hunt; Joseph Jakes; Charles Frihart

    2017-01-01

    While wood is a highly desirable building material from an ecological and sustainability perspective, we do not understand its fundamental properties nearly as well as we understand competing materials such as steel and concrete. We can avoid toxic preservatives by acetylating wood, but we don’t fundamentally understand why acetylation works. Hydroxymethylated...

  1. A preliminary analysis of incident investigation reports of an integrated steel plant: some reflection.

    PubMed

    Verma, A; Maiti, J; Gaikwad, V N

    2018-06-01

    Large integrated steel plants employ an effective safety management system and gather a significant amount of safety-related data. This research intends to explore and visualize the rich database to find out the key factors responsible for the occurrences of incidents. The study was carried out on the data in the form of investigation reports collected from a steel plant in India. The data were processed and analysed using some of the quality management tools like Pareto chart, control chart, Ishikawa diagram, etc. Analyses showed that causes of incidents differ depending on the activities performed in a department. For example, fire/explosion and process-related incidents are more common in the departments associated with coke-making and blast furnace. Similar kind of factors were obtained, and recommendations were provided for their mitigation. Finally, the limitations of the study were discussed, and the scope of the research works was identified.

  2. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    NASA Astrophysics Data System (ADS)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  3. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  4. 40 CFR 420.101 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 420.101 Section 420.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101...

  5. A study on the effect of tool electrode thickness on MRR, and TWR in electrical discharge turning process

    NASA Astrophysics Data System (ADS)

    Gohil, Vikas; Puri, YM

    2018-04-01

    Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.

  6. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    NASA Astrophysics Data System (ADS)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  7. Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance

    NASA Astrophysics Data System (ADS)

    Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.

    2018-01-01

    The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.

  8. Effect of hot rolling on the structure and the mechanical properties of nitrogen-bearing austenitic-martensitic 14Kh15AN4M steel

    NASA Astrophysics Data System (ADS)

    Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.

    2016-04-01

    The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.

  9. CO2 laser versus cold steel margin analysis following endoscopic excision of glottic cancer

    PubMed Central

    2014-01-01

    Objective To compare the suitability of CO2 laser with steel instruments for margin excision in transoral laser microsurgery. Methods Prospective randomized blinded study. Patients with glottic cancer undergoing laser resection were randomized to margin excision by either steel instruments or CO2 laser. Margins were analyzed for size, interpretability and degree of artifact by a pathologist who was blinded to technique. Results 45 patients were enrolled in the study with 226 total margins taken. 39 margins taken by laser had marked artifact and 0 were uninterpretable. 20 margins taken by steel instruments had marked artifact, and 2 were uninterpretable. Controlling for margin size, the laser technique was associated with increasing degrees of margin artifact (p = 0.210), but there was no difference in crude rates of uninterpretability (p = 0.24). Conclusion Laser margin excision is associated with a greater degree of artifact than steel instrument excision, but was not associated with higher rate of uninterpretability. PMID:24502856

  10. Implementation of straight and curved steel girder erection design tools construction : summary.

    DOT National Transportation Integrated Search

    2010-11-05

    Project 0-5574 Curved Plate Girder Design for Safe and Economical Construction, resulted in the : development of two design tools, UT Lift and UT Bridge. UT Lift is a spreadsheet-based program for analyzing : steel girders during lifting while ...

  11. A novel ultrafine-grained Fe−22Mn−0.6C TWIP steel with superior strength and ductility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Y.Z., E-mail: yztian@imr.ac.cn

    A fully recrystallized ultrafine-grained (UFG) Fe−22wt.%Mn−0.6wt.%C twinning-induced plasticity (TWIP) steel with mean grain size of 576 nm was fabricated by cold rolling and annealing process. Tensile test showed that this UFG steel possessed high yield strength of 785 MPa, and unprecedented uniform elongation of 48%. The Hall-Petch relationship was verified from the coarse-grained (CG) regime to the ultrafine-grained (UFG) regime. The microstructures at specified tensile strains were characterized by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The microstructures and strain hardening behavior of the UFG TWIP steel were compared with the CG counterpart. The strong strain hardening capabilitymore » of the UFG steel is supposed to be responsible for the high strength and good ductility. - Highlights: • A fully recrystallized Fe−22Mn−0.6C TWIP steel with mean grain size of 576 nm was fabricated. • The ultrafine-grained (UFG) steel exhibits strong strain-hardening capability, excellent strength and ductility. • The Hall-Petch relationship is fitted well from the CG regime to the UFG regime.« less

  12. Effect of shot peening on the microstructure of laser hardened 17-4PH

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Jiang, Chuanhai; Gan, Xiaoyan; Chen, Yanhua

    2010-12-01

    In order to investigate the influence of shot peening on microstructure of laser hardened steel and clarify how much influence of initial microstructure induced by laser hardening treatment on final microstructure of laser hardened steel after shot peening treatment, measurements of retained austenite, measurements of microhardness and microstructural analysis were carried out on three typical areas including laser hardened area, transitional area and matrix area of laser hardened 17-4PH steel. The results showed that shot peening was an efficient cold working method to eliminate the retained austenite on the surface of laser hardened samples. The surface hardness increased dramatically when shot peening treatments were carried out. The analyses of microstructure of laser hardened 17-4PH after shot peening treatment were carried out in matrix area and laser hardened area via Voigt method. With the increasing peening intensity, the influence depth of shot peening on hardness and microstructure increased but the surface hardness and microstructure did not change when certain peening intensity was reached. Influence depth of shot peening on hardness was larger than influence depth of shot peening on microstructure due to the kinetic energy loss along the depth during shot peening treatment. From the microstructural result, it can be shown that the shot peening treatment can influence the domain size and microstrain of treated samples but laser hardening treatment can only influence the microstrain of treated samples.

  13. Structure, Dynamic Cracking Resistance, and Crack Growth Micromechanism in Pipe Billets after Thermomechanical Treatment

    NASA Astrophysics Data System (ADS)

    Simonov, M. Yu.; Simonov, Yu. N.; Shaimanov, G. S.

    2018-01-01

    The structure, dynamic cracking resistance, and micromechanisms of crack growth in initially highly tempered pipe billets made of structural carbon steel are studied after thermomechanical treatment, including cold plastic deformation by radial forging followed by annealing, under various conditions. The strength is found to be maximum after cold radial forging followed by annealing at 300°C. Cold radial forging and annealing at 600°C are shown to cause the formation of an ultrafine-grained structure with an average grain/subgrain size of 900 nm. The structural features formed in both the axial and the transverse direction after cold radial forging have been revealed. The mechanism of crack growth after heat treatment and thermomechanical treatment has been studied. The fracture surface elements formed during dynamic-crackingresistance tests have been qualitatively analyzed.

  14. Microstructure and Mechanical Properties of Dissimilar Friction Stir Spot Welding Between St37 Steel and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah

    2017-05-01

    In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.

  15. Easy-To-Use Connector-Assembly Tool

    NASA Technical Reports Server (NTRS)

    Redmon, John W., Jr.; Jankowski, Fred

    1988-01-01

    Tool compensates for user's loss of dexterity under awkward conditions. Has jaws that swivel over 180 degree so angle adjusts with respect to handles. Oriented and held in position most comfortable and effective for user in given situation. Jaws lined with rubber pads so they conform to irregularly shaped parts and grips firmly but gently. Once tool engages part, it locks on it so user can release handles without losing part. Ratchet mechanism in tool allows user to work handles back and forth in confined space to connect or disconnect part. Quickly positioned, locked, and released. Gives user feel of its grip on part. Frees grasping muscles from work during part of task, giving user greater freedom to move hand. Operates with only one hand, leaving user's other hand free to manipulate wiring or other parts. Also adapts to handling and positioning extremely-hot or extremely-cold fluid lines, contaminated objects, abrasive or sharp objects, fragile items, and soft objects.

  16. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunshah, R.F.; Shabaik, A.H.

    The process of Activated Reactive Evaporation is used to synthesize superhard materials like carbides, oxides, nitrides and ultrafine grain cermets. The deposits are characterized by hardness, microstructure, microprobe analysis for chemistry and lattice parameter measurements. The synthesis and characterization of TiC-Ni cermets and Al/sub 2/O/sub 3/ are given. High speed steel tool coated with TiC, TiC-Ni and TaC are tested for machining performance at different speeds and feeds. The machining evaluation and the selection of coatings is based on the rate of deterioration of the coating tool temperature, and cutting forces. Tool life tests show coated high speed steel toolsmore » having 150 to 300% improvement in tool life compared to uncoated tools. Variability in the quality of the ground edge on high speed steel inserts produce a great scatter in the machining evaluation data.« less

  18. Cold Background, Flight Motion Simulator Mounted, Infrared Scene Projectors Developed for use in AMRDEC Hardware-in-the-Loop

    DTIC Science & Technology

    2004-01-01

    cooled below –40ºC with the ultra low temperature chiller operating at –50ºC. At these low temperatures, elastomer compounds (i.e. nylon hose and o...projector hardware. Consideration of steel braided Teflon hose or even a thin wall flexible steel hose will be made for future operation of the YUGO...Cajon VCR vacuum port on the bottom of the array using a metal gasket. This change eliminated one elastomer seal that was most likely to fail at low

  19. 77 FR 10722 - Drill Pipe From the People's Republic of China: Termination of Anti-Circumvention Inquiry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... response to a request from VAM Drilling U.S.A., Texas Steel Conversion Inc. and Rotary Drilling Tools... products covered by the orders are steel drill pipe, and steel drill collars, whether or not conforming to... drill collars without regard to the specific chemistry of the steel (i.e., carbon, stainless steel, or...

  20. Investigation of the interfacial reactions between steel and aluminum coatings for hybrid casting

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.

    2018-06-01

    Coating of AA7075 was applied by means of cold gas spraying on steel substrates of 22MnB5 and DC04 as an interlayer for high pressure die casting of aluminum/steel hybrid components. The morphology and growth kinetics of intermetallic compounds formed at the interface between coating and steel has been investigated. Furthermore, the effect of alloying elements on the formation of the intermetallic phases was analyzed. The coated samples were heat treated by means of induction heating at the temperature T = 550 °C with different dwell times in the range of 10 s < t < 5 min. The reaction layer growth was examined by means of scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). Additionally, the intermetallic compounds were characterized by means of nanoindentation. Intermetallic compounds of AlFe phases occurred as the major constituent in the reaction zone for different combinations of coating and substrates.

Top