Science.gov

Sample records for coli cell surface

  1. DETOXIFICATION OF ORGANOPHOSPHATE PESTICIDES BY IMMOBILIZED ESCHERICHIA COLI EXPRESSING ORGANOPHOSPHORUS HYDROLASE ON CELL SURFACE. (R823663)

    EPA Science Inventory

    An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalys...

  2. Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins.

    PubMed

    Freeman, A; Abramov, S; Georgiou, G

    1996-12-05

    A large biotechnological potential is inherent in the display of proteins (e.g., enzymes, single-chain antibodies, on the surface of bacterial cells) (Georgiou et al., 1993). Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article we describe the adaptation of a simple two-stage chemical crosslinking procedure based on "bi-layer encagement" (Tor et al., 1989) for stabilizing Escherichia coli cells expressing an Lpp-OmpA (46-159)-beta-lactamase fusion that displays beta-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 degrees C of surface anchored beta-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 degrees C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents.

  3. Programming Controlled Adhesion of E. coli to Target Surfaces, Cells, and Tumors with Synthetic Adhesins

    PubMed Central

    2014-01-01

    In this work we report synthetic adhesins (SAs) enabling the rational design of the adhesion properties of E. coli. SAs have a modular structure comprising a stable β-domain for outer membrane anchoring and surface-exposed immunoglobulin domains with high affinity and specificity that can be selected from large repertoires. SAs are constitutively and stably expressed in an E. coli strain lacking a conserved set of natural adhesins, directing a robust, fast, and specific adhesion of bacteria to target antigenic surfaces and cells. We demonstrate the functionality of SAs in vivo, showing that, compared to wild type E. coli, lower doses of engineered E. coli are sufficient to colonize solid tumors expressing an antigen recognized by the SA. In addition, lower levels of engineered bacteria were found in non-target tissues. Therefore, SAs provide stable and specific adhesion capabilities to E. coli against target surfaces of interest for diverse applications using live bacteria. PMID:25045780

  4. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins.

    PubMed

    Piñero-Lambea, Carlos; Bodelón, Gustavo; Fernández-Periáñez, Rodrigo; Cuesta, Angel M; Álvarez-Vallina, Luis; Fernández, Luis Ángel

    2015-04-17

    In this work we report synthetic adhesins (SAs) enabling the rational design of the adhesion properties of E. coli. SAs have a modular structure comprising a stable β-domain for outer membrane anchoring and surface-exposed immunoglobulin domains with high affinity and specificity that can be selected from large repertoires. SAs are constitutively and stably expressed in an E. coli strain lacking a conserved set of natural adhesins, directing a robust, fast, and specific adhesion of bacteria to target antigenic surfaces and cells. We demonstrate the functionality of SAs in vivo, showing that, compared to wild type E. coli, lower doses of engineered E. coli are sufficient to colonize solid tumors expressing an antigen recognized by the SA. In addition, lower levels of engineered bacteria were found in non-target tissues. Therefore, SAs provide stable and specific adhesion capabilities to E. coli against target surfaces of interest for diverse applications using live bacteria.

  5. Impacts of hematite nanoparticle exposure on biomechanical, adhesive, and surface electrical properties of Escherichia coli cells.

    PubMed

    Zhang, Wen; Hughes, Joseph; Chen, Yongsheng

    2012-06-01

    Despite a wealth of studies examining the toxicity of engineered nanomaterials, current knowledge on their cytotoxic mechanisms (particularly from a physical perspective) remains limited. In this work, we imaged and quantitatively characterized the biomechanical (hardness and elasticity), adhesive, and surface electrical properties of Escherichia coli cells with and without exposure to hematite nanoparticles (NPs) in an effort to advance our understanding of the cytotoxic impacts of nanomaterials. Both scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that E. coli cells had noticeable deformation with hematite treatment for 45 min with a statistical significance. The hematite-treated cells became significantly harder or stiffer than untreated ones, as evidenced by indentation and spring constant measurements. The average indentation of the hematite-treated E. coli cells was 120 nm, which is significantly lower (P < 0.01) than that of the untreated cells (approximately 400 nm). The spring constant of hematite-treated E. coli cells (0.28 ± 0.11 nN/nm) was about 20 times higher than that of untreated ones (0.01 ± 0.01 nN/nm). The zeta potential of E. coli cells, measured by dynamic light scattering (DLS), was shown to shift from -4 ± 2 mV to -27 ± 8 mV with progressive surface adsorption of hematite NPs, a finding which is consistent with the local surface potential measured by Kelvin probe force microscopy (KPFM). Overall, the reported findings quantitatively revealed the adverse impacts of nanomaterial exposure on physical properties of bacterial cells and should provide insight into the toxicity mechanisms of nanomaterials.

  6. Polyamino acid display on cell surfaces enhances salt and alcohol tolerance of Escherichia coli.

    PubMed

    Suzuki, Hirokazu; Ishii, Jun; Kondo, Akihiko; Yoshida, Ken-Ichi

    2015-02-01

    Microbes employ cell membranes for reducing exogenous stresses. Polyamino acid display on microbial cell surfaces and their effects on microbial chemical stress tolerance were examined. Growth analysis revealed that displays of polyarginine, polyaspartate and polytryptophan substantially enhanced tolerance of Escherichia coli to NaCl. A titration assay indicated that polyarginine and polyaspartate altered cell surface charges, implying tolerance enhancement via ion atmosphere and/or ionic bond network formations for electrostatic ion repulsion. The enhancement by polytryptophan may have arisen from surface hydrophobicity increase for hydrophobic ion exclusion, because of a strong correlation between hydrophobic characters of amino acids and their effects on tolerance enhancement. The display also enhanced tolerance to other salts and/or alcohols in E. coli and to NaCl in Saccharomyces cerevisiae. Thus polyamino acid display has the potential as an approach for conferring chemical stress tolerance on various microbes.

  7. Display of functionally active PHB depolymerase on Escherichia coli cell surface.

    PubMed

    Hiraishi, Tomohiro; Yamashita, Koichi; Sakono, Masafumi; Nakanishi, Jun; Tan, Liu-Tzea; Sudesh, Kumar; Abe, Hideki; Maeda, Mizuo

    2012-02-01

    The display of PHB depolymerase (PhaZ(RpiT1) ) from R. pickettii T1 on the surface of E. coli JM109 cells is realized using OprI of P. aeruginosa as the anchoring motif. The fusion protein is stably expressed and its surface localization is verified by immunofluorescence microscopy. The displayed PhaZ(RpiT1) retains its cleaving ability for soluble substrates as well as its ability to adsorb to the PHB surface, and also remains catalycically active in the degradation of insoluble polyester materials, in spite of the possible suppression of the enzyme movement on the polymer surface. The results demonstrate that PhaZ(RpiT1) -displaying E. coli shows potential for use as a whole-cell biocatalyst for the production of (R)-3-hydroxybutyrate monomers from insoluble PHB materials.

  8. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.

    PubMed

    Ai, Ye; Sanders, Claire K; Marrone, Babetta L

    2013-10-01

    A microfluidic device was developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. In this device, two identical surface acoustic waves (SAWs) generated by interdigital transducers (IDTs) propagated toward a microchannel, which accordingly built up a standing surface acoustic wave (SSAW) field across the channel. A numerical model, coupling a piezoelectric effect in the solid substrate and acoustic pressure in the fluid, was developed to provide a better understanding of SSAW-based particle manipulation. It was found that the pressure nodes across the channel were individual planes perpendicular to the solid substrate. In the separation experiments, two side sheath flows hydrodynamically focused the injected particle or cell mixtures into a very narrow stream along the centerline. Particles flowing through the SSAW field experienced an acoustic radiation force that highly depends on the particle properties. As a result, dissimilar particles or cells were laterally attracted toward the pressure nodes at different magnitudes, and were eventually switched to different outlets. Two types of fluorescent microspheres with different sizes were successfully separated using the developed device. In addition, Escherichia coli bacteria premixed in peripheral blood mononuclear cells (PBMCs) were also efficiently isolated using the SSAW-base separation technique. Flow cytometric analysis on the collected samples found that the purity of separated E. coli bacteria was 95.65%.

  9. Survival of Escherichia coli Cells on Solid Copper Surfaces Is Increased by Glutathione

    PubMed Central

    Große, Cornelia; Schleuder, Grit; Schmole, Christin

    2014-01-01

    Bacteria are rapidly killed on solid copper surfaces, so this material could be useful to limit the spread of multiple-drug-resistant bacteria in hospitals. In Escherichia coli, the DNA-protecting Dps protein and the NADH:ubiquinone oxidoreductase II Ndh were not involved in tolerance to copper ions or survival on solid copper surfaces. Decreased copper tolerance under anaerobic growth conditions in the presence of ascorbate and with melibiose as the carbon source indicated that sodium-dependent symport systems may provide an import route for CuI into the cytoplasm. Glutathione-free ΔcopA ΔgshA double mutants of E. coli were more rapidly inactivated on solid copper surfaces than glutathione-containing wild-type cells. Therefore, while DNA protection by Dps was not required, glutathione was needed to protect the cytoplasm and the DNA against damage mediated by solid copper surfaces, which may explain the differences in the molecular mechanisms of killing between glutathione-containing Gram-negative and glutathione-free Gram-positive bacteria. PMID:25192999

  10. Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell exterior

    PubMed Central

    Gustavsson, Martin; Hörnström, David; Lundh, Susanna; Belotserkovsky, Jaroslav; Larsson, Gen

    2016-01-01

    Today, it is considered state-of-the-art to engineer living organisms for various biotechnology applications. Even though this has led to numerous scientific breakthroughs, the enclosed interior of bacterial cells still restricts interactions with enzymes, pathways and products due to the mass-transfer barrier formed by the cell envelope. To promote accessibility, we propose engineering of biocatalytic reactions and subsequent product deposition directly on the bacterial surface. As a proof-of-concept, we used the AIDA autotransporter vehicle for Escherichia coli surface expression of tyrosinase and fully oxidized externally added tyrosine to the biopolymer melanin. This resulted in a color change and creation of a black cell exterior. The capture of ninety percent of a pharmaceutical wastewater pollutant followed by regeneration of the cell bound melanin matrix through a simple pH change, shows the superior function and facilitated processing provided by the surface methodology. The broad adsorption spectrum of melanin could also allow removal of other micropollutants. PMID:27782179

  11. Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM

    SciTech Connect

    Zhang, Wen; Chen, Yongsheng

    2011-01-01

    To better understand environmental behaviors of nanoparticles (NPs), we used the atomic force microscopy (AFM) to measure interaction forces between E. coli cells and NPs immobilized on surfaces in an aqueous environment. The results showed that adhesion force strength was significantly influenced by particle size for both hematite ( -Fe2 O3 ) and corundum ( -Al2 O3 ) NPs whereas the effect on the repulsive force was not observed. The adhesion force decreased from 6.3 0.7 nN to 0.8 0.4 nN as hematite NPs increased from 26 nm to 98 nm in diameter. Corundum NPs exhibited a similar dependence of adhesion force on particle size. The Johnson Kendall Roberts (JKR) model was employed to estimate the contact area between E. coli cells and NPs, and based on the JKR model a new model that considers local effective contact area was developed. The prediction of the new model matched the size dependence of adhesion force in experimental results. Size effects on adhesion forces may originate from the difference in local effective contact areas as supported by our model. These findings provide fundamental information for interpreting the environmental behaviors and biological interactions of NPs, which barely have been addressed.

  12. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography

    PubMed Central

    Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E.; Henderson, James H.; Ren, Dacheng

    2016-01-01

    Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365

  13. Creation of a Cellooligosaccharide-Assimilating Escherichia coli Strain by Displaying Active Beta-Glucosidase on the Cell Surface via a Novel Anchor Protein ▿

    PubMed Central

    Tanaka, Tsutomu; Kawabata, Hitomi; Ogino, Chiaki; Kondo, Akihiko

    2011-01-01

    We demonstrated direct assimilation of cellooligosaccharide using Escherichia coli displaying beta-glucosidase (BGL). BGL from Thermobifida fusca YX (Tfu0937) was displayed on the E. coli cell surface using a novel anchor protein named Blc. This strain was grown successfully on 0.2% cellobiose, and the optical density at 600 nm (OD600) was 1.05 after 20 h. PMID:21742905

  14. Hydrophobic and electrostatic interaction chromatography for estimating changes in cell surface charge of Escherichia coli cells treated with pulsed electric fields.

    PubMed

    Ukuku, Dike O; Yuk, Hyun-Gyun; Zhang, Howard

    2011-10-01

    Pulsed electric field (PEF) treatments, a nonthermal process, have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (pH 3.8) purchased from a wholesale distributor was inoculated with cocktail of Escherichia coli O157:H7 at 7.4 log CFU/mL, processed with a PEF at a field strength of 18.4 kV/cm and 32.2 kV/cm at 25°C, 35°C, and 45°C with a treatment time of 160 μs and a flow rate of 120 mL/min. Bacterial cell surface charge and hydrophobicity of untreated and PEF-treated E. coli O157:H7 were determined immediately and after storage at 5°C and 23°C using hydrophobic and electrostatic interaction chromatography. Similarly, the populations surviving the PEF treatments including injured cells were determined by plating 0.1 mL of the sample on sorbitol MacConkey agar and tryptic soy agar (TSA) plates. The surviving populations of E. coli cells after PEF treatment varied depending on field strength and treatment temperature used. Percent injury in the surviving populations was high immediately after PEF treatment and varied among treatment temperatures. Cell surface charge of E. coli bacteria before PEF treatment averaged 32.10±8.12. PEF treatments at 25°C, 35°C, and 45°C reduced the above surface charge to 26.34±1.24, 14.24±3.30, and 6.72±2.82, respectively. Similarly, the surface hydrophobicity of untreated E. coli cells at 0.194±0.034 was increased to an average of 0.268±0.022, 0.320±0.124, and 0.586±0.123 after PEF treatments at 25°C, 35°C, and 45°C, respectively. The results of this study indicate that PEF treatment affects the outer cell envelope of E. coli bacteria as evidenced by the changes in surface hydrophobicity and cell surface charge leading to injury and subsequent inactivation of the cells.

  15. Site-protected fixation and immobilization of Escherichia coli cells displaying surface-anchored beta-lactamase.

    PubMed

    Freeman, A; Abramov, S; Georgiou, G

    1999-01-20

    Bacteria displaying heterologous receptors or enzymes on their surface hold great potential as whole-cell adsorbents and biocatalysts, respectively. For industrial applications, such surface-engineered cells need to be killed and chemically fixed to prevent disintegration and leakage of the displayed proteins under process conditions. It is also highly desirable to couple the chemically stabilized cells onto a solid support matrix for additional mechanical stability, flexibility in reactor choice, and easy separation from processed medium. Recently, we described the development of a readily scalable methodology for cell killing, fixation, and outer membrane stabilization via glutaraldehyde fixation followed by secondary crosslinking (Freeman, A., Abramov, S. and Georgiou, G. 1996. Biotechnol. Bioeng. 52: 625-630). Glutaraldehyde treatment was also found, however, to reduce the specific activity of a model enzyme, beta-lactamase displayed on the surface of E. coli. Here, we show that crosslinking carried out in the presence of beta-lactamase inhibitors, namely phenyl boronic acid or sodium borate, protects the active site from chemical modification resulting in up to threefold higher specific activities without affecting the cell-stabilizing effect of the glutaraldehyde treatment. To prepare an immobilized whole cell biocatalyst, residual unreacted surface aldehyde groups were employed to immobilize covalently the fixed bacteria onto chitosan-coated cellulose powder. The binding of the bacteria onto chitosan-coated cellulose was quantitative up to cell loading of 83 mg dry cell weight/g of support. Cell immobilization did not introduce mass transfer limitations and created only a modest reduction in Vmax. Thus, chemical crosslinking, affected in presence of reversible active-site inhibitors and coupled with cell immobilization on chitosan-coated cellulose represents a widely useful methodology for the process application of recombinant bacteria displaying surface

  16. Selection of Single Domain Antibodies from Immune Libraries Displayed on the Surface of E. coli Cells with Two β-Domains of Opposite Topologies

    PubMed Central

    Martínez-Arteaga, Rocio; Ruano-Gallego, David; Fraile, Sofía; Margolles, Yago; Teira, Xema; Gutierrez, Carlos; Bodelón, Gustavo; Fernández, Luis Ángel

    2013-01-01

    Screening of antibody (Ab) libraries by direct display on the surface of E. coli cells is hampered by the presence of the outer membrane (OM). In this work we demonstrate that the native β-domains of EhaA autotransporter and intimin, two proteins from enterohemorrhagic E. coli O157:H7 (EHEC) with opposite topologies in the OM, are effective systems for the display of immune libraries of single domain Abs (sdAbs) from camelids (nanobodies or VHH) on the surface of E. coli K-12 cells and for the selection of high affinity sdAbs using magnetic cell sorting (MACS). We analyzed the capacity of EhaA and intimin β-domains to display individual sdAbs and sdAb libraries obtained after immunization with the extracellular domain of the translocated intimin receptor from EHEC (TirMEHEC). We demonstrated that both systems displayed functional sdAbs on the surface of E. coli cells with little proteolysis and cellular toxicity, although E. coli cells displaying sdAbs with the β-domain of intimin showed higher antigen-binding capacity. Both E. coli display libraries were screened for TirMEHEC binding clones by MACS. High affinity binders were selected by both display systems, although more efficiently with the intimin β-domain. The specificity of the selected clones against TirMEHEC was demonstrated by flow cytometry of E. coli cells, along with ELISA and surface plasmon resonance with purified sdAbs. Finally, we employed the E. coli cell display systems to provide an estimation of the affinity of the selected sdAb by flow cytometry analysis under equilibrium conditions. PMID:24086454

  17. Strain level differences in E. coli transport, cell surface and adhesion characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Given the importance of E. coli as an indicator of fecal contamination, it is imperative that genotypic and phenotypic variability among strains of E. coli from the same host and/or environmental niche are understood. The goal of this study was to evaluate the effect of strain level differences on t...

  18. Strain level differences in Escherichia coli transport, cell surface and adhesion characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Given the importance of Escherichia coli as both an indicator of fecal contamination and a potential pathogen, it is imperative that genotypic and phenotypic variability among strains of E. coli from the same host and/or environmental niche are understood. Strain survival and variation are regulated...

  19. Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    PubMed Central

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F. L.

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  20. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    PubMed

    Francius, Grégory; Polyakov, Pavel; Merlin, Jenny; Abe, Yumiko; Ghigo, Jean-Marc; Merlin, Christophe; Beloin, Christophe; Duval, Jérôme F L

    2011-01-01

    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3), cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate

  1. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells.

    PubMed Central

    Knutton, S; Rosenshine, I; Pallen, M J; Nisan, I; Neves, B C; Bain, C; Wolff, C; Dougan, G; Frankel, G

    1998-01-01

    Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, employ a type III secretion system to deliver effector proteins across the bacterial cell. In EPEC, four proteins are known to be exported by a type III secretion system_EspA, EspB and EspD required for subversion of host cell signal transduction pathways and a translocated intimin receptor (Tir) protein (formerly Hp90) which is tyrosine-phosphorylated following transfer to the host cell to become a receptor for intimin-mediated intimate attachment and 'attaching and effacing' (A/E) lesion formation. The structural basis for protein translocation has yet to be fully elucidated for any type III secretion system. Here, we describe a novel EspA-containing filamentous organelle that is present on the bacterial surface during the early stage of A/E lesion formation, forms a physical bridge between the bacterium and the infected eukaryotic cell surface and is required for the translocation of EspB into infected epithelial cells. PMID:9545230

  2. Inactivation of stressed Escherichia coli O157:H7 cells on the surfaces of rocket salad leaves by chlorine and peroxyacetic acid.

    PubMed

    Al-Nabulsi, Anas A; Osaili, Tareq M; Obaidat, Heba M; Shaker, Reyad R; Awaisheh, Saddam S; Holley, Richard A

    2014-01-01

    Because Escherichia coli O157:H7 has been frequently associated with many foodborne outbreaks caused by consumption of leafy greens (lettuce, spinach, and celery), this study investigated the ability of deionized water, chlorine, and peroxyacetic acid to detach or inactivate stressed and unstressed cells of E. coli O157:H7 contaminating the surfaces of rocket salad leaves. E. coli O157:H7 cells stressed by acid, cold, starvation, or NaCl exposure, as well as unstressed cells, were inoculated on the surfaces of rocket salad leaves at 4°C. The effectiveness of two sanitizers (200 ppm of chlorine and 80 ppm of peroxyacetic acid) and deionized water for decontaminating the leaves treated with stressed and unstressed E. coli O157:H7 were evaluated during storage at 10 or 25°C for 0.5, 1, 3, and 7 days. It was found that washing with 80 ppm of peroxyacetic acid was more effective and reduced unstressed and stressed cells of E. coli O157:H7 by about 1 log CFU per leaf on the leaves. There was no apparent difference in the ability of stressed and unstressed cells to survive surface disinfection with the tested agents. Treatments to reduce viable E. coli O157:H7 cells on rocket leaves stored at 25°C were more effective than when used on those stored at 10°C. Washing with peroxyacetic acid or chlorine solution did not ensure the safety of rocket leaves, but such treatments could reduce the likelihood of water-mediated transfer of E. coli O157:H7 during washing and subsequent processing.

  3. Going for baroque at the Escherichia coli K1 cell surface.

    PubMed

    King, Michael R; Steenbergen, Susan M; Vimr, Eric R

    2007-05-01

    Phase variation is usually thought of as the stochastic switching between alternatively expressed ('on') and unexpressed ('off') phenotypic states. However, coupling synthesis of a monotonous homopolysaccharide to a mechanism of random but incomplete chemical modification produces almost infinite structural variation. Potentially limitless variability implies that evolution can produce highly ornate or extravagant flourishes reminiscent of the baroque style. Here, we describe an analysis of capsular polysialic acid form variation in Escherichia coli K1, demonstrating that the large number of variant structures is controlled by a single contingency locus. The mechanism for generating maximum structural diversity from maximal genetic parsimony is conferred by a simple translational switch carried on a K1-specific prophage.

  4. The cell surface protein Ag43 facilitates phage infection of Escherichia coli in the presence of bile salts and carbohydrates.

    PubMed

    Gabig, Magdalena; Herman-Antosiewicz, Anna; Kwiatkowska, Marta; Los, Marcin; Thomas, Mark S; Wegrzyn, Grzegorz

    2002-05-01

    It was found that infection of Escherichia coli by bacteriophage lambda is inhibited in the presence of certain bile salts and carbohydrates when cells are in the "OFF" state for production of the phase-variable cell surface protein antigen 43 (Ag43). The inhibition of phage growth was found to be due to a significant impairment in the process of phage adsorption. Expression of the gene encoding Ag43 (agn43) from a plasmid or inactivation of the oxyR gene (encoding an activator of genes important for defence against oxidative stress) suppressed this inhibition. A mutation, rpoA341, in the gene encoding the alpha subunit of RNA polymerase also facilitated phage adsorption in the presence of bile salts and carbohydrates. The rpoA341 mutation promoted efficient production of Ag43 in a genetic background that would otherwise be in the "OFF" phase for expression of the agn43 gene. Analysis of a reporter gene fusion demonstrated that the promoter for the agn43 gene was more active in the rpoA341 mutant than in the otherwise isogenic rpoA(+) strain. The combined inhibitory action of bile salts and carbohydrates on phage adsorption and the abolition of this inhibition by production of Ag43 was not restricted to lambda, as a similar phenomenon was observed for the coliphages P1 and T4.

  5. Novel cell-surface peptides specific to human oral squamous cell carcinoma using an E. coli peptide display library.

    PubMed

    Kawai, Noriko; Asaumi, Junichi; Murakami, Jun; Wakasa, Toru; Kuroda, Masahiro; Hisatomi, Miki; Unetsubo, Teruhisa; Maki, Yuu; Matsuzaki, Hidenobu; Yanagi, Yoshinonu; Konouchi, Hironobu

    2007-04-01

    We attempted to find a specific antigen of oral squamous cell carcinoma (SCC) cells that could be safely applied to gene therapy in the conservative clinical treatment of oral cancer. We performed subtraction using normal human keratinocyte cells, followed by selection using four oral SCC cell lines. We isolated three clones from poorly differentiated SCC cells and four from well-differentiated SCC cells. These seven clones adsorbed to the oral SCC cells at rates 10-100 times those of normal human keratinocyte cells. The three clones from the poorly differentiated SCC cells showed the same peptide sequence (LAPRTHP). Of the four clones from the well-differentiated SCC cells, three showed the same peptide sequence (FGTLPGT) and the fourth showed a different one (VTPNSTP). Each peptide sequence may recognize the material that exists specifically on the oral SCC cell cortex. We can expect applications not only for tumor-targeting treatment using a gene therapy virus vector but also for diagnosis using, as a tumor marker, the peculiar SCC surface material that these peptides recognize.

  6. Real-Time Sensing of Enteropathogenic E. coli-Induced Effects on Epithelial Host Cell Height, Cell-Substrate Interactions, and Endocytic Processes by Infrared Surface Plasmon Spectroscopy

    PubMed Central

    Zlotkin-Rivkin, Efrat; Rund, David; Melamed-Book, Naomi; Zahavi, Eitan Erez; Perlson, Eran; Mercone, Silvana; Golosovsky, Michael; Davidov, Dan; Aroeti, Benjamin

    2013-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity. PMID:24194932

  7. Genotypic Characterization of Egypt Enterotoxigenic Escherichia coli Isolates Expressing Coli Surface Antigen 6

    DTIC Science & Technology

    2013-02-01

    USA Abstract Introduction: One approach to control enterotoxigenic Escherichia coli (ETEC) infections has been to develop vaccines focused on...results show a lack of clonality among Egypt CS6 E. coli isolates and supports the use and the further research on vaccines targeting this cell surface...has received considerable attention as a target for vaccine development [11-14]. CS6 is immunogenic in humans both after natural infection and

  8. Large Surface Blebs on Escherichia coli Heated to Inactivating Temperatures

    PubMed Central

    Scheie, Paul; Ehrenspeck, Susan

    1973-01-01

    Large surface blebs were observed with phase-contrast optics on Escherichia coli B/r and Bs-1 heated to temperatures at which colony-forming ability was lost. Characterization of such blebs was consistent with the view that they were formed by a physical process and were bounded by the outer membrane of the cell. A hypothesis for thermal inactivation of E. coli is presented that places membrane damage near the primary lethal event. Images PMID:4196258

  9. Identification of Cell Surface-Exposed Proteins Involved in the Fimbria-Mediated Adherence of Enteroaggregative Escherichia coli to Intestinal Cells

    PubMed Central

    Izquierdo, Mariana; Navarro-Garcia, Fernando; Nava-Acosta, Raul; Nataro, James P.; Ruiz-Perez, Fernando

    2014-01-01

    Fimbria-mediated adherence to the intestinal epithelia is a key step in enteroaggregative Escherichia coli (EAEC) pathogenesis. To date, four fimbriae have been described for EAEC; aggregative adherence fimbria II (AAF/II) is the most important adherence factor for EAEC prototype strain 042. Previously, we described results showing that extracellular matrix (ECM) components might be involved in the recognition of AAF/II fimbriae by intestinal cells. In this study, we sought to identify novel potential receptors on intestinal epithelial cells recognized by the AAF/II fimbriae. Purified AafA-dsc protein, the major subunit of AAF/II fimbriae, was incubated with a monolayer of T84 cells, cross-linked to the surface-exposed T84 cell proteins, and immunoprecipitated by using anti-AafA antibodies. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of cellular proteins bound to AafA-dsc protein identified laminin (previously recognized as a potential receptor for AAF/II) and cytokeratin 8 (CK8). Involvement of the major subunit of AAF/II fimbriae (AafA protein) in the binding to recombinant CK8 was confirmed by adherence assays with purified AAF/II fimbriae, AafA-dsc protein, and strain 042. Moreover, HEp-2 cells transfected with CK8 small interfering RNA (siRNA) showed reduced 042 adherence compared with cells transfected with scrambled siRNA as a control. Adherence of 042 to HEp-2 cells preincubated with antibodies against ECM proteins or CK8 was substantially reduced. Altogether, our results supported the idea of a role of CK8 as a potential receptor for EAEC. PMID:24516112

  10. High-sensitivity detection of newly induced LamB protein on the Escherichia coli cell surface.

    PubMed Central

    Vos-Scheperkeuter, G H; Hofnung, M; Witholt, B

    1984-01-01

    The kinetics of the appearance at the cell surface of the outer membrane LamB protein after induction were determined by using specific antibodies and radioiodinated protein A as a probe. This was done in two different induction systems. First, LamB protein was induced in a wild-type strain by the simultaneous addition of cyclic AMP and maltose. Second, an operon fusion strain in which the lamB gene is expressed under lac promoter control was used; in this system, LamB protein can be induced by isopropyl-beta-D-thiogalactopyranoside. When uninduced cells were grown in glucose minimal medium, background expression of the lamB gene was found to be ca. 10-fold lower in lac-lamB cells than in wild-type cells. The level of LamB protein present in uninduced wild-type cells could, however, be reduced by supplementing the growth medium with Casamino Acids. After induction, the LamB protein appeared at the cell surface of both strains within a few minutes, and then the LamB level per cell increased linearly. The time lag in cell surface exposure of LamB protein differed slightly under both induction conditions: the LamB protein appeared at the surface of lac-lamB cells within 3 min of induction, whereas in wild-type cells it could not be detected earlier than after 4 to 5 min of induction. PMID:6204968

  11. Effects of cell surface characteristics and manure-application practices on Escherichia coli populations in the subsurface: A three-farm study

    NASA Astrophysics Data System (ADS)

    Salvucci, A. E.; Elton, M.; Siler, J. D.; Zhang, W.; Richards, B. K.; Geohring, L. D.; Warnick, L. D.; Hay, A. G.; Steenhuis, T.

    2010-12-01

    The introduction of microbial pathogens into the environment from untreated manure represents a threat to water quality and human health. Thus, understanding the effect of manure management strategies is imperative to effectively mitigate the inadvertent release of pathogens, particularly in subsurface environments where they can be transported through macropores to the groundwater or through agricultural tile line to open water bodies. The production of cell-surface biomolecules is also suspected to play an important role in the environmental survival and transport of enterobacterial pathogens. This study collected Escherichia coli samples from three dairy farms with artificial tile drainage systems and active manure spreading in the Central New York region over a three-month period. Sampling targeted four potential source locations on each farm: (i) cow housing, (ii) manure storage facilities, (iii) field soil, and (iv) subsurface drainage effluent. Over 2800 E. coli isolates were recovered and consequently analyzed for the cell surface components, cellulose and curli, traits associated with increased environmental survival, altered transport and pathogenicity. The E. coli isolates from locations i-iii displayed highly variable curli and cellulose-producing communities, while isolates collected from subsurface runoff on each farm had stable curli and cellulose production communities over all sampling dates. Furthermore, the method of manure application to the fields influenced the population characteristics found in drainage effluent isolates. Incorporation of manure into the soil was correlated to isolate populations largely deficient of curli and cellulose; whereas farms that only surface-applied manure were correlated to isolate populations of high curli and cellulose production. The production of curli and cellulose has previously been shown to be a response to environmental stress on the cell. Therefore, incorporation of manure directly into the soil appears

  12. Difference of EGCg adhesion on cell surface between Staphylococcus aureus and Escherichia coli visualized by electron microscopy after novel indirect staining with cerium chloride.

    PubMed

    Nakayama, Motokazu; Shigemune, Naofumi; Tsugukuni, Takashi; Tokuda, Hajime; Miyamoto, Takahisa

    2011-07-01

    We developed a novel method using indirect staining with cerium chloride for visualization of the catechin derivative epigallocatechin gallate (EGCg) on the surface of particles, i.e., polystyrene beads and bacterial cells, by electron microscopy. The staining method is based on the fact that in an alkaline environment, EGCg produces hydrogen peroxide, and then hydrogen peroxide reacts with cerium, resulting in a cerium hydroperoxide precipitate. This precipitate subsequently reacts with EGCg to produce larger deposits. The amount of precipitate is proportional to the amount of EGCg. Highly EGCg-sensitive Staphylococcus aureus and EGCg-resistant Escherichia coli were treated with EGCg under various pH conditions. Transmission electron microscopy observation showed that the amount of deposits on S. aureus increased with an increase in EGCg concentration. After treating bacterial cells with 0.5mg/mL EGCg (pH 6.0), attachment of EGCg was significantly lower to E. coli than to S. aureus. This is the first report that shows differences in affinity of EGCg to the cell surfaces of Gram-positive and -negative bacteria by electron microscopy.

  13. Surface Characteristics and Adhesion Behavior of Escherichia coli O157:H7: Role of Extracellular Macromolecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface macromolecule cleavage experiments were conducted on enterohaemorrhagic Escherichia coli O157:H7 cells to investigate the influence of these macromolecules on cell surface properties. Electrophoretic mobility, hydrophobicity, and titration experiments were carried out on proteinase K treate...

  14. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  15. Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages.

    PubMed

    Ebel, F; Podzadel, T; Rohde, M; Kresse, A U; Krämer, S; Deibel, C; Guzmán, C A; Chakraborty, T

    1998-10-01

    Shiga toxin-producing Escherichia coli (STEC) induce so-called attaching and effacing lesions that enable the tight adherence of these pathogens to the gut epithelium. All of the genes necessary for this process are present in the locus of enterocyte effacement, which encodes a type III secretion system, the secreted Esp proteins and the surface protein intimin. In this study we sequenced the espA gene of STEC, generated and characterized a corresponding deletion mutant and raised EspA-specific monoclonal antibodies to analyse the functional role of this protein during infection. EspA was detected in often filament-like structures decorating all bacteria that had attached to HeLa cells. These appendages were especially prominent on bacteria that had not yet induced the formation of actin pedestals, indicating that they mediate the initial contact of STEC to their target cells. Consistently, a deletion of the espA gene completely abolished the capacity of such STEC mutants to bind to HeLa cells and to induce actin rearrangements. Surface appendages similar to those described in this study are also formed by Pseudomonas syringae and may represent a structural element common to many bacterial pathogens that deliver proteins into their target cells via a type III secretion system.

  16. Molecular analysis of region 1 of the Escherichia coli K5 antigen gene cluster: a region encoding proteins involved in cell surface expression of capsular polysaccharide.

    PubMed Central

    Pazzani, C; Rosenow, C; Boulnois, G J; Bronner, D; Jann, K; Roberts, I S

    1993-01-01

    The nucleotide sequence of region 1 of the K5 antigen gene cluster of Escherichia coli was determined. This region is postulated to encode functions which, at least in part, participate in translocation of polysaccharide across the periplasmic space and onto the cell surface. Analysis of the nucleotide sequence revealed five genes that encode proteins with predicted molecular masses of 75.7, 60.5, 44, 43, and 27 kDa. The 27-kDa protein was 70.7% homologous to the CMP-2-keto-3-deoxyoctulosonic acid synthetase enzyme encoded by the E. coli kdsB gene, indicating the presence of a structural gene for a similar enzyme within the region 1 operon. The 43-kDa protein was homologous to both the Ctrb and BexC proteins encoded by the Neisseria meningitidis and Haemophilus influenzae capsule gene clusters, respectively, indicating common stages in the expression of capsules in these gram-negative bacteria. However, no homology was detected between the 75.7, 60.5-, and 44-kDa proteins and any of the proteins so far described for the H. influenzae and N. meningitidis capsule gene clusters. Images PMID:8397187

  17. Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces.

    PubMed

    Das, J R; Bhakoo, M; Jones, M V; Gilbert, P

    1998-05-01

    Differences in opacity between wells of a microtitre plate containing different volumes of inoculated growth medium reflected planktonic growth without any contribution from cells attached at the well surface. Simple algebra and a knowledge of the dependence of optical density upon sample path length (volume) for suspensions of differing cell density enables the generation of growth curves for attached populations (biofilms). In this manner, minimum inhibitory concentrations (MICs) were determined at various stages of growth (0-20 h), both for cells growing attached to the bases of the plate wells and, simultaneously, for cells growing in suspension above them. Biocides included cetrimide, polyhexamethylene biguanide, peracetic acid, phenoxyethanol and chloroxylenol. Results, expressed as planktonic:biofilm MIC ratios, showed susceptibility to change, not only as a function of attachment and biofilm formation, but also with respect to the nature of the chemical agent. In some instances, changes in susceptibility greater than twofold occurred immediately on attachment and could occur in the presence of biocide concentrations which exceeded the MIC.

  18. Impact of cranberry on Escherichia coli cellular surface characteristics

    SciTech Connect

    Johnson, Brandy J.; Malanoski, Anthony P.; Ligler, Frances S.

    2008-12-19

    The anti-adhesive effects of cranberry have been attributed to both interactions of its components with the surface of bacterial cells and to inhibition of p-fimbriae expression. Previous reports also suggested that the presence of cranberry juice changed the Gram stain characteristics of Escherichia coli. Here, we show that the morphology of E. coli is changed when grown in the presence of juice or extract from Vaccinium macrocarpon (cranberry). Gene expression analysis indicates the down regulation of flagellar basal body rod and motor proteins. Consistent with this finding and previous reports, the SEM images indicate a decrease in the visible p-fimbriae. The iodine used in Gram-staining protocols was found to interact differently with the bacterial membrane when cells were cultured in spiked media. Slight alterations in the Gram stain protocol demonstrated that culturing in the presence of cranberry juice does not change the Gram stain characteristics contradicting other reports.

  19. Cotranslocation of Methyl Parathion Hydrolase to the Periplasm and of Organophosphorus Hydrolase to the Cell Surface of Escherichia coli by the Tat Pathway and Ice Nucleation Protein Display System ▿

    PubMed Central

    Yang, Chao; Freudl, Roland; Qiao, Chuanling; Mulchandani, Ashok

    2010-01-01

    A genetically engineered Escherichia coli strain coexpressing organophosphorus hydrolase (OPH) and methyl parathion hydrolase (MPH) was constructed for the first time by cotransforming two compatible plasmids. Since these two enzymes have different substrate specificities, the coexpression strain showed a broader substrate range than strains expressing either one of the hydrolases. To reduce the mass transport limitation of organophosphates (OPs) across the cell membrane, MPH and OPH were simultaneously translocated to the periplasm and cell surface of E. coli, respectively, by employing the twin-arginine translocation (Tat) pathway and ice nucleation protein (INP) display system. The resulting recombinant strain showed sixfold-higher whole-cell activity than the control strain expressing cytosolic OP hydrolases. The correct localization of MPH and OPH was demonstrated by cell fractionation, immunoblotting, and enzyme activity assays. No growth inhibition was observed for the recombinant E. coli strain, and suspended cultures retained almost 100% of the activity over a period of 2 weeks. Owing to its high level of activity and superior stability, the recombinant E. coli strain could be employed as a whole-cell biocatalyst for detoxification of OPs. This strategy of utilizing dual translocation pathways should open up new avenues for cotranslocating multiple functional moieties to different extracytosolic compartments of a bacterial cell. PMID:19933341

  20. Preparation of Sticky Escherichia coli through Surface Display of an Adhesive Catecholamine Moiety

    PubMed Central

    Park, Joseph P.; Choi, Min-Jung; Kim, Se Hun

    2014-01-01

    Mussels attach to virtually all types of inorganic and organic surfaces in aqueous environments, and catecholamines composed of 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine in mussel adhesive proteins play a key role in the robust adhesion. DOPA is an unusual catecholic amino acid, and its side chain is called catechol. In this study, we displayed the adhesive moiety of DOPA-histidine on Escherichia coli surfaces using outer membrane protein W as an anchoring motif for the first time. Localization of catecholamines on the cell surface was confirmed by Western blot and immunofluorescence microscopy. Furthermore, cell-to-cell cohesion (i.e., cellular aggregation) induced by the displayed catecholamine and synthesis of gold nanoparticles on the cell surface support functional display of adhesive catecholamines. The engineered E. coli exhibited significant adhesion onto various material surfaces, including silica and glass microparticles, gold, titanium, silicon, poly(ethylene terephthalate), poly(urethane), and poly(dimethylsiloxane). The uniqueness of this approach utilizing the engineered sticky E. coli is that no chemistry for cell attachment are necessary, and the ability of spontaneous E. coli attachment allows one to immobilize the cells on challenging material surfaces such as synthetic polymers. Therefore, we envision that mussel-inspired catecholamine yielded sticky E. coli that can be used as a new type of engineered microbe for various emerging fields, such as whole living cell attachment on versatile material surfaces, cell-to-cell communication systems, and many others. PMID:24123747

  1. Functional Cell Surface Display and Controlled Secretion of Diverse Agarolytic Enzymes by Escherichia coli with a Novel Ligation-Independent Cloning Vector Based on the Autotransporter YfaL

    PubMed Central

    Ko, Hyeok-Jin; Park, Eunhye; Song, Joseph; Yang, Taek Ho; Lee, Hee Jong; Kim, Kyoung Heon

    2012-01-01

    Autotransporters have been employed as the anchoring scaffold for cell surface display by replacing their passenger domains with heterologous proteins to be displayed. We adopted an autotransporter (YfaL) of Escherichia coli for the cell surface display system. The critical regions in YfaL for surface display were identified for the construction of a ligation-independent cloning (LIC)-based display system. The designed system showed no detrimental effect on either the growth of the host cell or overexpressing heterologous proteins on the cell surface. We functionally displayed monomeric red fluorescent protein (mRFP1) as a reporter protein and diverse agarolytic enzymes from Saccharophagus degradans 2-40, including Aga86C and Aga86E, which previously had failed to be functional expressed. The system could display different sizes of proteins ranging from 25.3 to 143 kDa. We also attempted controlled release of the displayed proteins by incorporating a tobacco etch virus protease cleavage site into the C termini of the displayed proteins. The maximum level of the displayed protein was 6.1 × 104 molecules per a single cell, which corresponds to 5.6% of the entire cell surface of actively growing E. coli. PMID:22344647

  2. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    PubMed

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG)5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  3. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    PubMed Central

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L.; Soupir, Michelle L.; Jarboe, Laura R.; Dixon, Philip M.

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG)5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli. PMID:27847507

  4. A Whole-Cell Surface Plasmon Resonance Sensor Based on a Leucine Auxotroph of Escherichia coli Displaying a Gold-Binding Protein: Usefulness for Diagnosis of Maple Syrup Urine Disease.

    PubMed

    Woo, Min-Ah; Park, Jung Hun; Cho, Daeyeon; Sim, Sang Jun; Kim, Moon Il; Park, Hyun Gyu

    2016-03-01

    We developed a whole-cell surface plasmon resonance (SPR) sensor based on a leucine auxotroph of Escherichia coli displaying a gold-binding protein (GBP) in response to cell growth and applied this sensor to the diagnosis of maple syrup urine disease, which is represented by the elevated leucine level in blood. The leucine auxotroph was genetically engineered to grow displaying GBP in a proportion to the concentration of target amino acid leucine. The GBP expressed on the surface of the auxotrophs directly bound to the golden surface of an SPR chip without the need for any additional treatment or reagents, which consequently produced SPR signals used to determine leucine levels in a test sample. Gold nanoparticles (GNPs) were further applied to the SPR system, which significantly enhanced the signal intensity up to 10-fold by specifically binding to GBP expressed on the cell surface. Finally, the diagnostic utility of our system was demonstrated by its employment in reliably determining different statuses of maple syrup urine disease based on a known cutoff level of leucine. This new approach based on an amino acid-auxotrophic E. coli strain expressing a GBP that binds to an SPR sensor holds great promise for detection of other metabolic diseases of newborn babies including homocystinuria and phenylketonuria, which are also associated with abnormal levels of amino acids.

  5. Identification of Uropathogenic Escherichia coli Surface Proteins by Shotgun Proteomics

    PubMed Central

    Walters, Matthew S.; Mobley, Harry L.T.

    2009-01-01

    Uropathogenic Escherichia coli (UPEC) cause the majority of uncomplicated urinary tract infections in humans. In the process of identifying candidate antigens for a vaccine, two methods for the identification of the UPEC surface proteome during growth in human urine were investigated. The first approach utilized a protease to ‘shave’ surface-exposed peptides from the bacterial cell surface and identify them by mass spectrometry. Although this approach has been successfully applied to a Gram-positive pathogen, the adaptation to Gram-negative UPEC resulted in cytoplasmic protein contamination. In a more direct approach, whole-cell bacteria were labeled with a biotin tag to indicate surface-exposed peptides and two-dimensional liquid chromatography-tandem mass spectrometry (2-DLC-MS/MS) was used to identify proteins isolated from the outer membrane. This method discovered 25 predicted outer membrane proteins expressed by UPEC while growing in human urine. Nine of the 25 predicted outer membrane proteins were part of iron transport systems or putative iron-regulated virulence proteins, indicating the importance of iron acquisition during growth in urine. One of the iron transport proteins identified, Hma, appears to be a promising vaccine candidate is being further investigated. The method described here presents a system to rapidly identify the outer membrane proteome of bacteria, which may prove valuable in vaccine development. PMID:19426766

  6. Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms.

    PubMed

    Pohl, S; Madzgalla, M; Manz, W; Bart, H J

    2015-01-01

    The biofouling affinity of different polymeric surfaces (polypropylene, polysulfone, polyethylene terephthalate, and polyether ether ketone) in comparison to stainless steel (SS) was studied for the model bacterium Escherichia coli K12 DSM 498 and native biofilms originating from Rhine water. The biofilm mass deposited on the polymer surfaces was minimized by several magnitudes compared to SS. The cell count and the accumulated biomass of E. coli on the polymer surfaces showed an opposing linear trend. The promising low biofilm formation on the polymers is attributed to the combination of inherent surface properties (roughness, surface energy and hydrophobicity) when compared to SS. The fouling characteristics of E. coli biofilms show good conformity with the more complex native biofilms investigated. The results can be utilized for the development of new polymer heat exchangers when using untreated river water as coolant or for other processes needing antifouling materials.

  7. Murein hydrolase activity of surface layer proteins from Lactobacillus acidophilus against Escherichia coli.

    PubMed

    Meng, Jun; Gao, Shu-Ming; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2015-08-01

    The aim of this study was to investigate the murein hydrolase activities of the surface layer proteins (SLPs) from two strains of Lactobacillus acidophilus using zymography. The influence of these hydrolase activities on Escherichia coli ATCC 43893 was also evaluated by analysing their growth curve, cell morphology and physiological state. After the incubation of E. coli with SLPs, growth was inhibited, the number of viable cells was significantly reduced, examination by transmission electron microscopy showed that the cell wall was damaged and flow cytometry results indicated that the majority of the cells were sublethally injured. All of these results suggested that the SLPs of both L. acidophilus strains possessed murein hydrolase activities that were sublethal to E. coli cells.

  8. Subnanometric Roughness Affects the Deposition and Mobile Adhesion of Escherichia coli on Silanized Glass Surfaces.

    PubMed

    Sharma, Sumedha; Jaimes-Lizcano, Yuly Andrea; McLay, Ryan B; Cirino, Patrick C; Conrad, Jacinta C

    2016-05-31

    We investigate the deposition and transient adhesion of Escherichia coli on alkyl and fluoroalkyl silanized glass surfaces of different carbon chain lengths. The rate at which bacteria deposit onto these surfaces decreases as the shear stress is increased from 3 to 67 mPa, but trends in the deposition rate across all surfaces cannot be predicted from extended DLVO calculations of the interaction potential. As the surface root-mean-square (rms) roughness increases, the deposition rate increases and the percentage of motile tethered cells decreases. Furthermore, on surfaces of root-mean-square roughness of less than 0.2 nm, bacteria exhibit mobile adhesion, for which surface-associated cells linearly translate distances greater than approximately 1.5 times their average body length along the flow direction. E. coli bacteria with and without flagella exhibit mobile adhesion, indicating that this behavior is not driven by these appendages. Cells that express fimbriae do not exhibit mobile adhesion. These results suggest that even subnanoscale roughness can influence the deposition and transient adhesion of bacteria and imply that strategies to reduce frictional interactions by making cells or surfaces smoother may help to control the initial fouling of surfaces by E. coli bacteria.

  9. The relation between Escherichia coli surface functional groups’ composition and their physicochemical properties

    PubMed Central

    Hamadi, Fatima; Latrache, Hassan; Zahir, Hafida; Elghmari, Abderrahmene; Timinouni, Mohamed; Ellouali, Mostapha

    2008-01-01

    Escherichia coli surface characteristics including hydrophobicity, electrophoretic mobility and surface functional groups’ composition were investigated. These characteristics were determined respectively by water contact angle measurements, microelectrophoresis and x-ray photoelectron spectroscopy (XPS). The relation between the physicochemical properties and functional groups’ composition was also examined. The electrophoretic mobility at pH 7 appeared to be governed on the cell surface by the (O=C) functional groups. The cell surface’s hydrophilicity was associated with high levels of (C-(O.N)) and (OH- (C-O-C)) functional groups, whereas the cell surface’s hydrophobicity was associated with (C-(C,H)) functional groups. PMID:24031168

  10. Surface display of recombinant proteins on Escherichia coli by BclA exosporium of Bacillus anthracis

    PubMed Central

    2013-01-01

    Background The anchoring motif is one of the most important aspects of cell surface display as well as efficient and stable display of target proteins. Thus, there is currently a need for the identification and isolation of novel anchoring motifs. Results A system for the display of recombinant proteins on the surface of Escherichia coli was developed using the Bacillus anthracis exosporal protein (BclA) as a new anchoring motif. For the surface display of recombinant proteins, the BAN display platform was constructed in which a target protein is linked to the C-terminus of N-terminal domain (21 amino acids) of BclA. The potential application of BAN platform for cell surface display was demonstrated with two model proteins of different size, the Bacillus sp. endoxylanase (XynA) and monooxygenase (P450 BM3m2). Through experimental analysis including outer membrane fractionation, confocal microscopy and activity assay, it was clearly confirmed that both model proteins were successfully displayed with high activities on the E. coli cell surface. Conclusions These results of this study suggest that the strategy employing the B. anthracis BclA as an anchoring motif is suitable for the display of heterologous proteins on the surface of E. coli and consequently for various biocatalytic applications as well as protein engineering. PMID:24053632

  11. Use of air-assisted electrostatic spraying system (ESS)or the sprayed lethality in container(SLIC) method to deliver anticmicrobials onto the surface of beef subprimals to ... shiga toxin-producing cells of Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the efficacy of an air-assisted electrostatic spraying system (ESS) and/or the Sprayed Lethality in Container (SLIC) method to deliver antimicrobials onto the surface of beef subprimals to reduce levels of Shiga toxin-producing Escherichia coli (STEC). Beef subprimals were surface inocu...

  12. Soil solarization reduces Escherichia coli O157:H7 and total Escherichia coli on cattle feedlot pen surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedlot pen soils are a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM)....

  13. Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Tučeková, Zlata; Koval'ová, Zuzana; Zahoranová, Anna; Machala, Zdenko; Černák, Mirko

    2016-08-01

    The non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) was tested for decontamination of bacteria Escherichia coli on polymer surfaces. We investigated the optical parameters of DCSBD plasma generated in synthetic air with different relative humidity. Our study was provided to estimate the main plasma components active during the DCSBD plasma degradation of E. coli contamination prepared on polytetrafluoroethylene (PTFE, Teflon) surface, in ambient air at atmospheric pressure. The DCSBD plasma was characterized by means of electrical measurements and optical emission spectroscopy. The inactivation of E. coli bacteria was evaluated by standard microbiological cultivation (CFU plate counting). The experimental results of the germicidal efficiency obtained for short plasma exposure times proved the effectiveness of DCSBD plasma for the polymer surface decontamination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  14. Intra-patient colon surface registration based on teniae; coli

    NASA Astrophysics Data System (ADS)

    Lamy, Julien; Summers, Ronald M.

    2007-03-01

    CT colonography, a prevalent tool to diagnose colon cancer in its early stages, is often limited by bad distention, or retained fluids, which will cause segments of the colon to be impossible to process by CAD tools. By scanning patients in both prone and supine positions, collapsed segments and retained fluids will not be in the same place in both images, increasing the length of the colon that can be processed correctly. In order to fully use these two scans, they must be registered, so that a lesion identified on one of them can be mapped to the other, thus increasing sensitivity and specificity of CAD tools. The surface of the colon is however large (more than half a million vertices on our images), and has no canonical shape, which makes atlases and other widely used registration algorithms non optimal. We present in this paper a fast method to register the colon surface between prone and supine scans using landmarks present on the colon, the teniae coli. Our method is composed of three steps. First, we register the body, based on manually placed landmarks. Then we register the three teniae; coli, and, from this registration, we compute a deformation field for each vertex of the colon surface. We tested our method on 5 cases, by measuring the RMS error after body registration, quantifying the intrisic movement of the colon, and after colon surface registration. The RMS error was reduced from 1.8 cm to 0.49 cm, a reduction of 71%.

  15. Tsr Chemoreceptor Interacts With IL-8 Provoking E. coli Transmigration Across Human Lung Epithelial Cells

    PubMed Central

    Han, Bing; Li, Manshu; Xu, Yonghao; Islam, Diana; Khang, Julie; Del Sorbo, Lorenzo; Lee, Warren; Szaszi, Katalin; Zhong, Nanshan; Slutsky, Arthur S.; Li, Yimin; Zhang, Haibo

    2016-01-01

    Bacterial colonization of epithelial surfaces and subsequent transmigration across the mucosal barrier are essential for the development of infection. We hypothesized that the methyl-accepting proteins (MCPs), known as chemoreceptors expressed on Escherichia coli (E. coli) bacterial surface, play an important role in mediating bacterial transmigration. We demonstrated a direct interaction between human interleukin-8 (IL-8) and Tsr receptor, a major MCP chemoreceptor. Stimulation of human lung epithelial cell monolayer with IL-8 resulted in increased E. coli adhesion and transmigration of the native strain (RP437) and a strain expressing only Tsr (UU2373), as compared to a strain (UU2599) with Tsr truncation. The augmented E. coli adhesion and migration was associated with a higher expression of carcinoembryonic antigen-related cell adhesion molecule 6 and production of inflammatory cytokines/chemokines, and a lower expression of the tight junction protein claudin-1 and the plasma membrane protein caveolin-1 in lung epithelial cells. An increased E. coli colonization and pulmonary cytokine production induced by the RP437 and UU2373 strains was attenuated in mice challenged with the UU2599 strain. Our results suggest a critical role of the E. coli Tsr chemoreceptor in mediating bacterial colonization and transmigration across human lung epithelium during development of pulmonary infections. PMID:27506372

  16. High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display

    PubMed Central

    Salema, Valencio; Mañas, Carmen; Cerdán, Lidia; Piñero-Lambea, Carlos; Marín, Elvira; Roovers, Rob C.; Van Bergen en Henegouwen, Paul M.P.; Fernández, Luis Ángel

    2016-01-01

    ABSTRACT Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens. PMID:27472381

  17. High affinity nanobodies against human epidermal growth factor receptor selected on cells by E. coli display.

    PubMed

    Salema, Valencio; Mañas, Carmen; Cerdán, Lidia; Piñero-Lambea, Carlos; Marín, Elvira; Roovers, Rob C; Van Bergen En Henegouwen, Paul M P; Fernández, Luis Ángel

    2016-10-01

    Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens.

  18. Quantum dot enabled detection of Escherichia coli using a cell-phone.

    PubMed

    Zhu, Hongying; Sikora, Uzair; Ozcan, Aydogan

    2012-06-07

    We report a cell-phone based Escherichia coli (E. coli) detection platform for screening of liquid samples. In this compact and cost-effective design attached to a cell-phone, we utilize anti-E. coli O157:H7 antibody functionalized glass capillaries as solid substrates to perform a quantum dot based sandwich assay for specific detection of E. coli O157:H7 in liquid samples. Using battery-powered inexpensive light-emitting-diodes (LEDs) we excite/pump these labelled E. coli particles captured on the capillary surface, where the emission from the quantum dots is then imaged using the cell-phone camera unit through an additional lens that is inserted between the capillary and the cell-phone. By quantifying the fluorescent light emission from each capillary tube, the concentration of E. coli in the sample is determined. We experimentally confirmed the detection limit of this cell-phone based fluorescent imaging and sensing platform as ∼5 to 10 cfu mL(-1) in buffer solution. We also tested the specificity of this E. coli detection platform by spiking samples with different species (e.g., Salmonella) to confirm that non-specific binding/detection is negligible. We further demonstrated the proof-of-concept of our approach in a complex food matrix, e.g., fat-free milk, where a similar detection limit of ∼5 to 10 cfu mL(-1) was achieved despite challenges associated with the density of proteins that exist in milk. Our results reveal the promising potential of this cell-phone enabled field-portable and cost-effective E. coli detection platform for e.g., screening of water and food samples even in resource limited environments. The presented platform can also be applicable to other pathogens of interest through the use of different antibodies.

  19. Swimming of E. coli near micro-structured surfaces

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2012-11-01

    Understanding the mechanisms that govern surface accumulation of swimming bacteria is a key challenge for controlling biofilm formation. Here, we report detailed measurements of density and orientation distributions for Escherichia coli bacteria as a function of the distance from a solid surface. Experiments were performed for wild-type and non-tumbling strains in both quasi-2D and 3D microfluidic chambers. We find that, for both geometries, the density profile in dilute suspensions decays sharply within a few microns from flat surfaces approaching a constant value in the bulk. Our measurements of the orientation distributions show that bacteria preserve memory of aligning collisions with surfaces for surprisingly long periods of time even after escaping into the bulk fluid. These experimental results agree well with numerical simulations of a minimal mechanistic model that accounts for steric interactions between bacteria and surfaces. We further demonstrate that optimal micro-scale surface patterning can substantially decrease accumulation of swimming bacteria, thereby providing a novel mechanism for preventing biofilm formation.

  20. Role of Flagella in Adhesion of Escherichia coli to Abiotic Surfaces.

    PubMed

    Friedlander, Ronn S; Vogel, Nicolas; Aizenberg, Joanna

    2015-06-09

    Understanding the interfacial activity of bacteria is of critical importance due to the huge economic and public health implications associated with surface fouling and biofilm formation. The complexity of the process and difficulties of predicting microbial adhesion to novel materials demand study of the properties of specific bacterial surface features and their potential contribution to surface attachment. Here, we examine flagella, cell appendages primarily studied for their cell motility function, to elucidate their potential role in the surface adhesion of Escherichia coli-a model organism and potential pathogen. We use self-assembled monolayers (SAMs) of thiol-bearing molecules on gold films to generate surfaces of varying hydrophobicity, and measure adhesion of purified flagella using quartz crystal microbalance. We show that flagella adhere more extensively and bind more tightly to hydrophobic SAMs than to hydrophilic ones, and we propose a two-step vs a single-step adhesion mechanism that accounts for the observed dissipation and frequency changes for the two types of surfaces, respectively. Subsequently, study of the adhesion of wild-type and flagella knockout cells confirms that flagella improve adhesion to hydrophobic substrates, whereas cells lacking flagella do not show preferred affinity to hydrophobic substrates. Together, these properties bring about an interesting ability of cells with flagella to stabilize emulsions of aqueous culture and dodecane, not observed for cells lacking flagella. This work contributes to our overall understanding of nonspecific bacterial adhesion and confirms that flagella, beyond motility, may play an important role in surface adhesion.

  1. Effects of Escherichia coli hemolysin on endothelial cell function.

    PubMed Central

    Suttorp, N; Flöer, B; Schnittler, H; Seeger, W; Bhakdi, S

    1990-01-01

    Escherichia coli hemolysin is considered an important virulence factor in extraintestinal E. coli infections. The present study demonstrates that cultured pulmonary artery endothelial cells are susceptible to attack by low concentrations of E. coli hemolysin (greater than or equal to 0.05 hemolytic units/ml; greater than or equal to 5 ng/ml). Sublytic amounts of hemolysin increased the permeability of endothelial cell monolayers in a time- and dose-dependent manner. The hydraulic conductivity increased approximately 30-fold and the reflection coefficient for large molecules dropped from 0.71 to less than 0.05, indicating a toxin-induced loss of endothelial barrier function. The alterations of endothelial monolayer permeability were accompanied by cell retraction and interendothelial gap formation. In addition, E. coli hemolysin stimulated prostacyclin synthesis in endothelial cells. This effect was strictly dependent on the presence of extracellular Ca2+ but not of Mg2+. An enhanced passive influx of 45Ca2+ and 3H-sucrose but not of tritiated inulin and dextran was noted in toxin-treated cells, indicating that small transmembrane pores comparable to those detected in rabbit erythrocytes had been generated in endothelial cell membranes. These pores may act as nonphysiologic Ca2+ gates, thereby initiating different Ca2+-dependent cellular processes. We conclude that endothelial cells are highly susceptible to E. coli hemolysin and that two major endothelial cell functions are altered by very low concentrations of hemolysin. Images PMID:2121650

  2. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points.

    PubMed

    Lüdecke, Claudia; Roth, Martin; Yu, Wenqi; Horn, Uwe; Bossert, Jörg; Jandt, Klaus D

    2016-09-01

    Microbial adhesion to natural and synthetic materials surfaces is a key issue e.g. in food industry, sewage treatment and most importantly in the biomedical field. The current development and progress in nanoscale structuring of materials surfaces to control microbial adhesion requires an advanced understanding of the microbe-material-interaction. This study aimed to investigate the nanostructure of the microbe-material-interface and link it to microbial adhesion kinetics as function of titanium surface nanoroughness to gain new insight into controlling microbial adhesion via materials' surface nanoroughness. Adhesion of Escherichia coli and Staphylococcus aureus was statistically significantly reduced (p≤0.05) by 55.6 % and 40.5 %, respectively, on physical vapor deposited titanium thin films with a nanoroughness of 6nm and the lowest surface peak density compared to 2nm with the highest surface peak density. Cross-sectioning of the microbial cells with a focused ion beam (FIB) and SEM imaging provided for the first time direct insight into the titanium-microbe-interface. High resolution SEM micrographs gave evidence that the surface peaks are the loci of initial contact between the microbial cells and the material's surface. In a qualitative model we propose that the initial microbial adhesion on nanorough surfaces is controlled by the titanium surface peak density via nano adhesion points. This new understanding will help towards the design of materials surfaces for controlling microbial adhesion.

  3. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.

    PubMed

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-09-15

    The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC₅₀ value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  4. Reassessing Escherichia coli as a cell factory for biofuel production.

    PubMed

    Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won

    2017-03-11

    Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production.

  5. Soil solarization reduces Escherichia coli O157:H7 and total Escherichia coli on cattle feedlot pen surfaces.

    PubMed

    Berry, Elaine D; Wells, James E

    2012-01-01

    Feedlot pen soil is a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM). A feedlot pen was identified in which naturally occurring E. coli O157:H7 was prevalent and evenly distributed in the FSM. Forty plots 3 by 3 m were randomly assigned such that five plots of each of the solarization times of 0, 1, 2, 3, 4, 6, 8, and 10 weeks were examined. Temperature loggers were placed 7.5 cm below the surface of each plot, and plots to be solarized were covered with clear 6-mil polyethylene. At each sampling time, five FSM samples were collected from each of five solarized and five unsolarized plots. E. coli concentrations and E. coli O157:H7 presence by immunomagnetic separation and plating were determined for each FSM sample. Initial percentages of E. coli O157:H7-positive samples in control and solarized FSM were 84 and 80%, respectively, and did not differ (P > 0.05). E. coli O157:H7 was no longer detectable by 8 weeks of solarization, but was still detected in unsolarized FSM at 10 weeks. The average initial concentration of E. coli in FSM was 5.56 log CFU/g and did not differ between treatments (P > 0.05). There was a 2.0-log decrease of E. coli after 1 week of solarization, and a >3.0-log reduction of E. coli by week 6 of solarization (P, 0.05). E. coli levels remained unchanged in unsolarized FSM (P > 0.05). Daily peak FSM temperatures were on average 8.7°C higher for solarized FSM compared with unsolarized FSM, and reached temperatures as high as 57°C. Because soil solarization reduces E. coli O157:H7, this technique may be useful for reduction of persistence and transmission of this pathogen in cattle production, in addition to remediation of E. coli O157:H7-contaminated soil used to grow food crops.

  6. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway

    PubMed Central

    Otto, Karen; Silhavy, Thomas J.

    2002-01-01

    Bacterial adhesion is an important initial step in biofilm formation, which may cause problems in medical, environmental, and industrial settings. In spite of obvious phenotypic differences between attached and planktonic cells, knowledge about the genetic basis for these differences and how adhesion-induced changes are mediated is limited. The Cpx two-component signal transduction pathway responds specifically to stress caused by disturbances in the cell envelope and activates genes encoding periplasmic protein folding and degrading factors. Here, we address the role of the Cpx-signaling pathway in sensing and responding to the physical change occurring during adhesion of Escherichia coli to surfaces. We present evidence that the expression of Cpx-regulated genes is induced during initial adhesion of E. coli to abiotic surfaces. This induction is specifically observed upon attachment of stationary-phase cells to hydrophobic surfaces. Moreover, surface-induced activity of the Cpx response requires NlpE, an outer membrane lipoprotein, which has previously been shown to induce the Cpx system when overproduced. The importance of a functional Cpx response during adhesion is further supported by the fact that a dramatically lower number of cells attach to the surface and dynamic cell–surface interactions as measured by a quartz crystal microbalance technique are altered when the CpxRA pathway is disrupted. The defects in adhesion exhibited by the cpxR and nlpE mutants were strikingly similar to those of wild-type cells in which protein synthesis was inhibited, suggesting that the Cpx pathway plays a key role in the regulation of adhesion-induced gene expression. PMID:11830644

  7. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI.

    PubMed

    FREIFELDER, D; MAALOE, O

    1964-10-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987-990. 1964.-Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process.

  8. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI

    PubMed Central

    Freifelder, David; Maaløe, Ole

    1964-01-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987–990. 1964.—Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process. PMID:14219063

  9. Bioelectrochemistry of cell surfaces

    NASA Astrophysics Data System (ADS)

    Dolowy, Krzysztof

    This paper deals with processes and phenomena of cell surface bioelectrochemistry in which charges do not move across the cell membrane. First, electrochemical properties of the cell membrane and the cell medium interface are described, and different electric potentials present in biological systems are defined. Methods of cell electrophoresis are then discussed. It is shown that none of the simple electrochemical models of the cell membrane can explain the dependence of cell electrophoretic mobility upon ionic strength and other electrochemical properties of the cell membrane, such as the difference in cell membrane charge as determined electrochemically and biochemically, or the effect of neuraminidase, pH, or membrane potential change on cell electrophoretic mobility. Thus, it is apparent that conclusions drawn from electrophoretic mobility data on the basis of simple models are false. The more complex multilayer-electrochemical model of the cell membrane is then described and shown to explain most electrochemical properties of the cell membrane. Next, different electrochemical techniques that were applied to study cell surfaces are described. It is shown that colloid titration, isoelectric focusing, and partition of cells between two immiscible phases is dependent not only on electrical properties of the cell membrane, but also on the energy of adsorption at cell surfaces of organic molecules used in these methods. Powder electrodes, cell polarography, conductometric titration, and Donnan potential methods are described and it is shown that these methods also produce results of doubtful value and are also often misinterpreted. The contact potential difference method produces results difficult to interpret and only electro-osmotic measurements and potential sensitive molecules are valuable methods. The colloid particle interaction theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) as applied to cell interactions is discussed. It is shown that the

  10. Effect of curli expression and hydrophobicity of E. coli O157:H7 on attachment to fresh produce surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: To investigate the effect of curli expression on cell hydrophobicity, biofilm formation, and attachment to cut and intact fresh produce surfaces. Methods and Results: Five E. coli O157:H7 strains were evaluated for curli expression, hydrophobicity, biofilm formation, and attachment of E. co...

  11. Reactive oxygen species in plasma against E. coli cells survival rate

    NASA Astrophysics Data System (ADS)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  12. Attachment of Escherichia coli O157:H7 to abiotic surfaces of cooking utensils.

    PubMed

    Tsuji, Makiko; Yokoigawa, Kumio

    2012-04-01

    We examined the attachment of enterohemorrhagic Escherichia coli O157:H7 to abiotic surfaces of cooking utensils. When the cell suspension in 0.85% NaCl (about 100 cells/mL, 10 mL) was contacted with various abiotic surfaces (square pieces, 25 cm²) at 25 °C for 20 min, the number of attached cells varied depending on the types of abiotic materials. The pathogen well attached to stainless steel (about 50 cells/25 cm²), pure titanium (35 to 45 cells/25 cm²), and glass (about 20 cells/25 cm²), but little attached to aluminum foil and plastics, irrespective of strains used. Fewer cells (below 10 cells/25 cm²) attached to stainless steel, pure titanium, and glass surfaces conditioned with aseptically sliced beef (sirloin) and autoclaved beef tallow at 25 °C for 20 min, but bovine serum albumin did not reduce the number of attached cells. The cells grown at 15 °C to the stationary phase (OD660 = about 2.8) less attached to the abiotic surfaces than those grown at 25 °C and 37 °C. When we pretreated the cells at 37 °C for 2 h with 50 μM N-hexanoyl-L-homoserine lactone (HHL), the number of cells attached to stainless steel was reduced by 70%. The number of cells attached to cooking utensils seemed to change depending on types of abiotic materials, adhesion of beef tallow to abiotic surfaces, growth temperature of the pathogen, and HHL-producing bacteria.

  13. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed Central

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-01-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili. PMID:357285

  14. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-08-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili.

  15. How much territory can a single E. coli cell control?

    PubMed Central

    El-Hajj, Ziad W.; Newman, Elaine B.

    2015-01-01

    Bacteria have been traditionally classified in terms of size and shape and are best known for their very small size. Escherichia coli cells in particular are small rods, each 1–2 μ. However, the size varies with the medium, and faster growing cells are larger because they must have more ribosomes to make more protoplasm per unit time, and ribosomes take up space. Indeed, Maaløe’s experiments on how E. coli establishes its size began with shifts between rich and poor media. Recently much larger bacteria have been described, including Epulopiscium fishelsoni at 700 μm and Thiomargarita namibiensis at 750 μm. These are not only much longer than E. coli cells but also much wider, necessitating considerable intracellular organization. Epulopiscium cells for instance, at 80 μm wide, enclose a large enough volume of cytoplasm to present it with major transport problems. This review surveys E. coli cells much longer than those which grow in nature and in usual lab cultures. These include cells mutated in a single gene (metK) which are 2–4 × longer than their non-mutated parent. This metK mutant stops dividing when slowly starved of S-adenosylmethionine but continues to elongate to 50 μm and more. FtsZ mutants have been routinely isolated as long cells which form during growth at 42°C. The SOS response is a well-characterized regulatory network that is activated in response to DNA damage and also results in cell elongation. Our champion elongated E. coli is a metK strain with a further, as yet unidentified mutation, which reaches 750 μm with no internal divisions and no increase in width. PMID:25954251

  16. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces.

    PubMed

    Janjaroen, Dao; Ling, Fangqiong Q; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Morgenroth, Eberhard; Mogenroth, Eberhard; Boppart, Stephen A; Liu, Wen-Tso; Nguyen, Thanh H

    2013-05-01

    Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells.

  17. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces

    PubMed Central

    Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.

    2013-01-01

    Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979

  18. Accelerated Escherichia coli inactivation in the dark on uniform copper flexible surfaces.

    PubMed

    Rtimi, Sami; Sanjines, Rosendo; Bensimon, Michël; Pulgarin, César; Kiwi, John

    2014-06-01

    The bacterial inactivation of Escherichia coli on Cu/CuO-polyester surfaces prepared by direct current magnetron sputtering was investigated in the dark and under actinic light (360 nm≤ λ ≤ 720 nm; 4.1 mW/cm(2)) as used commonly in hospital facilities. In the dark, complete bacterial inactivation (6log10 reduction) was observed within 150 min and under actinic light within 45 min. Sputtered samples led to nanoparticulate uniform Cu/CuO films ~70 nm thick. The deposition rate used was 2.2×10(15) atoms/cm(2) s as determined by profilometry. X-ray fluorescence was used to determine the sample Cu-content and transmission electron microscopy determined Cu-particles ~20 ± 5 nm in size. The film optical absorption was observed to increase with Cu-content of the sample by diffuse reflection spectroscopy. The bacterial inactivation involved redox processes between Cu/CuO-polyester and the bacteria as observed by x-ray photoelectron spectroscopy. During sample recycling, the amount of Cu-release was determined by inductively coupled plasma-mass spectroscopy. The values required for E. coli inactivation were below the cytotoxicity level threshold allowed for mammalian cells. The E. coli inactivation by Cu/CuO-polyester seems to involve an oligodynamic effect since bacterial inactivation was achieved at very low Cu-concentrations.

  19. Comparison of temperature effects on E. coli, Salmonella, and Enterococcus survival in surface waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the dependencies of survival rates on temperature for indicator organisms E. coli and Enterococcus and the pathogen Salmonella in surface waters. A database consisting of 86 survival datasets from peer-reviewed papers on inactivation of E. coli, Salmonella...

  20. Comparing Temperature Effects on E. Coli, Salmonella, and Enterococcus Survival in Surface Waters

    EPA Science Inventory

    The objective of this study was to compare dependency of survival rates on temperature for indicator organisms E. coli and Enterococcus and the pathogen Salmonella in surface waters. A database of 86 survival datasets from peer-reviewed papers on inactivation of E. coli, Salmonel...

  1. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    SciTech Connect

    Wang, Lin-Xu; Mellon, Michael; Bowder, Dane; Quinn, Meghan; Shea, Danielle; Wood, Charles; Xiang, Shi-Hua

    2015-01-15

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture.

  2. B cells Using Calcium Signaling for Specific and Rapid Detection of Escherichia coli O157:H7

    PubMed Central

    Wang, Ling; Wang, Ronghui; Kong, Byung-Whi; Jin, Sha; Ye, Kaiming; Fang, Weihuan; Li, Yanbin

    2015-01-01

    A rapid and sensitive detection technology is highly desirable for specific detection of E. coli O157:H7, one of the leading bacterial pathogens causing foodborne illness. In this study, we reported the rapid detection of E. coli O157:H7 by using calcium signaling of the B cell upon cellular membrane anchors anti-E. coli O157:H7 IgM. The binding of E. coli O157:H7 to the IgM on B cell surface activates the B cell receptor (BCR)-induced Ca2+ signaling pathway and results in the release of Ca2+ within seconds. The elevated intracellular Ca2+ triggers Fura-2, a fluorescent Ca2+ indicator, for reporting the presence of pathogens. The Fura-2 is transferred to B cells before detection. The study demonstrated that the developed B cell based biosensor was able to specifically detect E. coli O157:H7 at the low concentration within 10 min in pure culture samples. Finally, the B cell based biosensor was used for the detection of E. coli O157:H7 in ground beef samples. With its short detection time and high sensitivity at the low concentration of the target bacteria, this B cell biosensor shows promise in future application of the high throughput and rapid food detection, biosafety and environmental monitoring. PMID:26034978

  3. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4.

    PubMed

    Nagy, Attila; Xu, Yunfeng; Bauchan, Gary R; Shelton, Daniel R; Nou, Xiangwu

    2016-07-16

    The Shiga toxigenic Escherichia coli O104:H4 isolated during the 2011 European outbreak expresses Shiga toxin 2a and possess virulence genes associated with the enteroaggregative E. coli (EAEC) pathotype. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga-toxin adsorption, but it is not clear whether the AAF/I fimbriae are involved in the colonization and biofilm formation on food and environmental matrices such as the surface of fresh produce. We deleted the gene encoding for the AAF/I fimbriae main subunit (AggA) from an outbreak associated E. coli O104:H4 strain, and evaluated the role of AAF/I fimbriae in the adherence and colonization of E. coli O104:H4 to spinach and abiotic surfaces. The deletion of aggA did not affect the adherence of E. coli O104:H4 to these surfaces. However, it severely diminished the colonization and biofilm formation of E. coli O104:H4 on these surfaces. Strong aggregation and biofilm formation on spinach and abiotic surfaces were observed with the wild type strain but not the isogenic aggA deletion mutant, suggesting that AAF/I fimbriae play a crucial role in persistence of O104:H4 cells outside of the intestines of host species, such as on the surface of fresh produce.

  4. E. coli as a biological model for cancer cells

    NASA Astrophysics Data System (ADS)

    Liao, David; Lambert, Guillaume; Austin, Robert

    2010-03-01

    Uninhibited growth and invasion of healthy tissue characterize cancer. We co-cultured two strains of E. coli bacteria in a microfabricated environment to model cancer. During starvation, growth-advantage-in-stationary-phase, or GASP, cells grew to a higher population than wild-type cells. GASP cells also displaced wild-type cells from nutrient-rich chambers. When we repeated the experiment with medium depleted by wild-type cells, the peak GASP population density increased 54%, and the ``invasion,'' or displacement of wild-type cells from nutrient-rich chambers, occurred 5 hours earlier. We mathematically modeled both this increase in GASP population and this acceleration of spatial invasion by assuming that GASP cells consume detritus secreted by wild-type cells. Our experimental and model results corroborate recent caution against using tumor starvation as a cancer therapy.

  5. Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis.

    PubMed Central

    Shi, W; Stocker, B A; Adler, J

    1996-01-01

    We have reported that motile Escherichia coli K-12 placed in an electric field swims toward the anode but that motile Salmonella typhimurium strains swim toward the cathode, a phenomenon called galvanotaxis (J. Adler and W. Shi, Cold Spring Harbor Symp. Quant. Biol. 53:23-25, 1988). In the present study, we isolated mutants with an altered direction of galvanotaxis. By further analyses of these mutants and by examination of E. coli and Salmonella strains with altered cell surface structure, we have now established a correlation between the direction of galvanotaxis and the surface structure of the cell: motile rough bacteria (that is, those without O polysaccharide; for example, E. coli K-12 and S. typhimurium mutants of classes galE and rfa) swam toward the anode, whereas motile smooth bacteria (that is, those with O polysaccharide; for example, wild-type S. typhimurium LT2) swam toward the cathode. However, smooth bacteria with acidic polysaccharide capsules (K1 in E. coli and Vi in Salmonella typhi) swam toward the anode. Measurements of passive electrophoretic mobility of strains representative of each set were made. We propose that the different directions of galvanotaxis of rough (or capsulate) bacteria and of smooth bacteria are explicable if the negative electrophoretic mobility of flagellar filaments is less than that of rough bodies but greater than that of smooth bodies. PMID:8576046

  6. Conjugation in Escherichia coli Biofilms on Poly(dimethylsiloxane) Surfaces with Microtopographic Patterns.

    PubMed

    Gu, Huan; Kolewe, Kristopher W; Ren, Dacheng

    2017-03-28

    Bacterial biofilms are highly tolerant to antimicrobials and play an important role in the development and spread of antibiotic resistance based on horizontal gene transfer due to close cell-to-cell contact. As an important surface property, topography has been shown to affect bacterial adhesion and biofilm formation. Here, we demonstrate that micrometer-scale surface topographies also affect horizontal gene transfer through conjugation in bacterial biofilms. Specifically, biofilm formation and associated conjugation on poly(dimethylsiloxane) (PDMS) surfaces with 10 μm tall protruding patterns were studied using fluorescently labeled donor and recipient strains of Escherichia coli. The results demonstrate that square-shaped topographic patterns with side length of 20, 50, and 100 μm and interpattern distance equal to or larger than 10 μm promote biofilm formation and conjugation compared to the smooth control. The vertical sides of these topographic features were found to be the "hot spots" for bacterial conjugation compared to the top of patterns and grooves between topographic features. The increase in conjugation frequency on the sides of topographic patterns was attributed to the high cell density of recipient cells at these locations. A motility (motB) mutant of the recipient strain exhibited defects in biofilm formation at the "hot spots" and conjugation, which were recovered by complementing the motB gene on a plasmid. These results also provided guidance for designing surface topographies that can reduce conjugation. Specifically, 10 μm tall hexagon-shaped topographic patterns with side length of 15 μm and interpattern distance of 2 μm were prepared to reduce biofilm formation on the side of protruding patterns and interrupt cell-cell interaction in the grooves. This topography exhibited 85% and 46% reduction of biofilm formation and associated conjugation, respectively, compared to the smooth control.

  7. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth.

    PubMed

    Ahmad, Zulfiqar; Laughlin, Thomas F; Kady, Ismail O

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase.

  8. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  9. Optimizing Escherichia coli's metabolism for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Nieves, Ismael U.

    In the last few years there have been many publications about applications that center on the generation of electrons from bacterial cells. These applications take advantage of the catabolic diversity of microbes to generate electrical power. The practicality of these applications depends on the microorganism's ability to effectively donate electrons, either directly to the electrode or indirectly through the use of a mediator. After establishing the limitations of electrical output in microbial fuel cells (MFCs) imposed by the bacterial cells, a spectrophotometric assay measuring the indirect reduction of the electronophore neutral red via iron reduction was used to measure electron production from Escherichia coli resting cells. Using this assay I identified NADH dehydrogenase I as a likely site of neutral red reduction. The only previously reported site of interaction between E. coli cells and NR is at the hydrogenases. Although we cannot rule out the possibility that NR is reduced by soluble hydrogenases in the cytoplasm, this previous report indicated that hydrogenase activity does not account for all of the NR reduction activity. Supporting this, data in this thesis suggest that the hydrogenases play a small role in NR reduction. It seems that NR reduction is largely taking place within the cytoplasmic membrane of the bacterial cells, serving as a substrate of enzymes that typically reduce quinones. Furthermore, it seems that under the experimental conditions used here, E. coli's catabolism of glucose is rather inefficient. Instead of using the complete TCA cycle, the bacterial cells are carrying out fermentation, leading to incomplete oxidation of the fuel and low yields of electrons. The results obtained from the TC31 strain suggest that eliminating fermentation pathways to improve NR reduction was the correct approach. Following up on this a new strain was created, KN02, which, in addition to the mutations on strain TC31, lacks acetate kinase activity.

  10. Antibiotic-resistant E. coli in surface water and groundwater in dairy operations in Northern California.

    PubMed

    Li, Xunde; Watanabe, Naoko; Xiao, Chengling; Harter, Thomas; McCowan, Brenda; Liu, Yingjia; Atwill, Edward R

    2014-02-01

    Generic Escherichia coli was isolated from surface water and groundwater samples from two dairies in Northern California and tested for susceptibility to antibiotics. Surface samples were collected from flush water, lagoon water, and manure solids, and groundwater samples were collected from monitoring wells. Although E. coli was ubiquitous in surface samples with concentrations ranging from several hundred thousand to over a million colony-forming units per 100 mL of surface water or per gram of surface solids, groundwater under the influence of these high surface microbial loadings had substantially fewer bacteria (3- to 7-log10 reduction). Among 80 isolates of E. coli tested, 34 (42.5%) were resistant to one or more antibiotics and 22 (27.5%) were multi-antibiotic resistant (resistant to ≥3 antibiotics), with resistance to tetracycline, cefoxitin, amoxicillin/clavulanic acid, and ampicillin being the most common. E. coli isolates from the calf hutch area exhibited the highest levels of multi-antibiotic resistance, much higher than isolates in surface soil solids from heifer and cow pens, flush alleys, manure storage lagoons, and irrigated fields. Among E. coli isolates from four groundwater samples, only one sample exhibited resistance to ceftriaxone, chloramphenicol, and tetracycline, indicating the potential of groundwater contamination with antibiotic-resistant bacteria from dairy operations.

  11. Surface cell immobilization within perfluoroalkoxy microchannels

    NASA Astrophysics Data System (ADS)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  12. Flagella from F18+Escherichia coli play a role in adhesion to pig epithelial cell lines.

    PubMed

    Duan, Qiangde; Zhou, Mingxu; Zhu, Xiaofang; Yang, Yang; Zhu, Jun; Bao, Wenbin; Wu, Shenglong; Ruan, Xiaosai; Zhang, Weiping; Zhu, Guoqiang

    2013-02-01

    F18 fimbriae and toxins produced by F18 fimbriae-carrying Escherichia coli (E. coli) strains are known virulence factors responsible for post-weaning diarrhea (PWD) and edema disease (ED). In this study, we showed that fliC isogenic mutants constructed in two reference wild-type F18 fimbriae (F18+) E. coli were markedly impaired in adherence in vitro cell models (p < 0.05). Flagella purified from F18+E. coli could directly bind to cultured piglet epithelial cells and block adherence of F18+E. coli to cells when pre-incubated. In addition, the F18+E. coli fliC deletion mutants up-regulated the expression of type I fimbriae produced by F18+E. coli strains. These results demonstrated that expression of flagella is essential for the adherence of F18+E. coli in vitro.

  13. Protein turnover in the cell cycle of Escherichia coli.

    PubMed

    Nishi, A; Kogoma, T

    1965-10-01

    Nishi, Arasuke (University of Tokyo, Tokyo, Japan), and Tokio Kogoma. Protein turnover in the cell cycle of Escherichia coli. J. Bacteriol. 90:884-890. 1965.-Protein metabolism and enzyme formation throughout the cell cycle were investigated in synchronized cultures of Escherichia coli. The cells showed a temporary cessation of the net increase of bulk protein and of constitutive beta-galactosidase activity during the division period. By contrast, when tested by short-term experiments performed with cells at different growth stages, the bacteria displayed a constant incorporation of labeled protein precursors into the protein fraction, even during the fission period. Similar results were obtained with respect to the capacities for induced enzyme formation. On the other hand, when the cells were previously labeled and then subjected to synchronization in a nonradioactive medium, the radioactivity of the protein fraction decreased temporarily by nearly 10% during the fission period and then regained its previous level at the beginning of the ensuing phase of growth. This indicates that the products of partial degradation of protein were again utilized for protein synthesis in the next cell cycle. It was concluded that the temporary lagging of net increase of bulk protein may be due to the partial breakdown of protein occurring during the fission period.

  14. TiO2 nanoparticles suppress Escherichia coli cell division in the absence of UV irradiation in acidic conditions.

    PubMed

    Zhukova, Lyudmila V; Kiwi, John; Nikandrov, Vitaly V

    2012-09-01

    TiO(2) nanoparticles (NPs) activated by UV irradiation are known to have a bactericidal effect. In this study we report the details of TiO(2) NPs influence on the colony-forming capacity of E. coli in the dark at pH 4.0-4.5. At this pH the bacterial cells are negatively charged and TiO(2) NPs present a positive charge. A 60 min contact between E. coli with TiO(2) at concentrations of 0.02-0.2 mg/mL led to a reduction of E. coli cell number from 10(8) to 10(4)CFU/mL. After the reduction the system remains unchanged during the subsequent incubation. The observed reduction was a function on the initial E. coli concentration. In the presence of 0.04 mg/mL TiO(2) the colony-forming units (CFU) reduction after 60 min was of four-five orders of magnitude when the initial concentration was 10(8) cells/mL. But when starting with an E. coli concentration of 10(7) cells/mL the cell number reduction was less than one order of magnitude. Less than one order of magnitude cell number reduction was also observed for suspensions of E. coli 10(8) cells/mL and 0.002 mg/mL of TiO(2). The bacteria number reduction was always accompanied by the formation of cell aggregates. During cell incubation with TiO(2), the pH of the suspension increased, but did not reach the TiO(2) isoelectric point (IEP). E. coli cells stained with the fluorescent dye acridine orange (AO) showed that the fluorescence of single cells remained unchanged after incubation in the presence of TiO(2). The color change of fluorescence was revealed only in aggregated cells. This suggests changes in the physiologic state of E. coli incorporated into the aggregates. Aggregates of E. coli occur due to the electrostatic interaction between TiO(2) NPs and the bacterial cell surface. A hypothesis is suggested in this study to explain the CFU reduction and the retention of a certain irreducible number of cells capable of further division in the suspension in the presence of TiO(2) in the dark.

  15. Calpain Mediates Epithelial Cell Microvillar Effacement by Enterohemorrhagic Escherichia Coli

    PubMed Central

    Lai, YuShuan; Riley, Kathleen; Cai, Andrew; Leong, John M.; Herman, Ira M.

    2011-01-01

    A member of the attaching and effacing (AE) family of pathogens, enterohemorrhagic Escherichia coli (EHEC) induces dramatic changes to the intestinal cell cytoskeleton, including effacement of microvilli. Effacement by the related pathogen enteropathogenic E. coli (EPEC) requires the activity of the Ca+2-dependent host protease, calpain, which participates in a variety of cellular processes, including cell adhesion and motility. We found that EHEC infection results in an increase in epithelial (CaCo-2a) cell calpain activity and that EHEC-induced microvillar effacement was blocked by ectopic expression of calpastatin, an endogenous calpain inhibitor, or by pretreatment of intestinal cells with a cell-penetrating version of calpastatin. In addition, ezrin, a known calpain substrate that links the plasma membrane to axial actin filaments in microvilli, was cleaved in a calpain-dependent manner during EHEC infection and lost from its normal locale within microvilli. Calpain may be a central conduit through which EHEC and other AE pathogens induce enterocyte cytoskeletal remodeling and exert their pathogenic effects. PMID:22073041

  16. Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli

    PubMed Central

    Mahon, Brian P; Lomelino, Carrie L; Salguero, Antonieta L; Driscoll, Jenna M; Pinard, Melissa A; McKenna, Robert

    2015-01-01

    Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems. PMID:26266677

  17. Tumbling and quasi-tumbling motions of E.coli over a solid surface under shear flows

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Sheng, Jian

    2015-11-01

    Flow shear is known to alter bacterial motility by inducing Jeffery Orbit, rheotaxis, and trapping cells in the high shear region. Over a solid surface flow shear Interferes with hydrodynamic interaction of cells with solid surface. Our previous study shows that in the quiescent condition the tumbles of wild E.coli are suppressed and tumbling reorientation of cells is restricted to the surface parallel direction. In the current study, we exposed bacteria to the well controlled shear flows inside a microchannel and applying Digital Holography Microscopy to track them over time. The results show that flow shear promotes tumbling of E.coli and preserve reorientation of the cells during tumbles. Our hydrodynamic model indicates that in the low shear levels the tumble enhancement is due to shear induced flagella unbundling, while in the high shear flow regime, Jeffery Orbit causes rapid cell re-orientation which causes quasi-tumbles with similar angular displacement one would expect during a tumbling. NIH, GoMRI.

  18. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli.

    PubMed

    Prigent-Combaret, C; Vidal, O; Dorel, C; Lejeune, P

    1999-10-01

    To get further information on bacterial surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli K-12, random insertion mutagenesis with Mu dX, a mini-Mu carrying the promoterless lacZ gene, was performed with an ompR234 adherent strain, and a simple screen was developed to assess changes in gene expression in biofilm cells versus planktonic cells. This screen revealed that major changes in the pattern of gene expression occur during biofilm development: the transcription of 38% of the genes was affected within biofilms. Different cell functions were more expressed in sessile bacteria: the OmpC porin, the high-affinity transport system of glycine betaine (encoded by the proU operon), the colanic acid exopolysaccharide (wca locus, formerly called cps), tripeptidase T (pepT), and the nickel high-affinity transport system (nikA). On the other hand, the syntheses of flagellin (fliC) and of a putative protein of 92 amino acids (f92) were both reduced in biofilms. Such a genetic reprogramming of gene expression in biofilms seems to result from changes in multiple environmental physicochemical conditions. In this work, we show that bacteria within biofilms encounter higher-osmolarity conditions, greater oxygen limitation, and higher cell density than in the liquid phase.

  19. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs

    PubMed Central

    2014-01-01

    Background Lipases including the lipase from Burkholderia cepacia are in a main focus in biotechnology research since many years because of their manifold possibilities for application in industrial processes. The application of Burkholderia cepacia lipase for these processes appears complicated because of the need for support by a chaperone, the lipase specific foldase. Purification and reconstitution protocols therefore interfere with an economic implementation of such enzymes in industry. Autodisplay is a convenient method to express a variety of passenger proteins on the surface of E. coli. This method makes subsequent purification steps to obtain the protein of interest unnecessary. If enzymes are used as passengers, the corresponding cells can simply be applied as whole cell biocatalysts. Furthermore, enzymes surface displayed in this manner often acquire stabilization by anchoring within the outer membrane of E. coli. Results The lipase and its chaperone foldase from B. cepacia were co-expressed on the surface of E. coli via autodisplay. The whole cell biocatalyst obtained thereby exhibited an enzymatic activity of 2.73 mU mL-1 towards the substrate p-nitrophenyl palmitate when applied in an OD578 =1. Outer membrane fractions prepared from the same culture volume showed a lipase activity of 4.01 mU mL-1. The lipase-whole cell biocatalyst as well as outer membrane preparations thereof were used in a standardized laundry test, usually adopted to determine the power of washing agents. In this test, the lipase whole cell biocatalyst and the membrane preparation derived thereof exhibited the same lipolytic activity as the purified lipase from B. cepacia and a lipase preparation which is already applied in commercial washing agents. Conclusions Co-expression of both the lipase and its chaperone foldase on the surface of E. coli yields a lipid degrading whole cell biocatalyst. Therefore the chaperone supported folding process, absolutely required for the lipolytic

  20. Inactivation of Escherichia coli O157:H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying.

    PubMed

    Bang, Jihyun; Hong, Ayoung; Kim, Hoikyung; Beuchat, Larry R; Rhee, Min Suk; Kim, Younghoon; Ryu, Jee-Hoon

    2014-11-17

    We investigated the efficacy of sequential treatments of aqueous chlorine and chlorine dioxide and drying in killing Escherichia coli O157:H7 in biofilms formed on stainless steel, glass, plastic, and wooden surfaces. Cells attached to and formed a biofilm on wooden surfaces at significantly (P ≤ 0.05) higher levels compared with other surface types. The lethal activities of sodium hypochlorite (NaOCl) and aqueous chlorine dioxide (ClO₂) against E. coli O157:H7 in a biofilm on various food-contact surfaces were compared. Chlorine dioxide generally showed greater lethal activity than NaOCl against E. coli O157:H7 in a biofilm on the same type of surface. The resistance of E. coli O157:H7 to both sanitizers increased in the order of wood>plastic>glass>stainless steel. The synergistic lethal effects of sequential ClO₂ and drying treatments on E. coli O157:H7 in a biofilm on wooden surfaces were evaluated. When wooden surfaces harboring E. coli O157:H7 biofilm were treated with ClO₂ (200 μg/ml, 10 min), rinsed with water, and subsequently dried at 43% relative humidity and 22 °C, the number of E. coli O157:H7 on the surface decreased by an additional 6.4 CFU/coupon within 6 h of drying. However, when the wooden surface was treated with water or NaOCl and dried under the same conditions, the pathogen decreased by only 0.4 or 1.0 log CFU/coupon, respectively, after 12 h of drying. This indicates that ClO₂ treatment of food-contact surfaces results in residual lethality to E. coli O157:H7 during the drying process. These observations will be useful when selecting an appropriate type of food-contact surfaces, determining a proper sanitizer for decontamination, and designing an effective sanitization program to eliminate E. coli O157:H7 on food-contact surfaces in food processing, distribution, and preparation environments.

  1. How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli?

    PubMed

    Panja, Subrata; Aich, Pulakesh; Jana, Bimal; Basu, Tarakdas

    2008-08-01

    Artificial transformation of Escherichia coli with plasmid DNA in presence of CaCl2 is a widely used technique in recombinant DNA technology. However, exact mechanism of DNA transfer across cell membranes is largely obscure. In this study, measurements of both steady state and time-resolved anisotropies of fluorescent dye trimethyl ammonium diphenyl hexatriene (TMA-DPH), bound to cellular outer membrane, indicated heat-pulse (0 degrees C42 degrees C) step of the standard transformation procedure had lowered considerably outer membrane fluidity of cells. The decrease in fluidity was caused by release of lipids from cell surface to extra-cellular medium. A subsequent cold-shock (42 degrees C0 degrees C) to the cells raised the fluidity further to its original value and this was caused by release of membrane proteins to extra-cellular medium. When the cycle of heat-pulse and cold-shock steps was repeated, more release of lipids and proteins respectively had taken place, which ultimately enhanced transformation efficiency gradually up to third cycle. Study of competent cell surface by atomic force microscope showed release of lipids had formed pores on cell surface. Moreover, the heat-pulse step almost depolarized cellular inner membrane. In this communication, we propose heat-pulse step had two important roles on DNA entry: (a) Release of lipids and consequent formation of pores on cell surface, which helped DNA to cross outer membrane barrier, and (b) lowering of membrane potential, which facilitated DNA to cross inner membrane of E. coli.

  2. Membrane protein production in Escherichia coli cell-free lysates.

    PubMed

    Henrich, Erik; Hein, Christopher; Dötsch, Volker; Bernhard, Frank

    2015-07-08

    Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.

  3. Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy.

    PubMed

    Tang, Yulong; Li, Fengna; Tan, Bie; Liu, Gang; Kong, Xiangfeng; Hardwidge, Philip R; Yin, Yulong

    2014-06-25

    The morbidity and mortality in piglets caused by enterotoxigenic Escherichia coli (ETEC) results in large economic losses to the swine industry, but the precise pathogenesis of ETEC-associated diseases remains unknown. Intestinal epithelial cell autophagy serves as a host defense against pathogens. We found that ETEC induced autophagy, as measured by both the increased punctae distribution of GFP-LC3 and the enhanced conversion of LC3-I to LC3-II. Inhibiting autophagy resulted in decreased survival of IPEC-1 cells infected with ETEC. ETEC triggered autophagy in IPEC-1 cells through a pathway involving the mammalian target of rapamycin (mTOR), the extracellular signal-regulated kinases 1/2 (ERK1/2), and the AMP-activated protein kinase (AMPK).

  4. [Electrooptical parameters of kanamycin-treated E. coli cell suspensions].

    PubMed

    Guliĭ, O I; Markina, L N; Bunin, V D; Ignatov, V V; Ignatov, O V

    2008-01-01

    The effect of kanamycin on the electrophysical parameters of cell suspensions of Escherichia coli K-12 and pMMB33 was investigated. Incubation of the sensitive K-12 strain with kanamycin resulted in significant changes in the orientation spectra (OS) of the cell suspensions; these changes were not revealed in the case of the resistant pMMB33 strain. In the case of the sensitive K-12 strain incubated with different kanamycin concentrations, changes in the OS of the cell suspensions occurred within the 10-1000 kHz frequency range of the orienting electrical field. The most pronounced change in the electrooptical signal was observed at 10 microg/ml of kanamycin. Control experiments were carried out by standard plating on nutrient media. Thus, the OS changes of suspensions in the presence of antibiotics may be used as a test for microbial resistance to such antibiotics.

  5. K99 surface antigen of Escherichia coli: antigenic characterization.

    PubMed Central

    Isaacson, R E

    1978-01-01

    K99 prepared by acid precipitation hemagglutinated guinea pig erythrocytes, whereas K99 prepared by chromatography on diethylaminoethyl-Sephadex did not. K99 purified by either procedure hemagglutinated horse erythrocytes. K99 prepared by acid precipitation contained a second antigen not presnet in the K99 prepared by chromatography on diethylaminoethyl-Sephadex. This antigen could be detected by immunoprecipitation with some, but not all, sera prepared against K99-positive Escherichia coli strains. It was assumed that this second antigen is not K99 and is responsible for the guinea pig erythrocyte hemagglutination reaction. Furthermore, the second antigen has an isoelectric point of 4.2, which has been reported by Morris and co-workers to be the isoelectric point of K99. Images PMID:83300

  6. Optimization of the Expression of DT386-BR2 Fusion Protein in Escherichia coli using Response Surface Methodology

    PubMed Central

    Shafiee, Fatemeh; Rabbani, Mohammad; Jahanian-Najafabadi, Ali

    2017-01-01

    Background: The aim of this study was to determine the best condition for the production of DT386-BR2 fusion protein, an immunotoxin consisting of catalytic and translocation domains of diphtheria toxin fused to BR2, a cancer specific cell penetrating peptide, for targeted eradication of cancer cells, in terms of the host, cultivation condition, and culture medium. Materials and Methods: Recombinant pET28a vector containing the codons optimized for the expression of the DT386-BR2 gene was transformed to different strains of Escherichia coli (E. coli BL21 DE3, E. coli Rosetta DE3 and E. coli Rosetta-gami 2 DE3), followed by the induction of expression using 1 mM IPTG. Then, the strain with the highest ability to produce recombinant protein was selected and used to determine the best expression condition using response surface methodology (RSM). Finally, the best culture medium was selected. Results: Densitometry analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the expressed fusion protein showed that E. coli Rosetta DE3 produced the highest amounts of the recombinant fusion protein when quantified by 1 mg/ml bovine serum albumin (178.07 μg/ml). Results of RSM also showed the best condition for the production of the recombinant fusion protein was induction with 1 mM IPTG for 2 h at 37°C. Finally, it was established that terrific broth could produce higher amounts of the fusion protein when compared to other culture media. Conclusion: In this study, we expressed the recombinant DT386-BR2 fusion protein in large amounts by optimizing the expression host, cultivation condition, and culture medium. This fusion protein will be subjected to purification and evaluation of its cytotoxic effects in future studies. PMID:28349025

  7. Natural Escherichia coli strains undergo cell-to-cell plasmid transformation.

    PubMed

    Matsumoto, Akiko; Sekoguchi, Ayuka; Imai, Junko; Kondo, Kumiko; Shibata, Yuka; Maeda, Sumio

    2016-12-02

    Horizontal gene transfer is a strong tool that allows bacteria to adapt to various environments. Although three conventional mechanisms of horizontal gene transfer (transformation, transduction, and conjugation) are well known, new variations of these mechanisms have also been observed. We recently reported that DNase-sensitive cell-to-cell transfer of nonconjugative plasmids occurs between laboratory strains of Escherichia coli in co-culture. We termed this phenomenon "cell-to-cell transformation." In this report, we found that several combinations of Escherichia coli collection of reference (ECOR) strains, which were co-cultured in liquid media, resulted in DNase-sensitive cell-to-cell transfer of antibiotic resistance genes. Plasmid isolation of these new transformants demonstrated cell-to-cell plasmid transfer between the ECOR strains. Natural transformation experiments, using a combination of purified plasmid DNA and the same ECOR strains, revealed that cell-to-cell transformation occurs much more frequently than natural transformation under the same culture conditions. Thus, cell-to-cell transformation is both unique and effective. In conclusion, this study is the first to demonstrate cell-to-cell plasmid transformation in natural E. coli strains.

  8. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei

    2014-03-01

    A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.

  9. Inhibition of enteroaggregative Escherichia coli cell adhesion in-vitro by designed peptides.

    PubMed

    Gupta, Deepika; Sarkar, Subendu; Sharma, Monica; Thapa, B R; Chakraborti, Anuradha

    2016-09-01

    Enteroaggregative Escherichia coli (EAEC) bears remarkable capacity to adhere the host intestinal mucosal surface and results in acute or persistent childhood diarrhea worldwide. In this study, an attempt has been made to inhibit EAEC cell adherence in-vitro using synthetic peptides. E. coli isolates (n = 54) were isolated from the stool samples of clinically diagnosed pediatric diarrheal patients. 92.8% isolates showed different types of aggregative adherence patterns with HEp-2 cells. AAF-II (Aggregative Adherence Fimbriae-II) EAEC exhibited the maximum ability to form biofilm and intracellular survival. Peptides were designed against the high antigenic epitopic regions of AAF-II adhesin of EAEC O42 using prediction algorithms like BcePred and ProPred software to block the EAEC cell adhesion in-vitro. Peptides P2 (DITITPATNRDVNV) and P3 (MRIKAWGEANHGQL) demonstrated higher inhibition of EAEC cell adhesion than P1 (GMQGSITPAIPLRPG). Interestingly, increasing the pre-incubation time of the peptides with HEp-2 cells from 1 h to 2 h showed the maximum inhibition. The data suggested the potential role of P2 and P3 peptides in successfully blocking the binding of AAF-II EAEC with HEp-2 cell receptors. Hence, the peptides may be efficacious in designing new chemotherapeutic for the management of EAEC mediated diarrhea.

  10. Native surface association of a recombinant 38-kilodalton Treponema pallidum antigen isolated from the Escherichia coli outer membrane.

    PubMed Central

    Fehniger, T E; Radolf, J D; Walfield, A M; Cunningham, T M; Miller, J N; Lovett, M A

    1986-01-01

    A recombinant plasmid designated pAW305, containing a 6-kilobase insert of Treponema pallidum DNA, directed the expression of a 38-kilodalton (kDa) treponemal antigen in Escherichia coli. The 38-kDa antigen copurified with the outer membrane fraction of the E. coli cell envelope after treatment with nonionic detergents or sucrose density gradient centrifugation. Rabbits immunized with the recombinant 38-kDa antigen developed antibodies which reacted specifically with a 38-kDa T. pallidum antigen on immunoblots, and 38-kDa antisera specifically immobilized T. pallidum in a complement-dependent manner in the T. pallidum immobilization test. Antisera to the 38-kDa recombinant antigen were also used to demonstrate its native surface association on T. pallidum by immunoelectron microscopy. Images PMID:3516880

  11. Measuring cell wall elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM

    SciTech Connect

    Beckmann, Melissa; Venkataraman, Sankar; Doktycz, Mitchel John; Nataro, James P; Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P

    2006-07-01

    Enteroaggregative Escherichia coli (EAEC) is pathogenic and produces severe diarrhea in humans. A mutant of EAEC that does not produce dispersin, a cell surface protein, is not pathogenic. It has been proposed that dispersin imparts a positive charge to the bacterial cell surface allowing the bacteria to colonize on the negatively charged intestinal mucosa. However, physical properties of the bacterial cell surface, such as rigidity, may be influenced by the presence of dispersin and may contribute to pathogenicity. Using the system developed in our laboratory for mounting and imaging bacterial cells by atomic force microscopy (AFM), in liquid, on gelatin coated mica surfaces, studies were initiated to measure cell surface elasticity. This was carried out in both wild type EAEC, that produces dispersin, and the mutant that does not produce dispersin. This was accomplished using AFM force-distance (FD) spectroscopy on the wild type and mutant grown in liquid or on solid medium. Images in liquid and in air of both the wild-type and mutant grown in liquid and on solid media are presented. This work represents an initial step in efforts to understand the pathogenic role of the dispersin protein in the wild-type bacteria.

  12. Role of Extracellular Structures of Escherichia coli O157:H7 in Initial Attachment to Biotic and Abiotic Surfaces

    PubMed Central

    Nagy, Attila; Mowery, Joseph; Bauchan, Gary R.; Wang, Lili; Nichols-Russell, Lydia

    2015-01-01

    Infection by human pathogens through the consumption of fresh, minimally processed produce and solid plant-derived foods is a major concern of the U.S. and global food industries and of public health services. Enterohemorrhagic Escherichia coli O157:H7 is a frequent and potent foodborne pathogen that causes severe disease in humans. Biofilms formed by E. coli O157:H7 facilitate cross-contamination by sheltering pathogens and protecting them from cleaning and sanitation operations. The objective of this research was to determine the role that several surface structures of E. coli O157:H7 play in adherence to biotic and abiotic surfaces. A set of isogenic deletion mutants lacking major surface structures was generated. The mutant strains were inoculated onto fresh spinach and glass surfaces, and their capability to adhere was assessed by adherence assays and fluorescence microscopy methods. Our results showed that filament-deficient mutants bound to the spinach leaves and glass surfaces less strongly than the wild-type strain did. We mimicked the switch to the external environment—during which bacteria leave the host organism and adapt to lower ambient temperatures of cultivation or food processing—by decreasing the temperature from 37°C to 25°C and 4°C. We concluded that flagella and some other cell surface proteins are important factors in the process of initial attachment and in the establishment of biofilms. A better understanding of the specific roles of these structures in early stages of biofilm formation can help to prevent cross-contaminations and foodborne disease outbreaks. PMID:25956766

  13. Effect of serogroup, surface material and disinfectant on biofilm formation by avian pathogenic Escherichia coli.

    PubMed

    Oosterik, Leon H; Tuntufye, Huruma N; Butaye, Patrick; Goddeeris, Bruno M

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) are responsible for significant economic losses in the poultry industry and are difficult to eradicate. Biofilm formation by APEC has the potential to reduce the efficacy of cleaning and disinfection. In this study, biofilm formation on materials used in poultry facilities by APEC strains from laying hens was determined. APEC strains were analysed for an association between biofilm forming capacity and O serogroup. The abilities of two routinely used disinfectants, hydrogen peroxide (H2O2) and a quaternary ammonium compound (QAC), to kill adherent cells of two strong APEC biofilm producers (05/503 and 04/40) and a non-biofilm producer (05/293) on polystyrene (PS) and polyvinylchloride (PVC) surfaces were tested. Most APEC strains were moderate (PS) or strong biofilm producers (polypropylene, PP, and PVC). Strains in serogroup O2 more often belonged to the moderate (PS) or strong (PP and PVC) biofilm producers than to other groups, while most O78 strains were weak biofilm producers. O78 strains were stronger biofilm producers on stainless steel than on PP and PVC, while O2 strains were stronger biofilm producers on PP and PVC. A concentration of 1% H2O2 killed all adherent bacteria of strains 05/503 and 04/40 on PP and PVC, while 0.5% H2O2 killed all adherent bacteria of strain 05/293. QAC at a concentration of 0.01% killed all adherent cells of strains 05/503, 04/40 and 05/293 under equal conditions. In conclusion, biofilm formation by APEC was affected by serogroup and surface material, and inactivation of APEC was dependent on the disinfectant and surface material.

  14. Complex patterns formed by motile cells of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Budrene, Elena O.; Berg, Howard C.

    1991-02-01

    WHEN chemotactic strains of the bacterium Escherichia coli are inoculated on semi-solid agar containing mixtures of amino acids or sugars, the cells swarm outwards in a series of concentric rings: they respond to spatial gradients of attractants generated by uptake and catabolism1-3. Cells also drift up gradients generated artificially, for example by diffusion from the tip of a capillary tube4 or by mixing5. Here we describe conditions under which cells aggregate in response to gradients of attractant which they excrete themselves. When cells are grown in semi-solid agar on intermediates of the tricarboxylic acid cycle, they form symmetrical arrays of spots or stripes that arise sequentially. When cells in a thin layer of liquid culture are exposed to these compounds, spots appear synchronously, more randomly arrayed. In either case, the patterns are stationary. The attractant is a chemical sensed by the aspartate receptor. Its excretion can be triggered by oxidative stress. As oxygen is limiting at high cell densities, aggregation might serve as a mechanism for collective defence.

  15. Coordination of flagella on filamentous cells of Escherichia coli.

    PubMed Central

    Ishihara, A; Segall, J E; Block, S M; Berg, H C

    1983-01-01

    Video techniques were used to study the coordination of different flagella on single filamentous cells of Escherichia coli. Filamentous, nonseptate cells were produced by introducing a cell division mutation into a strain that was polyhook but otherwise wild type for chemotaxis. Markers for its flagellar motors (ordinary polyhook cells that had been fixed with glutaraldehyde) were attached with antihook antibodies. The markers were driven alternately clockwise and counterclockwise, at angular velocities comparable to those observed when wild-type cells are tethered to glass. The directions of rotation of different markers on the same cell were not correlated; reversals of the flagellar motors occurred asynchronously. The bias of the motors (the fraction of time spent spinning counterclockwise) changed with time. Variations in bias were correlated, provided that the motors were within a few micrometers of one another. Thus, although the directions of rotation of flagellar motors are not controlled by a common intracellular signal, their biases are. This signal appears to have a limited range. Images PMID:6345503

  16. Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of Escherichia coli

    PubMed Central

    2013-01-01

    Lipopolysaccharides (LPS) make up approximately 75% of the Gram-negative bacterial outer membrane (OM) surface, but because of the complexity of the molecule, there are very few model OMs that include LPS. The LPS molecule consists of lipid A, which anchors the LPS within the OM, a core polysaccharide region, and a variable O-antigen polysaccharide chain. In this work we used RcLPS (consisting of lipid A plus the first seven sugars of the core polysaccharide) from a rough strain of Escherichia coli to form stable monolayers of LPS at the air–liquid interface. The vertical structure RcLPS monolayers were characterized using neutron and X-ray reflectometry, while the lateral structure was investigated using grazing incidence X-ray diffraction and Brewster angle microscopy. It was found that RcLPS monolayers at surface pressures of 20 mN m–1 and above are resolved as hydrocarbon tails, an inner headgroup, and an outer headgroup of polysaccharide with increasing solvation from tails to outer headgroups. The lateral organization of the hydrocarbon lipid chains displays an oblique hexagonal unit cell at all surface pressures, with only the chain tilt angle changing with surface pressure. This is in contrast to lipid A, which displays hexagonal or, above 20 mN m–1, distorted hexagonal packing. This work provides the first complete structural analysis of a realistic E. coli OM surface model. PMID:23617615

  17. Acetaldehyde detoxification using resting cells of recombinant Escherichia coli overexpressing acetaldehyde dehydrogenase.

    PubMed

    Yao, Zhengying; Zhang, Chong; Zhao, Junfeng; Lu, Fengxia; Bie, Xiaomei; Lu, Zhaoxin

    2014-02-01

    Acetaldehyde dehydrogenase (E.C. 1.2.1.10) plays a key role in the acetaldehyde detoxification. The recombinant Escherichia coli cells producing acetaldehyde dehydrogenase (ist-ALDH) were applied as whole-cell biocatalysts for biodegradation of acetaldehyde. Response surface methodology (RSM) was employed to enhance the production of recombinant ist-ALDH. Under the optimum culture conditions containing 20.68 h post-induction time, 126.75 mL medium volume and 3 % (v/v) inoculum level, the maximum ist-ALDH activity reached 496.65 ± 0.81 U/mL, resulting in 12.5-fold increment after optimization. Furthermore, the optimum temperature and pH for the catalytic activity of wet cells were 40 °C and pH 9.5, respectively. The biocatalytic activity was improved 80 % by permeabilizing the recombinant cells with 0.075 % (v/v) Triton X-100. When using 2 mmol/L NAD(+) as coenzyme, the permeabilized cells could catalyze 98 % of acetaldehyde within 15 min. The results indicated that the recombinant E. coli with high productivity of ist-ALDH might be highly efficient and easy-to-make biocatalysts for acetaldehyde detoxification.

  18. Localization of anionic phospholipids in Escherichia coli cells.

    PubMed

    Oliver, Piercen M; Crooks, John A; Leidl, Mathias; Yoon, Earl J; Saghatelian, Alan; Weibel, Douglas B

    2014-10-01

    Cardiolipin (CL) is an anionic phospholipid with a characteristically large curvature and is of growing interest for two primary reasons: (i) it binds to and regulates many peripheral membrane proteins in bacteria and mitochondria, and (ii) it is distributed asymmetrically in rod-shaped cells and is concentrated at the poles and division septum. Despite the growing number of studies of CL, its function in bacteria remains unknown. 10-N-Nonyl acridine orange (NAO) is widely used to image CL in bacteria and mitochondria, as its interaction with CL is reported to produce a characteristic red-shifted fluorescence emission. Using a suite of biophysical techniques, we quantitatively studied the interaction of NAO with anionic phospholipids under physiologically relevant conditions. We found that NAO is promiscuous in its binding and has photophysical properties that are largely insensitive to the structure of diverse anionic phospholipids to which it binds. Being unable to rely solely on NAO to characterize the localization of CL in Escherichia coli cells, we instead used quantitative fluorescence microscopy, mass spectrometry, and mutants deficient in specific classes of anionic phospholipids. We found CL and phosphatidylglycerol (PG) concentrated in the polar regions of E. coli cell membranes; depletion of CL by genetic approaches increased the concentration of PG at the poles. Previous studies suggested that some CL-binding proteins also have a high affinity for PG and display a pattern of cellular localization that is not influenced by depletion of CL. Framed within the context of these previous experiments, our results suggest that PG may play an essential role in bacterial physiology by maintaining the anionic character of polar membranes.

  19. Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Su, Lan; Zhang, Ping; Zheng, Da-wei; Wang, Yang-jun-qi; Zhong, Ru-gang

    2015-03-01

    In this paper, the surface-enhanced Raman scattering (SERS) is used as an analytical tool for the detection and identification of pathogenic bacteria of Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium). Compared with normal Raman signal, the intensity of SERS signal is greatly enhanced. After processing all SERS data, the obvious differences between the SERS spectra of two species are determined. And applying the chemometric tools of principal component analysis and hierarchical cluster analysis (PCA-HCA), the SERS spectra of two species are distinguished more accurately. The results indicate that SERS analysis can provide a rapid and sensitive method for the detection of pathogenic bacteria.

  20. Sterilization of E. coli bacterium with an atmospheric pressure surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhang, Rui; Liu, Peng; Ding, Li-Li; Zhan, Ru-Juan

    2004-06-01

    The atmospheric pressure surface barrier discharge (APSBD) in air has been used in killing Escherichia coli (E. coli). There is almost no bacterial colony in the sample after treatment by discharge plasma for 2 min. A diagnostic technique based on mass spectrum has been applied to the discharge gas and the mechanism of killing is discussed. Ozone and monatomic oxide are considered to be the major antimicrobial active species. There is almost no harmful by-product. The experiment proves that APSBD plasma is a very simple, effective and innocuous tool for sterilization.

  1. Cyclic AMP and cell division in Escherichia coli.

    PubMed Central

    D'Ari, R; Jaffé, A; Bouloc, P; Robin, A

    1988-01-01

    We examined several aspects of cell division regulation in Escherichia coli which have been thought to be controlled by cyclic AMP (cAMP) and its receptor protein (CAP). Mutants lacking adenyl cyclase (cya) or CAP (crp) were rod shaped, not spherical, during exponential growth in LB broth or glucose-Casamino Acids medium, and lateral wall elongation was normal; in broth, stationary-phase cells became ovoid. Cell mass was smaller for the mutants than for the wild type, but it remained appropriate for their slower growth rate and thus probably does not reflect early (uncontrolled) septation. The slow growth did not seem to reflect a gross metabolic disorder, since the mutants gave a normal yield on limiting glucose; surprisingly, however, the cya mutant (unlike crp) was unable to grow anaerobically on glucose, suggesting a role for cAMP (but not for CAP) in the expression of some fermentation enzyme. Both cya and crp mutants are known to be resistant to mecillinam, an antibiotic which inhibits penicillin-binding protein 2 (involved in lateral wall elongation) and also affects septation. This resistance does not reflect a lack of PBP2. Furthermore, it was not simply the result of slow growth and small cell mass, since small wild-type cells growing in acetate remained sensitive. The cAMP-CAP complex may regulate the synthesis of some link between PBP2 and the septation apparatus. The ftsZ gene, coding for a cell division protein, was expressed at a higher level in the absence of cAMP, as measured with an ftsZ::lacZ fusion, but the amount of protein per cell, shown by others to be invariable over a 10-fold range of cell mass, was independent of cAMP, suggesting that ftsZ expression is not regulated by the cAMP-CAP complex. Images PMID:2826407

  2. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages.

    PubMed

    Tawil, Nancy; Sacher, Edward; Mandeville, Rosemonde; Meunier, Michel

    2012-01-01

    Early diagnosis and appropriate treatment of Escherichia coli (E. coli) O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) are key elements in preventing resultant life-threatening illnesses, such as hemorrhagic colitis, hemolytic uremic syndrome, and septicemia. In this report, we describe the use of surface plasmon resonance (SPR) for the biodetection of pathogenic bacteria, using bacteriophages as the recognition elements. T4 bacteriophages were used to detect E. coli, while a novel, highly specific phage was used to detect MRSA. We found that the system permits label-free, real-time, specific, rapid and cost-effective detection of pathogens, for concentrations of 10(3) colony forming units/milliliter, in less than 20 min. This system promises to become a diagnostic tool for bacteria that cause major public concern for food safety, bioterrorism, and nosocomial infections.

  3. A new Escherichia coli cell division gene, ftsK.

    PubMed Central

    Begg, K J; Dewar, S J; Donachie, W D

    1995-01-01

    A mutation in a newly discovered Escherichia coli cell division gene, ftsK, causes a temperature-sensitive late-stage block in division but does not affect chromosome replication or segregation. This defect is specifically suppressed by deletion of dacA, coding for the peptidoglycan DD-carboxypeptidase, PBP 5. FtsK is a large polypeptide (147 kDa) consisting of an N-terminal domain with several predicted membrane-spanning regions, a proline-glutamine-rich domain, and a C-terminal domain with a nucleotide-binding consensus sequence. FtsK has extensive sequence identity with a family of proteins from a wide variety of prokaryotes and plasmids. The plasmid proteins are required for intercellular DNA transfer, and one of the bacterial proteins (the SpoIIIE protein of Bacillus subtilis) has also been implicated in intracellular chromosomal DNA transfer. PMID:7592387

  4. Protein folding in the cell envelope of Escherichia coli.

    PubMed

    De Geyter, Jozefien; Tsirigotaki, Alexandra; Orfanoudaki, Georgia; Zorzini, Valentina; Economou, Anastassios; Karamanou, Spyridoula

    2016-07-26

    While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.

  5. [Structural modifications of the surface of Escherichia coli bacteria and copper-induced permeability of plasma membrane].

    PubMed

    Lebedev, V S; Volodina, L A; Deĭnega, E Iu; Fedorov, Iu I

    2005-01-01

    The effect of Cu2+ on the structural organization of the cell surface of Escherichia coli bacteria during the induction of conductivity of a plasma membrane was studied. A fluorescent study did not reveal any substantial changes in the microviscosity of lipids by the action of copper ions. At the same time, a substantial reorganization of membrane proteins during plasmolysis was observed. A model of the copper-induced structural reorganization of membrane lipids was constructed, according to which the reorganization leads to the opening in the membrane of channels of nonspecific conductivity for cations. The opening of conductivity channels results from the break of disulfide bonds in critical membrane proteins during the interaction with Cu+, which form either due to the reduction of Cu2+ on specific sites of cell surface or by means of external reducing agents.

  6. Capsule reduces adherence of enterotoxigenic Escherichia coli to isolated intestinal epithelial cells of pigs.

    PubMed Central

    Runnels, P L; Moon, H W

    1984-01-01

    Previous reports have demonstrated that heat-stable (A-type) capsule on piliated enterotoxigenic Escherichia coli enhances colonization of enterotoxigenic E. coli in the small intestine and enhances virulence of enterotoxigenic E. coli. In this report, four encapsulated enterotoxigenic E. coli strains and one encapsulated nonenterotoxigenic strain of E. coli and their nonencapsulated mutants were tested for adhesion to isolated intestinal epithelial cells or brush borders from neonatal pigs. The enterotoxigenic E. coli also expressed the K99 pilus antigen. The nonencapsulated mutants of the four enterotoxigenic E. coli adhered in higher numbers than did the encapsulated parental strains. Both the encapsulated and nonencapsulated forms of enterotoxigenic E. coli 431 grown at 18 degrees C (K99 production suppressed) adhered poorly to the isolated cells. The nonenterotoxigenic E. coli 1793 which does not express K99 antigen also adhered poorly in both encapsulated and nonencapsulated forms. Fab fragments of anticapsular immunoglobulin G failed to block the effect of capsule on adherence of strain 431. The results indicated that K99 was the principal mediator of in vitro adhesion of the enterotoxigenic E. coli strains and that capsule impedes the in vitro adhesion. They also suggested that the capsular enhancement of colonization by such strains in vivo probably is by some mechanism other than enhanced adhesion to epithelium. PMID:6147310

  7. Capsule reduces adherence of enterotoxigenic Escherichia coli to isolated intestinal epithelial cells of pigs.

    PubMed

    Runnels, P L; Moon, H W

    1984-09-01

    Previous reports have demonstrated that heat-stable (A-type) capsule on piliated enterotoxigenic Escherichia coli enhances colonization of enterotoxigenic E. coli in the small intestine and enhances virulence of enterotoxigenic E. coli. In this report, four encapsulated enterotoxigenic E. coli strains and one encapsulated nonenterotoxigenic strain of E. coli and their nonencapsulated mutants were tested for adhesion to isolated intestinal epithelial cells or brush borders from neonatal pigs. The enterotoxigenic E. coli also expressed the K99 pilus antigen. The nonencapsulated mutants of the four enterotoxigenic E. coli adhered in higher numbers than did the encapsulated parental strains. Both the encapsulated and nonencapsulated forms of enterotoxigenic E. coli 431 grown at 18 degrees C (K99 production suppressed) adhered poorly to the isolated cells. The nonenterotoxigenic E. coli 1793 which does not express K99 antigen also adhered poorly in both encapsulated and nonencapsulated forms. Fab fragments of anticapsular immunoglobulin G failed to block the effect of capsule on adherence of strain 431. The results indicated that K99 was the principal mediator of in vitro adhesion of the enterotoxigenic E. coli strains and that capsule impedes the in vitro adhesion. They also suggested that the capsular enhancement of colonization by such strains in vivo probably is by some mechanism other than enhanced adhesion to epithelium.

  8. Melanosis coli. A consequence of anthraquinone-induced apoptosis of colonic epithelial cells.

    PubMed Central

    Walker, N. I.; Bennett, R. E.; Axelsen, R. A.

    1988-01-01

    A condition closely resembling human melanosis coli was induced in the guinea pig large intestine by daily oral administration of the anthraquinone danthron. Each treatment caused a transient, dose-related wave of apoptosis of the colonic surface epithelial cells. Most of the resulting apoptotic bodies were phagocytosed by intraepithelial macrophages and carried by them through fenestrae in the epithelial basement membrane to the lamina propria. Here, the apoptotic bodies were transformed into typical lipofuscin pigment in macrophage heterolysosomes. Continued danthron administration caused progressive accumulation of pigmented macrophages in the bowel wall, whereas ongoing migration of pigmented macrophages to regional lymph nodes resulted, after danthron was ceased, in sequential loss of the pigmented cells from the superficial and deep lamina propria. Examination of colonic biopsies from patients with melanosis coli shows increased numbers of apoptotic bodies in the surface epithelium and lamina propria, suggesting implication of the same cellular processes in the formation of the pigment in man. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:3381879

  9. Effect of Ionic Strength on Initial Interactions of Escherichia coli with Surfaces, Studied On-Line by a Novel Quartz Crystal Microbalance Technique

    PubMed Central

    Otto, Karen; Elwing, Hans; Hermansson, Malte

    1999-01-01

    A novel quartz crystal microbalance (QCM) technique was used to study the adhesion of nonfimbriated and fimbriated Escherichia coli mutant strains to hydrophilic and hydrophobic surfaces at different ionic strengths. This technique enabled us to measure both frequency shifts (Δf), i.e., the increase in mass on the surface, and dissipation shifts (ΔD), i.e., the viscoelastic energy losses on the surface. Changes in the parameters measured by the extended QCM technique reflect the dynamic character of the adhesion process. We were able to show clear differences in the viscoelastic behavior of fimbriated and nonfimbriated cells attached to surfaces. The interactions between bacterial cells and quartz crystal surfaces at various ionic strengths followed different trends, depending on the cell surface structures in direct contact with the surface. While Δf and ΔD per attached cell increased for nonfimbriated cells with increasing ionic strengths (particularly on hydrophobic surfaces), the adhesion of the fimbriated strain caused only low-level frequency and dissipation shifts on both kinds of surfaces at all ionic strengths tested. We propose that nonfimbriated cells may get better contact with increasing ionic strengths due to an increased area of contact between the cell and the surface, whereas fimbriated cells seem to have a flexible contact with the surface at all ionic strengths tested. The area of contact between fimbriated cells and the surface does not increase with increasing ionic strengths, but on hydrophobic surfaces each contact point seems to contribute relatively more to the total energy loss. Independent of ionic strength, attached cells undergo time-dependent interactions with the surface leading to increased contact area and viscoelastic losses per cell, which may be due to the establishment of a more intimate contact between the cell and the surface. Hence, the extended QCM technique provides new qualitative information about the direct contact

  10. Corona discharges with water electrospray for Escherichia coli biofilm eradication on a surface.

    PubMed

    Kovalova, Zuzana; Leroy, Magali; Kirkpatrick, Michael J; Odic, Emmanuel; Machala, Zdenko

    2016-12-01

    Low-temperature plasma (cold), a new method for the decontamination of surfaces, can be an advantageous alternative to the traditional chemical methods, autoclave or dry heat. Positive and negative corona discharges in air were tested for the eradication of 48-h Escherichia coli biofilms grown on glass slides. The biofilms were treated by cold corona discharge plasma for various exposure times. Water electrospray from the high voltage electrode was applied in some experiments. Thermostatic cultivation of the biofilm, and confocal laser scanning microscopy (CLSM) of the biofilm stained with fluorescent dyes were used for biocidal efficiency quantification. Up to 5 log10 reduction of bacterial concentration in the biofilm was measured by thermostatic cultivation after exposure to both corona discharges for 15min. This decontamination efficiency was significantly enhanced by simultaneous water electrospray through the plasma. CLSM showed that the live/dead ratio after treatment remained almost constant inside the biofilm; only cells on the top layers of the biofilm were affected. DAPI fluorescence showed that biofilm thickness was reduced by about 1/3 upon exposure to the corona discharges with electrospray for 15min. The biofilm biomass loss by about 2/3 was confirmed by crystal violet assay.

  11. Prevalence of Escherichia coli O157:H7 in surface water near cattle feedlots.

    PubMed

    Tanaro, José D; Piaggio, Mercedes C; Galli, Lucía; Gasparovic, Alejandra M C; Procura, Francisco; Molina, Demián A; Vitón, Mauro; Zolezzi, Gisela; Rivas, Marta

    2014-12-01

    Between April 2009 and July 2011, 311 surface water samples in 48 cattle feedlots distributed in an area of about 67,000 km(2) were analyzed to examine the environmental dissemination of Escherichia coli O157:H7. Samples were taken inside and outside the pens, exposed and not exposed to runoff from corrals, near the feedlots. Two types of samples were defined: (1) exposed surface waters (ESW; n=251), downstream from cattle pens; and (2) nonexposed surface waters (NESW; n=60), upstream from cattle pens. By multiplex PCR, 177 (70.5%) ESW samples were rfb(O157)-positive, and 62 (24.7%) E. coli O157, and 32 (12.7%) Shiga toxin-producing E. coli (STEC) O157:H7 strains were isolated. In the NESW samples, 36 (60.0%) were rfb(O157)- positive, and 9 (15.0%) E. coli O157, and 6 (10.0%) STEC O157:H7 strains were isolated. These results showed that the environmental surface waters exposed to liquid discharges from intensive livestock operations tended to be contaminated with more STEC O157:H7 than NESW. However, no significant difference was found. This fact emphasizes the relevance of other horizontal routes of transmission, as the persistence of E. coli in the environment resulting from extensive livestock farming. By XbaI-PFGE, some patterns identified are included in the Argentine Database of E. coli O157, corresponding to strains isolated from hemolytic uremic syndrome and diarrhea cases, food, and animals, such as AREXHX01.0022, second prevalent pattern in Argentina, representing 5.5% of the total database. In the study area, characterized by the abundance of waterways, pathogens contained in feedlot runoff could reach recreational waters and also contaminate produce through irrigation, increasing the potential dissemination of STEC O157:H7 and the risk of human infections. The control of runoff systems from intensive livestock is necessary, but other alternatives should be explored to solve the problem of the presence of E. coli O157 in the aquatic rural environment.

  12. Sorption of heavy metals by prepared bacterial cell surfaces

    SciTech Connect

    Churchill, S.A.; Walters, J.V.; Churchill, P.F.

    1995-10-01

    Prepared biomass from two Gram-negative and one Gram-positive bacterial strains was examined for single, binary, and quaternary mixtures of polyvalent metal cation binding to cell surfaces. The biosorption of {sub 24}Cr{sup 3+}, {sub 27}Co{sup 2+}, {sub 28}Ni{sup 2+}, and {sub 29}Cu{sup 2+} for each bacterial cell type was evaluated using a batch equilibrium method. The binding of each metal by all three bacterial cells could be described by the Freundlich sorption model. The isotherm binding constants suggest that E. coli cells are the most efficient at binding copper, chromium, and nickel; and M. luteus adsorbs cobalt most efficiently. The K-values for copper bound to P. aeruginosa and E. coli are > 2-fold and > 8-fold greater, respectively, than previous reported for intact cells. The general metal-affinity series observed was Cr{sup 3+} > Cu{sup 2+} > Ni{sup 2+} > Co{sup 2+}. There was a marked lower affinity of all biosorbents for Co{sup 2+} and Ni{sup 2+}. M. luteus and E. coli had a strong preference for Co{sup 2+} over Ni{sup 2+}. Metal-binding enhancement could be ascribed to increased cell barrier surface porosity to metal-bearing solutions.

  13. Surfacing of domestic wastewater applied to soil through drip tubing and reduction in numbers of Escherichia coli.

    PubMed

    Franti, J M; Weaver, R W; McInnes, K J

    2002-09-01

    Drip tubing is a technology that is increasing in use. The effectiveness of such systems in distributing the wastewater uniformly through the soil matrix, providing adequate removal of bacteria from wastewater, and keeping wastewater from reaching the soil surface has not been adequately evaluated. Experiments were conducted at two sites that had used drip tubing for approximately 3 years. This 3-year-old drip tubing and newly installed tubing were used in this investigation. A solution containing Brilliant Blue FCF dye and Escherichia coli, at an approximate concentration of 1 x 10(6) cells ml(-1), was applied to the sites through drip emitters. Reduction i n Escherichia coli populations reaching the soil surface was generally less than 10%. The route of travel for the solution reaching the soil surface was consistently along preferential flow paths and not uniformly through the soil matrix. Instances of water reaching the soil surface for drip tubing installed at 15 cm was nearly 50%. Increasing burial of the drip tubing from 15 to 30 cm nearly eliminated water surfacing. A 31 per emitter dose of water, immediately following drip line installation later increased instances of water reaching the soil surface for drip tubing buried at 30 cm. The volume of water applied per dose had little effect on the number of times water reached the soil surface. Inherent soil structural characteristics limited the drip tubing's ability to uniformly distribute water and adsorb bacteria. Drip tubing installation to 30 cm may be an important practice to reduce public health hazards from the likelihood of wastewater surfacing.

  14. Translocation of Shiga-toxin producting cells of Escherichia coli in chemically-injected beef subprimals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Relatively little information is available regarding the translocation of Escherichia coli O157:H7 (ECOH) and non-O157:H7 verocytotoxigenic E. coli (STEC) into beef subprimals following chemical tenderization. Purpose: Quantify translocation of ECOH or STEC from the surface into the i...

  15. Diversity of Cell Properties and Transport Behavior Among 12 Enviromental Escherichia Coli Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli is a commonly used indicator organism for detecting the presence of fecal-borne pathogenic microorganisms in water supplies. The importance of E. coli as an indicator organism has led to numerous studies looking at surface characteristics and transport behavior of this important mi...

  16. Adhesion of Type 1-Fimbriated Escherichia coli to Abiotic Surfaces Leads to Altered Composition of Outer Membrane Proteins

    PubMed Central

    Otto, Karen; Norbeck, Joakim; Larsson, Thomas; Karlsson, Karl-Anders; Hermansson, Malte

    2001-01-01

    Phenotypic differences between planktonic bacteria and those attached to abiotic surfaces exist, but the mechanisms involved in the adhesion response of bacteria are not well understood. By the use of two-dimensional (2D) polyacrylamide gel electrophoresis, we have demonstrated that attachment of Escherichia coli to abiotic surfaces leads to alteration in the composition of outer membrane proteins. A major decrease in the abundance of resolved proteins was observed during adhesion of type 1-fimbriated E. coli strains, which was at least partly caused by proteolysis. Moreover, a study of fimbriated and nonfimbriated mutants revealed that these changes were due mainly to type 1 fimbria-mediated surface contact and that only a few changes occurred in the outer membranes of nonfimbriated mutant strains. Protein synthesis and proteolytic degradation were involved to different extents in adhesion of fimbriated and nonfimbriated cells. While protein synthesis appeared to affect adhesion of only the nonfimbriated strain, proteolytic activity mostly seemed to contribute to adhesion of the fimbriated strain. Using matrix-assisted laser desorption ionization–time of flight mass spectrometry, six of the proteins resolved by 2D analysis were identified as BtuB, EF-Tu, OmpA, OmpX, Slp, and TolC. While the first two proteins were unaffected by adhesion, the levels of the last four were moderately to strongly reduced. Based on the present results, it may be suggested that physical interactions between type 1 fimbriae and the surface are part of a surface-sensing mechanism in which protein turnover may contribute to the observed change in composition of outer membrane proteins. This change alters the surface characteristics of the cell envelope and may thus influence adhesion. PMID:11274103

  17. Morphological and nanostructural surface changes in Escherichia coli over time, monitored by atomic force microscopy.

    PubMed

    Gammoudi, Ibtissem; Mathelie-Guinlet, Marion; Morote, Fabien; Beven, Laure; Moynet, Daniel; Grauby-Heywang, Christine; Cohen-Bouhacina, Touria

    2016-05-01

    The present study aims at evaluating intrinsic changes in Escherichia coli (E. coli) surface over time, by Atomic Force Microscopy (AFM). For that purpose, bacteria were immobilized on mica or on mica previously functionalized by the deposition of a polyelectrolyte multilayer cushion. AFM images reveal that E. coli population goes through different stages. Firstly, after a week, the number of healthy bacteria decreases resulting in a release of cellular components which likely become, in turn, a nutrition source for increasing the healthy population after around two weeks. Finally, after one month, most of the bacteria is dead. Our study shows a transition of a healthy rod-shaped bacterium to a dead collapsed one. Most importantly, along with the morphological evolution of bacteria, are the structure changes and the mechanical properties of their outer membrane, emphasized by AFM phase images with very high resolution. Indeed, the surface of healthy bacteria is characterized by a phase separation pattern, thereafter mentioned as "ripples". Bacterial ageing goes along with the loss of this organized structure, turning into circular areas with irregular boundaries. These changes are likely caused by a re-organization, due to external stress, of mainly lipopolysaccharides (LPS) present in the outer membrane of E. coli.

  18. Effect of Culture Condition Variables on Human Endostatin Gene Expression in Escherichia coli Using Response Surface Methodology

    PubMed Central

    Mohajeri, Abbas; Pilehvar-Soltanahmadi, Yones; Abdolalizadeh, Jalal; Karimi, Pouran; Zarghami, Nosratollah

    2016-01-01

    Background Recombinant human endostatin (rhES) is an angiogenesis inhibitor used as a specific drug for the treatment of non-small-cell lung cancer. As mRNA concentration affects the recombinant protein expression level, any factor affecting mRNA concentration can alter the protein expression level. Response surface methodology (RSM) based on the Box-Behnken design (BBD) is a statistical tool for experimental design and for optimizing biotechnological processes. Objectives This investigation aimed to predict and develop the optimal culture conditions for mRNA expression of the synthetic human endostatin (hES) gene in Escherichia coli BL21 (DE3). Materials and Methods The hES gene was amplified, cloned, and expressed in the E. coli expression system. Three factors, including isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration, post-induction time, and cell density before induction, were selected as important factors. The mRNA expression level was determined using real-time PCR. The expression levels of hES mRNA under the different growth conditions were analyzed. SDS-PAGE and western blot analyses were carried out for further confirmation of interest-gene expression. Results A maximum rhES mRNA level of 376.16% was obtained under the following conditions: 0.6 mM IPTG, 7 hours post-induction time, and 0.9 cell density before induction. The level of rhES mRNA was significantly correlated with post-induction time, IPTG concentration, and cell density before induction (P < 0.05). The expression of the hES gene was confirmed by western blot. Conclusions The obtained results indicate that RSM is an effective method for the optimization of culture conditions for hES gene expression in E. coli. PMID:27800134

  19. Cell surface engineering of industrial microorganisms for biorefining applications.

    PubMed

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-11-15

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, biofuel/biochemical production should be promoted for replacing fossil-based industrial processes. Utilization of abundant lignocellulosic biomass as a feedstock has recently become an attractive option. In this review, we focus on recent efforts of cell surface display using industrial microorganisms such as Escherichia coli and yeast. Cell surface display is used primarily for endowing cellulolytic activity on the host cells, and enables direct fermentation to generate useful fuels and chemicals from lignocellulosic biomass. Cell surface display systems are systematically summarized, and the drawbacks/perspectives as well as successful application of surface display for industrial biotechnology are discussed.

  20. Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli

    PubMed Central

    Mlalila, Nichrous G; Swai, Hulda Shaidi; Hilonga, Askwar; Kadam, Dattatreya M

    2017-01-01

    This study presents a simple and trouble-free method for determining the antimicrobial properties of silver nanoparticles (AgNPs) based on the surface plasmon resonance (SPR) bands. AgNPs were prepared by chemical reduction method using silver nitrates as a metallic precursor and formaldehyde (HCHO) as a reducing agent and capped by polyethylene glycol. Effects of several processing variables on the size and shape of AgNPs were monitored using an ultraviolet–visible spectrophotometer based on their SPR bands. The formed particles showing various particle shapes and full width at half maximum (FWHM) were tested against Escherichia coli by surface spreading using agar plates containing equal amounts of selected AgNPs samples. The NPs exhibited higher antimicrobial properties; however, monodispersed spherical NPs with narrow FWHM were more effective against E. coli growth. The NPs prepared are promising candidates in diverse applications such as antimicrobial agents in the food and biomedical industries. PMID:28053512

  1. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells

    PubMed Central

    Crémet, Lise; Broquet, Alexis; Brulin, Bénédicte; Jacqueline, Cédric; Dauvergne, Sandie; Brion, Régis; Asehnoune, Karim; Corvec, Stéphane; Heymann, Dominique; Caroff, Nathalie

    2015-01-01

    Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate <0.01% for the non-cytotoxic E. coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (<7%), the most adherent E. coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts. PMID:26333570

  2. [Reducing centers on the surface of Escherichia coli bacteria and their role in copper-induced plasma membrane permeability].

    PubMed

    Lebedev, V S; Veselovskiĭ, A V; Deĭnega, E Iu; Fedorov, Iu I

    2000-01-01

    The reducing properties of Escherichia coli and their role in the induction of nonselective cationic permeability of plasma membrane by the action of Cu2+ ions were studied. The ability of cells to reduce exogenous dithiopyridine was shown to be maximal in freshly collected culture and to decrease upon starvation or exhaustion of bacteria by dinitrophenol, in the presence of other oxidants of cell thiols in the medium, and after the disturbance of the barrier properties of membrane by tetrachloracetic acid or butanol. The alkylation of cell thiols accessible for N-ethyl maleimide completely disrupted the reducing activity of bacteria. These data are consistent with the conception that the reduction of dithiopyridine and Cu2+ ions by bacteria occurs on the thiol-containing centers of the cell surface, which are continuously reduced by the transfer of cell reducing equivalents from the inner to the outer surface of plasma membrane. The analysis of data on the effect of external oxidizing and reducing agents on the copper-induced plasmolysis of bacteria showed that the induction of membrane permeability by the action of copper can occur upon interaction with critical targets on the surface of Cu+ ions formed in the periplasmic space in the reaction of Cu2+ ions with reducing centers.

  3. Relation Between Excreted Lipopolysaccharide Complexes and Surface Structures of a Lysine-Limited Culture of Escherichia coli

    PubMed Central

    Knox, K. W.; Vesk, Maret; Work, Elizabeth

    1966-01-01

    Knox, K. W. (Twyford Laboratories, London, England), Maret Vesk, and Elizabeth Work. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J. Bacteriol. 92:1206–1217. 1966.—The lysine-requiring mutant Escherichia coli 12408, when grown in 15 liters of defined medium containing a suboptimal amount of lysine, showed a biphasic type of growth. During a long stationary phase of 15 hr, there was a steady accumulation of diaminopimelic acid (DAP) and an antigenic complex of lipopolysaccharide (LPS) and lipoprotein; the accumulation continued unchanged until the end of the second growth phase. The rapid rate of DAP excretion suggested that it was the result of a derepressed state of a biosynthetic pathway. LPS excretion was such that the amount in the culture fluid was doubled during a period corresponding to the normal generation time for the organism; this suggested that the LPS-lipoprotein complex was a product of unbalanced growth. Surface defects were suggested by the action of lysozyme, which, in low concentrations (10 μg/ml), lysed the lysine-limited cells even in the absence of ethylenediaminetetraacetic acid, but had no effect at 10 μg/ml on cells grown with adequate lysine. Electron microscopy of cells excreting the LPS complex showed them to be surrounded by a mass of stacked leaflets and globules, some of which were bounded by triple membranes. Sections showed no lysis but changes in cell surfaces; outer layers of the walls had numerous blebs whose outer membranes were sometimes continuous with the outer triple membrane of the wall. LPS-lipoprotein probably originates from these blebs. Images PMID:4959044

  4. Survival of artificially inoculated Escherichia coli and Salmonella Typhimurium on the surface of raw poultry products subjected to crust freezing.

    PubMed

    Chaves, B D; Han, I Y; Dawson, P L; Northcutt, J K

    2011-12-01

    Escherichia coli and Salmonella spp. are ubiquitous in the poultry production environment, and hence, their transmission to poultry products is of concern. Industry has widely used freezing as a strategy to halt pathogen growth, and more recently, crust freezing has been suggested as a means to improve mechanical operations, quality, and safety of poultry products. The purpose of this study was to evaluate the effect of crust freezing on the survival of Escherichia coli and Salmonella Typhimurium that were artificially inoculated on the surface of raw poultry products with or without adhering skin. Ampicillin-resistant (AR) E. coli JM 109 and nalidixic acid-resistant (NAR) Salmonella Typhimurium were used in the experiments. A set of cultures was subjected to cold-shock stress by storage at 4°C for 10 d. After being either cold-shocked or non-cold-shocked, commercial chicken breasts without skin and chicken thighs with skin were inoculated in separate experiments with each bacterium. Samples were crust frozen at -85°C for 20 min or completely frozen at -85°C for 60 min. The E. coli and Salmonella Typhimurium were recovered on appropriate selective and nonselective media containing the corresponding antibiotic. Log reductions and extent of injury were calculated and treatments were compared using ANOVA. No significant differences were observed in the reduction of cold-shocked or non-cold-shocked bacteria on products with or without skin that were crust or completely frozen. The average reduction for E. coli was 0.15 log(10) cfu/mL of rinse, and for Salmonella Typhimurium 0.10 log(10) cfu/mL of rinse; therefore, none of the final reductions were greater than the desired target (1 log). Bacterial cell injury was not significantly different (P > 0.05) among any of the treatments. Data showed no practical significance for initial reduction of these pathogens from crust freezing and thus, this technology should not be considered as a strategy for the reduction of E

  5. Escherichia coli strains expressing H12 antigens demonstrate an increased ability to attach to abiotic surfaces as compared with E. coli strains expressing H7 antigens.

    PubMed

    Goulter, Rebecca M; Taran, Elena; Gentle, Ian R; Gobius, Kari S; Dykes, Gary A

    2014-07-01

    The role of Escherichia coli H antigens in hydrophobicity and attachment to glass, Teflon and stainless steel (SS) surfaces was investigated through construction of fliC knockout mutants in E. coli O157:H7, O1:H7 and O157:H12. Loss of FliC(H12) in E. coli O157:H12 decreased attachment to glass, Teflon and stainless steel surfaces (p<0.05). Complementing E. coli O157:H12 ΔfliC(H12) with cloned wildtype (wt) fliC(H12) restored attachment to wt levels. The loss of FliCH7 in E. coli O157:H7 and O1:H7 did not always alter attachment (p>0.05), but complementation with cloned fliC(H12), as opposed to cloned fliCH7, significantly increased attachment for both strains compared with wt counterparts (p<0.05). Hydrophobicity determined using bacterial adherence to hydrocarbons and contact angle measurements differed with fliC expression but was not correlated to the attachment to materials included in this study. Purified FliC was used to functionalise silicone nitride atomic force microscopy probes, which were used to measure adhesion forces between FliC and substrates. Although no significant difference in adhesion force was observed between FliC(H12) and FliCH7 probes, differences in force curves suggest different mechanism of attachment for FliC(H12) compared with FliCH7. These results indicate that E. coli strains expressing flagellar H12 antigens have an increased ability to attach to certain abiotic surfaces compared with E. coli strains expressing H7 antigens.

  6. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols.

    PubMed

    Liu, Pingping; Zhu, Xinna; Tan, Zaigao; Zhang, Xueli; Ma, Yanhe

    2016-01-01

    Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.

  7. Mechanisms of DRA recycling in intestinal epithelial cells: effect of enteropathogenic E. coli.

    PubMed

    Gujral, Tarunmeet; Kumar, Anoop; Priyamvada, Shubha; Saksena, Seema; Gill, Ravinder K; Hodges, Kim; Alrefai, Waddah A; Hecht, Gail A; Dudeja, Pradeep K

    2015-12-15

    Enteropathogenic Escherichia coli (EPEC) is a food-borne pathogen that causes infantile diarrhea worldwide. EPEC decreases the activity and surface expression of the key intestinal Cl(-)/HCO3(-) exchanger SLC26A3 [downregulated in adenoma (DRA)], contributing to the pathophysiology of early diarrhea. Little is known about the mechanisms governing membrane recycling of DRA. In the current study, Caco-2 cells were used to investigate DRA trafficking under basal conditions and in response to EPEC. Apical Cl(-)/HCO3(-) exchange activity was measured as DIDS-sensitive (125)I(-) uptake. Cell surface biotinylation was performed to assess DRA endocytosis and exocytosis. Inhibition of clathrin-mediated endocytosis by chlorpromazine (60 μM) increased apical Cl(-)/HCO3(-) exchange activity. Dynasore, a dynamin inhibitor, also increased function and surface levels of DRA via decreased endocytosis. Perturbation of microtubules by nocodazole revealed that intact microtubules are essential for basal exocytic (but not endocytic) DRA recycling. Mice treated with colchicine showed a decrease in DRA surface levels as visualized by confocal microscopy. In response to EPEC infection, DRA surface expression was reduced partly via an increase in DRA endocytosis and a decrease in exocytosis. These effects were dependent on the EPEC virulence genes espG1 and espG2. Intriguingly, the EPEC-induced decrease in DRA function was unaltered in the presence of dynasore, suggesting a clathrin-independent internalization of surface DRA. In conclusion, these studies establish the role of clathrin-mediated endocytosis and microtubules in the basal surface expression of DRA and demonstrate that the EPEC-mediated decrease in DRA function and apical expression in Caco-2 cells involves decreased exocytosis.

  8. Furrowing in altered cell surfaces.

    PubMed

    Rappaport, R

    1976-02-01

    Understanding the process which established the cell division mechanism requires analysis of the role of the responding surface as well as that of stimulatory subsurface structures. Cell surface was altered by the expansion which occurs during exovate formation. Exovates appear on the surface of fertilized Arbacia lixula, Paracentrotus lividus and Echinarachnius parma eggs in response to extreme flattening. They result from cytoplasmic outflow initiated in a very restricted portion of the egg surface. Observations of the formation process in pigmented A. lixula eggs revealed that the original surface may be expanded about 100 fold as the exovate swells. When exovates formed 15-30 minutes after fertilization contain the mitotic apparatus, they divide synchronously with flattened controls. If nucleated exovates are established after the beginning of first cleavage, furrows appear in ten minutes. Exovates established after the beginning of second cleavage develop furrows four minutes after the entrance of the the mitsotic apparatus. Cytoplasm beneath damaged exovate surfaces sometimes develops partial constrictions independently of the surface in the plane the furrow would have occupied. These results suggest that normal surface structure is unnecessary for furrow establishment and function.

  9. Penicillin-binding site on the Escherichia coli cell envelope

    SciTech Connect

    Amaral, L.; Lee, Y.; Schwarz, U.; Lorian, V.

    1986-08-01

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.

  10. Phenotypic and Genotypic Characterization of Escherichia coli Isolated from Untreated Surface Waters

    PubMed Central

    Janezic, Kristopher J; Ferry, Blake; Hendricks, Eric W; Janiga, Brian A; Johnson, Tiffany; Murphy, Samantha; Roberts, Morgan E; Scott, Sarah M; Theisen, Alexandra N; Hung, Kai F; Daniel, Steven L

    2013-01-01

    A common member of the intestinal microbiota in humans and animals is Escherichia coli. Based on the presence of virulence factors, E. coli can be potentially pathogenic. The focus of this study was to isolate E. coli from untreated surface waters (37 sites) in Illinois and Missouri and determine phenotypic and genotypic diversity among isolates. Water samples positive for fecal coliforms based on the Colisure® test were streaked directly onto Eosin Methylene Blue (EMB) agar (37°C) or transferred to EC broth (44.5°C). EC broth cultures producing gas were then streaked onto EMB agar. Forty-five isolates were identified as E. coli using API 20E and Enterotube II identification systems, and some phenotypic variation was observed in metabolism and fermentation. Antibiotic susceptibility of each isolate was also determined using the Kirby-Bauer Method. Differential responses to 10 antimicrobial agents were seen with 7, 16, 2, and 9 of the isolates resistant to ampicillin, cephalothin, tetracycline, and triple sulfonamide, respectively. All of the isolates were susceptible or intermediate to amoxicillin, ciprofloxacin, polymyxin B, gentamicin, imipenem, and nalidixic acid. Genotypic variation was assessed through multiplex Polymerase Chain Reaction for four virulence genes (stx1 and stx2 [shiga toxin], eaeA [intimin]; and hlyA [enterohemolysin]) and one housekeeping gene (uidA [β-D-glucuronidase]). Genotypic variation was observed with two of the isolates possessing the virulence gene (eaeA) for intimin. These findings increase our understanding of the diversity of E. coli in the environment which will ultimately help in the assessment of this organism and its role in public health. PMID:23539437

  11. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    PubMed Central

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  12. A Surface-Controlled Solar Cell

    NASA Technical Reports Server (NTRS)

    Daud, T.; Crotty, G. T.

    1987-01-01

    Open-circuit voltage and cell efficiency increased. Proposed technique for controlling recombination velocity on solar-cell surfaces provides cells of increased efficiency and open-circuit voltage. In present cells, uncontrolled surface recombination velocity degrades opencircuit voltage and efficiency. In cell using proposed technique, transparent conducting layer, insulated from cell contacts, biased to enable variable control of surface recombination velocity.

  13. Comparative biochemistry of the cell envelopes of Photobacterium leiognathi and Escherichia coli.

    PubMed

    Scott, G K; Smith, K; Thoreau, C M

    1983-05-01

    Photobacterium leiognathi closely resembles Escherichia coli with respect to cell lysis by lysozyme, and the fractionation of outer and cytoplasmic membranes. The two organisms differ in their phospholipid contents and, more significantly, in outer membrane protein compositions.

  14. Surface Immobilization of Human Arginase-1 with an Engineered Ice Nucleation Protein Display System in E. coli.

    PubMed

    Zhang, Zhen; Tang, Rongxin; Bian, Lu; Mei, Meng; Li, Chunhua; Ma, Xiangdong; Yi, Li; Ma, Lixin

    2016-01-01

    Ice nucleation protein (INP) is frequently used as a surface anchor for protein display in gram-negative bacteria. Here, MalE and TorA signal peptides, and three charged polypeptides, 6×Lys, 6×Glu and 6×Asp, were anchored to the N-terminus of truncated INP (InaK-N) to improve its surface display efficiency for human Arginase1 (ARG1). Our results indicated that the TorA signal peptide increased the surface translocation of non-protein fused InaK-N and human ARG1 fused InaK-N (InaK-N/ARG1) by 80.7% and 122.4%, respectively. Comparably, the MalE signal peptide decreased the display efficiencies of both the non-protein fused InaK-N and InaK-N/ARG1. Our results also suggested that the 6×Lys polypeptide significantly increased the surface display efficiency of K6-InaK-N/ARG1 by almost 2-fold, while also practically abolishing the surface translocation of non-protein fused InaK-N, indicating the interesting roles of charged polypeptides in bacteria surface display systems. Cell surface-immobilized K6-InaK-N/ARG1 presented an arginase activity of 10.7 U/OD600 under the optimized conditions of 40°C, pH 10.0 and 1 mM Mn2+, which could convert more than 95% of L-Arginine (L-Arg) to L-Ornithine (L-Orn) in 16 hours. The engineered InaK-Ns expanded the INP surface display system, which aided in the surface immobilization of human ARG1 in E. coli cells.

  15. Multidrug resistance and plasmid patterns of Escherichia coli O157 and other E. coli Isolated from diarrhoeal stools and surface waters from some selected sources in Zaria, Nigeria.

    PubMed

    Chigor, Vincent N; Umoh, Veronica J; Smith, Stella I; Igbinosa, Etinosa O; Okoh, Anthony I

    2010-10-01

    We have assessed the prevalence of Escherichia coli O157 in diarrhoeal patients and surface waters from some selected sources in Zaria (Nigeria), evaluating the antibiotic susceptibility and plasmid profiles of 184 E. coli isolates, obtained from 228 water samples and 112 diarrhoeal stool specimens (collected from children aged <15 years), using standard methods. The detection rate of E. coli O157 in surface waters was 2.2% and its prevalence in children with diarrhoea was 5.4%. The most active antibiotics were gentamicin, chloramphenicol and fluoroquinolones. Seventy-nine (42.9%) of 184 E. coli isolates were resistant to four or more antibiotics. Multidrug resistance (MDR) was higher amongst aquatic isolates than the clinical isolates. Out of 35 MDR isolates (20 of which were O157 strains), 22 (62.9%) harboured plasmids all of which were no less than 2.1 kb in size. Amongst the 20 E. coli O157 strains, only seven (35.0%) contained multiple plasmids. An aquatic O157 isolate containing two plasmids was resistant to seven drugs, including ampicillin, cefuroxime, ciprofloxacin, cotrimoxazole, nalidixic acid, nitrofurantoin and tetracycline. Loss of plasmid correlated with loss of resistance to antibiotics in cured (mutant) strains selected in tetracycline (50 μg/mL)-nutrient agar plates. Our findings revealed that plasmids were prevalent in both the aquatic and clinical isolates, and suggest that the observed MDR is plasmid-mediated. The occurrence of plasmid-mediated multidrug resistant E. coli O157 in surface waters used as sources for drinking, recreation and fresh produce irrigation heightens public health concern.

  16. Ability of Escherichia coli isolates that cause meningitis in newborns to invade epithelial and endothelial cells.

    PubMed Central

    Meier, C; Oelschlaeger, T A; Merkert, H; Korhonen, T K; Hacker, J

    1996-01-01

    Escherichia coli isolates that cause meningitis in newborns are able to invade the circulation and subsequently cross the blood-brain barrier. One mechanism for traversing the blood-brain barrier might involve transcytosis through the endothelial cells. The ability of the meningitis isolate E. coli IHE3034, of serotype 018:K1:H7, to invade epithelial (T24) and endothelial (EA-hy926) cells was investigated by the standard gentamicin survival assay and by electron microscopy. Human bladder epithelial and endothelial cells were efficiently invaded by strain IHE3034, whereas epithelial human colon Caco-2 cells, canine kidney MDCK cells, and the opossum [correction of opposum] epithelial kidney cell line OK were not invaded. The ability to invade human epithelial cells of the bladder could also be demonstrated for several other newborn meningitis E. coli strains and one septicemic E. coli strain. Studies utilizing inhibitors which act on eukaryotic cells revealed a dependence on microfilaments as well as on microtubules in the process of E. coli IHE3034 entry into T24 and EA-hy926 cells. These results indicated that cell cytoskeletal rearrangements are involved in bacterial uptake and suggest that there are either two pathways (microtubule dependent and microfilament dependent) or one complex pathway involving both microtubules and microfilaments. The intracellular IHE3034 organisms were contained in a host-membrane-confined compartment mainly as single microorganisms. Intracellular replication of 1HE3034 was not detected, nor did the number of intracellular bacteria decrease significantly during a 48-h period. The ability of E. coli O18:K1 to invade and survive within certain eukaryotic cells may be another virulence factor of meningitis-associated E. coli. PMID:8698457

  17. Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater.

    PubMed

    Lau, Abbe Y T; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Yang, Xin; Li, Xiang-Dong

    2017-02-01

    Bioretention systems have been recommended as one of the best management practices for low impact development for water recycling/reuse systems. Although improvement of the stormwater quality has been reported regarding pollutants eliminations such as suspended solids and heavy metals, a substantial removal of indicator bacteria is required for possible non-potable reuse. This study investigated the efficiency of wood biochar with H2SO4-, H3PO4-, KOH-, and amino-modifications for E. coli removal from synthetic stormwater under intermittent flow. The H2SO4-modified biochar showed a specific surface area of 234.7 m(2) g(-1) (approximately double the area of original biochar), whereas a substantial reduction in surface area was found with amino-modified biochar. The E. coli removal (initial concentration of 0.3-3.2 × 10(6) CFU mL(-1)) by modified biochars as filter media was very promising with, for example, over 98% removal efficiency in the first 20 pore volumes of stormwater infiltration and over 92% removal by the end of the second infiltration cycle. Only a small portion of E. coli attached on the modified biochars (<0.3%, except KOH- and amino-modified biochars) was remobilized during the drainage phase of intermittent flow. The high removal capacity and stability against drainage were attributed to the high surface area, porous structure, and surface characteristics (e.g. hydrophobicity and O-containing functional groups) of the biochars. Thus, the H2SO4-modified biochar appeared to give the best treatment performance.

  18. Adhesion of E. coli to silver- or copper-coated porous clay ceramic surfaces

    NASA Astrophysics Data System (ADS)

    Yakub, I.; Soboyejo, W. O.

    2012-06-01

    Porous ceramic water filters (CWFs), produced by sintering a mixture of clay and a combustible material (such as woodchips), are often used in point-of-use water filtration systems that occlude microbes by size exclusion. They are also coated with colloidal silver, which serves as a microbial disinfectant. However, the adhesion of microbes to porous clay surfaces and colloidal silver coated clay surfaces has not been studied. This paper presents the results of atomic force microscopy (AFM) measurements of the adhesion force between Escherichia coli bacteria, colloidal silver, and porous clay-based ceramic surfaces. The adhesion of silver and copper nanoparticles is also studied in control experiments on these alternative disinfectant materials. The adhesive force between the wide range of possible bi-materials was measured using pull-off measurements during force microscopy. These were combined with measurements of AFM tip radii/substrate roughness that were incorporated into adhesion models to obtain the adhesion energies for the pair wise interaction. Of the three antimicrobial metals studied, the colloidal silver had the highest affinity for porous ceramic surface (125 ± 32 nN and ˜0.29 J/m2) while the silver nanoparticles had the highest affinity for E. coli bacteria (133 ± 21 nN and ˜0.39 J/m2). The implications of the results are then discussed for the design of ceramic water filter that can purify water by adsorption and size exclusion.

  19. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase.

    PubMed

    Park, Hyun Joo; Jung, Jihye; Choi, Hyejeong; Uhm, Ki-Nam; Kim, Hyung Kwoun

    2010-09-01

    Ethyl (R, S)-4-chloro-3-hydroxybutanoate (ECHB) is a useful chiral building block for the synthesis of L-carnitine and hypercholesterolemia drugs. The yeast reductase, YOL151W (GenBank locus tag), exhibits an enantioselective reduction activity, converting ethyl-4-chlorooxobutanoate (ECOB) exclusively into (R)-ECHB. YOL151W was generated in Escherichia coli cells and purified via Ni- NTA and desalting column chromatography. It evidenced an optimum temperature of 45 degrees C and an optimum pH of 6.5-7.5. Bacillus subtilis glucose dehydrogenase (GDH) was also expressed in Escherichia coli, and was used for the recycling of NADPH, required for the reduction reaction. Thereafter, Escherichia coli cells co-expressing YOL151W and GDH were constructed. After permeablization treatment, the Escherichia coli whole cells were utilized for ECHB synthesis. Through the use of this system, the 30 mM ECOB substrate could be converted to (R)-ECHB.

  20. Binding of Escherichia coli heat-stable enterotoxin to rat intestinal cells and brush border membranes.

    PubMed Central

    Frantz, J C; Jaso-Friedman, L; Robertson, D C

    1984-01-01

    The association of heat-stable enterotoxin (STa) produced by enterotoxigenic Escherichia coli 431 with isolated rat intestinal epithelial cells and brush border membranes was characterized. Specific binding of strain 431 125I-STa to a single class of specific high-affinity receptors was saturable and temperature dependent and reached a maximum between 5 and 10 min. A 1,000-fold excess of unlabeled 431 STa competitively displaced 90 to 95% of radiolabeled enterotoxin bound to brush border membranes. In contrast, specific binding of 431 125I-STa to intestinal cells ranged from 40 to 65%. The number of STa-specific receptors on rat intestinal cells determined by Scatchard analysis was 47,520 +/- 14,352 (mean +/- standard error of the mean) per cell, with affinity constants (KaS) of 2.55 X 10(11)and 4.32 x 10(11) liters/mol determined for intestinal cells and brush border membranes, respectively. Villus intestinal cells appeared to possess about twice as many STa receptors as did crypt cells. Dissociation of specifically bound 431 125I-STa from intestinal cells and brush border membranes was minimal (2 to 5%). In addition, neither the rate nor the extent of dissociation was increased by a 1,000-fold excess of unlabeled homologous 431 Sta. Binding experiments with 431 125I-STa and brush border membranes showed that purified unlabeled STas from enterotoxigenic E. coli strains 667 (class 1 porcine enteropathogen), B-41 (bovine enteropathogen), and human strains 213C2 (Mexico) and 153961-2 (Dacca, Bangledesh) exhibited patterns of competitive inhibition similar to those of homologous unlabeled 431 STa (class 2 enteropathogen). A lipid extract which contained gangliosides and glycolipids exhibited dose-dependent competitive inhibition of heat-labile enterotoxin binding to brush border membranes but did not inhibit binding of 431 125I-STa. Purified heat-labile enterotoxin from strain 286C2 did not inhibit binding of 431 STa to brush border membranes. Pronase treatment of

  1. Transcriptional Modulation of Enterotoxigenic Escherichia coli Virulence Genes in Response to Epithelial Cell Interactions

    PubMed Central

    Kansal, Rita; Rasko, David A.; Sahl, Jason W.; Munson, George P.; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J.

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  2. A rapid detection method of Escherichia coli by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Peng, Yankun; Xu, Tianfeng

    2015-05-01

    Conventional microbiological detection and enumeration methods are time-consuming, labor-intensive, and giving retrospective information. The objectives of the present work are to study the capability of surface enhanced Raman scattering (SERS) to detect Escherichia coli (E. coli) using the presented silver colloidal substrate. The obtained results showed that the adaptive iteratively reweighed Penalized Least Squares (airPLS) algorithm could effectively remove the fluorescent background from original Raman spectra, and Raman characteristic peaks of 558, 682, 726, 1128, 1210 and 1328 cm-1 could be observed stably in the baseline corrected SERS spectra of all studied bacterial concentrations. The detection limit of SERS could be determined to be as low as 0.73 log CFU/ml for E. coli with the prepared silver colloidal substrate. The quantitative prediction results using the intensity values of characteristic peaks were not good, with the correlation coefficients of calibration set and cross validation set of 0.99 and 0.64, respectively.

  3. Comparative Study of Various E. coli Strains for Biohydrogen Production Applying Response Surface Methodology

    PubMed Central

    Bakonyi, Péter; Nemestóthy, Nándor; Bélafi-Bakó, Katalin

    2012-01-01

    The proper strategy to establish efficient hydrogen-producing biosystems is the biochemical, physiological characterization of hydrogen-producing microbes followed by metabolic engineering in order to give extraordinary properties to the strains and, finally, bioprocess optimization to realize enhanced hydrogen fermentation capability. In present paper, it was aimed to show the utility both of strain engineering and process optimization through a comparative study of wild-type and genetically modified E. coli strains, where the effect of two major operational factors (substrate concentration and pH) on bioH2 production was investigated by experimental design and response surface methodology (RSM) was used to determine the suitable conditions in order to obtain maximum yields. The results revealed that by employing the genetically engineered E. coli (DJT 135) strain under optimized conditions (pH: 6.5; Formate conc.: 1.25 g/L), 0.63 mol H2/mol formate could be attained, which was 1.5 times higher compared to the wild-type E. coli (XL1-BLUE) that produced 0.42 mol H2/mol formate (pH: 6.4; Formate conc.: 1.3 g/L). PMID:22666156

  4. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    NASA Astrophysics Data System (ADS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-04-01

    Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  5. Catalytic sterilization of Escherichia coli K 12 on Ag/Al2O3 surface.

    PubMed

    Chen, Meixue; Yan, Lizhu; He, Hong; Chang, Qingyun; Yu, Yunbo; Qu, Jiuhui

    2007-05-01

    Bactericidal action of Al(2)O(3), Ag/Al(2)O(3) and AgCl/Al(2)O(3) on pure culture of Escherichia coli K 12 was studied. Ag/Al(2)O(3) and AgCl/Al(2)O(3) demonstrated a stronger bactericidal activity than Al(2)O(3). The colony-forming ability of E. coli was completely lost in 0.5 min on both of Ag/Al(2)O(3) and AgCl/Al(2)O(3) at room temperature in air. The configuration of the bacteria on the catalyst surface was observed using scanning electron microscopy (SEM). Reactive oxygen species (ROS) play an important role in the expression of the bactericidal activity on the surface of catalysts by assay with O(2)/N(2) bubbling and scavenger for ROS. Furthermore, the formation of CO(2) as an oxidation product could be detected by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and be deduced by total carbon analysis. These results strongly support that the bactericidal process on the surface of Ag/Al(2)O(3) and AgCl/Al(2)O(3) was caused by the catalytic oxidation.

  6. Plasma surface modification as a new approach to protect urinary catheter against Escherichia coli biofilm formation

    PubMed Central

    Taheran, Leila; Zarrini, Gholamreza; Khorram, Sirous; Zakerhamidi, Mohammad Sadegh

    2016-01-01

    Background and Objectives: Biomaterials are widely used in medical devices such as urinary catheters. One of the main problems associated with long term using of the urinary catheters is biofilm formation on their surfaces. Many techniques have been presented to reduce the biofilm formation. One of the most revolutionary techniques allowing such surface fictionalization is plasma surface modification. Materials and Methods: In this study, a glow discharge plasma (GDP) effect on Escherichia coli biofilm formation on the surface of urinary catheter in the pressure of 1.6 × 10−1 Torr of nitrogen, discharge voltage about 1.2 kV and current of 150 mA for 20 minutes has been investigated. Crystal violet binding assay and sonication method were performed in order to evaluate the amount of biofilm formation on tested biomaterials. Results: Characterization of modified surfaces by Attenuated Total Reflectance Fourier Transform Infrared Spectrometry (ATR-FTIR) and atomic force microscopy (AFM) revealed a noticeable change in hydrophobicity and roughness of catheter surfaces achieved by nitrogen plasma. The results of crystal violet binding assay and sonication method showed that the amount of biofilm formation on modified surface was about 86% less than the pristine sample. Conclusion: Plasma surface modification can reduce the risk of infections in patients with long-term use of urinary catheters. PMID:28210465

  7. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.

    PubMed

    Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang

    2016-12-01

    E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

  8. Flocculation of Escherichia coli Cells in Association with Enhanced Production of Outer Membrane Vesicles

    PubMed Central

    Nguyen, Minh Hong; Yajima, Reiki; Taya, Masahito

    2015-01-01

    Microbial flocculation is a phenomenon of aggregation of dispersed bacterial cells in the form of flocs or flakes. In this study, the mechanism of spontaneous flocculation of Escherichia coli cells by overexpression of the bcsB gene was investigated. The flocculation induced by overexpression of bcsB was consistent among the various E. coli strains examined, including the K-12, B, and O strains, with flocs that resembled paper scraps in structure being about 1 to 2 mm. The distribution of green fluorescent protein-labeled E. coli cells within the floc structure was investigated by three-dimensional confocal laser scanning microscopy. Flocs were sensitive to proteinase K, indicating that the main component of the flocs was proteinous. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nano-liquid chromatography tandem mass spectrometry analyses of the flocs strongly suggested the involvement of outer membrane vesicles (OMVs) in E. coli flocculation. The involvement of OMVs in flocculation was supported by transmission electron microscopy observation of flocs. Furthermore, bcsB-induced E. coli flocculation was greatly suppressed in strains with hypovesiculation phenotypes (ΔdsbA and ΔdsbB strains). Thus, our results demonstrate the strong correlation between spontaneous flocculation and enhanced OMV production of E. coli cells. PMID:26092467

  9. Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Smith, E. E.; Todd, P.

    1999-01-01

    The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates.

  10. Inhibition of experimental ascending urinary tract infection by an epithelial cell-surface receptor analogue

    NASA Astrophysics Data System (ADS)

    Edén, C. Svanborg; Freter, R.; Hagberg, L.; Hull, R.; Hull, S.; Leffler, H.; Schoolnik, G.

    1982-08-01

    It has been shown that the establishment of urinary tract infection by Escherichia coli is dependent on attachment of the bacteria to epithelial cells1-4. The attachment involves specific epithelial cell receptors, which have been characterized as glycolipids5-10. Reversible binding to cell-surface mannosides may also be important4,11-13. This suggests an approach to the treatment of infections-that of blocking bacterial attachment with cell membrane receptor analogues. Using E. coli mutants lacking one or other of the two binding specificities (glycolipid and mannose), we show here that glycolipid analogues can block in vitro adhesion and in vivo urinary tract infection.

  11. Effect of surface characteristics on retention and removal of Escherichia coli O157:H7 on surfaces of spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The topography and the spatial heterogeneity of produce surfaces may impact the attachment of microbial cells onto produce surfaces and affect disinfection efficacy. In this study, the effects of produce surface characteristics on the removal of bacteria were studied. Fresh spinach leaves were sp...

  12. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater

    PubMed Central

    Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A.; Schets, Franciska M.; de Roda Husman, Ana Maria

    2015-01-01

    Objective The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. Methods The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol. Results Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX

  13. Thermal inactivation of Shiga toxin-producing Escherichia coli cells within veal cordon bleu

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the fate of Shiga toxin-producing Escherichia coli (STEC) within mechanically tenderized veal cordon bleu steaks following cooking on a flat-surface, non-stick griddle. Pre-flattened veal cutlets (ca. 75 g; ca. 0.34 cm thick) were purchased from a local vendor and both faces were surfac...

  14. The Global Regulatory hns Gene Negatively Affects Adhesion to Solid Surfaces by Anaerobically Grown Escherichia coli by Modulating Expression of Flagellar Genes and Lipopolysaccharide Production

    PubMed Central

    Landini, Paolo; Zehnder, Alexander J. B.

    2002-01-01

    The initial binding of bacterial cells to a solid surface is a critical and essential step in biofilm formation. In this report we show that stationary-phase cultures of Escherichia coli W3100 (a K-12 strain) can efficiently attach to sand columns when they are grown in Luria broth medium at 28°C in fully aerobic conditions. In contrast, growth in oxygen-limited conditions results in a sharp decrease in adhesion to hydrophilic substrates. We show that the production of lipopolysaccharide (LPS) and of flagella, as well as the transcription of the fliC gene, encoding the major flagellar subunit, increases under oxygen-limited conditions. Inactivation of the global regulatory hns gene counteracts increased production of LPS and flagella in response to anoxia and allows E. coli W3100 to attach to sand columns even when it is grown under oxygen-limited conditions. We propose that increased production of the FliC protein and of LPS in response to oxygen limitation results in the loss of the ability of E. coli W3100 to adhere to hydrophilic surfaces. Indeed, overexpression of the fliC gene results in a decreased adhesion to sand even when W3100 is grown in fully aerobic conditions. Our observations strongly suggest that anoxia is a negative environmental signal for adhesion in E. coli. PMID:11872702

  15. Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.

    PubMed

    Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L

    2015-01-01

    The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

  16. Cell-density dependent effects of low-dose ionizing radiation on E. coli cells.

    PubMed

    Alipov, E D; Shcheglov, V S; Sarimov, R M; Belyaev, I Ya

    2003-01-01

    The changes in genome conformational state (GCS) induced by low-dose ionizing radiation in E. coli cells were measured by the method of anomalous viscosity time dependence (AVTD) in cellular lysates. Effects of X-rays at doses 0.1 cGy--1 Gy depended on post-irradiation time. Significant relaxation of DNA loops followed by a decrease in AVTD. The time of maximum relaxation was between 5-80 min depending on the dose of irradiation. U-shaped dose response was observed with increase of AVTD in the range of 0.1-4 Gy and decrease in AVTD at higher doses. No such increase in AVTD was seen upon irradiation of cells at the beginning of cell lysis while the AVTD decrease was the same. Significant differences in the effects of X-rays and gamma-rays at the same doses were observed suggesting a strong dependence of low-dose effects on LET. Effects of 0.01 cGy gamma-rays were studied at different cell densities during irradiation. We show that the radiation-induced changes in GCS lasted longer at higher cell density as compared to lower cell density. Only small amount of cells were hit at this dose and the data suggest cell-to-cell communication in response to low-dose ionizing radiation. This prolonged effect was also observed when cells were irradiated at high cell density and diluted to low cell density immediately after irradiation. These data suggest that cell-to-cell communication occur during irradiation or within 3 min post-irradiation. The cell-density dependent response to low-dose ionizing radiation was compared with previously reported data on exposure of E. coli cells to electromagnetic fields of extremely low frequency and extremely high frequency (millimeter waves). The body of our data show that cells can communicate in response to electromagnetic fields and ionizing radiation, presumably by reemission of secondary photons in infrared-submillimeter frequency range.

  17. Candida krusei isolated from fruit juices ultrafiltration membranes promotes colonization of Escherichia coli O157:H7 and Salmonella enterica on stainless steel surfaces.

    PubMed

    Tarifa, María Clara; Lozano, Jorge Enrique; Brugnoni, Lorena Inés

    2017-02-01

    To clarify the interactions between a common food spoilage yeast and two pathogenic bacteria involved in outbreaks associated with fruit juices, the present paper studies the effect of the interplay of Candida krusei, collected from UF membranes, with Escherichia coli O157:H7 and Salmonella enterica in the overall process of adhesion and colonization of abiotic surfaces. Two different cases were tested: a) co-adhesion by pathogenic bacteria and yeasts, and b) incorporation of bacteria to pre-adhered C. krusei cells. Cultures were made on stainless steel at 25°C using apple juice as culture medium. After 24 h of co-adhesion with C. krusei, both E. coli O157:H7 and S. enterica increased their counts 1.05 and 1.11 log CFU cm(2), respectively. Similar increases were obtained when incorporating bacteria to pre-adhered cells of Candida. Nevertheless C. krusei counts decreased in both experimental conditions, in a) 0.40 log CFU cm(2) and 0.55 log CFU cm(2) when exposed to E. coli O157:H7 and S. enterica and in b) 0.18 and 0.68 log CFU cm(2), respectively. This suggests that C. krusei, E. coli O157:H7, and S. enterica have a complex relationship involving physical and chemical interactions on food contact surfaces. This study supports the possibility that pathogen interactions with members of spoilage microbiota, such as C. krusei, might play an important role for the survival and dissemination of E. coli O157:H7 and Salmonella enterica in food-processing environments. Based on the data obtained from the present study, much more attention should be given to prevent the contamination of these pathogens in acidic drinks.

  18. Hydrodynamics of Nutrients and E. coli Deposit and Resuspension in Surface Water

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, C.; Wang, J.; Jiang, W.; Xia, Z.

    2015-12-01

    A significant part of nutrients (such as N, P) and Pathogens (E. coli as indicator) attached to sediment or biofilm deposit to bed when they transport in streams to form the secondary contaminant source with much longer lifetime. The deposited contaminants may resuspend and the biofilm where pathogens live may detach from the bed to water body. The deposition and resuspension substantially increase the complexity of the transport process, and make it more difficult and uncertain to accurately simulate and predict the fate and transport of contaminants in surface waters. In this research, a three-dimensional hydrodynamic-water quality model coupled with flume experiments are planned to be utilized to quantify the influence of flow conditions on nitrogen, phosphorous and E. coli deposition and resuspension, and to investigate the impact of shear stress caused by flow on the biostability of biofilm. This research will facilitate to better understand the fate and transport of pathogens in surface waters and provide a theoretical base for pathogen prediction and forecasting.

  19. Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing.

    PubMed

    Dourou, Dimitra; Beauchamp, Catherine Simpson; Yoon, Yohan; Geornaras, Ifigenia; Belk, Keith E; Smith, Gary C; Nychas, George-John E; Sofos, John N

    2011-10-03

    Escherichia coli O157:H7 attached to beef-contact surfaces found in beef fabrication facilities may serve as a source of cross-contamination. This study evaluated E. coli O157:H7 attachment, survival and growth on food-contact surfaces under simulated beef processing conditions. Stainless steel and high-density polyethylene surfaces (2×5cm) were individually suspended into each of three substrates inoculated (6log CFU/ml or g) with E. coli O157:H7 (rifampicin-resistant, six-strain composite) and then incubated (168h) statically at 4 or 15°C. The three tested soiling substrates included sterile tryptic soy broth (TSB), unsterilized beef fat-lean tissue (1:1 [wt/wt]) homogenate (10% [wt/wt] with sterile distilled water) and unsterilized ground beef. Initial adherence/attachment of E. coli O157:H7 (0.9 to 2.9log CFU/cm(2)) on stainless steel and high-density polyethylene was not affected by the type of food-contact surface but was greater (p<0.05) through ground beef. Adherent and suspended E. coli O157:H7 counts increased during storage at 15°C (168h) by 2.2 to 5.4log CFU/cm(2) and 1.0 to 2.8log CFU/ml or g, respectively. At 4°C (168h), although pathogen levels decreased slightly in the substrates, numbers of adherent cells remained constant on coupons in ground beef (2.4 to 2.5log CFU/cm(2)) and increased on coupons in TSB and fat-lean tissue homogenate by 0.9 to 1.0and 1.7 to 2.0log CFU/cm(2), respectively, suggesting further cell attachment. The results of this study indicate that E. coli O157:H7 attachment to beef-contact surfaces was influenced by the type of soiling substrate and temperature. Notably, attachment occurred not only at a temperature representative of beef fabrication areas during non-production hours (15°C), but also during cold storage (4°C) temperatures, thus, rendering the design of more effective sanitation programs necessary.

  20. Fabrication and characterization of high power dual chamber E. coli microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Lalitha Priya, R.; Ramachandran, T.; Suneesh, P. V.

    2016-09-01

    This work reports the fabrication of a dual chamber microbial fuel cell with E. coli modified graphite as the anode and lead dioxide cathode. At the optimized operating conditions, the cell provided 778 mV open circuit potential, 3.47 mA m-2 of current density and 1660 mW m-2 power density. Morphology of the of E. coli biofilm on the electrode was analysed using AFM and the electrochemical characterization of the fuel cell was carried out using electrochemical impedance spectroscopy (EIS) and polarization curves. The composition of the anode and the time duration for E. coli biofilm formation were varied to obtain maximum power density. The MFC fabricated in this study was found to have improved power density in comparison with other reported fuel cells.

  1. The majority of enteroaggregative Escherichia coli strains produce the E. coli common pilus when adhering to cultured epithelial cells.

    PubMed

    Avelino, Fabiola; Saldaña, Zeus; Islam, Sohidul; Monteiro-Neto, Valerio; Dall'Agnol, Monique; Eslava, Carlos A; Girón, Jorge A

    2010-11-01

    Enteroaggregative Escherichia coli (EAEC) have emerged as a significant worldwide cause of chronic diarrhea in the pediatric population and in HIV patients. The vast majority of EAEC strains do not produce the aggregative adherence fimbriae I-III (AAFs) so far reported and thus, what adherence factors are present in these strains remains unknown. Here, we investigated the prevalence of the chromosomal E. coli common pilus (ECP) genes and ECP production amongst 130 EAEC strains of diverse origin as well as the role of ECP in EAEC adherence. Through multiplex PCR analysis we found that 96% of EAEC strains contained the ecpA structural pilin gene whereas only 3.1% and 5.4% were positive for AAF fimbrial genes aggA or aafA, respectively. Among the ecpA(+) strains, 63% produced ECP when adhering to cultured epithelial cells. An ecpA mutant derived from prototypic strain 042 (AAF/II(+)) was not altered in adherence suggesting that the AAF/II, and not ECP, plays a major role in this strain. In contrast, strain 278-1 (AAF(-)) deleted of the ecpA gene was significantly reduced in adherence to cultured epithelial cells. In all, these data indicate a potential role of ECP in adherence for EAEC strains lacking the known AAFs and that in association with other adhesive determinants, ECP may contribute to their survival and persistence within the host and in the environment.

  2. Assessment of the Effects of Holding Time and Temperature on Escherichia coli Densities in Surface Water Samples

    PubMed Central

    Pope, Misty L.; Bussen, Michelle; Feige, Mary Ann; Shadix, Lois; Gonder, Sharon; Rodgers, Crystal; Chambers, Yildiz; Pulz, Jessica; Miller, Ken; Connell, Kevin; Standridge, Jon

    2003-01-01

    Escherichia coli is a routinely used microbiological indicator of water quality. To determine whether holding time and storage conditions had an effect on E. coli densities in surface water, studies were conducted in three phases, encompassing 24 sites across the United States and four commonly used monitoring methods. During all three phases of the study, E. coli samples were analyzed at time 0 and at 8, 24, 30, and 48 h after sample collection. During phase 1, when 4°C samples were evaluated by Colilert or by placing a membrane onto mFC medium followed by transfer to nutrient agar containing 4-methylumbelliferyl-β-d-glucuronide (mFC/NA-MUG), three of four sites showed no significant differences throughout the 48-h study. During phase 2, five of seven sites showed no significant difference between time 0 and 24 h by membrane filtration (mFC/NA-MUG). When evaluated by the Colilert method, five of seven sites showed no significant difference in E. coli density between time 0 and 48 h. During phase 3, 8 of 13 sites showed no significant differences in E. coli densities between time 0 and the 48-h holding time, regardless of method. Based on the results of these studies, it appears that if samples are held below 10°C and are not allowed to freeze, most surface water E. coli samples analyzed by commonly used methods beyond 8 h after sample collection can generate E. coli data comparable to those generated within 8 h of sample collection. Notwithstanding this conclusion, E. coli samples collected from surface waters should always be analyzed as soon as possible. PMID:14532081

  3. E. coli fate and transport in the Happel sphere-in-cell model

    NASA Astrophysics Data System (ADS)

    Nelson, K. E.; Massoudieh, A.; Ginn, T. R.

    2007-06-01

    Rates of mass and gene transfer reactions involving biotic phases are often expressed as proportional to local number densities of bacteria. When the reactions involve attached bacteria, reaction rates depend on local densities of bacteria attached to surfaces. Such may be the case with microbially-facilitated redox reactions involving mineral electron donors and mineral electron receivers (e.g., Sani RK, Peyton BM, Amonette JE, Dohnalkova A. Reoxidation of uranium in the presence of iron(III)-(hydr)oxides under sulfate reducing conditions. Environ Sci Technol 2005;39:2059-66), biofilm formation induced by quorum sensing (Purevdorj B, Costerton JW, Stoodley P. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa Biofilms. Appl Environ Microbiol 2002;68(9):4457-64) and horizontal gene transfer among attached phase bacteria (Beaudoin DL, Bryers JD, Cunningham AB, Peretti SW. Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. I. Experiments. Biotech Bioeng 1998a;57(3):272-79; Beaudoin DL, Bryers JD, Cunningham AB, Peretti SW. Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. II. Modeling Biotech Bioeng 1998b;57(3):280-86). Here we use the conceptual Happel sphere-in-cell model to determine the microscopic distribution of attached bacteria on idealized spherical grains of porous media, assuming azimuthal symmetry. We extend a Lagrangian model of colloid filtration to investigate the effects of motility of Escherichia coli on attachment rate and on the attachment distribution as a function of location on grain surface. The hydrodynamics of the Happel model is implicitly 3D and represented in 2D polar coordinates under the assumption of axisymmetric flow, while the motility of the E. coli cells is explicitly 3D. The model incorporates the fate and transport processes of colloid filtration theory in

  4. Termination of DNA replication is required for cell division in Escherichia coli.

    PubMed Central

    Grossman, N; Rosner, E; Ron, E Z

    1989-01-01

    The correlation between termination of DNA replication and cell division in Escherichia coli was studied under conditions in which DNA replication was slowed down without inducing SOS functions. The experimental system used involved amino acid starvation of synchronized cells in the presence of methionine. The results further support the essential correlation between termination of DNA replication and initiation of division processes. PMID:2644214

  5. Effect of surface roughness on performance of magnetoelastic biosensors for the detection of Escherichia coli.

    PubMed

    Possan, A L; Menti, C; Beltrami, M; Santos, A D; Roesch-Ely, M; Missell, F P

    2016-01-01

    Escherichia coli are bacteria that must be controlled in the food industry and the hospital sector. Magnetoelastic biosensors offer the promise of rapid identification of these and other harmful antigens. In this work, strips of amorphous Metglas 2826MB3 were cut to size (5 mm × 1 mm) with a microdicing saw and were then coated with thin layers of Cr and Au, as verified by Rutherford backscattering spectroscopy (RBS). Several sensor surfaces were studied: 1) as-cast strip, wheel side; 2) as-cast strip, free surface; and 3) thinned and polished surface. A layer of cystamine was applied to the Au-covered magnetoelastic substrate, forming a self-assembledmonolayer (SAM), followed by antibodies, using a modified Hermanson protocol. The cystamine layer growth was verified by Fourier transform infrared spectroscopy (FTIR) and scanning electronmicroscopy (SEM). The biosensors were exposed to solutions of bacteria and the resonant frequency of the sensors was measured with an impedance analyzer for times up to 100 min. Reductions in the resonant frequency, corresponding to bacteria capture, were measured after optimizing the signal amplitude. For times up to 40 min, high capture rates were observed and thereafter saturation occurred. Saturation values of the frequency shifts were compared with the number of bacteria observed on the sensor using fluorescence microscopy. Parameters associated with capture kinetics were studied for different sensor surfaces. The rough surfaces were found to show a faster response, while the thinned and polished sensors showed the largest frequency shift.

  6. Persistence of Escherichia coli and Salmonella in surface soil following application of liquid hog manure for production of pickling cucumbers.

    PubMed

    Côté, Caroline; Quessy, Sylvain

    2005-05-01

    Liquid hog manure is routinely applied to farm land as a crop fertilizer. However, this practice raises food safety concerns, especially when manure is used on fruit and vegetable crops. The objectives of this project were to evaluate the persistence of Escherichia coli and Salmonella in surface soil after application of liquid hog manure to fields where pickling cucumbers were grown and to verify the microbiological quality of harvested cucumbers. Mineral fertilizers were replaced by liquid hog manure at various ratios in the production of pickling cucumbers in a 3-year field study. The experimental design was a randomized complete block comprising four replicates in sandy loam (years 1, 2, and 3) and loamy sand (year 3). Soil samples were taken at a depth of 20 cm every 2 weeks after June application of organic and inorganic fertilizers. Vegetable samples were also taken at harvest time. Liquid hog manure, soil, and vegetable (washed and unwashed) samples were analyzed for the presence of Salmonella and E. coli. An exponential decrease of E. coli populations was observed in surface soil after the application of manure. The estimated average time required to reach undetectable concentrations of E. coli in sandy loam varied from 56 to 70 days, whereas the absence of E. coli was estimated at 77 days in loamy sand. The maximal Salmonella persistence in soil was 54 days. E. coli and Salmonella were not detected in any vegetable samples.

  7. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells

    PubMed Central

    Cuevas-Ramos, Gabriel; Petit, Claude R.; Marcq, Ingrid; Boury, Michèle; Oswald, Eric; Nougayrède, Jean-Philippe

    2010-01-01

    Escherichia coli is a normal inhabitant of the human gut. However, E. coli strains of phylogenetic group B2 harbor a genomic island called “pks” that codes for the production of a polyketide-peptide genotoxin, Colibactin. Here we report that in vivo infection with E. coli harboring the pks island, but not with a pks isogenic mutant, induced the formation of phosphorylated H2AX foci in mouse enterocytes. We show that a single, short exposure of cultured mammalian epithelial cells to live pks+ E. coli at low infectious doses induced a transient DNA damage response followed by cell division with signs of incomplete DNA repair, leading to anaphase bridges and chromosome aberrations. Micronuclei, aneuploidy, ring chromosomes, and anaphase bridges persisted in dividing cells up to 21 d after infection, indicating occurrence of breakage–fusion–bridge cycles and chromosomal instability. Exposed cells exhibited a significant increase in gene mutation frequency and anchorage-independent colony formation, demonstrating the infection mutagenic and transforming potential. Therefore, colon colonization with these E. coli strains harboring the pks island could contribute to the development of sporadic colorectal cancer. PMID:20534522

  8. Effects of subinhibitory amounts of ampicillin, amoxycillin and mecillinam on the adhesion of Escherichia coli bacteria to human urinary tract epithelial cells: a preliminary study.

    PubMed

    Svanborg-Edén, C; Sandberg, T; Stenqvist, K; Ahlstedt, S

    1979-01-01

    Attachment to mucous surfaces may be a prerequisite for bacteria colonizing these surfaces or invading underlying tissues. Subinhibitory amounts of ampicillin and amoxycillin but not mecillinam decreased the attachment of Escherichia coli bacteria to human uro-epithelial cells in vitro. No significant synergistic effect on the attachment by the antibiotics was obtained. The present report indicates a new parameter for the study of antibacterial actions of drugs.

  9. E. coli DH5α cell response to a sudden change in microfluidic chemical environment.

    PubMed

    Murugesan, Nithya; Panda, Tapobrata; Das, Sarit K

    2015-01-01

    Motile bacteria respond to changing chemical environment by moving towards or away from a particular location. Bacterial migration under chemical gradient is one of the most studied areas in biomedical field. In this work we looked into how bacterial cells respond to sudden change in the microfluidic chemical environment. E. coli DH5α cells were subjected to an attractant gradient (0.1 mM sorbitol--attractant to E. coli cells) and after 120 min the same cells were exposed to an inhibitor (0.1 mM NiSO4) gradient in the same microfluidic device. Our studies revealed that when the E. coli DH5α cells were exposed to 0.1 mM sorbitol, they showed faster chemotaxis towards the attractant (0.1 mM sorbitol) and achieved steady state by 60 min. When we replaced 0.1 mM sorbitol with 0.1 mM NiSO4 in the device we found that that the E. coli DH5α cells started responding to change in chemical environment within 10 min and achieved steady state at the end of 60 min. This shows that the bacterial cells respond to change in local chemical environment is within few minutes.

  10. Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation.

    PubMed

    Miranda, Andreza Costa; Lepretti, Marilena; Rizzo, Luigi; Caputo, Ivana; Vaiano, Vincenzo; Sacco, Olga; Lopes, Wilton Silva; Sannino, Diana

    2016-06-01

    The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0 mg L(-1)) was the faster process (2.5 min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45 min treatment. Total inactivation was not observed (4.5 Log), also after 120 min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability.

  11. Electrochemiluminescence Detection of Escherichia coli O157:H7 Based on a Novel Polydopamine Surface Imprinted Polymer Biosensor.

    PubMed

    Chen, Shufan; Chen, Xueqian; Zhang, Lijuan; Gao, Juanjuan; Ma, Qiang

    2017-02-15

    In this paper, a facilely prepared electrochemiluminescence (ECL) biosensor was developed for Escherichia coli O157:H7 quantitative detection based on a polydopamine (PDA) surface imprinted polymer (SIP) and nitrogen-doped graphene quantum dots (N-GQDs). N-GQDs with a high quantum yield of 43.2% were synthesized. The uniform PDA SIP film for E. coli O157:H7 was established successfully with a facile route. The dopamine and target bacteria were electropolymerized directly on the electrode. After removal of the E. coli O157:H7 template, the established PDA SIP can selectively recognize E. coli O157:H7. Accordingly, E. coli O157:H7 polyclonal antibody (pAb) was labeled with N-GQDs. The bioconjugation of SIP-E. coli O157:H7/pAb-N-GQDs can generate intensive ECL irradiation with K2S2O8. As a result, E. coli O157:H7 was detected with the ECL sensing system. Under optimal conditions, the linear relationships between the ECL intensity and E. coli O157:H7 concentration were obtained from 10(1) colony-forming units (CFU) mL(-1) to 10(7) CFU mL(-1) with a limit of detection of 8 CFU mL(-1). The biosensor based on this SIP film was applied in water sample detection successfully. The N-GQD-based ECL analytical method for E. coli O157:H7 was reported for the first time. The sensing system had high selectivity to the target analyte, provided new opportunities for use, and increased the rate of disease diagnosis and treatment and the prevention of pathogens.

  12. Survival of verocytotoxigenic Escherichia coli O157 in soil, water and on surfaces.

    PubMed

    Maule, A

    2000-01-01

    Cattle and sheep are major reservoirs of Escherichia coli O157 and consequently these and certain other farm animals can pass out large numbers of this organism in their faeces. Thus the ability of the organism to survive in faeces, on pastureland and in associated water systems has important implications for its spread to crops by direct application of manure, by irrigation with infected water or directly to man by contact with animals or contaminated soil. Model systems were used to determine the persistence of the organism in river water, cattle faeces, soil cores and on stainless steel work surfaces. Survival of the organism was found to be greatest in soil cores containing rooted grass. Under these conditions viable numbers were shown to decline from approximately 10(8) g(-1) soil to between 10(6) and 10(7) g(-1) soil after 130 d. When the organism was inoculated into cattle faeces it remained detectable at high levels for more than 50 d. In contrast the organism survived much less readily in cattle slurry and river water where it fell in numbers from more than 10(6) ml(-1) to undetectable levels in 10 and 27 d, respectively. The survival of E. coli O157 was also investigated on stainless steel surfaces, where as air-dried deposits, it was shown to survive for periods in excess of 60 d. It was most stable at chill temperatures (4 degrees C) and viability was only partially reduced at 18 degrees C. In addition to stainless steel, the organism was shown to survive for extended periods on domestic (plastic) cutting boards, both at room and chill temperatures. Sanitizing agents, such as hypochlorites and a compound comprising both cationic and anionic-based active ingredients were found to be effective in killing various VTEC on stainless steel surfaces.

  13. Cells behaviors and genotoxicity on topological surface.

    PubMed

    Yang, N; Yang, M K; Bi, S X; Chen, L; Zhu, Z Y; Gao, Y T; Du, Z

    2013-08-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell-cell and cell-matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro.

  14. Evolution of the Min Protein Oscillation in E. coli Bacteria During Cell Growth and Division

    NASA Astrophysics Data System (ADS)

    Baylis, Benjamin; Giuliani, Maximiliano; Dutcher, John

    2014-03-01

    Cell division is a key step in the life of a bacterium. This process is carefully controlled and regulated so that the cellular machinery is equally partitioned into two daughter cells of equal size. In E. coli, this is accomplished, in part, by the Min protein system, in which Min proteins oscillate along the long axis of the rod-shaped cells. We have used high magnification, time-resolved fluorescence microscopy to characterize in detail the oscillation in E. coli cells in which the MinD proteins are tagged with green fluorescent protein (GFP). We have used a microfluidic device to confine the bacteria into microchannels that allows us to track the evolution of the oscillation in cells as they grow and divide in LB growth media. In particular, we have tracked the loss of synchrony between the oscillations in the daughter cells following cell division.

  15. Optimization of a single-chain antibody fragment overexpression in Escherichia coli using response surface methodology

    PubMed Central

    Akbari, V.; Sadeghi, H. Mir Mohammad; Jafarian-Dehkordi, A.; Chou, C. Perry; Abedi, D.

    2015-01-01

    Human epidermal growth factor receptor (HER) family plays an important role in various types of cancers. As a result, antibodies against HER and the mechanism of antigen-antibody binding action are under active investigation. We previously constructed a single-chain variable fragment (ScFv) against HER2, i.e. anti-Her2 ScFv, for expressing in the Escherichia coli. In the present study, we report the optimization of anti-Her2 ScFv expression in an E. coli host of BL21 (DE3) pLysS using response surface methodology based on tuning of three cultivation variables, including isopropyl-beta-D-thiogalactopyranoside (IPTG) concentration, temperature and post-induction time. A model for protein expression according to the Box-Behnken design predicted a maximal anti-Her2 ScFv expression at 37 °C, a post-induction time of 10.45 h and 0.75 mM IPTG. In addition, strategies based on inclusion body isolation and affinity chromatography were applied to purify anti-Her2 ScFv. The purity of the final product for inclusion bodies isolation and purification by Ni-NTA resin were 70 % and 95 %, respectively. The solubilization of the inclusion bodies was carried out using two denaturant agents, guanidine hydrochloride and urea. The present study showed that guanidine hydrochloride was more effective than urea in solubilizing the inclusion bodies. PMID:26430460

  16. Integration of AI-2 Based Cell-Cell Signaling with Metabolic Cues in Escherichia coli

    PubMed Central

    Mitra, Arindam; Herren, Christopher D.; Patel, Isha R.; Coleman, Adam; Mukhopadhyay, Suman

    2016-01-01

    The quorum sensing molecule Autoinducer-2 (AI-2) is generated as a byproduct of activated methyl cycle by the action of LuxS in Escherichia coli. AI-2 is synthesized, released and later internalized in a cell-density dependent manner. Here, by mutational analysis of the genes, uvrY and csrA, we describe a regulatory circuit of accumulation and uptake of AI-2. We constructed a single-copy chromosomal luxS-lacZ fusion in a luxS + merodiploid strain and evaluated its relative expression in uvrY and csrA mutants. At the entry of stationary phase, the expression of the fusion and AI-2 accumulation was positively regulated by uvrY and negatively regulated by csrA respectively. A deletion of csrA altered message stability of the luxS transcript and CsrA protein exhibited weak binding to 5’ luxS regulatory region. DNA protein interaction and chromatin immunoprecipitation analysis confirmed direct interaction of UvrY with the luxS promoter. Additionally, reduced expression of the fusion in hfq deletion mutant suggested involvement of small RNA interactions in luxS regulation. In contrast, the expression of lsrA operon involved in AI-2 uptake, is negatively regulated by uvrY and positively by csrA in a cell-density dependent manner. The dual role of csrA in AI-2 synthesis and uptake suggested a regulatory crosstalk of cell signaling with carbon regulation in Escherichia coli. We found that the cAMP-CRP mediated catabolite repression of luxS expression was uvrY dependent. This study suggests that luxS expression is complex and regulated at the level of transcription and translation. The multifactorial regulation supports the notion that cell-cell communication requires interaction and integration of multiple metabolic signals. PMID:27362507

  17. Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity

    PubMed Central

    Dias, Joana; Sobkowiak, Michał J.; Sandberg, Johan K.; Leeansyah, Edwin

    2016-01-01

    Mucosa-associated invariant T cells are a large and relatively recently described innate-like antimicrobial T-cell subset in humans. These cells recognize riboflavin metabolites from a range of microbes presented by evolutionarily conserved major histocompatibility complex, class I-related molecules. Given the innate-like characteristics of mucosa-associated invariant T cells and the novel type of antigens they recognize, new methodology must be developed and existing methods refined to allow comprehensive studies of their role in human immune defense against microbial infection. In this study, we established protocols to examine a range of mucosa-associated invariant T-cell functions as they respond to antigen produced by Escherichia coli. These improved and dose- and time-optimized experimental protocols allow detailed studies of MR1-dependent mucosa-associated invariant T-cell responses to Escherichia coli pulsed antigen-presenting cells, as assessed by expression of activation markers and cytokines, by proliferation, and by induction of apoptosis and death in major histocompatibility complex, class I-related–expressing target cells. The novel and optimized protocols establish a framework of methods and open new possibilities to study mucosa-associated invariant T-cell immunobiology, using Escherichia coli as a model antigen. Furthermore, we propose that these robust experimental systems can also be adapted to study mucosa-associated invariant T-cell responses to other microbes and types of antigen-presenting cells. PMID:27034405

  18. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy.

    PubMed

    Joseph, Benesh; Sikora, Arthur; Bordignon, Enrica; Jeschke, Gunnar; Cafiso, David S; Prisner, Thomas F

    2015-05-18

    Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment.

  19. Cell attachment on microscopically textured silicon surfaces

    NASA Astrophysics Data System (ADS)

    Turner, Stephen W.; Kam, Lance; Isaacson, Michael; Craighead, Harold G.; Szarowski, Donald H.; Turner, James N.; Shain, W.

    1997-03-01

    To assess the effect of surface topography on cell attachment, central nervous system (astroglial cells) cells were grown on surfaces patterned with two different types of texture. Reactive ion etching (RIE) was used to induce nanometer-scale roughness in silicon wafers. In a subsequent wet etch, photo-patterned resist protected selected areas of the surface, resulting in a pattern of modified and unmodified texture. Scanning electron microscopy (SEM) showed that the RIE-roughened 'primary' surface consists of randomly positioned columnar structures (diameter approximately equals 50 nm, height approximately equals 250 nm). The wet-etched 'secondary' surfaces had shorter and more sparsely distributed projections, controlled to a degree by wet etch duration. Confocal microscopy and SEM demonstrated that transformed astroglial (LRM55) cells preferred secondary surfaces. The morphology of cells on secondary surfaces depended on wet etch duration. with brief wet etch, cells hade stellate or mounded morphology and were not closely adherent to the surface. With long wet etch, cells had an epithelial-like morphology and were closely adherent to substrates. Under all conditions, cells discriminated between primary and secondary surfaces. In contrast to LRM55 cells, astrocytes in primary cell culture preferred primary surfaces. Thus changes in surface topography produce cell-specific selectivity and change cell attachment characteristics.

  20. Mechanism of action of nalidixic acid on Escherichia coli. Vi. Cell-free studies.

    PubMed

    Boyle, J V; Cook, T M; Goss, W A

    1969-01-01

    The effects of nalidixic acid in vitro on deoxyribonucleic acid (DNA)- polymerase (deoxyribonucleosidetriphosphate: DNA deoxynucleotidyltransferase, EC 2.7.7.7), deoxyribonucleotide kinases (ATP: deoxymono- and diphosphate phosphotransferases), and deoxyribosyl transferase (nucleoside: purine deoxyribosyltransferase, EC 2.4.2.6) were examined employing partially purified and crude extracts of Escherichia coli ATCC 11229 and E. coli 15TAU. Nalidixic acid had no inhibitory effect on the DNA-polymerase of the wild-type strain E. coli ATCC 11229 at concentrations of 1.4 x 10(-3) to 2.8 x 10(-3)m. No inhibition of deoxyribonucleotide kinase activity was observed at concentrations of nalidixic acid ranging from 2 x 10(-3) to 8.6 x 10(-3)m. Nalidixic acid (0.43 x 10(-4) to 0.43 x 10(-3)m) had no inhibitory effect on the deoxyribosyl transferase activity of crude extracts obtained from E. coli ATCC 11229 or E. coli 15TAU. Analytical CsCl density gradient centrifugation demonstrated that the DNA obtained after treatment of E. coli 15TAU with nalidixic acid was not cross-linked. These results suggest that the prevention of DNA synthesis in vivo by nalidixic acid is not attributable to inhibition of DNA polymerase, deoxyribonucleotide kinase, deoxyribosyl transferase, or to cross-linking of the DNA of treated cells.

  1. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Ramalingam, Baskaran; Parandhaman, Thanusu; Das, Sujoy K

    2016-02-01

    Understanding the interactions of silver nanoparticles (AgNPs) with the cell surface is crucial for the evaluation of bactericidal activity and for advanced biomedical and environmental applications. Biosynthesis of AgNPs was carried out through in situ reduction of silver nitrate (AgNO3) by cell free protein of Rhizopus oryzae and the synthesized AgNPs was characterized by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS), ζ-potential analysis, and FTIR spectroscopy. The HRTEM measurement confirmed the formation of 7.1 ± 1.2 nm AgNPs, whereas DLS study demonstrated average hydrodynamic size of AgNPs as 9.1 ± 1.6 nm. The antibacterial activity of the biosynthesized AgNPs (ζ = -17.1 ± 1.2 mV) was evaluated against Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. The results showed that AgNPs exhibited concentration dependent antibacterial activity and 100% killing of E. coli and P. aeruginosa achieved when the cells were treated with 4.5 and 2.7 μg/mL AgNPs, respectively for 4 h. Furthermore, the intracellular reactive oxygen species (ROS) production suppressed the antioxidant defense and exerted mechanical damage to the membrane. AgNPs also induced surface charge neutralization and altered of the cell membrane permeability causing nonviability of the cells. Atomic force microscopy (AFM) studies depicted alteration of ultrastructural and nanomechanical properties of the cell surface following interaction with AgNPs, whereas FTIR spectroscopic analysis demonstrated that cell membrane of the treated cells underwent an order-to-disorder transition during the killing process and chemical composition of the cell membrane including fatty acids, proteins, and carbohydrates was decomposed following interaction with AgNPs.

  2. Binding Specificity of Piliated Strains of Escherichia coli and Salmonella typhimurium to Epithelial Cells, Saccharomyces cerevisiae Cells, and Erythrocytes

    PubMed Central

    Korhonen, Timo K.; Leffler, Hakon; Edén, Catharina Svanborg

    1981-01-01

    The binding to mammalian cells of piliated enteric bacteria and the inhibition of the binding by antibodies to purified pili were studied. The target cells were epithelial cells from human bucca and human and rat urinary tracts, erythrocytes from various species, and Saccharomyces cerevisiae cells. The strains were selected to represent the two main agglutination patterns of enteric bacteria: mannose-resistant agglutination of human and other erythrocytes and mannose-sensitive agglutination of guinea pig and other erythrocytes. Escherichia coli 3669 caused only mannose-resistant agglutination, E. coli 6013 caused only mannose-sensitive agglutination, and E. coli 3048 caused both types of agglutination simultaneously. Salmonella typhimurium SH6749 exhibited only mannose-sensitive hemagglutination and was included to allow comparison of its pili with those of E. coli strains. The range of epithelial cells to which the bacteria adhered was related to their agglutination patterns. All four strains attached to human buccal cells. Only E. coli strains 3669 and 3048, which caused mannose-resistant agglutination, adhered to human urinary tract epithelial cells, and only those strains that caused mannose-sensitive agglutination adhered to rat urinary tract epithelial cells. The binding of S. typhimurium SH6749, but not of the other strains with mannose-sensitive agglutination, was significantly inhibited by d-mannose. Globotetraosylceramide, a glycolipid present in the human urinary tract epithelium, inhibited attachment to human uroepithelial cells of the two strains with mannose-resistant hemagglutination. As tested by the enzyme-linked immunosorbent assay, cross-reactions between type 1 pili of the E. coli strains were strong, but those between S. typhimurium and E. coli mannose-sensitive pili were weak. The two pili that induced mannose-resistant hemagglutination on E. coli did not cross-react. Significant inhibition of adhesion of all four strains was obtained with the

  3. Comparative Analysis of UV Irradiation Effects on Escherichia coli and Pseudomonas aeruginosa Bacterial Cells Utilizing Biological and Computational Approaches.

    PubMed

    Margaryan, A; Badalyan, H; Trchounian, A

    2016-09-01

    Microorganisms have a large number of tools to withstand different, and sometimes strong, environmental stresses, including irradiation, but this ability should be further evaluated for certain applications. Growth inhibition and morphological alterations of Escherichia coli M-17 and Pseudomonas aeruginosa GRP3 wild-type cells caused by UV-A irradiation have been detected in the present study. Comparative analysis was carried out using well-established microbiological methods (determination of specific growth rate, growth lag phase duration, and colony-forming unit number-CFU) and computational approaches, employing light microscopy and digital image analysis to evaluate bacterial cell morphology. Decreases in the specific growth rate, prolonged lag-phases, and lowered CFUs were observed after 5 and 10 min of UV irradiation (approx. 40 Gy) compared to the control (nonirradiated) cells. Accordingly, two computational parameters-the average bacterial cell surface area and the bacterial cell perimeter (i.e., of the 2D projection of bacterial cells in microscopy image)-were reduced. The ratio of bacterial cell surface area (S) to the square of the perimeter (p (2) ) was reduced after 5 min of irradiation, but after 10 min of irradiation the studied bacterial cells became flat cylinders. The revealed findings are concluded to be highly useful in developing new, rapid analysis methods to monitor environmental and UV irradiation effects on bacteria and to detect bacterial cell morphology alterations.

  4. DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli

    PubMed Central

    Khandige, Surabhi; Asferg, Cecilie Antoinette; Rasmussen, Karina Juhl; Larsen, Martin Jakob; Overgaard, Martin

    2016-01-01

    ABSTRACT The ability to change cell morphology is an advantageous characteristic adopted by multiple pathogenic bacteria in order to evade host immune detection and assault during infection. Uropathogenic Escherichia coli (UPEC) exhibits such cellular dynamics and has been shown to transition through a series of distinct morphological phenotypes during a urinary tract infection. Here, we report the first systematic spatio-temporal gene expression analysis of the UPEC transition through these phenotypes by using a flow chamber-based in vitro infection model that simulates conditions in the bladder. This analysis revealed a novel association between the cell division gene damX and reversible UPEC filamentation. We demonstrate a lack of reversible bacterial filamentation in a damX deletion mutant in vitro and absence of a filamentous response by this mutant in a murine model of cystitis. While deletion of damX abrogated UPEC filamentation and secondary surface colonization in tissue culture and in mouse infections, transient overexpression of damX resulted in reversible UPEC filamentation. In this study, we identify a hitherto-unknown damX-mediated mechanism underlying UPEC morphotypical switching. Murine infection studies showed that DamX is essential for establishment of a robust urinary tract infection, thus emphasizing its role as a mediator of virulence. Our study demonstrates the value of an in vitro methodology, in which uroepithelium infection is closely simulated, when undertaking targeted investigations that are challenging to perform in animal infection models. PMID:27486187

  5. Surface free energy activated high-throughput cell sorting.

    PubMed

    Zhang, Xinru; Zhang, Qian; Yan, Tao; Jiang, Zeyi; Zhang, Xinxin; Zuo, Yi Y

    2014-09-16

    Cell sorting is an important screening process in microbiology, biotechnology, and clinical research. Existing methods are mainly based on single-cell analysis as in flow cytometric and microfluidic cell sorters. Here we report a label-free bulk method for sorting cells by differentiating their characteristic surface free energies (SFEs). We demonstrated the feasibility of this method by sorting model binary cell mixtures of various bacterial species, including Pseudomonas putida KT2440, Enterococcus faecalis ATCC 29212, Salmonella Typhimurium ATCC 14028, and Escherichia coli DH5α. This method can effectively separate 10(10) bacterial cells within 30 min. Individual bacterial species can be sorted with up to 96% efficiency, and the cell viability ratio can be as high as 99%. In addition to its capacity of sorting evenly mixed bacterial cells, we demonstrated the feasibility of this method in selecting and enriching cells of minor populations in the mixture (presenting at only 1% in quantity) to a purity as high as 99%. This SFE-activated method may be used as a stand-alone method for quickly sorting a large quantity of bacterial cells or as a prescreening tool for microbial discrimination. Given its advantages of label-free, high-throughput, low cost, and simplicity, this SFE-activated cell sorting method has potential in various applications of sorting cells and abiotic particles.

  6. Palmitoylethanolamide stimulates phagocytosis of Escherichia coli K1 and Streptococcus pneumoniae R6 by microglial cells.

    PubMed

    Redlich, Sandra; Ribes, Sandra; Schütze, Sandra; Czesnik, Dirk; Nau, Roland

    2012-03-01

    The ability of microglial cells to phagocytose bacteria after stimulation with the endocannabinoid palmitoylethanolamide (PEA) was studied in vitro. PEA increased the phagocytosis of unencapsulated Streptococcus pneumoniae R6 and encapsulated Escherichia coli K1 by murine microglial cells significantly after 30 min of microglial stimulation. This suggested that stimulation of microglial cells by PEA can increase the resistance of the brain against CNS infections.

  7. Induction of protein expression within Escherichia coli vector for entry into mammalian cells.

    PubMed

    Chen, Qingwen; Lee, Choon-Weng; Sim, Edmund Ui-Hang; Narayanan, Kumaran

    2014-02-01

    Direct protein delivery into the cytosol of mammalian cells by invasive Escherichia coli (E. coli) bacterial vector will bypass the need to achieve nuclear entry and transcription of DNA, a major hurdle that is known to seriously limit gene transfer. The bacterial vector is induced to express the protein during its growth phase, before presentation for entry into mammalian cells and release of its content into the cellular environment. For this class of vector, crossing the plasma membrane becomes the primary step that determines the success of protein delivery. Yet, how the mechanics of protein expression within the vector affect its entry into the host is poorly understood. We found the vector's effectiveness to enter HeLa cells diminished together with its viability when phage N15 protelomerase (TelN) expression was induced continuously in the invasive E. coli despite producing an abundant amount of functional protein. By comparison, shorter induction, even as little as 3 hr, produced sufficient amounts of functional TelN and showed more effective invasion of HeLa cells, comparable to that of uninduced invasive E. coli. These results demonstrate that brief induction of protein expression during vector growth is essential for optimal entry into mammalian cells, an important step for achieving bacteria-mediated protein delivery.

  8. The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity.

    PubMed Central

    Chen, B J; Carroll, P; Samson, L

    1994-01-01

    Escherichia coli can ameliorate the toxic effects of alkylating agents either by preventing DNA alkylation or by repairing DNA alkylation damage. The alkylation-sensitive phenotype of E. coli alkB mutants marks the alkB pathway as an extremely effective defense mechanism against the cytotoxic effects of the SN2, but not the SN1, alkylating agents. Although it is clear that AlkB helps cells to better handle alkylated DNA, no DNA alkylation repair function could be assigned to the purified AlkB protein, suggesting that AlkB either acts as part of a complex or acts to regulate the expression of other genes whose products are directly responsible for alkylation resistance. However, here we present evidence that the provision of alkylation resistance is an intrinsic function of the AlkB protein per se. We expressed the E. coli AlkB protein in two human cell lines and found that it confers the same characteristic alkylation-resistant phenotype in this foreign environment as it does in E. coli. AlkB expression rendered human cells extremely resistant to cell killing by the SN2 but not the SN1 alkylating agents but did not affect the ability of dimethyl sulfate (an SN2 agent) to alkylate the genome. We infer that SN2 agents produce a class of DNA damage that is not efficiently produced by SN1 agents and that AlkB somehow prevents this damage from killing the cell. Images PMID:7928996

  9. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces.

    PubMed

    Adhikari, Achyut; Syamaladevi, Roopesh M; Killinger, Karen; Sablani, Shyam S

    2015-10-01

    This study investigated UV-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on the surface of organic apples, pears, strawberries, red raspberries and cantaloupes. Fruit surfaces spot inoculated with cocktail strains of E. coli O157:H7 and L. monocytogenes were exposed to UV-C doses up to 11.9 kJ/m(2) at 23 °C. Fruit surface roughness, contact angle, and surface energy were determined and correlated with UV-C inactivation kinetics. Results demonstrate that bacterial pathogens on fruit surfaces respond differently to UV-C light exposure. E. coli O157:H7 on apple and pear surfaces was reduced by 2.9 and 2.1 log CFU/g, respectively when treated with UV-C light at 0.92 kJ/m(2) (60s). For berries, the reduction of E. coli O157:H7 was lower with 2.0 (strawberry) and 1.1 log CFU/g (raspberry) achieved after UV-C treatment at 7.2 kJ/m(2) (8 min) and at 10.5 kJ/m(2) (12 min), respectively. Similarly, a higher reduction of L. monocytogenes was observed on apple (1.6 log CFU/g at 3.75 kJ/m(2)) and pear (1.7 log CFU/g at 11.9 kJ/m(2)) surfaces compared to cantaloupe and strawberry surfaces (both achieved 1.0 log CFU/g at 11.9 kJ/m(2)). L. monocytogenes shows more resistance than E. coli O157:H7. Inactivation rates were higher for less hydrophobic fruits with smoother surfaces (apples and pears) as compared to fruits with rougher surfaces (cantaloupe, strawberry and raspberry). Findings indicate that UV-C light can effectively reduce E. coli O157:H7 and L. monocytogenes populations on fruit and berry surfaces. However, surface characteristics influence the efficacy of UV-C light.

  10. Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five reactor systems (free cell batch, free cell continuous, entrapped cell immobilized, adsorbed cell packed bed, and cell recycle membrane reactors) were compared for ethanol production from xylose employing Escherichia coli FBR5. In the free cell batch and free cell continuous reactors (continuo...

  11. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells.

    PubMed Central

    Leffler, H; Svanborg-Edén, C

    1981-01-01

    A specific family of glycolipids, the globoseries, was shown to act as receptors on human uroepithelial cells and erythrocytes for the majority of uropathogenic Escherichia coli strains attaching to or hemagglutinating those cells. This was demonstrated in three different ways: (i) correlation between the natural presence of glycolipid in the target cell (erythrocytes of different species) and binding of bacteria; (ii) inhibition of attachment to human uroepithelial cells by preincubation of bacteria and glycolipid; and (iii) induction of binding to unreactive cells by coating of these cells with glycolipid. Strains reacting with the receptor agglutinated guinea pig erythrocytes in a mannose-resistant way after, but not before, coating of the cells with globotetraosylceramide. Unrelated glycolipids were not recognized. The reaction was made independent of simultaneous occurrence of mannose-sensitive adhesions on the strains by addition of D-mannose. The receptor-coated cells were used as a tool to screen for prevalence of receptor recognition in a collection of 453 E. coli strains isolated from patients with urinary tract infection or from the stools of healthy children. Of 150 strains attaching to human uroepithelial cells and agglutinating human erythrocytes, 121 bound to globotetraosylceramide (81%). Globoside recognition was especially frequent among pyelonephritis strains (74/81). The glycolipid composition of the urogenital epithelium and kidney tissue and the ability of uropathogenic E. coli to bind to these glycolipids may be a determinant in host-parasite interaction leading to urinary tract infection. PMID:7037645

  12. Oscillations in the synthesis of cell wall components in synchronized cultures of Escherichia coli.

    PubMed Central

    Hakenbeck, R; Messer, W

    1977-01-01

    The rate of cell wall synthesis with respect to both proteins and lipids was determined in synchronized cultures of Escherichia coli B/r. Whereas the rate of total protein synthesis showed an exponential increase with cell age, the rate of incorporation of proteins and lipids into cell wall had a maximum at a cell age of 30 to 35 min, 15 min before cell division. This oscillation was observed in both the cytoplasmic membrane and in the outer membrane of the cell envelope. PMID:321418

  13. Optimization of Fermentation Conditions for Recombinant Human Interferon Beta Production by Escherichia coli Using the Response Surface Methodology

    PubMed Central

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi Memari, Hamid; Vahidi, Hossein

    2015-01-01

    Background: The periplasmic overexpression of recombinant human interferon beta (rhIFN-β)-1b using a synthetic gene in Escherichia coli BL21 (DE3) was optimized in shake flasks using Response Surface Methodology (RSM) based on the Box-Behnken Design (BBD). Objectives: This study aimed to predict and develop the optimal fermentation conditions for periplasmic expression of rhIFN-β-1b in shake flasks whilst keeping the acetate excretion as the lowest amount and exploit the best results condition for rhIFN-β in a bench top bioreactor. Materials and Methods: The process variables studied were the concentration of glucose as carbon source, cell density prior the induction (OD 600 nm) and induction temperature. Ultimately, a three-factor three-level BBD was employed during the optimization process. The rhIFN-β production and the acetate excretion served as the evaluated responses. Results: The proposed optimum fermentation condition consisted of 7.81 g L-1 glucose, OD 600 nm prior induction 1.66 and induction temperature of 30.27°C. The model prediction of 0.267 g L-1 of rhIFN-β and 0.961 g L-1 of acetate at the optimum conditions was verified experimentally as 0.255 g L-1 and 0.981 g L-1 of acetate. This agreement between the predicted and observed values confirmed the precision of the applied method to predict the optimum conditions. Conclusions: It can be concluded that the RSM is an effective method for the optimization of recombinant protein expression using synthetic genes in E. coli. PMID:26034535

  14. Encapsulation of living E. coli cells in hollow polymer microspheres of highly defined size.

    PubMed

    Flemke, Jennifer; Maywald, Matthias; Sieber, Volker

    2013-01-14

    Here, we report the preparation and characterization of hollow polymer microspheres based on the preprecipitation of porous calcium carbonate cores with an average size of 5 μm and their use for encapsulation of living microorganisms. The microspheres filled with individual living E. coli cells were prepared by layer-by-layer (LbL) deposition of different polyelectrolytes and proteins onto the porous calcium carbonate cores leading to the formation of matrix-like complexes of the compounds followed by calcium carbonate core dissolution using EDTA. Both the influence of the encapsulation process as well as of the used polyelectrolytes on the survival rate of the cells were determined by confocal laser scanning microscopy (CLSM) and microtiter plate fluorescence tests. After the encapsulation process ~40% of the cells were alive. Cultivation tests indicated that the lag phase of cells treated with polyelectrolytes increases and the encapsulated E. coli cells were able to produce green fluorescent protein inside the microcapsules.

  15. A novel putrescine importer required for type 1 pili-driven surface motility induced by extracellular putrescine in Escherichia coli K-12.

    PubMed

    Kurihara, Shin; Suzuki, Hideyuki; Oshida, Mayu; Benno, Yoshimi

    2011-03-25

    Recently, many studies have reported that polyamines play a role in bacterial cell-to-cell signaling processes. The present study describes a novel putrescine importer required for induction of type 1 pili-driven surface motility. The surface motility of the Escherichia coli ΔspeAB ΔspeC ΔpotABCD strain, which cannot produce putrescine and cannot import spermidine from the medium, was induced by extracellular putrescine. Introduction of the gene deletions for known polyamine importers (ΔpotE, ΔpotFGHI, and ΔpuuP) or a putative polyamine importer (ΔydcSTUV) into the ΔspeAB ΔspeC ΔpotABCD strain did not affect putrescine-induced surface motility. The deletion of yeeF, an annotated putative putrescine importer, in the ΔspeAB ΔspeC ΔpotABCD ΔydcSTUV strain abolished surface motility in putrescine-supplemented medium. Complementation of yeeF by a plasmid vector restored surface motility. The surface motility observed in the present study was abolished by the deletion of fimA, suggesting that the surface motility is type 1 pili-driven. A transport assay using the yeeF(+) or ΔyeeF strains revealed that YeeF is a novel putrescine importer. The K(m) of YeeF (155 μM) is 40 to 300 times higher than that of other importers reported previously. On the other hand, the V(max) of YeeF (9.3 nmol/min/mg) is comparable to that of PotABCD, PotFGHI, and PuuP. The low affinity of YeeF for putrescine may allow E. coli to sense the cell density depending on the concentration of extracellular putrescine.

  16. Transport and viability of Escherichia coli cells in clean and iron oxide coated sand following coating with silver nanoparticles.

    PubMed

    Ngwenya, Bryne T; Curry, Philip; Kapetas, Leon

    2015-08-01

    A mechanistic understanding of processes controlling the transport and viability of bacteria in porous media is critical for designing in situ bioremediation and microbiological water decontamination programs. We investigated the combined influence of coating sand with iron oxide and silver nanoparticles on the transport and viability of Escherichia coli cells under saturated conditions. Results showed that iron oxide coatings increase cell deposition which was generally reversed by silver nanoparticle coatings in the early stages of injection. These observations are consistent with short-term, particle surface charge controls on bacteria transport, where a negatively charged surface induced by silver nanoparticles reverses the positive charge due to iron oxide coatings, but columns eventually recovered irreversible cell deposition. Silver nanoparticle coatings significantly increased cell inactivation during transit through the columns. However, when viability data is normalised to volume throughput, only a small improvement in cell inactivation is observed for silver nanoparticle coated sands relative to iron oxide coating alone. This counterintuitive result underscores the importance of net surface charge in controlling cell transport and inactivation and implies that the extra cost for implementing silver nanoparticle coatings on porous beds coated with iron oxides may not be justified in designing point of use water filters in low income countries.

  17. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate.

    PubMed

    Wajima, Takeaki; Sabui, Subrata; Kano, Shigeyuki; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar; Hamabata, Takashi

    2013-11-01

    Coli surface antigen 6 (CS6) is one of the most prevalent colonization factors among enterotoxigenic Escherichia coli (ETEC) isolated in developing countries. Although it is known that CS6 is encoded by a plasmid, there are no reports on the sequence analysis of the CS6-encoding plasmid or genes exhibiting similar behavior to CS6. Here, we report the isolation of the CS6-encoding plasmid, pCss165Kan, from 4266 ΔcssB::kanamycin (Km) and its complete nucleotide sequence. This plasmid consisted of 165,311bp and 222 predicted coding sequences. Remarkably, there were many insertion sequence (IS) elements, which comprised 24.4% of the entire sequence. Virulence-associated genes such as heat-stable enterotoxin, homologues of ATP-binding cassette transporter in enteroaggregative E. coli (EAEC), and ETEC autotransporter A were also present, although the ETEC autotransporter A gene was disrupted by the integration of IS629. We found that 2 transcriptional regulators belonging to the AraC family were not involved in CS6 expression. Interestingly, pCss165 had conjugative transfer genes, as well as 3 toxin-antitoxin systems that potentially exclude other plasmid-free host bacteria. These genes might be involved in the prevalence of CS6 among ETEC isolates.

  18. [Study of the surface of Escherichia coli ribosomes and ribosomal particles by the tritium bombardment method].

    PubMed

    Iusupov, M M; Spirin, A S

    1986-11-01

    A new technique of atomic tritium bombardment has been used to study the surface topography of Escherichia coli ribosomes and ribosomal subunits. The technique provides for the labeling of proteins exposed on the surface of ribosomal particles, the extent of protein labeling being proportional to the degree of exposure. The following proteins were considerably tritiated in the 70S ribosomes: S1, S4, S7, S9 and/or S11, S12 and/or L20, S13, S18, S20, S21, L1, L5, L6, L7/L12, L10, L11, L16, L17, L24, L26 and L27. A conclusion is drawn that these proteins are exposed on the ribosome surface to an essentially greater extent than the others. Dissociation of 70S ribosomes into the ribosomal subunits by decreasing Mg2+ concentration does not lead to the exposure of additional ribosomal proteins. This implies that there are no proteins on the contacting surfaces of the subunits. However, if a mixture of subunits has been subjected to centrifugation in a low Mg2+ concentration at high concentrations of a monovalent cation, proteins S3, S5, S7, S14, S18 and L16 are more exposed on the surface of the isolated 30S and 50S subunits than in the subunit mixture or in the 70S ribosomes. The exposure of additional proteins is explained by distortion of the native quaternary structure of ribosomal subunits as a result of the separation procedure. Reassociation of isolated subunits at high Mg2+ concentration results in shielding of proteins S3, S5, S7 and S18 and can be explained by reconstitution of the intact 30S subunit structure.

  19. Repair of radiation-induced damage to the cell division mechanism of Escherichia coli.

    PubMed

    Adler, H I; Fisher, W D; Hardigree, A A; Stapleton, G E

    1966-02-01

    Adler, Howard I. (Oak Ridge National Laboratory, Oak Ridge, Tenn.), William D. Fisher, Alice A. Hardigree, and George E. Stapleton. Repair of radiation-induced damage to the cell division mechanism of Escherichia coli. J. Bacteriol. 91:737-742. 1966.-Microscopic observations of irradiated populations of filamentous Escherichia coli cells indicated that filaments can be induced to divide by a substance donated by neighboring cells. We have made this observation the basis for a quantitative technique in which filaments are incubated in the presence of nongrowing donor cells. The presence of "donor" organisms promotes division and subsequent colony formation in filaments. "Donor" bacteria do not affect nonfilamentous cells. An extract of "donor" cells retains the division-promoting activity. The extract has been partially fractionated, and consists of a heat-stable and a heat-labile component. The heat-stable component is inactive in promoting cell division, but enhances the activity of the heat-labile component. The division-promoting system is discussed as a radiation repair mechanism and as a normal component of the cell division system in E. coli.

  20. Problem-Solving Test: RNA and Protein Synthesis in Bacteriophage-Infected "E. coli" Cells

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    The classic experiment presented in this problem-solving test was designed to identify the template molecules of translation by analyzing the synthesis of phage proteins in "Escherichia coli" cells infected with bacteriophage T4. The work described in this test led to one of the most seminal discoveries of early molecular biology: it dealt a…

  1. Production of alpha-terpineol from Escherichia coli cells expressing thermostable limonene hydratase.

    PubMed

    Savithiry, N; Cheong, T K; Oriel, P

    1997-01-01

    The genes encoding a thermostable limonene hydratase have been located on a cloned fragment in Escherichia coli conferring growth on limonene and production of the monoterpenes perillyl alcohol and alpha-terpineol. Whole cell bioconversion studies at elevated temperature employing both an aqueous phase and neat limonene phase demonstrated significant production of alpha-terpineol with additional production of carvone.

  2. Development of resistance with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells.

    PubMed Central

    Runnels, P L; Moon, H W; Schneider, R A

    1980-01-01

    When isolated intestinal epithelial cells from neonatal and older pigs, calves, and mice were tested for adhesion by K99+ enterotoxigenic Escherichia coli, cells from older animals were resistant to adhesion. PMID:6103878

  3. Combining Genes from Multiple Phages for Improved Cell Lysis and DNA Transfer from Escherichia coli to Bacillus subtilis

    PubMed Central

    Juhas, Mario; Wong, Christine; Ajioka, James W.

    2016-01-01

    The ability to efficiently and reliably transfer genetic circuits between the key synthetic biology chassis, such as Escherichia coli and Bacillus subtilis, constitutes one of the major hurdles of the rational genome engineering. Using lambda Red recombineering we integrated the thermosensitive lambda repressor and the lysis genes of several bacteriophages into the E. coli chromosome. The lysis of the engineered autolytic cells is inducible by a simple temperature shift. We improved the lysis efficiency by introducing different combinations of lysis genes from bacteriophages lambda, ΦX174 and MS2 under the control of the thermosensitive lambda repressor into the E. coli chromosome. We tested the engineered autolytic cells by transferring plasmid and bacterial artificial chromosome (BAC)-borne genetic circuits from E. coli to B. subtilis. Our engineered system combines benefits of the two main synthetic biology chassis, E. coli and B. subtilis, and allows reliable and efficient transfer of DNA edited in E. coli into B. subtilis. PMID:27798678

  4. Immunogenicity of amino acids 1-150 of Streptococcus GapC displayed on the surface of Escherichia coli.

    PubMed

    Song, Baifen; Yang, Xijing; Sun, Hunan; Yu, Liquan; Ma, Jinzhu; Wu, Zhijun; Cui, Yudong

    2017-04-01

    Streptococcus is one of the main pathogens that cause bovine mastitis. They includes into S.agalactiae, S.dysgalactiae, and S.uberis. The GapC protein is a virulence factor that is expressed on the surface of Streptococcus species. GapC is highly antigenic and immunization with GapC confers cross-protection against all three species. Our previous data showed that amino acids 1-150 of GapC (GapC1-150) of S. dysgalactiae conferred similar immunoprotection compared to full-length GapC. Thus, the present study aimed to construct a recombinant Escherichia coli XL1-Blue strain that displayed GapC1-150 on its surface, and to investigate the immunogenicity of the surface-localized GapC1-150. To do so, the ompA gene of the E. coli XL1-Blue strain was replaced with the lpp'-ompA-gapC11-150 or lpp'-ompA genes by λ Red recombination, the former of which fused GapC1-150 to an Lpp lipoprotein signal peptide and amino acids 1-159 of OmpA; the recombinant strains were named XL1-Blue/LOG76 and XL1-Blue/LO11, respectively. GapC1-150 was confirmed to localize to the surface of the XL1-Blue/LOG76 strain by an indirect enzyme-linked immunosorbent assay (ELISA), a fluorescence-activated cell sorter analysis, and laser-scanning confocal microscopy. Then, ICR mice were immunized intramuscularly with the XL1-Blue/LOG76 or XL1-Blue/LO11 strains, or recombinant GapC1-150. The sera of the immunized mice were collected and the anti-GapC1-150 antibody levels were detected by ELISA. Lymphocytes secreting interleukin (IL)-4 and interferon-γ were detected by an enzyme-linked ImmunoSpot assay, as was the level of IL-17A level in the supernatant of cultured splenic lymphocytes. The mice immunized with the XL1-Blue/LOG76 strain or GapC1-150 exhibited better cellular and humoral immunity. Lastly, the immunized mice were challenged with S. uberis, S. dysgalactiae, and S. agalactiae strains, and mice that were immunized with the XL1-Blue/LOG76 strain were better protected than those that were

  5. Biofilm formation on biotic and abiotic surfaces in the presence of antimicrobials by Escherichia coli Isolates from cases of bovine mastitis.

    PubMed

    Silva, Vitor O; Soares, Larissa O; Silva Júnior, Abelardo; Mantovani, Hilário C; Chang, Yung-Fu; Moreira, Maria Aparecida S

    2014-10-01

    Escherichia coli is a highly adaptive microorganism, and its ability to form biofilms under certain conditions can be critical for antimicrobial resistance. The adhesion of four E. coli isolates from bovine mastitis to bovine mammary alveolar (MAC-T) cells, biofilm production on a polystyrene surface, and the expression profiles of the genes fliC, csgA, fimA, and luxS in the presence of enrofloxacin, gentamicin, co-trimoxazole, and ampicillin at half of the MIC were investigated. Increased adhesion of E. coli isolates in the presence of antimicrobials was not observed; however, increased internalization of some isolates was observed by confocal microscopy. All of the antimicrobials induced the formation of biofilms by at least one isolate, whereas enrofloxacin and co-trimoxazole decreased biofilm formation by at least one isolate. Quantitative PCR analysis revealed that all four genes were differentially expressed when bacteria were exposed to subinhibitory concentrations of antimicrobials, with expression altered on the order of 1.5- to 22-fold. However, it was not possible to associate gene expression with induction or reduction of biofilm formation in the presence of the antimicrobials. Taken together, the results demonstrate that antimicrobials could induce biofilm formation by some isolates, in addition to inducing MAC-T cell invasion, a situation that might occur in vivo, potentially resulting in a bacterial reservoir in the udder, which might explain some cases of persistent mastitis in herds.

  6. Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein.

    PubMed

    Singh, Shailendra; Mulchandani, Ashok; Chen, Wilfred

    2008-05-01

    An arsenic-chelating metallothionein (fMT) from the arsenic-tolerant marine alga Fucus vesiculosus was expressed in Escherichia coli, resulting in 30- and 26-fold-higher As(III) and As(V) binding, respectively. Coexpression of the As(III)-specific transporter GlpF with fMT further improved arsenic accumulation and offered high selectivity toward As. Resting E. coli cells coexpressing fMT and GlpF completely removed trace amounts (35 ppb) of As(III) within 20 min, providing a promising technology for compliance with the As limit of 10 ppb newly recommended by the U.S. EPA.

  7. CONTRIBUTION OF NUTRIENTS AND E. COLI TO SURFACE WATER CONDITION IN THE OZARKS I. USING PARTIAL LEAST SQUARES PREDICTIONS WHEN STANDARD REGRESSION ASSUMPTIONS ARE VIOLATED

    EPA Science Inventory

    We present here the application of PLS regression to predicting surface water total phosphorous, total ammonia and Escherichia coli from landscape metrics. The amount of variability in surface water constituents explained by each model reflects the composition of the contributi...

  8. A new study of cell disruption to release recombinant thermostable enzyme from Escherichia coli by thermolysis.

    PubMed

    Ren, Xiaodong; Yu, Dawei; Yu, Lei; Gao, Gui; Han, Siping; Feng, Yan

    2007-05-10

    Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical, chemical or enzymatic disruption technology. In this study, a novel thermolysis method was used to disrupt E. coli cells to release a recombinant thermostable esterase. We found that heat treatment of E. coli was highly effective to destroy the integrity of bacterial cell walls and release the recombinant hyperthermophilic esterase at temperatures above 60 degrees C. The effects of temperature, pH and cell concentration on the efficiency of cell disruption were examined. The most effective temperature for cell disruption was at 80 degrees C. The pH and cell concentration had only minor effect on the release of the hyperthermophilic esterase. In addition, we found that the hyperthermophilic esterase could be purified at the early stage of the thermolysis, which is a major advantage of the thermolysis method. Finally, a comparison between thermolysis and traditional methods for the disruption of cells and the release of the thermostable enzyme was made.

  9. A moonlighting enzyme links Escherichia coli cell size with central metabolism.

    PubMed

    Hill, Norbert S; Buske, Paul J; Shi, Yue; Levin, Petra Anne

    2013-01-01

    Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism.

  10. Oxidative stress in E. coli cells upon exposure to heat treatments.

    PubMed

    Marcén, María; Ruiz, Virginia; Serrano, Mª Jesús; Condón, Santiago; Mañas, Pilar

    2017-01-16

    Heat treatments are widely used by the food industry to inactivate microorganisms, however their mode of action on microbial cells is not fully known. In the last years, it has been proposed that the generation of oxidative species could be an important factor contributing to cell death by heat and by other stresses; however, investigations in this field are scarce. The present work studies the generation of reactive oxygen species (ROS) upon heat treatment in E. coli, through the use of cell staining with specific fluorochromes. Results obtained demonstrate that ROS are detected in E. coli cells when they are subjected to heat exposure, and the amount of fluorescence increases with temperature and time, as does the cellular inactivation. The addition of glutathione or tiron, a potent antioxidant and a superoxide quencher, respectively, to the heating medium protected E. coli against heat inactivation and concurrently reduced the detection of ROS, especially in the case of glutathione. Finally, recovery of heated cells under conditions that relief oxidative stress produced an increase in cell survival. Data presented in this work support the view that ROS generation and subsequent control in bacterial cells could be an essential factor determining inactivation and survival upon exposure to heat, and it could be a potential target to increase the efficacy of current treatments.

  11. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-05-01

    As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10-20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  12. Stress response of Escherichia coli induced by surface streamer discharge in humid air

    NASA Astrophysics Data System (ADS)

    Doležalová, Eva; Prukner, Václav; Lukeš, Petr; Šimek, Milan

    2016-02-01

    Inactivation of Escherichia coli by means of surface streamer discharge has been investigated to obtain new insights into the key mechanisms involved, with a particular emphasis placed on the microbial response to plasma-induced stress. The surface streamer discharge was produced in coplanar dielectric barrier discharge electrode geometry, and was driven by an amplitude-modulated ac high voltage in humid synthetic air at atmospheric pressure. The response to plasma-induced stress was evaluated by using conventional cultivation, sublethal injury and resazurin assay and the LIVE/DEAD® BacLight™ Bacterial Viability kit. Compared to conventional cultivation, the LIVE/DEAD® test labels bacteria with damaged membranes, while resazurin assay tracks their metabolic activity. Our results clearly demonstrate that the treated bacteria partly lost their ability to grow properly, i.e. they became injured and culturable, or even viable but nonculturable (VBNC). The ability to develop colonies could have been lost due to damage of the bacterial membrane. Damage of the membranes was mainly caused by the lipid peroxidation, evidencing the key role of oxygen reactive species, in particular ozone. We conclude that the conventional cultivation method overestimates the decontamination efficiency of various plasma sources, and must therefore be complemented by alternative techniques capable of resolving viable but nonculturable bacteria.

  13. Novel production of terpenoids in Escherichia coli and activities against breast cancer cell lines.

    PubMed

    Gupta, Shweta; Marko, Melissa G; Miller, Vandana A; Schaefer, Frederick T; Anthony, Jennifer R; Porter, John R

    2015-03-01

    Metabolic engineering of heterologous pathways has allowed the production of therapeutically important compounds in microbial systems. Here, we report the engineering of a monoterpenoid biosynthetic pathway into Escherichia coli. Five genes encoding sequential enzymes for perillyl alcohol biosynthesis from the precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) were engineered into E. coli. Expression of these genes allowed the production of the intermediate limonene, but the downstream monoterpenoid, perillyl alcohol, was not detected. A new compound was detected but could not be identified based on the data obtained. Only 1.6 μg/ml of the compound was being produced from the engineered E. coli strain, but, when these cultures were fed limonene as a substrate, the production was nearly 250 μg/ml. This unknown compound inhibited the cell proliferation of MCF-7 and MDA-MB-231 breast cancer cells in 48-h treatment experiments. This compound may have potential benefits in breast cancer treatment. This is the first report showing the production of a monoterpenoid in engineered E. coli and its antiproliferative effects in breast cancer cells.

  14. Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells.

    PubMed

    Sturm-Richter, Katrin; Golitsch, Frederik; Sturm, Gunnar; Kipf, Elena; Dittrich, André; Beblawy, Sebastian; Kerzenmacher, Sven; Gescher, Johannes

    2015-06-01

    Microbial electrochemical cells are an emerging technology for achieving unbalanced fermentations. However, organisms that can serve as potential biocatalysts for this application are limited by their narrow substrate spectrum. This study describes the reprogramming of Escherichia coli for the efficient use of anodes as electron acceptors. Electron transfer into the periplasm was accelerated by 183% via heterologous expression of the c-type cytochromes CymA, MtrA and STC from Shewanella oneidensis. STC was identified as a target for heterologous expression via a two-stage screening approach. First, mass spectroscopic analysis revealed natively expressed cytochromes in S. oneidensis. Thereafter, the corresponding genes were cloned and expressed in E. coli to quantify periplasmic electron transfer activity using methylene blue. This redox dye was further used to expand electron transfer to carbon electrode surfaces. The results demonstrate that E. coli can be reprogrammed from glycerol fermentation to respiration upon production of the new electron transport chain.

  15. Effect of Escherichia coli infection of the bovine uterus from the whole animal to the cell.

    PubMed

    Williams, E J; Herath, S; England, G C W; Dobson, H; Bryant, C E; Sheldon, I M

    2008-08-01

    Following parturition, contamination of the uterine lumen by bacteria is ubiquitous, and uterine health is impaired in cattle because infection persists in 10% to 15% of animals as endometritis. Endometritis causes infertility for the duration of infection, and subfertility persists even after apparent successful resolution of the disease. Escherichia coli is the pathogenic bacterium most frequently isolated from the post partum uterus, and is associated with increased concentrations of peripheral plasma acute phase proteins and fetid vaginal mucus. The presence of E. coli is also associated with slower growth of the first post partum dominant follicle and perturbed oestradiol secretion. Furthermore, in animals that ovulate the first dominant follicle, the corpus luteum is smaller and secretes less progesterone. The endotoxin lipopolysaccharide (LPS), which is released from E.coli, can pass from the uterine lumen to the peripheral circulation and LPS concentrations are increased in cows with uterine infection. Infusion of E. coli LPS into the uterine lumen suppresses the pre-ovulatory luteinising hormone surge and disrupts ovulation in heifers. In vitro, endometrial explants produce prostaglandins in response to LPS. Addition of LPS or E. coli to stromal or epithelial cells increases cyclooxygenase-2 mRNA expression, and stimulates the production of prostaglandin E2 and prostaglandin F2α . Furthermore, uterine and ovarian cells express mRNA of the molecules required for recognition of LPS, Toll-like receptor-4 and CD14. In summary, E. coli is a common cause of infertility involving the perturbation of the hypothalamus, pituitary and ovary in dairy cows.

  16. Hairpin DNA probe based surface plasmon resonance biosensor used for the activity assay of E. coli DNA ligase.

    PubMed

    Luan, Qingfen; Xue, Ying; Yao, Xin; Lu, Wu

    2010-02-01

    Using hairpin DNA probe self-structure change during DNA ligation process, a sensitive, label-free and simple method of E. coli DNA ligase assay via a home-built high-resolution surface plasmon resonance (SPR) instrument was developed. The DNA ligation process was monitored in real-time and the effects of single-base mutation on the DNA ligation process were investigated. Then an assay of E. coli DNA ligase was completed with a lower detection limit (0.6 nM), wider concentration range and better reproducibility. Moreover, the influence of Quinacrine on the activity of E. coli DNA ligase was also studied, which demonstrated that our method was useful for drug screening.

  17. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms

    NASA Technical Reports Server (NTRS)

    Stone, G.; Wood, P.; Dixon, L.; Keyhan, M.; Matin, A.; Demain, A. L. (Principal Investigator)

    2002-01-01

    We have developed a method for visualizing Escherichia coli cells that are exposed to tetracycline in a biofilm, based on a previous report that liposomes containing the E. coli TetR(B) protein fluoresce when exposed to this antibiotic. By our method, cells devoid of TetR(B) also exhibited tetracycline-dependent fluorescence. At 50 microg of tetracycline ml(-1), planktonic cells of a uropathogenic E. coli (UPEC) strain developed maximal fluorescence after 7.5 to 10 min of exposure. A similar behavior was exhibited by cells in a 24- or 48-h UPEC biofilm, as examined by confocal laser microscopy, regardless of whether they lined empty spaces or occupied densely packed regions. Further, a comparison of phase-contrast and fluorescent images of corresponding biofilm zones showed that all the cells fluoresced. Thus, all the biofilm cells were exposed to tetracycline and there were no pockets within the biofilm where the antibiotic failed to reach. It also appeared unlikely that niches of reduced exposure to the antibiotic existed within the biofilms.

  18. Quantitative risk analysis for potentially resistant E. coli in surface waters caused by antibiotic use in agricultural systems.

    PubMed

    Limayem, Alya; Martin, Elizabeth M

    2014-01-01

    Antibiotics are frequently used in agricultural systems to promote livestock health and to control bacterial contaminants. Given the upsurge of the resistant fecal indicator bacteria (FIB) in the surface waters, a novel statistical method namely, microbial risk assessment (MRA) was performed, to evaluate the probability of infection by resistant FIB on populations exposed to recreational waters. Diarrheagenic Escherichia coli, except E. coli O157:H7, were selected for their prevalence in aquatic ecosystem. A comparative study between a typical E. coli pathway and a case scenario aggravated by antibiotic use has been performed via Crystal Ball® software in an effort to analyze a set of available inputs provided by the US institutions including E. coli concentrations in US Great Lakes through using random sampling and probability distributions. Results from forecasting a possible worst-case scenario dose-response, accounted for an approximate 50% chance for 20% of the exposed human populations to be infected by recreational water in the U.S. However, in a typical scenario, there is a 50% chance of infection for only 1% of the exposed human populations. The uncertain variable, E. coli concentration accounted for approximately 92.1% in a typical scenario as the major contributing factor of the dose-response model. Resistant FIB in recreational waters that are exacerbated by a low dose of antibiotic pollutants would increase the adverse health effects in exposed human populations by 10 fold.

  19. Electrooptical monitoring of cell polarizability and cell size in aerobic Escherichia coli batch cultivations.

    PubMed

    Junne, Stefan; Nicolas Cruz-Bournazou, M; Angersbach, Alexander; Götz, Peter

    2010-09-01

    The time-dependent development of cell polarizability and length in Escherichia coli batch fermentations were observed at-line with electrooptical measurements. While using a measurement system with fully automated sample preparation, the development of these properties can be observed with a comparable high frequency (six measurements per hour). The polarizability as well as the mean cell length both increase soon after inoculation and then decline from the growth phase on until the stationary phase is reached. Based on the dynamic behavior of polarizability, the growth phase can be divided into four distinct stages. Changes in the cultivation temperature or the pre-cultivation conditions lead to alterations in the development of the polarizability and mean cell length. Based on the frequency disperse of polarizability measured at four different frequencies from 210 to 2,100 kHz, a prediction model is established that is based on the relation of the polarizability to the metabolic activity. Applying multi-linear partial least squares methods (N-PLS), the model is able to predict the specific acetate synthesis and uptake with a root mean square error of prediction of 0.19 (6% of the mean). The method represents a tool for characterization of different stages with respect to microbial metabolic activity and the energy balance during batch cultivations.

  20. Proteomic analysis of the cell envelope fraction of Escherichia coli.

    PubMed

    Fountoulakis, M; Gasser, R

    2003-01-01

    We applied proteomics technologies to analyze a membrane preparation of Escherichia coli, wild type strain and of transformants expressing human cytochrome P450s. The proteins were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. The membrane proteins were solubilized with both mild detergents such as CHAPS and strong detergents, such as sodium and lithium dodecyl sulfate, sodium cholate and sodium deoxycholate. In the E. colimembrane fraction, 394 different gene products were identified. Approximately 28% of them were predicted to be integral membrane proteins, of which 100 proteins have been predicted to carry one transmembrane region, ten proteins to carry two, and two proteins to include three transmembrane domains. The remaining are probably membrane-associated and cytosolic proteins. Cytochrome P450s did not enter the immobilized pH gradient strips but were efficiently analyzed in a two-dimensional, two-detergent system. Use of strong solubilizing agents resulted in the detection of about 20 membrane proteins, which were not detected following extraction with mild detergents and chaotropes. The present database is one of the largest for membrane proteins.

  1. Standing surface acoustic wave based cell coculture.

    PubMed

    Li, Sixing; Guo, Feng; Chen, Yuchao; Ding, Xiaoyun; Li, Peng; Wang, Lin; Cameron, Craig E; Huang, Tony Jun

    2014-10-07

    Precise reconstruction of heterotypic cell-cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell-cell interactions.

  2. A membrane reservoir at the cell surface

    PubMed Central

    Figard, Lauren; Sokac, Anna Marie

    2014-01-01

    Cell surface expansion is a necessary part of cell shape change. One long-standing hypothesis proposes that membrane for this expansion comes from the flattening out of cell surface projections such as microvilli and membrane folds. Correlative EM data of cells undergoing phagocytosis, cytokinesis, and morphogenesis has hinted at the existence of such an unfolding mechanism for decades; but unfolding has only recently been confirmed using live-cell imaging and biophysical approaches. Considering the wide range of cells in which plasma membrane unfolding has now been reported, it likely represents a fundamental mechanism of cell shape change. PMID:24844289

  3. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT.

    PubMed

    Han, Mee-Jung; Lee, Seung Hwan

    2015-01-01

    In a bacterial surface display system, the display of a successful recombinant protein is highly dependent on the choice of anchoring motif. In this study, we developed an efficient Escherichia coli display system using novel anchoring motifs derived from the protein YiaT. To determine the best surface-anchoring motif, full-length YiaT and two of its C-terminal truncated forms, cut at the R181 and R232 sites, were evaluated. Two industrial enzymes, a lipase from Pseudomonas fluorescens SIK W1 and an α-amylase from Bacillus subtilis, were used as the target proteins for display. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Western blot, immunofluorescence microscopy and whole-cell enzyme activity measurements confirmed the expression of the fusion proteins on the E. coli surface. Using YiaTR181 or YiaTR232 as the anchoring motif, the fusion proteins showed very high enzyme activities and did not exert any adverse effects on either cell growth or the outer membrane integrity. Additionally, these fusion proteins were suitable for displaying proteins of large molecular size in an active form. Compared with the previous anchoring motifs FadL and OprF, YiaTR181 and YiaTR232 had approximately 10-fold and 20-fold higher enzyme activities, respectively. These results suggest that YiaT can be used as an E. coli anchoring motif to efficiently display various enzymes; hence, this system could be employed in a variety of biotechnological and industrial applications.

  4. Ozone treatment for reduction of Escherichia coli 0157:H7 and Salmonella serotype typhimurium on beef carcass surfaces.

    PubMed

    Castillo, A; McKenzie, K S; Lucia, L M; Acuffi, G R

    2003-05-01

    The effectiveness of an aqueous ozone treatment in reducing Escherichia coli O157:H7 and Salmonella serotype Typhimurium on hot carcass surfaces was determined with the use of a model carcass spray cabinet. Carcass surface regions were removed from carcasses and inoculated with feces containing 10(6) to 10(7) CFU each of E. coli O157:H7 and Salmonella Typhimurium per g and were then exposed to a water wash or to a water wash followed by a sanitizing ozone treatment. Water washes were applied at 28 degrees C beginning at a pressure of 10 lb/in2 and gradually increasing to 400 lb/in2. Ozone treatment was carried out by spraying surfaces with an aqueous ozone solution (80 lb/in2 at 28 degrees C) containing 95 mg of ozone per liter. Pathogen reductions achieved with ozone treatment were not significantly different from those achieved with a water wash alone. In addition, ozone treatment did not reduce E. coli O157:H7 or Salmonella Typhimurium contamination that was spread over the carcass surface as a result of the water wash. Under the conditions of this study, the aqueous ozone treatment applied resulted in no significant improvement over a water wash in reducing pathogens on beef carcass surfaces.

  5. Long-term growth data of Escherichia coli at a single-cell level

    PubMed Central

    Tanouchi, Yu; Pai, Anand; Park, Heungwon; Huang, Shuqiang; Buchler, Nicolas E.; You, Lingchong

    2017-01-01

    Long-term, single-cell measurement of bacterial growth is extremely valuable information, particularly in the study of homeostatic aspects such as cell-size and growth rate control. Such measurement has recently become possible due to the development of microfluidic technology. Here we present data from single-cell measurements of Escherichia coli growth over 70 generations obtained for three different growth conditions. The data were recorded every minute, and contain time course data of cell length and fluorescent intensity of constitutively expressed yellow fluorescent protein. PMID:28350394

  6. Physiology of Escherichia coli K-12 During Conjugation: Altered Recipient Cell Functions Associated with Lethal Zygosis

    PubMed Central

    Skurray, Ronald A.; Reeves, Peter

    1973-01-01

    The number of viable F− cells decreases when Escherichia coli recipient cells are mixed with an excess of Hfr cells. Evidence is presented showing that lethal zygosis was accompanied by changes in the physiology of the recipient cells, including (i) inhibition of deoxyribonucleic acid synthesis, (ii) inhibition of β-galactosidase induction, (iii) altered transport and accumulation of galactosides, and (iv) leakage of β-galactosidase into the supernatant fluid. The results are discussed in terms of possible conjugation-associated changes that, at high Hfr to F− ratios, lead to lethal zygosis. PMID:4572705

  7. Biofouling prevention using silver nanoparticle impregnated polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module.

    PubMed

    Biswas, Pritam; Bandyopadhyaya, Rajdip

    2017-04-01

    Biofouling significantly decreases membrane performance. So silver nanoparticle (Ag-NP) was impregnated selectively on a sulfonated polyethersulfone (SPES) membrane and its efficacy was tested in a continuous, cross-flow membrane module. The main challenges are: (i) to prevent biofouling on the membrane surface, (ii) achieve zero bacterial cell (E. coli) count in the permeate water, (iii) maintain Ag concentration in the permeate stream within the permissible limit of drinking water and (iv) maintain a high tensile strength of the membrane to prevent mechanical failure. Addressing these factors would ensure a long and productive service-life of the membrane. To this end, 10(4)CFU/ml of E. coli cell-suspension was passed through the Ag-SPES membrane of 150μm total thickness, which has a narrow (1.74μm thickness), upper surface of Ag-NPs. We achieved zero E. coli cell-count and a minimum (10μg/L) Ag concentration in the permeate stream; simultaneously increasing the tensile strength from 2.78MPa to 3.92MPa due to Ag-NP impregnation. Thus, for a continuous inlet flow of E. coli contaminated water, the membrane module could deliver an almost constant permeate flow rate of 3.45L per hour, due to complete E. coli cell-killing. Simultaneously, Ag concentration in permeate stream is well-below the WHO's recommended limit of 100μg/L, for potable quality water. Therefore, the Ag-SPES membrane can be used as an anti-biofouling membrane in a continuous operational mode.

  8. Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

    PubMed Central

    Dua, Pooja; Ren, Shuo; Lee, Sang Wook; Kim, Joon-Ki; Shin, Hye-su; Jeong, OK-Chan; Kim, Soyoun; Lee, Dong-Ki

    2016-01-01

    Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2′F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of 1.3 × 106 CFU/ml. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate (5 × 104 CFU/ml). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of 2 × 104 CFU/mL of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application. PMID:27871171

  9. Role of bolA and rpoS genes in biofilm formation and adherence pattern by Escherichia coli K-12 MG1655 on polypropylene, stainless steel, and silicone surfaces.

    PubMed

    Adnan, Mohd; Sousa, Ana Margarida; Machado, Idalina; Pereira, Maria Olivia; Khan, Saif; Morton, Glyn; Hadi, Sibte

    2016-11-15

    Escherichia coli has developed sophisticated means to sense, respond, and adapt in stressed environment. It has served as a model organism for studies in molecular genetics and physiology since the 1960s. Stress response genes are induced whenever a cell needs to adapt and survive under unfavorable growth conditions. Two of the possible important genes are rpoS and bolA. The rpoS gene has been known as the alternative sigma (σ) factor, which controls the expression of a large number of genes, which are involved in responses to various stress factors as well as transition to stationary phase from exponential form of growth. Morphogene bolA response to stressed environment leads to round morphology of E. coli cells, but little is known about its involvement in biofilms and its development or maintenance. This study has been undertaken to address the adherence pattern and formation of biofilms by E. coli on stainless steel, polypropylene, and silicone surfaces after 24 h of growth at 37 °C. Scanning electron microscopy was used for direct examination of the cell attachment and biofilm formation on various surfaces and it was found that, in the presence of bolA, E. coli cells were able to attach to the stainless steel and silicone very well. By contrast, polypropylene surface was not found to be attractive for E. coli cells. This indicates that bolA responded and can play a major role in the presence and absence of rpoS in cell attachment.

  10. Cranberry Xyloglucan Structure and Inhibition of Escherichia coli Adhesion to Epithelial Cells.

    PubMed

    Hotchkiss, Arland T; Nuñez, Alberto; Strahan, Gary D; Chau, Hoa K; White, André K; Marais, Jannie P J; Hom, Kellie; Vakkalanka, Malathi S; Di, Rong; Yam, Kit L; Khoo, Christina

    2015-06-17

    Cranberry juice has been recognized as a treatment for urinary tract infections on the basis of scientific reports of proanthocyanidin anti-adhesion activity against Escherichia coli as well as from folklore. Xyloglucan oligosaccharides were detected in cranberry juice and the residue remaining following commercial juice extraction that included pectinase maceration of the pulp. A novel xyloglucan was detected through tandem mass spectrometry analysis of an ion at m/z 1055 that was determined to be a branched, three hexose, four pentose oligosaccharide consistent with an arabino-xyloglucan structure. Two-dimensional nuclear magnetic resonance spectroscopy analysis provided through-bond correlations for the α-L-Araf (1→2) α-D-Xylp (1→6) β-D-Glcp sequence, proving the S-type cranberry xyloglucan structure. Cranberry xyloglucan-rich fractions inhibited the adhesion of E. coli CFT073 and UTI89 strains to T24 human bladder epithelial cells and that of E. coli O157:H7 to HT29 human colonic epithelial cells. SSGG xyloglucan oligosaccharides represent a new cranberry bioactive component with E. coli anti-adhesion activity and high affinity for type 1 fimbriae.

  11. Two distinct states of Escherichia coli cells that overexpress recombinant heterogeneous β-galactosidase.

    PubMed

    Zhao, Yun; He, Wei; Liu, Wei-Feng; Liu, Chun-Chun; Feng, Li-Kui; Sun, Lei; Yan, Yong-Bin; Hang, Hai-Ying

    2012-03-16

    The mechanism by which inclusion bodies form is still not well understood, partly because the dynamic processes of the inclusion body formation and its solubilization have hardly been investigated at an individual cell level, and so the important detailed information has not been acquired for the mechanism. In this study, we investigated the in vivo folding and aggregation of Aspergillus phoenicis β-D-galactosidase fused to a red fluorescence protein in individual Escherichia coli cells. The folding status and expression level of the recombinant β-D-galactosidase at an individual cell level was analyzed by flow cytometry in combination with transmission electron microscopy and Western blotting. We found that individual E. coli cells fell into two distinct states, one containing only inclusion bodies accompanied with low galactosidase activity and the other containing the recombinant soluble galactosidase accompanied with high galactosidase activity. The majority of the E. coli cells in the later state possessed no inclusion bodies. The two states of the cells were shifted to a cell state with high enzyme activity by culturing the cells in isopropyl 1-thio-β-D-galactopyranoside-free medium after an initial protein expression induction in isopropyl 1-thio-β-D-galactopyranoside-containing medium. This shift of the cell population status took place without the level change of the β-D-galactosidase protein in individual cells, indicating that the factor(s) besides the crowdedness of the recombinant protein play a major role in the cell state transition. These results shed new light on the mechanism of inclusion body formation and will facilitate the development of new strategies in improving recombinant protein quality.

  12. Impact of enumeration method on diversity of Escherichia coli genotypes isolated from surface water.

    PubMed

    Martin, E C; Gentry, T J

    2016-11-01

    There are numerous regulatory-approved Escherichia coli enumeration methods, but it is not known whether differences in media composition and incubation conditions impact the diversity of E. coli populations detected by these methods. A study was conducted to determine if three standard water quality assessments, Colilert(®) , USEPA Method 1603, (modified mTEC) and USEPA Method 1604 (MI), detect different populations of E. coli. Samples were collected from six watersheds and analysed using the three enumeration approaches followed by E. coli isolation and genotyping. Results indicated that the three methods generally produced similar enumeration data across the sites, although there were some differences on a site-by-site basis. The Colilert(®) method consistently generated the least diverse collection of E. coli genotypes as compared to modified mTEC and MI, with those two methods being roughly equal to each other. Although the three media assessed in this study were designed to enumerate E. coli, the differences in the media composition, incubation temperature, and growth platform appear to have a strong selective influence on the populations of E. coli isolated. This study suggests that standardized methods of enumeration and isolation may be warranted if researchers intend to obtain individual E. coli isolates for further characterization.

  13. Efficient Surface Display of Diisopropylfluorophosphatase (DFPase) in E. coli for Biodegradation of Toxic Organophosphorus Compounds (DFP and Cp).

    PubMed

    Latifi, Ali Mohammad; Karami, Ali; Khodi, Samaneh

    2015-10-01

    Compounds including organophosphorus pesticides (OPs) and chemical nerve agents are toxic compounds synthesized recently which disrupt the mechanisms of neural transmission. Therefore, a critical requirement is the development of a bio-refining technology to facilitate the biodegradation of organophosphorus pollutants. The diisopropylfluorophosphatase (DFPase, EC 3.1.8.2) from the ganglion and brain of Loligo vulgaris acts on P-F bonds present in some OPs. Intracellular production of OPs-degrading enzymes or the use of native bacteria and fungi leads to a low degradation rate of OPs due to a mass transfer issue which reduces the overall catalytic efficiency. To overcome this challenge, we expressed DFPase on the surface of E. coli for the first time by employing the N-terminal domain of the ice nucleation protein (InaV-N) as an anchoring motif. Tracking the recombinant protein confirmed that DFPase is successfully located on the outer membrane. Further studies on its activity to degrade diisopropylfluorophosphate (DFP) showed its significant ability for the biodegradation of diisopropylfluorophosphate (DFP) with a specific activity of 500 U/mg of wet cell weight. Recombinant cells could also degrade chlorpyrifos (Cp) with an activity equivalent to a maximum value of 381.44 U/ml with a specific activity of 476.75 U/mg of cell, analyzed using HPLC technique. The optimum activity of purified DFPase was found at 30 °C. A more increased activity was also obtained in the presence of glucose-mineral-salt (GMS) supplemented with tryptone and 100 mg/L Co(2+) ion. These results highlight the high potential of the InaV-N anchoring domain to produce an engineered bacterium that can be used in the bioremediation of pesticide-contaminated environments.

  14. Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coli isolates in surface water of Taihu Lake Basin, China.

    PubMed

    Zhang, Song He; Lv, Xiaoyang; Han, Bing; Gu, Xiucong; Wang, Pei Fang; Wang, Chao; He, Zhenli

    2015-08-01

    The rapid development of antibiotic-resistant bacteria (ARB) has been of concern worldwide. In this study, antibiotic resistance genes (ARGs) were investigated in antibiotic-resistant Escherichia coli isolated from surface water samples (rivers, n = 17; Taihu Lake, n = 16) and from human, chicken, swine, and Egretta garzetta sources in the Taihu Basin. E. coli showing resistance to at least five drugs occurred in 31, 67, 58, 27, and 18% of the isolates from surface water (n = 665), chicken (n = 27), swine (n = 29), human (n = 45), and E. garzetta (n = 15) sources, respectively. The mean multi-antibiotic resistance (MAR) index of surface water samples (0.44) was lower than that of chicken (0.64) and swine (0.57) sources but higher than that of human (0.30) and E. garzetta sources (0.15). Ten tetracycline, four sulfonamide, four quinolone, five β-lactamase, and two streptomycin resistance genes were detected in the corresponding antibiotic-resistant isolates. Most antibiotic-resistant E. coli harbored at least two similar functional ARGs. Int-I was detected in at least 57% of MAR E. coli isolates. The results of multiple correspondence analysis and Spearman correlation analysis suggest that antibiotic-resistant E. coli in water samples were mainly originated from swine, chicken, and/or human sources. Most of the ARGs detected in E. garzetta sources were prevalent in other sources. These data indicated that human activities may have contributed to the spread of ARB in the aquatic environment.

  15. Model development and verification for mass transport to Escherichia coli cells in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Hondzo, Miki; Al-Homoud, Amer

    2007-08-01

    Theoretical studies imply that fluid motion does not significantly increase the molecular diffusive mass flux toward and away from microscopic organisms. This study presents experimental and theoretical evidence that small-scale turbulence modulates enhanced mass transport to Escherichia coli cells in a turbulent flow. Using the technique of inner region and outer region expansions, a model for dissolved oxygen and glucose uptake by E. coli was developed. The mass transport to the E. coli was modeled by the Sherwood (Sh)-Péclet (Pe) number relationship with redefined characteristic length and velocity scales. The model Sh = (1 + Pe1/2 + Pe) agreed with the laboratory measurements well. The Péclet number that quantifies the role and function of small-scale turbulence on E. coli metabolism is defined by Pe = (?) where Ezz is the root mean square of fluid extension in the direction of local vorticity, ηK is the Kolmogorov length scale, Lc is the length scale of E. coli, and D is the molecular diffusion coefficient. An alternative formulation for the redefined Pe is given by Pe = (?) where ? = 0.5(ɛν)1/4 is the Kolmogorov velocity averaged over the Kolmogorov length scale, ɛ is dissipation of turbulent kinetic energy, and ν is the kinematic viscosity of fluid. The dissipation of turbulent kinetic energy was estimated directly from measured velocity gradients and was within the reported range in engineered and natural aquatic ecosytems. The specific growth of E. coli was up to 5 times larger in a turbulent flow in comparison to the still water controls. Dissolved oxygen and glucose uptake were enhanced with increased ɛ in the turbulent flow.

  16. Recombinant bromelain production in Escherichia coli: process optimization in shake flask culture by response surface methodology

    PubMed Central

    2012-01-01

    Bromelain, a cysteine protease with various therapeutic and industrial applications, was expressed in Escherichia coli, BL21-AI clone, under different cultivation conditions (post-induction temperature, L-arabinose concentration and post-induction period). The optimized conditions by response surface methodology using face centered central composite design were 0.2% (w/v) L-arabinose, 8 hr and 25°C. The analysis of variance coupled with larger value of R2 (0.989) showed that the quadratic model used for the prediction was highly significant (p < 0.05). Under the optimized conditions, the model produced bromelain activity of 9.2 U/mg while validation experiments gave bromelain activity of 9.6 ± 0.02 U/mg at 0.15% (w/v) L-arabinose, 8 hr and 27°C. This study had innovatively developed cultivation conditions for better production of recombinant bromelain in shake flask culture. PMID:22336426

  17. A Portable, Shock-Proof, Surface-Heated Droplet PCR System for Escherichia coli Detection

    PubMed Central

    Angus, Scott V.; Cho, Soohee; Harshman, Dustin K.; Song, Jae-Young; Yoon, Jeong-Yeol

    2015-01-01

    A novel polymerase chain reaction (PCR) device was developed that uses wire-guided droplet manipulation (WDM) to guide a droplet over three different heating chambers. After PCR amplification, end-point detection is achieved using a smartphone-based fluorescence microscope. The device was tested for identification of the 16S rRNA gene V3 hypervariable region from Escherichia coli genomic DNA. The lower limit of detection was 103 genome copies per sample. The device is portable with smartphone-based end-point detection and provides the assay results quickly (15 min for a 30-cycle amplification) and accurately. The system is also shock and vibration resistant, due to the multiple points of contact between the droplet and the thermocouple and the Teflon film on the heater surfaces. The thermocouple also provides realtime droplet temperature feedback to ensure it reaches the set temperature before moving to the next chamber/step in PCR. The device is equipped to use either silicone oil or coconut oil. Coconut oil provides additional portability and ease of transportation by eliminating spilling because its high melting temperature means it is solid at room temperature. PMID:26164008

  18. Quantitative phase imaging of cell division in yeast cells and E.coli using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Digital holographic microscope (DHM) is an emerging quantitative phase imaging technique with unique imaging scales and resolutions leading to multitude of applications. DHM is promising as a novel investigational and applied tool for cell imaging, studying the morphology and real time dynamics of cells and a number of related applications. The use of numerical propagation and computational digital optics offer unique flexibility to tune the depth of focus, and compensate for image aberrations. In this work, we report imaging the dynamics of cell division in E.coli and yeast cells using a DHM platform. We demonstrate 3-D and depth imaging as well as reconstruction of phase profiles of E.coli and yeast cells using the system. We record a digital hologram of E.coli and yeast cells and reconstruct the image using Fresnel propagation algorithm. We also use aberration compensation algorithms for correcting the aberrations that are introduced by the microscope objective in the object path using linear least square fitting techniques. This work demonstrates the strong potential of a DHM platform in 3-D live cell imaging, fast clinical quantifications and pathological applications.

  19. Threshold effect of growth rate on population variability of Escherichia coli cell lengths

    PubMed Central

    2017-01-01

    A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and ‘mother machine’-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division. PMID:28386413

  20. Standing Surface Acoustic Wave Based Cell Coculture

    PubMed Central

    2015-01-01

    Precise reconstruction of heterotypic cell–cell interactions in vitro requires the coculture of different cell types in a highly controlled manner. In this article, we report a standing surface acoustic wave (SSAW)-based cell coculture platform. In our approach, different types of cells are patterned sequentially in the SSAW field to form an organized cell coculture. To validate our platform, we demonstrate a coculture of epithelial cancer cells and endothelial cells. Real-time monitoring of cell migration dynamics reveals increased cancer cell mobility when cancer cells are cocultured with endothelial cells. Our SSAW-based cell coculture platform has the advantages of contactless cell manipulation, high biocompatibility, high controllability, simplicity, and minimal interference of the cellular microenvironment. The SSAW technique demonstrated here can be a valuable analytical tool for various biological studies involving heterotypic cell–cell interactions. PMID:25232648

  1. The Synchronization of Replication and Division Cycles in Individual E. coli Cells.

    PubMed

    Wallden, Mats; Fange, David; Lundius, Ebba Gregorsson; Baltekin, Özden; Elf, Johan

    2016-07-28

    Isogenic E. coli cells growing in a constant environment display significant variability in growth rates, division sizes, and generation times. The guiding principle appears to be that each cell, during one generation, adds a size increment that is uncorrelated to its birth size. Here, we investigate the mechanisms underlying this "adder" behavior by mapping the chromosome replication cycle to the division cycle of individual cells using fluorescence microscopy. We have found that initiation of chromosome replication is triggered at a fixed volume per chromosome independent of a cell's birth volume and growth rate. Each initiation event is coupled to a division event after a growth-rate-dependent time. We formalize our findings in a model showing that cell-to-cell variation in division timing and cell size is mainly driven by variations in growth rate. The model also explains why fast-growing cells display adder behavior and correctly predict deviations from the adder behavior at slow growth.

  2. Strategies for recovering of planktonic and sessile cells of Escherichia coli O157:H7 from freshwater environment.

    PubMed

    Marucci, Patricia L; Cubitto, María A

    2016-07-01

    The experiments were performed with Escherichia coli O157:H7 EDL 933 in freshwater microcosms at 12 °C. At 35, 45, and 70 days, samples were taken and filtered through 0.45 μm membrane filters. The following alternatives were tested to evaluate the recovery percentage of injured cells: (1) selective media CHROMagar(™)O157 and chromID(™)O157:H7 agar, at 37 °C for 24 h; (2) tryptic soy agar supplemented with yeast extract (TSAE), incubated at 25 °C for 2 or 4 h, then transferred to CHROMagar(™)O157 or chromID(™)O157:H7 agar at 37 °C (TSAE2h-CHROM, TSAE4h-CHROM and TSAE2h-ID, TSAE4h-ID); (3) thin agar layer (TAL) method, TSAE was overlaid on CHROMagar(™)O157 or chromID(™)O157:H7 agar (TALCHROM and TALID, respectively) and incubated at 37 °C for 24 h; and (4) TALCHROM at 25 °C for 4 h, then continued up to complete 24 h at 37 °C (TALCHROM4h). Furthermore, the recovery of E. coli O157:H7 cells adhering to glass coverslips were evaluated to mimic biofilm conditions. The recovery percentages obtained from each alternative were calculated relative to TSAE counts. After 70 days, TSAE4h-CHROM and TALCHROM4h showed the highest recovery percentage (>90 %) from water microcosms. Despite the improved recovery of cell adhering to glass surfaces, the percentages obtained with TSAE4h-CHROM were low. Further studies for the recovery of biofilm-forming E. coli O157:H7 are required. Pre-incubation on TSAE at 25 °C for 4 h, combined with CHROMagar(™)O157, or by thin agar layer method (TALCHROM) enhanced significantly the recovery of viable cells of E. coli O157:H7 after prolonged stay in water microcosms.

  3. Chemotaxis for enhanced immobilization of Escherichia coli and Legionella pneumophila on biofunctionalized surfaces of GaAs.

    PubMed

    Hassen, Walid M; Sanyal, Hashimita; Hammood, Manar; Moumanis, Khalid; Frost, Eric H; Dubowski, Jan J

    2016-06-20

    The authors have investigated the effect of chemotaxis on immobilization of bacteria on the surface of biofunctionalized GaAs (001) samples. Escherichia coli K12 bacteria were employed to provide a proof-of-concept of chemotaxis-enhanced bacterial immobilization, and then, these results were confirmed using Legionella pneumophila. The recognition layer was based on a self-assembled monolayer of thiol functionalized with specific antibodies directed toward E. coli or L. pneumophila, together with the enzyme beta-galactosidase (β-gal). The authors hypothesized that this enzyme together with its substrate lactose would produce a gradient of glucose which would attract bacteria toward the biochip surface. The chemotaxis effect was monitored by comparing the number of bacteria bound to the biochip surface with and without attractant. The authors have observed that β-gal plus lactose enhanced the immobilization of bacteria on our biochips with a higher effect at low bacterial concentrations. At 100 and 10 bacteria/ml, respectively, for E. coli and L. pneumophila, the authors observed up to 11 and 8 times more bacteria bound to biochip surfaces assisted with the chemotaxis effect in comparison to biochips without chemotaxis. At 10(4) bacteria/ml, the immobilization enhancement rate did not exceed two times.

  4. Single-cell E. coli response to an instantaneously applied chemotactic signal.

    PubMed

    Sagawa, Takashi; Kikuchi, Yu; Inoue, Yuichi; Takahashi, Hiroto; Muraoka, Takahiro; Kinbara, Kazushi; Ishijima, Akihiko; Fukuoka, Hajime

    2014-08-05

    In response to an attractant or repellant, an Escherichia coli cell controls the rotational direction of its flagellar motor by a chemotaxis system. When an E. coli cell senses an attractant, a reduction in the intracellular concentration of a chemotaxis protein, phosphorylated CheY (CheY-P), induces counterclockwise (CCW) rotation of the flagellar motor, and this cellular response is thought to occur in several hundred milliseconds. Here, to measure the signaling process occurring inside a single E. coli cell, including the recognition of an attractant by a receptor cluster, the inactivation of histidine kinase CheA, and the diffusion of CheY and CheY-P molecules, we applied a serine stimulus by instantaneous photorelease from a caged compound and examined the cellular response at a temporal resolution of several hundred microseconds. We quantified the clockwise (CW) and CCW durations immediately after the photorelease of serine as the response time and the duration of the response, respectively. The results showed that the response time depended on the distance between the receptor and motor, indicating that the decreased CheY-P concentration induced by serine propagates through the cytoplasm from the receptor-kinase cluster toward the motor with a timing that is explained by the diffusion of CheY and CheY-P molecules. The response time included 240 ms for enzymatic reactions in addition to the time required for diffusion of the signaling molecule. The measured response time and duration of the response also revealed that the E. coli cell senses a similar serine concentration regardless of whether the serine concentration is increasing or decreasing. These detailed quantitative findings increase our understanding of the signal transduction process that occurs inside cells during bacterial chemotaxis.

  5. Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation

    PubMed Central

    Hilgers, Fabienne; Loeschcke, Anita; Jaeger, Karl-Erich; Kohlheyer, Dietrich; Drepper, Thomas

    2016-01-01

    Recombinant protein production is mostly realized with large-scale cultivations and monitored at the level of the entire population. Detailed knowledge of cell-to-cell variations with respect to cellular growth and product formation is limited, even though phenotypic heterogeneity may distinctly hamper overall production yields, especially for toxic or difficult-to-express proteins. Unraveling phenotypic heterogeneity is thus a key aspect in understanding and optimizing recombinant protein production in biotechnology and synthetic biology. Here, microfluidic single-cell analysis serves as the method of choice to investigate and unmask population heterogeneities in a dynamic and spatiotemporal fashion. In this study, we report on comparative microfluidic single-cell analyses of commonly used E. coli expression systems to uncover system-inherent specifications in the synthetic M9CA growth medium. To this end, the PT7lac/LacI, the PBAD/AraC and the Pm/XylS system were systematically analyzed in order to gain detailed insights into variations of growth behavior and expression phenotypes and thus to uncover individual strengths and deficiencies at the single-cell level. Specifically, we evaluated the impact of different system-specific inducers, inducer concentrations as well as genetic modifications that affect inducer-uptake and regulation of target gene expression on responsiveness and phenotypic heterogeneity. Interestingly, the most frequently applied expression system based on E. coli strain BL21(DE3) clearly fell behind with respect to expression homogeneity and robustness of growth. Moreover, both the choice of inducer and the presence of inducer uptake systems proved crucial for phenotypic heterogeneity. Conclusively, microfluidic evaluation of different inducible E. coli expression systems and setups identified the modified lacY-deficient PT7lac/LacI as well as the Pm/XylS system with conventional m-toluic acid induction as key players for precise and robust

  6. Direct injection of functional single-domain antibodies from E. coli into human cells.

    PubMed

    Blanco-Toribio, Ana; Muyldermans, Serge; Frankel, Gad; Fernández, Luis Ángel

    2010-12-08

    Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs) but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs) can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS). The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 10⁵-10⁶ molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies) into human cells for analytical and therapeutic purposes.

  7. Back surface reflectors for solar cells

    NASA Technical Reports Server (NTRS)

    Chai, A. T.

    1980-01-01

    Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.

  8. Cell behavior on surface modified polydimethylsiloxane (PDMS).

    PubMed

    Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R

    2014-07-01

    Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface.

  9. Use of Fluorescence Quantitative Polymerase Chain Reaction (PCR) for the Detection of Escherichia coli Adhesion to Pig Intestinal Epithelial Cells.

    PubMed

    Dai, C H; Gan, L N; Qin, W U; Zi, C; Zhu, G Q; Wu, S L; Bao, W B

    2016-09-01

    An efficient and accurate method to test Escherichia coli (E. coli) adhesion to intestinal epithelial cells will contribute to the study of bacterial pathogenesis and the function of genes that encode receptors related to adhesion. This study used the quantitative real-time polymerase chain reaction (qPCR) method. qPCR primers were designed from the PILIN gene of E. coli F18ab, F18ac, and K88ac, and the pig β-ACTIN gene. Total deoxyribonucleic acid (DNA) from E. coli and intestinal epithelial cells (IPEC-J2 cells) were used as templates for qPCR. The 2-ΔΔCt formula was used to calculate the relative number of bacteria in cultures of different areas. We found that the relative numbers of F18ab, F18ac, and K88ac that adhered to IPEC-J2 cells did not differ significantly in 6-, 12-, and 24-well culture plates. This finding indicated that there was no relationship between the relative adhesion number of E. coli and the area of cells, so the method of qPCR could accurately test the relative number of E. coli. This study provided a convenient and reliable testing method for experiments involving E. coli adhesion, and also provided innovative ideas for similar detection methods.

  10. Survival and SOS response induction in ultraviolet B irradiated Escherichia coli cells with defective repair mechanisms.

    PubMed

    Prada Medina, Cesar Augusto; Aristizabal Tessmer, Elke Tatjana; Quintero Ruiz, Nathalia; Serment-Guerrero, Jorge; Fuentes, Jorge Luis

    2016-06-01

    Purpose In this paper, the contribution of different genes involved in DNA repair for both survival and SOS induction in Escherichia coli mutants exposed to ultraviolet B radiation (UVB, [wavelength range 280-315 nm]) was evaluated. Materials and methods E. coli strains defective in uvrA, oxyR, recO, recN, recJ, exoX, recB, recD or xonA genes were used to determine cell survival. All strains also had the genetic sulA::lacZ fusion, which allowed for the quantification of SOS induction through the SOS Chromotest. Results Five gene products were particularly important for survival, as follows: UvrA > RecB > RecO > RecJ > XonA. Strains defective in uvrA and recJ genes showed elevated SOS induction compared with the wild type, which remained stable for up to 240 min after UVB-irradiation. In addition, E. coli strains carrying the recO or recN mutation showed no SOS induction. Conclusions The nucleotide excision and DNA recombination pathways were equally used to repair UVB-induced DNA damage in E. coli cells. The sulA gene was not turned off in strains defective in UvrA and RecJ. RecO protein was essential for processing DNA damage prior to SOS induction. In this study, the roles of DNA repair proteins and their contributions to the mechanisms that induce SOS genes in E. coli are proposed.

  11. Escherichia coli pili as possible mediators of attachment to human urinary tract epithelial cells.

    PubMed Central

    Edén, C S; Hansson, H A

    1978-01-01

    Presence of pili of fimbriae on Escherichia coli bacteria isolated from the urine of patients with urinary tract infection was related to the ability of the bacteria to attach to human uroepithelial cells. Piliated E. coli strains agglutinated guinea pig erythrocytes. D-Mannose and alpha-methyl-D-mannopyranoside inhibited this agglutination with all but one of the 12 strains tested. D-Mannose, D-galactose, alpha-methyl-D-mannopyranoside, and L-fucose did not afect attachment of piliated strains to uroepithelial cells. Heating as well as washing of piliated strains caused a parallel decrease of piliation and adhesive ability. Growth in glucose-enriched medium increased capsule formation but decreased piliation and adhesion. Capsulated strains retained their adhesive ability provided that pili extended outside the capsule. Images PMID:361565

  12. Separation and detection of amino acid metabolites of Escherichia coli in microbial fuel cell with CE.

    PubMed

    Wang, Wei; Ma, Lihong; Lin, Ping; Xu, Kaixuan

    2016-07-01

    In this work, CE-LIF was employed to investigate the amino acid metabolites produced by Escherichia coli (E. coli) in microbial fuel cell (MFC). Two peptides, l-carnosine and l-alanyl-glycine, together with six amino acids, cystine, alanine, lysine, methionine, tyrosine, arginine were separated and detected in advance by a CE-LIF system coupled with a homemade spontaneous injection device. The injection device was devised to alleviate the effect of electrical discrimination for analytes during sample injection. All analytes could be completely separated within 8 min with detection limits of 20-300 nmol/L. Then this method was applied to analyze the substrate solution containing amino acid metabolites produced by E. coli. l-carnosine, l-alanyl-glycine, and cystine were used as the carbon, nitrogen, and sulfur source for the E. coli culture in the MFC to investigate the amino acid metabolites during metabolism. Two MFCs were used to compare the activity of metabolism of the bacteria. In the sample collected at the running time 200 h of MFC, the amino acid methionine was discovered as the metabolite with the concentrations 23.3 μg/L.

  13. Evidence for osmoregulation of cell growth and buoyant density in Escherichia coli

    SciTech Connect

    Baldwin, W.W.; Kubitschek, H.E.

    1984-07-01

    The buoyant density of cells of Escherichia coli B/r NC32 increased with the osmolarity of the growth medium. Growth rate and its variability were also dependent upon the osmolarity of the medium. Maximum growth rates and minimum variability of these rates were obtained in Luria broth by addition of NaCl to a concentration of about 0.23 M. 6 references, 1 figure, 1 table.

  14. Reactive oxygen species mediate lethality induced by far-UV in Escherichia coli cells.

    PubMed

    Gomes, A A; Silva-Júnior, A C T; Oliveira, E B; Asad, L M B O; Reis, N C S C; Felzenszwalb, I; Kovary, K; Asad, N R

    2005-01-01

    The involvement of reactive oxygen species (ROS) in the induction of DNA damage to Escherichia coli cells caused by UVC (254 nm) irradiation was studied. We verified the expression of the soxS gene induced by UVC (254 nm) and its inhibition by sodium azide, a singlet oxygen (1O2) scavenger. Additional results showed that a water-soluble carotenoid (norbixin) protects against the lethal effects of UVC. These results suggest that UVC radiation can also cause ROS-mediated lethality.

  15. Dynamics of SOS-Response in UVR-Mutants of Escherichia Coli Cells under Ultraviolet Irradiation

    NASA Astrophysics Data System (ADS)

    Tuchina, M. A.; Parkhomenko, A. Yu.; Belov, O. V.; Bugai, A. N.

    2010-01-01

    A mathematical model of the genetic regulatory system of the SOS-response induced by ultraviolet radiation in excision repair-deficient mutants of E. coli bacterial cells is developed. On the basis of the model, the dynamics of the SOS system regulatory proteins is analyzed. The influence of excision repair on the induction of the key gene products during the SOS-response is studied.

  16. Improved membrane filtration media for enumeration of total coliforms and Escherichia coli from sewage and surface waters.

    PubMed Central

    Freier, T A; Hartman, P A

    1987-01-01

    Two media were developed that allowed both a total coliform count and an Escherichia coli count to be determined on the same medium after 24 h of incubation at 35 degrees C. The new media were tested along with two standard media on 10 surface water and 7 sewage samples. The experimental media yielded equivalent or higher counts relative to the standard media and recovered more specifically the desired indicator groups as determined by colony identification. PMID:3300547

  17. Surface modification for interaction study with bacteria and preosteoblast cells

    NASA Astrophysics Data System (ADS)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  18. Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components.

    PubMed

    Volentini, Sabrina I; Farías, Ricardo N; Rodríguez-Montelongo, Luisa; Rapisarda, Viviana A

    2011-10-01

    Copper is both an essential nutrient and a toxic element able to catalyze free radicals formation which damage lipids and proteins. Although the available copper redox species in aerobic environment is Cu(II), proteins that participate in metal homeostasis use Cu(I). With isolated Escherichia coli membranes, we have previously shown that electron flow through the respiratory chain promotes cupric ions reduction by NADH dehydrogenase-2 and quinones. Here, we determined Cu(II)-reductase activity by whole cells using strains deficient in these respiratory chain components. Measurements were done by the appearance of Cu(I) in the supernatants of cells exposed to sub-lethal Cu(II) concentrations. In the absence of quinones, the Cu(II)-reduction rate decreased ~70% in respect to the wild-type strain, while this diminution was about 85% in a strain lacking both NDH-2 and quinones. The decrease was ~10% in the absence of only NDH-2. In addition, we observed that quinone deficient strains failed to grow in media containing either excess or deficiency of copper, as we have described for NDH-2 deficient mutants. Thus, the Cu(II)-reduction by E. coli intact cells is mainly due to quinones and to a lesser extent to NDH-2, in a quinone-independent way. To our knowledge, this is the first in vivo demonstration of the involvement of E. coli respiratory components in the Cu(II)-reductase activity which contributes to the metal homeostasis.

  19. Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli

    PubMed Central

    Männik, Jaana; O’Neill, Jordan C.

    2017-01-01

    Coordination between cell division and chromosome replication is essential for a cell to produce viable progeny. In the commonly accepted view, Escherichia coli realize this coordination via the accurate positioning of its cell division apparatus relative to the nucleoids. However, E. coli lacking proper positioning of its cell division planes can still successfully propagate. Here, we characterize how these cells partition their chromosomes into daughters during such asymmetric divisions. Using quantitative time-lapse imaging, we show that DNA translocase, FtsK, can pump as much as 80% (3.7 Mb) of the chromosome between daughters at an average rate of 1700±800 bp/s. Pauses in DNA translocation are rare, and in no occasions did we observe reversals at experimental time scales of a few minutes. The majority of DNA movement occurs at the latest stages of cell division when the cell division protein ZipA has already dissociated from the septum, and the septum has closed to a narrow channel with a diameter much smaller than the resolution limit of the microscope (~250 nm). Our data suggest that the narrow constriction is necessary for effective translocation of DNA by FtsK. PMID:28234902

  20. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells.

    PubMed

    Canuto, K S; Sergio, L P S; Guimarães, O R; Geller, M; Paoli, F; Fonseca, A S

    2015-07-10

    Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia coli cells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficient E. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out.

  1. Study of mechanical properties of DNA in E. coli cells by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kafle, Rudra; Liebeskind, Molly; Meiners, Jens-Christian

    Mechanical quantities like the elasticity of cells are conventionally measured by directly probing them mechanically. Measurements of these quantities for subcellular structures in living cells are almost impossible this way. We use fluorescence correlation spectroscopy (FCS) to measure such mechanical quantities in chromosomal DNA in E. coli cells. We present methods to address complexities of live-cell FCS such as photobleaching, and calculate the viscoelastic moduli from the FCS data. We compare the measured viscoelastic moduli of live cells with those that are ATP-depleted to stop all molecular motor action and find substantial differences. Active processes are stopped in ATP-depleted cells and hence the bacterial DNA appears to become stiffer and the surrounding intracellular medium more viscous. We also compare our results with the FCS data obtained from the lambda DNA solution in various concentrations to mimic the cellular environment.

  2. Aggregative adherence fimbriae I (AAF/I) mediate colonization of fresh produce and abiotic surface by Shiga toxigenic enteroaggregative Escherichia coli O104:H4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Shiga toxigenic Escherichia coli O104:H4 bares the characteristics of both enterohemorrhagic (EHEC) and enteroaggregative (EAEC) E. coli. It produces plasmid encoded aggregative adherence fimbriae I (AAF/I) which mediate cell aggregation and biofilm formation in human intestine and promote Shiga...

  3. Monitoring Dynamic Protein Expression in Single Living E. Coli. Bacterial Cells by Laser Tweezers Raman Spectroscopy

    SciTech Connect

    Chan, J W; Winhold, H; Corzett, M H; Ulloa, J M; Cosman, M; Balhorn, R; Huser, T

    2007-01-09

    Laser tweezers Raman spectroscopy (LTRS) is a novel, nondestructive, and label-free method that can be used to quantitatively measure changes in cellular activity in single living cells. Here, we demonstrate its use to monitor changes in a population of E. coli cells that occur during overexpression of a protein, the extracellular domain of myelin oligodendrocyte glycoprotein (MOG(1-120)) Raman spectra were acquired of individual E. coli cells suspended in solution and trapped by a single tightly focused laser beam. Overexpression of MOG(1-120) in transformed E. coli Rosetta-Gami (DE3)pLysS cells was induced by addition of isopropyl thiogalactoside (IPTG). Changes in the peak intensities of the Raman spectra from a population of cells were monitored and analyzed over a total duration of three hours. Data was also collected for concentrated purified MOG(1-120) protein in solution, and the spectra compared with that obtained for the MOG(1-120) expressing cells. Raman spectra of individual, living E. coli cells exhibit signatures due to DNA and protein molecular vibrations. Characteristic Raman markers associated with protein vibrations, such as 1257 cm{sup -1}, 1340 cm{sup -1}, 1453 cm{sup -1} and 1660 cm{sup -1}, are shown to increase as a function of time following the addition of IPTG. Comparison of these spectra and the spectra of purified MOG protein indicates that the changes are predominantly due to the induction of MOG protein expression. Protein expression was found to occur mostly within the second hour, with a 470% increase relative to the protein expressed in the first hour. A 230% relative increase between the second and third hour indicates that protein expression begins to level off within the third hour. It is demonstrated that LTRS has sufficient sensitivity for real-time, nondestructive, and quantitative monitoring of biological processes, such as protein expression, in single living cells. Such capabilities, which are not currently available in

  4. Effect of Antimicrobial Agents on MinD Protein Oscillations in E. coli Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Kelly, Corey; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    The pole-to-pole oscillation of MinD proteins in E. coli cells determines the location of the division septum, and is integral to healthy cell division. It has been shown previously that the MinD oscillation period is approximately 40 s for healthy cells [1] but is strongly dependant on environmental factors such as temperature, which may place stress on the cell [2,3]. We use a strain of E. coli in which the MinD proteins are tagged with green fluorescent protein (GFP), allowing fluorescence visualization of the MinD oscillation. We use high-resolution total internal reflection fluorescence (TIRF) microscopy and a custom, temperature controlled flow cell to observe the effect of exposure to antimicrobial agents on the MinD oscillation period and, more generally, to analyze the time variation of the spatial distribution of the MinD proteins within the cells. These measurements provide insight into the mechanism of antimicrobial action. [1] Raskin, D.M.; de Boer, P. (1999) Proc. Natl. Acad. Sci. 96: 4971-4976. [2] Touhami, A.; Jericho, M; Rutenberg, A. (2006) J. Bacteriol. 188: 7661-7667. [3] Downing, B.; Rutenberg, A.; Touhami, A.; Jericho, M. (2009) PLoS ONE 4: e7285.

  5. Mechanisms of pressure-mediated cell death and injury in Escherichia coli: from fundamentals to food applications

    PubMed Central

    Gänzle, Michael; Liu, Yang

    2015-01-01

    High hydrostatic pressure is commercially applied to extend the shelf life of foods, and to improve food safety. Current applications operate at ambient temperature and 600 MPa or less. However, bacteria that may resist this pressure level include the pathogens Staphylococcus aureus and strains of Escherichia coli, including shiga-toxin producing E. coli. The resistance of E. coli to pressure is variable between strains and highly dependent on the food matrix. The targeted design of processes for the safe elimination of E. coli thus necessitates deeper insights into mechanisms of interaction and matrix-strain interactions. Cellular targets of high pressure treatment in E. coli include the barrier properties of the outer membrane, the integrity of the cytoplasmic membrane as well as the activity of membrane-bound enzymes, and the integrity of ribosomes. The pressure-induced denaturation of membrane bound enzymes results in generation of reactive oxygen species and subsequent cell death caused by oxidative stress. Remarkably, pressure resistance at the single cell level relates to the disposition of misfolded proteins in inclusion bodies. While the pressure resistance E. coli can be manipulated by over-expression or deletion of (stress) proteins, the mechanisms of pressure resistance in wild type strains is multi-factorial and not fully understood. This review aims to provide an overview on mechanisms of pressure-mediated cell death in E. coli, and the use of this information for optimization of high pressure processing of foods. PMID:26157424

  6. High vacuum cells for classical surface techniques

    SciTech Connect

    Martinez, Imee Su; Baldelli, Steven

    2010-04-15

    Novel glass cells were designed and built to be able to perform surface potential and surface tension measurements in a contained environment. The cells can withstand pressures of approximately 1x10{sup -6} Torr, providing a reasonable level of control in terms of the amounts of volatile contaminants during experimentation. The measurements can take several hours; thus the cells help maintain the integrity of the sample in the course of the experiment. To test for the feasibility of the cell design, calibration measurements were performed. For the surface potential cell, the modified TREK 6000B-7C probe exhibited performance comparable to its unmodified counterpart. The correlation measurements between applied potential on the test surface and the measured potential showed R-values very close to 1 as well as standard deviation values of less than 1. Results also demonstrate improved measurement values for experiments performed in vacuum. The surface tension cell, on the other hand, which was used to perform the pendant drop method, was tested on common liquids and showed percentage errors of 0.5% when compared to literature values. The fabricated cells redefine measurements using classical surface techniques, providing unique and novel methods of sample preparation, premeasurement preparation, and sample analysis at highly beneficial expenditure cost.

  7. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.

    PubMed

    Mancusso, Romina; Cruz, Eduardo; Cataldi, Marcela; Mendoza, Carla; Fuchs, James; Wang, Hsin; Yang, Xiaomin; Tasayco, María Luisa

    2004-04-06

    Recent studies of proteins with reversed charged residues have demonstrated that electrostatic interactions on the surface can contribute significantly to protein stability. We have used the approach of reversing negatively charged residues using Arg to evaluate the effect of the electrostatics context on the transition temperature (T(m)), the unfolding Gibbs free energy change (DeltaG), and the unfolding enthalpy change (DeltaH). We have reversed negatively charged residues at a pocket (Asp9) and protrusions (Asp10, Asp20, Glu85), all located in interconnecting segments between elements of secondary structure on the surface of Arg73Ala Escherichia coli thioredoxin. DSC measurements indicate that reversal of Asp in a pocket (Asp9Arg/Arg73Ala, DeltaT(m) = -7.3 degrees C) produces a larger effect in thermal stability than reversal at protrusions: Asp10Arg/Arg73Ala, DeltaT(m) = -3.1 degrees C, Asp20Arg/Arg73Ala, DeltaT(m) = 2.0 degrees C, Glu85Arg/Arg73Ala, DeltaT(m) = 3.9 degrees ). The 3D structure of thioredoxin indicates that Asp20 and Glu85 have no nearby charges within 8 A, while Asp9 does not only have Asp10 as sequential neighbor, but it also forms a 5-A long-range ion pair with the solvent-exposed Lys69. Further DSC measurements indicate that neutralization of the individual charges of the ion pair Asp9-Lys69 with nonpolar residues produces a significant decrease in stability in both cases: Asp9Ala/Arg73Ala, DeltaT(m) = -3.7 degrees C, Asp9Met/Arg73Ala, DeltaT(m) = -5.5 degrees C, Lys69Leu/Arg73Ala, DeltaT(m) = -5.1 degrees C. However, thermodynamic analysis shows that reversal or neutralization of Asp9 produces a 9-15% decrease in DeltaH, while both reversal of Asp at protrusions and neutralization of Lys69 produce negligible changes. These results correlate well with the NMR analysis, which demonstrates that only the substitution of Asp9 produces extensive conformational changes and these changes occur in the surroundings of Lys69. Our results led us to

  8. A Comparative Proteome Analysis of Escherichia coli ΔrelA Mutant Cells

    PubMed Central

    Carneiro, Sónia; Villas-Bôas, Silas; Ferreira, Eugénio C.; Rocha, Isabel

    2016-01-01

    The bacterial RelA-dependent stringent response exerts a strong influence over various processes. In this work, the impact of the relA gene mutation in Escherichia coli cells was evaluated by a quantitative proteomics analysis, employing stable-isotope labeling and high-resolution mass spectrometry. Chemostat cultures of E. coli W3110 and ΔrelA mutant strains were performed at two dilution rates (0.1 and 0.2 h−1) to assess the influence of the relA gene mutation in steady-state protein levels. A total of 121 proteins showed significant alterations in their abundance when comparing the proteome of mutant to wild-type cells. The relA gene mutation induced changes on key cellular processes, including the amino acids and nucleotide biosynthesis, the lipid metabolism, transport activities, transcription and translation processes, and responses to stress. Furthermore, some of those changes were more pronounced under specific growth conditions, as the most significant differences in protein ratios were observed at one of the dilution rates. An effect of the relA gene mutation in the acetate overflow was also observed, which confers interesting characteristics to this mutant strain that could be useful in the production of recombinant proteins. Overall, these results provide a valuable insight into the E. coli stringent response under defined steady-state conditions, suggesting that this stress response might influence multiple metabolic processes like the acetate overflow or the catabolite repression. PMID:27833909

  9. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium.

    PubMed

    Saldaña, Zeus; De la Cruz, Miguel A; Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L; Daaka, Yehia; Girón, Jorge A

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.

  10. Production of the Escherichia coli Common Pilus by Uropathogenic E. coli Is Associated with Adherence to HeLa and HTB-4 Cells and Invasion of Mouse Bladder Urothelium

    PubMed Central

    Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370

  11. Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli

    PubMed Central

    2012-01-01

    Background 2'-Fucosyllactose (2-FL) is a functional oligosaccharide present in human milk which protects against the infection of enteric pathogens. Because 2-FL can be synthesized through the enzymatic fucosylation of lactose with guanosine 5′-diphosphate (GDP)-l-fucose by α-1,2-fucosyltransferase (FucT2), an 2-FL producing Escherichia coli can be constructed through overexpressing genes coding for endogenous GDP- l-fucose biosynthetic enzymes and heterologous fucosyltransferase. Results The gene for FucT2 from Helicobacter pylori was introduced to the GDP- l-fucose producing recombinant E. coli BL21 star(DE3) strain. However, only small amount of 2-FL was produced in a batch fermentation because the E. coli BL21star(DE3) strain assimilated lactose instead of converting to 2-FL. As an alternative host, the E. coli JM109(DE3) strain which is incapable of assimilating lactose was chosen as a 2-FL producer. Whole cell biosynthesis of 2-FL from lactose was investigated in a series of batch fermentations using various concentrations of lactose. The results of batch fermentations showed that lactose was slowly assimilated by the engineered E. coli JM109(DE3) strain and 2-FL was synthesized without supplementation of another auxiliary sugar for cell growth. A maximum 2-FL concentration of 1.23 g/l was obtained from a batch fermentation with 14.5 g/l lactose. The experimentally obtained yield (g 2-FL/g lactose) corresponded to 20% of the theoretical maximum yield estimated by the elementary flux mode (EFM) analysis. Conclusions The experimental 2-FL yield in this study corresponded to about 20% of the theoretical maximum yield, which suggests further modifications via metabolic engineering of a host strain or optimization of fermentation processes might be carried out for improving 2-FL yield. Improvement of microbial production of 2-FL from lactose by engineered E. coli would increase the feasibility of utilizing 2-FL as a prebiotic in various foods. PMID:22545760

  12. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern

    PubMed Central

    ALBIERO, Mayra Laino; AMORIM, Bruna Rabelo; MARTINS, Luciane; CASATI, Márcio Zaffalon; SALLUM, Enilson Antonio; NOCITI, Francisco Humberto; SILVÉRIO, Karina Gonzales

    2015-01-01

    Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells) would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS). Material and Methods : Toll-like receptor 4 (TLR4) expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i) cell viability using MTS; (ii) expression of the interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α) genes; (iii) osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities. PMID:26018305

  13. Compact portable biosensor for arsenic detection in aqueous samples with Escherichia coli bioreporter cells

    NASA Astrophysics Data System (ADS)

    Truffer, Frederic; Buffi, Nina; Merulla, Davide; Beggah, Siham; van Lintel, Harald; Renaud, Philippe; van der Meer, Jan Roelof; Geiser, Martial

    2014-01-01

    We present a compact portable biosensor to measure arsenic As(III) concentrations in water using Escherichia coli bioreporter cells. Escherichia coli expresses green fluorescent protein in a linearly dependent manner as a function of the arsenic concentration (between 0 and 100 μg/L). The device accommodates a small polydimethylsiloxane microfluidic chip that holds the agarose-encapsulated bacteria, and a complete optical illumination/collection/detection system for automated quantitative fluorescence measurements. The device is capable of sampling water autonomously, controlling the whole measurement, storing and transmitting data over GSM networks. We demonstrate highly reproducible measurements of arsenic in drinking water at 10 and 50 μg/L within 100 and 80 min, respectively.

  14. High Cell Density Production of Europium-Labeled Escherichia coli for Tracing of Bacteria in Mantled Karst of Northwest Arkansas

    NASA Astrophysics Data System (ADS)

    Ting, T.; Thoma, G. J.; Beitle, R. B.; Davis, R. K.; Brahana, J. V.; Liu, H.

    2004-12-01

    The preparation of europium-labeled E. coli as a bacterial tracer in our study is separated into two major steps: the production of large quantities of cells, and the labeling of the cells at high density. Indigenous E. coli isolated from a natural spring at the University of Arkansas's Savoy Experimental Watershed (SEW), Savoy, Arkansas was fermented in BIOFLO II (New Brunswick Scientific, Edison, NJ) bioreactor using a fed-batch technique. Either a concentrated glucose solution or an ammonium hydroxide solution was pulsed into the reactor automatically using closed-loop pH control in a reactor feeding strategy designed to optimize cell growth. E. coli cells were harvested at the stationary phase of the bacterial growth profile, washed and centrifuged prior to the europium labeling step. A concentrated europium chloride solution was prepared by dissolving europium (III) chloride in 1-L of deionized water; the salt solution was chilled at 6oC overnight. A batch of 100-g wet weight of the washed E. coli was suspended in the chilled europium salt solution, and the cells were incubated at 6oC for 2 hours with stirring. After the cold incubation, the cells were washed with chilled deionized water and centrifuged repeatedly to remove excess europium. We have successfully prepared 760-g wet weight of labeled E. coli using the high cell density fermentation and europium labeling technique in a 9-day period. Preparation of large quantities of viable europium-tagged bacteria is critical for use as an environmental tracer. The europium uptake by the E. coli was found to be 15-mg europium per gram of labeled cell (wet weight). A field injection of multiple tracers along with the europium-tagged E. coli was successfully performed during the summer of 2004 at SEW to elucidate the transport, storage and viability of fecal contaminants in a karst basin. Prior investigations suggest that, unlike conservative tracers, E. coli become deposited along the flow path in the aquifer, and

  15. SOS-independent coupling between DNA replication and cell division in Escherichia coli.

    PubMed Central

    Jaffé, A; D'Ari, R; Norris, V

    1986-01-01

    Inhibition of DNA synthesis in Escherichia coli mutants in which the SOS-dependent division inhibitors SfiA and SfiC were unable to operate led to a partial arrest of cell division. This SOS-independent mechanism coupling DNA replication and cell division was characterized with respect to residual division, particle number, and DNA content. Whether DNA replication was blocked in the initiation or the elongation step, numerous normal-sized anucleate cells were produced (not minicells or filaments). Their production was used to evaluate the efficiency of this coupling mechanism, which seems to involve the cell division protein FtsZ (SulB), also known to be the target of the division inhibitors SfiA and SfiC. In the absence of DNA synthesis, the efficiency of coupling was modulated by the cyclic-AMP-cyclic-AMP receptor protein complex, which was required for anucleate cell production. Images PMID:3001034

  16. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli.

    PubMed

    Tang, Yulong; Tan, Bie; Xiong, Xia; Li, Fengna; Ren, Wenkai; Kong, Xiangfeng; Qiu, Wei; Hardwidge, Philip R; Yin, Yulong

    2015-10-01

    Infections by enterotoxigenic Escherichia coli (ETEC) result in large economic losses to the swine industry worldwide. Dietary supplementation with amino acids has been considered as a potential mechanism to improve host defenses against infection. The goal of this study was to determine whether methionine deprivation alters ETEC interactions with porcine intestinal epithelial cells. IPEC-1 cells were cultured in media with or without L-methionine. Methionine deprivation resulted in enhanced ETEC adhesion and increased both the cytotoxicity and apoptotic responses of IPEC-1 cells infected with ETEC. Methionine deprivation inhibited IPEC-1 cell autophagic responses, suggesting that the increased cytotoxicity of ETEC to methionine-deprived IPEC-1 cells might be due to defects in autophagy.

  17. A comparative study on cell disruption methods for release of aspartase from E. coli K-12.

    PubMed

    Singh, R S

    2013-11-01

    Applicability of different mechanical cell disruption techniques namely sonication, bead milling and French press for the release of aspartase from E. coli K-12 was compared. Various operating parameters of each technique were optimized to obtain maximum aspartase release. The efficiency of aspartase release and cell disruption by all the methods was also compared under optimal conditions. The maximum release of aspartase (98.22%) and maximum cell breakage (84.25%) was observed using French press, while 92% of aspartase release was obtained by both sonication and bead milling. The order of cell disruption constant (k) for aspartase release by these methods was French press > bead milling > sonication. Disruption of cells using French press also demonstrated maximum protein release (14.12 mg/mL). The crude enzyme preparations can be further used for purification and its applications.

  18. Escherichia coli persister cells suppress translation by selectively disassembling and degrading their ribosomes.

    PubMed

    Cho, Junho; Rogers, Janet; Kearns, Mark; Leslie, Macall; Hartson, Steven D; Wilson, Kevin S

    2015-01-01

    Bacterial persisters are rare, phenotypically distinct cells that survive exposure to multiple antibiotics. Previous studies indicated that formation and maintenance of the persister phenotype are regulated by suppressing translation. To examine the mechanism of this translational suppression, we developed novel methodology to rapidly purify ribosome complexes from persister cells. We purified His-tagged ribosomes from Escherichia coli cells that over-expressed HipA protein, which induces persister formation, and were treated with ampicillin to remove antibiotic-sensitive cells. We profiled ribosome complexes and analyzed the ribosomal RNA and protein components from these persister cells. Our results show that (i) ribosomes in persisters exist largely as inactive ribosomal subunits, (ii) rRNAs and tRNAs are mostly degraded and (iii) a small fraction of the ribosomes remain mostly intact, except for reduced amounts of seven ribosomal proteins. Our findings explain the basis for translational suppression in persisters and suggest how persisters survive exposure to multiple antibiotics.

  19. A Single-Amino-Acid Substitution in Obg Activates a New Programmed Cell Death Pathway in Escherichia coli

    PubMed Central

    Dewachter, Liselot; Verstraeten, Natalie; Monteyne, Daniel; Kint, Cyrielle Ines; Versées, Wim; Pérez-Morga, David; Fauvart, Maarten

    2015-01-01

    ABSTRACT Programmed cell death (PCD) is an important hallmark of multicellular organisms. Cells self-destruct through a regulated series of events for the benefit of the organism as a whole. The existence of PCD in bacteria has long been controversial due to the widely held belief that only multicellular organisms would profit from this kind of altruistic behavior at the cellular level. However, over the past decade, compelling experimental evidence has established the existence of such pathways in bacteria. Here, we report that expression of a mutant isoform of the essential GTPase ObgE causes rapid loss of viability in Escherichia coli. The physiological changes that occur upon expression of this mutant protein—including loss of membrane potential, chromosome condensation and fragmentation, exposure of phosphatidylserine on the cell surface, and membrane blebbing—point to a PCD mechanism. Importantly, key regulators and executioners of known bacterial PCD pathways were shown not to influence this cell death program. Collectively, our results suggest that the cell death pathway described in this work constitutes a new mode of bacterial PCD. PMID:26695632

  20. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins.

    PubMed

    Kim, Young Chan; Tarr, Alexander W; Penfold, Christopher N

    2014-08-01

    Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

  1. Enhancing yields of low and single copy number plasmid DNAs from Escherichia coli cells.

    PubMed

    Wood, Whitney N; Smith, Kyle D; Ream, Jennifer A; Kevin Lewis, L

    2017-02-01

    Many plasmids used for gene cloning and heterologous protein expression in Escherichia coli cells are low copy number or single copy number plasmids. The extraction of these types of plasmids from small bacterial cell cultures produces low DNA yields. In this study, we have quantitated yields of low copy and single copy number plasmid DNAs after growth of cells in four widely used broths (SB, SOC, TB, and 2xYT) and compared results to those obtained with LB, the most common E. coli cell growth medium. TB (terrific broth) consistently generated the greatest amount of plasmid DNA, in agreement with its ability to produce higher cell titers. The superiority of TB was primarily due to its high levels of yeast extract (24g/L) and was independent of glycerol, a unique component of this broth. Interestingly, simply preparing LB with similarly high levels of yeast extract (LB24 broth) resulted in plasmid yields that were equivalent to those of TB. By contrast, increasing ampicillin concentration to enhance plasmid retention did not improve plasmid DNA recovery. These experiments demonstrate that yields of low and single copy number plasmid DNAs from minipreps can be strongly enhanced using simple and inexpensive media.

  2. Optimization of TNF-α overexpression in Escherichia coli using response surface methodology: Purification of the protein and oligomerization studies.

    PubMed

    Papaneophytou, Christos P; Kontopidis, George A

    2012-11-01

    Tumor necrosis factor-α (TNF-α) is responsible for many autoimmune disorders including rheumatoid arthritis, psoriasis, Chron's disease, stroke, and atherosclerosis. Thus, inhibition of TNF-α is a major challenge in drug discovery. However, a sufficient amount of purified protein is needed for the in vitro screening of potential TNF-α inhibitors. In this work, induction conditions for the production of human TNF-α fusion protein in a soluble form by recombinant Escherichia coli BL21(DE3) pLysS were optimized using response surface methodology based on the central composite design. The induction conditions included cell density prior induction (OD(600nm)), post-induction temperature, IPTG concentration and post-induction time. Statistical analysis of the results revealed that all variables and their interactions had significant impact on production of soluble TNF-α. An 11% increase of TNF-α production was achieved after determination of the optimum induction conditions: OD(600nm) prior induction 0.55, a post induction temperature of 25°C, an IPTG concentration of 1mM and a post-induction time of 4h. We have also studied TNF-α oligomerization, the major property of this protein, and a K(d) value of 0.26nM for protein dimerization was determined. The concentration of where protein trimerization occurred was also detected. However, we failed to determine a reliable K(d) value for protein trimerization probably due to the complexibility of our model.

  3. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  4. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    PubMed

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy.

  5. Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss

    PubMed Central

    Newton, Joseph M.; Schofield, Desmond; Vlahopoulou, Joanna

    2016-01-01

    Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction‐point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069–1076, 2016 PMID:27111912

  6. Genetic Characterization and Immunogenicity of Coli Surface Antigen 4 from Enterotoxigenic Escherichia coli when It Is Expressed in a Shigella Live-Vector Strain

    PubMed Central

    Altboum, Zeev; Levine, Myron M.; Galen, James E.; Barry, Eileen M.

    2003-01-01

    The genes that encode the enterotoxigenic Escherichia coli (ETEC) CS4 fimbriae, csaA, -B, -C, -E, and -D′, were isolated from strain E11881A. The csa operon encodes a 17-kDa major fimbrial subunit (CsaB), a 40-kDa tip-associated protein (CsaE), a 27-kDa chaperone-like protein (CsaA), a 97-kDa usher-like protein (CsaC), and a deleted regulatory protein (CsaD′). The predicted amino acid sequences of the CS4 proteins are highly homologous to structural and assembly proteins of other ETEC fimbriae, including CS1 and CS2, and to CFA/I in particular. The csaA, -B, -C, -E operon was cloned on a stabilized plasmid downstream from an osomotically regulated ompC promoter. pGA2-CS4 directs production of CS4 fimbriae in both E. coli DH5α and Shigella flexneri 2a vaccine strain CVD 1204, as detected by Western blot analysis and bacterial agglutination with anti-CS4 immune sera. Electron-microscopic examination of Shigella expressing CS4 confirmed the presence of fimbriae on the bacterial surface. Guinea pigs immunized with CVD 1204(pGA2-CS4) showed serum and mucosal antibody responses to both the Shigella vector and the ETEC fimbria CS4. Among the seven most prevalent fimbrial antigens of human ETEC, CS4 is the last to be cloned and sequenced. These findings pave the way for CS4 to be included in multivalent ETEC vaccines, including an attenuated Shigella live-vector-based ETEC vaccine. PMID:12595452

  7. Role of major surface structures of Escherichia coli O157:H7 in initial attachment to biotic and abiotic surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection by human pathogens through fresh, minimally processed produce and solid plant-derived foods is a major concern of U.S. and global food industry and public health services. The enterohemorrhagic Escherichia coli O157:H7 is a frequent and potent food borne pathogen that causes severe disease...

  8. Proteomic analysis and identification of cell surface-associated proteins of Clostridium chauvoei.

    PubMed

    Jayaramaiah, Usharani; Singh, Neetu; Thankappan, Sabarinath; Mohanty, Ashok Kumar; Chaudhuri, Pallab; Singh, Vijendra Pal; Nagaleekar, Viswas Konasagara

    2016-06-01

    Blackleg is a highly fatal disease of cattle and sheep, caused by Clostridium chauvoei, a Gram positive, anaerobic, spore forming bacteria. Cell surface-associated proteins play a major role in inducing the protective immunity. However, the identity of a majority of cell surface-associated proteins of C. chauvoei is not known. In the present investigation, we have used SDS-PAGE, 2D-gel electrophoresis and Western blotting followed by mass spectrometry to identify cell surface-associated proteins of C. chauvoei. Among the identified proteins, which have shown to offer protective antigencity in other bacteria, Enolase, Chaperonin, Ribosomal protein L10, Glycosyl Hydrolase and Flavoprotein were characterized by sequencing and their overexpression in Escherichia coli. In conclusion, cell surface-associated proteins were identified using proteomic approach and the genes for the immunoreactive proteins were expressed, which may prove to be potential diagnostic or vaccine candidates.

  9. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes

    NASA Astrophysics Data System (ADS)

    Bradford, Scott A.; Headd, Brendan; Arye, Gilboa; Šimůnek, Jiří

    2015-06-01

    Tracer and indicator microbe runoff experiments were conducted to investigate the influence of solution chemistry on the transport, retention, and release of Escherichia coli D21g. Experiments were conducted in a chamber (2.25 m long, 0.15 m wide, and 0.16 m high) packed with ultrapure quartz sand (to a depth of 0.10 m) that was placed on a metal frame at slopes of 5.6%, 8.6%, or 11.8%. Runoff studies were initiated by adding a step pulse of salt tracer or D21g suspension at a steady flow rate to the top side of the chamber and then monitoring the runoff effluent concentrations. The runoff breakthrough curves (BTCs) were asymmetric and exhibited significant amounts of concentration tailing. The peak concentration levels were lower and the concentration tailing was higher with increasing chamber slope because of greater amounts of exchange with the sand and/or extents of physical nonequilibrium (e.g., water flow in rills and incomplete mixing) in the runoff layer. Lower amounts of tailing in the runoff BTC and enhanced D21g retention in the sand occurred when the solution ionic strength (IS) was 100 mM NaCl compared with 1 mM NaCl, due to compression of the double layer thickness which eliminated the energy barrier to attachment. Retained cells were slowly released to the runoff water when the IS of the runoff water was reduced to deionized water. The amount and rate of cell release was greatest at the highest chamber slope, which controlled the amount of exchange with the sand and/or the extent of physical nonequilibrium in the runoff layer, and the amount of retained cells. The observed runoff BTCs were well described using a transient storage model, but fitted parameters were not always physically realistic. A model that accounted for the full coupling between flow and transport in the runoff and sand layers provided useful information on exchange processes at the sand surface, but did not accurately describe the runoff BTCs which were influenced by physical

  10. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  11. Inhibition of adhesion of uropathogenic Escherichia coli bacteria to uroepithelial cells by extracts from cranberry.

    PubMed

    Ermel, Gwennola; Georgeault, Sylvie; Inisan, Claude; Besnard, Matthieu

    2012-02-01

    Cranberry extract has been reported as a therapeutic agent, mainly in urinary tract infections due to its anti-adhesive capacity. In order to compare the effects of proanthocyanidin (procyanidin) (PAC)-standardized cranberry extracts and commercial PAC A2, we first investigated the presence of genes encoding known adhesins on 13 strains of uropathogenic strains coming from patients with cystisis. After this characterization, the anti-adhesive effects of PAC A2 were assayed on selected uropathogenic Escherichia coli strains before testing cranberry extracts. Before checking inhibitory effect on bacterial adhesion to cells, we showed that neither PAC A2 or three cranberry extracts (A, B, and C) specifically inhibited the growth and did not supply any potential nutrient to E. coli strains, including the unrelated control strain. PAC A2 exhibited an inhibitory effect on the adhesion of two selected uropathogenic strains of E. coli. This work also showed that a preliminary exposure of bacteria to PAC A2 significantly reduced the adhesion. This phenomenon has been also observed with a lesser impact when uroepithelial cells were pretreated with PAC A2. Moreover, the assays were more robust when bacteria were in fast growing conditions (exponential phase): the adhesion to uroepithelial cells was greater. Significant reduction of adhesion to urepithelial cells was observed: around 80% of inhibition of adhesion with the cranberry extracts at equivalent PAC concentration of 50 μg/mL. The effects of the different assayed extracts were not obviously different except for extract B, which inhibited approximately 55% of adhesion at an equivalent PAC concentration of 5 μg/mL.

  12. Maximized Autotransporter-Mediated Expression (MATE) for Surface Display and Secretion of Recombinant Proteins in Escherichia coli

    PubMed Central

    Sichwart, Shanna; Tozakidis, Iasson E.P.; Teese, Mark

    2015-01-01

    Summary A new optimized system for the surface display and secretion of recombinant proteins is described, termed MATE (maximized autotransporter-mediated expression). It is based on an artificial gene consisting of the coding region for the signal peptide of CtxB, a multiple cloning site for passenger gene insertion, flanked by coding sequences for linear epitopes for monoclonal antibodies and OmpT, and factor Xa protease cleavage sites followed by a codon-optimized DNA sequence of the linker and the β-barrel of the type V autotransporter EhaA from Escherichia coli under control of an IPTG-inducible T5 promoter. The MATE system enabled the continuous secretion of recombinant passenger mCherry via OmpT-mediated cleavage, using native OmpT protease activity in E. coli when grown at 37 °C. It is the first example to show that native OmpT activity is sufficient to facilitate the secretion of a correctly folded target protein in preparative amounts obtaining 240 µg of purified mCherry from 800 mL of crude culture supernatant. Because the release of mCherry was achieved by a simple transfer of the encoding plasmid from an OmpT-negative to an OmpT-positive strain, it bears the option to use surface display for screening purposes and secretion for production of the selected variant. A single plasmid could therefore be used for continuous secretion in OmpT-positive strains or surface display in OmpT-negative strains. In conclusion, the MATE system appears to be a versatile tool for the surface display and for the secretion of target proteins in E. coli. PMID:27904356

  13. Probes for anionic cell surface detection

    DOEpatents

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  14. Reduction of Escherichia coli on surfaces of utensils and development of a predictive model as a function of concentration and exposure time of chlorine.

    PubMed

    Baek, Seung-Bum; Kim, Seok-Won; Ha, Sang-Do

    2012-01-01

    Cross-contamination to fruit and vegetables can readily occur through contaminated surfaces; thus, there is a need to develop methods to inactivate microorganisms on the surfaces of various materials. The aim of this study was to develop methods to reduce the levels of Escherichia coli on the surfaces of various materials and to develop a predictive model as a function of chlorine concentration and exposure time. The reduction of E. coli on the surfaces of stainless steel, plastic, wood, rubber, glass, and ceramic at various chlorine concentrations (0-200 ppm) after a 0-5-min exposure was evaluated. The surface treatment at the maximum chlorine concentration (200 ppm) over a 5-min exposure reduced the E. coli contamination levels to 5.30, 5.18, 3.34, 4.69, 5.05, and 5.53 log CFU/cm(2) on the surfaces of stainless steel, plastic, wood, rubber, glass, and ceramic, respectively. Using these results, predictive models for the reduction of E. coli on surfaces of various materials using chlorine treatment were developed. Each model was significant (p<0.05) and defined as fit by the lack of fit and probability of normal residuals. It has measured the R(2) value to 0.9746. Therefore, the models presented in this study could be used to determine the minimum concentrations of chlorine and exposure times needed to control E. coli on the surfaces of various materials.

  15. Increase in UV mutagenesis by heat stress on UV-irradiated E. coli cells.

    PubMed

    Saha, Swati; Basu, Tarakdas

    2012-06-01

    When leu- auxotrophs of Escherichia coli, after UV irradiation, were grown at temperatures between 30 and 47°C, the frequency of UV-induced mutation from leu- to leu+ revertant increased as the UV dose and the temperature increased. For cells exposed to a UV dose of 45 J/m2, the mutation frequency at 47°C was 1.9 times that at 30°C; for a dose of 90 J/m2, it was 3.25 times; and for 135 J/m2, it was 4.8 times. Similar enhancement of reversion frequency was observed when the irradiated cells were grown at 30°C in the presence of a heat shock inducer, ethanol (8% v/v). Heat shock-mediated enhancement of UV mutagenesis did not occur in an E. coli mutant sigma 32 (heat shock regulator protein), but sigma 32 overexpression in the mutant strain (transformed with a sigma 32-bearing plasmid) increased the UV-induced mutation frequency. These results suggest that heat stress alone has no mutagenic property, but when applied to UV-damaged cells, it enhances the UV-induced frequency of cell mutation.

  16. Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics.

    PubMed Central

    Kitano, K; Tomasz, A

    1979-01-01

    A biochemical method was developed to quantitatively compare the effectiveness of beta-lactams in triggering murein degradation (autolysin activity) in Escherichia coli. Bacteria prelabeled in their cell walls with radioactive diaminopimelic acid in growth medium were exposed for 10 min to the antibiotics at the appropriate minimal growth inhibitory concentrations and at multiples of these values, and the rate of cell wall degradation was followed during subsequent penicillin-binding protein (PBP)-1 were the most effective triggers of autolytic wall degradation; beta-lactams selective for PBP-2 were the poorest; and antibiotics preferentially binding to PBP-3 showed intermediate activities. The relative effectiveness of beta-lactams in autolysin triggering was found to parallel the effectiveness of the same drugs in causing rapid loss of viability, culture lysis, and spheroplast formation. Autolysin triggering was suppressed by inhibitors of protein and ribonucleic acid biosynthesis but not by inhibitors of deoxyribonucleic acid synthesis. The beta-lactam-induced cell wall degradation did not seem to involve a direct stimulation of enzyme activity or synthesis of new enzyme molecules, and murein sacculi isolated from cells that had been preexposed to a triggering dose of beta-lactam treatment exhibited the same sensitivity to crude, homologous autolysins as sacculi prepared from untreated control bacteria. On the basis of these observations, mechanisms are considered for the triggering of E. coli autolysins and for the role of autolytic activity in bacterial spheroplast formation, lysis, and death. Images PMID:93877

  17. Detection of Cell Surface Dopamine Receptors

    PubMed Central

    Xiao, Jiping; Bergson, Clare

    2014-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbant assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, cells surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact. PMID:23296774

  18. Mechanical guidance through cell-cell and cell-surface contact during multicellular streaming

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Driscoll, Meghan; Gupta, Satyandra K.; Parent, Carole; Losert, Wolfgang

    2014-03-01

    During collective cell migration, mechanical forces arise from the extracellular matrix (ECM) through cell-surface contact and from other cells through cell-cell contact. These forces regulate the motion of migrating cell groups. To determine how these mechanical interactions balance during cell migration, we measured the shape dynamics of Dictyostelium discoideum cells at the multicellular streaming stage. We found that cells can coordinate their motion by synchronizing protrusion waves that travel along their membranes when they form proper cell-cell adhesion and cell-surface adhesion. In addition, our experiments on live actin labeled cells show that intracellular actin polymerization actively responds to the change of cell-cell/surface adhesion and helps to stabilize multicellular migration streams. Our finding suggests that the coordination of motion between neighboring cells in collective migration requires a balance between cell-cell adhesion and cell-surface adhesion, and that the cell cytoskeleton plays an important role in this balance.

  19. Safranal and its analogs inhibit Escherichia coli ATP synthase and cell growth.

    PubMed

    Liu, Mason; Amini, Amon; Ahmad, Zulfiqar

    2017-02-01

    Safranal, a dominant component of saffron, is known to have antitumor, cytotoxic, and antibacterial properties. In this study, we examined safranal and its structural analogs-thymol, carvacrol, damascenone, cuminol, 2,6,6-trimethyl-2-cyclohexene-1,4-dione (TMCHD), 4-isopropylbenzyl bromide (IPBB), and 4-tert-butylphenol (TBP) induced inhibition of Escherichia coli membrane bound F1Fo ATP synthase. Safranal and its analogs inhibited wild-type enzyme to variable degrees. While safranal caused 100% inhibition of wild-type F1Fo ATP synthase, only about 50% inhibition occurred for αR283D mutant ATP synthase. Moreover, safranal, thymol, carvacrol, damascenone, cuminol, TMCHD, IPBB, and TBP all fully abrogated the growth of wild-type E. coli cells and had partial or no effect on the growth of null and mutant E. coli strains. Therefore, the antimicrobial properties of safranal, thymol, carvacrol, damascenone, cuminol, TMCHD, IPBB, and TBP can be linked to their binding and inhibition of ATP synthase. Total loss of growth in wild-type and partial or no growth loss in null or mutant E. coli strains demonstrates that ATP synthase is a molecular target for safranal and its structural analogs. Partial inhibition of the αArg-283 mutant enzyme establishes that αArg-283 residue is required in the polyphenol binding pocket of ATP synthase for the binding of safranal. Furthermore, partial growth loss for the null and mutant strains in the presence of inhibitors also suggests the role of other targets and residues in the process of inhibition.

  20. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    PubMed

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-10-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles.

  1. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    PubMed Central

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-01-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles. Images PMID:8404863

  2. Protection against Escherichia coli infection by antibody to the Staphylococcus aureus poly-N-acetylglucosamine surface polysaccharide

    PubMed Central

    Cerca, Nuno; Maira-Litrán, Tomás; Jefferson, Kimberly K.; Grout, Martha; Goldmann, Donald A.; Pier, Gerald B.

    2007-01-01

    Poly-N-acetylglucosamine (PNAG) is a surface polysaccharide produced by Staphylococcus aureus and Staphyloccus epidermidis and is an effective target for opsonic and protective Ab for these two organisms. Recently, it has been found that Escherichia coli produces an exo-polysaccharide, designated polyglucosamine, that is biochemically indistinguishable from PNAG. We analyzed 30 E. coli strains isolated from urinary tract and neonatal bloodstream infections for the pga locus, PNAG antigen production, and susceptibility to opsonic killing and protection from lethal infection by Ab to PNAG. Twenty-six of 30 strains carried the pga locus, 25 of 30 expressed immunologically detectable PNAG, and 21 of 30 could be killed by rabbit IgG specific for the deacetylated form of the staphylococcal PNAG. Ab to staphylococcal PNAG protected mice against lethality from five different E. coli strains expressing PNAG. PNAG expression by both Gram-negative and Gram-positive organisms could make this antigen a conserved vaccine target for multiple pathogenic species of bacteria. PMID:17446272

  3. Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone.

    PubMed

    Etchuuya, Rika; Ito, Miki; Kitano, Seiko; Shigi, Fukiko; Sobue, Rina; Maeda, Sumio

    2011-01-20

    Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5)-10(-6), suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.

  4. The Redundancy of Peptidoglycan Carboxypeptidases Ensures Robust Cell Shape Maintenance in Escherichia coli

    PubMed Central

    Peters, Katharina; Kannan, Suresh; Rao, Vincenzo A.; Biboy, Jacob; Vollmer, Daniela; Erickson, Stephen W.; Lewis, Richard J.

    2016-01-01

    ABSTRACT Peptidoglycan (PG) is an essential structural component of the bacterial cell wall and maintains the integrity and shape of the cell by forming a continuous layer around the cytoplasmic membrane. The thin PG layer of Escherichia coli resides in the periplasm, a unique compartment whose composition and pH can vary depending on the local environment of the cell. Hence, the growth of the PG layer must be sufficiently robust to allow cell growth and division under different conditions. We have analyzed the PG composition of 28 mutants lacking multiple PG enzymes (penicillin-binding proteins [PBPs]) after growth in acidic or near-neutral-pH media. Statistical analysis of the muropeptide profiles identified dd-carboxypeptidases (DD-CPases) that were more active in cells grown at acidic pH. In particular, the absence of the DD-CPase PBP6b caused a significant increase in the pentapeptide content of PG as well as morphological defects when the cells were grown at acidic pH. Other DD-CPases (PBP4, PBP4b, PBP5, PBP6a, PBP7, and AmpH) and the PG synthase PBP1B made a smaller or null contribution to the pentapeptide-trimming activity at acidic pH. We solved the crystal structure of PBP6b and also demonstrated that the enzyme is more stable and has a lower Km at acidic pH, explaining why PBP6b is more active at low pH. Hence, PBP6b is a specialized DD-CPase that contributes to cell shape maintenance at low pH, and E. coli appears to utilize redundant DD-CPases for normal growth under different conditions. PMID:27329754

  5. Surface structures involved in plant stomata and leaf colonization by shiga-toxigenic Escherichia coli o157:h7.

    PubMed

    Saldaña, Zeus; Sánchez, Ethel; Xicohtencatl-Cortes, Juan; Puente, Jose Luis; Girón, Jorge A

    2011-01-01

    Shiga-toxigenic Escherichia coli (STEC) O157:H7 uses a myriad of surface adhesive appendages including pili, flagella, and the type 3 secretion system (T3SS) to adhere to and inflict damage to the human gut mucosa. Consumption of contaminated ground beef, milk, juices, water, or leafy greens has been associated with outbreaks of diarrheal disease in humans due to STEC. The aim of this study was to investigate which of the known STEC O157:H7 adherence factors mediate colonization of baby spinach leaves and where the bacteria reside within tainted leaves. We found that STEC O157:H7 colonizes baby spinach leaves through the coordinated production of curli, the E. coli common pilus, hemorrhagic coli type 4 pilus, flagella, and T3SS. Electron microscopy analysis of tainted leaves revealed STEC bacteria in the internal cavity of the stomata, in intercellular spaces, and within vascular tissue (xylem and phloem), where the bacteria were protected from the bactericidal effect of gentamicin, sodium hypochlorite or ozonated water treatments. We confirmed that the T3S escN mutant showed a reduced number of bacteria within the stomata suggesting that T3S is required for the successful colonization of leaves. In agreement, non-pathogenic E. coli K-12 strain DH5α transformed with a plasmid carrying the locus of enterocyte effacement (LEE) pathogenicity island, harboring the T3SS and effector genes, internalized into stomata more efficiently than without the LEE. This study highlights a role for pili, flagella, and T3SS in the interaction of STEC with spinach leaves. Colonization of plant stomata and internal tissues may constitute a strategy by which STEC survives in a nutrient-rich microenvironment protected from external foes and may be a potential source for human infection.

  6. Surface Structures Involved in Plant Stomata and Leaf Colonization by Shiga-Toxigenic Escherichia Coli O157:H7

    PubMed Central

    Saldaña, Zeus; Sánchez, Ethel; Xicohtencatl-Cortes, Juan; Puente, Jose Luis; Girón, Jorge A.

    2011-01-01

    Shiga-toxigenic Escherichia coli (STEC) O157:H7 uses a myriad of surface adhesive appendages including pili, flagella, and the type 3 secretion system (T3SS) to adhere to and inflict damage to the human gut mucosa. Consumption of contaminated ground beef, milk, juices, water, or leafy greens has been associated with outbreaks of diarrheal disease in humans due to STEC. The aim of this study was to investigate which of the known STEC O157:H7 adherence factors mediate colonization of baby spinach leaves and where the bacteria reside within tainted leaves. We found that STEC O157:H7 colonizes baby spinach leaves through the coordinated production of curli, the E. coli common pilus, hemorrhagic coli type 4 pilus, flagella, and T3SS. Electron microscopy analysis of tainted leaves revealed STEC bacteria in the internal cavity of the stomata, in intercellular spaces, and within vascular tissue (xylem and phloem), where the bacteria were protected from the bactericidal effect of gentamicin, sodium hypochlorite or ozonated water treatments. We confirmed that the T3S escN mutant showed a reduced number of bacteria within the stomata suggesting that T3S is required for the successful colonization of leaves. In agreement, non-pathogenic E. coli K-12 strain DH5α transformed with a plasmid carrying the locus of enterocyte effacement (LEE) pathogenicity island, harboring the T3SS and effector genes, internalized into stomata more efficiently than without the LEE. This study highlights a role for pili, flagella, and T3SS in the interaction of STEC with spinach leaves. Colonization of plant stomata and internal tissues may constitute a strategy by which STEC survives in a nutrient-rich microenvironment protected from external foes and may be a potential source for human infection. PMID:21887151

  7. Lactobacilli, bifidobacteria and E. coli nissle induce pro- and anti-inflammatory cytokines in peripheral blood mononuclear cells

    PubMed Central

    Helwig, Ulf; Lammers, Karen M; Rizzello, Fernando; Brigidi, Patricia; Rohleder, Verena; Caramelli, Elisabetta; Gionchetti, Paolo; Schrezenmeir, Juergen; Foelsch, Ulrich R; Schreiber, Stefan; Campieri, Massimo

    2006-01-01

    AIM: To investigate whether the stimulation of peripheral blood mononuclear cells (PBMNC) with the cell debris and cell extraction of different probiotic strains is similar or species specific. METHODS: Three strains of bifidobacteria, 4 strains of lactobacilli, and E. coli nissle were sonicated and centrifuged in order to divide them into cell extract and cell debris. PBMNC were separated by density gradient and incubated for 36 h with either the cell debris or the cell extract of single strains of probiotic bacteria in doses from 102 to 108 CFU/mL. Cell supernatants were taken and interleukin (IL)-10, IL-1β, and tumor necosis factor (TNF)-α were determined by ELISA. RESULTS: Depending on the species super-family, the strains had different stimulation patterns. Except for both L. casei strains, the cell extract of bifidobacteria and lactobacilli had less stimulating capacity than cell debris, whereas the cell extract of E. coli nissle had similar stimulating properties to that of the cell debris of the strain and significantly more stimulating capacity than that of bifidobacteria and lactobacilli. The cell debris of bifidobacteria stimulated more cytokine release than the cell debris of lactobacilli. The cell debris of lactobacilli did not have a stimulating capacity when lower concentrations were used. Neither cell extraction nor cell debris had an inhibitory effect on the production of the tested cytokines by stimulated PBMNC. CONCLUSION: The incubation of probiotic strains, which have been used in clinical trials for inflammatory diseases, with immunocompetent cells leads to different species specific reactions. High IL-10 response to cell debris of bifidobacteria and E. coli nissle can be found. This corresponds to positive effects of bifidobacteria and E. coli nissle in clinical trials for inflammatory bowel disease compared to negative outcomes obtained with lactobacilli. PMID:17009396

  8. Relationships between Escherichia coli cells and the surrounding medium during survival processes.

    PubMed

    Arana, Inés; Seco, Carolina; Epelde, Koro; Muela, Alicia; Fernández-Astorga, Aurora; Barcina, Isabel

    2004-08-01

    In Escherichia coli, during survival under adverse conditions, namely starvation and luminous radiation, two things occur. On the one hand organic substances are released into the surrounding medium and on the other there is a transition from the culturable state to viable but non-culturable (VBNC). An analysis of organic molecules released into the surrounding medium showed the presence of proteins, dissolved free amino acids, and dissolved monomeric carbohydrates. The concentration of these substances in the medium changed with exposure time, type of stress and type of molecule. The proteins accumulated in the medium and in some cases their identification revealed the presence of components of the outer membrane. Variations in the concentration of amino acids and carbohydrates point to a twofold process of excretion and uptake. Indeed, cell free supernatants supported the growth of several generations of a population of 10(4) cells ml(-1). The survival of E. coli in supernatants previously colonized by cells in the VBNC state was greater than that observed in the control experiments, with a short delay in the loss of culturability. It was thus clear that organic molecules released into the medium play a role in the transition from culturable to VBNC state.

  9. Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line

    PubMed Central

    He, Xuan; Mishchuk, Darya O.; Shah, Jigna; Weimer, Bart C.; Slupsky, Carolyn M.

    2013-01-01

    Although there is great interest in the specific mechanisms of how gut microbiota modulate the biological processes of the human host, the extent of host-microbe interactions and the bacteria-specific metabolic activities for survival in the co-evolved gastrointestinal environment remain unclear. Here, we demonstrate a comprehensive comparison of the host epithelial response induced by either a pathogenic or commensal strain of Escherichia coli using a multi-omics approach. We show that Caco-2 cells incubated with E. coli display an activation of defense response genes associated with oxidative stress. Indeed, in the bacteria co-culture system, the host cells experience an altered environment compared with the germ-free system that includes reduced pH, depletion of major energy substrates, and accumulation of fermentation by-products. Measurement of intracellular Caco-2 cell metabolites revealed a significantly increased lactate concentration, as well as changes in TCA cycle intermediates. Our results will lead to a deeper understanding of acute microbial-host interactions. PMID:24301462

  10. Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells.

    PubMed

    Tokuyasu, K; Kaneko, S; Hayashi, K; Mori, Y

    1999-09-10

    With the aid of a signal sequence of a chitinase from Streptomyces lividans, a recombinant chitin deacetylase, whose gene originated from a Deuteromycete, Colletotrichum lindemuthianum, was produced in the culture medium of Escherichia coli cells, existing as a highly active form without the signal peptide. During the production of the recombinant chitin deacetylase, both a slight increase in the value of OD600 nm in the culture medium and a drastic decrease in viable cell number were observed. When penta-N-acetyl-chitopentaose was used as the substrate, the recombinant chitin deacetylase had comparable kinetic parameters to those of the original enzyme from the fungus. The addition of a C-terminal six histidine sequence to the recombinant enzyme caused a slight decrease in the kcat value, and the further addition of a 12 amino acid sequence at its N-terminus caused a further decrease in the value. This production system allowed us to easily produce in the culture media the recombinant chitin deacetylases possessing as good properties as the original enzyme, without any disruption steps of the E. coli cells.

  11. MioC and GidA proteins promote cell division in E. coli.

    PubMed

    Lies, Mark; Visser, Bryan J; Joshi, Mohan C; Magnan, David; Bates, David

    2015-01-01

    The well-conserved genes surrounding the E. coli replication origin, mioC and gidA, do not normally affect chromosome replication and have little known function. We report that mioC and gidA mutants exhibit a moderate cell division inhibition phenotype. Cell elongation is exacerbated by a fis deletion, likely owing to delayed replication and subsequent cell cycle stress. Measurements of replication initiation frequency and origin segregation indicate that mioC and gidA do not inhibit cell division through any effect on oriC function. Division inhibition is also independent of the two known replication/cell division checkpoints, SOS and nucleoid occlusion. Complementation analysis indicates that mioC and gidA affect cell division in trans, indicating their effect is at the protein level. Transcriptome analysis by RNA sequencing showed that expression of a cell division septum component, YmgF, is significantly altered in mioC and gidA mutants. Our data reveal new roles for the gene products of gidA and mioC in the division apparatus, and we propose that their expression, cyclically regulated by chromatin remodeling at oriC, is part of a cell cycle regulatory program coordinating replication initiation and cell division.

  12. Morphological analysis of nuclear separation and cell division during the life cycle of Escherichia coli.

    PubMed Central

    Woldringh, C L

    1976-01-01

    Quantitative electron microscope observations were performed on Escherichia coli B/r after balanced growth with doubling times (tau) of 32 and 60 min. The experimental approach allowed the timing of morphological events during the cell cycle by classifying serially sectioned cells according to length. Visible separation of the nucleoplasm was found to coincide with the time of termination of chromosome replication as predicted by the Cooper-Helmstetter model. The duration of the process of constrictive cell division (10 min) appeared to be independent of the growth rate for tau equals 60 min or less but to increase with increase doubling time in more slowly growing cells. Physiological division, i.e., compartmentalization prior to physical separation of the cells, was only observed to occur in the last minute of the cell cycle. The morphological results indicate that cell elongation continues during the division process in cells with tau equals 32 min, but fails to continue in cells with tau equals 60 min. Images PMID:1107308

  13. Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences.

    PubMed

    Carvalho, Rimenys Junior; Cabrera-Crespo, Joaquin; Tanizaki, Martha Massako; Gonçalves, Viviane Maimoni

    2012-05-01

    Pneumococcal surface protein A (PspA) is essential for Streptococcus pneumoniae virulence and its use either as a novel pneumococcal vaccine or as carrier in a conjugate vaccine would improve the protection and the coverage of the vaccine. Within this context, the development of scalable production and purification processes of His-tagged recombinant fragment of PspA from clade 3 (rfPspA3) in Escherichia coli BL21(DE3) was proposed. Fed-batch production was performed using chemically defined medium with glucose or glycerol as carbon source. Although the use of glycerol led to lower acetate production, the concentration of cells were similar at the end of both fed-batches, reaching high cell density of E. coli (62 g dry cell weight/L), and the rfPspA3 production was higher with glucose (3.48 g/L) than with glycerol (2.97 g/L). A study of downstream process was also carried out, including cell disruption and clarification steps. Normally, the first chromatography step for purification of His-tagged proteins is metal affinity. However, the purification design using anion exchange followed by metal affinity gave better results for rfPspA3 than the opposite sequence. Performing this new design of chromatography steps, rfPspA3 was obtained with 95.5% and 75.9% purity, respectively, from glucose and glycerol culture. Finally, after cation exchange chromatography, rfPspA3 purity reached 96.5% and 90.6%, respectively, from glucose and glycerol culture, and the protein was shown to have the expected alpha-helix secondary structure.

  14. [Protective action of reactivating factor of Luteococcus japonicus subsp. casei toward cells of Escherichia coli reparation mutants inactivated with UV-light].

    PubMed

    Vorob'eva, L I; Fedotova, A V; Khodzhaev, E Iu

    2010-01-01

    Reactivating factor (RF) from Luteococcus japonicus subsp. casei had a protective action on UV-irradiated cells of Escherichia coli AB1157 with a native reparation system and on cells of isogenic reparation mutants of E. coli UvrA-, RecA-, and PolA-: the effect resulted in multifold increase of survivability. Defense action of L. casei exometabolite is not connected with stimulating reparation systems in E. coli, and, probably, it is mediated by involvement of the exometabolite in the mechanism of cell division. RF did not provoke the reactivation of E. coli cells inactivated by UV-light.

  15. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Borel, Agnès; Candusso, Marie-Pierre; Megy, Simon; Montserret, Roland; Lahaye, Vincent; Terzian, Christophe; Verrier, Bernard

    2015-09-01

    Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models.

  16. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion.

    PubMed

    Shimizu, Takeshi; Ichimura, Kimitoshi; Noda, Masatoshi

    2015-12-07

    Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection.

  17. Development of a rapid capture-cum-detection method for Escherichia coli O157 from apple juice comprising nano-immunomagnetic separation in tandem with surface enhanced Raman scattering.

    PubMed

    Najafi, Roya; Mukherjee, Shubhasish; Hudson, Jim; Sharma, Anup; Banerjee, Pratik

    2014-10-17

    A combined capture and detection method comprising of nano-immunomagnetic separation (NIMS) and surface enhanced Raman spectroscopy (SERS) was developed to detect Escherichia coli O157 from liquid media including apple juice. The capture antibodies (cAbs) were immobilized on magnetite-gold (Fe3O4/Au) magnetic nanoparticles (MNPs) which were used for separation and concentration of the E. coli O157 cells from model liquid food matrix. The capture efficiency (CE) for E. coli O157 using MNP was found to be approximately 84-94%. No cross reactivity was observed with background non-target organisms. There was a significant difference in the mean CE of bacteria captured by MNP and commercially sourced immunomagnetic microbeads (p<0.05). For the detection of target pathogen, SERS labels were prepared by conjugating gold nanoparticles with Raman reporter molecules and the detector antibody (dAb). Au-Raman label-dAb was interacted with gold coated MNP-cAb-E. coli O157 complex. The ability of this immunoassay to detect E. coli O157 in apple juice was investigated. We have successfully applied the synthesized Fe3O4/Au nanoclusters to E. coli O157 detection in apple juice using the SERS method. The lowest detectable bacterial cell concentration in apple juice was 10(2)CFU/mL with a total analysis time of less than an hour. This method presents a convenient way of preconcentration, separation, and detection of low levels of target pathogen from liquid food matrix.

  18. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis.

    PubMed

    San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi

    2015-10-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain.

  19. Antimicrobial copper alloy surfaces are effective against vegetative but not sporulated cells of gram-positive Bacillus subtilis

    PubMed Central

    San, Kaungmyat; Long, Janet; Michels, Corinne A; Gadura, Nidhi

    2015-01-01

    This study explores the role of membrane phospholipid peroxidation in the copper alloy mediated contact killing of Bacillus subtilis, a spore-forming gram-positive bacterial species. We found that B. subtilis endospores exhibited significant resistance to copper alloy surface killing but vegetative cells were highly sensitive to copper surface exposure. Cell death and lipid peroxidation occurred in B. subtilis upon copper alloy surface exposure. In a sporulation-defective strain carrying a deletion of almost the entire SpoIIA operon, lipid peroxidation directly correlated with cell death. Moreover, killing and lipid peroxidation initiated immediately and at a constant rate upon exposure to the copper surface without the delay observed previously in E. coli. These findings support the hypothesis that membrane lipid peroxidation is the initiating event causing copper surface induced cell death of B. subtilis vegetative cells. The findings suggest that the observed differences in the kinetics of copper-induced killing compared to E. coli result from differences in cell envelop structure. As demonstrated in E. coli, DNA degradation was shown to be a secondary effect of copper exposure in a B. subtilis sporulation-defective strain. PMID:26185055

  20. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells.

    PubMed

    Canuto, K S; Sergio, L P S; Guimarães, O R; Geller, M; Paoli, F; Fonseca, A S

    2015-10-01

    Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia colicells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficientE. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out.

  1. Low-level red laser therapy alters effects of ultraviolet C radiation on Escherichia coli cells

    PubMed Central

    Canuto, K.S.; Sergio, L.P.S.; Guimarães, O.R.; Geller, M.; Paoli, F.; Fonseca, A.S.

    2015-01-01

    Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia colicells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficientE. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out. PMID:26445338

  2. Detection of cell surface dopamine receptors.

    PubMed

    Xiao, Jiping; Bergson, Clare

    2013-01-01

    Dopamine receptors are a class of metabotropic G protein-coupled receptors. Plasma membrane expression is a key determinant of receptor signaling, and one that is regulated both by extra and intracellular cues. Abnormal dopamine receptor signaling is implicated in several neuropsychiatric disorders, including schizophrenia and attention deficit hyperactivity disorder, as well as drug abuse. Here, we describe in detail the application of two complementary applications of protein biotinylation and enzyme-linked immunoabsorbent assay (ELISA) for detecting and quantifying levels of dopamine receptors expressed on the cell surface. In the biotinylation method, cell surface receptors are labeled with Sulfo-NHS-biotin. The charge on the sulfonyl facilitates water solubility of the reactive biotin compound and prevents its diffusion across the plasma membrane. In the ELISA method, surface labeling is achieved with antibodies specific to extracellular epitopes on the receptors, and by fixing the cells without detergent such that the plasma membrane remains intact.

  3. Vesicle trafficking and cell surface membrane patchiness.

    PubMed Central

    Tang, Q; Edidin, M

    2001-01-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  4. E. Coli

    MedlinePlus

    ... CDC Cancel Submit Search The CDC E.coli (Escherichia coli) Note: Javascript is disabled or is not supported ... Brand SoyNut Butter Read the Latest E. coli (Escherichia coli) General Information Protect Yourself Learn about E. coli ...

  5. Residence and transit times of MinD in E. coli bacterial cells

    NASA Astrophysics Data System (ADS)

    Giuliani, Maximiliano; Kelly, Corey; Dutcher, John

    2012-02-01

    A key step in the life of a bacterial cell is its division into two daughters cells of equal size. This process is carefully controlled and regulated so that an equal partitioning of the main cell components is obtained, which is critical for the viability of the daughter cells. In E. coli this regulation is accomplished in part by the Min protein system, that determines the localization of the division machinery. Of particular interest is the MinD protein that exhibits an oscillation between the poles in the rod shaped bacteria. The oscillation relies on a ATP mediated dimerization of the MinD protein that allows its insertion into the inner membrane at one of the poles of the cell, followed by an interaction with the MinE protein, which releases the MinD from the membrane, allowing it to travel to the other pole of the cell where the cycle is repeated. We have studied the spatio-temporal characteristics of the MinD oscillation from which we extract the average times for the two main processes that determine the oscillation period: the residence time in the membrane and the transit time to travel the length of the cell. Additionally, we explore how these two timescales are affected by stresses on the bacterial cells due to unfavorable physiological conditions.

  6. Cell surface engineering with edible protein nanoshells.

    PubMed

    Drachuk, Irina; Shchepelina, Olga; Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Stone, Morley; Tsukruk, Vladimir V

    2013-09-23

    Natural protein (silk fibroin) nanoshells are assembled on the surface of Saccharomyces cerevisiae yeast cells without compromising their viability. The nanoshells facilitate initial protection of the cells and allow them to function in encapsulated state for some time period, afterwards being completely biodegraded and consumed by the cells. In contrast to a traditional methanol treatment, the gentle ionic treatment suggested here stabilizes the shell silk fibroin structure but does not compromise the viability of the cells, as indicated by the fast response of the encapsulated cells, with an immediate activation by the inducer molecules. Extremely high viability rates (up to 97%) and preserved activity of encapsulated cells are facilitated by cytocompatibility of the natural proteins and the formation of highly porous shells in contrast to traditional polyelectrolyte-based materials. Moreover, in a high contrast to traditional synthetic shells, the silk proteins are biodegradable and can be consumed by cells at a later stage of growth, thus releasing the cells from their temporary protective capsules. These on-demand encapsulated cells can be considered a valuable platform for biocompatible and biodegradable cell encapsulation, controlled cell protection in a synthetic environment, transfer to a device environment, and cell implantation followed by biodegradation and consumption of protective protein shells.

  7. Curli modulates adherence of Escherichia coli O157:H7 to bovine recto-anal junction squamous epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our recent studies have shown that Intimin and the Locus of Enterocyte Effacement-encoded proteins do not play a role in Escherichia coli O157 (O157) adherence to the bovine recto-anal junction squamous epithelial cells (RSE) cells. Hence, to define factors that play a contributory role, we investi...

  8. Bovine recto-anal junction squamous epithelial (RSE) cell adhesion assay for studying Escherichia coli O157 adherence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An adherence assay, using recto-anal junction squamous epithelial cells (RSEC), was developed for Escherichia coli O157 and related organisms. The assay was standardized in comparison with the routinely used HEp-2 cell adherence assay, in this “proof of concept” study. The novel RSEC adhesion assay ...

  9. Cells of Escherichia coli are protected against severe chemical stress by co-habiting cell aggregates formed by Pseudomonas aeruginosa.

    PubMed

    Jagmann, Nina; Henke, Sebastian Franz; Philipp, Bodo

    2015-10-01

    Bacterial cells within biofilms and cell aggregates show increased resistance against chemical stress compared with suspended cells. It is not known whether bacteria that co-habit biofilms formed by other bacteria also acquire such resistance. This scenario was investigated in a proof-of-principle experiment with Pseudomonas aeruginosa strain PAO1 as cell aggregate-forming bacterium and Escherichia coli strain MG1655 as potential co-habiting bacterium equipped with an inducible bioluminescence system. Cell aggregation of strain PAO1 can be induced by the toxic detergent sodium dodecyl sulfate (SDS). In single cultures of strain MG1655, bioluminescence was inhibited by the protonophor carbonylcyanide-m-chlorophenylhydrazone (CCCP) but the cells were still viable. By applying CCCP and SDS together, cells of strain MG1655 lost their bioluminescence and viability indicating the importance of energy-dependent resistance mechanisms against SDS. In co-suspensions with strain PAO1, bioluminescence of strain MG1655 was sustained in the presence of SDS and CCCP. Image analysis showed that bioluminescent cells were located in cell aggregates formed by strain PAO1. Thus, cells of strain MG1655 that co-habited cell aggregates formed by strain PAO1 were protected against a severe chemical stress that was lethal to them in single cultures. Co-habiting could lead to increased survival of pathogens in clinical settings and could be employed in biotechnological applications involving toxic milieus.

  10. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging) of Escherichia coli.

    PubMed

    Clark, Michelle W; Yie, Anna M; Eder, Elizabeth K; Dennis, Richard G; Basting, Preston J; Martinez, Keith A; Jones, Brian D; Slonczewski, Joan L

    2015-01-01

    Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH), no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5) the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  11. Rapid Detection, Identification, and Enumeration of Escherichia coli Cells in Municipal Water by Chemiluminescent In Situ Hybridization

    PubMed Central

    Stender, Henrik; Broomer, Adam J.; Oliveira, Kenneth; Perry-O'Keefe, Heather; Hyldig-Nielsen, Jens J.; Sage, Andrew; Coull, James

    2001-01-01

    A new chemiluminescent in situ hybridization (CISH) method provides simultaneous detection, identification, and enumeration of culturable Escherichia coli cells in 100 ml of municipal water within one working day. Following filtration and 5 h of growth on tryptic soy agar at 35°C, individual microcolonies of E. coli were detected directly on a 47-mm-diameter membrane filter using soybean peroxidase-labeled peptide nucleic acid (PNA) probes targeting a species-specific sequence in E. coli 16S rRNA. Within each microcolony, hybridized, peroxidase-labeled PNA probe and chemiluminescent substrate generated light which was subsequently captured on film. Thus, each spot of light represented one microcolony of E. coli. Following probe selection based on 16S ribosomal DNA (rDNA) sequence alignments and sample matrix interference, the sensitivity and specificity of the probe Eco16S07C were determined by dot hybridization to RNA of eight bacterial species. Only the rRNA of E. coli and Pseudomonas aeruginosa were detected by Eco16S07C with the latter mismatch hybridization being eliminated by a PNA blocker probe targeting P. aeruginosa 16S rRNA. The sensitivity and specificity for the detection of E. coli by PNA CISH were then determined using 8 E. coli strains and 17 other bacterial species, including closely related species. No bacterial strains other than E. coli and Shigella spp. were detected, which is in accordance with 16S rDNA sequence information. Furthermore, the enumeration of microcolonies of E. coli represented by spots of light correlated 92 to 95% with visible colonies following overnight incubation. PNA CISH employs traditional membrane filtration and culturing techniques while providing the added sensitivity and specificity of PNA probes in order to yield faster and more definitive results. PMID:11133438

  12. Effectiveness of acidified sodium chlorite and other sanitizers to control Escherichia coli O157:H7 on tomato surfaces.

    PubMed

    Inatsu, Yasuhiro; Kitagawa, Tomoko; Bari, Md Latiful; Nei, Daisuke; Juneja, Vijay; Kawamoto, Shinichi

    2010-06-01

    The use of a suitable sanitizer can reduce the risk of produce-related foodborne illnesses. We evaluated the effectiveness of several sanitizers to reduce inoculated Escherichia coli O157:H7 on the surface of cherry tomatoes (Solanum lycopersicum var. cerasiform). Depending on the method of inoculation (dipping/spotting), each of 80 g (eight tomatoes) of inoculated cherry tomatoes was washed in 400 mL of sanitizer solutions or 400 mL distilled water for 5 minutes. The effectiveness of sanitizers on spot-inoculated E. coli O157:H7 on tomato surfaces was found higher than on dip-inoculated tomatoes. Washing with water or chlorine water (0.1 g/L as free chlorine) could reduce 1.3 log CFU/g of E. coli O157:H7 in dip-inoculated (6.8 log CFU/g) tomatoes. Washing with lactic acid (LA) solution (1.0 g/L), phytic acid solution (1.0 g/L), calcinated seashells (oyster/sakhalin surf clam), and 1.0 g/L chitosan in 0.5 g/L LA (Chito) did not exhibit a significant higher effectiveness than that of water wash alone (1.0 log CFU/g). Acidified sodium chlorite (ASC) solution prepared from 0.5 g/L of sodium chlorite and 1.0 g/L LA or phytic acid reduced 3.5 log CFU/g of E. coli O157:H7 in dip-inoculated tomato surfaces. ASC (0.5 g/L of sodium chlorite and 1.0 g/L of LA) wash followed by a second wash with LA exhibited an additional sanitary effectiveness compared to a single wash with ASC. However, washing with ASC followed by a second wash with Chito exhibited an additional 1.0 log CFU/g reduction compared to a secondary wash with water. No significant difference of color, taste, and texture was observed among the washed cherry tomatoes.

  13. Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells.

    PubMed

    Baldi, Franco; Daniele, Salvatore; Gallo, Michele; Paganelli, Stefano; Battistel, Dario; Piccolo, Oreste; Faleri, Claudia; Puglia, Anna Maria; Gallo, Giuseppe

    2016-04-01

    Silver nanoparticles (AgNPs), embedded into a specific exopolysaccharide (EPS), were produced by Klebsiella oxytoca DSM 29614 by adding AgNO3 to the cultures during exponential growth phase. In particular, under aerobic or anaerobic conditions, two types of silver nanoparticles, named AgNPs-EPS(aer) and the AgNPs-EPS(anaer), were produced respectively. The effects on bacterial cells was demonstrated by using Escherichia coli K12 and Kocuria rhizophila ATCC 9341 (ex Micrococcus luteus) as Gram-negative and Gram-positive tester strains, respectively. The best antimicrobial activity was observed for AgNPs-EPS(aer), in terms of minimum inhibitory concentrations and minimum bactericidal concentrations. Observations by transmission electron microscopy showed that the cell morphology of both tester strains changed during the exposition to AgNPs-EPS(aer). In particular, an electron-dense wrapped filament was observed in E. coli cytoplasm after 3 h of AgNPs-EPS(aer) exposition, apparently due to silver accumulation in DNA, and both E. coli and K. rhizophila cells were lysed after 18 h of exposure to AgNPs-EPS(aer). The DNA breakage in E. coli cells was confirmed by the comparison of 3-D fluorescence spectra fingerprints of DNA. Finally the accumulation of silver on DNA of E. coli was confirmed directly by a significant Ag(+) release from DNA, using the scanning electrochemical microscopy and the voltammetric determinations.

  14. Ascorbate enhances u. v. -mutagenesis in E. coli but inhibits it in Chinese hamster cells

    SciTech Connect

    Rossman, T.G.; Klein, C.B.; Naslund, M.

    1986-05-01

    Ascorbic acid (vitamin C) causes an increase in the mutation frequency of u.v.-irradiated Escherichia coli WP2. The enhancement occurs at all u.v. fluences, and is dependent upon the ascorbate concentration in the medium. A maximum effect (approximately 8- to 13-fold) is seen at 100-150 micrograms/ml, although some enhancement can be seen even at 10 micrograms/ml. The comutagenic effect of ascorbate with u.v. in E. coli is dependent upon peptone, a constituent of nutrient broth. The enhancement of u.v.-mutagenesis by ascorbate is absent in strains WP2s (uvrA) and WP6 (polA), suggesting that ascorbate affects the repair of pyrimidine dimers. The opposite results are observed for u.v.-mutagenesis in Chinese hamster V79 cells. The presence of ascorbate (50 micrograms/ml) during u.v. irradiation does not enhance the u.v. effect, but rather decreases it approximately 30%. These results are discussed with regard to differences in the mechanism of u.v.-mutagenesis and DNA repair in bacterial and mammalian cells.

  15. Biocatalytic Production of Trehalose from Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli

    PubMed Central

    Sun, Ye; Mei, Wending; Ouyang, Jia

    2015-01-01

    Trehalose is a non-reducing disaccharide, which can protect proteins, lipid membranes, and cells from desiccation, refrigeration, dehydration, and other harsh environments. Trehalose can be produced by different pathways and trehalose synthase pathway is a convenient, practical, and low-cost pathway for the industrial production of trehalose. In this study, 3 candidate treS genes were screened from genomic databases of Pseudomonas and expressed in Escherichia coli. One of them from P. stutzeri A1501 exhibited the best transformation ability from maltose into trehalose and the least byproduct. Thus, whole cells of this recombinant E. coli were used as biocatalyst for trehalose production. In order to improve the conversion rate of maltose to trehalose, optimization of the permeabilization and biotransformation were carried out. Under optimal conditions, 92.2 g/l trehalose was produced with a high productivity of 23.1 g/(l h). No increase of glucose was detected during the whole course. The biocatalytic process developed in this study might serve as a candidate for the large scale production of trehalose. PMID:26462117

  16. Novel mechanism of cell division inhibition associated with the SOS response in Escherichia coli.

    PubMed Central

    D'Ari, R; Huisman, O

    1983-01-01

    Certain Escherichia coli strains were shown to possess a novel system of cell division inhibition, called the SfiC+ phenotype. SfiC+ filamentation had a number of properties similar to those of sfiA-dependent division inhibition previously described: (i) both are associated with the SOS response induced by expression of the recA(Tif) mutation, (ii) both are associated with cell death, (iii) both are amplified in mutants lacking the Lon protease, and (iv) both are suppressed by sfiB mutations. SfiC+ filamentation and sfiA-dependent division inhibition differed in (i) the physiological conditions under which loss of viability is observed, (ii) the extent of amplification in lon mutants, (iii) their genetic regulation (SfiC+ filamentation is not under direct negative control of the LexA repressor), and (iv) their genetic determinants (SfiC+ filamentation depends on a locus, sfiC+, near 28 min on the E. coli map and distinct from sfiA). Images PMID:6352679

  17. Biocatalytic Production of Trehalose from Maltose by Using Whole Cells of Permeabilized Recombinant Escherichia coli.

    PubMed

    Zheng, Zhaojuan; Xu, Ying; Sun, Ye; Mei, Wending; Ouyang, Jia

    2015-01-01

    Trehalose is a non-reducing disaccharide, which can protect proteins, lipid membranes, and cells from desiccation, refrigeration, dehydration, and other harsh environments. Trehalose can be produced by different pathways and trehalose synthase pathway is a convenient, practical, and low-cost pathway for the industrial production of trehalose. In this study, 3 candidate treS genes were screened from genomic databases of Pseudomonas and expressed in Escherichia coli. One of them from P. stutzeri A1501 exhibited the best transformation ability from maltose into trehalose and the least byproduct. Thus, whole cells of this recombinant E. coli were used as biocatalyst for trehalose production. In order to improve the conversion rate of maltose to trehalose, optimization of the permeabilization and biotransformation were carried out. Under optimal conditions, 92.2 g/l trehalose was produced with a high productivity of 23.1 g/(l h). No increase of glucose was detected during the whole course. The biocatalytic process developed in this study might serve as a candidate for the large scale production of trehalose.

  18. Inactivation of E. Coli cell viability and DNA Photo-breakage by Pulsed Nitrogen Laser Radiation

    SciTech Connect

    Cheba, Ben Amar; Alzaag, Ali; Tilfah, Nafie A.

    2005-03-17

    The mutagenic and lethal effect of nitrogen laser radiation: 337.1 nm wave length, 1.5 millijoul pulse energy, 10 nanosecond pulse with and pulse repetition rate range from 1 to 50 Pulse/ second was evaluated on E. Coli cells. Results indicated that irradiation of E. coli JMP39 with pulse repetition of 8 , 16 , 32 pulse/sec, for 1, 5 , 10, 25 min respectively led to a significant decrease in cell count proportional to irradiation dose with significant increase in lacmutation frequency accompanied with some mutations in pattern of antibiotic resistance. The effect of nitrogen laser on the genomic content of the strain JMP39 was also studied by irradiating the total DNA with 30 pulse/second for 1 ,5, 15 , 30 min then subjected to both agarose gel electrophoresis and scanning spectrophotometry. The first technique revealed to DNA photo breakage and significant decrease in DNA absorbency was noticed by scanning spectrophotometry. This could be attributed to photo-decomposition resulted from multi-photo-excitation of UV-Laser pulses.

  19. Constitutive stable DNA replication in Escherichia coli cells lacking type 1A topoisomerase activity.

    PubMed

    Martel, Makisha; Balleydier, Aurélien; Sauriol, Alexandre; Drolet, Marc

    2015-11-01

    Type 1A topoisomerases (topos) are ubiquitous enzymes involved in supercoiling regulation and in the maintenance of genome stability. Escherichia coli possesses two type 1A enzymes, topo I (topA) and topo III (topB). Cells lacking both enzymes form very long filaments and have severe chromosome segregation and growth defects. We previously found that RNase HI overproduction or a dnaT::aph mutation could significantly correct these phenotypes. This leads us to hypothesize that they were related to unregulated replication originating from R-loops, i.e. constitutive stable DNA replication (cSDR). cSDR, first observed in rnhA (RNase HI) mutants, is characterized by its persistence for several hours following protein synthesis inhibition and by its requirement for primosome components, including DnaT. Here, to visualize and measure cSDR, the incorporation of the nucleotide analog ethynyl deoxyuridine (EdU) during replication in E. coli cells pre-treated with protein synthesis inhibitors, was revealed by "click" labeling with Alexa Fluor(®) 488 in fixed cells, and flow cytometry analysis. cSDR was detected in rnhA mutants, but not in wild-type strains, and the number of cells undergoing cSDR was significantly reduced by the introduction of the dnaT::aph mutation. cSDR was also found in topA, double topA topB but not in topB null cells. This result is consistent with the established function of topo I in the inhibition of R-loop formation. Moreover, our finding that topB rnhA mutants are perfectly viable demonstrates that topo III is not uniquely required during cSDR. Thus, either topo I or III can provide the type 1A topo activity that is specifically required during cSDR to allow chromosome segregation.

  20. Metabolic activity of bacterial cell enumerated by direct viable count. [Escherichia coli; Salmonella enteritidis

    SciTech Connect

    Roszak, D.B.; Colwell, R.R.

    1987-12-01

    The direct viable count (DVC) method was modified by incorporation radiolabeled substrates in microautoradiographic analyses to assess bacterial survival in controlled laboratory microcosms. The DVC method, which permits enumeration of culturable and nonculturable cells, discriminates those cells that are responsive to added nutrients but in which division is inhibited by the addition of nalidixic acid. The resulting elongated cells represent all viable cells; this includes those that are culturable on routine media and those that are not. Escherichia coli and Salmonella enteritidis were employed in the microcosm studies, and radiolabeled substrates included (methyl-/sup 3/H) thymidine or (U-/sup 14/C) glutamic acid. Samples taken at selected intervals during the survival experiments were examined by epifluorescence microscopy to enumerate cells by the DVC and acridine orange direct count methods, as well as by culture methods. Good correlation was obtained for cell-associated metabolic activity, measured by microautoradiography and substrate responsiveness (by the DVC method) at various stages of survival. Of the cells responsive to nutrients by the DVC method, ca. 90% were metabolically active by the microautoradiographic method. No significant difference was observed between DVC enumerations with or without added radiolabeled substrate.

  1. Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence.

    PubMed

    Chai, Qian; Singh, Bhupender; Peisker, Kristin; Metzendorf, Nicole; Ge, Xueliang; Dasgupta, Santanu; Sanyal, Suparna

    2014-04-18

    We have examined the distribution of ribosomes and nucleoids in live Escherichia coli cells under conditions of growth, division, and in quiescence. In exponentially growing cells translating ribosomes are interspersed among and around the nucleoid lobes, appearing as alternative bands under a fluorescence microscope. In contrast, inactive ribosomes either in stationary phase or after treatment with translation inhibitors such as chloramphenicol, tetracycline, and streptomycin gather predominantly at the cell poles and boundaries with concomitant compaction of the nucleoid. However, under all conditions, spatial segregation of the ribosomes and the nucleoids is well maintained. In dividing cells, ribosomes accumulate on both sides of the FtsZ ring at the mid cell. However, the distribution of the ribosomes among the new daughter cells is often unequal. Both the shape of the nucleoid and the pattern of ribosome distribution are also modified when the cells are exposed to rifampicin (transcription inhibitor), nalidixic acid (gyrase inhibitor), or A22 (MreB-cytoskeleton disruptor). Thus we conclude that the intracellular organization of the ribosomes and the nucleoids in bacteria are dynamic and critically dependent on cellular growth processes (replication, transcription, and translation) as well as on the integrity of the MreB cytoskeleton.

  2. Transport of pyrimidine nucleosides in cells of Escherichia coli K 12.

    PubMed

    Mygind, B; Munch-Petersen

    1975-11-15

    1. The transport of pyrimidine mucleosides into cells of Escherichis coli has been investigated in mutant strains which cannot metabolize these nucleosides. Such cells transport and concentrate purimidine mucleosides several hindredfold. 2. The transport is inhibited by energy poisons and by sulfhydryl reagents. 3. Pyrimidine mucleosides compete mutually for transport. Adenosine is also a strong competitor while guanosine and inosine are weak competitors. 4. The rate of pyrimidine mucleoside transport is shown to be under control of the cytR and deoR gene products, which are also known to regulate the synthesis of nucleoside-catabolizing enzymes. The transport system is repressed by growth on glucose, as is the synthesis of the enzymes.

  3. Expression and purification of human FANCI and FANCD2 using Escherichia coli cells.

    PubMed

    Takahashi, Daisuke; Sato, Koichi; Shimomuki, Mayo; Takata, Minoru; Kurumizaka, Hitoshi

    2014-11-01

    The DNA interstrand crosslink (ICL) is an extremely deleterious DNA lesion that covalently crosslinks complementary strands and prevents the strand-separation reaction. In higher eukaryotes, the Fanconi anemia proteins, FANCI and FANCD2, form a heterodimer and play essential roles in ICL repair. Human FANCI and FANCD2 are large proteins with molecular masses of 149kDa and 164kDa, respectively, and were reportedly purified using a baculovirus expression system with insect cells. We have established a novel expression and purification procedure for human FANCD2 and FANCI, using Escherichia coli cells. The human FANCD2 and FANCI proteins purified by this bacterial expression method formed a stable heterodimer, and exhibited DNA binding and histone chaperone activities, as previously reported for the proteins purified by the baculovirus system. Therefore, these purification methods for human FANCI and FANCD2 provide novel procedures to facilitate structural and biochemical studies of human FANCI and FANCD2.

  4. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    PubMed Central

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  5. Glycopeptide capture for cell surface proteomics.

    PubMed

    Lee, M C Gilbert; Sun, Bingyun

    2014-05-09

    Cell surface proteins, including extracellular matrix proteins, participate in all major cellular processes and functions, such as growth, differentiation, and proliferation. A comprehensive characterization of these proteins provides rich information for biomarker discovery, cell-type identification, and drug-target selection, as well as helping to advance our understanding of cellular biology and physiology. Surface proteins, however, pose significant analytical challenges, because of their inherently low abundance, high hydrophobicity, and heavy post-translational modifications. Taking advantage of the prevalent glycosylation on surface proteins, we introduce here a high-throughput glycopeptide-capture approach that integrates the advantages of several existing N-glycoproteomics means. Our method can enrich the glycopeptides derived from surface proteins and remove their glycans for facile proteomics using LC-MS. The resolved N-glycoproteome comprises the information of protein identity and quantity as well as their sites of glycosylation. This method has been applied to a series of studies in areas including cancer, stem cells, and drug toxicity. The limitation of the method lies in the low abundance of surface membrane proteins, such that a relatively large quantity of samples is required for this analysis compared to studies centered on cytosolic proteins.

  6. Effect of cell immobilization on the growth dynamics of Salmonella Typhimurium and Escherichia coli at suboptimal temperatures.

    PubMed

    Smet, Cindy; Van Derlinden, Eva; Mertens, Laurence; Noriega, Estefanía; Van Impe, Jan F

    2015-09-02

    Predictive microbiology has recently acknowledged the impact of the solid(like) food structure on microbial behavior. The presence of this solid(like) structure causes microorganisms to grow as colonies and no longer planktonically as in liquid. In this paper, the growth dynamics of Salmonella Typhimurium and Escherichia coli were studied as a function of temperature, considering different growth morphologies, i.e., (i) planktonic cells, (ii) immersed colonies and (iii) surface colonies. For all three growth morphologies, both microorganisms were grown in petri dishes. While E. coli was grown under optimal pH and water activity (aw), for S. Typhimurium pH and aw were adapted to 5.5 and 0.990. In order to mimic a solid(like) environment, 5% (w/v) gelatin was added. All petri dishes were incubated under static conditions at temperatures in the range [8.0°C-22.0°C]. Cell density was determined via viable plate counting. This work demonstrates that the growth morphology (planktonic vs. colony) has a negligible effect on the growth dynamics as a function of temperature. The observation of almost equal growth rates for planktonic cultures and colonies is in contrast to literature where, mostly, a difference is observed, i.e., μplanktonic cells≥μimmersed colonies≥μsurface colonies. This difference might be due to shaking of the liquid culture in these studies, which results in a nutrient and oxygen rich environment, in contrast to the diffusion-limited gel system. Experiments also indicate that lag phases for solid(like) systems are similar to those for the planktonic cultures, as can be found in literature for similar growth conditions. Considering the maximum cell density, no clear trend was deducted for either of the microorganisms. This study indicates that the growth parameters in the suboptimal temperature range do not depend on the growth morphology. For the considered experimental conditions, models previously developed for liquid environments can be used

  7. Engineering nanostructured porous SiO2 surfaces for bacteria detection via "direct cell capture".

    PubMed

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Tzur, Adi; Krepker, Maksym A; Segal, Ester

    2011-05-01

    An optical label-free biosensing platform for bacteria detection ( Escherichia coli K12 as a model system) based on nanostructured oxidized porous silicon (PSiO(2)) is introduced. The biosensor is designed to directly capture the target bacteria cells on its surface with no prior sample processing (such as cell lysis). The optical reflectivity spectrum of the PSiO(2) nanostructure displays Fabry-Pérot fringes characteristic of thin-film interference, enabling direct, real-time observation of bacteria attachment within minutes. The PSiO(2) optical nanostructure is synthesized and used as the optical transducer element. The porous surface is conjugated with specific monoclonal antibodies (immunoglobulin G's) to provide the active component of the biosensor. The immobilization of the antibodies onto the biosensor system is confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, fluorescent labeling experiments, and refractive interferometric Fourier transform spectroscopy. We show that the immobilized antibodies maintain their immunoactivity and specificity when attached to the sensor surface. Exposure of these nanostructures to the target bacteria results in "direct cell capture" onto the biosensor surface. These specific binding events induce predictable changes in the thin-film optical interference spectrum of the biosensor. Our preliminary studies demonstrate the applicability of these biosensors for the detection of low bacterial concentrations. The current detection limit of E. coli K12 bacteria is 10(4) cells/mL within several minutes.

  8. L. plantarum prevents Enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells

    PubMed Central

    2009-01-01

    Background It is increasingly recognized that Lactobacillus plantarum (L. plantarum) has the ability to protect against Enteropathogenic Escherichia coli (EPEC)-induced damage of the epithelial monolayer barrier function by preventing changes in host cell morphology, attaching/effacing (A/E) lesion formation, monolayer resistance, and macromolecular permeability. However, the cellular mechanism involved in this protective effect still remained to be clarified. Methods This study was to investigate the effect of L. plantarum on the changes of Caco-2 cells responding to Enteroinvasive Escherichia coli (EIEC), the permeability of cell monolayer and the transmissivity of dextran, and the distribution and expression of the tight junction (TJ) proteins, such as Claudin-1, Occludin, JAM-1 and ZO-1 were examined when infected with EIEC or adhesived of L. plantarum after infection by confocal laser scanning microscopy (CLSM), immunohistochemistry and Western blotting, the cytoskeleton protein F-actin were observed with FITC-phalloidin. Results This study demonstrated that the transepithelial electrical resistance (TER) step down and dextran integrated intensity (DII) step up with time after infected with EIEC, but after treating with L. plantarum, the changes of TER and DII were improved as compared with EIEC group. L. plantarum prevented the damage of expression and rearrangement of Claudin-1, Occludin, JAM-1 and ZO-1 proteins induced by EIEC, and could ameliorate the injury of cytoskeleton protein F-actin infected with EIEC. Conclusion L. plantarum exerted a protective effect against the damage to integrity of Caco-2 monolayer cells and the structure and distribution of TJ proteins by EIEC infection. PMID:19331693

  9. Characterization of the cell surface properties of drinking water pathogens by microbial adhesion to hydrocarbon and electrophoretic mobility measurements.

    PubMed

    Popovici, Jonathan; White, Colin P; Hoelle, Jill; Kinkle, Brian K; Lytle, Darren A

    2014-06-01

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregation, adhesion to surfaces, and stability of the cells within the aqueous environments. These cell characteristics are unique to the bacterial species and are a reflection of the large diversity of surface structures, proteins, and appendages of microorganisms. CSH and EPM of bacterial cells contribute substantially to the effectiveness of drinking water treatment to remove them, and therefore an investigation of these properties will be useful in predicting their removal through drinking water treatment processes and transport through drinking water distribution systems. EPM and CSH measurements of six microbiological pathogen or surrogate species suspended in phosphate-buffered water are reported in this work. Two strains of Vibrio cholerae were hydrophobic, while three strains of Escherichia coli were hydrophilic. Bacillus cereus was categorized as moderately hydrophobic. The strains of E. coli had the highest (most negative) EPM. Based on the measurements, E. coli species is predicted to be most difficult to remove from water while V. cholerae will be the easiest to remove.

  10. Effect of Escherichia coli heat-stable enterotoxin on cell volume and intracellular inorganic ions of rat intestinal cells.

    PubMed

    Gilles-Baillien, M; Gerday, C; Kaeckenbeeck, A; Flamee, P A; Duchesne, P Y

    1987-11-01

    1.--Electron micrographs of rat jejunum mucosa incubated for 1 h in the presence of Escheria coli heat-stable enterotoxin (STa) in the lumen shows alterations of villous cells as well as of crypt cells. The brush border of mature enterocytes is partially desintegrated and covered with a thick mucus. Crypts are occupied on half of their height by cells very similar to Paneth cells, loaded with numerous large dark inclusions. 2.--Cell volume and intracellular inorganic ion concentrations have been estimated in mucosal scrapings of jejunum sacs, incubated in vitro for 1 or 3 h. The quick action (1 h of incubation) of STa is a swelling of the intestinal calls accompanied by an increase in Na+, Cl- and Ca2+ intracellular concentrations and a decrease in the K+ and Mg2+ ones. The delayed action (3 h of incubation) is an increase of extracellular space and a decrease in cell volume; and at the same time the intracellular concentration of Na+, Cl-, K+, Ca2+ and Mg2+ is augmented. 3.--After 3 h of incubation intestinal cells from the other levels of intestine (duodenum, ileum and colon) show the same variations in cell volume and intracellular inorganic ion concentrations under the influence of STa, as those recorded in the jejunum. 4.--The present work favours the hypothesis that all intestinal cells, villous or cryptic, are involved in the alteration of fluid ion transport ending in diarrhea.

  11. Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell.

    PubMed

    Caschera, Filippo; Noireaux, Vincent

    2016-01-01

    Cell-free expression is a technology used to synthesize minimal biological cells from natural molecular components. We have developed a versatile and powerful all-E. coli cell-free transcription-translation system energized by a robust metabolism, with the far objective of constructing a synthetic cell capable of self-reproduction. Inorganic phosphate (iP), a byproduct of protein synthesis, is recycled through polysugar catabolism to regenerate ATP (adenosine triphosphate) and thus supports long-lived and highly efficient protein synthesis in vitro. This cell-free TX-TL system is encapsulated into cell-sized unilamellar liposomes to express synthetic DNA programs. In this work, we study the compartmentalization of cell-free TX-TL reactions, one of the aspects of minimal cell module integration. We analyze the signals of various liposome populations by fluorescence microscopy for one and for two reporter genes, and for an inducible genetic circuit. We show that small nutrient molecules and proteins are encapsulated uniformly in the liposomes with small fluctuations. However, cell-free expression displays large fluctuations in signals among the same population, which are due to heterogeneous encapsulation of the DNA template. Consequently, the correlations of gene expression with the compartment dimension are difficult to predict accurately. Larger vesicles can have either low or high protein yields.

  12. Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli

    PubMed Central

    Davies, Bryan W.; Kohanski, Michael A.; Simmons, Lyle A.; Winkler, Jonathan A.; Collins, James J.; Walker, Graham C.

    2010-01-01

    SUMMARY Hydroxyurea (HU) specifically inhibits class I ribonucleotide reductase (RNR), depleting dNTP pools and leading to replication fork arrest. While HU inhibition of RNR has been recognized for decades, the mechanism by which it leads to cell death remains unknown. To investigate the mechanism of HU-induced cell death we used a systems-level approach to determine the genomic and physiological responses of E. coli to HU treatment. Our results suggest a model by which HU treatment rapidly induces a set of protective responses to manage genomic instability in the majority of the cell population. Continued HU stress activates iron uptake as well as the toxins MazF and RelE whose activity causes the synthesis of incompletely translated proteins and stimulation of the envelope stress response system. These effects alter the properties of one of the cell’s two terminal cytochrome oxidases in the electron transport chain, causing an increase in the production of superoxide. The increased superoxide production from the respiratory chain together with the increased iron uptake fuels the formation of hydroxyl radicals that contribute to HU-induced cell death. This work significantly expands our understanding of HU-mediated cell death and more broadly suggests a pathway whereby replication fork arrest leads to cell death. PMID:20005847

  13. A Spatial Control for Correct Timing of Gene Expression during the Escherichia coli Cell Cycle

    PubMed Central

    Yao, Yuan; Fan, Lifei; Shi, Yixin; Odsbu, Ingvild; Morigen

    2016-01-01

    Temporal transcriptions of genes are achieved by different mechanisms such as dynamic interaction of activator and repressor proteins with promoters, and accumulation and/or degradation of key regulators as a function of cell cycle. We find that the TorR protein localizes to the old poles of the Escherichia coli cells, forming a functional focus. The TorR focus co-localizes with the nucleoid in a cell-cycle-dependent manner, and consequently regulates transcription of a number of genes. Formation of one TorR focus at the old poles of cells requires interaction with the MreB and DnaK proteins, and ATP, suggesting that TorR delivery requires cytoskeleton organization and ATP. Further, absence of the protein–protein interactions and ATP leads to loss in function of TorR as a transcription factor. We propose a mechanism for timing of cell-cycle-dependent gene transcription, where a transcription factor interacts with its target genes during a specific period of the cell cycle by limiting its own spatial distribution. PMID:28025549

  14. Living Toroids - Cells on Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto

    2014-03-01

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.

  15. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  16. Comparison of methods for fluorescent detection of viable, dead, and total Escherichia coli O157:H7 cells in suspensions and on apples using confocal scanning laser microscopy following treatment with sanitizers.

    PubMed

    Burnett, Scott L; Beuchat, Larry R

    2002-03-25

    The influence of treating Escherichia coli O157:H7 cells labeled with an enhanced green fluorescent protein (EGFP) plasmid with 20 microg/ml active chlorine, 100 mg/ml hydrogen peroxide, and 80 mg/ml acetic acid on fluorescence intensity was determined. In addition, fluorescent staining methods to differentiate viable and dead E. coli O157:H7 cells on the cuticle of Red Delicious cv. apples following treatment with water or 200 microg/ml active chlorine were evaluated. Suspensions of E. coli O157:H7 EGFP+ cells were exposed to chemical treatment solutions for 0, 30, 60, 120, or 300 s before populations (log10 cfu/ml) were determined by surface plating, and fluorescence intensities of suspensions and individual cells were measured using spectrofluorometry and confocal scanning laser microscopy (CSLM), respectively. The relative fluorescence intensity of suspensions and individual cells changed upon exposure to various treatments. Results indicate that the use of EGFP to tag E. coli O157:H7 may not be appropriate for investigations seeking to microscopically differentiate viable and dead cells on produce following surface treatment with sanitizers. SYTOX Orange and SYTOX Green nucleic acid stains fluorescently labeled dead E. coli O157:H7 cells attached to apple cuticles more intensely than did propidium iodide. A cross-signal occurred between CSLM photomultipliers when examining tissues treated with SYTOX Orange to detect dead cells and antibody labeled with Alexa Fluor 488 to detect total (dead and viable) cells. Because of the possibility of cross-signal resulting in an overestimation of the number of dead cells on apples and, perhaps, other produce treated with these stains, SYTOX Green is preferred to detect dead cells and antibody labeled with Alexa Fluor 594 is preferred to detect the total number of cells on apple surfaces following treatment with sanitizers. The performance of SYTOX Green in combination with Alexa Fluor 594 to detect dead and total cells of

  17. Specialized cell surface structures in cellulolytic bacteria.

    PubMed

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-08-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose.

  18. Specialized cell surface structures in cellulolytic bacteria.

    PubMed Central

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-01-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817

  19. The Escherichia coli datA site promotes proper regulation of cell division.

    PubMed

    Morigen, Morigen; Flåtten, Ingvild; Skarstad, Kirsten

    2014-04-01

    In Escherichia coli inhibition of replication leads to a block of cell division. This checkpoint mechanism ensures that no cell divides without having two complete copies of the genome to pass on to the two daughter cells. The chromosomal datA site is a 1 kb region that contains binding sites for the DnaA replication initiator protein, and which contributes to the inactivation of DnaA. An excess of datA sites provided on plasmids has been found to lead to both a delay in initiation of replication and in cell division during exponential growth. Here we have investigated the effect of datA on the cell division block that occurs upon inhibition of replication initiation in a dnaC2 mutant. We found that this checkpoint mechanism was aided by the presence of datA. In cells where datA was deleted or an excess of DnaA was provided, cell division occurred in the absence of replication and anucleate cells were formed. This finding indicates that loss of datA and/or excess of DnaA protein promote cell division. This conclusion was supported by the finding that the lethality of the division-compromised mutants ftsZ84 and ftsI23 was suppressed by deletion of datA, at the lowest non-permissive temperature. We propose that the cell division block that occurs upon inhibition of DNA replication is, at least in part, due to a drop in the concentration of the ATP-DnaA protein.

  20. Escherichia coli common pilus (ECP) targets arabinosyl residues in plant cell walls to mediate adhesion to fresh produce plants.

    PubMed

    Rossez, Yannick; Holmes, Ashleigh; Lodberg-Pedersen, Henriette; Birse, Louise; Marshall, Jacqueline; Willats, William G T; Toth, Ian K; Holden, Nicola J

    2014-12-05

    Outbreaks of verotoxigenic Escherichia coli are often associated with fresh produce. However, the molecular basis to adherence is unknown beyond ionic lipid-flagellum interactions in plant cell membranes. We demonstrate that arabinans present in different constituents of plant cell walls are targeted for adherence by E. coli common pilus (ECP; or meningitis-associated and temperature-regulated (Mat) fimbriae) for E. coli serotypes O157:H7 and O18:K1:H7. l-Arabinose is a common constituent of plant cell wall that is rarely found in other organisms, whereas ECP is widespread in E. coli and other environmental enteric species. ECP bound to oligosaccharides of at least arabinotriose or longer in a glycan array, plant cell wall pectic polysaccharides, and plant glycoproteins. Recognition overlapped with the antibody LM13, which binds arabinanase-sensitive pectic epitopes, and showed a preferential affinity for (1→5)-α-linked l-arabinosyl residues and longer chains of arabinan as demonstrated with the use of arabinan-degrading enzymes. Functional adherence in planta was mediated by the adhesin EcpD in combination with the structural subunit, EcpA, and expression was demonstrated with an ecpR-GFP fusion and ECP antibodies. Spinach was found to be enriched for ECP/LM13 targets compared with lettuce. Specific recognition of arabinosyl residues may help explain the persistence of E. coli in the wider environment and association of verotoxigenic E. coli with some fresh produce plants by exploitation of a glycan found only in plant, not animal, cells.

  1. CRISPR1 analysis of naturalized surface water and fecal Escherichia coli suggests common origin.

    PubMed

    Tymensen, Lisa D

    2016-06-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are part of an acquired bacterial immune system that functions as a barrier to exogenous genetic elements. Since naturalized Escherichia coli are likely to encounter different genetic elements in aquatic environments compared to enteric strains, we hypothesized that such differences would be reflected within the hypervariable CRISPR alleles of these two populations. Comparison of CRISPR1 alleles from naturalized and fecal phylogroup B1 E. coli strains revealed that the alleles could be categorized into four major distinct groups (designated G6-G9), and all four allele groups were found among naturalized strains and fecal strains. The distribution of CRIPSR G6 and G8 alleles was similar among strains of both ecotypes, while naturalized strains tended to have CRISPR G7 alleles rather than G9 alleles. Since CRISPR G7 alleles were not specific to naturalized strains, they, however, would not be useful as a marker for identifying naturalized strains. Notably, CRISPR alleles from naturalized and fecal strains also had similar spacer repertoires. This indicates a shared history of encounter with mobile genetic elements and suggests that the two populations were derived from common ancestors.

  2. Changes in protein expression profiles in bovine endometrial epithelial cells exposed to E. coli LPS challenge.

    PubMed

    Piras, Cristian; Guo, Yongzhi; Soggiu, Alessio; Chanrot, Metasu; Greco, Viviana; Urbani, Andrea; Charpigny, Gilles; Bonizzi, Luigi; Roncada, Paola; Humblot, Patrice

    2017-01-31

    E. coli is one of the most frequently involved bacteria in uterine diseases. Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria involved in pathogenic processes leading to post-partum metritis and endometritis in cattle. It also causes inflammation of the endometrium. The increase of cell proliferation by LPS is part of the inflammatory process. The aim of this study was to investigate possible changes in protein expression in relation to the proliferative response of bEECs after challenge with E. coli-LPS. In vitro culture of bEECs was performed from cow genital tracts collected at a slaughterhouse. In passage 5, bEECs from each of 9 cows (3 series of 3 cows) were exposed to 0, 8, and 16 μg ml(-1) LPS for 72 h. At time 0 and 72 h later, attached cells/living cells were counted and for each time and LPS dosage, cells were frozen for proteomic analyses. All samples from the 3 series were analyzed by 2-D gel electrophoresis coupled to MALDI-TOF/TOF mass spectrometry. The samples from the first series were subjected to shotgun nLC-MS/MS analysis. From the whole differential proteomics analysis, 38 proteins were differentially expressed (p < 0.05 to p < 0.001) following exposure to LPS. Among them, twenty-eight were found to be up-regulated in the LPS groups in comparison to control groups and ten were down-regulated. Differentially expressed proteins were associated with cell proliferation and apoptosis, transcription, destabilization of cell structure, oxidative stress, regulation of histones, allergy and general cell metabolism pathways. The de-regulations induced by LPS were consistent with the proliferative phenotype and indicated strong alterations of several cell functions. In addition, some of the differentially expressed proteins relates to pathways activated at the time of implantation. The specific changes induced through those signals may have negative consequences for the establishment of pregnancy.

  3. Development of a PCR protocol for the detection of Escherichia coli O157:H7 and Salmonella spp. in surface water.

    PubMed

    Bonetta, Silvia; Borelli, Elena; Bonetta, Sara; Conio, Osvaldo; Palumbo, Franca; Carraro, Elisabetta

    2011-06-01

    Escherichia coli O157:H7 and Salmonella are pathogenic microorganisms that can cause severe gastrointestinal illness in humans. These pathogens may be transmitted in a variety of ways, including food and water. The presence of Salmonella and E. coli O157:H7 in surface waters constitutes a potential threat to human health when used for either drinking or recreation. As with most waterborne pathogens, Salmonella and E. coli O157:H7 are difficult to detect and enumerate with accuracy in surface waters due to methodological limitations. The aim of this study was to develop a protocol for the detection of Salmonella spp., E. coli O157:H7 and E. coli virulence genes (stx (1), stx (2) and eae) in water using a single enrichment step and PCR. In spiked water samples, PCR results showed high sensitivity (<3 CFU/L) for both microorganisms. The protocol developed in this study has been applied in different surface waters in association with microbiological and physical analysis. The frequency of PCR positive samples was 33% for Salmonella and 2% for E. coli O157:H7 producing intimin (eae) and Shiga-like toxin I (stx (1)). Moreover, the finding of amplicons corresponding to eae and stx (1) genes in the absence of E. coli O157:H7 suggested the possible presence of other pathogenic bacteria that carry these genes (e.g. EHEC, Shigella strains). The results obtained showed that the developed protocol could be applied as a routine analysis of surface water for the evaluation of microbiological risks.

  4. Toxicity of ZnO and TiO2 to Escherichia coli cells

    PubMed Central

    Leung, Yu Hang; Xu, Xiaoying; Ma, Angel P. Y.; Liu, Fangzhou; Ng, Alan M. C.; Shen, Zhiyong; Gethings, Lee A.; Guo, Mu Yao; Djurišić, Aleksandra B.; Lee, Patrick K. H.; Lee, Hung Kay; Chan, Wai Kin; Leung, Frederick C. C.

    2016-01-01

    We performed a comprehensive investigation of the toxicity of ZnO and TiO2 nanoparticles using Escherichia coli as a model organism. Both materials are wide band gap n-type semiconductors and they can interact with lipopolysaccharide molecules present in the outer membrane of E. coli, as well as produce reactive oxygen species (ROS) under UV illumination. Despite the similarities in their properties, the response of the bacteria to the two nanomaterials was fundamentally different. When the ROS generation is observed, the toxicity of nanomaterial is commonly attributed to oxidative stress and cell membrane damage caused by lipid peroxidation. However, we found that significant toxicity does not necessarily correlate with up-regulation of ROS-related proteins. TiO2 exhibited significant antibacterial activity, but the protein expression profile of bacteria exposed to TiO2 was different compared to H2O2 and the ROS-related proteins were not strongly expressed. On the other hand, ZnO exhibited lower antibacterial activity compared to TiO2, and the bacterial response involved up-regulating ROS-related proteins similar to the bacterial response to the exposure to H2O2. Reasons for the observed differences in toxicity and bacterial response to the two metal oxides are discussed. PMID:27731373

  5. Toxicity of ZnO and TiO2 to Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Leung, Yu Hang; Xu, Xiaoying; Ma, Angel P. Y.; Liu, Fangzhou; Ng, Alan M. C.; Shen, Zhiyong; Gethings, Lee A.; Guo, Mu Yao; Djurišić, Aleksandra B.; Lee, Patrick K. H.; Lee, Hung Kay; Chan, Wai Kin; Leung, Frederick C. C.

    2016-10-01

    We performed a comprehensive investigation of the toxicity of ZnO and TiO2 nanoparticles using Escherichia coli as a model organism. Both materials are wide band gap n-type semiconductors and they can interact with lipopolysaccharide molecules present in the outer membrane of E. coli, as well as produce reactive oxygen species (ROS) under UV illumination. Despite the similarities in their properties, the response of the bacteria to the two nanomaterials was fundamentally different. When the ROS generation is observed, the toxicity of nanomaterial is commonly attributed to oxidative stress and cell membrane damage caused by lipid peroxidation. However, we found that significant toxicity does not necessarily correlate with up-regulation of ROS-related proteins. TiO2 exhibited significant antibacterial activity, but the protein expression profile of bacteria exposed to TiO2 was different compared to H2O2 and the ROS-related proteins were not strongly expressed. On the other hand, ZnO exhibited lower antibacterial activity compared to TiO2, and the bacterial response involved up-regulating ROS-related proteins similar to the bacterial response to the exposure to H2O2. Reasons for the observed differences in toxicity and bacterial response to the two metal oxides are discussed.

  6. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells.

    PubMed

    Bakshi, Somenath; Siryaporn, Albert; Goulian, Mark; Weisshaar, James C

    2012-07-01

    Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (RNAP; β'-yGFP) in live Escherichia coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10-15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is D(ribo) = 0.04 µm(2) s(-1), attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of subdiffusion, as would arise from tethering of ribosomes to the DNA. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force.

  7. Effects of sub-minimum inhibitory concentrations of ciprofloxacin on enteroaggregative Escherichia coli and the role of the surface protein dispersin

    SciTech Connect

    Fowlkes, Jason Davidson; Doktycz, Mitchel John; Allison, David Post

    2011-01-01

    Enteroaggregative Escherichia coli (EAEC) are bacterial pathogens that cause watery diarrhoea, which is often persistent and can be inflammatory. The antibiotic ciprofloxacin is used to treat EAEC infections, but a full understanding of the antimicrobial effects of ciprofloxacin is needed for more efficient treatment of bacterial infections. In this study, it was found that sub-minimum inhibitory concentrations (sub-MICs) of ciprofloxacin had an inhibitory effect on EAEC adhesion to glass and mammalian HEp-2 cells. It was also observed that bacterial surface properties play an important role in bacterial sensitivity to ciprofloxacin. In an EAEC mutant strain where the hydrophobic positively charged surface protein dispersin was absent, sensitivity to ciprofloxacin was reduced compared with the wild-type strain. Identified here are several antimicrobial effects of ciprofloxacin at sub-MIC concentrations indicating that bacterial surface hydrophobicity affects the response to ciprofloxacin. Investigating the effects of sub-MIC doses of antibiotics on targeted bacteria could help to further our understanding of bacterial pathogenicity and elucidate future antibiotic treatment modalities.

  8. The effect of sub-minimum inhibitory concentration of ciprofloxacin concentrations on enteroaggregative Escherichia coli and the role of the surface protein dispersin

    SciTech Connect

    Mortensen, Ninell P; Fowlkes, Jason Davidson; Trevino-Dopatka, Sonia; Maggart, Michael J; Boisen, Nadia; Doktycz, Mitchel John; Nataro, James; Allison, David P

    2011-01-01

    Enteroaggregative Escherichia coli (EAEC) are bacterial pathogens that cause watery diarrhea, which is often persistent and can be inflammatory. The antibiotic ciprofloxacin is used to treat EAEC infections, but a full understanding of the antimicrobial effects of ciprofloxacin is needed for more efficient treatment of bacterial infections. In this study, it was found that sub-minimum inhibitory concentrations (sub-MICs) of ciprofloxacin had an inhibitory effect on EAEC adhesion to glass and mammalian HEp-2 cells. It was also observed that bacterial surface properties play an important role in bacterial sensitivity to ciprofloxacin. In an EAEC mutant strain where the hydrophobic positively charged surface protein dispersin was absent, sensitivity to ciprofloxacin was reduced compared with the wild-type strain. Identified here are several antimicrobial effects of ciprofloxacin at sub-MIC concentrations indicating that bacterial surface hydrophobicity affects the response to ciprofloxacin. Investigating the effects of sub-MIC doses of antibiotics on targeted bacteria could help to further our understanding of bacterial pathogenicity and elucidate future antibiotic treatment modalities.

  9. Effects of sub-minimum inhibitory concentrations of ciprofloxacin on enteroaggregative Escherichia coli and the role of the surface protein dispersin.

    PubMed

    Mortensen, Ninell P; Fowlkes, Jason D; Maggart, Michael; Doktycz, Mitchel J; Nataro, James P; Drusano, George; Allison, David P

    2011-07-01

    Enteroaggregative Escherichia coli (EAEC) are bacterial pathogens that cause watery diarrhoea, which is often persistent and can be inflammatory. The antibiotic ciprofloxacin is used to treat EAEC infections, but a full understanding of the antimicrobial effects of ciprofloxacin is needed for more efficient treatment of bacterial infections. In this study, it was found that sub-minimum inhibitory concentrations (sub-MICs) of ciprofloxacin had an inhibitory effect on EAEC adhesion to glass and mammalian HEp-2 cells. It was also observed that bacterial surface properties play an important role in bacterial sensitivity to ciprofloxacin. In an EAEC mutant strain where the hydrophobic positively charged surface protein dispersin was absent, sensitivity to ciprofloxacin was reduced compared with the wild-type strain. Identified here are several antimicrobial effects of ciprofloxacin at sub-MIC concentrations indicating that bacterial surface hydrophobicity affects the response to ciprofloxacin. Investigating the effects of sub-MIC doses of antibiotics on targeted bacteria could help to further our understanding of bacterial pathogenicity and elucidate future antibiotic treatment modalities.

  10. The conversion of fibrinogen to fibrin at the surface of curliated Escherichia coli bacteria leads to the generation of proinflammatory fibrinopeptides.

    PubMed

    Persson, Kristin; Russell, Wayne; Mörgelin, Matthias; Herwald, Heiko

    2003-08-22

    The inflammatory response to bacterial infection is the result of a complex interplay between bacterial products and host effector systems, such as the immune and complement systems. Here we show that Escherichia coli bacteria expressing fibrous surface proteins, known as curli, assemble and activate factors of the human coagulation cascade at their surface. As a result of this interaction, fibrinogen is converted to fibrin and fibrinogen-derived peptides, termed fibrinopeptides, are generated. The molecular mechanisms behind the bacteria-induced formation of fibrinopeptides were investigated and shown to be triggered by the activation of the contact system, also known as the kallikrein/kinin system or the intrinsic pathway of coagulation. Samples containing fibrinopeptides generated by the interaction between bacteria and plasma were injected into animals and the inflammatory response was monitored. We found that this treatment provoked an infiltration of white blood cells, and the induction of the proinflammatory cytokine MCP-1 at the inflamed site. Our results therefore demonstrate that activation of the coagulation system at the bacterial surface contributes to the pathophysiology of bacterial infectious diseases.

  11. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures.

    PubMed

    Choi, Okkyoung; Yu, Chang-Ping; Esteban Fernández, G; Hu, Zhiqiang

    2010-12-01

    Biofilms are often more resistant to toxic chemicals such as heavy metals and antimicrobial agents than planktonic cells. Nanosilver has a broad range of applications with strong antimicrobial activity. However, biofilm susceptibility to nanosilver toxicity is not well understood. We studied the bacterial activity in planktonic or biofilm cultures after nanosilver exposure using oxygen quenching fluorescence-based microrespirometry. We also determined the aggregation behavior and the spatial distribution of nanosilver having red fluorescence in biofilms of Escherichia coli expressing green fluorescent protein. At the same bacterial concentrations (3 × 10(8) CFU/mL), biofilms were about four times more resistant to nanosilver inhibition than planktonic cells. The minimum bactericidal concentrations (MBCs) of nanosilver (size from 15 to 21 nm), defined as the lowest concentration that kills at least 99.9% of a planktonic or biofilm bacterial population, were 38 and 10 mg/L Ag, respectively. For comparison, silver ions were more toxic to E. coli than nanosilver with MBCs of 2.4 and 1.2 mg/L Ag for planktonic and biofilm cultures, respectively. Nanosilver was aggregated in the presence of planktonic or biofilm-forming cells resulting in an increase of average particle size by a factor of 15 and 40, respectively. The nanosilver particles were able to penetrate to approximately 40 μm in a thick biofilm after 1-h exposure. These findings suggested that biofilm resistance to nanosilver could be at least partially due to nanoparticle aggregation and retarded silver ion/particle diffusion.

  12. Transcription of the ftsZ gene and cell division in Escherichia coli.

    PubMed Central

    Robin, A; Joseleau-Petit, D; D'Ari, R

    1990-01-01

    The ftsZ gene of Escherichia coli, which lies in a cluster of cell division genes at 2 min on the genetic map, codes for a protein which is thought to play a key role in triggering cell division. Using an ftsZ::lacZ operon fusion, we have studied the transcription of the ftsZ gene under conditions in which cell division was either inhibited or synchronized in the bacterial population. In ftsZ, ftsA, ftsQ, and ftsI (or pbpB) mutants, there was no change in the differential rate of expression of the ftsZ gene in nonpermissive conditions, when cell division was completely blocked. Although the FtsZ protein is thought to be limiting for cell division, in synchronized cultures the ftsZ gene was expressed not only at the moment of septation initiation but throughout the cell cycle. Its expression, however, was not exponential but linear, with a rapid doubling in rate at a specific cell age; this age, about 20 min after division in a 60-min cycle, was different from the age at which the ftsZ::lacZ operon was duplicated. However, it was close to the age at which replication initiated and at which the rate of phospholipid synthesis doubled. During the transient division inhibition after a nutritional shift-up, ftsZ transcription again became linear, with two doublings in rate at intervals equal to the mass doubling time in the rich medium; it adopted the exponential rate typical of rich medium about 60 min after the shift-up, just before the bacterial population resumed cell division. The doubling in the rate of ftsZ transcription once per cycle in synchronized cultures and once per mass doubling time during the transition period after a nutritional shift-up reflects a new cell cycle event. PMID:2106510

  13. Toxicity and SOS response to ELF magnetic field and nalidixic acid in E. coli cells.

    PubMed

    Belyaev, Igor

    2011-05-18

    Extremely low frequency (ELF) magnetic fields have previously been shown to affect conformation of chromatin and cell proliferation. Possible genotoxic and carcinogenic effects of ELF have also been discussed and tested. In this study, we analyzed the effect of ELF on chromatin conformation in E. coli GE499 cells by the anomalous viscosity time dependence (AVTD) technique. Possible genotoxic ELF effects at the specific combination of static and ELF magnetic fields, that has been proven to have effects on chromatin conformation, were investigated by clonogenic assay, cell growth kinetics, and analysis of SOS-response using inducible recA-lacZ fusion and the β-galactosidase assay. Genotoxic agent nalidixic acid (NAL) was used as positive control and in combination with ELF. Nalidixic acid at 3-30μg/ml decreased the AVTD peaks and induced cytotoxic effect. In contrast to NAL, ELF increased AVTD, stimulated cell growth, and increased cloning efficiency. These effects depended on frequency within the frequency range of 7-11Hz. While NAL induced SOS response, ELF exposure did not induce the recA-lacZ fusion. Exposure to ELF did not modify the genotoxic effects of NAL either. All together, the data show that ELF, under specific conditions of exposure, acted as nontoxic but cell growth stimulating agent.

  14. Characterization of a single-chain T-cell receptor expressed in Escherichia coli.

    PubMed

    Hoo, W F; Lacy, M J; Denzin, L K; Voss, E W; Hardman, K D; Kranz, D M

    1992-05-15

    Despite progress in defining the nature of major histocompatibility complex products that are recognized by the T-cell antigen receptor, the binding properties and structure of the receptor have not been solved. The primary problem has been the difficulty in obtaining sufficient quantities of active receptor. In this report we show that a single-chain T-cell receptor gene can be expressed in Escherichia coli. The protein consists of the variable (V) regions of the alpha and beta chains (V alpha and V beta) encoded by the cytotoxic T-lymphocyte clone 2C (a H-2b anti-H-2d alloreactive cell line) linked by a 25-amino acid flexible peptide. Solubilized extracts that contain the 27-kDa V alpha 3V beta 8 protein are positive in solid-phase immunoassays with the anti-V beta 8 antibody KJ16 and the anti-clonotypic antibody 1B2. Approximately 1% of the protein can be specifically purified on a 1B2-conjugated column. These results indicate that a fraction of the protein is able to fold into a native conformation and that single-chain proteins should be useful not only as immunogens for eliciting anti-T-cell receptor antibodies but in the study of T-cell receptor structure and function.

  15. Uropathogenic Escherichia coli isolates with different virulence genes content exhibit similar pathologic influence on Vero cells.

    PubMed

    Obaid, Jamil M A S; Mansour, Samira R; Elshahedy, Mohammed S; Rabie, Tarik E; Azab, Adel M H

    2014-01-01

    Uropathogenic Escherichia coli are the major causative agent of urinary tract infection--they may simultaneously express a number of virulence factors to cause disease. The aim of this study was to investigate the relation between virulence factors content of fifteen UPEC isolates and their pathogenic potential. The isolates belonged to the five serotypes O78:K80, O114:K90, O142:K86, O164 and O157. Nine of the virulence factors have been explored, ibeA, pap, sfa/foc, cnfl, hly, fyuA, pil, ompT and traT. Virulence factors profiling of the isolates revealed a different content ranging from 22% to 100% of the virulence genes explored. The pathogenic capacity of all fifteen isolates when tested on Vero cells showed that the cytotoxicity for all tested strains on Vero cells was approximately equal and enhanced after growth in syncase broth, leading mainly to cell lysis. The toxic effects reduced slightly after heat treatment of the toxin, and greatly after formalin detoxification, but not all the deleterious effect was abolished. Endotoxin also has cytotoxic effects on Vero cells, but longer time is needed for cytolysis which is greatly diminished with formalin treatment. In conclusion, our study revealed that pathogenic strains of UPEC can exert their pathogenic effect on live cells or system with limited virulence factors gene content.

  16. Glucose Inhibition of Adenylate Cyclase in Intact Cells of Escherichia coli B

    PubMed Central

    Peterkofsky, Alan; Gazdar, Celia

    1974-01-01

    Previous studies in E. coli B have demonstrated an inverse correlation between the presence of glucose in the medium and the accumulation of cyclic AMP in the medium. This observation could not be explained by the action of glucose as a repressor of adenylate cyclase (EC 4.6.1.1) synthesis, as a stabilizer of cyclic AMP phosphodiesterase (EC 3.1.4.17) activity, or as a direct inhibitor of adenylate cyclase activity in cell-free preparations. The recent development of an in vivo assay for adenylate cyclase has provided a basis for further exploring the inhibitory action of glucose in intact cells. With this assay it has been possible to show that, while glucose does not affect adenylate cyclase in vitro, it rapidly inhibits the enzyme activity in intact cells. Extensive metabolism of glucose is not required, since α-methylglucoside also inhibits adenylate cyclase in vivo. When cells are grown on glucose as carbon source, some sugars (mannose, glucosamine) substitute for glucose as adenylate cyclase inhibitors while others (e.g., fructose) do not. Dose-response studies indicate that low concentrations of glucose lead to essentially complete inhibition of adenylate cyclase activity while only moderately decreasing intracellular cyclic AMP concentrations. The evidence presented suggests that the decreased cellular cyclic AMP levels resulting from glucose addition can be accounted for by inhibition of adenylate cyclase without any significant effect on cyclic AMP phosphodiesterase or the transport of cyclic AMP from the cells to the medium. PMID:4366761

  17. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study.

    PubMed

    Giannelli, Marco; Landini, Giulia; Materassi, Fabrizio; Chellini, Flaminia; Antonelli, Alberto; Tani, Alessia; Nosi, Daniele; Zecchi-Orlandini, Sandra; Rossolini, Gian Maria; Bani, Daniele

    2017-03-10

    Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This study investigates the in vitro efficacy of photodynamic treatment (PDT) with methylene blue (MB) photoactivated with λ 635 nm diode laser and of λ 405 nm violet-blue LED phototreatment for the reduction of bacterial biofilm and lipopolysaccharide (LPS) adherent to titanium surface mimicking the bone-implant interface. Staphylococcus aureus biofilm grown on titanium discs with a moderately rough surface was subjected to either PDT (0.1% MB and λ 635 nm diode laser) or λ 405 nm LED phototreatment for 1 and 5 min. Bactericidal effect was evaluated by vital staining and residual colony-forming unit count. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, discs coated with Escherichia coli LPS were treated as above before seeding with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Both PDT and LED phototreatment induced a statistically significant (p < 0.05 or higher) reduction of viable bacteria, up to -99 and -98% (5 min), respectively. Moreover, besides bactericidal effect, PDT and LED phototreatment also inhibited LPS bioactivity, assayed as nitrite formation, up to -42%, thereby blunting host inflammatory response. Non-invasive phototherapy emerges as an attractive alternative in the treatment of peri-implantitis to reduce bacteria and LPS adherent to titanium implant surface without causing damage of surface microstructure. Its efficacy in the clinical setting remains to be investigated.

  18. A comparative toxicity evaluation of Escherichia coli-targeted ssDNA and chlorine in HepG2 cells.

    PubMed

    Kaushik, Rajni; Balasubramanian, Rajasekhar

    2014-01-01

    In this study, a comparative assessment of the effectiveness of ssDNA and chlorine as disinfectants for treating water contaminated with Escherichia coli (E. coli) was investigated on the basis of cytotoxicity and genotoxicity. The gene targets addressed for the ssDNA based inhibition method were marA (multiple antibiotic resistance) and groL (essential gene Hsp60) in E. coli. Based on the maximum log reduction in E. coli cell numbers when compared to no ssDNA control, groL-1 was chosen as the optimized ssDNA for gene silencing-based inactivation. For toxicity assessment, HepG2 cells were exposed to extracts corresponding to concentrations of 0.2, 1, 5, 25 and 50 mL water/mL medium of chlorine doped water and 1, 10, 100, 300 nM of ssDNA. Compared with ssDNA, HepG2 cells exposed to extracts of chlorine doped water for 24 h showed higher cytotoxicity, caspase 3/7 levels, DNA damage, micronuclei frequency, and decreased cell viability. Water doped with chlorine was found to be more toxic than that by ssDNA when exposed to HepG2 cells. The results of this study provide a scientific basis for comparative evaluation of new and conventional disinfection methods by taking into consideration the outcome of cytotoxicity and genotoxicity assessments.

  19. Reversibility of cell surface label rearrangement

    PubMed Central

    1976-01-01

    Cell surface labeling can cause rearrangements of randomly distributed membrane components. Removal of the label bound to the cell surface allows the membrane components to return to their original random distribution, demonstrating that label is necessary to maintain as well as to induce rearrangements. With scanning electron microscopy, the rearrangement of concanavalin A (con A) and ricin binding sites on LA-9 cells has been followed by means of hemocyanin, a visual label. The removal of con A from its binding sites at the cell surface with alpha- methyl mannoside, and the return of these sites to their original distribution are also followed in this manner. There are labeling differences with con A and ricin. Under some conditions, however, the same rearrangements are seen with both lectins. The disappearance of labeled sites from areas of ruffling activity is a major feature of the rearrangements seen. Both this ruffling activity and the rearrangement of label are sensitive to cytochalasin B, and ruffling activity, perhaps along with other cytochalasin-sensitive structure, may play a role in the rearrangements of labeled sites. PMID:1025154

  20. Engineering novel cell surface chemistry for selective tumor cell targeting

    SciTech Connect

    Bertozzi, C.R. |

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  1. Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water.

    PubMed

    Canal, Natália; Meneghetti, Karine Lena; de Almeida, Clara Ponzi; da Rosa Bastos, Marina; Otton, Letícia Muner; Corção, Gertrudes

    2016-01-01

    Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacEΔ1 gene at the 3' conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans.

  2. A six-domain structural model for Escherichia coli translation initiation factor IF2. Characterisation of twelve surface epitopes.

    PubMed

    Mortensen, K K; Kildsgaard, J; Moreno, J M; Steffensen, S A; Egebjerg, J; Sperling-Petersen, H U

    1998-12-01

    The Escherichia coli translation initiation factor IF2 is a 97 kDa protein which interacts with the initiator fMet-tRNAfMet, GTP and the ribosomal subunits during initiation of protein biosynthesis. For structural and functional investigations of the factor, we have raised and characterised monoclonal antibodies against E. coli IF2. Twelve epitopes have been localised at the surface of the protein molecule by three different methods: Interactions of the monoclonal antibodies with nested deletion mutants of IF2, comparison of the relative location of the epitopes in a competition immunoassay and cross-reactivity analyses of the monoclonal antibodies towards IF2 from Salmonella typhimurium, Klebsiella oxytoca, Enterobacter cloacae, Proteus vulgaris, and Bacillus stearothermophilus. These data are combined with predicted secondary structure and discussed in relation to a six-domain structural model for IF2. The model describes IF2 as a slightly elongated molecule with a structurally compact C-terminal domain, a well-conserved central GTP-binding domain, and a highly charged, solvent exposed N-terminal with protruding alpha-helical structures.

  3. Adhesion of human enterotoxigenic Escherichia coli to human mucus secreting HT-29 cell subpopulations in culture.

    PubMed Central

    Kerneis, S; Bernet, M F; Coconnier, M H; Servin, A L

    1994-01-01

    Enterotoxigenic Escherichia coli (ETEC) bearing the fimbrial colonisation factor antigens CFA/I, CFA/II, CFA/III, and the non-fimbrial antigen 2230 were tested for their ability to adhere to two cultured human intestinal HT-29 mucus secreting cell subpopulations. These populations are referred to as HT29-MTX and HT29-FU, which differ in the amount of secreted mucins and in their gastric or colonic mucin immunoreactivity respectively. Adherence of radiolabelled bacteria to cell monolayers infected apically was assessed. All ETEC strains adhered to the mucus secreting HT29-FU subpopulation, which secretes mucins of colonic immunoreactivity. Visualisation of bacteria by scanning electron microscopy showed that ETEC bound to the HT29-FU cells possessing a brush border, but not to the mucus and that ETEC binding developed as a function of cell differentiation. The adhesion of ETEC to cells possessing a brush border and to mucus secreting cells was also analysed by indirect immunofluorescence in HT29-MTX cells, which secrete mucins of gastric immunoreactivity. Fluorescein isothiocyanate labelling using specific anti-CFA/I antibody was used to show ETEC; rhodamine isothiocyanate labelling using a monoclonal antibody (designated M1) against purified human gastric mucus was used to detect secreted mucins, and rhodamine isothiocyanate labelling using a monoclonal antibody (designated 4H3) against human dipeptidylpeptidase IV was used to show cells possessing a brush border. Binding of bacteria colocalised with dipeptidylpeptidase IV of enterocytes and not with mucins. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7959203

  4. Persistence of Salmonella and E. coli on the surface of restaurant menus.

    PubMed

    Sirsat, Sujata A; Choi, Jin-Kyung K; Almanza, Barbara A; Neal, Jack A

    2013-03-01

    To the authors' knowledge, the role of restaurant menus as a vehicle for pathogens has not been explored. Menus, however, can pose as a vector for bacterial contamination and transfer. Sampling menus from two restaurants in the Houston, Texas, area showed the presence of up to 100 CFU/cm2 aerobic bacteria. Follow-up studies designed to investigate the ability of Salmonella and E. coli to persist on paper and laminated menus at various time points (0, 6, 24, 48, and 72 hours) demonstrated that bacteria persist more efficiently on laminated menus as compared to paper menus. Transfer studies performed to quantitatively determine the ability of bacteria to transfer from menus to fingertips and from fingertips to clean menus showed that bacteria can be transferred for up to 24 hours. The study described here showed that restaurant menus may serve as vehicles for pathogens and hence present a public health issue within the retail food environment.

  5. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    PubMed Central

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael C.

    2014-01-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems (OTSs) has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications. PMID:24959531

  6. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  7. Bacterial cell surface structures in Yersinia enterocolitica.

    PubMed

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  8. Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination.

    PubMed

    Yue, Chongxia; van der Mei, Henny C; Kuijer, Roel; Busscher, Henk J; Rochford, Edward T J

    2015-11-01

    Bacterial contamination during biomaterial implantation is often unavoidable, yielding a combat between cells and bacteria. Here we aim to determine the modulatory function of bacterial components on stem-cell, fibroblast, and osteoblast adhesion to a titanium alloy, including the role of toll-like-receptors (TLRs). Presence of heat-sacrificed Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, or Pseudomonas aeruginosa induced dose and cell-type dependent responses. Stem-cells were most sensitive to bacterial presence, demonstrating decreased adhesion number yet increased adhesion effort with a relatively large focal adhesion contact area. Blocking TLRs had no effect on stem-cell adhesion in presence of S. aureus, but blocking both TLR2 and TLR4 induced an increased adhesion effort in presence of E. coli. Neither lipopolysaccharide, lipoteichoic acid, nor bacterial DNA provoked the same cell response as did whole bacteria. Herewith we suggest a new mechanism as to how biomaterials are integrated by cells despite the unavoidable presence of bacterial contamination. Stimulation of host cell integration of implant surfaces may open a new window to design new biomaterials with enhanced healing, thereby reducing the risk of biomaterial-associated infection of both "hardware-based" implants as well as of tissue-engineered constructs, known to suffer from similarly high infection risks as currently prevailing in "hardware-based" implants.

  9. Use of low dose e-beam irradiation to reduce E. coli O157:H7, non-O157 (VTEC) E. coli and Salmonella viability on meat surfaces.

    PubMed

    Kundu, Devapriya; Gill, Alexander; Lui, Chenyuan; Goswami, Namita; Holley, Richard

    2014-01-01

    This study determined the extent that irradiation of fresh beef surfaces with an absorbed dose of 1 kGy electron (e-) beam irradiation might reduce the viability of mixtures of O157 and non-O157 verotoxigenic Escherichia coli (VTEC) and Salmonella. These were grouped together based on similar resistances to irradiation and inoculated on beef surfaces (outside flat and inside round, top and bottom muscle cuts), and then e-beam irradiated. Salmonella serovars were most resistant to 1 kGy treatment, showing a reduction of ≤1.9 log CFU/g. This treatment reduced the viability of two groups of non-O157 E. coli mixtures by ≤4.5 and ≤3.9 log CFU/g. Log reductions of ≤4.0 log CFU/g were observed for E. coli O157:H7 cocktails. Since under normal processing conditions the levels of these pathogens on beef carcasses would be lower than the lethality caused by the treatment used, irradiation at 1 kGy would be expected to eliminate the hazard represented by VTEC E. coli.

  10. The occurrence of heritable Mu excisions in starving cells of Escherichia coli.

    PubMed

    Foster, P L; Cairns, J

    1994-11-01

    A strain of Escherichia coli constructed by Shapiro has a segment of Mu bacteriophage DNA inserted between the araC and lacZ genes. Excision events that produce an in-frame fusion of lacZ to araB result in a cell (here designated Ara-Lac+) that can grow on lactose if arabinose is present as an inducer. Whether or not these excision events occur in the absence of selection for the Ara-Lac+ phenotype has figured prominently in the debate of the phenomenon known as 'directed' or 'adaptive' mutation. In an attempt to settle the issue, we have used classic fluctuation tests to show that cells capable of producing a clone of descendants that are phenotypically Ara-Lac+ do, indeed, arise in stationary phase cultures kept starving in depleted minimal medium. We found that Ara-Lac+ progenitors arise rapidly under these conditions, in contrast to the delayed appearance of Ara-Lac+ mutants when cells are incubated on lactose-arabinose minimal plates. Similar results are reported in the accompanying paper by Maenhaut-Michel and Shapiro, who used indirect selection to isolate Ara-Lac+ cells in the absence of selection. However, their sequencing data have introduced a new unexpected complication to the interpretation of all such experiments, and it is no longer clear exactly when the fusions arise.

  11. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37.

    PubMed

    Sochacki, Kem A; Barns, Kenneth J; Bucki, Robert; Weisshaar, James C

    2011-04-19

    Natural antimicrobial peptides (AMPs) provide prototypes for the design of unconventional antimicrobial agents. Existing bulk assays measure AMP activity but do not provide details of the growth-halting mechanism. We use fluorescence microscopy to directly observe the attack of the human antimicrobial peptide LL-37 on single Escherichia coli cells in real time. Our findings strongly suggest that disruption of the cytoplasmic membrane is not the growth-halting mechanism. At 8 μM, LL-37 binding saturates the outer membrane (OM) within 1 min. Translocation across the OM and access to the periplasmic space (5-25 min later) correlates in time with the halting of growth. Septating cells are attacked more readily than nonseptating cells. The halting of growth may occur because of LL-37 interference with cell wall biogenesis. Only well after growth halts does the peptide permeabilize the cytoplasmic membrane to GFP and the small dye Sytox Green. The assay enables dissection of antimicrobial design criteria into two parts: translocation across the OM and the subsequent halting of growth.

  12. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    NASA Astrophysics Data System (ADS)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-02-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.

  13. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    PubMed Central

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-01-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population. PMID:28165017

  14. Unexpected common occurrence of transferable extended spectrum cephalosporinase-producing Escherichia coli in Swedish surface waters used for drinking water supply.

    PubMed

    Egervärn, Maria; Englund, Stina; Ljunge, Marianne; Wiberg, Christer; Finn, Maria; Lindblad, Mats; Börjesson, Stefan

    2017-06-01

    The presence of Enterobacteriaceae producing extended spectrum beta-lactamases (ESBL) or transferable AmpC beta-lactamases (pAmpC) is increasingly being reported in humans, food-producing animals and food world-wide. However, the occurrence and impact of these so-called extended spectrum cephalosporinase (ESC)-producing Enterobacteriaceae in aquatic environments are poorly documented. This study investigated the occurrence, concentrations and characteristics of ESC-producing E. coli (ESC-Ec) in samples of surface water collected at five Swedish water treatment plants that normally have relatively high prevalence and concentration of E. coli in surface water. ESC-Ec was found in 27 of 98 surface water samples analysed. All but two positive samples were collected at two of the water treatment plants studied. The ESC-Ec concentration, 1-3cfu/100mL, represented approximately 4% of the total amount of E. coli in the respective surface water sample. In total, 74% of the isolates were multi-resistant, but no isolate was resistant to carbapenems. Six types of ESBL/pAmpC genes were found in the 27 E. coli isolates obtained from the positive samples, of which four (blaCTX-M-15, blaCMY-2, blaCTX-M-1 and blaCTX-M-14) were found during the whole sampling period, in samples taken at more than one water treatment plant. In addition, the genes were situated on various types of plasmids and most E. coli isolates were not closely related with regard to MLST types. The combinations of ESBL/pAmpC genes, plasmids and E. coli isolates were generally similar to those found previously in healthy and sick individuals in Sweden. In conclusion, the occurrence of ESC-Ec in Swedish surface water shows that resistant bacteria of clinical concern are present in aquatic environments even in a low-prevalence country such as Sweden.

  15. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides

    SciTech Connect

    Kotrba, P.; Ruml, T.; Doleckova, L.; Lorenzo, V. de

    1999-03-01

    Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd{sup 2+}-to-HP and Cd{sup 2+}-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd{sup 2+} binding capacity. The bioaccumulation of Cd{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd{sup 2+} from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu{sup 2+} and Zn{sup 2+}. However, Cu{sup 2+} ceased contribution of HP for Cd{sup 2+} accumulation, probably due to the strong binding of Cu{sup 2+} to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.

  16. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose.

  17. A nonstructural protein of feline panleukopenia virus: expression in Escherichia coli and detection of multiple forms in infected cells.

    PubMed Central

    Carlson, J O; Lynde-Maas, M K; Shen, Z D

    1987-01-01

    Sequences coding for the nonstructural protein NS1 of the autonomous parvovirus feline panleukopenia virus were expressed in Escherichia coli as fusion proteins. The fusion proteins were specifically bound by antisera from canine parvovirus-infected dogs. Antisera against one of the fusion proteins bound to several proteins found only in feline panleukopenia virus-infected feline cells. Images PMID:3027392

  18. Epithelial and Mesenchymal Cells in the Bovine Colonic Mucosa Differ in Their Responsiveness to Escherichia coli Shiga Toxin 1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cells in the depth of the crypts in the bovine colon express CD77 molecules that potentially act as receptors for Shiga toxins (Stx). The implication of this finding for the intestinal colonization 25 of cattle with human pathogenic Stx-producing Escherichia coli (STEC) remains undefined. We used f...

  19. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    PubMed

    Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel

    2015-09-18

    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.

  20. Hydrogen peroxide signals E. coli phagocytosis by human polymorphonuclear cells; up-stream and down-stream pathway.

    PubMed

    Petropoulos, Michalis; Karamolegkou, Georgia; Rosmaraki, Eleftheria; Tsakas, Sotiris

    2015-12-01

    Hydrogen peroxide (Η2Ο2) is produced during a variety of cellular procedures. In this paper, the regulatory role of Η2Ο2, in Escherichia coli phagocytosis by the human polymorphonuclears, was investigated. White blood cells were incubated with dihydrorhodamine (DHR) in order to study H2O2 synthesis and E. coli-FITC to study phagocytosis. Flow cytometry revealed increased synthesis of H2O2 in polymorphonuclears which incorporated E. coli-FITC. The blocking of H2O2 synthesis by specific inhibitors, N-ethylmaleimide (ΝΕΜ) for NADPH oxidase and diethyldithiocarbamate (DDC) for superoxide dismutase (SOD), decreased E. coli phagocytosis, as well. Immunoblot analysis of white blood cell protein extracts revealed that the blocking of NADPH oxidase and SOD decreased ERK-1/2 phosphorylation, while it had no effect on JNK and p38. Confocal microscopy showed that phosphorylation of MAPKs and phagocytosis solely occur in the polymorphonuclear and not in mononuclear cells. The use of specific MAPKs inhibitors showed that all of them are necessary for phagocytosis, but only phospho-p38 affects H2O2 synthesis. The blocking of JNK phosphorylation, in the presence of E. coli, evoked a further decrease of cytoplasmic p47 thus increasing its translocation onto the plasma membrane for the assembly of NADPH oxidase. It appears that newly synthesised H2O2 invigorates the phosphorylation and action of ERK-1/2 in E. coli phagocytosis, while phospho-JNK and phospho-p38 appear to regulate H2O2 production.

  1. The role of genomic islands in Escherichia coli K1 interactions with intestinal and kidney epithelial cells.

    PubMed

    Yousuf, Farzana Abubakar; Rafiq, Sahar; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2016-04-01

    The completion of Escherichia coli K1 genome has identified several genomic islands that are present in meningitis-causing E. coli RS218 but absent in the non-pathogenic E. coli MG1655. In this study, the role of various genomic islands in E. coli K1 interactions with intestinal epithelial cells (Caco-2) and kidney epithelial cells (MA104) was determined. Using association assays, invasion assays, and intracellular survival assays, the findings revealed that the genomic island deletion mutants of RS218 related to P fimbriae, S fimbriae, F17-like fimbriae, non-fimbrial adhesins, Hek and hemagglutinin, protein secretion system (T1SS for hemolysin; T2SS; T5SS for antigen 43), Iro system and hmu system), invasins (CNF1, IbeA), toxins (α-hemolysin), K1 capsule biosynthesis, metabolism (d-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism), prophage genes, showed reduced interactions with both cell types. Next, we determined the role of various genomic islands in E. coli K1 resistance to serum. When exposed to the normal human serum, the viability of the genomic island deletion mutants related to adhesins such as S fimbriae, P fimbriae, F17-like fimbriae, non-fimbrial adhesins, Hek and hemagglutinin, antigen 43 and T5SS for antigen 43, T2SS, and T1SS for hemolysin, Iro system and hmu system, prophage genes, metabolism (sugar metabolism and d-serine catabolism), K1 capsule biosynthesis, and invasins such as CNF1 was affected, suggesting their role in bacteremia. The characterization of these genomic islands should reveal mechanisms of E. coli K1 pathogenicity that could be of value as therapeutic targets.

  2. Cell surface receptors for CCN proteins.

    PubMed

    Lau, Lester F

    2016-06-01

    The CCN family (CYR61; CTGF; NOV; CCN1-6; WISP1-3) of matricellular proteins in mammals is comprised of six homologous members that play important roles in development, inflammation, tissue repair, and a broad range of pathological processes including fibrosis and cancer. Despite considerable effort to search for a high affinity CCN-specific receptor akin to growth factor receptors, no such receptor has been found. Rather, CCNs bind several groups of multi-ligand receptors as characteristic of other matricellular proteins. The most extensively documented among CCN-binding receptors are integrins, including αvβ3, αvβ5, α5β1, α6β1, αIIbβ3, αMβ2, and αDβ2, which mediate diverse CCN functions in various cell types. CCNs also bind cell surface heparan sulfate proteoglycans (HSPGs), low density liproprotein receptor-related proteins (LRPs), and the cation-independent mannose-6-phosphate (M6P) receptor, which are endocytic receptors that may also serve as co-receptors in cooperation with other cell surface receptors. CCNs have also been reported to bind FGFR-2, Notch, RANK, and TrkA, potentially altering the affinities of these receptors for their ligands. The ability of CCNs to bind a multitude of receptors in various cell types may account for the remarkable versatility of their functions, and underscore the diverse signaling pathways that mediate their activities.

  3. Separation of biological cells in a microfluidic device using surface acoustic waves (SAWs)

    NASA Astrophysics Data System (ADS)

    Ai, Ye; Marrone, Babetta L.

    2014-03-01

    In this study, a surface acoustic wave (SAW)-based microfluidic device has been developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. The microfluidic device is comprised of two components, a SAW transducer and a microfluidic channel made of polydimethylsiloxane (PDMS). The SAW transducer was fabricated by patterning two pairs of interdigital electrodes on a lithium niobate (LiNbO3) piezoelectric substrate. When exciting the SAW transducer by AC signals, a standing SAW is generated along the cross-section of the channel. Solid particles immersed in the standing SAW field are accordingly pushed to the pressure node arising from the acoustic radiation force acting on the particles, referring to the acoustic particle-focusing phenomenon. Acoustic radiation force highly depends on the particle properties, resulting in different acoustic responses for different types of cells. A numerical model, coupling the piezoelectric effect in the solid substrate and acoustic pressure in the fluid, was developed to provide a better understanding of SAW-based particle manipulation. Separation of two types of fluorescent particles has been demonstrated using the developed SAW-based microfluidic device. An efficient separation of E. coli bacteria from peripheral blood mononuclear cell (PBMC) samples has also been successfully achieved. The purity of separated E. coli bacteria and separated PBMCs were over 95% and 91%, respectively, obtained by a flow cytometric analysis. The developed microfluidic device can efficiently separate E. coli bacteria from biological samples, which has potential applications in biomedical analysis and clinical diagnosis.

  4. Expression of interferon-inducible recombinant human RNase L causes RNA degradation and inhibition of cell growth in Escherichia coli.

    PubMed

    Pandey, Mitali; Rath, Pramod C

    2004-04-30

    Interferon-inducible ribonuclease L (RNase L) is a unique ankyrin-repeat containing endoribonuclease activated by 2',5'-oligoadenylate (2-5A) cofactor leading to RNA degradation and apoptosis during antiviral response in mammalian cells. We report that expression of recombinant human RNase L (1-741 a.a.) caused RNA degradation and inhibition of cell growth in Escherichia coli in absence of exogenous 2-5A. On the contrary, expression of a homologous but dominant negative form of murine RNase L (1-656 a.a.), lacking the RNA binding and ribonuclease domain, did not show RNA degradation, rather it stimulated cell growth. Upon computational analysis by pBLAST search, a putative transcription factor (yahD, F64758, and NP_414852) from the E. coli genome showed highest homology (E value=1e(-17)) with 90-259 a.a. region of human RNase L due to ankyrin repeats with conserved GKT motifs. Ankyrin repeats 6-9 of RNase L are involved in 2-5A binding, dimerization, and activation of the ribonuclease. Thus, a biochemically active human RNase L in E. coli strongly suggests for a prokaryotic cell growth-inhibitory mechanism possibly through ankyrin-ankyrin interaction of YahD and RNase L leading to RNA degradation. The mammalian interferon-inducible RNase L and E. coli yahD protein may have common origin for the ankyrin repeats with 2-5A binding sites. Thus, RNA degradation and cell growth inhibition by recombinant human RNase L biochemically reconstituted mammalian cellular response to interferon in E. coli. RNase L has prokaryotic evolutionary history, it is not only an antiviral but also an antibacterial gene.

  5. Active and passive Ca2+ fluxes across cell membranes of the guinea-pig taenia coli.

    PubMed

    Casteels, R; Van Breemen, C

    1975-09-09

    The exchange of Ca between the extracellular fluid and the cellular compartment has been investigated in smooth muscle cells of taenia coli. It was found that during the initial phase of metabolic depletion by DNP + IAA, the net inwards flux of Ca amounts to 0.02 pmol cm(-2)-sec(-1). This increase might be proportional to the physiological calcium leak. The study of the relation between the inwardly directed Na gradient and the cellular Ca content has revealed that this Na gradient exerts no effect during prolonged exposure to K-free solution and a very limited effect during exposure to Na-deficient solutions. The cellular 45Ca release induced by metabolic inhibition is not affected by substituting Li or choline for Na. The supplementary calcium which enters the cells during exposure to a solution at low temperature is extruded on returning to a solution at 35 degrees C, even if the Na gradient is reversed. This finding and the effects of metabolic inhibition indicate that Ca extrusion in smooth muscle cells is a process which depends on metabolism and which is not affected by the inwardly directed Na gradient.

  6. Mutagenicity induced by UVC in Escherichia coli cells: reactive oxygen species involvement.

    PubMed

    Silva-Júnior, A C T; Asad, L M B O; Felzenszwalb, I; Asad, N R

    2011-01-01

    We previously demonstrated that reactive oxygen species (ROS) could be involved in the DNA damage induced by ultraviolet-C (UVC). In this study, we evaluated singlet oxygen ((1)O(2)) involvement in UVC-induced mutagenesis in Escherichia coli cells. First, we found that treatment with sodium azide, an (1)O(2) chelator, protected cells against UVC-induced lethality. The survival assay showed that the fpg mutant was more resistant to UVC lethality than the wild-type strain. The rifampicin mutagenesis assay showed that UVC mutagenesis was inhibited five times more in cells treated with sodium azide, and stimulated 20% more fpg mutant. These results suggest that (1)O(2) plays a predominant role in UVC-induced mutagenesis. (1)O(2) generates a specific mutagenic lesion, 8-oxoG, which is repaired by Fpg protein. This lesion was measured by GC-TA reversion in the CC104 strain, its fpg mutant (BH540), and both CC104 and BH540 transformed with the plasmid pFPG (overexpression of Fpg protein). This assay showed that mutagenesis was induced 2.5-fold in the GC-TA strain and 7-fold in the fpg mutant, while the fpg mutant transformed with pFPG was similar to GC-TA strain. This suggests that UVC can also cause ROS-mediated mutagenesis and that the Fpg protein may be involved in this repair.

  7. Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli.

    PubMed

    Viitanen, Mikko I; Vasala, Antti; Neubauer, Peter; Alatossava, Tapani

    2003-04-09

    BACKGROUND: Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments. RESULTS: Shake flask cultivations in mineral salt medium showed that cheese whey or deproteinised whey induced gene expression as efficiently as IPTG (isopropyl-beta-D-thiogalactopyranoside) or pure lactose. Addition of yeast extract or proteolytically degraded whey proteins did not improve the recombinant protein yield. In contrast, addition of yeast extract to the well-balanced mineral salt medium decreased the product yield. Feeding with glycerol provided sufficient amount of easily assimilable carbon source during the induction period without preventing lactose intake and induction by lactose. High-cell-density fed-batch cultivations showed that product yields comparable to IPTG-induction can be achieved by feeding bacteria with a mixture of glycerol and concentrated whey permeate during the induction. CONCLUSION: Whey and concentrated whey permeate can be applied as an alternative inducer in recombinant high-cell-density fed-batch fermentations. The yield of the recombinant product was comparable to fermentations induced by IPTG. In low-cell-density shake flask experiments the yield was higher with whey or whey permeate than with IPTG.

  8. Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells

    PubMed Central

    Moolman, M. Charl; Krishnan, Sriram Tiruvadi; Kerssemakers, Jacob W. J.; van den Berg, Aafke; Tulinski, Pawel; Depken, Martin; Reyes-Lamothe, Rodrigo; Sherratt, David J.; Dekker, Nynke H.

    2014-01-01

    The ubiquitous sliding clamp facilitates processivity of the replicative polymerase and acts as a platform to recruit proteins involved in replication, recombination and repair. While the dynamics of the E. coli β2-sliding clamp have been characterized in vitro, its in vivo stoichiometry and dynamics remain unclear. To probe both β2-clamp dynamics and stoichiometry in live E. coli cells, we use custom-built microfluidics in combination with single-molecule fluorescence microscopy and photoactivated fluorescence microscopy. We quantify the recruitment, binding and turnover of β2-sliding clamps on DNA during replication. These quantitative in vivo results demonstrate that numerous β2-clamps in E. coli remain on the DNA behind the replication fork for a protracted period of time, allowing them to form a docking platform for other enzymes involved in DNA metabolism. PMID:25520215

  9. Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Moolman, M. Charl; Krishnan, Sriram Tiruvadi; Kerssemakers, Jacob W. J.; van den Berg, Aafke; Tulinski, Pawel; Depken, Martin; Reyes-Lamothe, Rodrigo; Sherratt, David J.; Dekker, Nynke H.

    2014-12-01

    The ubiquitous sliding clamp facilitates processivity of the replicative polymerase and acts as a platform to recruit proteins involved in replication, recombination and repair. While the dynamics of the E. coli β2-sliding clamp have been characterized in vitro, its in vivo stoichiometry and dynamics remain unclear. To probe both β2-clamp dynamics and stoichiometry in live E. coli cells, we use custom-built microfluidics in combination with single-molecule fluorescence microscopy and photoactivated fluorescence microscopy. We quantify the recruitment, binding and turnover of β2-sliding clamps on DNA during replication. These quantitative in vivo results demonstrate that numerous β2-clamps in E. coli remain on the DNA behind the replication fork for a protracted period of time, allowing them to form a docking platform for other enzymes involved in DNA metabolism.

  10. Escherichia coli Resistance to Nonbiocidal Antibiofilm Polysaccharides Is Rare and Mediated by Multiple Mutations Leading to Surface Physicochemical Modifications

    PubMed Central

    Travier, Laetitia; Rendueles, Olaya; Ferrières, Lionel; Herry, Jean-Marie

    2013-01-01

    Antivirulence strategies targeting bacterial behavior, such as adhesion and biofilm formation, are expected to exert low selective pressure and have been proposed as alternatives to biocidal antibiotic treatments to avoid the rapid occurrence of bacterial resistance. Here, we tested this hypothesis using group 2 capsule polysaccharide (G2cps), a polysaccharidic molecule previously shown to impair bacterium-surface interactions, and we investigated the nature of bacterial resistance to a nonbiocidal antibiofilm strategy. We screened an Escherichia coli mutant library for an increased ability to form biofilm in the presence of G2cps, and we identified several mutants displaying partial but not total resistance to this antibiofilm polysaccharide. Our genetic analysis showed that partial resistance to G2cps results from multiple unrelated mutations leading to modifications in surface physicochemical properties that counteract the changes in ionic charge and Lewis base properties induced by G2cps. Moreover, some of the identified mutants harboring improved biofilm formation in the presence of G2cps were also partially resistant to other antibiofilm molecules. This study therefore shows that alterations of bacterial surface properties mediate only partial resistance to G2cps. It also experimentally validates the potential value of nonbiocidal antibiofilm strategies, since full resistance to antibiofilm compounds is rare and potentially unlikely to arise in clinical settings. PMID:23733462

  11. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54.

    PubMed

    Bordes, Patricia; Wigneshweraraj, Siva R; Schumacher, Jörg; Zhang, Xiaodong; Chaney, Matthew; Buck, Martin

    2003-03-04

    Members of the protein family called ATPases associated with various cellular activities (AAA(+)) play a crucial role in transforming chemical energy into biological events. AAA(+) proteins are complex molecular machines and typically form ring-shaped oligomeric complexes that are crucial for ATPase activity and mechanism of action. The Escherichia coli transcription activator phage shock protein F (PspF) is an AAA(+) mechanochemical enzyme that functions to sense and relay the energy derived from nucleoside triphosphate hydrolysis to catalyze transcription by the sigma(54)-RNA polymerase. Closed promoter complexes formed by the sigma(54)-RNA polymerase are substrates for the action of PspF. By using a protein fragmentation approach, we identify here at least one sigma(54)-binding surface in the PspF AAA(+) domain. Results suggest that ATP hydrolysis by PspF is coupled to the exposure of at least one sigma(54)-binding surface. This nucleotide hydrolysis-dependent presentation of a substrate binding surface can explain why complexes that form between sigma(54) and PspF are transient and could be part of a mechanism used generally by other AAA(+) proteins to regulate activity.

  12. Effect of calcium hydroxide application to cattle feedlot pens on Escherichia coli O157:H7 and total E. coli in pen surface manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Cattle and beef products are sources of the pathogen Escherichia coli O157:H7. Lime products have a long history of use in cattle production as disinfectants for sick pens, calving pens, and muddy areas, to control the spread of diseases. Lime may also be useful as a preharvest trea...

  13. Cell-based galactosemia diagnosis system based on a galactose assay using a bioluminescent Escherichia coli array.

    PubMed

    Woo, Min-Ah; Kim, Moon Il; Cho, Daeyeon; Park, Hyun Gyu

    2013-11-19

    A new cell-based galactose assay system, which is comprised of two bioluminescent Escherichia coli strains immobilized within an agarose gel arrayed on a well plate, has been developed. For this purpose, a galT knockout strain [galT(-) cell] of E. coli was genetically constructed so that cell growth is not promoted by galactose but rather by glucose present in a sample. Another E. coli W strain (normal cell), which grows normally in the presence of either glucose or galactose, was employed. A luminescent reporter gene, which produces luminescence as cells grow, was inserted into both of the E. coli strains, so that cell growth could be monitored in a facile manner. The two strains were separately grown for 4 h on gel arrays to which test samples were individually supplied. The relative luminescence unit (RLU) values caused by cell growth were determined for each array, one of which is resulted by glucose only and the other of which is resulted by both glucose and galactose present in the sample. By employing this protocol, galactose concentrations present in the test sample are reflected in the differences between the RLU values for each array. The practical utility of the new assay system was demonstrated by its use in determining galactose levels in clinical blood spot specimens coming from newborn babies. Because it can be employed to diagnosis of galactosemia in newborn babies in a more rapid, convenient, and cost-effective manner, this cell-based solid-phase galactose assay system should become a powerful alternative to conventional methods, which require labor-intensive and time-consuming procedures and/or complicated and expensive equipment.

  14. Episome-carried Surface Antigen K88 of Escherichia coli II. Isolation and Chemical Analysis

    PubMed Central

    Stirm, Stephan; Ørskov, Frits; Ørskov, Ida; Mansa, Bendt

    1967-01-01

    The K88 antigen was carried by episomal transfer to D282, a nonmotile Escherichia coli strain without K antigen. D520, obtained by this episomal transfer, was used for the extraction of K88 antigen. It was shown by the agar gel precipitation technique that some K88 antigen was released from D520 into suspending aqueous medium. The amount of liberated material was increased by gentle heating (60 C) or treatment in a Waring Blendor. The antigen was obtained from the extracts in a purified form by making use of its insolubility between pH 3.5 and 5.5 and of its high sedimentation rate (S020,w = 36.7S). The homogeneity of the material was demonstrated by agar gel precipitation with D520 antiserum, by analytical ultracentrifugation, and by moving-boundary electrophoresis. Chemical analysis revealed that K88 is a pure protein containing all the common amino acids with the exception of cysteine-cystine. Purified K88 selectively precipitated the K88 antibodies from D520 antiserum and was shown to be immunogenic in rabbits. Images PMID:4960185

  15. K99 surface antigen of Escherichia coli: purification and partial characterization.

    PubMed Central

    Isaacson, R E

    1977-01-01

    K99, a presumed colonizing factor of enterotoxigenic Escherichia coli of calf origin, has been purified. K99 was removed from K99+ bacteria by salt extraction and subsequently purified by ammonium sulfate precipitation and column chromatography on diethylaminoethyl-Sephadex. The purified material was homogenous in size, having an s20,w of 13 to 15 S. It was composed of two subunits: a major component with a molecular weight of 22,500 and a minor component of 29,500. When observed in the electron microscope, K99 appeared to be rod-shaped, with a strong tendency for self-aggregation. At concentrations where aggregation was minimized, individual rods were observed with diameters of 8.4 nm and mean lengths of 130 nm. Based on the subunit structure, exterior location, and rod-like shape of K99, it is concluded that K99 is a pilus or pilus-like structure. Chemically, K99 is composed primarily of protein and has an isoelectric point of greater than 10. Purified K99 did not hemagglutinate guinea pig erythrocytes. Images PMID:401772

  16. Efficacy of post-harvest rinsing and bleach disinfection of E. coli O157:H7 on spinach leaf surfaces.

    PubMed

    Kinsinger, Nichola M; Mayton, Holly M; Luth, Madeline R; Walker, Sharon L

    2017-04-01

    Attachment and detachment kinetics of Escherichia coli O157:H7 from baby spinach leaf epicuticle layers were investigated using a parallel plate flow chamber. Mass transfer rate coefficients were used to determine the impact of water chemistry and common bleach disinfection rinses on the removal and inactivation of the pathogen. Attachment mass transfer rate coefficients generally increased with ionic strength. Detachment mass transfer rate coefficients were nearly the same in KCl and AGW rinses; however, the detachment phase lasted longer in KCl than AGW (18 ± 4 min and 4 ± 2 min, respectively), indicating that the ions present during attachment play a significant role in the cells' ability to remain attached. Specifically, increasing bleach rinse concentration by two orders of magnitude was found to increase the detachment mass transfer rate coefficient by 20 times (from 5.7 ± 0.7 × 10(-11) m/s to 112.1 ± 26.8 × 10(-11) m/s for 10 ppb and 1000 ppb, respectively), and up to 88 ± 4% of attached cells remained alive. The spinach leaf texture was incorporated within a COMSOL model of disinfectant concentration gradients, which revealed nearly 15% of the leaf surface is exposed to almost 1000 times lower concentration than the bulk rinse solution.

  17. Hydrogen Peroxide Induced Cell Death: The Major Defences Relative Roles and Consequences in E. coli

    PubMed Central

    Uhl, Lionel; Dukan, Sam

    2016-01-01

    We recently developed a mathematical model for predicting reactive oxygen species (ROS) concentration and macromolecules oxidation in vivo. We constructed such a model using Escherichia coli as a model organism and a set of ordinary differential equations. In order to evaluate the major defences relative roles against hydrogen peroxide (H2 O2), we investigated the relative contributions of the various reactions to the dynamic system and searched for approximate analytical solutions for the explicit expression of changes in H2 O2 internal or external concentrations. Although the key actors in cell defence are enzymes and membrane, a detailed analysis shows that their involvement depends on the H2 O2 concentration level. Actually, the impact of the membrane upon the H2 O2 stress felt by the cell is greater when micromolar H2 O2 is present (9-fold less H2 O2 in the cell than out of the cell) than when millimolar H2 O2 is present (about 2-fold less H2 O2 in the cell than out of the cell). The ratio between maximal external H2 O2 and internal H2 O2 concentration also changes, reducing from 8 to 2 while external H2 O2 concentration increases from micromolar to millimolar. This non-linear behaviour mainly occurs because of the switch in the predominant scavenger from Ahp (Alkyl Hydroperoxide Reductase) to Cat (catalase). The phenomenon changes the internal H2 O2 maximal concentration, which surprisingly does not depend on cell density. The external H2 O2 half-life and the cumulative internal H2 O2 exposure do depend upon cell density. Based on these analyses and in order to introduce a concept of dose response relationship for H2 O2-induced cell death, we developed the concepts of “maximal internal H2 O2 concentration” and “cumulative internal H2 O2 concentration” (e.g. the total amount of H2 O2). We predict that cumulative internal H2 O2 concentration is responsible for the H2 O2-mediated death of bacterial cells. PMID:27494019

  18. Fate of surface inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Typhimurium on kippered beef during extended storage at refrigeration and abusive temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium was evaluated on kippered beef. Individual pieces of the product were separately inoculated on the top and bottom surfaces with each 3- to 5-strain pathogen cocktail at ca. 6.0 log10 CFU/piece and stored at...

  19. Patterns of Antimicrobial Resistance Observed in Escherichia coli Isolates Obtained from Domestic- and Wild-Animal Fecal Samples, Human Septage, and Surface Water

    PubMed Central

    Sayah, Raida S.; Kaneene, John B.; Johnson, Yvette; Miller, RoseAnn

    2005-01-01

    A repeated cross-sectional study was conducted to determine the patterns of antimicrobial resistance in 1,286 Escherichia coli strains isolated from human septage, wildlife, domestic animals, farm environments, and surface water in the Red Cedar watershed in Michigan. Isolation and identification of E. coli were done by using enrichment media, selective media, and biochemical tests. Antimicrobial susceptibility testing by the disk diffusion method was conducted for neomycin, gentamicin, streptomycin, chloramphenicol, ofloxacin, trimethoprim-sulfamethoxazole, tetracycline, ampicillin, nalidixic acid, nitrofurantoin, cephalothin, and sulfisoxazole. Resistance to at least one antimicrobial agent was demonstrated in isolates from livestock, companion animals, human septage, wildlife, and surface water. In general, E. coli isolates from domestic species showed resistance to the largest number of antimicrobial agents compared to isolates from human septage, wildlife, and surface water. The agents to which resistance was demonstrated most frequently were tetracycline, cephalothin, sulfisoxazole, and streptomycin. There were similarities in the patterns of resistance in fecal samples and farm environment samples by animal, and the levels of cephalothin-resistant isolates were higher in farm environment samples than in fecal samples. Multidrug resistance was seen in a variety of sources, and the highest levels of multidrug-resistant E. coli were observed for swine fecal samples. The fact that water sample isolates were resistant only to cephalothin may suggest that the resistance patterns for farm environment samples may be more representative of the risk of contamination of surface waters with antimicrobial agent-resistant bacteria. PMID:15746342

  20. Effects of the Probiotic Enterococcus faecium and Pathogenic Escherichia coli Strains in a Pig and Human Epithelial Intestinal Cell Model

    PubMed Central

    Lodemann, Ulrike; Strahlendorf, Julia; Schierack, Peter; Klingspor, Shanti; Aschenbach, Jörg R.

    2015-01-01

    The aim of this study has been to elucidate the effect of the probiotic Enterococcus faecium NCIMB 10415 on epithelial integrity in intestinal epithelial cells and whether pre- and coincubation with this strain can reproducibly prevent damage induced by enterotoxigenic (ETEC) and enteropathogenic Escherichia coli (EPEC). Porcine (IPEC-J2) and human (Caco-2) intestinal epithelial cells were incubated with bacterial strains and epithelial integrity was assessed by measuring transepithelial electrical resistance (TEER) and mannitol flux rates. E. faecium alone increased TEER of Caco-2 cells without affecting mannitol fluxes whereas the E. coli strains decreased TEER and concomitantly increased mannitol flux rates in both cell lines. Preincubation with E. faecium had no effect on the TEER decrease induced by E. coli in preliminary experiments. However, in a second set of experiments using a slightly different protocol, E. faecium ameliorated the TEER decrease induced by ETEC at 4 h in IPEC-J2 and at 2, 4, and 6 h in Caco-2 cells. We conclude that E. faecium positively affected epithelial integrity in monoinfected Caco-2 cells and could ameliorate the damage on TEER induced by an ETEC strain. Reproducibility of the results is, however, limited when experiments are performed with living bacteria over longer periods. PMID:25883829

  1. Effect of gold nanoparticles on thermal gradient generation and thermotaxis of E. coli cells in microfluidic device.

    PubMed

    Murugesan, Nithya; Panda, Tapobrata; Das, Sarit K

    2016-08-01

    Bacteria responds to changing chemical and thermal environment by moving towards or away from a particular location. In this report, we looked into thermal gradient generation and response of E. coli DH5α cells to thermal gradient in the presence and in the absence of spherical gold nanoparticles (size: 15 to 22 nm) in a static microfluidic environment using a polydimethylsiloxane (PDMS) made microfluidic device. A PDMS-agarose based microfluidic device for generating thermal gradient has been developed and the thermal gradient generation in the device has been validated with the numerical simulation. Our studies revealed that the presence of gold nanoparticles, AuNPs (0.649 μg/mL) has no effect on the thermal gradient generation. The E. coli DH5α cells have been treated with AuNPs of two different concentrations (0.649 μg/mL and 0.008 μg/mL). The thermotaxis behavior of cells in the presence of AuNPs has been studied and compared to the thermotaxis of E.coli DH5α cells in the absence of AuNPs. In case of thermotaxis, in the absence of the AuNPs, the E. coli DH5α cells showed better thermotaxis towards lower temperature range, whereas in the presence of AuNPs (0.649 μg/mL and 0.008 μg/mL) thermotaxis of the E. coli DH5α cells has been inhibited. The results show that the spherical AuNPs intervenes in the themotaxis of E. coli DH5α cells and inhibits the cell migration. The reason for the failure in thermotaxis response mechanism may be due to decreased F-type ATP synthase activity and collapse of membrane potential by AuNPs, which, in turn, leads to decreased ATP levels. This has been hypothesized since both thermotaxis and chemotaxis follows the same response mechanism for migration in which ATP plays critical role.

  2. In-cell thermodynamics and a new role for protein surfaces.

    PubMed

    Smith, Austin E; Zhou, Larry Z; Gorensek, Annelise H; Senske, Michael; Pielak, Gary J

    2016-02-16

    There is abundant, physiologically relevant knowledge about protein cores; they are hydrophobic, exquisitely well packed, and nearly all hydrogen bonds are satisfied. An equivalent understanding of protein surfaces has remained elusive because proteins are almost exclusively studied in vitro in simple aqueous solutions. Here, we establish the essential physiological roles played by protein surfaces by measuring the equilibrium thermodynamics and kinetics of protein folding in the complex environment of living Escherichia coli cells, and under physiologically relevant in vitro conditions. Fluorine NMR data on the 7-kDa globular N-terminal SH3 domain of Drosophila signal transduction protein drk (SH3) show that charge-charge interactions are fundamental to protein stability and folding kinetics in cells. Our results contradict predictions from accepted theories of macromolecular crowding and show that cosolutes commonly used to mimic the cellular interior do not yield physiologically relevant information. As such, we provide the foundation for a complete picture of protein chemistry in cells.

  3. Toxicity and SOS-response to ELF magnetic fields and nalidixic acid in E. coli cells.

    PubMed

    Belyaev, Igor

    2011-05-18

    Extremely low-frequency magnetic fields (ELF-MF) have previously been shown to affect conformation of chromatin and cell proliferation. Possible genotoxic and carcinogenic effects of ELF-MF have also been discussed and tested. In this study, we analysed the effect of ELF-MF on chromatin conformation in E. coli GE499 cells by the anomalous viscosity time-dependence (AVTD) technique. Possible genotoxic effects of the specific combination of static and ELF-MF, which has been proven to affect chromatin conformation, were investigated by a clonogenic assay, by assessing cell-growth kinetics, and by analysis of the SOS-response by means of inducible recA-lacZ fusion-gene products and the β-galactosidase assay. The genotoxic agent nalidixic acid (NAL) was used as a positive control and in combination with ELF-MF. Nalidixic acid at 3-30μg/ml decreased the AVTD peaks and induced a cytotoxic effect. In contrast to NAL, ELF-MF fields increased AVTD, stimulated cell growth, and increased cloning efficiency. These effects depended on the frequency within the range of 7-11Hz. While NAL induced an SOS-response, exposure to ELF-MF did not induce the recA-lacZ fusion-gene product. Exposure to ELF-MF did not modify the genotoxic effects of NAL either. All together, the data show that ELF-MF, under specific conditions of exposure, acted as a non-toxic but cell-growth stimulating agent.

  4. Individuality and universality in the growth-division laws of single E. coli cells

    NASA Astrophysics Data System (ADS)

    Kennard, Andrew S.; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J.; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2016-01-01

    The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.

  5. Individuality and universality in the growth-division laws of single E. coli cells.

    PubMed

    Kennard, Andrew S; Osella, Matteo; Javer, Avelino; Grilli, Jacopo; Nghe, Philippe; Tans, Sander J; Cicuta, Pietro; Cosentino Lagomarsino, Marco

    2016-01-01

    The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both size and doubling times is a linear function of the population means of these variables. Here we combine experiments and theory and use scaling concepts to elucidate the constraints posed by the second observation on the division control mechanism and on the joint fluctuations of sizes and doubling times. We found that scaling relations based on the means collapse both size and doubling-time distributions across different conditions and explain how the shape of their joint fluctuations deviates from the means. Our data on these joint fluctuations highlight the importance of cell individuality: Single cells do not follow the dependence observed for the means between size and either growth rate or inverse doubling time. Our calculations show that these results emerge from a broad class of division control mechanisms requiring a certain scaling form of the "division hazard rate function," which defines the probability rate of dividing as a function of measurable parameters. This "model free" approach gives a rationale for the universal body-size distributions observed in microbial ecosystems across many microbial species, presumably dividing with multiple mechanisms. Additionally, our experiments show a crossover between fast and slow growth in the relation between individual-cell growth rate and division time, which can be understood in terms of different regimes of genome replication control.

  6. Shape-memory surfaces for cell mechanobiology

    PubMed Central

    Ebara, Mitsuhiro

    2015-01-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology. PMID:27877747

  7. Shape-memory surfaces for cell mechanobiology

    NASA Astrophysics Data System (ADS)

    Ebara, Mitsuhiro

    2015-02-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology.

  8. Shape-memory surfaces for cell mechanobiology.

    PubMed

    Ebara, Mitsuhiro

    2015-02-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape 'A' to a memorized permanent shape 'B' upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology.

  9. The effects of diode laser on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide adherent to titanium oxide surface of dental implants. An in vitro study.

    PubMed

    Giannelli, Marco; Landini, Giulia; Materassi, Fabrizio; Chellini, Flaminia; Antonelli, Alberto; Tani, Alessia; Zecchi-Orlandini, Sandra; Rossolini, Gian Maria; Bani, Daniele

    2016-11-01

    Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This in vitro study aims at providing the experimental basis for possible use of diode laser (λ 808 nm) in the treatment of peri-implantitis. Staphylococcus aureus biofilm was grown for 48 h on titanium discs with porous surface corresponding to the bone-implant interface and then irradiated with a diode laser (λ 808 nm) in noncontact mode with airflow cooling for 1 min using a Ø 600-μm fiber. Setting parameters were 2 W (400 J/cm(2)) for continuous wave mode; 22 μJ, 20 kHz, 7 μs (88 J/cm(2)) for pulsed wave mode. Bactericidal effect was evaluated using fluorescence microscopy and counting the residual colony-forming units. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, the titanium discs were coated with Escherichia coli lipopolysaccharide (LPS), laser-irradiated and seeded with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Diode laser irradiation in both continuous and pulsed modes induced a statistically significant reduction of viable bacteria and nitrite levels. These results indicate that in addition to its bactericidal effect laser irradiation can also inhibit LPS-induced macrophage activation and thus blunt the inflammatory response. The λ 808-nm diode laser emerges as a valuable tool for decontamination/detoxification of the titanium implant surface and may be used in the treatment of peri-implantitis.

  10. Escherichia coli biofilms

    PubMed Central

    Beloin, Christophe; Roux, Agnès; Ghigo, Jean-Marc

    2008-01-01

    Escherichia coli is a predominant species among facultative anaerobic bacteria of the gastrointestinal tract. Both its frequent community lifestyle and the availability of a wide array of genetic tools contributed to establish E. coli as a relevant model organism for the study of surface colonization. Several key factors, including different extracellular appendages, are implicated in E. coli surface colonization and their expression and activity are finely regulated, both in space and time, to ensure productive events leading to mature biofilm formation. This chapter will present known molecular mechanisms underlying biofilm development in both commensal and pathogenic E. coli. PMID:18453280

  11. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    PubMed

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about

  12. Differential Mechanism of Escherichia coli Inactivation by (+)-Limonene as a Function of Cell Physiological State and Drug's Concentration

    PubMed Central

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2′-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy

  13. Micropatterned Surfaces for Reducing the Risk of Catheter-Associated Urinary Tract Infection: An In Vitro Study on the Effect of Sharklet Micropatterned Surfaces to Inhibit Bacterial Colonization and Migration of Uropathogenic Escherichia coli

    PubMed Central

    Chung, Kenneth K.; McDaniel, Clinton J.; Darouiche, Rabih O.; Landman, Jaime; Brennan, Anthony B.

    2011-01-01

    Abstract Background and Purpose Catheter-associated urinary tract infection (CAUTI) is the most common device-associated infection and can result in serious medical consequences. We studied the efficacy of a novel microscopic physical surface modification (Sharklet) for preventing bacterial colonization and migration of uropathogenic Escherichia coli on silicone elastomer. Materials and Methods In vitro growth assays evaluated E coli colonization using three variations of micropatterned silicone surfaces vs a smooth silicone control. Enumeration techniques included quantification of colonies on surfaces and analysis of bacterial area coverage and colony size. In vitro migration assays involved placement of micropatterned and smooth silicone rod segments between two agar islands to measure incidence of migration. Results All three variations of the Sharklet micropattern outperformed the control surfaces in inhibiting E coli colonization. On average, 47% reduction in colony-forming units (CFUs) and bacterial area coverage plus 77% reduction in colony size were achieved with the Sharklet surfaces in tryptic soy broth and artificial urine compared with the control nonpatterned surfaces. The incidence of E coli migration over the rod segments was reduced by more than 80% for the Sharklet transverse patterned rods compared with the unpatterned control rods. Conclusion The Sharklet micropattern is effective at inhibiting colonization and migration of a common uropathogen. This performance is achieved through a physical surface modification without the use of any antimicrobial agents. Because deterrence of bacterial colonization and migration is a critical step to prevent CAUTI, the Sharklet micropattern offers a novel concept in addressing this important problem. PMID:21819223

  14. PerC Manipulates Metabolism and Surface Antigens in Enteropathogenic Escherichia coli

    PubMed Central

    Mellies, Jay L.; Platenkamp, Amy; Osborn, Jossef; Ben-Avi, Lily

    2017-01-01

    Enteropathogenic Escherichia coli is an important cause of profuse, watery diarrhea in infants living in developing regions of the world. Typical strains of EPEC (tEPEC) possess a virulence plasmid, while related clinical isolates that lack the pEAF plasmid are termed atypical EPEC (aEPEC). tEPEC and aEPEC tend to cause acute vs. more chronic type infections, respectively. The pEAF plasmid encodes an attachment factor as well as a regulatory operon, perABC. PerC, a poorly understood regulator, was previously shown to regulate expression of the type III secretion system through Ler. Here we elucidate the regulon of PerC using RNA sequencing analysis to better our understanding of the role of the pEAF in tEPEC infection. We demonstrate that PerC controls anaerobic metabolism by increasing expression of genes necessary for nitrate reduction. A tEPEC strain overexpressing PerC exhibited a growth advantage compared to a strain lacking this regulator, when grown anaerobically in the presence of nitrate, conditions mimicking the human intestine. We show that PerC strongly down-regulates type I fimbriae expression by manipulating fim phase variation. The quantities of a number of non-coding RNA molecules were altered by PerC. In sum, this protein controls niche adaptation, and could help to explain the function of the PerC homologs (Pch), many of which are encoded within prophages in related, Gram-negative pathogens. PMID:28224117

  15. Common phenotypic and genotypic antimicrobial resistance patterns found in a case study of multiresistant E. coli from cohabitant pets, humans, and household surfaces.

    PubMed

    Martins, Liliana Raquel Leite; Pina, Susana Maria Rocha; Simões, Romeo Luís Rocha; de Matos, Augusto José Ferreira; Rodrigues, Pedro; da Costa, Paulo Martins Rodrigues

    2013-01-01

    The objective of the study described in this article was to characterize the antimicrobial resistance profiles among E. coli strains isolated from cohabitant pets and humans, evaluating the concurrent colonization of pets, owners, and home surfaces by bacteria carrying the same antimicrobial-resistant genes. The authors also intended to assess whether household surfaces and objects could contribute to the within-household antimicrobial-resistant gene diffusion between human and animal cohabitants. A total of 124 E. coli strains were isolated displaying 24 different phenotypic patterns with a remarkable percentage of multiresistant ones. The same resistance patterns were isolated from the dog's urine, mouth, the laundry floor, the refrigerator door, and the dog's food bowl. Some other multiresistant phenotypes, as long as resistant genes, were found repeatedly in different inhabitants and surfaces of the house. Direct, close contact between all the cohabitants and the touch of contaminated household surfaces and objects could be an explanation for these observations.

  16. Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay

    PubMed Central

    Roggiani, Manuela

    2015-01-01

    ABSTRACT Escherichia coli senses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of the torCAD operon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly, E. coli respires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level of torCAD transcription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels of torCAD transcription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay. IMPORTANCE Trimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. In E. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported

  17. Comparison of Y1 mouse adrenal cell and coagglutination assays for detection of Escherichia coli heat labile enterotoxin.

    PubMed Central

    Chapman, P A; Daly, C M

    1989-01-01

    A commercial coagglutination assay (COA; Phadebact LT-ETEC) was compared with a Y1 mouse adrenal cell assay for detecting the heat labile enterotoxin of Escherichia coli. Of four different media evaluated for use with the COA, only one (modified blood agar) gave a positive result with all strains known to produce heat labile enterotoxin. With modified blood agar, the COA detected 74 (85%) of 87 such strains. Eighty six strains negative by cell culture a