Sample records for coli nusb-s10 transcription

  1. ssaD1, a suppressor of secA51(Ts) that renders growth of Escherichia coli cold sensitive, is an early amber mutation in the transcription factor gene nusB.

    PubMed Central

    Rajapandi, T.; Oliver, D.

    1994-01-01

    Complementation analysis of the ssaD1 mutation, isolated as a suppressor of the secA51(Ts) mutation that renders growth of Escherichia coli cold sensitive, was used to show that ssaD corresponds to nusB, a gene known to be important in transcription antitermination. DNA sequence analysis of the ssaD1 allele showed that it creates an amber mutation in the 15th codon of nusB. Analysis of the effect of different levels of NusB protein on secA transcription and translation suggested that NusB plays little or no role in the control of secA expression. Accordingly, mechanisms by which nusB inactivation can lead to suppression of secA51(Ts) and secY24(Ts) mutations without affecting secA expression need to be considered. PMID:8021230

  2. Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein.

    PubMed Central

    Huenges, M; Rölz, C; Gschwind, R; Peteranderl, R; Berglechner, F; Richter, G; Bacher, A; Kessler, H; Gemmecker, G

    1998-01-01

    The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM). PMID:9670024

  3. Tackling both the player and the ball: lessons from crystallographic studies on the N-utilization substance B (NusB) from Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Haire, L. F.; Gopal, B.

    2001-11-01

    The N-utilization substance B (NusB) from Mycobacterium tuberculosis is an important element in a complex assembly of other proteins and ribonucleic acid effecting transcription antitermination in this organism. The cloning and overexpression of the protein in E. coli, followed by the purification, crystallization, and use of selenomethionine samples to obtain phase information by anomalous dispersion techniques, allows us to investigate the fine interplay of sample engineering and modification of crystallization parameters leading to successful structure determination. Knowledge of the crystal structure and the surface properties of the protein allows an analysis of the packing of the NusB dimers in the crystal lattice. This exercise, albeit post facto, helps to demonstrate how biophysical and functional information could help 'rationalize' the course of obtaining protein crystals suitable for structural studies.

  4. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells

    PubMed Central

    Cagliero, Cedric; Zhou, Yan Ning; Jin, Ding Jun

    2014-01-01

    In a fast-growing Escherichia coli cell, most RNA polymerase (RNAP) is allocated to rRNA synthesis forming transcription foci at clusters of rrn operons or bacterial nucleolus, and each of the several nascent nucleoids contains multiple pairs of replication forks. The composition of transcription foci has not been determined. In addition, how the transcription machinery is three-dimensionally organized to promote cell growth in concord with replication machinery in the nucleoid remains essentially unknown. Here, we determine the spatial and functional landscapes of transcription and replication machineries in fast-growing E. coli cells using super-resolution-structured illumination microscopy. Co-images of RNAP and DNA reveal spatial compartmentation and duplication of the transcription foci at the surface of the bacterial chromosome, encompassing multiple nascent nucleoids. Transcription foci cluster with NusA and NusB, which are the rrn anti-termination system and are associated with nascent rRNAs. However, transcription foci tend to separate from SeqA and SSB foci, which track DNA replication forks and/or the replisomes, demonstrating that transcription machinery and replisome are mostly located in different chromosomal territories to maintain harmony between the two major cellular functions in fast-growing cells. Our study suggests that bacterial chromosomes are spatially and functionally organized, analogous to eukaryotes. PMID:25416798

  5. Repression of YdaS Toxin Is Mediated by Transcriptional Repressor RacR in the Cryptic rac Prophage of Escherichia coli K-12.

    PubMed

    Krishnamurthi, Revathy; Ghosh, Swagatha; Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2017-01-01

    Horizontal gene transfer is a major driving force behind the genomic diversity seen in prokaryotes. The cryptic rac prophage in Escherichia coli K-12 carries the gene for a putative transcription factor RacR, whose deletion is lethal. We have shown that the essentiality of racR in E. coli K-12 is attributed to its role in transcriptionally repressing toxin gene(s) called ydaS and ydaT , which are adjacent to and coded divergently to racR . IMPORTANCE Transcription factors in the bacterium E. coli are rarely essential, and when they are essential, they are largely toxin-antitoxin systems. While studying transcription factors encoded in horizontally acquired regions in E. coli , we realized that the protein RacR, a putative transcription factor encoded by a gene on the rac prophage, is an essential protein. Here, using genetics, biochemistry, and bioinformatics, we show that its essentiality derives from its role as a transcriptional repressor of the ydaS and ydaT genes, whose products are toxic to the cell. Unlike type II toxin-antitoxin systems in which transcriptional regulation involves complexes of the toxin and antitoxin, repression by RacR is sufficient to keep ydaS transcriptionally silent.

  6. Identification of regulatory targets for the bacterial Nus factor complex.

    PubMed

    Baniulyte, Gabriele; Singh, Navjot; Benoit, Courtney; Johnson, Richard; Ferguson, Robert; Paramo, Mauricio; Stringer, Anne M; Scott, Ashley; Lapierre, Pascal; Wade, Joseph T

    2017-12-11

    Nus factors are broadly conserved across bacterial species, and are often essential for viability. A complex of five Nus factors (NusB, NusE, NusA, NusG and SuhB) is considered to be a dedicated regulator of ribosomal RNA folding, and has been shown to prevent Rho-dependent transcription termination. Here, we identify an additional cellular function for the Nus factor complex in Escherichia coli: repression of the Nus factor-encoding gene, suhB. This repression occurs primarily by translation inhibition, followed by Rho-dependent transcription termination. Thus, the Nus factor complex can prevent or promote Rho activity depending on the gene context. Conservation of putative NusB/E binding sites upstream of Nus factor genes suggests that Nus factor autoregulation occurs in many bacterial species. Additionally, many putative NusB/E binding sites are also found upstream of other genes in diverse species, and we demonstrate Nus factor regulation of one such gene in Citrobacter koseri. We conclude that Nus factors have an evolutionarily widespread regulatory function beyond ribosomal RNA, and that they are often autoregulatory.

  7. Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA

    PubMed Central

    Lal, Avantika; Krishna, Sandeep; Seshasayee, Aswin Sai Narain

    2018-01-01

    In Escherichia coli, the sigma factor σ70 directs RNA polymerase to transcribe growth-related genes, while σ38 directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ70, and the non-coding 6S RNA which binds to the RNA polymerase-σ70 holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial. Here we use RNA-Seq in five phases of growth to elucidate their function on a genome-wide scale. We show that Rsd and 6S RNA facilitate σ38 activity throughout bacterial growth, while 6S RNA also regulates widely different genes depending upon growth phase. We discover novel interactions between 6S RNA and Rsd and show widespread expression changes in a strain lacking both regulators. Finally, we present a mathematical model of transcription which highlights the crosstalk between Rsd and 6S RNA as a crucial factor in controlling sigma factor competition and global gene expression. PMID:29686109

  8. Regulation of Global Transcription in Escherichia coli by Rsd and 6S RNA.

    PubMed

    Lal, Avantika; Krishna, Sandeep; Seshasayee, Aswin Sai Narain

    2018-05-31

    In Escherichia coli , the sigma factor σ 70 directs RNA polymerase to transcribe growth-related genes, while σ 38 directs transcription of stress response genes during stationary phase. Two molecules hypothesized to regulate RNA polymerase are the protein Rsd, which binds to σ 70 , and the non-coding 6S RNA which binds to the RNA polymerase-σ 70 holoenzyme. Despite multiple studies, the functions of Rsd and 6S RNA remain controversial. Here we use RNA-Seq in five phases of growth to elucidate their function on a genome-wide scale. We show that Rsd and 6S RNA facilitate σ 38 activity throughout bacterial growth, while 6S RNA also regulates widely different genes depending upon growth phase. We discover novel interactions between 6S RNA and Rsd and show widespread expression changes in a strain lacking both regulators. Finally, we present a mathematical model of transcription which highlights the crosstalk between Rsd and 6S RNA as a crucial factor in controlling sigma factor competition and global gene expression. Copyright © 2018 Lal et al.

  9. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria

    PubMed Central

    Vogel, Jörg; Bartels, Verena; Tang, Thean Hock; Churakov, Gennady; Slagter-Jäger, Jacoba G.; Hüttenhofer, Alexander; Wagner, E. Gerhart H.

    2003-01-01

    Recent bioinformatics-aided searches have identified many new small RNAs (sRNAs) in the intergenic regions of the bacterium Escherichia coli. Here, a shot-gun cloning approach (RNomics) was used to generate cDNA libraries of small sized RNAs. Besides many of the known sRNAs, we found new species that were not predicted previously. The present work brings the number of sRNAs in E.coli to 62. Experimental transcription start site mapping showed that some sRNAs were encoded from independent genes, while others were processed from mRNA leaders or trailers, indicative of a parallel transcriptional output generating sRNAs co-expressed with mRNAs. Two of these RNAs (SroA and SroG) consist of known (THI and RFN) riboswitch elements. We also show that two recently identified sRNAs (RyeB and SraC/RyeA) interact, resulting in RNase III-dependent cleavage. To the best of our knowledge, this represents the first case of two non-coding RNAs interacting by a putative antisense mechanism. In addition, intracellular metabolic stabilities of sRNAs were determined, including ones from previous screens. The wide range of half-lives (<2 to >32 min) indicates that sRNAs cannot generally be assumed to be metabolically stable. The experimental characterization of sRNAs analyzed here suggests that the definition of an sRNA is more complex than previously assumed. PMID:14602901

  10. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    PubMed Central

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  11. Inactivation of Transcriptional Regulators during Within-Household Evolution of Escherichia coli.

    PubMed

    Kisiela, Dagmara I; Radey, Matthew; Paul, Sandip; Porter, Stephen; Polukhina, Kseniya; Tchesnokova, Veronika; Shevchenko, Sofiya; Chan, Diana; Aziz, Maliha; Johnson, Timothy J; Price, Lance B; Johnson, James R; Sokurenko, Evgeni V

    2017-07-01

    We analyzed the within-household evolution of two household-associated Escherichia coli strains from pandemic clonal group ST131- H 30, using isolates recovered from five individuals within two families, each of which had a distinct strain. Family 1's strain was represented by a urine isolate from the index patient (older sister) with recurrent cystitis and a blood isolate from her younger sister with fatal urosepsis. Family 2's strain was represented by a urine isolate from the index patient (father) with pyelonephritis and renal abscesses, blood and kidney drainage isolates from the daughter with emphysematous pyelonephritis, and urine and fecal isolates from the mother with cystitis. Collectively, the several variants of each family's strain had accumulated a total of 8 (family 1) and 39 (family 2) point mutations; no two isolates were identical. Of the 47 total mutations, 36 resulted in amino acid changes or truncation of coded proteins. Fourteen such mutations (39%) targeted genes encoding transcriptional regulators, and 9 (25%) involved DNA-binding transcription factors (TFs), which significantly exceeded the relative contribution of TF genes to the isolates' genomes (∼6%). At least one-half of the transcriptional regulator mutations were inactivating, based on phenotypic and/or transcriptional analysis. In particular, inactivating mutations in the global regulator LrhA (repressor of type 1 fimbriae and flagella) occurred in the blood isolates from both households and increased the virulence of E. coli strains in a murine sepsis model. The results indicate that E. coli undergoes adaptive evolution between and/or within hosts, generating subpopulations with distinctive phenotypes and virulence potential. IMPORTANCE The clonal evolution of bacterial strains associated with interhost transmission is poorly understood. We characterized the genome sequences of clonal descendants of two Escherichia coli strains, recovered at different time points from multiple

  12. Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system.

    PubMed

    Lara, Alvaro R; Leal, Lidia; Flores, Noemí; Gosset, Guillermo; Bolívar, Francisco; Ramírez, Octavio T

    2006-02-05

    Escherichia coli, expressing recombinant green fluorescent protein (GFP), was subjected to dissolved oxygen tension (DOT) oscillations in a two-compartment system for simulating gradients that can occur in large-scale bioreactors. Cells were continuously circulated between the anaerobic (0% DOT) and aerobic (10% DOT) vessels of the scale-down system to mimic an overall circulation time of 50 s, and a mean residence time in the anaerobic and aerobic compartments of 33 and 17 s, respectively. Transcription levels of mixed acid fermentation genes (ldhA, poxB, frdD, ackA, adhE, pflD, and fdhF), measured by quantitative RT-PCR, increased between 1.5- to over 6-fold under oscillatory DOT compared to aerobic cultures (constant 10% DOT). In addition, the transcription level of fumB increased whereas it decreased for sucA and sucB, suggesting that the tricarboxylic acid cycle was functioning as two open branches. Gene transcription levels revealed that cytrochrome bd, which has higher affinity to oxygen but lower energy efficiency, was preferred over cytochrome bO3 in oscillatory DOT cultures. Post-transcriptional processing limited heterologous protein production in the scale-down system, as inferred from similar gfp transcription but 19% lower GFP concentration compared to aerobic cultures. Simulated DOT gradients also affected the transcription of genes of the glyoxylate shunt (aceA), of global regulators of aerobic and anaerobic metabolism (fnr, arcA, and arcB), and other relevant genes (luxS, sodA, fumA, and sdhB). Transcriptional changes explained the observed alterations in overall stoichiometric and kinetic parameters, and production of ethanol and organic acids. Differences in transcription levels between aerobic and anaerobic compartments were also observed, indicating that E. coli can respond very fast to intermittent DOT conditions. The transcriptional responses of E. coli to DOT gradients reported here are useful for establishing rational scale-up criteria and

  13. Model of transcriptional activation by MarA in Escherichia coli.

    PubMed

    Wall, Michael E; Markowitz, David A; Rosner, Judah L; Martin, Robert G

    2009-12-01

    The AraC family transcription factor MarA activates approximately 40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond.

  14. Transcriptional analysis of the Escherichia coli ColV-Ia plasmid pS88 during growth in human serum and urine.

    PubMed

    Lemaître, Chloé; Bidet, Philippe; Bingen, Edouard; Bonacorsi, Stéphane

    2012-06-21

    The sequenced O45:K1:H7 Escherichia coli meningitis strain S88 harbors a large virulence plasmid. To identify possible genetic determinants of pS88 virulence, we examined the transcriptomes of 88 plasmidic ORFs corresponding to known and putative virulence genes, and 35 ORFs of unknown function. Quantification of plasmidic transcripts was obtained by quantitative real-time reverse transcription of extracted RNA, normalized on three housekeeping genes. The transcriptome of E. coli strain S88 grown in human serum and urine ex vivo were compared to that obtained during growth in Luria Bertani broth, with and without iron depletion. We also analyzed the transcriptome of a pS88-like plasmid recovered from a neonate with urinary tract infection. The transcriptome obtained after ex vivo growth in serum and urine was very similar to those obtained in iron-depleted LB broth. Genes encoding iron acquisition systems were strongly upregulated. ShiF and ORF 123, two ORFs encoding protein with hypothetical function and physically linked to aerobactin and salmochelin loci, respectively, were also highly expressed in iron-depleted conditions and may correspond to ancillary iron acquisition genes. Four ORFs were induced ex vivo, independently of the iron concentration. Other putative virulence genes such as iss, etsC, ompTp and hlyF were not upregulated in any of the conditions studied. Transcriptome analysis of the pS88-like plasmid recovered in vivo showed a similar pattern of induction but at much higher levels. We identify new pS88 genes potentially involved in the growth of E. coli meningitis strain S88 in human serum and urine.

  15. Functional Characterization of Alternate Optimal Solutions of Escherichia coli's Transcriptional and Translational Machinery

    PubMed Central

    Thiele, Ines; Fleming, Ronan M.T.; Bordbar, Aarash; Schellenberger, Jan; Palsson, Bernhard Ø.

    2010-01-01

    Abstract The constraint-based reconstruction and analysis approach has recently been extended to describe Escherichia coli's transcriptional and translational machinery. Here, we introduce the concept of reaction coupling to represent the dependency between protein synthesis and utilization. These coupling constraints lead to a significant contraction of the feasible set of steady-state fluxes. The subset of alternate optimal solutions (AOS) consistent with maximal ribosome production was calculated. The majority of transcriptional and translational reactions were active for all of these AOS, showing that the network has a low degree of redundancy. Furthermore, all calculated AOS contained the qualitative expression of at least 92% of the known essential genes. Principal component analysis of AOS demonstrated that energy currencies (ATP, GTP, and phosphate) dominate the network's capability to produce ribosomes. Additionally, we identified regulatory control points of the network, which include the transcription reactions of σ70 (RpoD) as well as that of a degradosome component (Rne) and of tRNA charging (ValS). These reactions contribute significant variance among AOS. These results show that constraint-based modeling can be applied to gain insight into the systemic properties of E. coli's transcriptional and translational machinery. PMID:20483314

  16. The functional landscape bound to the transcription factors of Escherichia coli K-12.

    PubMed

    Pérez-Rueda, Ernesto; Tenorio-Salgado, Silvia; Huerta-Saquero, Alejandro; Balderas-Martínez, Yalbi I; Moreno-Hagelsieb, Gabriel

    2015-10-01

    Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Control of rRNA transcription in Escherichia coli.

    PubMed Central

    Condon, C; Squires, C; Squires, C L

    1995-01-01

    The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response. PMID:8531889

  18. Global Transcriptional Start Site Mapping Using Differential RNA Sequencing Reveals Novel Antisense RNAs in Escherichia coli

    PubMed Central

    Thomason, Maureen K.; Bischler, Thorsten; Eisenbart, Sara K.; Förstner, Konrad U.; Zhang, Aixia; Herbig, Alexander; Nieselt, Kay

    2014-01-01

    While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser. PMID:25266388

  19. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli.

    PubMed

    Thomason, Maureen K; Bischler, Thorsten; Eisenbart, Sara K; Förstner, Konrad U; Zhang, Aixia; Herbig, Alexander; Nieselt, Kay; Sharma, Cynthia M; Storz, Gisela

    2015-01-01

    While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Global transcriptional response of Escherichia coli MG1655 cells exposed to the oxygenated monoterpenes citral and carvacrol.

    PubMed

    Chueca, Beatriz; Pérez-Sáez, Elisa; Pagán, Rafael; García-Gonzalo, Diego

    2017-09-18

    DNA microarrays were used to study the mechanism of bacterial inactivation by carvacrol and citral. After 10-min treatments of Escherichia coli MG1655 cells with 100 and 50ppm of carvacrol and citral, 76 and 156 genes demonstrated significant transcriptional differences (p≤0.05), respectively. Among the up-regulated genes after carvacrol treatment, we found gene coding for multidrug efflux pumps (acrA, mdtM), genes related to phage shock response (pspA, pspB, pspC, pspD, pspF and pspG), biosynthesis of arginine (argC, argG, artJ), and purine nucleotides (purC, purM). In citral-treated cells, transcription of purH and pyrB and pyrI was 2 times higher. Deletion of several differentially expressed genes confirmed the role of ygaV, yjbO, pspC, sdhA, yejG and ygaV in the mechanisms of E. coli inactivation by carvacrol and citral. These results would indicate that citral and carvacrol treatments cause membrane damage and activate metabolism through the production of nucleotides required for DNA and RNA synthesis and metabolic processes. Comparative transcriptomics of the response of E. coli to a heat treatment, which caused a significant change of the transcription of 1422 genes, revealed a much weaker response to both individual constituents of essential oils (ICs).·Thus, inactivation by citral or carvacrol was not multitarget in nature. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Insights into transcription termination of Hfq-binding sRNAs of Escherichia coli and characterization of readthrough products

    PubMed Central

    Morita, Teppei; Ueda, Masaki; Kubo, Kento; Aiba, Hiroji

    2015-01-01

    The genes encoding Hfq-dependent sRNAs possess a typical Rho-independent transcription terminator. Here, we have studied the molecular events occurring at Rho-independent terminators of sRNA genes, focusing on two well-characterized Hfq-binding sRNAs, SgrS and RyhB. We constructed several hybrid genes in which the DNA sequence corresponding to a strong Rho-independent terminator was placed just downstream from the Rho-independent terminators of sRNA genes. By using this system, we demonstrate that transcripts frequently read through the Rho-independent terminators of sgrS and ryhB in normally growing cells. We show that Hfq does not affect the transcriptional readthrough event itself. We also find that the readthrough products no longer bind to Hfq in vivo. We have developed a competition assay based on a biotin–streptavidin system to analyze the interaction of Hfq and a particular RNA molecule in vitro. By using this method, we verify that the 3′-extended form of SgrS does not bind to Hfq in vitro. Finally, we demonstrate that transcription termination is significantly enhanced under stress conditions where transcription initiation of sRNA genes on the chromosome is induced. We conclude that the production of sRNAs is regulated not only at the step of transcription initiation but also at the step of transcription termination. The mechanism by which transcription termination is enhanced under stress conditions remains to be understood. PMID:26106215

  2. Replication and Transcription of Eukaryotic DNA in Esherichia coli

    PubMed Central

    Morrow, John F.; Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Goodman, Howard M.; Helling, Robert B.

    1974-01-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA. Images PMID:4600264

  3. Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.

    PubMed

    Burgos, Hector L; O'Connor, Kevin; Sanchez-Vazquez, Patricia; Gourse, Richard L

    2017-11-01

    Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli , most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis -acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times. IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli , synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In

  4. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria.

  6. Mfd translocase is necessary and sufficient for transcription-coupled repair in Escherichia coli.

    PubMed

    Adebali, Ogun; Sancar, Aziz; Selby, Christopher P

    2017-11-10

    Nucleotide excision repair in Escherichia coli is stimulated by transcription, specifically in the transcribed strand. Previously, it was shown that this transcription-coupled repair (TCR) is mediated by the Mfd translocase. Recently, it was proposed that in fact the majority of TCR in E. coli is catalyzed by a second pathway ("backtracking-mediated TCR") that is dependent on the UvrD helicase and the guanosine pentaphosphate (ppGpp) alarmone/stringent response regulator. Recently, we reported that as measured by the excision repair-sequencing (XR-seq), UvrD plays no role in TCR genome-wide. Here, we tested the role of ppGpp and UvrD in TCR genome-wide and in the lacZ operon using the XR-seq method, which directly measures repair. We found that the mfd mutation abolishes TCR genome-wide and in the lacZ operon. In contrast, the relA - spoT - mutant deficient in ppGpp synthesis carries out normal TCR. We conclude that UvrD and ppGpp play no role in TCR in E. coli . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. In vitro transcription in E. coli crude lysates prepared on cellophane discs.

    PubMed Central

    Valla, S; Lindqvist, B H

    1978-01-01

    An in vitro RNA-synthesizing system consisting of gently lysed E. coli cells on cellophane discs is described. The system has been optimalized with respect to total RNA synthesis. Under certain standard conditions DNA dependent RNA polymerase (EC 2.7.7.6) is responsible for the majority of the RNA synthesis. The extensive rifampicin sensitivity of the synthesis indicates that most of the transcripts are initiated in vitro. The RNA synthesizing system described here has been developed with the aim of studying phage transcription in vitro. We show here that lysates of a P4 infected P2 lysogen support initiation and propagation of transcription from the P2 prophage. PMID:27767

  8. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12.

    PubMed

    Shimada, Tomohiro; Ogasawara, Hiroshi; Ishihama, Akira

    2018-05-04

    The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation.

  9. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12

    PubMed Central

    Shimada, Tomohiro; Ogasawara, Hiroshi; Ishihama, Akira

    2018-01-01

    Abstract The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation. PMID:29529243

  10. RapA, SWI/SNF subunit of Escherichia coli RNA polymerase promotes the release of nascent RNA from transcription complexes

    PubMed Central

    Yawn, Brandon; Zhang, Lin; Mura, Cameron; Sukhodolets, Maxim V.

    2009-01-01

    RapA, a prokaryotic member of the SWI/SNF protein superfamily, is an integral part of the RNA polymerase transcription complex. RapA’s function and catalytic mechanism have been linked to nucleic acid remodeling. In this work we show that mutations in the interface between RapA’s SWI/SNF and double-stranded nucleic acid-binding domains significantly alter ATP hydrolysis in purified RapA. The effects of individual mutations on ATP hydrolysis loosely correlated with RapA’s nucleic acid-remodeling activity, indicating that the interaction between these domains may be important for the RapA-mediated remodeling of nonproductive transcription complexes. In this study we introduced a model system for in vitro transcription of a full-length E. coli gene (slyD). To study the function of RapA, we fractionated and identified in vitro transcription reaction intermediates in the presence or absence of RapA. These experiments demonstrated that RapA contributes to the formation of free RNA species during in vitro transcription. This work further refines our models for RapA function in vivo and establishes a new role in RNA management for a representative of the SWI/SNF protein superfamily. PMID:19580329

  11. Control site location and transcriptional regulation in Escherichia coli.

    PubMed Central

    Collado-Vides, J; Magasanik, B; Gralla, J D

    1991-01-01

    The regulatory regions for 119 Escherichia coli promoters have been analyzed, and the locations of the regulatory sites have been cataloged. The following observations emerge. (i) More than 95% of promoters are coregulated with at least one other promoter. (ii) Virtually all sigma 70 promoters contain at least one regulatory site in a proximal position, touching at least position -65 with respect to the start point of transcription. There are not yet clear examples of upstream regulation in the absence of a proximal site. (iii) Operators within regulons appear in very variable proximal positions. By contrast, the proximal activation sites of regulons are much more fixed. (iv) There is a forbidden zone for activation elements downstream from approximately position -20 with respect to the start of transcription. By contrast, operators can occur throughout the proximal region. When activation elements appear in the forbidden zone, they repress. These latter examples usually involve autoregulation. (v) Approximately 40% of repressible promoters contain operator duplications. These occur either in certain regulons where duplication appears to be a requirement for repressor action or in promoters subject to complex regulation. (vi) Remote operator duplications occur in approximately 10% of repressible promoters. They generally appear when a multiple promoter region is coregulated by cyclic AMP receptor protein. (vii) Sigma 54 promoters do not require proximal or precisely positioned activator elements and are not generally subject to negative regulation. Rationales are presented for all of the above observations. PMID:1943993

  12. Regulatory Interactions of Csr Components: the RNA Binding Protein CsrA Activates csrB Transcription in Escherichia coli

    PubMed Central

    Gudapaty, Seshagirirao; Suzuki, Kazushi; Wang, Xin; Babitzke, Paul; Romeo, Tony

    2001-01-01

    The global regulator CsrA (carbon storage regulator) of Escherichia coli is a small RNA binding protein that represses various metabolic pathways and processes that are induced in the stationary phase of growth, while it activates certain exponential phase functions. Both repression and activation by CsrA involve posttranscriptional mechanisms, in which CsrA binding to mRNA leads to decreased or increased transcript stability, respectively. CsrA also binds to a small untranslated RNA, CsrB, forming a ribonucleoprotein complex, which antagonizes CsrA activity. We have further examined the regulatory interactions of CsrA and CsrB RNA. The 5′ end of the CsrB transcript was mapped, and a csrB::cam null mutant was constructed. CsrA protein and CsrB RNA levels were estimated throughout the growth curves of wild-type and isogenic csrA, csrB, rpoS, or csrA rpoS mutant strains. CsrA levels exhibited modest or negligible effects of these mutations. The intracellular concentration of CsrA exceeded the total CsrA-binding capacity of intracellular CsrB RNA. In contrast, CsrB levels were drastically decreased (∼10-fold) in the csrA mutants. CsrB transcript stability was unaffected by csrA. The expression of a csrB-lacZ transcriptional fusion containing the region from −242 to +4 bp of the csrB gene was decreased ∼20-fold by a csrA::kanR mutation in vivo but was unaffected by CsrA protein in vitro. These results reveal a significant, though most likely indirect, role for CsrA in regulating csrB transcription. Furthermore, our findings suggest that CsrA mediates an intriguing form of autoregulation, whereby its activity, but not its levels, is modulated through effects on an RNA antagonist, CsrB. PMID:11567002

  13. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli

    PubMed Central

    Santillán, Orlando; Ramírez-Romero, Miguel A.; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M.; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria. PMID

  14. Transcriptional organization of the Escherichia coli pilus adhesin K99.

    PubMed

    Inoue, O J; Lee, J H; Isaacson, R E

    1993-11-01

    The production of the Escherichia coli pilus adhesin K99 requires the expression of eight unique proteins: FanA-H. The transcriptional organization of the K99 operon was investigated by Northern blot analysis. Four RNAs of 0.54, 1.4, 2.5 and 3.5 kb were detected. When a fanC probe was used all four RNAs were detected while the use of fanD, fanF and fanG probes detected two RNAs each. Using several deletion and TnphoA insertion mutants it was concluded that there were seven unique K99-specific transcripts, several of which were of the same approximate sizes (1.4 and 2.5 kb). It also was concluded that K99 was comprised of at least three complementation groups, two of which were regulated by catabolite repression.

  15. Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction.

    PubMed

    Tetteh, Antonia Y; Sun, Katherine H; Hung, Chiu-Yueh; Kittur, Farooqahmed S; Ibeanu, Gordon C; Williams, Daniel; Xie, Jiahua

    2014-01-01

    Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se(0)), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼ 50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼ 30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.

  16. Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli.

    PubMed

    Ishihama, Akira; Kori, Ayako; Koshio, Etsuko; Yamada, Kayoko; Maeda, Hiroto; Shimada, Tomohiro; Makinoshima, Hideki; Iwata, Akira; Fujita, Nobuyuki

    2014-08-01

    The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves.

    PubMed

    Fink, Ryan C; Black, Elaine P; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J; Diez-Gonzalez, Francisco

    2012-03-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.

  18. Transcriptional Responses of Escherichia coli K-12 and O157:H7 Associated with Lettuce Leaves

    PubMed Central

    Fink, Ryan C.; Black, Elaine P.; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J.

    2012-01-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation. PMID:22247152

  19. EsrE-A yigP Locus-Encoded Transcript-Is a 3′ UTR sRNA Involved in the Respiratory Chain of E. coli

    PubMed Central

    Xia, Hui; Yang, Xichen; Tang, Qiongwei; Ye, Jiang; Wu, Haizhen; Zhang, Huizhan

    2017-01-01

    The yigP locus is widely conserved among γ-proteobacteria. Mutation of the yigP locus impacts aerobic growth of Gram-negative bacteria. However, the underlying mechanism of how the yigP locus influences aerobic growth remains largely unknown. Here, we demonstrated that the yigP locus in Escherichia coli encodes two transcripts; the mRNA of ubiquinone biosynthesis protein, UbiJ, and the 3′ untranslated region small regulatory RNA (sRNA), EsrE. EsrE is an independent transcript that is transcribed using an internal promoter of the yigP locus. Surprisingly, we found that both the EsrE sRNA and UbiJ protein were required for Q8 biosynthesis, and were sufficient to rescue the growth defect ascribed to deletion of the yigP locus. Moreover, our data showed that EsrE targeted multiple mRNAs involved in several cellular processes including murein biosynthesis and the tricarboxylic acid cycle. Among these targets, sdhD mRNA that encodes one subunit of succinate dehydrogenase (SDH), was significantly activated. Our findings provided an insight into the important function of EsrE in bacterial adaptation to various environments, as well as coordinating different aspects of bacterial physiology. PMID:28900423

  20. Switching between nitrogen and glucose limitation: Unraveling transcriptional dynamics in Escherichia coli.

    PubMed

    Löffler, Michael; Simen, Joana Danica; Müller, Jan; Jäger, Günter; Laghrami, Salaheddine; Schäferhoff, Karin; Freund, Andreas; Takors, Ralf

    2017-09-20

    Transcriptional control under nitrogen and carbon-limitation conditions have been well analyzed for Escherichia coli. However, the transcriptional dynamics that underlie the shift in regulatory programs from nitrogen to carbon limitation is not well studied. In the present study, cells were cultivated at steady state under nitrogen (ammonia)-limited conditions then shifted to carbon (glucose) limitation to monitor changes in transcriptional dynamics. Nitrogen limitation was found to be dominated by sigma 54 (RpoN) and sigma 38 (RpoS), whereas the "housekeeping" sigma factor 70 (RpoD) and sigma 38 regulate cellular status under glucose limitation. During the transition, nitrogen-mediated control was rapidly redeemed and mRNAs that encode active uptake systems, such as ptsG and manXYZ, were quickly amplified. Next, genes encoding facilitators such as lamB were overexpressed, followed by high affinity uptake systems such as mglABC and non-specific porins such as ompF. These regulatory programs are complex and require well-equilibrated and superior control. At the metabolome level, 2-oxoglutarate is the likely component that links carbon- and nitrogen-mediated regulation by interacting with major regulatory elements. In the case of dual glucose and ammonia limitation, sigma 24 (RpoE) appears to play a key role in orchestrating these complex regulatory networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Transcriptional analysis reveals the critical role of RNA polymerase-binding transcription factor, DksA, in regulating multi-drug resistance of Escherichia coli.

    PubMed

    Wang, Jiawei; Cao, Li; Yang, Xiaowen; Wu, Qingmin; Lu, Lin; Wang, Zhen

    2018-05-07

    The objective of this study was to comprehensively identify the target genes regulated by the RNA polymerase-binding transcription factor DksA in Escherichia coli, and to clarify the role of DksA in multi-drug resistance. A clinical E. coli strain, E8, was selected to construct the dksA gene deletion mutant by using the Red recombination system. The minimum inhibitory concentrations (MICs) of 12 antibiotics in the E8ΔdksA (mutant) were markedly lower than those in the wild-type strain, E8. Genes differentially expressed in the wild-type and dksA mutant were detected using RNA-Seq and were validated by performing quantitative real-time PCR (qRT-PCR). In total, 168 differentially expressed genes were identified in E8ΔdksA, including 81 up-regulated and 87 down-regulated genes. Many of the genes identified are involved in metabolism, two-component systems, transcriptional regulators, and transport/membrane proteins. Interestingly, genes encoding the transcriptional regulator, MarR, which is known to repress the multiple drug resistance operon, marRAB; MdfA, a transport protein that exhibits multidrug efflux activities; oligopeptide transport system proteins OppA and OppD were among those differentially expressed, and could potentially contribute to the increased drug susceptibility of E8ΔdksA. In conclusion, DksA plays an important role in the multi-drug resistance of this E. coli strain, and directly or indirectly regulates the expression of several genes related to antibiotic resistance. Copyright © 2018. Published by Elsevier B.V.

  2. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene.

    PubMed Central

    Nunoshiba, T; Hidalgo, E; Amábile Cuevas, C F; Demple, B

    1992-01-01

    Escherichia coli responds to the redox stress imposed by superoxide-generating agents such as paraquat by activating the synthesis of as many as 80 polypeptides. Expression of a key group of these inducible proteins is controlled at the transcriptional level by the soxRS locus (the soxRS regulon). A two-stage control system was hypothesized for soxRS, in which an intracellular redox signal would trigger the SoxR protein as a transcriptional activator of the soxS gene and the resulting increased levels of SoxS protein would activate transcription of the various soxRS regulon genes (B. Demple and C.F. Amábile Cuevas, Cell 67:837-839, 1990). We have constructed operon fusions of the E. coli lac genes to the soxS promoter to monitor soxS transcription. Expression from the soxS promoter is strongly inducible by paraquat in a manner strictly dependent on a functional soxR gene. Several other superoxide-generating agents also trigger soxR(+)-dependent soxS expression, and the inductions by paraquat and phenazine methosulfate were dependent on the presence of oxygen. Numerous other oxidative stress agents (H2O2, gamma rays, heat shock, etc.) failed to induce soxS, while aerobic growth of superoxide dismutase-deficient bacteria triggered soxR-dependent soxS expression. These results indicate a specific redox signal for soxS induction. A direct role for SoxR protein in the activation of the soxS gene is indicated by band-shift and DNase I footprinting experiments that demonstrate specific binding of the SoxR protein in cell extracts to the soxS promoter. The mode of SoxR binding to DNA appears to be similar to that of its homolog MerR in that the SoxR footprint spans the -10 to -35 region of the soxS promoter. Images PMID:1400156

  3. Differential transcriptional control of the two tRNA(fMet) genes of Escherichia coli K-12.

    PubMed

    Nagase, T; Ishii, S; Imamoto, F

    1988-07-15

    The metZ gene of Escherichia coli, which encodes the tRNA(f1Met), was cloned. Using the nucleotide sequence, in vitro transcription, and S1 nuclease mapping analyses, we identified the promoter region, transcriptional start point, the two tandem tRNA(f1Met) structural genes separated by an intergenic space of 33 bp, and the two Rho-independent transcriptional termination sites, in that order. We compared the promoter region of the metZ gene with that of the metY gene, which encodes the tRNA(f2Met) and is located in the promoter-proximal portion of the nusA operon. A G + C-rich sequence (5'-GCGCATCCAC-3'), similar to the corresponding sequence of the rrn promoters that are under stringent control, was found between the Pribnow box and the transcriptional start point of the metZ promoter, but not in the metY promoter region. We therefore examined the effect of guanosine 3'-diphosphate, 5'-diphosphate (ppGpp), the chemical mediator of stringent control, and found that ppGpp inhibited the transcription of the metZ gene, but not that of the metY gene. These data suggested that the promoters for metZ and metY have different physiological functions and are regulated by different mechanisms.

  4. The condition-dependent transcriptional network in Escherichia coli.

    PubMed

    Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; Monsieurs, Pieter; De Moor, Bart; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen

    2009-03-01

    Thanks to the availability of high-throughput omics data, bioinformatics approaches are able to hypothesize thus-far undocumented genetic interactions. However, due to the amount of noise in these data, inferences based on a single data source are often unreliable. A popular approach to overcome this problem is to integrate different data sources. In this study, we describe DISTILLER, a novel framework for data integration that simultaneously analyzes microarray and motif information to find modules that consist of genes that are co-expressed in a subset of conditions, and their corresponding regulators. By applying our method on publicly available data, we evaluated the condition-specific transcriptional network of Escherichia coli. DISTILLER confirmed 62% of 736 interactions described in RegulonDB, and 278 novel interactions were predicted.

  5. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP).

    PubMed

    Chong, Huiqing; Geng, Hefang; Zhang, Hongfang; Song, Hao; Huang, Lei; Jiang, Rongrong

    2014-04-01

    The limited isobutanol tolerance of Escherichia coli is a major drawback during fermentative isobutanol production. Different from classical strain engineering approaches, this work was initiated to improve E. coli isobutanol tolerance from its transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP). Random mutagenesis libraries were generated by error-prone PCR of crp, and the libraries were subjected to isobutanol stress for selection. Variant IB2 (S179P, H199R) was isolated and exhibited much better growth (0.18 h(-1) ) than the control (0.05 h(-1) ) in 1.2% (v/v) isobutanol (9.6 g/L). Genome-wide DNA microarray analysis revealed that 58 and 308 genes in IB2 had differential expression (>2-fold, p < 0.05) in the absence and presence of 1% (v/v) isobutanol, respectively. When challenged with isobutanol, genes related to acid resistance (gadABCE, hdeABD), nitrate reduction (narUZYWV), flagella and fimbrial activity (lfhA, yehB, ycgR, fimCDF), and sulfate reduction and transportation (cysIJH, cysC, cysN) were the major functional groups that were up-regulated, whereas most of the down-regulated genes were enzyme (tnaA) and transporters (proVWX, manXYZ). As demonstrated by single-gene knockout experiments, gadX, nirB, rhaS, hdeB, and ybaS were found associated with strain isobutanol resistance. The intracellular reactive oxygen species (ROS) level in IB2 was only half of that of the control when facing stress, indicating that IB2 can withstand toxic isobutanol much better than the control. © 2013 Wiley Periodicals, Inc.

  6. Distinct Transcriptional Profiles and Phenotypes Exhibited by Escherichia coli O157:H7 Isolates Related to the 2006 Spinach-Associated Outbreak

    PubMed Central

    Kyle, Jennifer L.; Huynh, Steven; Carter, Michelle Q.; Brandl, Maria T.; Mandrell, Robert E.

    2012-01-01

    In 2006, a large outbreak of Escherichia coli O157:H7 was linked to the consumption of ready-to-eat bagged baby spinach in the United States. The likely sources of preharvest spinach contamination were soil and water that became contaminated via cattle or feral pigs in the proximity of the spinach fields. In this study, we compared the transcriptional profiles of 12 E. coli O157:H7 isolates that possess the same two-enzyme pulsed-field gel electrophoresis (PFGE) profile and are related temporally or geographically to the above outbreak. These E. coli O157:H7 isolates included three clinical isolates, five isolates from separate bags of spinach, and single isolates from pasture soil, river water, cow feces, and a feral pig. The three clinical isolates and two spinach bag isolates grown in cultures to stationary phase showed decreased expression of many σS-regulated genes, including gadA, osmE, osmY, and katE, compared with the soil, water, cow, feral pig, and the other three spinach bag isolates. The decreased expression of these σS-regulated genes was correlated with the decreased resistance of the isolates to acid stress, osmotic stress, and oxidative stress but increases in scavenging ability. We also observed that intraisolate variability was much more pronounced among the clinical and spinach isolates than among the environmental isolates. Together, the transcriptional and phenotypic differences of the spinach outbreak isolates of E. coli O157:H7 support the hypothesis that some variants within the spinach bag retained characteristics of the preharvest isolates, whereas other variants with altered gene expression and phenotypes infected the human host. PMID:22081562

  7. T7 phage factor required for managing RpoS in Escherichia coli.

    PubMed

    Tabib-Salazar, Aline; Liu, Bing; Barker, Declan; Burchell, Lynn; Qimron, Udi; Matthews, Steve J; Wigneshweraraj, Sivaramesh

    2018-06-05

    T7 development in Escherichia coli requires the inhibition of the housekeeping form of the bacterial RNA polymerase (RNAP), Eσ 70 , by two T7 proteins: Gp2 and Gp5.7. Although the biological role of Gp2 is well understood, that of Gp5.7 remains to be fully deciphered. Here, we present results from functional and structural analyses to reveal that Gp5.7 primarily serves to inhibit Eσ S , the predominant form of the RNAP in the stationary phase of growth, which accumulates in exponentially growing E. coli as a consequence of the buildup of guanosine pentaphosphate [(p)ppGpp] during T7 development. We further demonstrate a requirement of Gp5.7 for T7 development in E. coli cells in the stationary phase of growth. Our finding represents a paradigm for how some lytic phages have evolved distinct mechanisms to inhibit the bacterial transcription machinery to facilitate phage development in bacteria in the exponential and stationary phases of growth.

  8. The transcriptional terminator sequences downstream of the covR gene terminate covR/S operon transcription to generate covR monocistronic transcripts in Streptococcus pyogenes.

    PubMed

    Chiang-Ni, Chuan; Tsou, Chih-Cheng; Lin, Yee-Shin; Chuang, Woei-Jer; Lin, Ming-T; Liu, Ching-Chuan; Wu, Jiunn-Jong

    2008-12-31

    CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts.

  9. Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone.

    PubMed

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-01-01

    To increase the production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing Nostoc punctiforme 10S-dioxygenase with the aid of a chaperone. The optimal conditions for 10S-hydroxy-8(E)-octadecenoic acid production by recombinant cells co-expressing chaperone plasmid were pH 9, 35 °C, 15 % (v/v) dimethyl sulfoxide, 40 g cells l -1 , and 10 g oleic acid l -1 . Under these conditions, recombinant cells co-expressing chaperone plasmid produced 7.2 g 10S-hydroxy-8(E)-octadecenoic acid l -1 within 30 min, with a conversion yield of 72 % (w/w) and a volumetric productivity of 14.4 g l -1 h -1 . The activity of recombinant cells expressing 10S-dioxygenase was increased by 200 % with the aid of a chaperone, demonstrating the first biotechnological production of 10S-hydroxy-8(E)-octadecenoic acid using recombinant cells expressing 10S-dioxygenase.

  10. Transcription factor DecR (YbaO) controls detoxification of L-cysteine in Escherichia coli.

    PubMed

    Shimada, Tomohiro; Tanaka, Kan; Ishihama, Akira

    2016-09-01

    YbaO is an uncharacterized AsnC-family transcription factor of Escherichia coli. In both Salmonella enterica and Pantoea ananatis, YbaO homologues were identified to regulate the adjacent gene encoding cysteine desulfhydrase for detoxification of cysteine. Using the genomic SELEX (systematic evolution of ligands by exponential enrichment) screening system, we identified the yhaOM operon, located far from the ybaO gene on the E. coli genome, as a single regulatory target of YbaO. In both gel shift assay in vitro and reporter and Northern blot assays in vivo, YbaO was found to regulate the yhaOM promoter. The growth of mutants lacking either ybaO or its targets yhaOM was delayed in the presence of cysteine, indicating involvement of these genes in cysteine detoxification. In the major pathway of cysteine degradation, hydrogen sulfide is produced in wild-type E. coli, but its production was not observed in each of the ybaO, yhaO and yhaM mutants. The yhaOM promoter was activated in the presence of cysteine, implying the role of cysteine in activation of YbaO. Taken together, we propose that YbaO is the cysteine-sensing transcriptional activator of the yhaOM operon, which is involved in the detoxification of cysteine. We then propose the naming of ybaO as decR (regulator of detoxification of cysteine).

  11. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D.

    PubMed

    Jishage, M; Ishihama, A

    1999-06-01

    The regulator of sigma D (Rsd) was identified as an RNA polymerase sigma70-associated protein in stationary-phase Escherichia coli with the inhibitory activity of sigma70-dependent transcription in vitro (M. Jishage and A. Ishihama, Proc. Natl. Acad. Sci. USA 95:4953-4958, 1998). Primer extension analysis of rsd mRNA indicated the presence of two promoters, sigmaS-dependent P1 and sigma70-dependent P2 with the gearbox sequence. To get insight into the in vivo role of Rsd, the expression of a reporter gene fused to either the sigma70- or sigmaS-dependent promoter was analyzed in the absence of Rsd or the presence of overexpressed Rsd. In the rsd null mutant, the sigma70- and sigmaS-dependent gene expression was increased or decreased, respectively. On the other hand, the sigma70- or sigmaS-dependent transcription was reduced or enhanced, respectively, after overexpression of Rsd. The repression of the sigmaS-dependent transcription in the rsd mutant is overcome by increased production of the sigmaS subunit. Together these observations support the prediction that Rsd is involved in replacement of the RNA polymerase sigma subunit from sigma70 to sigmaS during the transition from exponential growth to the stationary phase.

  12. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling.

    PubMed

    Li, Shan; Dong, Xia; Su, Zhengchang

    2013-07-30

    Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.

  13. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response.

    PubMed

    Duval, Valérie; Lister, Ida M

    2013-01-01

    Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli , three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.

  14. A Proteomic Analysis Reveals Differential Regulation of the σS-Dependent yciGFE(katN) Locus by YncC and H-NS in Salmonella and Escherichia coli K-12

    PubMed Central

    Beraud, Mélanie; Kolb, Annie; Monteil, Véronique; D'Alayer, Jacques; Norel, Françoise

    2010-01-01

    The stationary phase sigma factor σS (RpoS) controls a regulon required for general stress resistance of the closely related enterobacteria Salmonella and Escherichia coli. The σS-dependent yncC gene encodes a putative DNA binding regulatory protein. Application of the surface-enhanced laser desorption/ionization-time of flight (SELDI-TOF) ProteinChip technology for proteome profiling of wild-type and mutant strains of Salmonella enterica serovar Typhimurium revealed potential protein targets for YncC regulation, which were identified by mass spectrometry, and subsequently validated. These proteins are encoded by the σS-dependent operon yciGFEkatN and regulation of their expression by YncC operates at the transcriptional level, as demonstrated by gene fusion analyses and by in vitro transcription and DNase I footprinting experiments with purified YncC. The yciGFE genes are present (without katN) in E. coli K-12 but are poorly expressed, compared with the situation in Salmonella. We report that the yciGFE(katN) locus is silenced by the histone-like protein H-NS in both species, but that σS efficiently relieves silencing in Salmonella but not in E. coli K-12. In Salmonella, YncC acts in concert with σS to activate transcription at the yciG promoter (pyciG). When overproduced, YncC also activated σS-dependent transcription at pyciG in E. coli K-12, but solely by countering the negative effect of H-NS. Our results indicate that differences between Salmonella and E. coli K-12, in the architecture of cis-acting regulatory sequences upstream of pyciG, contribute to the differential regulation of the yciGFE(katN) genes by H-NS and YncC in these two enterobacteria. In E. coli, this locus is subject to gene rearrangements and also likely to horizontal gene transfer, consistent with its repression by the xenogeneic silencer H-NS. PMID:20713450

  15. Transcriptional and translational regulation by RNA thermometers, riboswitches and the sRNA DsrA in Escherichia coli O157:H7 Sakai under combined cold and osmotic stress adaptation.

    PubMed

    Hücker, Sarah Maria; Simon, Svenja; Scherer, Siegfried; Neuhaus, Klaus

    2017-01-01

    The enteric pathogen Escherichia coli O157:H7 Sakai (EHEC) is able to grow at lower temperatures compared to commensal E. coli Growth at environmental conditions displays complex challenges different to those in a host. EHEC was grown at 37°C and at 14°C with 4% NaCl, a combination of cold and osmotic stress as present in the food chain. Comparison of RNAseq and RIBOseq data provided a snap shot of ongoing transcription and translation, differentiating transcriptional and post-transcriptional gene regulation, respectively. Indeed, cold and osmotic stress related genes are simultaneously regulated at both levels, but translational regulation clearly dominates. Special emphasis was given to genes regulated by RNA secondary structures in their 5 ' UTRs, such as RNA thermometers and riboswitches, or genes controlled by small RNAs encoded in trans The results reveal large differences in gene expression between short-time shock compared to adaptation in combined cold and osmotic stress. Whereas the majority of cold shock proteins, such as CspA, are translationally downregulated after adaptation, many osmotic stress genes are still significantly upregulated mainly translationally, but several also transcriptionally. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Crystal Structures of the E. coli Transcription Initiation Complexes with a Complete Bubble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Yuhong; Steitz, Thomas A.

    2015-05-01

    During transcription initiation, RNA polymerase binds to promoter DNA to form an initiation complex containing a DNA bubble and enters into abortive cycles of RNA synthesis before escaping the promoter to transit into the elongation phase for processive RNA synthesis. Here we present the crystal structures of E. coli transcription initiation complexes containing a complete transcription bubble and de novo synthesized RNA oligonucleotides at about 6-Å resolution. The structures show how RNA polymerase recognizes DNA promoters that contain spacers of different lengths and reveal a bridging interaction between the 5'-triphosphate of the nascent RNA and the σ factor that maymore » function to stabilize the short RNA-DNA hybrids during the early stage of transcription initiation. The conformation of the RNA oligonucleotides and the paths of the DNA strands in the complete initiation complexes provide insights into the mechanism that controls both the abortive and productive RNA synthesis.« less

  17. "In Vitro" Synthesis and Activity of Reporter Proteins in an "Escherichia coli" S30 Extract System: An Undergraduate Experiment

    ERIC Educational Resources Information Center

    Higgins, Pamela J.

    2005-01-01

    This undergraduate laboratory experiment integrates multiple techniques ("in vitro" synthesis, enzyme assays, Western blotting) to determine the production and detection sensitivity of two common reporter proteins (beta-galactosidase and luciferase) within an "Escherichia coli" S30 transcription/translation extract. Comparison of the data suggests…

  18. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.

    PubMed

    Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M

    2018-06-08

    Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling

    PubMed Central

    2013-01-01

    Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA

  20. Enterohemorrhagic Escherichia coli O157:H7 requires quorum sensing transcriptional regulators QseA and SdiA for colonization and persistence in the bovine intestinal tract

    USDA-ARS?s Scientific Manuscript database

    QseA and SdiA are two of several transcriptional regulators that regulate virulence gene expression of enterohemorrhagic Escherichia coli (EHEC) O157:H7 via quorum sensing (QS). QseA regulates the expression of the locus of enterocyte effacement (LEE). LEE encodes for a type III secretion (T3S) sys...

  1. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli.

    PubMed

    Iyer, Sukanya; Le, Dai; Park, Bo Ryoung; Kim, Minsu

    2018-05-14

    Bacteria adapt to environmental stress by producing proteins that provide stress protection. However, stress can severely perturb the kinetics of gene expression, disrupting protein production. Here, we characterized how Escherichia coli mitigates such perturbations under nutrient stress through the kinetic coordination of transcription and translation. We observed that, when translation became limiting under nitrogen starvation, transcription elongation slowed accordingly. This slowdown was mediated by (p)ppGpp, the alarmone whose primary role is thought to be promoter regulation. This kinetic coordination by (p)ppGpp was critical for the robust synthesis of gene products. Surprisingly, under carbon starvation, (p)ppGpp was dispensable for robust synthesis. Characterization of the underlying kinetics revealed that under carbon starvation, transcription became limiting, and translation aided transcription elongation. This mechanism naturally coordinated transcription with translation, alleviating the need for (p)ppGpp as a mediator. These contrasting mechanisms for coordination resulted in the condition-dependent effects of (p)ppGpp on global protein synthesis and starvation survival. Our findings reveal a kinetic aspect of gene expression plasticity, establishing (p)ppGpp as a condition-dependent global effector of gene expression.

  2. The role of Cra in regulating acetate excretion and osmotic tolerance in E. coli K-12 and E. coli B at high density growth

    PubMed Central

    2011-01-01

    Background E. coli B (BL21), unlike E.coli K-12 (JM109) is insensitive to glucose concentration and, therefore, grows faster and produces less acetate than E. coli K-12, especially when growing to high cell densities at high glucose concentration. By performing genomic analysis, it was demonstrated that the cause of this difference in sensitivity to the glucose concentration is the result of the differences in the central carbon metabolism activity. We hypothesized that the global transcription regulator Cra (FruR) is constitutively expressed in E. coli B and may be responsible for the different behaviour of the two strains. To investigate this possibility and better understand the function of Cra in the two strains, cra - negative E. coli B (BL21) and E. coli K-12 (JM109) were prepared and their growth behaviour and gene expression at high glucose were evaluated using microarray and real-time PCR. Results The deletion of the cra gene in E. coli B (BL21) minimally affected the growth and maximal acetate accumulation, while the deletion of the same gene in E.coli K-12 (JM109) caused the cells to stop growing as soon as acetate concentration reached 6.6 g/L and the media conductivity reached 21 mS/cm. ppsA (gluconeogenesis gene), aceBA (the glyoxylate shunt genes) and poxB (the acetate producing gene) were down-regulated in both strains, while acs (acetate uptake gene) was down-regulated only in E.coli B (BL21). These transcriptional differences had little effect on acetate and pyruvate production. Additionally, it was found that the lower growth of E. coli K-12 (JM109) strain was the result of transcription inhibition of the osmoprotectant producing bet operon (betABT). Conclusions The transcriptional changes caused by the deletion of cra gene did not affect the activity of the central carbon metabolism, suggesting that Cra does not act alone; rather it interacts with other pleiotropic regulators to create a network of metabolic effects. An unexpected outcome of

  3. Effect of Escherichia coli DNA binding protein on the transcription of single-stranded phage M13 DNA by Escherichia coli RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niyogi, S.K.; Ratrie, H. III; Datta, A.K.

    E. coli DNA binding protein strongly inhibits the transcription of single-stranded rather than double-stranded phage M13 DNA by E. coli RNA polymerase. This inhibition cannot be significantly overcome by increasing the concentration of RNA polymerase. Nor does the order of addition of binding protein affect its inhibitory property: inhibition is evident whether binding protein is added before or after the formation of the RNA polymerase--DNA complex. Inhibition is also observed if binding protein is added at various times after initiation of RNA synthesis. Maximal inhibition occurs at a binding protein-to-DNA ratio (w/w) of about 8:1. This corresponds to one bindingmore » protein molecule covering about 30 nucleotides, in good agreement with values obtained by physical measurements.« less

  4. AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection.

    PubMed

    Zhuge, Xiangkai; Tang, Fang; Zhu, Hongfei; Mao, Xiang; Wang, Shaohui; Wu, Zongfu; Lu, Chengping; Dai, Jianjun; Fan, Hongjie

    2016-04-26

    Bacteria can change its lifestyle during inhabiting in host niches where they survive and replicate by rapidly altering gene expression pattern to accommodate the new environment. In this study, two novel regulators in avian pathogenic Escherichia coli (APEC) were identified and designated as AutA and AutR. RT-PCR and β-galactosidase assay results showed that AutA and AutR co-regulated the expression of adhesin UpaB in APEC strain DE205B. Electrophoretic mobility shift assay showed that AutA and AutR could directly bind the upaB promoter DNA. In vitro transcription assay indicated that AutA could activate the upaB transcription, while AutR inhibited the upaB transcription due to directly suppressing the activating effect of AutA on UpaB expression. Transcriptome analysis showed that AutA and AutR coherently affected the expression of hundreds of genes. Our study confirmed that AutA and AutR co-regulated the expression of DE205B K1 capsule and acid resistance systems in E. coli acid fitness island (AFI). Moreover, phenotypic heterogeneity in expression of K1 capsule and acid resistance systems in AFI during host-pathogen interaction was associated with the regulation of AutA and AutR. Collectively speaking, our studies presented that AutA and AutR are involved in APEC adaptive lifestyle change to facilitate its infection.

  5. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard; Palsson, Bernhard O

    2015-08-25

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs) belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids), cell wall synthesis (lipid A biosynthesis and peptidoglycan growth), and divalent metal ion transport (Mn(2+), Zn(2+), and Mg(2+)). Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli

    PubMed Central

    Berger, Michael; Gerganova, Veneta; Berger, Petya; Rapiteanu, Radu; Lisicovas, Viktoras; Dobrindt, Ulrich

    2016-01-01

    The extent to which chromosomal gene position in prokaryotes affects local gene expression remains an open question. Several studies have shown that chromosomal re-positioning of bacterial transcription units does not alter their expression pattern, except for a general decrease in gene expression levels from chromosomal origin to terminus proximal positions, which is believed to result from gene dosage effects. Surprisingly, the question as to whether this chromosomal context independence is a cis encoded property of a bacterial transcription unit, or if position independence is a property conferred by factors acting in trans, has not been addressed so far. For this purpose, we established a genetic test system assessing the chromosomal positioning effects by means of identical promoter-fluorescent reporter gene fusions inserted equidistantly from OriC into both chromosomal replichores of Escherichia coli K-12. Our investigations of the reporter activities in mutant cells lacking the conserved nucleoid associated protein HU uncovered various drastic chromosomal positional effects on gene transcription. In addition we present evidence that these positional effects are caused by transcriptional activity nearby the insertion site of our reporter modules. We therefore suggest that the nucleoid-associated protein HU is functionally insulating transcription units, most likely by constraining transcription induced DNA supercoiling. PMID:27545593

  7. Genome-Wide Transcriptional Start Site Mapping and sRNA Identification in the Pathogen Leptospira interrogans

    PubMed Central

    Zhukova, Anna; Fernandes, Luis Guilherme; Hugon, Perrine; Pappas, Christopher J.; Sismeiro, Odile; Coppée, Jean-Yves; Becavin, Christophe; Malabat, Christophe; Eshghi, Azad; Zhang, Jun-Jie; Yang, Frank X.; Picardeau, Mathieu

    2017-01-01

    Leptospira are emerging zoonotic pathogens transmitted from animals to humans typically through contaminated environmental sources of water and soil. Regulatory pathways of pathogenic Leptospira spp. underlying the adaptive response to different hosts and environmental conditions remains elusive. In this study, we provide the first global Transcriptional Start Site (TSS) map of a Leptospira species. RNA was obtained from the pathogen Leptospira interrogans grown at 30°C (optimal in vitro temperature) and 37°C (host temperature) and selectively enriched for 5′ ends of native transcripts. A total of 2865 and 2866 primary TSS (pTSS) were predicted in the genome of L. interrogans at 30 and 37°C, respectively. The majority of the pTSSs were located between 0 and 10 nucleotides from the translational start site, suggesting that leaderless transcripts are a common feature of the leptospiral translational landscape. Comparative differential RNA-sequencing (dRNA-seq) analysis revealed conservation of most pTSS at 30 and 37°C. Promoter prediction algorithms allow the identification of the binding sites of the alternative sigma factor sigma 54. However, other motifs were not identified indicating that Leptospira consensus promoter sequences are inherently different from the Escherichia coli model. RNA sequencing also identified 277 and 226 putative small regulatory RNAs (sRNAs) at 30 and 37°C, respectively, including eight validated sRNAs by Northern blots. These results provide the first global view of TSS and the repertoire of sRNAs in L. interrogans. These data will establish a foundation for future experimental work on gene regulation under various environmental conditions including those in the host. PMID:28154810

  8. DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken.

    PubMed

    Gao, Qingqing; Xia, Le; Liu, Juanhua; Wang, Xiaobo; Gao, Song; Liu, Xiufan

    2016-11-01

    Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Distinct requirements for C.elegans TAF(II)s in early embryonic transcription.

    PubMed

    Walker, A K; Rothman, J H; Shi, Y; Blackwell, T K

    2001-09-17

    TAF(II)s are conserved components of the TFIID, TFTC and SAGA-related mRNA transcription complexes. In yeast (y), yTAF(II)17 is required broadly for transcription, but various other TAF(II)s appear to have more specialized functions. It is important to determine how TAF(II)s contribute to transcription in metazoans, which have larger and more diverse genomes. We have examined TAF(II) functions in early Caenorhabditis elegans embryos, which can survive without transcription for several cell generations. We show that taf-10 (yTAF(II)17) and taf-11 (yTAF(II)25) are required for a significant fraction of transcription, but apparently are not needed for expression of multiple developmental and other metazoan-specific genes. In contrast, taf-5 (yTAF(II)48; human TAF(II)130) seems to be required for essentially all early embryonic mRNA transcription. We conclude that TAF-10 and TAF-11 have modular functions in metazoans, and can be bypassed at many metazoan-specific genes. The broad involvement of TAF-5 in mRNA transcription in vivo suggests a requirement for either TFIID or a TFTC-like complex.

  10. Mutations in the sigma subunit of E. coli RNA polymerase which affect positive control of transcription.

    PubMed

    Hu, J C; Gross, C A

    1985-01-01

    The sigma subunits of bacterial RNA polymerases are required for the selective initiation of transcription. We have isolated and characterized mutations in rpoD, the gene which encodes the major form of sigma in E. coli, which affect the selectivity of transcription. These mutations increase the expression of araBAD up to 12-fold in the absence of CAP-cAMP. Expression of lac is unaffected, while expression of malT-activated operons is decreased. We determined the DNA sequence of 17 independently isolated mutations, and found that they consist of three different changes in a single CGC arginine codon at position 596 in the sigma polypeptide.

  11. Conditional silencing of the Escherichia coli pykF gene results from artificial convergent transcription protected from Rho-dependent termination.

    PubMed

    Krylov, Alexander A; Airich, Larisa G; Kiseleva, Evgeniya M; Minaeva, Natalia I; Biryukova, Irina V; Mashko, Sergey V

    2010-01-01

    PykF is one of two pyruvate kinases in Escherichia coli K-12. lambdaP(L) was convergently integrated into the chromosome of the MG1655 strain, downstream of pykF, face-to-face with its native promoter. In the presence of lambdacIts857, efficient pykF ts-silencing was achieved when the 5'-terminus of the P(L)-originated antisense RNA (asRNA), consisting of the rrnG-AT sequence, converted elongation complexes of RNA polymerase to a form resistant to Rho-dependent transcription termination. pykF silencing was detected by the following features: (a) impaired growth of the strain when pykA was also disrupted and when using ribose as a non-phosphotransferase system-transporting carbon source; (b) a pattern of reduced synthesis of the full-sized pykF mRNA, mediated by reverse transcription PCR, and (c) a significant decrease in PykF activity. The advantages of anti-terminated convergent transcription were clearly manifested in the strains where the rho_a-terminator was inserted specifically to interrupt asRNA synthesis. Most likely, the target gene was silenced by transcriptional interference due to collisions between converging RNA polymerases, although, strictly, the role of cis-asRNA effects could not be excluded. While details of the mechanisms have yet to be determined, anti-terminated convergent transcription is a promising new technique for silencing other target genes. Copyright 2010 S. Karger AG, Basel.

  12. Adenomatous polyposis coli protein (APC)-independent regulation of beta-catenin/Tcf-4 mediated transcription in intestinal cells.

    PubMed Central

    Baulida, J; Batlle, E; García De Herreros, A

    1999-01-01

    Alterations in the transcriptional activity of the beta-catenin-Tcf complex have been associated with the earlier stages of colonic transformation. We show here that the activation of protein kinase C by the phorbol ester PMA in several intestinal cell lines increases the levels of beta-catenin detected in the nucleus and augments the transcriptional activity mediated by beta-catenin. The response to PMA was not related to modifications in the cytosolic levels of beta-catenin and was observed not only in cells with wild-type adenomatous polyposis coli protein (APC) but also in APC-deficient cells. Binding assays in vitro revealed that PMA facilitates the interaction of the beta-catenin with the nuclear structure. Our results therefore show that beta-catenin-mediated transcription can be regulated independently of the presence of APC. PMID:10567241

  13. Trigger loop folding determines transcription rate of Escherichia coli’s RNA polymerase

    DOE PAGES

    Mejia, Yara X.; Nudler, Evgeny; Bustamante, Carlos

    2014-12-31

    Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP’s pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kineticmore » model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. The model suggests a finely tuned mechanism that balances transcription speed and fidelity.« less

  14. Increased transcription of the phosphate-specific transport system of Escherichia coli O157:H7 after exposure to sodium benzoate.

    PubMed

    Critzer, Faith J; D'Souza, Doris H; Saxton, Arnold M; Golden, David A

    2010-05-01

    Sodium benzoate is a widely used food antimicrobial in drinks and fruit juices. A microarray study was conducted to determine the transcriptional response of Escherichia coli O157:H7 to 0.5% (wt/vol) sodium benzoate. E. coli O157:H7 grown in 150 ml of Luria-Bertani broth was exposed to 0% (control) and 0.5% sodium benzoate. Each treatment was duplicated and sampled at 0 (immediately after exposure), 5, 15, 30, and 60 min. Total RNA was extracted and analyzed with E. coli 2.0 Gene Chips. Significant ontology categories affected by sodium benzoate exposure were determined with JProGO software. The phosphate-specific transport (Pst) system transports inorganic phosphate into bacterial cells, under phosphate-limited conditions. The Pst system was found to be highly upregulated. Increased expression of the Pst system was observed after the short 5 min of exposure to sodium benzoate; pstS, pstA, pstB, and pstC genes were upregulated more than twofold (linear scale) at 5, 15, 30, and 60 min. Increased expression of several other efflux systems, such as AcrAB-TolC, was also observed. The Pst system may act as an efflux pump under these stress-adapted conditions, as well as increase transport of phosphorus to aid in DNA, RNA, ATP, and phospholipid production. Understanding adaptations of Escherichia coli O157:H7 under antimicrobial exposure is essential to better understand and implement methods to inhibit or control its survival in foods.

  15. In vivo transcription of R-plasmid deoxyribonucleic acid in Escherichia coli strains with altered antibiotic resistance levels and/or conjugal proficiency.

    PubMed Central

    Davis, R; Vapnek, D

    1976-01-01

    The amounts of plasmid deoxyribonucleic acid (DNA) and the levels of the in vivo transcription of the Escherichia coli plasmids R538-1 (repressed for conjugal transfer) and R538-1drd (derepressed for transfer) were determined by DNA-DNA hybridization and DNA-ribonucleic acid hybridization, respectively. The results demonstrate that the level of plasmid transcription is increased by two-fold in the strain carrying the derepressed plasmid, compared to an isogenic strain carrying the repressed plasmid, whereas the amount of plasmid DNA is approximately the same, suggesting that the transfer genes are under transcriptional control. Levels of plasmid DNA, plasmid DNA transcription, and chloramphenicol acetyltransferase activity were also compared in a mutant strain that carried the R538-1drd plasmid and was resistant to high levels of antibiotics. This strain produces about 13 copies of plasmid DNA per chromosome compared to five copies for the parent strain. The level of transcription of plasmid DNA was found to be twofold higher in the high-level resistant strain, whereas the level of chloramphenition, acetyltransferase activity was increased by 10-fold. In addition the levels of plasmid DNA transcription and chloramphenicol acetyltransferase activity in the high-level resistant strain were found to be further increased by the presence of high levels of chloramphenicol in the growth medium. The amount of plasmid DNA remained constant under these conditions, indicating that high levels of chloramphenicol can stimulate the expression of plasmid genes at the level of transcription in this strain. PMID:767321

  16. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression.

    PubMed

    González-González, Andrea; Hug, Shaun M; Rodríguez-Verdugo, Alejandra; Patel, Jagdish Suresh; Gaut, Brandon S

    2017-11-01

    Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. 16 CFR 16.10 - Minutes and transcripts of meetings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Minutes and transcripts of meetings. 16.10 Section 16.10 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE ADVISORY COMMITTEE MANAGEMENT § 16.10 Minutes and transcripts of meetings. (a) Detailed minutes of each...

  18. Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

    PubMed Central

    Thaden, Joshua T; Mogno, Ilaria; Wierzbowski, Jamey; Cottarel, Guillaume; Kasif, Simon; Collins, James J; Gardner, Timothy S

    2007-01-01

    Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data. PMID:17214507

  19. Eco-friendly intracellular biosynthesis of CdS quantum dots without changing Escherichia coli's antibiotic resistance.

    PubMed

    Yan, Zheng-Yu; Du, Qing-Qing; Qian, Jing; Wan, Dong-Yu; Wu, Sheng-Mei

    2017-01-01

    In the paper, a green and efficient biosynthetical technique was reported for preparing cadmium sulfide (CdS) quantum dots, in which Escherichia coli (E. coli) was chosen as a biomatrix. Fluorescence emission spectra and fluorescent microscopic photographs revealed that as-produced CdS quantum dots had an optimum fluorescence emission peak located at 470nm and emitted a blue-green fluorescence under ultraviolet excitation. After extracted from bacterial cells and located the nanocrystals' foci in vivo, the CdS quantum dots showed a uniform size distribution by transmission electron microscope. Through the systematical investigation of the biosynthetic conditions, including culture medium replacement, input time point of cadmium source, working concentrations of raw inorganic ions, and co-cultured time spans of bacteria and metal ions in the bio-manufacture, the results revealed that CdS quantum dots with the strongest fluorescence emission were successfully prepared when E. coli cells were in stationary phase, with the replacement of culture medium and following the incubation with 1.0×10 -3 mol/L cadmium source for 2 days. Results of antimicrobial susceptibility testing indicated that the sensitivities to eight types of antibiotics of E. coli were barely changed before and after CdS quantum dots were prepared in the mild temperature environment, though a slight fall of antibiotic resistance could be observed, suggesting hinted the proposed technique of producing quantum dots is a promising environmentally low-risk protocol. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities

    PubMed Central

    2011-01-01

    Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by

  1. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  2. Immunomodulation in the canine endometrium by uteropathogenic Escherichia coli.

    PubMed

    Henriques, Sofia; Silva, Elisabete; Silva, Marta F; Carvalho, Sandra; Diniz, Patrícia; Lopes-da-Costa, Luís; Mateus, Luisa

    2016-11-09

    This study was designed to evaluate the role of E. coli α-hemolysin (HlyA) in the pathogenesis of canine pyometra, and on the immune response of canine endometrial epithelial and stromal cells. In Experiment 1, the clinical, hematological, biochemical and uterine histological characteristics of β-hemolytic and non-hemolytic E. coli pyometra bitches were compared. More (p < 0.05) metritis cases were observed in β-hemolytic E. coli pyometra uteri than in non-hemolytic E. coli pyometra uteri. β-hemolytic E. coli pyometra endometria had higher gene transcription of IL-1β and IL-8 and lower gene transcription of IL-6 than non-hemolytic E. coli pyometra endometria (p < 0.01). In Experiment 2, the immune response of endometrial epithelial and stromal cells, to hemolytic (Pyo18) and non-hemolytic E. coli strains (Pyo18 with deleted hlya-Pyo18ΔhlyA- and Pyo14) were compared. Following 4 h of incubation, Pyo18 decreased epithelial cell numbers to 54% (p < 0.001), and induced death of all stromal cells (p < 0.0001), whereas Pyo18ΔhlyA and Pyo14 had no effect on cell numbers. Compared to Pyo18ΔhlyA and Pyo14, respectively, Pyo18 induced a lower transcription level of IL-1β (0.99 vs 152.0 vs 50.9 fold increase, p < 0.001), TNFα (3.2 vs 49.9 vs 12.9 fold increase, p < 0.05) and IL-10 (0.4 vs 3.6 vs 2.6 fold increase, p < 0.001) in stromal cells, after 1 h of incubation. This may be seen as an attempt of hemolytic E. coli to delay the activation of the immune response. In conclusion, endometrial epithelial and stromal cell damage induced by HlyA is a potential relevant step of E. coli virulence in the pathogenesis of pyometra.

  3. Dual Functional Core-Shell Fluorescent Ag2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment.

    PubMed

    Wang, Ning; Wei, Xing; Zheng, An-Qi; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2017-03-24

    A dual functional fluorescent core-shell Ag 2 S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag 2 S nanocomposite shortly as Ag 2 S@C). The nanostructure exhibits strong fluorescent emission at λ ex /λ em = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag 2 S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag 2 S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag 2 S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL -1 . Meanwhile, the Ag 2 S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 10 6 -10 7 cfu mL -1 with 3.3 or 10 μg mL -1 of Ag 2 S@C with an interaction time of 5 or 0.5 min, respectively.

  4. Conversion of commensal Escherichia coli K-12 to an invasive form via expression of a mutant histone-like protein.

    PubMed

    Koli, Preeti; Sudan, Sudhanshu; Fitzgerald, David; Adhya, Sankar; Kar, Sudeshna

    2011-01-01

    The HUα(E38K, V42L) mutant of the bacterial histone-like protein HU causes a major change in the transcription profile of the commensal organism Escherichia coli K-12 (Kar S, Edgar R, Adhya S, Proc. Natl. Acad. Sci. U. S. A. 102:16397-16402, 2005). Among the upregulated genes are several related to pathogenic interactions with mammalian cells, as evidenced by the expression of curli fibers, Ivy, and hemolysin E. When E. coli K-12/ HUα(E38K, V42L) was added to Int-407 cells, there was host cell invasion, phagosomal disruption, and intracellular replication. The invasive trait was also retained in a murine ileal loop model and intestinal explant assays. In addition to invasion, the internalized bacteria caused a novel subversion of host cell apoptosis through modification and regulation of the BH3-only proteins Bim(EL) and Puma. Changes in the transcription profile were attributed to positive supercoiling of DNA leading to the altered availability of relevant promoters. Using the E. coli K-12/HUα(E38K, V42L) variant as a model, we propose that traditional commensal E. coli can adopt an invasive lifestyle through reprogramming its cellular transcription, without gross genetic changes. Escherichia coli K-12 is well established as a benign laboratory strain and a human intestinal commensal. Recent evidences, however, indicate that the typical noninvasive nature of resident E. coli can be reversed under specific circumstances even in the absence of any major genomic flux. We previously engineered an E. coli strain with a mutant histone-like protein, HU, which exhibited significant changes in nucleoid organization and global transcription. Here we showed that the changes induced by the mutant HU have critical functional consequences: from a strict extracellular existence, the mutant E. coli adopts an almost obligate intracellular lifestyle. The internalized E. coli exhibits many of the prototypical characteristics of traditional intracellular bacteria, like phagosomal

  5. Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae

    PubMed Central

    Göpel, Yvonne; Lüttmann, Denise; Heroven, Ann Kathrin; Reichenbach, Birte; Dersch, Petra; Görke, Boris

    2011-01-01

    Small RNAs GlmY and GlmZ compose a cascade that feedback-regulates synthesis of enzyme GlmS in Enterobacteriaceae. Here, we analyzed the transcriptional regulation of glmY/glmZ from Yersinia pseudotuberculosis, Salmonella typhimurium and Escherichia coli, as representatives for other enterobacterial species, which exhibit similar promoter architectures. The GlmY and GlmZ sRNAs of Y. pseudotuberculosis are transcribed from σ54-promoters that require activation by the response regulator GlrR through binding to three conserved sites located upstream of the promoters. This also applies to glmY/glmZ of S. typhimurium and glmY of E. coli, but as a difference additional σ70-promoters overlap the σ54-promoters and initiate transcription at the same site. In contrast, E. coli glmZ is transcribed from a single σ70-promoter. Thus, transcription of glmY and glmZ is controlled by σ54 and the two-component system GlrR/GlrK (QseF/QseE) in Y. pseudotuberculosis and presumably in many other Enterobacteria. However, in a subset of species such as E. coli this relationship is partially lost in favor of σ70-dependent transcription. In addition, we show that activity of the σ54-promoter of E. coli glmY requires binding of the integration host factor to sites upstream of the promoter. Finally, evidence is provided that phosphorylation of GlrR increases its activity and thereby sRNA expression. PMID:20965974

  6. Tissue- and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum.

    PubMed

    Miyazaki, S; Koga, R; Bohnert, H J; Fukuhara, T

    1999-03-01

    Ten transcripts (Mpc1-10) homologous to protein phosphatases of the 2C family have been isolated from the halophyte Mesembryanthemum crystallinum (common ice plant). Transcripts range in size from 1.6 to 2.6 kb, and encode proteins whose catalytic domains are between 24% and 62% identical to that of the Arabidopsis PP2C, ABI1. Transcript expression is tissue specific. Two isoforms are present only in roots (Mpc1 and Mpc5), three in young leaves (Mpc6, 8 and 9), two in old leaves (Mpc6 and Mpc8), and two in post-flowering leaves (Mpc8 and Mpc9). Mpc2 is strongly expressed in roots and also in seeds, meristematic tissues and mature flowers. Mpc3 is specific for leaf meristems, and Mpc4 is found in root and leaf meristems. Mpc7 is restricted to meristematic tissues. Mpc10 is only present in mature flowers. Mpc2 (in roots and leaves), Mpc5 (in roots) and Mpc8 (weakly in leaves) are induced by salinity stress and drought conditions with different kinetics in different tissues, but other Mpcs are downregulated by stress. Cold stress (4 degrees C) leads to a decline in Mpc5 and Mp6, but low temperature provoked a long-term (days) increase in Mpc2 levels in leaves and a transient increase (less than 24 h) in roots. Four full-length transcripts have been obtained. In each case, after over-expression in E. coli, the isolated proteins exhibited (Mg2+-dependent, okadeic acid-insensitive) protein phosphatase activity, although activity against 32P-phosphocasein varied among different PP2Cs. Determination of tissue developmental and stress response specificity of PP2C will facilitate functional studies of signal-transducing enzymes in this halophytic organism.

  7. The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli.

    PubMed

    Hufnagel, David A; Evans, Margery L; Greene, Sarah E; Pinkner, Jerome S; Hultgren, Scott J; Chapman, Matthew R

    2016-12-15

    The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenic E. coli (UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms through csgD The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion of cyaA resulted in reduced extracellular matrix production and biofilm formation. The catabolite repressor protein (CRP) positively regulated csgD transcription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaA and Δcrp did not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within the csgD-csgB intergenic region, and purified CRP could gel shift the csgD-csgB intergenic region. Additionally, we found that CRP binded upstream of kpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influence E. coli biofilms through transcriptional regulation of csgD IMPORTANCE The catabolite repressor protein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on the Escherichia coli chromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874-5893, 2004, https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibits E. coli biofilm formation, and ΔcyaA and Δcrp mutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406-3410, 2002, https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the c

  8. Oligonucleotides complementary to a promoter over the region -8...+2 as transcription primers for E. coli RNA polymerase.

    PubMed Central

    Grachev, M A; Zaychikov, E F; Ivanova, E M; Komarova, N I; Kutyavin, I V; Sidelnikova, N P; Frolova, I P

    1984-01-01

    Primer-dependent transcription by E. coli RNA polymerase on T7 promoter A2 has been studied. Synthetic deoxyribonucleotides complementary to the promoter over the region -8...+2 were taken as primers. A ribonucleoside residue was present at the 3'-end of some of these oligonucleotides. The octanucleotide complementary to the region -8...-1 appeared to be an active primer. Oligonucleotides having lengths from 3 to 6 nucleotide residues complementary to the promoter over the region -4...+2 also exhibited primer activity. The latter was some 5-10 times greater in the case of oligonucleotides having a ribonucleoside residue at the 3'-end. Oligonucleotides which on complementary binding do not reach the center of phosphodiester bond synthesis, as well as the decanucleotides (-8...+2) and octanucleotides (-6...+2) of both the ribo- and deoxyribo-series were inactive as primers. Images PMID:6390344

  9. Active Transcription of rRNA Operons Condenses the Nucleoid in Escherichia coli: Examining the Effect of Transcription on Nucleoid Structure in the Absence of Transertion | Center for Cancer Research

    Cancer.gov

    In Escherichia coli the genome must be compacted ∼1,000-fold to be contained in a cellular structure termed the nucleoid. It is proposed that the structure of the nucleoid is determined by a balance of multiple compaction forces and one major expansion force. The latter is mediated by transertion, a coupling of transcription, translation, and translocation of nascent membrane

  10. Elucidation of Small RNAs that Activate Transcription in Bacteria

    DTIC Science & Technology

    2012-03-01

    bacterial sRNAs that activate transcription of a target gene in E. coli to varying degrees. Mutation of the strongest activator modified its...identified RNA- based transcriptional activators in yeast (Buskirk et al., 2003) although the underlying mechanism was not elucidated. We show that the...previous yeast two-hybrid (Buskirk et al., 2003) and three-hybrid studies (Bernstein et al., 2002). Colonies were observed from co-transformations of pBT

  11. The RclR Protein Is a Reactive Chlorine-specific Transcription Factor in Escherichia coli *

    PubMed Central

    Parker, Benjamin W.; Schwessinger, Emily A.; Jakob, Ursula; Gray, Michael J.

    2013-01-01

    Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance. PMID:24078635

  12. The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli.

    PubMed

    Parker, Benjamin W; Schwessinger, Emily A; Jakob, Ursula; Gray, Michael J

    2013-11-08

    Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance.

  13. Processing of the Escherichia coli leuX tRNA transcript, encoding tRNA(Leu5), requires either the 3'-->5' exoribonuclease polynucleotide phosphorylase or RNase P to remove the Rho-independent transcription terminator.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2010-01-01

    Here we report a unique processing pathway in Escherichia coli for tRNA(Leu5) in which the exoribonuclease polynucleotide phosphorylase (PNPase) removes the Rho-independent transcription terminator from the leuX transcript without requiring the RhlB RNA helicase. Our data demonstrate for the first time that PNPase can efficiently degrade an RNA substrate containing secondary structures in vivo. Furthermore, RNase P, an endoribonuclease that normally generates the mature 5'-ends of tRNAs, removes the leuX terminator inefficiently independent of PNPase activity. RNase P cleaves 4-7 nt downstream of the CCA determinant generating a substrate for RNase II, which removes an additional 3-4 nt. Subsequently, RNase T completes the 3' maturation process by removing the remaining 1-3 nt downstream of the CCA determinant. RNase E, G and Z are not involved in terminator removal. These results provide further evidence that the E. coli tRNA processing machinery is far more diverse than previously envisioned.

  14. Interactions of Escherichia coli σ70 within the transcription elongation complex

    PubMed Central

    Daube, Shirley S.; von Hippel, Peter H.

    1999-01-01

    A functional transcription elongation complex can be formed without passing through a promoter by adding a complementary RNA primer and core Escherichia coli RNA polymerase in trans to an RNA-primed synthetic bubble-duplex DNA framework. This framework consists of a double-stranded DNA sequence with an internal noncomplementary DNA “bubble” containing a hybridized RNA primer. On addition of core polymerase and the requisite NTPs, the RNA primer is extended in a process that manifests most of the properties of in vitro transcription elongation. This synthetic elongation complex can also be assembled by using holo rather than core RNA polymerase, and in this study we examine the interactions and fate of the σ70 specificity subunit of the holopolymerase in the assembly process. We show that the addition of holopolymerase to the bubble-duplex construct triggers the dissociation of the sigma factor from some complexes, whereas in others the RNA oligomer is released into solution instead. These results are consistent with an allosteric competition between σ70 and the nascent RNA strand within the elongation complex and suggest that both cannot be bound to the core polymerase simultaneously. However, the dissociation of σ70 from the complex can also be stimulated by binding of the holopolymerase to the DNA bubble duplex in the absence of a hybridized RNA primer, suggesting that the binding of the core polymerase to the bubble-duplex construct also triggers a conformational change that additionally weakens the sigma–core interaction. PMID:10411885

  15. The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli

    PubMed Central

    Landis, Lenore; Xu, Jimin; Johnson, Reid C.

    1999-01-01

    Transcription of the P1 promoter of the Escherichia coli proP gene, which encodes a transporter of osmoprotectants, is strongly induced by a shift to hyperosmotic media. Unlike most other osmotically regulated promoters, the induction occurs for a brief period of time, corresponding to the replacement of intracellular K+ glutamate with osmoprotecting compounds. This burst of proP transcription is correlated with the osmolarity-dependent binding of the cAMP receptor protein CRP to a site within the proP P1 promoter. We show that CRP–cAMP functions as an osmotically sensitive repressor of proP P1 transcription in vitro. Binding of CRP to the proP promoter in vivo is transiently destabilized after a hyperosmotic shift with kinetics that correspond to the derepression of transcription, whereas Fis and Lac repressor binding is not osmotically sensitive. Similar osmotic regulation of proP P1 transcription by the CRP* mutant implies that binding of cAMP is not responsible for the unusual osmotic sensitivity of CRP activity. Osmotic regulation of CRP activity is not limited to proP. Activation of the lac promoter by CRP is also transiently inhibited after an osmotic upshift, as is the binding of CRP to the galΔ4 P1 promoter. These findings suggest that CRP functions in certain contexts to regulate gene expression in response to osmotic changes, in addition to its role in catabolite control. PMID:10601034

  16. The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli.

    PubMed

    Landis, L; Xu, J; Johnson, R C

    1999-12-01

    Transcription of the P1 promoter of the Escherichia coli proP gene, which encodes a transporter of osmoprotectants, is strongly induced by a shift to hyperosmotic media. Unlike most other osmotically regulated promoters, the induction occurs for a brief period of time, corresponding to the replacement of intracellular K(+) glutamate with osmoprotecting compounds. This burst of proP transcription is correlated with the osmolarity-dependent binding of the cAMP receptor protein CRP to a site within the proP P1 promoter. We show that CRP-cAMP functions as an osmotically sensitive repressor of proP P1 transcription in vitro. Binding of CRP to the proP promoter in vivo is transiently destabilized after a hyperosmotic shift with kinetics that correspond to the derepression of transcription, whereas Fis and Lac repressor binding is not osmotically sensitive. Similar osmotic regulation of proP P1 transcription by the CRP* mutant implies that binding of cAMP is not responsible for the unusual osmotic sensitivity of CRP activity. Osmotic regulation of CRP activity is not limited to proP. Activation of the lac promoter by CRP is also transiently inhibited after an osmotic upshift, as is the binding of CRP to the galdelta4P1 promoter. These findings suggest that CRP functions in certain contexts to regulate gene expression in response to osmotic changes, in addition to its role in catabolite control.

  17. Mutational analysis of Escherichia coli heat shock transcription factor sigma 32 reveals similarities with sigma 70 in recognition of the -35 promoter element and differences in promoter DNA melting and -10 recognition.

    PubMed

    Kourennaia, Olga V; Tsujikawa, Laura; Dehaseth, Pieter L

    2005-10-01

    Upon the exposure of Escherichia coli to high temperature (heat shock), cellular levels of the transcription factor sigma32 rise greatly, resulting in the increased formation of the sigma32 holoenzyme, which is capable of transcription initiation at heat shock promoters. Higher levels of heat shock proteins render the cell better able to cope with the effects of higher temperatures. To conduct structure-function studies on sigma32 in vivo, we have carried out site-directed mutagenesis and employed a previously developed system involving sigma32 expression from one plasmid and a beta-galactosidase reporter gene driven by the sigma32-dependent groE promoter on another in order to monitor the effects of single amino acid substitutions on sigma32 activity. It was found that the recognition of the -35 region involves similar amino acid residues in regions 4.2 of E. coli sigma32 and sigma70. Three conserved amino acids in region 2.3 of sigma32 were found to be only marginally important in determining activity in vivo. Differences between sigma32 and sigma70 in the effects of mutation in region 2.4 on the activities of the two sigma factors are consistent with the pronounced differences between both the amino acid sequences in this region and the recognized promoter DNA sequences.

  18. A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery.

    PubMed

    Mandin, Pierre; Chareyre, Sylvia; Barras, Frédéric

    2016-09-20

    Fe-S clusters are cofactors conserved through all domains of life. Once assembled by dedicated ISC and/or SUF scaffolds, Fe-S clusters are conveyed to their apo-targets via A-type carrier proteins (ATCs). Escherichia coli possesses four such ATCs. ErpA is the only ATC essential under aerobiosis. Recent studies reported a possible regulation of the erpA mRNA by the small RNA (sRNA) RyhB, which controls the expression of many genes under iron starvation. Surprisingly, erpA has not been identified in recent transcriptomic analysis of the iron starvation response, thus bringing into question the actual physiological significance of the putative regulation of erpA by RyhB. Using an sRNA library, we show that among 26 sRNAs, only RyhB represses the expression of an erpA-lacZ translational fusion. We further demonstrate that this repression occurs during iron starvation. Using mutational analysis, we show that RyhB base pairs to the erpA mRNA, inducing its disappearance. In addition, IscR, the master regulator of Fe-S homeostasis, represses expression of erpA at the transcriptional level when iron is abundant, but depleting iron from the medium alleviates this repression. The conjunction of transcriptional derepression by IscR and posttranscriptional repression by RyhB under Fe-limiting conditions is best described as an incoherent regulatory circuit. This double regulation allows full expression of erpA at iron concentrations for which Fe-S biogenesis switches from the ISC to the SUF system. We further provide evidence that this regulatory circuit coordinates ATC usage to iron availability. Regulatory small RNAs (sRNAs) have emerged as major actors in the control of gene expression in the last few decades. Relatively little is known about how these regulators interact with classical transcription factors to coordinate genetic responses. We show here how an sRNA, RyhB, and a transcription factor, IscR, regulate expression of an essential gene, erpA, in the bacterium E

  19. N6-Methylation Assessment in Escherichia coli 23S rRNA Utilizing a Bulge Loop in an RNA-DNA Hybrid.

    PubMed

    Yoshioka, Kyoko; Kurita, Ryoji

    2018-06-07

    We propose a sequence-selective assay of N6-methyl-adenosine (m6A) in RNA without PCR or reverse transcription, by employing a hybridization assay with a DNA probe designed to form a bulge loop at the position of a target modified nucleotide. The m6A in the bulge in the RNA-DNA hybrid was assumed to be sufficiently mobile to be selectively recognized by an anti-m6A antibody with a high affinity. By employing a surface-plasmon-resonance measurement or using a microtiter-plate immunoassay method, a specific m6A in the Escherichia coli 23S rRNA sequence could be detected at the nanomolar level when synthesized and purified oligo-RNA fragments were used for measurement. We have successfully achieved the first selective detection of m6A 2030 specifically in 23S rRNA from real samples of E. coli total RNA by using our immunochemical approach.

  20. DNA modification and functional delivery into human cells using Escherichia coli DH10B

    PubMed Central

    Narayanan, Kumaran; Warburton, Peter E.

    2003-01-01

    The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a ∼200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd– rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies. PMID:12711696

  1. Quorum sensing transcriptional regulator QseA is essential for the expression of multiple virulence regulons of enterohemorrhagic Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Introduction and Objectives: QseA is one of several transcriptional regulators that regulates the virulence gene expression in enterohemorrhagic Escherichia coli (EHEC) O157:H7 through quorum sensing. QseA has been shown to regulate the expression of the locus of enterocyte effacement (LEE), non-LEE...

  2. Multistress Regulation in Escherichia coli: Expression of osmB Involves Two Independent Promoters Responding either to σS or to the RcsCDB His-Asp Phosphorelay

    PubMed Central

    Boulanger, Alice; Francez-Charlot, Anne; Conter, Annie; Castanié-Cornet, Marie-Pierre; Cam, Kaymeuang; Gutierrez, Claude

    2005-01-01

    Transcription of the Escherichia coli osmB gene is induced by several stress conditions. osmB is expressed from two promoters, osmBp1 and osmBp2. The downstream promoter, osmBp2, is induced after osmotic shock or upon entry into stationary phase in a σS-dependent manner. The upstream promoter, osmBp1, is independent of σS and is activated by RcsB, the response regulator of the His-Asp phosphorelay signal transduction system RcsCDB. RcsB is responsible for the induction of osmBp1 following treatment with chlorpromazine. Activation of osmBp1 by RcsB requires a sequence upstream of its −35 element similar to the RcsB binding site consensus, suggesting a direct regulatory role. osmB appears as another example of a multistress-responsive gene whose transcription involves both a σS-dependent promoter and a second one independent of σS but controlled by stress-specific transcription factors. PMID:15838058

  3. Feast/famine regulatory proteins (FFRPs): Escherichia coli Lrp, AsnC and related archaeal transcription factors.

    PubMed

    Yokoyama, Katsushi; Ishijima, Sanae A; Clowney, Lester; Koike, Hideaki; Aramaki, Hironori; Tanaka, Chikako; Makino, Kozo; Suzuki, Masashi

    2006-01-01

    Feast/famine regulatory proteins comprise a diverse family of transcription factors, which have been referred to in various individual identifications, including Escherichia coli leucine-responsive regulatory protein and asparagine synthase C gene product. A full length feast/famine regulatory protein consists of the N-terminal DNA-binding domain and the C-domain, which is involved in dimerization and further assembly, thereby producing, for example, a disc or a chromatin-like cylinder. Various ligands of the size of amino acids bind at the interface between feast/famine regulatory protein dimers, thereby altering their assembly forms. Also, the combination of feast/famine regulatory protein subunits forming the same assembly is altered. In this way, a small number of feast/famine regulatory proteins are able to regulate a large number of genes in response to various environmental changes. Because feast/famine regulatory proteins are shared by archaea and eubacteria, the genome-wide regulation by feast/famine regulatory proteins is traceable back to their common ancestor, being the prototype of highly differentiated transcription regulatory mechanisms found in organisms nowadays.

  4. Building a complete image of genome regulation in the model organism Escherichia coli.

    PubMed

    Ishihama, Akira

    2018-01-15

    The model organism, Escherichia coli, contains a total of more than 4,500 genes, but the total number of RNA polymerase (RNAP) core enzyme or the transcriptase is only about 2,000 molecules per genome. The regulatory targets of RNAP are, however, modulated by changing its promoter selectivity through two-steps of protein-protein interplay with 7 species of the sigma factor in the first step, and then 300 species of the transcription factor (TF) in the second step. Scientists working in the field of prokaryotic transcription in Japan have made considerable contributions to the elucidation of genetic frameworks and regulatory modes of the genome transcription in E. coli K-12. This review summarizes the findings by this group, first focusing on three sigma factors, the stationary-phase sigma RpoS, the heat-shock sigma RpoH, and the flagellar-chemotaxis sigma RpoF, as examples. It also presents an overview of the current state of the systematic research being carried out to identify the regulatory functions of all TFs from a single and the same bacterium E. coli K-12, using the genomic SELEX and PS-TF screening systems. All these studies have been undertaken with the aim of understanding the genome regulation in E. coli K-12 as a whole.

  5. Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655.

    PubMed

    Seo, Sang Woo; Gao, Ye; Kim, Donghyuk; Szubin, Richard; Yang, Jina; Cho, Byung-Kwan; Palsson, Bernhard O

    2017-05-19

    A transcription factor (TF), OmpR, plays a critical role in transcriptional regulation of the osmotic stress response in bacteria. Here, we reveal a genome-scale OmpR regulon in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 37 genes in 24 transcription units (TUs) belong to OmpR regulon. Among them, 26 genes show more than two-fold changes in expression level in an OmpR knock-out strain. Specifically, we find that: 1) OmpR regulates mostly membrane-located gene products involved in diverse fundamental biological processes, such as narU (encoding nitrate/nitrite transporter), ompX (encoding outer membrane protein X), and nuoN (encoding NADH:ubiquinone oxidoreductase); 2) by investigating co-regulation of entire sets of genes regulated by other stress-response TFs, stresses are surprisingly independently regulated among each other; and, 3) a detailed investigation of the physiological roles of the newly discovered OmpR regulon genes reveals that activation of narU represents a novel strategy to significantly improve osmotic stress tolerance of E. coli. Thus, the genome-scale approach to elucidating regulons comprehensively identifies regulated genes and leads to fundamental discoveries related to stress responses.

  6. Alteration of lysine 178 in the hinge region of the Escherichia coli ada protein interferes with activation of ada, but not alkA, transcription.

    PubMed

    Saget, B M; Shevell, D E; Walker, G C

    1995-03-01

    The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosphotriester lesion converts Ada into a transcriptional activator of the ada and alkA genes. Activation of ada, but not alkA, requires elements contained within the carboxyl-terminal domain of Ada. In addition, physiologically relevant concentrations of the unmethylated form of Ada specifically inhibit methylated Ada-promoted ada transcription both in vitro and in vivo and it has been suggested that this phenomenon plays a pivotal role in the down-regulation of the adaptive response. A set of site-directed mutations were generated within the hinge region, changing the lysine residue at position 178 to leucine, valine, glycine, tyrosine, arginine, cysteine, proline, and serine. All eight mutant proteins have deficiencies in their ability to activate ada transcription in the presence or absence of a methylating agent but are proficient in alkA activation. AdaK178P (lysine 178 changed to proline) is completely defective for the transcriptional activation function of ada while it is completely proficient for transcriptional activation of alkA. In addition, AdaK178P possesses both classes of DNA repair activities both in vitro and in vivo. Transcriptional activation of ada does not occur if both the amino- and carboxyl-terminal domains are produced separately within the same cell. The mutation at position 178 might interfere with activation of ada transcription by changing a critical contact with RNA polymerase, by causing a conformational change of Ada, or by interfering with the

  7. Enteroaggregative Escherichia coli O78:H10, the Cause of an Outbreak of Urinary Tract Infection

    PubMed Central

    Scheutz, Flemming; Andersen, Rebecca L.; Menard, Megan; Boisen, Nadia; Johnston, Brian; Hansen, Dennis S.; Krogfelt, Karen A.; Nataro, James P.; Johnson, James R.

    2012-01-01

    In 1991, multiresistant Escherichia coli O78:H10 strains caused an outbreak of urinary tract infections in Copenhagen, Denmark. The phylogenetic origin, clonal background, and virulence characteristics of the outbreak isolates, and their relationship to nonoutbreak O78:H10 strains according to these traits and resistance profiles, are unknown. Accordingly, we extensively characterized 51 archived E. coli O78:H10 isolates (48 human isolates from seven countries, including 19 Copenhagen outbreak isolates, and 1 each of calf, avian, and unknown-source isolates), collected from 1956 through 2000. E. coli O78:H10 was clonally heterogeneous, comprising one dominant clonal group (61% of isolates, including all 19 outbreak isolates) from ST10 (phylogenetic group A) plus several minor clonal groups (phylogenetic groups A and D). All ST10 isolates, versus 25% of non-ST10 isolates, were identified by molecular methods as enteroaggregative E. coli (EAEC) (P < 0.001). Genes present in >90% of outbreak isolates included fimH (type 1 fimbriae; ubiquitous in E. coli); fyuA, traT, and iutA (associated with extraintestinal pathogenic E. coli [ExPEC]); and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap, and ORF3 (associated with EAEC). An outbreak isolate was lethal in a murine subcutaneous sepsis model and exhibited characteristic EAEC “stacked brick” adherence to cultured epithelial cells. Thus, the 1991 Copenhagen outbreak was caused by a tight, non-animal-associated subset within a broadly disseminated O78:H10 clonal group (ST10; phylogenetic group A), members of which exhibit both ExPEC and EAEC characteristics, whereas O78:H10 isolates overall are phylogenetically diverse. Whether ST10 O78:H10 EAEC strains are both uropathogenic and diarrheagenic warrants further investigation. PMID:22972830

  8. Enteroaggregative Escherichia coli O78:H10, the cause of an outbreak of urinary tract infection.

    PubMed

    Olesen, Bente; Scheutz, Flemming; Andersen, Rebecca L; Menard, Megan; Boisen, Nadia; Johnston, Brian; Hansen, Dennis S; Krogfelt, Karen A; Nataro, James P; Johnson, James R

    2012-11-01

    In 1991, multiresistant Escherichia coli O78:H10 strains caused an outbreak of urinary tract infections in Copenhagen, Denmark. The phylogenetic origin, clonal background, and virulence characteristics of the outbreak isolates, and their relationship to nonoutbreak O78:H10 strains according to these traits and resistance profiles, are unknown. Accordingly, we extensively characterized 51 archived E. coli O78:H10 isolates (48 human isolates from seven countries, including 19 Copenhagen outbreak isolates, and 1 each of calf, avian, and unknown-source isolates), collected from 1956 through 2000. E. coli O78:H10 was clonally heterogeneous, comprising one dominant clonal group (61% of isolates, including all 19 outbreak isolates) from ST10 (phylogenetic group A) plus several minor clonal groups (phylogenetic groups A and D). All ST10 isolates, versus 25% of non-ST10 isolates, were identified by molecular methods as enteroaggregative E. coli (EAEC) (P < 0.001). Genes present in >90% of outbreak isolates included fimH (type 1 fimbriae; ubiquitous in E. coli); fyuA, traT, and iutA (associated with extraintestinal pathogenic E. coli [ExPEC]); and sat, pic, aatA, aggR, aggA, ORF61, aaiC, aap, and ORF3 (associated with EAEC). An outbreak isolate was lethal in a murine subcutaneous sepsis model and exhibited characteristic EAEC "stacked brick" adherence to cultured epithelial cells. Thus, the 1991 Copenhagen outbreak was caused by a tight, non-animal-associated subset within a broadly disseminated O78:H10 clonal group (ST10; phylogenetic group A), members of which exhibit both ExPEC and EAEC characteristics, whereas O78:H10 isolates overall are phylogenetically diverse. Whether ST10 O78:H10 EAEC strains are both uropathogenic and diarrheagenic warrants further investigation.

  9. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak.

    PubMed

    Carter, Michelle Qiu; Louie, Jacqueline W; Huynh, Steven; Parker, Craig T

    2014-12-01

    We previously reported significantly different acid resistance between curli variants derived from the same Escherichia coli O157:H7 strain, although the curli fimbriae were not associated with this phenotypic divergence. Here we investigated the underlying molecular mechanism by examining the genes encoding the common transcriptional regulators of curli biogenesis and acid resistance. rpoS null mutations were detected in all curli-expressing variants of the 2006 spinach-associated outbreak strains, whereas a wild-type rpoS was present in all curli-deficient variants. Consequently curli-expressing variants were much more sensitive to various stress challenges than curli-deficient variants. This loss of general stress fitness appeared solely to be the result of rpoS mutation since the stress resistances could be restored in curli-expressing variants by a functional rpoS. Comparative transcriptomic analyses between the curli variants revealed a large number of differentially expressed genes, characterized by the enhanced expression of metabolic genes in curli-expressing variants, but a marked decrease in transcription of genes related to stress resistances. Unlike the curli-expressing variants of the 1993 US hamburger-associated outbreak strains (Applied Environmental Microbiology 78: 7706-7719), all curli-expressing variants of the 2006 spinach-associated outbreak strains carry a functional rcsB gene, suggesting an alternative mechanism governing intra-strain phenotypic divergence in E. coli O157:H7. Published by Elsevier Ltd.

  10. Experimental Evolution of Escherichia coli K-12 at High pH and RpoS Induction.

    PubMed

    Hamdallah, Issam; Torok, Nadia; Bischof, Katarina M; Majdalani, Nadim; Chadalavada, Sriya; Mdluli, Nonto; Creamer, Kaitlin E; Clark, Michelle; Holdener, Chase; Basting, Preston J; Gottesman, Susan; Slonczewski, Joan L

    2018-05-25

    Experimental evolution of Escherichia coli K-12 W3110 by serial dilutions for 2,200 generations at high pH extended the range of sustained growth from pH 9.0 to pH 9.3. pH 9.3-adapted isolates showed mutations in DNA-binding regulators and envelope proteins. One population showed an IS1 knockout of phoB (positive regulator of the phosphate regulon). A phoB :: kanR knockout increased growth at high pH. phoB mutants are known to increase production of fermentation acids, which could enhance fitness at high pH. Mutations in pcnB (poly(A) polymerase) also increased growth at high pH. Three out of four populations showed deletions of torI, an inhibitor of TorR, which activates expression of torCAD (trimethylamine N-oxide respiration) at high pH. All populations showed point mutations affecting the stationary-phase sigma RpoS, either in the coding gene or in regulators of RpoS expression. RpoS is required for survival in extreme base. In our microplate assay, rpoS deletion slightly decreased growth at pH 9.1. RpoS protein accumulated faster at pH 9 than at pH 7. The RpoS accumulation at high pH required the presence of one or more antiadapters that block degradation (IraM, IraD, and IraP). Other genes with mutations after high pH evolution encode regulators such as yobG ( mgrB ) (PhoPQ regulator), rpoN (nitrogen starvation sigma), malI , and purR ; as well as envelope proteins ompT and yahO Overall, E. coli evolution at high pH selects for mutations in key transcriptional regulators, including phoB and the stationary-phase sigma RpoS. IMPORTANCE Escherichia coli in its native habitat encounters high pH stress such as that of pancreatic secretions. Experimental evolution over 2,000 generations showed selection for mutations in regulatory factors, such as deletion of the phosphate regulator PhoB and mutations that alter function of the global stress regulator RpoS. RpoS is induced at high pH via multiple mechanisms. Copyright © 2018 American Society for Microbiology.

  11. Tuning of Recombinant Protein Expression in Escherichia coli by Manipulating Transcription, Translation Initiation Rates, and Incorporation of Noncanonical Amino Acids.

    PubMed

    Schlesinger, Orr; Chemla, Yonatan; Heltberg, Mathias; Ozer, Eden; Marshall, Ryan; Noireaux, Vincent; Jensen, Mogens Høgh; Alfonta, Lital

    2017-06-16

    Protein synthesis in cells has been thoroughly investigated and characterized over the past 60 years. However, some fundamental issues remain unresolved, including the reasons for genetic code redundancy and codon bias. In this study, we changed the kinetics of the Eschrichia coli transcription and translation processes by mutating the promoter and ribosome binding domains and by using genetic code expansion. The results expose a counterintuitive phenomenon, whereby an increase in the initiation rates of transcription and translation lead to a decrease in protein expression. This effect can be rescued by introducing slow translating codons into the beginning of the gene, by shortening gene length or by reducing initiation rates. On the basis of the results, we developed a biophysical model, which suggests that the density of co-transcriptional-translation plays a role in bacterial protein synthesis. These findings indicate how cells use codon bias to tune translation speed and protein synthesis.

  12. Transcription analysis of stx1, marA, and eaeA genes in Escherichia coli O157:H7 treated with sodium benzoate.

    PubMed

    Critzer, Faith J; Dsouza, Doris H; Golden, David A

    2008-07-01

    Expression of the multiple antibiotic resistance (mar) operon causes increased antimicrobial resistance in bacterial pathogens. The activator of this operon, MarA, can alter expression of >60 genes in Escherichia coli K-12. However, data on the expression of virulence and resistance genes when foodborne pathogens are exposed to antimicrobial agents are lacking. This study was conducted to determine transcription of marA (mar activator), stx1 (Shiga toxin 1), and eaeA (intimin) genes of E. coli O157:H7 EDL933 as affected by sodium benzoate. E. coli O157:H7 was grown in Luria-Bertani broth containing 0 (control) and 1% sodium benzoate at 37 degrees C for 24 h, and total RNA was extracted. Primers were designed for hemX (209 bp; housekeeping gene), marA (261 bp), and eaeA (223 bp) genes; previously reported primers were used for stx1. Tenfold dilutions of RNA were used in a real-time one-step reverse transcriptase PCR to determine transcription levels. All experiments were conducted in triplicate, and product detection was validated by gel electrophoresis. For marA and stx1, real-time one-step reverse transcriptase PCR products were detected at a 1-log-greater dilution in sodium benzoate-treated cells than in control cells, although cell numbers for each were similar (7.28 and 7.57 log CFU/ml, respectively). This indicates a greater (albeit slight) level of their transcription in treated cells than in control cells. No difference in expression of eaeA was observed. HemX is a putative uroporphyrinogen III methylase. The hemX gene was expressed at the same level in control and treated cells, validating hemX as an appropriate housekeeping marker. These data indicate that stx1 and marA genes could play a role in pathogen virulence and survival when treated with sodium benzoate, whereas eaeA expression is not altered. Understanding adaptations of E. coli O157:H7 during antimicrobial exposure is essential to better understand and implement methods to inhibit or control

  13. Determination of the termination efficiency of the transcription terminator using different fluorescent profiles in green fluorescent protein mutants.

    PubMed

    Nojima, Takahiko; Lin, Angela C; Fujii, Teruo; Endo, Isao

    2005-12-01

    An approach in determining the intrinsic termination efficiency (%T) of transcription termination using green fluorescent protein (GFP) mutants was developed. This approach utilizes a cassette vector in which the tested terminator is introduced between two GFP mutant genes: an ultraviolet-optimized mutant (GFPuv: F99S, M153T, V163A) and a blue-shifted mutant (BFP: F64L, S65T, T145F). The ratio of the fluorescence intensity of BFP to GFPuv after transcription and translation represents the termination efficiency of the terminator. E. coli ribosomal RNA operon T1 terminator, phage lambda terminator site R2, E. coli tryptophane attenuater were introduced into the vector, and their transcriptional efficiencies were estimated as 89, 79, and 24%, respectively, showing good agreement with published data.

  14. Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information

    PubMed Central

    2013-01-01

    Background In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored. Results We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes. Conclusions Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes. PMID:23663484

  15. 10 CFR 2.327 - Official recording; transcript.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Official recording; transcript. 2.327 Section 2.327 Energy NUCLEAR REGULATORY COMMISSION AGENCY RULES OF PRACTICE AND PROCEDURE Rules of General Applicability... Procedures, Presiding Officer Powers, and General Hearing Management for NRC Adjudicatory Hearings § 2.327...

  16. 10 CFR 2.327 - Official recording; transcript.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Official recording; transcript. 2.327 Section 2.327 Energy NUCLEAR REGULATORY COMMISSION RULES OF PRACTICE FOR DOMESTIC LICENSING PROCEEDINGS AND ISSUANCE OF ORDERS..., Selection of Specific Hearing Procedures, Presiding Officer Powers, and General Hearing Management for NRC...

  17. CoSMoS Unravels Mysteries of Transcription Initiation

    PubMed Central

    Gourse, Richard L.; Landick, Robert

    2013-01-01

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters. PMID:22341438

  18. Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli.

    PubMed Central

    Liu, J; Turnbough, C L

    1994-01-01

    In Escherichia coli, expression of the pyrC gene is regulated primarily by a translational control mechanism based on nucleotide-sensitive selection of transcriptional start sites at the pyrC promoter. When intracellular levels of CTP are high, pyrC transcripts are initiated predominantly with CTP at a site 7 bases downstream of the Pribnow box. These transcripts form a stable hairpin at their 5' ends that blocks ribosome binding. When the CTP level is low and the GTP level is high, conditions found in pyrimidine-limited cells, transcripts are initiated primarily with GTP at a site 9 bases downstream of the Pribnow box. These shorter transcripts are unable to form a hairpin at their 5' ends and are readily translated. In this study, we examined the effects of nucleotide sequence and position on the selection of transcriptional start sites at the pyrC promoter. We characterized promoter mutations that systematically alter the sequence at position 7 or 9 downstream of the Pribnow box or vary the spacing between the Pribnow box and wild-type transcriptional initiation region. The results reveal preferences for particular initiating nucleotides (ATP > or = GTP > UTP >> CTP) and for starting positions downstream of the Pribnow box (7 >> 6 and 8 > 9 > 10). The results indicate that optimal nucleotide-sensitive start site switching at the wild-type pyrC promoter is the result of competition between the preferred start site (position 7) that uses the poorest initiating nucleotide (CTP) and a weak start site (position 9) that uses a good initiating nucleotide (GTP). The sequence of the pyrC promoter also minimizes the synthesis of untranslatable transcripts and provides for maximum stability of the regulatory transcript hairpin. In addition, the results show that the effects of the mutations on pyrC expression and regulation are consistent with the current model for translational control. Possible effects of preferences for initiating nucleotides and start sites on the

  19. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

    PubMed

    Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent

    2018-01-04

    CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Whole-genome transcriptional analysis of Escherichia coli during heat inactivation processes related to industrial cooking.

    PubMed

    Guernec, A; Robichaud-Rincon, P; Saucier, L

    2013-08-01

    Escherichia coli K-12 was grown to the stationary phase, for maximum physiological resistance, in brain heart infusion (BHI) broth at 37°C. Cells were then heated at 58°C or 60°C to reach a process lethality value \\[\\mathbf{\\left(}{{\\mathit{F}}^{\\mathit{o}}}_{\\mathbf{70}}^{\\mathbf{10}}\\mathbf{\\right)} \\] of 2 or 3 or to a core temperature of 71°C (control industrial cooking temperature). Growth recovery and cell membrane integrity were evaluated immediately after heating, and a global transcription analysis was performed using gene expression microarrays. Only cells heated at 58°C with F(o) = 2 were still able to grow on liquid or solid BHI broth after heat treatment. However, their transcriptome did not differ from that of bacteria heated at 58°C with F(o) = 3 (P value for the false discovery rate [P-FDR] > 0.01), where no growth recovery was observed posttreatment. Genome-wide transcriptomic data obtained at 71°C were distinct from those of the other treatments without growth recovery. Quantification of heat shock gene expression by real-time PCR revealed that dnaK and groEL mRNA levels decreased significantly above 60°C to reach levels similar to those of control cells at 37°C (P < 0.0001). Furthermore, despite similar levels of cell inactivation measured by growth on BHI media after heating, 132 and 8 genes were differentially expressed at 71°C compared to 58°C and 60°C at F(o) = 3, respectively (P-FDR < 0.01). Among them, genes such as aroA, citE, glyS, oppB, and asd, whose expression was upregulated at 71°C, may be worth investigating as good biomarkers for accurately determining the efficiency of heat treatments, especially when cells are too injured to be enumerated using growth media.

  1. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  2. Influence of the environment on the [4Fe-4S]2+ to [2Fe-2S]2+ cluster switch in the transcriptional regulator FNR.

    PubMed

    Crack, Jason C; Gaskell, Alisa A; Green, Jeffrey; Cheesman, Myles R; Le Brun, Nick E; Thomson, Andrew J

    2008-02-06

    In Escherichia coli, the switch between aerobic and anaerobic metabolism is primarily controlled by the fumarate and nitrate reduction transcriptional regulator FNR. In the absence of O2, FNR binds a [4Fe-4S]2+ cluster, generating a transcriptionally active dimeric form. Exposure to O2 results in the conversion of the cluster to a [2Fe-2S]2+ form, leading to dissociation of the protein into transcriptionally inactive monomers. The [4Fe-4S]2+ to [2Fe-2S]2+ cluster conversion proceeds in two steps. Step 1 involves the one-electron oxidation of the cluster, resulting in the release of Fe2+, generating a [3Fe-4S]1+ cluster intermediate, and a superoxide ion. In step 2, the cluster intermediate spontaneously rearranges to form the [2Fe-2S]2+ cluster, with the release of a Fe3+ ion and two sulfide ions. Here, we demonstrate that, in both native and reconstituted [4Fe-4S] FNR, the reaction environment and, in particular, the presence of Fe2+ and/or Fe3+ chelators can influence significantly the cluster conversion reaction. We demonstrate that while the rate of step 1 is largely insensitive to chelators, that of step 2 is significantly enhanced by both Fe2+ and Fe3+ chelators. We show that, for reactions in Fe3+-coordinating phosphate buffer, step 2 is enhanced to the extent that step 1 becomes the rate determining step and the [3Fe-4S]1+ intermediate is no longer detectable. Furthermore, Fe3+ released during this step is susceptible to reduction in the presence of Fe2+ chelators. This work, which may have significance for the in vivo FNR cluster conversion reaction in the cell cytoplasm, provides an explanation for apparently contradictory results reported from different laboratories.

  3. [Construction and characterization of a gspL mutant of avian pathogenic Escherichia coli].

    PubMed

    Fan, Guobo; Han, Yue; Zhang, Yuxi; Han, Xiangan; Wang, Shaohui; Bai, Hao; Meng, Qingmei; Qi, Kezong; Ding, Chan; Yu, Shengqing

    2015-01-04

    To study the role of gspL gene in avian pathogenic Escherichia coli. The gspL mutant of Avian pathogenic Escherichia coli (APEC) was constructed by homologous recombination assay. The growth characteristics, the ability of adhesion and invasion to DF1 cells, the virulence genes transcription level and median lethal dose (LD50) were analyzed between the gspL mutant strain and the wild strain. Compared with the wild strain, the mutant strain had no significant difference in the growth status. However, its ability of adhesion and invasion was significantly lower. The transcription of genes pfs, fyuA, iss and vat increased obviously, the tsh decreased and the transcription level of luxS, ibeA, stx2f and ompA had no significant change. LD50 showed that the gspL mutant strain had 12-fold increase in virulence. The deletion of gspL gene could abate the ability of adhesion and invasion, regulate and control some virulence gene transcription level, enhance the virulence of APEC. The results show that the gspL gene play roles in pathogenicity of APEC.

  4. CoSMoS unravels mysteries of transcription initiation.

    PubMed

    Gourse, Richard L; Landick, Robert

    2012-02-17

    Using a fluorescence method called colocalization single-molecule spectroscopy (CoSMoS), Friedman and Gelles dissect the kinetics of transcription initiation at a bacterial promoter. Ultimately, CoSMoS could greatly aid the study of the effects of DNA sequence and transcription factors on both prokaryotic and eukaryotic promoters. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain

    PubMed Central

    2012-01-01

    Background The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. Results Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. Conclusions This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement. PMID:22401291

  6. Interaction of sigma 70 with Escherichia coli RNA polymerase core enzyme studied by surface plasmon resonance.

    PubMed

    Ferguson, A L; Hughes, A D; Tufail, U; Baumann, C G; Scott, D J; Hoggett, J G

    2000-09-22

    The interaction between the core form of bacterial RNA polymerases and sigma factors is essential for specific promoter recognition, and for coordinating the expression of different sets of genes in response to varying cellular needs. The interaction between Escherichia coli core RNA polymerase and sigma 70 has been investigated by surface plasmon resonance. The His-tagged form of sigma 70 factor was immobilised on a Ni2+-NTA chip for monitoring its interaction with core polymerase. The binding constant for the interaction was found to be 1.9x10(-7) M, and the dissociation rate constant for release of sigma from core, in the absence of DNA or transcription, was 4x10(-3) s(-1), corresponding to a half-life of about 200 s.

  7. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    PubMed

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Synthetic Promoters Functional in Francisella novicida and Escherichia coli

    PubMed Central

    McWhinnie, Ralph L.

    2014-01-01

    In this work, we describe the identification of synthetic, controllable promoters that function in the bacterial pathogen Francisella novicida, a model facultative intracellular pathogen. Synthetic DNA fragments consisting of the tetracycline operator (tetO) flanked by a random nucleotide sequence were inserted into a Francisella novicida shuttle plasmid upstream of a promoterless artificial operon containing the reporter genes cat and lacZ. Fragments able to promote transcription were selected for based on their ability to drive expression of the cat gene, conferring chloramphenicol resistance. Promoters of various strengths were found, many of which were repressed in the presence of the tetracycline repressor (TetR) and promoted transcription only in the presence of the TetR inducer anhydrotetracycline. A subset of both constitutive and inducible synthetic promoters were characterized to find their induction ratios and to identify their transcription start sites. In cases where tetO was located between or downstream of the −10 and −35 regions of the promoter, control by TetR was observed. If the tetO region was upstream of the −35 region by more than 9 bp, it did not confer TetR control. We found that three of three promoters isolated in F. novicida functioned at a comparable level in E. coli; however, none of the 10 promoters isolated in E. coli functioned at a significant level in F. novicida. Our results allowed us to isolate minimal F. novicida promoters of 47 and 48 bp in length. PMID:24141126

  9. Strategies for Protein Overproduction in Escherichia coli.

    ERIC Educational Resources Information Center

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  10. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  11. Unexpected Diversity of Escherichia coli Sialate O-Acetyl Esterase NanS

    PubMed Central

    Rangel, Ariel; Steenbergen, Susan M.

    2016-01-01

    ABSTRACT The sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, where N-acetyl- or N-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations to N-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria with O-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity of Escherichia coli NanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show that E. coli strain O157:H7 Stx prophage or prophage remnants invariably include paralogs of nanS often located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialate O-acetyl esterases, as shown by complementation of an E. coli strain K-12 nanS mutant and the unimpaired growth of an E. coli O157 nanS mutant on O-acetylated sialic acid. We further demonstrate that nanS homologs in Streptococcus spp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialate O-acetyl esterase. IMPORTANCE The sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence

  12. Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions.

    PubMed

    Peer, Asaf; Margalit, Hanah

    2014-07-01

    Most bacterial small RNAs (sRNAs) are post-transcriptional regulators of gene expression, exerting their regulatory function by base-pairing with their target mRNAs. While it has become evident that sRNAs play central regulatory roles in the cell, little is known about their evolution and the evolution of their regulatory interactions. Here we used the prokaryotic phylogenetic tree to reconstruct the evolutionary history of Escherichia coli sRNAs and their binding sites on target mRNAs. We discovered that sRNAs currently present in E. coli mainly accumulated inside the Enterobacteriales order, succeeding the appearance of other types of noncoding RNAs and concurrently with the evolution of a variant of the Hfq protein exhibiting a longer C-terminal region. Our analysis of the evolutionary ages of sRNA-mRNA interactions revealed that while all sRNAs were evolutionarily older than most of their known binding sites on mRNA targets, for quite a few sRNAs there was at least one binding site that coappeared with or preceded them. It is conceivable that the establishment of these first interactions forced selective pressure on the sRNAs, after which additional targets were acquired by fitting a binding site to the active region of the sRNA. This conjecture is supported by the appearance of many binding sites on target mRNAs only after the sRNA gain, despite the prior presence of the target gene in ancestral genomes. Our results suggest a selective mechanism that maintained the sRNAs across the phylogenetic tree, and shed light on the evolution of E. coli post-transcriptional regulatory network. © 2014 Peer and Margalit; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. In vitro synthesis of 9,10-dihydroxyhexadecanoic acid using recombinant Escherichia coli.

    PubMed

    Kaprakkaden, Anees; Srivastava, Preeti; Bisaria, Virendra Swarup

    2017-05-18

    Hydroxy fatty acids are widely used in food, chemical and cosmetic industries. A variety of dihydroxy fatty acids have been synthesized so far; however, no studies have been done on the synthesis of 9,10-dihydroxyhexadecanoic acid. In the present study recombinant E. coli has been used for the heterologous expression of fatty acid hydroxylating enzymes and the whole cell lysate of the induced culture was used for in vitro production of 9,10-dihydroxyhexadecanoic acid. A first of its kind proof of principle has been successfully demonstrated for the production of 9,10-dihydroxyhexadecanoic acid using three different enzymes viz. fatty acid desaturase (FAD) from Saccharomyces cerevisiae, epoxide hydrolase (EH) from Caenorhabditis elegance and epoxygenase (EPOX) from Stokasia laevis. The genes for these proteins were codon-optimised, synthesised and cloned in pET 28a (+) vector. The culture conditions for induction of these three proteins in E. coli were optimised in shake flask. The induced cell lysates were used both singly and in combination along with the trans-supply of hexadecanoic acid and 9-hexadecenoic acid, followed by product profiling by GC-MS. Formation of 9,10-dihydroxyhexadecanoic acid was successfully achieved when combination of induced cell lysates of recombinant E. coli containing FAD, EH, and EPOX were incubated with 9-hexadecenoic acid. The in vitro production of 9,10-dihydroxyhexadecanoic acid synthesis using three fatty acid modification genes from different sources has been successfully demonstrated. The strategy adopted can be used for the production of similar compounds.

  14. Inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 toward L. monocytogenes, S. thypimurium and E. coli

    NASA Astrophysics Data System (ADS)

    Marwati, T.; Cahyaningrum, N.; Widodo, S.; Januarsyah, T.; Purwoko

    2018-01-01

    Bacteriocin is a protein compound which has bactericidal ability against pathogen bacteria. This research aims to study the inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 against Listeria monocytogenes, Salmonella thypimuruim and Escherchia coli. The bacteriocin produce from Lactobacillus SCG 1223 in the MRS broth media The experimental design used was Completely Randomized Design. The variations used in this design were percentage of inoculum (5%, 10%), medium pH (4, 6), incubation temperature (27°C, 40°C), and incubation time (4, 10, 14 hours). Result showed that bacteriocin from Lactobacillus SCG 1223 had wide spectrum toward L. monocytogenes, S. thypimuruim and E. coli. The highest bacteriocin activity toward L. monocytogenes produced by Lactobacillus SCG 1223 with 10% inoculum in media with initial pH 6, incubation temperature 27°C for 14 hour, toward S. thypimurium produced by Lactobacillus SCG 1223 with in media with initial pH 6, incubation temperature 40°C for 14 hour, and toward E. coli was 1085.81 AU/ml, produced by Lactobacillus SCG 1223 in MRS broth with initial pH 4, incubation temperature 40°C for 14 hour. This study is expected to find a new food preservative that can inhibit the growth of pathogenic bacteria and extend the shelf life of food. From the economic prospective of view, bacteriocin is very promising natural alternative biopreservatives.

  15. Effects of cranberry extracts and ursolic acid derivatives on P-fimbriated Escherichia coli, COX-2 activity, pro-inflammatory cytokine release and the NF-κβ transcriptional response in vitro

    PubMed Central

    Huang, Yue; Nikolic, Dejan; Pendland, Susan; Doyle, Brian J.; Locklear, Tracie D.; Mahady, Gail B.

    2010-01-01

    Cranberry, the fresh or dried ripe fruit of Vaccinium macrocarpon Ait. (Ericaceae), is currently used as adjunct therapy for the prevention and symptomatic treatment of urinary tract infections. Data from clinical trials suggest that extracts of cranberry or cranberry juice reduce the bacterial load of E. coli and also suppress the inflammatory symptoms induced by E. coli infections. A methanol extract prepared from 10 kg of dehydrated cranberries did not directly inhibit the growth of E coli strains ATCC 700336 or ATCC 25922 in concentrations up to 256 μg/mL in vitro. However, the methanol extract (CR-ME) inhibited the activity of cyclooxygenase-2, with an IC50 of 12.8 μg/mL. Moreover, CR-ME also inhibited the NF-κβ transcriptional activation in human T lymphocytes with an IC50 of 19.4 μg/mL, and significantly (p < 0.01) inhibited the release of interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α from E. coli lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells in vitro, at a concentration of 50 μg/mL. The extract had no effect on inducible nitric oxide synthase activity in the murine macrophage cell line RAW 264.7. The compounds responsible for this activity were identified using a novel LC-MS based assay as ursolic acid and ursolic acid derivatives. Taken together, these data suggest CR-ME and its constituent chemical compounds target specific pathways involved in E. coli-induced inflammation. PMID:20376297

  16. Influence of the stringent control system on the transcription of ribosomal ribonucleic acid and ribosomal protein genes in Escherichia coli.

    PubMed Central

    Dennis, P P

    1977-01-01

    The fraction of the total ribonucleic acid (RNA) synthesis rate that is messenger RNA (mRNA) for ribosomal protein (r-protein) and ribosomal RNA (rRNA) has been estimated in valS(Ts) rel+ stringent and valS(Ts) relA1 relaxed strains of Escherichia coli during a partial inhibition of valyl-transfer RNA aminoacylation. The partial inhibition was accomplished by shifting the strains from the permissive growth temperature of 29.5 degrees C to the semipermissive temperature of 35.5 degrees C. The RNA synthesized at the elevated temperature was pulse labeled with [3H]uracil. The fraction of the total incorpoarted 3H radioactivity in r-protein mRNA or in rRNA was estimated by specific hybridization to the transducing phages gammaspc1, which carries about 15 r-protein genes and lambdailv5, which carries an rRNA transcription unit. The results clearly demonstrate that the rel gene influences the fraction of the total RNA synthesis rate that is r protein mRNA and rRNA; in the rel+ strain they are significantly increased relative to control cultures. This indicates that the expression of the genes coding for the RNA and protein component of the ribosome are most likely regulated at the level of transcription. Furthermore, it appears that the distribution of functioning RNA polymerase between rRNA genes, r-protein genes, and other types of genes is influenced by the rel gene control system; presumably this influence is mediated through the unusual nucleotide guanosine tetraphosphate. PMID:320185

  17. Transcriptional Responses of Uropathogenic Escherichia coli to Increased Environmental Osmolality Caused by Salt or Urea

    PubMed Central

    Withman, Benjamin; Gunasekera, Thusitha S.; Beesetty, Pavani; Agans, Richard

    2013-01-01

    Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections in humans. The majority of urinary infections develop via ascending route through the urethra, where bacterial cells come in contact with human urine prior to reaching the bladder or kidneys. Since urine contains significant amounts of inorganic ions and urea, it imposes osmotic and denaturing stresses on bacterial cells. In this study, we determined the transcriptional adaptive responses of UPEC strain CFT073 to the presence of 0.3 M NaCl or 0.6 M urea in the growth medium. The cell responses to these two osmolytes were drastically different. Although most of the genes of the osmotically inducible regulon were overexpressed in medium with salt, urea failed to stimulate osmotic stress response. At the same time, UPEC colonization genes encoding type 1 and F1C fimbriae and capsule biosynthesis were transcriptionally induced in the presence of urea but did not respond to increased salt concentration. We speculate that urea can potentially be sensed by uropathogenic bacteria to initiate infection program. In addition, several molecular chaperone genes were overexpressed in the presence of urea, whereas adding NaCl to the medium led to an upregulation of a number of anaerobic metabolism pathways. PMID:23090957

  18. Transcriptional responses of uropathogenic Escherichia coli to increased environmental osmolality caused by salt or urea.

    PubMed

    Withman, Benjamin; Gunasekera, Thusitha S; Beesetty, Pavani; Agans, Richard; Paliy, Oleg

    2013-01-01

    Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections in humans. The majority of urinary infections develop via ascending route through the urethra, where bacterial cells come in contact with human urine prior to reaching the bladder or kidneys. Since urine contains significant amounts of inorganic ions and urea, it imposes osmotic and denaturing stresses on bacterial cells. In this study, we determined the transcriptional adaptive responses of UPEC strain CFT073 to the presence of 0.3 M NaCl or 0.6 M urea in the growth medium. The cell responses to these two osmolytes were drastically different. Although most of the genes of the osmotically inducible regulon were overexpressed in medium with salt, urea failed to stimulate osmotic stress response. At the same time, UPEC colonization genes encoding type 1 and F1C fimbriae and capsule biosynthesis were transcriptionally induced in the presence of urea but did not respond to increased salt concentration. We speculate that urea can potentially be sensed by uropathogenic bacteria to initiate infection program. In addition, several molecular chaperone genes were overexpressed in the presence of urea, whereas adding NaCl to the medium led to an upregulation of a number of anaerobic metabolism pathways.

  19. Effect of Global Regulators RpoS and Cyclic-AMP/CRP on the Catabolome and Transcriptome of Escherichia coli K12 during Carbon- and Energy-Limited Growth

    PubMed Central

    Egli, Thomas

    2015-01-01

    For heterotrophic microbes, limited availability of carbon and energy sources is one of the major nutritional factors restricting the rate of growth in most ecosystems. Physiological adaptation to this hunger state requires metabolic versatility which usually involves expression of a wide range of different catabolic pathways and of high-affinity carbon transporters; together, this allows for simultaneous utilization of mixtures of carbonaceous compounds at low concentrations. In Escherichia coli the stationary phase sigma factor RpoS and the signal molecule cAMP are the major players in the regulation of transcription under such conditions; however, their interaction is still not fully understood. Therefore, during growth of E. coli in carbon-limited chemostat culture at different dilution rates, the transcriptomes, expression of periplasmic proteins and catabolomes of strains lacking one of these global regulators, either rpoS or adenylate cyclase (cya), were compared to those of the wild-type strain. The inability to synthesize cAMP exerted a strong negative influence on the expression of alternative carbon source uptake and degradation systems. In contrast, absence of RpoS increased the transcription of genes belonging to high-affinity uptake systems and central metabolism, presumably due to reduced competition of σD with σS. Phenotypical analysis confirmed this observation: The ability to respire alternative carbon substrates and to express periplasmic high-affinity binding proteins was eliminated in cya and crp mutants, while these properties were not affected in the rpoS mutant. As expected, transcription of numerous stress defence genes was negatively affected by the rpoS knock-out mutation. Interestingly, several genes of the RpoS stress response regulon were also down-regulated in the cAMP-negative strain indicating a coordinated global regulation. The results demonstrate that cAMP is crucial for catabolic flexibility during slow, carbon-limited growth

  20. Identification of bottlenecks in Escherichia coli engineered for the production of CoQ(10).

    PubMed

    Cluis, Corinne P; Ekins, Andrew; Narcross, Lauren; Jiang, Heng; Gold, Nicholas D; Burja, Adam M; Martin, Vincent J J

    2011-11-01

    In this work, Escherichia coli was engineered to produce a medically valuable cofactor, coenzyme Q(10) (CoQ(10)), by removing the endogenous octaprenyl diphosphate synthase gene and functionally replacing it with a decaprenyl diphosphate synthase gene from Sphingomonas baekryungensis. In addition, by over-expressing genes coding for rate-limiting enzymes of the aromatic pathway, biosynthesis of the CoQ(10) precursor para-hydroxybenzoate (PHB) was increased. The production of isoprenoid precursors of CoQ(10) was also improved by the heterologous expression of a synthetic mevalonate operon, which permits the conversion of exogenously supplied mevalonate to farnesyl diphosphate. The over-expression of these precursors in the CoQ(10)-producing E. coli strain resulted in an increase in CoQ(10) content, as well as in the accumulation of an intermediate of the ubiquinone pathway, decaprenylphenol (10P-Ph). In addition, the over-expression of a PHB decaprenyl transferase (UbiA) encoded by a gene from Erythrobacter sp. NAP1 was introduced to direct the flux of DPP and PHB towards the ubiquinone pathway. This further increased CoQ(10) content in engineered E. coli, but decreased the accumulation of 10P-Ph. Finally, we report that the combined over-production of isoprenoid precursors and over-expression of UbiA results in the decaprenylation of para-aminobenzoate, a biosynthetic precursor of folate, which is structurally similar to PHB. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    PubMed

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism. © 2016 John Wiley & Sons Ltd.

  2. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    PubMed

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-06

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  3. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Borel, Agnès; Candusso, Marie-Pierre; Megy, Simon; Montserret, Roland; Lahaye, Vincent; Terzian, Christophe; Verrier, Bernard

    2015-09-01

    Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Structural insights into the recognition of the internal A-rich linker from OxyS sRNA by Escherichia coli Hfq

    PubMed Central

    Wang, Lijun; Wang, Weiwei; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Gong, Qingguo; Shi, Yunyu

    2015-01-01

    Small RNA OxyS is induced during oxidative stress in Escherichia coli and it is an Hfq-dependent negative regulator of mRNA translation. OxyS represses the translation of fhlA and rpoS mRNA, which encode the transcriptional activator and σs subunit of RNA polymerase, respectively. However, little is known regarding how Hfq, an RNA chaperone, interacts with OxyS at the atomic level. Here, using fluorescence polarization and tryptophan fluorescence quenching assays, we verified that the A-rich linker region of OxyS sRNA binds Hfq at its distal side. We also report two crystal structures of Hfq in complex with A-rich RNA fragments from this linker region. Both of these RNA fragments bind to the distal side of Hfq and adopt a different conformation compared with those previously reported for the (A-R-N)n tripartite recognition motif. Furthermore, using fluorescence polarization, electrophoresis mobility shift assays and in vivo translation assays, we found that an Hfq mutant, N48A, increases the binding affinity of OxyS for Hfq in vitro but is defective in the negative regulation of fhlA translation in vivo, suggesting that the normal function of OxyS depends on the details of the interaction with Hfq that may be related to the rapid recycling of Hfq in the cell. PMID:25670676

  5. 10 CFR 1704.8 - Transcripts, recordings, or minutes of closed meetings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Transcripts, recordings, or minutes of closed meetings. 1704.8 Section 1704.8 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.8 Transcripts, recordings, or minutes of closed meetings. Along with the...

  6. 10 CFR 1704.8 - Transcripts, recordings, or minutes of closed meetings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Transcripts, recordings, or minutes of closed meetings. 1704.8 Section 1704.8 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.8 Transcripts, recordings, or minutes of closed meetings. Along with the...

  7. 10 CFR 1704.8 - Transcripts, recordings, or minutes of closed meetings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Transcripts, recordings, or minutes of closed meetings. 1704.8 Section 1704.8 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.8 Transcripts, recordings, or minutes of closed meetings. Along with the...

  8. 10 CFR 1704.8 - Transcripts, recordings, or minutes of closed meetings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Transcripts, recordings, or minutes of closed meetings. 1704.8 Section 1704.8 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.8 Transcripts, recordings, or minutes of closed meetings. Along with the...

  9. 10 CFR 1704.8 - Transcripts, recordings, or minutes of closed meetings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Transcripts, recordings, or minutes of closed meetings. 1704.8 Section 1704.8 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.8 Transcripts, recordings, or minutes of closed meetings. Along with the...

  10. Identification and molecular cloning of novel transcripts of the human kallikrein-related peptidase 10 (KLK10) gene using next-generation sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamopoulos, Panagiotis G.; Kontos, Christos K.; Scorilas, Andreas

    Tissue kallikrein and kallikrein-related peptidases (KLKs) form the largest group of serine proteases in the human genome, sharing many structural and functional characteristics. Multiple alternative transcripts have been reported for the most human KLK genes, while many of them are aberrantly expressed in various malignancies, thus possessing significant prognostic and/or diagnostic value. Alternative splicing of cancer-related genes is a common cellular mechanism accounting for cancer cell transcriptome complexity, as it affects cell cycle control, proliferation, apoptosis, invasion, and metastasis. In this study, we describe the identification and molecular cloning of eight novel transcripts of the human KLK10 gene using 3′more » rapid amplification of cDNA ends (3′ RACE) and next-generation sequencing (NGS), as well as their expression analysis in a wide panel of cell lines, originating from several distinct cancerous and normal tissues. Bioinformatic analysis revealed that the novel KLK10 transcripts contain new alternative splicing events between already annotated exons as well as novel exons. In addition, investigation of their expression profile in a wide panel of cell lines was performed with nested RT-PCR using variant-specific pairs of primers. Since many KLK mRNA transcripts possess clinical value, these newly discovered alternatively spliced KLK10 transcripts appear as new potential biomarkers for diagnostic and/or prognostic purposes or as targets for therapeutic strategies. - Highlights: • NGS was used to identify novel transcripts of the human KLK10 gene. • 8 novel KLK10 transcripts were identified. • A novel 3′UTR was detected and characterized. • The expression profiles of all 8 novel KLK10 transcripts were identified.« less

  11. Superresolution Imaging of Ribosomes and RNA Polymerase in Live Escherichia coli Cells

    PubMed Central

    Bakshi, Somenath; Siryaporn, Albert; Goulian, Mark; Weisshaar, James C.

    2012-01-01

    Summary Quantitative spatial distributions of ribosomes (S2-YFP) and RNA polymerase (β′-yGFP) in live E. coli are measured by superresolution fluorescence microscopy. In moderate growth conditions, Nucleoid-ribosome segregation is strong, and RNAP localizes to the nucleoid lobes. The mean copy numbers per cell are 4600 RNAPs and 55,000 ribosomes. Only 10–15% of the ribosomes lie within the densest part of the nucleoid lobes, and at most 4% of the RNAPs lie in the two ribosome-rich endcaps. The predominant observed diffusion coefficient of ribosomes is Dribo = 0.04 μm2/s, attributed to free mRNA being translated by one or more 70S ribosomes. We find no clear evidence of sub-diffusion, as would arise from tethering of ribosomes. The degree of DNA-ribosome segregation strongly suggests that in E. coli most translation occurs on free mRNA transcripts that have diffused into the ribosome-rich regions. Both RNAP and ribosome radial distributions extend to the cytoplasmic membrane, consistent with the transertion hypothesis. However, few if any RNAP copies lie near the membrane of the endcaps. This suggests that if transertion occurs, it exerts a direct radially expanding force on the nucleoid, but not a direct axially expanding force. PMID:22624875

  12. NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence

    PubMed Central

    Naveen, Vankadari; Hsiao, Chwan-Deng

    2016-01-01

    Bacterial ribonucleotide reductases (RNRs) play an important role in the synthesis of dNTPs and their expression is regulated by the transcription factors, NrdR and Fur. Recent transcriptomic studies using deletion mutants have indicated a role for NrdR in bacterial chemotaxis and in the maintenance of topoisomerase levels. However, NrdR deletion alone has no effect on bacterial growth or virulence in infected flies or in human blood cells. Furthermore, transcriptomic studies are limited to the deletion strain alone, and so are inadequate for drawing biological implications when the NrdR repressor is active or abundant. Therefore, further examination is warranted of changes in the cellular proteome in response to both NrdR overexpression, as well as deletion, to better understand its functional relevance as a bacterial transcription repressor. Here, we profile bacterial fate under conditions of overexpression and deletion of NrdR in E. coli. Biochemical assays show auxiliary zinc enhances the DNA binding activity of NrdR. We also demonstrate at the physiological level that increased nrdR expression causes a significant reduction in bacterial growth and fitness even at normal temperatures, and causes lethality at elevated temperatures. Corroborating these direct effects, global proteome analysis following NrdR overexpression showed a significant decrease in global protein expression. In parallel, studies on complementary expression of downregulated essential genes polA, eno and thiL showed partial rescue of the fitness defect caused by NrdR overexpression. Deletion of downregulated non-essential genes ygfK and trxA upon NrdR overexpression resulted in diminished bacterial growth and fitness suggesting an additional role for NrdR in regulating other genes. Moreover, in comparison with NrdR deletion, E. coli cells overexpressing NrdR showed significantly diminished adherence to human epithelial cells, reflecting decreased bacterial virulence. These results suggest

  13. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA sgrS

    PubMed Central

    Negrete, Alejandro; Majdalani, Nadim; Phue, Je Nie; Shiloach, Joseph

    2011-01-01

    When exposed to the non-metabolized glucose derivative alpha methyl glucoside, both E. coli K-12 (JM109 and MG1655) and E. coli B (BL21) respond by reducing the concentration of the mRNA of the ptsG gene which is responsible for the biosynthesis of the glucose transporter EIICBglu. This occurs through the over-expression of the non-coding small RNA SgrS, which interacts specifically with the mRNA of the ptsG gene and prevents its translation. However, when these bacteria are exposed to a glucose concentration of 40 g/L, over-expression of SgrS is observed only in E. coli B (BL21). Unlike E. coli K-12 (JM109 and MG1655), which are affected by high glucose concentration and produce higher levels of acetate, E. coli B (BL21) is not affected. Based on this information, it was assumed that over-expression of SgrS enables E. coli B (BL21) to reduce its acetate excretion by controlling the glucose transport. When SgrS was over-expressed in both E. coli K-12 strains from a multicopy plasmid, it was possible to reduce their acetate excretion levels to those seen in E. coli B. This observation opens a new approach towards controlling bacterial metabolism through the use of non-coding RNA. PMID:22107968

  14. Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS.

    PubMed

    Negrete, Alejandro; Majdalani, Nadim; Phue, Je-Nie; Shiloach, Joseph

    2013-01-25

    When exposed to the nonmetabolized glucose derivative alpha methyl glucoside (αMG), both Escherichia coli K-12 (JM109 and MG1655) and E. coli B (BL21) respond by reducing the concentration of the mRNA of the ptsG gene which is responsible for the biosynthesis of the glucose transporter EIICB(glu). This occurs through the over-expression of the noncoding small RNA SgrS, which interacts specifically with the mRNA of the ptsG gene and prevents its translation. However, when these bacteria are exposed to a glucose concentration of 40 g/L, over-expression of SgrS is observed only in E. coli B (BL21). Unlike E. coli K-12 (JM109 and MG1655), which are affected by high glucose concentration and produce higher levels of acetate, E. coli B (BL21) is not affected. Based on this information, it was assumed that over-expression of SgrS enables E. coli B (BL21) to reduce its acetate excretion by controlling the glucose transport. When SgrS was over-expressed in both E. coli K-12 strains from a multicopy plasmid, it was possible to reduce their acetate excretion levels to those seen in E. coli B. This observation opens a new approach towards controlling bacterial metabolism through the use of noncoding RNA. Published by Elsevier B.V.

  15. The role of the Fe-S cluster in the sensory domain of nitrogenase transcriptional activator VnfA from Azotobacter vinelandii.

    PubMed

    Nakajima, Hiroshi; Takatani, Nobuyuki; Yoshimitsu, Kyohei; Itoh, Mitsuko; Aono, Shigetoshi; Takahashi, Yasuhiro; Watanabe, Yoshihito

    2010-02-01

    Transcriptional activator VnfA is required for the expression of a second nitrogenase system encoded in the vnfH and vnfDGK operons in Azotobacter vinelandii. In the present study, we have purified full-length VnfA produced in E. coli as recombinant proteins (Strep-tag attached and tag-less proteins), enabling detailed characterization of VnfA for the first time. The EPR spectra of whole cells producing tag-less VnfA (VnfA) show distinctive signals assignable to a 3Fe-4S cluster in the oxidized form ([Fe(3)S(4)](+)). Although aerobically purified VnfA shows no vestiges of any Fe-S clusters, enzymatic reconstitution under anaerobic conditions reproduced [Fe(3)S(4)](+) dominantly in the protein. Additional spectroscopic evidence of [Fe(3)S(4)](+)in vitro is provided by anaerobically purified Strep-tag attached VnfA. Thus, spectroscopic studies both in vivo and in vitro indicate the involvement of [Fe(3)S(4)](+) as a prosthetic group in VnfA. Molecular mass analyses reveal that VnfA is a tetramer both in the presence and absence of the Fe-S cluster. Quantitative data of iron and acid-labile sulfur in reconstituted VnfA are fitted with four 3Fe-4S clusters per a tetramer, suggesting that one subunit bears one cluster. In vivobeta-gal assays reveal that the Fe-S cluster which is presumably anchored in the GAF domain by the N-terminal cysteine residues is essential for VnfA to exert its transcription activity on the target nitrogenase genes. Unlike the NifAL system of A. vinelandii, O(2) shows no effect on the transcriptional activity of VnfA but reactive oxygen species is reactive to cause disassembly of the Fe-S cluster and turns active VnfA inactive.

  16. Extensive cross-talk and global regulators identified from an analysis of the integrated transcriptional and signaling network in Escherichia coli.

    PubMed

    Antiqueira, Lucas; Janga, Sarath Chandra; Costa, Luciano da Fontoura

    2012-11-01

    To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.

  17. Rapid and high resolution genotyping of all Escherichia coli serotypes using 10 genomic repeat-containing loci.

    PubMed

    Løbersli, Inger; Haugum, Kjersti; Lindstedt, Bjørn-Arne

    2012-01-01

    Our laboratory has previously published two multiple-locus variable-number tandem-repeats analysis (MLVA) methods for rapid genotyping of Escherichia coli (E. coli), which are now in routine use for surveillance and outbreak detection. The first assay developed was specific for E. coli O157:H7; however this assay was not suitable for genotyping other E. coli serotypes. A new generic MLVA-assay was then developed with the capability of genotyping all E. coli serotypes. This generic E. coli MLVA (GECM7) was based on polymorphism in seven variable number of tandem repeats (VNTR) loci. GECM7 worked well with the majority of E. coli serotypes; however we wanted to increase the resolution for this method based in part of comparison with PFGE typing of E. coli O26:H11, where PFGE appeared to display higher resolution. The GECM7 method was improved by adding three new repeat-loci to a total of ten (GECM10), and a considerable increase in resolution was observed (from 296 to 507 genotypes on the same set of strains). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses

    PubMed Central

    Saulou-Bérion, Claire; Gonzalez, Ignacio; Enjalbert, Brice; Audinot, Jean-Nicolas; Fourquaux, Isabelle; Jamme, Frédéric; Cocaign-Bousquet, Muriel; Mercier-Bonin, Muriel; Girbal, Laurence

    2015-01-01

    For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins), for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR) and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes). The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL) and synthesis/modification of lipid A (lpxA and arnA). The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq) and chaperone (dnaJ), and regulation of transpeptidase expression (ycfS and ycbB). Interestingly, as these transpeptidases act on

  19. Inactivation of Escherichia coli by citral.

    PubMed

    Somolinos, M; García, D; Condón, S; Mackey, B; Pagán, R

    2010-06-01

    The aim was to evaluate (i) the resistance of Escherichia coli BJ4 to citral in a buffer system as a function of citral concentration, treatment medium pH, storage time and initial inoculum size, (ii) the role of the sigma factor RpoS on citral resistance of E. coli, (iii) the role of the cell envelope damage in the mechanism of microbial inactivation by citral and (iiii) possible synergistic effects of mild heat treatment and pulsed electric fields (PEF) treatment combined with citral. The initial inoculum size greatly affected the efficacy of citral against E. coli cells. Exposure to 200 microl l(-1) of citral at pH 4.0 for 24 h at 20 degrees C caused the inactivation of more than 5 log(10) cycles of cells starting at an inoculum size of 10(6) or 10(7) CFU ml(-1), whereas increasing the cell concentration to 10(9) CFU ml(-1) caused <1 log(10) cycle of inactivation. Escherichia coli showed higher resistance to citral at pH 4.0 than pH 7.0. The rpoS null mutant strain E. coli BJ4L1 was less resistant to citral than the wild-type strain. Occurrence of sublethal injury to both the cytoplasmic and outer membranes was demonstrated by adding sodium chloride or bile salts to the recovery media. The majority of sublethally injured cells by citral required energy and lipid synthesis for repair. A strongly synergistic lethal effect was shown by mild heat treatment combined with citral but the presence of citral during the application of a PEF treatment did not show any advantage. This work confirms that cell envelope damage is an important event in citral inactivation of bacteria, and it describes the key factors on the inactivation of E. coli cells by citral. Knowledge about the mechanism of microbial inactivation by citral helps establish successful combined preservation treatments.

  20. TLR9 Ligands Induce S100A8 in Macrophages via a STAT3-Dependent Pathway which Requires IL-10 and PGE2

    PubMed Central

    Hsu, Kenneth; Chung, Yuen Ming; Endoh, Yasumi; Geczy, Carolyn L.

    2014-01-01

    S100A8 and S100A9 are highly-expressed calcium-binding proteins in neutrophils and monocytes, and in subsets of macrophages in inflammatory lesions. Unmethylated CpG motifs found in bacterial and viral DNA are potent activators of innate immunity via Toll-like receptor 9 (TLR9). S100A8, but not S100A9, mRNA and protein was directly induced by CpG-DNA in murine and human macrophages. Induction in murine macrophages peaked at 16 h. CpG-DNA-induced S100A8 required de novo protein synthesis; IL-10 and Prostaglandin E2 (PGE2) synergistically enhanced expression and promoted earlier gene induction. Inhibitors of endogenous IL-10, PGE2, and the E prostanoid (EP) 4 receptor strongly suppressed S100A8 expression, particularly when combined. Thus, S100A8 induction by E. coli DNA required both IL-10 and PGE2/EP4 signaling. The MAPKs, PI3K and JAK pathways were essential, whereas ERK1/2 appeared to play a direct role. S100A8 induction by CpG-DNA was controlled at the transcriptional level. The promoter region responsible for activation, either directly, or indirectly via IL-10 and PGE2, was located within a −178 to −34-bp region and required STAT3 binding. Because of the robust links connecting IL-10 and PGE2 with an anti-inflammatory macrophage phenotype, the induction profile of S100A8 strongly indicates a role for this protein in resolution of inflammation. PMID:25098409

  1. TLR9 ligands induce S100A8 in macrophages via a STAT3-dependent pathway which requires IL-10 and PGE2.

    PubMed

    Hsu, Kenneth; Chung, Yuen Ming; Endoh, Yasumi; Geczy, Carolyn L

    2014-01-01

    S100A8 and S100A9 are highly-expressed calcium-binding proteins in neutrophils and monocytes, and in subsets of macrophages in inflammatory lesions. Unmethylated CpG motifs found in bacterial and viral DNA are potent activators of innate immunity via Toll-like receptor 9 (TLR9). S100A8, but not S100A9, mRNA and protein was directly induced by CpG-DNA in murine and human macrophages. Induction in murine macrophages peaked at 16 h. CpG-DNA-induced S100A8 required de novo protein synthesis; IL-10 and Prostaglandin E2 (PGE2) synergistically enhanced expression and promoted earlier gene induction. Inhibitors of endogenous IL-10, PGE2, and the E prostanoid (EP) 4 receptor strongly suppressed S100A8 expression, particularly when combined. Thus, S100A8 induction by E. coli DNA required both IL-10 and PGE2/EP4 signaling. The MAPKs, PI3K and JAK pathways were essential, whereas ERK1/2 appeared to play a direct role. S100A8 induction by CpG-DNA was controlled at the transcriptional level. The promoter region responsible for activation, either directly, or indirectly via IL-10 and PGE2, was located within a -178 to -34-bp region and required STAT3 binding. Because of the robust links connecting IL-10 and PGE2 with an anti-inflammatory macrophage phenotype, the induction profile of S100A8 strongly indicates a role for this protein in resolution of inflammation.

  2. Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of the 5' untranslated leader.

    PubMed

    Wu, C J; Janssen, G R

    1996-10-01

    The Streptomyces vinaceus viomycin phosphotransferase (vph) mRNA contains an untranslated leader with a conventional Shine-Dalgarno homology. The vph leader was removed by ligation of the vph coding sequence to the transcriptional start site of a Streptomyces or an Escherichia coli promoter, such that transcription would initiate at the first position of the vph start codon. Analysis of mRNA demonstrated that transcription initiated primarily at the A of the vph AUG translational start codon in both Streptomyces lividans and E. coli; cells expressing the unleadered vph mRNA were resistant to viomycin indicating that the Shine-Dalgarno sequence, or other features contained within the leader, was not necessary for vph translation. Addition of four nucleotides (5'-AUGC-3') onto the 5' end of the unleadered vph mRNA resulted in translation initiation from the vph start codon and the AUG triplet contained within the added sequence. Translational fusions of vph sequence to a Tn5 neo reporter gene indicated that the first 16 codons of vph coding sequence were sufficient to specify the translational start site and reading frame for expression of neomycin resistance in both E. coli and S. lividans.

  3. The transcriptional response of Escherichia coli to recombinant protein insolubility.

    PubMed

    Smith, Harold E

    2007-03-01

    Bacterial production of recombinant proteins offers several advantages over alternative expression methods and remains the system of choice for many structural genomics projects. However, a large percentage of targets accumulate as insoluble inclusion bodies rather than soluble protein, creating a significant bottleneck in the protein production pipeline. Numerous strategies have been reported that can improve in vivo protein solubility, but most do not scale easily for high-throughput expression screening. To understand better the host cell response to the accumulation of insoluble protein, we determined genome-wide changes in bacterial gene expression upon induction of either soluble or insoluble target proteins. By comparing transcriptional profiles for multiple examples from the soluble or insoluble class, we identified a pattern of gene expression that correlates strongly with protein solubility. Direct targets of the sigma32 heat shock sigma factor, which includes genes involved in protein folding and degradation, were highly expressed in response to induction of insoluble protein. This same group of genes was also upregulated by insoluble protein accumulation under a different growth regime, indicating that sigma32-mediated gene expression is a general response to protein insolubility. This knowledge provides a starting point for the rational design of growth parameters and host strains with improved protein solubility characteristics. Summary Problems with protein solubility are frequently encountered when recombinant proteins are expressed in E. coli. The bacterial host responds to this problem by increasing expression of the protein folding machinery via the heat shock sigma factor sigma32. Manipulation of the sigma32 regulon might provide a general mechanism for improving recombinant protein solubility.

  4. Evaluation of the impact of quorum sensing transcriptional regulator SdiA on long-term persistence and fecal shedding of Escherichia coli O157:H7 in weaned calves

    USDA-ARS?s Scientific Manuscript database

    Quorum sensing transcriptional regulator SdiA has been shown to enhance the survival of Escherichia coli O157:H7 (O157) in the acidic compartment of bovine rumen in response to N-acyl-L-homoserine lactones (AHLs) produced by the rumen bacteria. Bacteria that survive the rumen environment subsequentl...

  5. Determination of transcriptional units and gene products from the ftsA region of Escherichia coli.

    PubMed Central

    Lutkenhaus, J F; Wu, H C

    1980-01-01

    Lambda transducing phage gamma 16-2 carries the genes envA, ftsZ, ftsA, ddl, and murC and directs the synthesis of six unique proteins in ultraviolet-irradiated cells. Various derivatives of gamma 16-2 carrying smaller segments of the bacterial deoxyribonucleic acid have also been analyzed for their capacity to direct protein synthesis in ultraviolet-irradiated cells. These results, in combination with genetic results, have allowed the gene product of each of these genes to be assigned. In addition, an unidentified gene was located counterclockwise to murC between murC and murF. Analysis of the direction of transcription indicates that murC, ddl, ftsA, and ftsZ are transcribed clockwise on the Escherichia coli genetic map, and envA is transcribed counterclockwise. In addition, it is shown that each of the genes envA, ftsZ, and ftsA can be expressed independently. Images PMID:6447690

  6. Functional Domains of the TOL Plasmid Transcription Factor XylS

    PubMed Central

    Kaldalu, Niilo; Toots, Urve; de Lorenzo, Victor; Ustav, Mart

    2000-01-01

    The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions. PMID:10648539

  7. Transcriptional activation of the Escherichia coli adaptive response gene aidB is mediated by binding of methylated Ada protein. Evidence for a new consensus sequence for Ada-binding sites.

    PubMed

    Landini, P; Volkert, M R

    1995-04-07

    The Escherichia coli aidB gene is part of the adaptive response to DNA methylation damage. Genes belonging to the adaptive response are positively regulated by the ada gene; the Ada protein acts as a transcriptional activator when methylated in one of its cysteine residues at position 69. Through DNaseI protection assays, we show that methylated Ada (meAda) is able to bind a DNA sequence between 40 and 60 base pairs upstream of the aidB transcriptional startpoint. Binding of meAda is necessary to activate transcription of the adaptive response genes; accordingly, in vitro transcription of aidB is dependent on the presence of meAda. Unmethylated Ada protein shows no protection against DNaseI digestion in the aidB promoter region nor does it promote aidB in vitro transcription. The aidB Ada-binding site shows only weak homology to the proposed consensus sequences for Ada-binding sites in E. coli (AAANNAA and AAAGCGCA) but shares a higher degree of similarity with the Ada-binding regions from other bacterial species, such as Salmonella typhimurium and Bacillus subtilis. Based on the comparison of five different Ada-dependent promoter regions, we suggest that a possible recognition sequence for meAda might be AATnnnnnnG-CAA. Higher concentrations of Ada are required for the binding of aidB than for the ada promoter, suggesting lower affinity of the protein for the aidB Ada-binding site. Common features in the Ada-binding regions of ada and aidB are a high A/T content, the presence of an inverted repeat structure, and their position relative to the transcriptional start site. We propose that these elements, in addition to the proposed recognition sequence, are important for binding of the Ada protein.

  8. Prevalence of 16S rRNA Methylase Gene rmtB Among Escherichia coli Isolated from Bovine Mastitis in Ningxia, China.

    PubMed

    Yu, Ting; He, Tao; Yao, Hong; Zhang, Jin-Bao; Li, Xiao-Na; Zhang, Rong-Ming; Wang, Gui-Qin

    2015-09-01

    The aim of this study is to understand the prevalence and molecular characterization of 16S rRNA methylase gene, rmtB, among Escherichia coli strains isolated from bovine mastitis in China. A total of 245 E. coli isolates were collected from bovine mastitis in China between 2013 and 2014 and were screened for 16S rRNA methylase genes (armA, rmtA, rmtB, rmtC, rmtD, rmtE, and npmA) by polymerase chain reaction. About 5.3% (13/245) of the isolates carried the rmtB gene; the isolates were highly resistant to amikacin. Thirteen rmtB-positive strains were analyzed for the presence of extended-spectrum β-lactamase genes (bla(TEM), bla(CTX-M), bla(OXA), and bla(SHV)). All the isolates harbored both bla(TEM-1) and bla(CTX-M-15) genes and two of the isolates were also positive for bla(OXA-1). Pulsed-field gel electrophoresis (PFGE) analysis indicated that the nine rmtB-positive strains belonging to ST10 from one farm showed the similar PFGE pattern, indicating a clonal expansion in this farm. S1-PFGE and Southern blotting showed that 12 isolates harbored the rmtB gene in plasmids of two different sizes (≈45 kb [n=10] and ≈48 kb [n=2]), while only 1 strain harbored the rmtB gene in the chromosome. These plasmids were transferable by conjugation studies, and two isolates from two respective farms carried the same size of plasmid, suggesting that the horizontal transmission of plasmids also contributed to the spread of rmtB gene. This is the first report of prevalence of the 16S rRNA methylase gene rmtB among E. coli isolated from bovine mastitis in China, and rmtB-carrying E. coli may pose a threat to the treatment of bovine mastitis.

  9. New discoveries linking transcription to DNA repair and damage tolerance pathways.

    PubMed

    Cohen, Susan E; Walker, Graham C

    2011-01-01

    In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.

  10. Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface.

    PubMed

    Härle, C; Kim, I; Angerer, A; Braun, V

    1995-04-03

    Transport of ferric citrate into cells of Escherichia coli K-12 involves two energy-coupled transport systems, one across the outer membrane and one across the cytoplasmic membrane. Previously, we have shown that ferric citrate does not have to enter the cytoplasm of E. coli K-12 to induce transcription of the fec ferric citrate transport genes. Here we demonstrate that ferric citrate uptake into the periplasmic space between the outer and the cytoplasmic membranes is not required for fec gene induction. Rather, FecA and the TonB, ExbB and ExbD proteins are involved in induction of the fec transport genes independent of their role in ferric citrate transport across the outer membrane. The uptake of ferric citrate into the periplasmic space of fecA and tonB mutants via diffusion through the porin channels did not induce transcription of fec transport genes. Point mutants in FecA displayed the constitutive expression of fec transport genes in the absence of ferric citrate but still required TonB, with the exception of one FecA mutant which showed a TonB-independent induction. The phenotype of the FecA mutants suggests a signal transduction mechanism across three compartments: the outer membrane, the periplasmic space and the cytoplasmic membrane. The signal is triggered upon the interaction of ferric citrate with FecA protein. It is postulated that FecA, TonB, ExbB and ExbD transfer the signal across the outer membrane, while the regulatory protein FecR transmits the signal across the cytoplasmic membrane to FecI in the cytoplasm. FecI serves as a sigma factor which facilitates binding of the RNA polymerase to the fec transport gene promoter upstream of fecA.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. IL-10 administration reduces PGE-2 levels and promotes CR3-mediated clearance of Escherichia coli K1 by phagocytes in meningitis.

    PubMed

    Mittal, Rahul; Gonzalez-Gomez, Ignacio; Panigrahy, Ashok; Goth, Kerstin; Bonnet, Richard; Prasadarao, Nemani V

    2010-06-07

    Ineffectiveness of antibiotics in treating neonatal Escherichia coli K1 meningitis and the emergence of antibiotic-resistant strains evidently warrants new prevention strategies. We observed that administration of interleukin (IL)-10 during high-grade bacteremia clears antibiotic-sensitive and -resistant E. coli from blood of infected mice. Micro-CT studies of brains from infected animals displayed gross morphological changes similar to those observed in infected human neonates. In mice, IL-10, but not antibiotic or anti-TNF antibody treatment prevented brain damage caused by E. coli. IL-10 administration elevated CR3 expression in neutrophils and macrophages of infected mice, whereas infected and untreated mice displayed increased expression of FcgammaRI and TLR2. Neutrophils or macrophages pretreated with IL-10 ex vivo exhibited a significantly greater microbicidal activity against E. coli compared with cells isolated from wild-type or IL-10-/- mice. The protective effect of IL-10 was abrogated when CR3 was knocked-down in vivo by siRNA. The increased expression of CR3 in phagocytes was caused by inhibition of prostaglandin E-2 (PGE-2) levels, which were significantly increased in neutrophils and macrophages upon E. coli infection. These findings describe a novel modality of IL-10-mediated E. coli clearance by diverting the entry of bacteria via CR3 and preventing PGE-2 formation in neonatal meningitis.

  12. Autoregulation of transcription of the hupA gene in Escherichia coli: evidence for steric hindrance of the functional promoter domains induced by HU.

    PubMed

    Kohno, K; Yasuzawa, K; Hirose, M; Kano, Y; Goshima, N; Tanaka, H; Imamoto, F

    1994-06-01

    The molecular mechanism of autoregulation of expression of the hupA gene in Escherichia coli was examined. The promoter of the gene contains a palindromic sequence with the potential to form a cruciform DNA structure in which the -35 sequence lies at the base of the stem and the -10 sequence forms a single-stranded loop. An artificial promoter lacking the palindrome, which was constructed by replacing a 10 nucleotide repeat for the predicted cruciform arm by a sequence in the opposite orientation, was not subject to HU-repression. DNA relaxation induced by deleting HU proteins and/or inhibiting DNA gyrase in cells results in increased expression from the hupA promoter. We propose that initiation of transcription of the hupA gene is negatively regulated by steric hindrance of the functional promoter domains for formation of the cruciform configuration, which is facilitated at least in part by negative supercoiling of the hupA promoter DNA region. The promoter region of the hupB gene also contains a palindromic sequence that can assume a cruciform configuration. Negative regulation of this gene by HU proteins may occur by a mechanism similar to that operating for the hupA gene.

  13. Sensitive detection of viable Escherichia coli O157:H7 from foods using a luciferase-reporter phage phiV10lux.

    PubMed

    Kim, Jinwoo; Kim, Minsik; Kim, Seongmi; Ryu, Sangryeol

    2017-08-02

    Escherichia coli O157:H7, a major foodborne pathogen, is a major public health concern associated with life-threatening diseases such as hemolytic uremic syndrome. To alleviate this burden, a sensitive and rapid system is required to detect this pathogen in various kinds of foods. Herein, we propose a phage-based pathogen detection method to replace laborious and time-consuming conventional methods. We engineered an E. coli O157:H7-specific phage phiV10 to rapidly and sensitively detect this notorious pathogen. The luxCDABE operon was introduced into the phiV10 genome and allowed the engineered phage phiV10lux to generate bioluminescence proportional to the number of viable E. coli O157:H7 cells without any substrate addition. The phage phiV10lux was able to detect at least 1CFU/ml of E. coli O157:H7 in a pure culture within 40min after 5h of pre-incubation. In artificially contaminated romaine lettuce, apple juice (pH3.51), and ground beef, the reporter phage could detect approximately 10CFU/cm 2 , 13CFU/ml, and 17CFU/g of E. coli O157:H7, respectively. Taken together, the constructed reporter phage phiV10lux could be applied as a powerful tool for rapid and sensitive detection of live E. coli O157:H7 in foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle.

    PubMed

    Pramila, Tata; Wu, Wei; Miles, Shawna; Noble, William Stafford; Breeden, Linda L

    2006-08-15

    Transcription patterns shift dramatically as cells transit from one phase of the cell cycle to another. To better define this transcriptional circuitry, we collected new microarray data across the cell cycle of budding yeast. The combined analysis of these data with three other cell cycle data sets identifies hundreds of new highly periodic transcripts and provides a weighted average peak time for each transcript. Using these data and phylogenetic comparisons of promoter sequences, we have identified a late S-phase-specific promoter element. This element is the binding site for the forkhead protein Hcm1, which is required for its cell cycle-specific activity. Among the cell cycle-regulated genes that contain conserved Hcm1-binding sites, there is a significant enrichment of genes involved in chromosome segregation, spindle dynamics, and budding. This may explain why Hcm1 mutants show 10-fold elevated rates of chromosome loss and require the spindle checkpoint for viability. Hcm1 also induces the M-phase-specific transcription factors FKH1, FKH2, and NDD1, and two cell cycle-specific transcriptional repressors, WHI5 and YHP1. As such, Hcm1 fills a significant gap in our understanding of the transcriptional circuitry that underlies the cell cycle.

  15. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...

  16. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and clearly...

  17. Sense transcription through the S region is essential for immunoglobulin class switch recombination

    PubMed Central

    Haddad, Dania; Oruc, Zéliha; Puget, Nadine; Laviolette-Malirat, Nathalie; Philippe, Magali; Carrion, Claire; Le Bert, Marc; Khamlichi, Ahmed Amine

    2011-01-01

    Class switch recombination (CSR) occurs between highly repetitive sequences called switch (S) regions and is initiated by activation-induced cytidine deaminase (AID). CSR is preceded by a bidirectional transcription of S regions but the relative importance of sense and antisense transcription for CSR in vivo is unknown. We generated three mouse lines in which we attempted a premature termination of transcriptional elongation by inserting bidirectional transcription terminators upstream of Sμ, upstream of Sγ3 or downstream of Sγ3 sequences. The data show, at least for Sγ3, that sense transcriptional elongation across S region is absolutely required for CSR whereas its antisense counterpart is largely dispensable, strongly suggesting that sense transcription is sufficient for AID targeting to both DNA strands. PMID:21378751

  18. An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription.

    PubMed

    Walker, Amy K; Shi, Yang; Blackwell, T Keith

    2004-04-09

    The general transcription factor TFIID sets the mRNA start site and consists of TATA-binding protein and associated factors (TAF(II)s), some of which are also present in SPT-ADA-GCN5 (SAGA)-related complexes. In yeast, results of multiple studies indicate that TFIID-specific TAF(II)s are not required for the transcription of most genes, implying that intact TFIID may have a surprisingly specialized role in transcription. Relatively little is known about how TAF(II)s contribute to metazoan transcription in vivo, especially at developmental and tissue-specific genes. Previously, we investigated functions of four shared TFIID/SAGA TAF(II)s in Caenorhabditis elegans. Whereas TAF-4 was required for essentially all embryonic transcription, TAF-5, TAF-9, and TAF-10 were dispensable at multiple developmental and other metazoan-specific promoters. Here we show evidence that in C. elegans embryos transcription of most genes requires TFIID-specific TAF-1. TAF-1 is not as universally required as TAF-4, but it is essential for a greater proportion of transcription than TAF-5, -9, or -10 and is important for transcription of many developmental and other metazoan-specific genes. TAF-2, which binds core promoters with TAF-1, appears to be required for a similarly substantial proportion of transcription. C. elegans TAF-1 overlaps functionally with the coactivator p300/CBP (CBP-1), and at some genes it is required along with the TBP-like protein TLF(TRF2). We conclude that during C. elegans embryogenesis TAF-1 and TFIID have broad roles in transcription and development and that TFIID and TLF may act together at certain promoters. Our findings imply that in metazoans TFIID may be of widespread importance for transcription and for expression of tissue-specific genes.

  19. Tiny abortive initiation transcripts exert antitermination activity on an RNA hairpin-dependent intrinsic terminator.

    PubMed

    Lee, Sooncheol; Nguyen, Huong Minh; Kang, Changwon

    2010-10-01

    No biological function has been identified for tiny RNA transcripts that are abortively and repetitiously released from initiation complexes of RNA polymerase in vitro and in vivo to date. In this study, we show that abortive initiation affects termination in transcription of bacteriophage T7 gene 10. Specifically, abortive transcripts produced from promoter phi 10 exert trans-acting antitermination activity on terminator T phi both in vitro and in vivo. Following abortive initiation cycling of T7 RNA polymerase at phi 10, short G-rich and oligo(G) RNAs were produced and both specifically sequestered 5- and 6-nt C + U stretch sequences, consequently interfering with terminator hairpin formation. This antitermination activity depended on sequence-specific hybridization of abortive transcripts with the 5' but not 3' half of T phi RNA. Antitermination was abolished when T phi was mutated to lack a C + U stretch, but restored when abortive transcript sequence was additionally modified to complement the mutation in T phi, both in vitro and in vivo. Antitermination was enhanced in vivo when the abortive transcript concentration was increased via overproduction of RNA polymerase or ribonuclease deficiency. Accordingly, antitermination activity exerted on T phi by abortive transcripts should facilitate expression of T phi-downstream promoter-less genes 11 and 12 in T7 infection of Escherichia coli.

  20. Inflammatory response to Escherichia coli urinary tract infection in the neurogenic bladder of the spinal cord injured host.

    PubMed

    Chaudhry, Rajeev; Madden-Fuentes, Ramiro J; Ortiz, Tara K; Balsara, Zarine; Tang, Yuping; Nseyo, Unwanaobong; Wiener, John S; Ross, Sherry S; Seed, Patrick C

    2014-05-01

    Urinary tract infections cause significant morbidity in patients with spinal cord injury. An in vivo spinal cord injured rat model of experimental Escherichia coli urinary tract infection mimics human disease with enhanced susceptibility to urinary tract infection compared to controls. We hypothesized that a dysregulated inflammatory response contributes to enhanced susceptibility to urinary tract infection. Spinal cord injured and sham injured rats were inoculated transurethrally with E. coli. Transcript levels of 84 inflammatory pathway genes were measured in bladder tissue of each group before infection, 24 hours after infection and after 5 days of antibiotic therapy. Before infection quantitative polymerase chain reaction array revealed greater than twofold up-regulation in the proinflammatory factor transcripts slc11a1, ccl4 and il1β, and down-regulation of the antimicrobial peptides lcn2 and mpo in spinal cord injured vs control bladders. At 24 hours after infection spinal cord injured bladders showed an attenuated innate immune response with decreased expression of il6, slc11a1, il1β and lcn2, and decreased il10 and slpi expression compared to controls. Despite clearance of bacteriuria with antibiotics spinal cord injured rats had delayed induction of il6 transcription and a delayed anti-inflammatory response with decreased il10 and slpi transcript levels relative to controls. Spinal cord injured bladders fail to mount a characteristic inflammatory response to E. coli infection and cannot suppress inflammation after infection is eliminated. This may lead to increased susceptibility to urinary tract infection and persistent chronic inflammation through neural mediated pathways, which to our knowledge remain to be defined. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Tellurite-exposed Escherichia coli exhibits increased intracellular {alpha}-ketoglutarate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinoso, Claudia A.; Auger, Christopher; Appanna, Vasu D.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Tellurite-exposed E. coli exhibits decreased {alpha}-KG dehydrogenase activity. Black-Right-Pointing-Pointer Cells lacking {alpha}-KGDH genes are more sensitive to ROS than isogenic, wt E. coli. Black-Right-Pointing-Pointer KG accumulation may serve to face tellurite-mediated oxidative damage in E. coli. -- Abstract: The tellurium oxyanion tellurite is toxic to most organisms because of its ability to generate oxidative stress. However, the detailed mechanism(s) how this toxicant interferes with cellular processes have yet to be fully understood. As part of our effort to decipher the molecular interactions of tellurite with living systems, we have evaluated the global metabolism of {alpha}-ketoglutarate a known antioxidantmore » in Escherichia coli. Tellurite-exposed cells displayed reduced activity of the KG dehydrogenase complex (KGDHc), resulting in increased intracellular KG content. This complex's reduced activity seems to be due to decreased transcription in the stressed cells of sucA, a gene that encodes the E1 component of KGDHc. Furthermore, it was demonstrated that the increase in total reactive oxygen species and superoxide observed upon tellurite exposure was more evident in wild type cells than in E. coli with impaired KGDHc activity. These results indicate that KG may be playing a pivotal role in combating tellurite-mediated oxidative damage.« less

  2. Quantitative PCR measurements of Escherichia coli including shiga toxin-producing E. coli (STEC) in animal feces and environmental waters.

    PubMed

    Ahmed, W; Gyawali, P; Toze, S

    2015-03-03

    Quantitative PCR (qPCR) assays were used to determine the concentrations of E. coli including shiga toxin-producing E. coli (STEC) associated virulence genes (eaeA, stx1, stx2, and hlyA) in ten animal species (fecal sources) and environmental water samples in Southeast Queensland, Australia. The mean Log10 concentrations and standard deviations of E. coli 23S rRNA across fecal sources ranged from 1.3 ± 0.1 (horse) to 6.3 ± 0.4 (cattle wastewater) gene copies at a test concentration of 10 ng of DNA. The differences in mean concentrations of E. coli 23S rRNA gene copies among fecal source samples were significantly different from each other (P < 0.0001). Among the virulence genes, stx2 (25%, 95% CI, 17-33%) was most prevalent among fecal sources, followed by eaeA (19%, 95% CI, 12-27%), stx1 (11%, 95% CI, 5%-17%) and hlyA (8%, 95% CI, 3-13%). The Log10 concentrations of STEC virulence genes in cattle wastewater samples ranged from 3.8 to 5.0 gene copies at a test concentration of 10 ng of DNA. Of the 18 environmental water samples tested, three (17%) were positive for eaeA and two (11%) samples were also positive for the stx2 virulence genes. The data presented in this study will aid in the estimation of quantitative microbial risk assessment (QMRA) from fecal pollution of domestic and wild animals in drinking/recreational water catchments.

  3. Problem-Solving Test: The Mechanism of Transcription Termination by the Rho Factor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Transcription termination comes in two forms in "E. coli" cells. Rho-dependent termination requires the binding of a termination protein called Rho factor to the transcriptional machinery at the terminator region, whereas Rho-independent termination is achieved by conformational changes in the transcript itself. This article presents a test…

  4. DNA Microarray Analysis of the Expression Profile of Escherichia coli in Response to Treatment with 4,5-Dihydroxy-2-Cyclopenten-1-One

    PubMed Central

    Phadtare, Sangita; Kato, Ikunoshin; Inouye, Masayori

    2002-01-01

    We carried out DNA microarray-based global transcript profiling of Escherichia coli in response to 4,5-dihydroxy-2-cyclopenten-1-one to explore the manifestation of its antibacterial activity. We show that it has widespread effects in E. coli affecting genes encoding proteins involved in cell metabolism and membrane synthesis and functions. Genes belonging to the regulon involved in synthesis of Cys are upregulated. In addition, rpoS and RpoS-regulated genes responding to various stresses and a number of genes responding to oxidative stress are upregulated. PMID:12426362

  5. Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli.

    PubMed

    Hazen, Tracy H; Michalski, Jane; Luo, Qingwei; Shetty, Amol C; Daugherty, Sean C; Fleckenstein, James M; Rasko, David A

    2017-06-14

    Escherichia coli that are capable of causing human disease are often classified into pathogenic variants (pathovars) based on their virulence gene content. However, disease-associated hybrid E. coli, containing unique combinations of multiple canonical virulence factors have also been described. Such was the case of the E. coli O104:H4 outbreak in 2011, which caused significant morbidity and mortality. Among the pathovars of diarrheagenic E. coli that cause significant human disease are the enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). In the current study we use comparative genomics, transcriptomics, and functional studies to characterize isolates that contain virulence factors of both EPEC and ETEC. Based on phylogenomic analysis, these hybrid isolates are more genomically-related to EPEC, but appear to have acquired ETEC virulence genes. Global transcriptional analysis using RNA sequencing, demonstrated that the EPEC and ETEC virulence genes of these hybrid isolates were differentially-expressed under virulence-inducing laboratory conditions, similar to reference isolates. Immunoblot assays further verified that the virulence gene products were produced and that the T3SS effector EspB of EPEC, and heat-labile toxin of ETEC were secreted. These findings document the existence and virulence potential of an E. coli pathovar hybrid that blurs the distinction between E. coli pathovars.

  6. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    PubMed

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. The Escherichia coli cAMP receptor protein bound at a single target can activate transcription initiation at divergent promoters: a systematic study that exploits new promoter probe plasmids.

    PubMed Central

    El-Robh, Mohamed Samir; Busby, Stephen J W

    2002-01-01

    We report the first detailed quantitative study of divergent promoters dependent on the Escherichia coli cAMP receptor protein (CRP), a factor known to activate transcription initiation at target promoters by making direct interactions with the RNA polymerase holoenzyme. In this work, we show that CRP bound at a single target site is able to activate transcription at two divergently organized promoters. Experiments using promoter probe plasmids, designed to study divergent promoters in vivo and in vitro, show that the divergent promoters function independently. Further in vitro experiments show that two holo RNA polymerase molecules cannot be accommodated simultaneously at the divergent promoters. PMID:12350222

  8. SP10 Infectivity Is Aborted after Bacteriophage SP10 Infection Induces nonA Transcription on the Prophage SPβ Region of the Bacillus subtilis Genome

    PubMed Central

    Yamamoto, Tatsuya; Obana, Nozomu; Yee, Lii Mien; Asai, Kei; Nomura, Nobuhiko

    2014-01-01

    Bacteria have developed various strategies for phage resistance. Infection with phage induces the transcription of part of the phage resistance gene, but the regulatory mechanisms of such transcription remain largely unknown. The phage resistance gene nonA is located on the SPβ prophage region of the Bacillus subtilis Marburg strain genome. The nonA transcript was detected at the late stage of SP10 infection but is undetectable in noninfected cells. The nonA transcript was detected after the induction of the sigma factor Orf199-Orf200 (σOrf199-200), when sigma factors encoded in the SP10 genome were expressed from a xylose-inducible plasmid. Thus, the SP10 sigma factor is an activator of a set of SP10 genes and nonA. The nonA gene encodes a 72-amino-acid protein with a transmembrane motif and has no significant homology with any protein in any database. NonA overexpression halted cell growth and reduced the efficiency of B. subtilis colony formation and respiration activity. In addition, SP10 virion protein synthesis was inhibited in the nonA+ strain, and SP10 virion particles were scarce in it. These results indicate that NonA is a novel protein that can abort SP10 infection, and its transcription was regulated by SP10 sigma factor. PMID:24272782

  9. Model-based redesign of global transcription regulation

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso

    2009-01-01

    Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology. PMID:19188257

  10. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity

    PubMed Central

    Khoroshilova, Natalia; Popescu, Codrina; Münck, Eckard; Beinert, Helmut; Kiley, Patricia J.

    1997-01-01

    The transcription factor FNR (fumarate nitrate reduction) requires the presence of an iron-sulfur (Fe-S) cluster for its function as a global transcription regulator in Escherichia coli when oxygen becomes scarce. To define the oxidation state and type of Fe-S cluster present in the active form of FNR, we have studied anaerobically purified FNR with Mössbauer spectroscopy. Our data showed that this form of FNR contained a [4Fe-4S]2+ cluster (δ = 0.45 mm/s; ΔEQ = 1.22 mm/s) and that the [4Fe-4S]2+ cluster was rapidly destroyed on exposure of FNR to air. Under these conditions, the yellow–green active form of FNR turned deep red; analysis of sulfide indicated that 70% of the labile sulfide was still present, suggesting that the Fe-S cluster had been converted into a different form. Little [3Fe-4S] cluster was, however, detected by EPR. According to Mössbauer spectroscopy, the [4Fe-4S]2+ cluster was converted in about 60% yield to a [2Fe-2S]2+ cluster (δ = 0.28 mm/s; ΔEQ = 0.58 mm/s) following 17 min of exposure to air. The [2Fe-2S]2+ cluster form of FNR was much more stable to oxygen, but was unable to sustain biological activity (e.g., DNA binding). However, DNA binding and the absorption spectrum characteristic of the [4Fe-4S]2+ cluster could be largely restored from the [2Fe-2S]2+ form when Cys, Fe, DTT, and the NifS protein were added. It has yet to be determined whether the form of FNR containing the [2Fe-2S]2+ cluster has any biological significance, e.g., as an in vivo intermediate that is more rapidly converted to the active form than the apoprotein. PMID:9177174

  11. Phage insertion in mlrA and variations in rpoS limit curli expression and biofilm formation in Escherichia coli serotype O157:H7

    USDA-ARS?s Scientific Manuscript database

    Biofilm formation in Escherichia coli is a tightly controlled process requiring the expression of adhesive curli fibers and certain polysaccharides such as cellulose. The transcriptional regulator CsgD is central to biofilm formation, controlling the expression of the curli structural and export pro...

  12. Extrachromosomal Nucleolus-Like Compartmentalization by a Plasmid-Borne Ribosomal RNA Operon and Its Role in Nucleoid Compaction.

    PubMed

    Mata Martin, Carmen; Sun, Zhe; Zhou, Yan Ning; Jin, Ding Jun

    2018-01-01

    In the fast-growing Escherichia coli cells, RNA polymerase (RNAP) molecules are concentrated and form foci at clusters of ribosomal RNA (rRNA) operons resembling eukaryotic nucleolus. The bacterial nucleolus-like organization, spatially compartmentalized at the surface of the compact bacterial chromosome (nucleoid), serves as transcription factories for rRNA synthesis and ribosome biogenesis, which influences the organization of the nucleoid. Unlike wild type that has seven rRNA operons in the genome in a mutant that has six (Δ6 rrn ) rRNA operons deleted in the genome, there are no apparent transcription foci and the nucleoid becomes uncompacted, indicating that formation of RNAP foci requires multiple copies of rRNA operons clustered in space and is critical for nucleoid compaction. It has not been determined, however, whether a multicopy plasmid-borne rRNA operon (p rrnB ) could substitute the multiple chromosomal rRNA operons for the organization of the bacterial nucleolus-like structure in the mutants of Δ6 rrn and Δ7 rrn that has all seven rRNA operons deleted in the genome. We hypothesized that extrachromosomal nucleolus-like structures are similarly organized and functional in trans from p rrnB in these mutants. In this report, using multicolor images of three-dimensional superresolution Structured Illumination Microscopy (3D-SIM), we determined the distributions of both RNAP and NusB that are a transcription factor involved in rRNA synthesis and ribosome biogenesis, p rrnB clustering, and nucleoid structure in these two mutants in response to environmental cues. Our results found that the extrachromosomal nucleolus-like organization tends to be spatially located at the poles of the mutant cells. In addition, formation of RNAP foci at the extrachromosomal nucleolus-like structure condenses the nucleoid, supporting the idea that active transcription at the nucleolus-like organization is a driving force in nucleoid compaction.

  13. Effects of guanosine tetraphosphate on cell-free synthesis of Escherichia coli ribosomal RNA and other gene products.

    PubMed Central

    Reiness, G; Yang, H L; Zubay, G; Cashel, M

    1975-01-01

    A cell-free system derived from E. coli is described in which mature-sized 16S and 23S ribosomal RNAs (rRNA) are synthesized at a high relative rate, comprising 17-25% of the total transcription. The addition of guanosine tetraphosphate (ppGpp) to this system results in up to a 5-fold selective inhibition of rRNA accumulation. This effect is exerted at the level of synthesis rather than degradation. It is concluded that ppGpp, which is produced in large amounts by E. coli during amino-acid deprivation, could mediate the decrease in rRNA synthesis that accompanies such deprivation. The expression of other genes has also been investigated. No selective reduction of transfer RNA synthesis by ppGpp is observed. The trp and lac operons are found to be stimulated at the transcriptional level by the presence of this nucleotide. It is hypothesized that ppGpp interacts with the RNA polymerase in such a manner as to alter the affinity of the enzyme for promoters in an operon-specific fashion. PMID:1103124

  14. A Critical Role for CRM1 in Regulating HOXA Gene Transcription in CALM-AF10 Leukemias

    PubMed Central

    Conway, Amanda E.; Haldeman, Jonathan M.; Wechsler, Daniel S.; Lavau, Catherine P.

    2014-01-01

    The leukemogenic CALM-AF10 fusion protein is found in patients with immature acute myeloid and T-lymphoid malignancies. CALM-AF10 leukemias display abnormal H3K79 methylation and increased HOXA cluster gene transcription. Elevated expression of HOXA genes is critical for leukemia maintenance and progression; however, the precise mechanism by which CALM-AF10 alters HOXA gene expression is unclear. We previously determined that CALM contains a CRM1-dependent nuclear export signal (NES), which is both necessary and sufficient for CALM-AF10-mediated leukemogenesis. Here, we find that interaction of CALM-AF10 with the nuclear export receptor CRM1 is necessary for activating HOXA gene expression. We show that CRM1 localizes to HOXA loci where it recruits CALM-AF10, leading to transcriptional and epigenetic activation of HOXA genes. Genetic and pharmacological inhibition of the CALM-CRM1 interaction prevents CALM-AF10 enrichment at HOXA chromatin, resulting in immediate loss of transcription. These results provide a comprehensive mechanism by which the CALM-AF10 translocation activates the critical HOXA cluster genes. Furthermore, this report identifies a novel function of CRM1: the ability to bind chromatin and recruit the NES-containing CALM-AF10 transcription factor. PMID:25027513

  15. Survival, Biofilm Formation, and Growth Potential of Environmental and Enteric Escherichia coli Strains in Drinking Water Microcosms

    PubMed Central

    Abberton, Cathy L.; Bereschenko, Ludmila; van der Wielen, Paul W. J. J.

    2016-01-01

    ABSTRACT Escherichia coli is the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is that E. coli bacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate of E. coli in drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of three E. coli strains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, with T90 (time taken for a reduction in cell number of 1 log10 unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA, tuf, uidA, and rodA genes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm−2; BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P > 0.05 by t test). Finally, E. coli regrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods for E. coli. The results of this work highlight that when E. coli enters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely. IMPORTANCE The provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coli is used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key

  16. Survival, Biofilm Formation, and Growth Potential of Environmental and Enteric Escherichia coli Strains in Drinking Water Microcosms.

    PubMed

    Abberton, Cathy L; Bereschenko, Ludmila; van der Wielen, Paul W J J; Smith, Cindy J

    2016-09-01

    Escherichia coli is the most commonly used indicator for fecal contamination in drinking water distribution systems (WDS). The assumption is that E. coli bacteria are of enteric origin and cannot persist for long outside their host and therefore act as indicators of recent contamination events. This study investigates the fate of E. coli in drinking water, specifically addressing survival, biofilm formation under shear stress, and regrowth in a series of laboratory-controlled experiments. We show the extended persistence of three E. coli strains (two enteric isolates and one soil isolate) in sterile and nonsterile drinking water microcosms at 8 and 17°C, with T90 (time taken for a reduction in cell number of 1 log10 unit) values ranging from 17.4 ± 1.8 to 149 ± 67.7 days, using standard plate counts and a series of (reverse transcription-)quantitative PCR [(RT-)Q-PCR] assays targeting 16S rRNA, tuf, uidA, and rodA genes and transcripts. Furthermore, each strain was capable of attaching to a surface and replicating to form biofilm in the presence of nutrients under a range of shear stress values (0.6, 2.0, and 4.4 dynes [dyn] cm(-2); BioFlux system; Fluxion); however, cell numbers did not increase when drinking water flowed over the biofilm (P > 0.05 by t test). Finally, E. coli regrowth within drinking water microcosms containing polyethylene PE-100 pipe wall material was not observed in the biofilm or water phase using a combination of culturing and Q-PCR methods for E. coli The results of this work highlight that when E. coli enters drinking water it has the potential to survive and attach to surfaces but that regrowth within drinking water or biofilm is unlikely. The provision of clean, safe drinking water is fundamental to society. WDS deliver water to consumers via a vast network of pipes. E. coli is used as an indicator organism for recent contamination events based on the premise that it cannot survive for long outside its host. A key public health

  17. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein.

    PubMed Central

    Hidalgo, E; Demple, B

    1994-01-01

    The soxRS oxidative stress regulon of Escherichia coli is triggered by superoxide (O2.-) generating agents or by nitric oxide through two consecutive steps of gene activation. SoxR protein has been proposed as the redox sensing gene activator that triggers this cascade of gene expression. We have now characterized two forms of SoxR: Fe-SoxR contained non-heme iron (up to 1.6 atoms per monomer); apo-SoxR was devoid of Fe or other metals. The spectroscopic properties of Fe-SoxR indicated that it contains a redox active iron-sulfur (FeS) cluster that is oxidized upon extraction from E. coli. Fe-SoxR and apo-SoxR bound the in vivo target, the soxS promoter, with equal affinities and protected the same region from DNase I in vitro. However, only Fe-SoxR stimulated transcription initiation at soxS in vitro > 100-fold, similar to the activation of soxS expression in vivo. This stimulation occurred at a step after the binding of RNAP and indicates a conformational effect of oxidized Fe-SoxR on the soxS promoter. The variable redox state of the SoxR FeS cluster may thus be employed in vivo to modulate the transcriptional activity of this protein in response to specific types of oxidative stress. Images PMID:8306957

  18. Fnr, NarP, and NarL Regulation of Escherichia coli K-12 napF (Periplasmic Nitrate Reductase) Operon Transcription In Vitro

    PubMed Central

    Darwin, Andrew J.; Ziegelhoffer, Eva C.; Kiley, Patricia J.; Stewart, Valley

    1998-01-01

    The expression of several Escherichia coli operons is activated by the Fnr protein during anaerobic growth and is further controlled in response to nitrate and nitrite by the homologous response regulators, NarL and NarP. Among these operons, the napF operon, encoding a periplasmic nitrate reductase, has unique features with respect to its Fnr-, NarL-, and NarP-dependent regulation. First, the Fnr-binding site is unusually located compared to the control regions of most other Fnr-activated operons, suggesting different Fnr-RNA polymerase contacts during transcriptional activation. Second, nitrate and nitrite activation is solely dependent on NarP but is antagonized by the NarL protein. In this study, we used DNase I footprint analysis to confirm our previous assignment of the unusual location of the Fnr-binding site in the napF control region. In addition, the in vivo effects of Fnr-positive control mutations on napF operon expression indicate that the napF promoter is atypical with respect to Fnr-mediated activation. The transcriptional regulation of napF was successfully reproduced in vitro by using a supercoiled plasmid template and purified Fnr, NarL, and NarP proteins. These in vitro transcription experiments demonstrate that, in the presence of Fnr, the NarP protein causes efficient transcription activation whereas the NarL protein does not. This suggests that Fnr and NarP may act synergistically to activate napF operon expression. As observed in vivo, this activation by Fnr and NarP is antagonized by the addition of NarL in vitro. PMID:9696769

  19. The Cellular Form of Human Fibronectin as an Adhesion Target for the S Fimbriae of Meningitis-Associated Escherichia coli

    PubMed Central

    Sarén, Anne; Virkola, Ritva; Hacker, Jörg; Korhonen, Timo K.

    1999-01-01

    The adhesion of the S fimbriae of meningitis-associated Escherichia coli O18ac:K1:H7 to the cellular and the plasma forms of human fibronectin was studied. E. coli HB101(pAZZ50) expressing the complete S-fimbria II gene cluster of E. coli O18 adhered to cellular fibronectin (cFn) on glass but not to plasma fibronectin (pFn). Adhesion to cFn was specifically inhibited by neuraminidase treatment of cFn as well as by incubation of the bacteria with sialyl-α2-3-lactose, a receptor analog of the S fimbriae. No significant adhesion to cFn or pFn was detected with E. coli HB101(pAZZ50-67) expressing S fimbriae lacking the SfaS lectin subunit. Strain HB101(pAZZ50) also adhered to a human fibroblast cell culture known to be rich in cFn, and the adhesion was specifically inhibited in the presence of polyclonal antibodies to cFn. The results show that the SfaS lectin of the S fimbriae mediates the adherence of meningitis-associated E. coli to sialyl oligosaccharide chains of cFn. PMID:10225941

  20. Nonproteolytic Roles of 19S ATPases in Transcription of CIITApIV Genes

    PubMed Central

    Maganti, Nagini; Moody, Tomika D.; Truax, Agnieszka D.; Thakkar, Meghna; Spring, Alexander M.; Germann, Markus W.; Greer, Susanna F.

    2014-01-01

    Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes. PMID:24625964

  1. Presence and characterization of shiga toxin-producing Escherichia coli and other potentially diarrheagenic E. coli strains in retail meats.

    PubMed

    Xia, Xiaodong; Meng, Jianghong; McDermott, Patrick F; Ayers, Sherry; Blickenstaff, Karen; Tran, Thu-Thuy; Abbott, Jason; Zheng, Jie; Zhao, Shaohua

    2010-03-01

    To determine the presence of Shiga toxin-producing Escherichia coli (STEC) and other potentially diarrheagenic E. coli strains in retail meats, 7,258 E. coli isolates collected by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) retail meat program from 2002 to 2007 were screened for Shiga toxin genes. In addition, 1,275 of the E. coli isolates recovered in 2006 were examined for virulence genes specific for other diarrheagenic E. coli strains. Seventeen isolates (16 from ground beef and 1 from a pork chop) were positive for stx genes, including 5 positive for both stx(1) and stx(2), 2 positive for stx(1), and 10 positive for stx(2). The 17 STEC strains belonged to 10 serotypes: O83:H8, O8:H16, O15:H16, O15:H17, O88:H38, ONT:H51, ONT:H2, ONT:H10, ONT:H7, and ONT:H46. None of the STEC isolates contained eae, whereas seven carried enterohemorrhagic E. coli (EHEC) hlyA. All except one STEC isolate exhibited toxic effects on Vero cells. DNA sequence analysis showed that the stx(2) genes from five STEC isolates encoded mucus-activatable Stx2d. Subtyping of the 17 STEC isolates by pulsed-field gel electrophoresis (PFGE) yielded 14 distinct restriction patterns. Among the 1,275 isolates from 2006, 11 atypical enteropathogenic E. coli (EPEC) isolates were identified in addition to 3 STEC isolates. This study demonstrated that retail meats, mainly ground beef, were contaminated with diverse STEC strains. The presence of atypical EPEC strains in retail meat is also of concern due to their potential to cause human infections.

  2. Persistence of Escherichia coli O157:H7 in dairy fermentation systems.

    PubMed

    Dineen, S S; Takeuchi, K; Soudah, J E; Boor, K J

    1998-12-01

    We examined (i) the persistence of Escherichia coli O157:H7 as a postpasteurization contaminant in fermented dairy products; (ii) the ability of E. coli O157:H7 strains with and without the general stress regulatory protein, RpoS, to compete with commercial starter cultures in fermentation systems; and (iii) the survival of E. coli O157:H7 in the yogurt production process. In commercial products inoculated with 10(3) CFU/ml, E. coli O157:H7 was recovered for up to 12 days in yogurt (pH 4.0), 28 days in sour cream (pH 4.3), and at levels > 10(2) CFU/ml at 35 days in buttermilk (pH 4.1). For the starter culture competition trials, the relative inhibition of E. coli O157:H7 in the experimental fermentation systems was, in decreasing order, thermophilic culture mixture, Lactobacillus delbrueckii subsp. bulgaricus R110 alone, Lactococcus lactis subsp. lactis D280 alone, Lactococcus lactis subsp. cremoris D62 alone, and Streptococcus thermophilus C90 alone showing the least inhibition. Recovery of the rpoS mutant was lower than recovery of its wild-type parent by 72 h or earlier in the presence of individual starter cultures. No E. coli O157:H7 were recovered after the curd formation step in yogurt manufactured with milk inoculated with 10(5) CFU/ml. Our results show that (i) postprocessing entry of E. coli O157:H7 into fermented dairy products represents a potential health hazard; (ii) commercial starter cultures differ in their ability to reduce E. coli O157:H7 CFU numbers in fermentation systems; and (iii) the RpoS protein appears to most effectively contribute to bacterial survival in the presence of conditions that are moderately lethal to the cell.

  3. IraL Is an RssB Anti-adaptor That Stabilizes RpoS during Logarithmic Phase Growth in Escherichia coli and Shigella

    PubMed Central

    Hryckowian, Andrew J.; Battesti, Aurelia; Lemke, Justin J.; Meyer, Zachary C.

    2014-01-01

    ABSTRACT RpoSS), the general stress response sigma factor, directs the expression of genes under a variety of stressful conditions. Control of the cellular σS concentration is critical for appropriately scaled σS-dependent gene expression. One way to maintain appropriate levels of σS is to regulate its stability. Indeed, σS degradation is catalyzed by the ClpXP protease and the recognition of σS by ClpXP depends on the adaptor protein RssB. Three anti-adaptors (IraD, IraM, and IraP) exist in Escherichia coli K-12; each interacts with RssB and inhibits RssB activity under different stress conditions, thereby stabilizing σS. Unlike K-12, some E. coli isolates, including uropathogenic E. coli strain CFT073, show comparable cellular levels of σS during the logarithmic and stationary growth phases, suggesting that there are differences in the regulation of σS levels among E. coli strains. Here, we describe IraL, an RssB anti-adaptor that stabilizes σS during logarithmic phase growth in CFT073 and other E. coli and Shigella strains. By immunoblot analyses, we show that IraL affects the levels and stability of σS during logarithmic phase growth. By computational and PCR-based analyses, we reveal that iraL is found in many E. coli pathotypes but not in laboratory-adapted strains. Finally, by bacterial two-hybrid and copurification analyses, we demonstrate that IraL interacts with RssB by a mechanism distinct from that used by other characterized anti-adaptors. We introduce a fourth RssB anti-adaptor found in E. coli species and suggest that differences in the regulation of σS levels may contribute to host and niche specificity in pathogenic and nonpathogenic E. coli strains. PMID:24865554

  4. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eraso, Jesus M.; Markillie, Lye Meng; Mitchell, Hugh D.

    2014-05-05

    The mraZ and mraW genes are highly conserved in bacteria, both in sequence and location at the head of the division and cell wall (dcw) gene cluster. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin, and MraW is known to methylate ribosomal RNA, mraZ and mraW null mutants have no detectable growth phenotype in any species tested to date, hampering progress in understanding their physiological role. Here we show that overproduction of Escherichia coli MraZ perturbs cell division and the cell envelope, is more lethal at high levels or in minimal growth medium,more » and that MraW antagonizes these effects. MraZGFP localizes to the nucleoid, suggesting that it binds DNA. Indeed, purified MraZ directly binds a region upstream from its own promoter containing three direct repeats to regulate its own expression and that of downstream cell division and cell wall genes. MraZ-LacZ fusions are repressed by excess MraZ but not when DNA binding by MraZ is inhibited. RNAseq analysis indicates that MraZ is a global transcriptional regulator with numerous targets in addition to dcw genes. One of these targets, mioC, is directly bound by MraZ in a region with three direct repeats.« less

  5. The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA

    PubMed Central

    Toh, Seok-Ming; Xiong, Liqun; Bae, Taeok; Mankin, Alexander S.

    2008-01-01

    A2503 in 23S rRNA of the Gram-negative bacterium Escherichia coli is located in a functionally important region of the ribosome, at the entrance to the nascent peptide exit tunnel. In E. coli, and likely in other species, this adenosine residue is post-transcriptionally modified to m2A. The enzyme responsible for this modification was previously unknown. We identified E. coli protein YfgB, which belongs to the radical SAM enzyme superfamily, as the methyltransferase that modifies A2503 of 23S rRNA to m2A. Inactivation of the yfgB gene in E. coli led to the loss of modification at nucleotide A2503 of 23S rRNA as revealed by primer extension analysis and thin layer chromatography. The A2503 modification was restored when YfgB protein was expressed in the yfgB knockout strain. A similar protein was shown to catalyze post-transcriptional modification of A2503 in 23S rRNA in Gram-positive Staphylococcus aureus. The yfgB knockout strain loses in competition with wild type in a co-growth experiment, indicating functional importance of A2503 modification. The location of A2503 in the exit tunnel suggests its possible involvement in interaction with the nascent peptide and raises the possibility that its post-transcriptional modification may influence such an interaction. PMID:18025251

  6. Characterization of OxyR as a Negative Transcriptional Regulator That Represses Catalase Production in Corynebacterium diphtheriae

    PubMed Central

    Kim, Ju-Sim; Holmes, Randall K.

    2012-01-01

    Corynebacterium diphtheriae and Corynebacterium glutamicum each have one gene (cat) encoding catalase. In-frame Δcat mutants of C. diphtheriae and C. glutamicum were hyper-sensitive to growth inhibition and killing by H2O2. In C. diphtheriae C7(β), both catalase activity and cat transcription decreased ∼2-fold during transition from exponential growth to early stationary phase. Prototypic OxyR in Escherichia coli senses oxidative stress and it activates katG transcription and catalase production in response to H2O2. In contrast, exposure of C. diphtheriae C7(β) to H2O2 did not stimulate transcription of cat. OxyR from C. diphtheriae and C. glutamicum have 52% similarity with E. coli OxyR and contain homologs of the two cysteine residues involved in H2O2 sensing by E. coli OxyR. In-frame ΔoxyR deletion mutants of C. diphtheriae C7(β), C. diphtheriae NCTC13129, and C. glutamicum were much more resistant than their parental wild type strains to growth inhibition by H2O2. In the C. diphtheriae C7(β) ΔoxyR mutant, cat transcripts were about 8-fold more abundant and catalase activity was about 20-fold greater than in the C7(β) wild type strain. The oxyR gene from C. diphtheriae or C. glutamicum, but not from E. coli, complemented the defect in ΔoxyR mutants of C. diphtheriae and C. glutamicum and decreased their H2O2 resistance to the level of their parental strains. Gel-mobility shift, DNaseI footprint, and primer extension assays showed that purified OxyR from C. diphtheriae C7(β) bound, in the presence or absence of DTT, to a sequence in the cat promoter region that extends from nucleotide position −55 to −10 with respect to the +1 nucleotide in the cat ORF. These results demonstrate that OxyR from C. diphtheriae or C. glutamicum functions as a transcriptional repressor of the cat gene by a mechanism that is independent of oxidative stress induced by H2O2. PMID:22438866

  7. Two modes of control of pilA, the gene encoding type 1 pilin in Escherichia coli.

    PubMed Central

    Orndorff, P E; Spears, P A; Schauer, D; Falkow, S

    1985-01-01

    Type 1 piliation in Escherichia coli is subject to metastable regulation at the transcriptional level (B. I. Eisenstein, Science 214:337-339, 1981). However, the genes controlling in this fashion are not known. We present evidence that the pilA gene, encoding the structural subunit of type 1 pili, is subject to metastable transcriptional regulation. A pilA'-lacZ fusion, constructed in vitro on a recombinant plasmid, was used in conjunction with a recBC sbcB mutant of E. coli K-12 to introduce the fusion into the chromosomal region encoding Pil. This fusion was found to be subject to metastable transcriptional control. The rate of switching from the Lac+ to the Lac- phenotype was 4 X 10(-4) per cell per generation and 6.2 X 10(-4) in the opposite direction. A ca. 10-fold difference in beta-galactosidase activity was observed between phenotypically "ON" (Lac+) and "OFF" (Lac-) populations. P1 transduction experiments showed that the element determining the ON or OFF phenotype was tightly linked to pilA. In addition to the metastable regulation of pilA, a second type of transcriptional regulation was effected by the product of a gene, hyp, adjacent to pilA. By using a recombinant plasmid containing just a pilA'-lacZ fusion and the putative pilA promoter, we found that a lesion in hyp conferred a beta-galactosidase activity about fivefold higher than that of a strain possessing the parental hyp gene. Mutants constructed to have a pilA'-lacZ fusion and a hyp::Tn5-132 mutation in the chromosome exhibited a frequency of switching from Lac+ to Lac- and vice versa indistinguishable from that of the parental strain. However, in the ON mode, hyp::Tn5-132 mutants showed a twofold-higher beta-galactosidase activity. Thus, hyp does not appear to affect metastable variation but does affect the level of transcription of the pilA gene in the ON (transcribed) mode. Images PMID:3930469

  8. The influence of MAP condition and active compounds on the radiosensitization of Escherichia coli and Salmonella typhi present in chicken breast

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Chiasson, F.

    2004-09-01

    The efficiency of carvacrol, thymol, trans-cinnamaldehyde (Tc) and tetrasodium pyrophosphate (Tp) on the radiosensitization of Escherichia coli and Salmonella typhi in chicken breast was determined. Chicken breast were dipped in a bath of working cultures of E. coli or S. typhi (5×10 7 CFU/ml). Active compounds were added at the concentration corresponding to {1}/{30} of the minimal inhibitory concentration. Samples were packed under air and gamma irradiation was done at doses from 0.1 to 0.7 kGy. The efficiencies of the active compounds against E. coli were 32%, 10%, 3% and 0% for thymol, Tp and carvacrol, respectively. For S. typhi, the efficiencies in the chicken breast were 47%, 19%, 17% and 11% for Tc, Tp, carvacrol and thymol, respectively. Without active compounds, D10 values were 0.145 kGy for E. coli and 0.64 kGy for S. typhi as compared to 0.098 kGy for E. coli and 0.341 kGy for S. typhi in presence of Tc. Under modified atmospheric packaging condition and in presence of Tc, D10 values were reduced to 0.046 for E. coli and to 0.110 for S. typhi.

  9. Growth phase-dependent induction of stationary-phase promoters of Escherichia coli in different gram-negative bacteria.

    PubMed Central

    Miksch, G; Dobrowolski, P

    1995-01-01

    RSF1010-derived plasmids carrying a fusion of a promoterless lacZ gene with the sigma s-dependent growth phase-regulated promoters of Escherichia coli, bolAp1 and fic, were constructed. The plasmids were mobilized into the gram-negative bacterial species Acetobacter methanolicus, Xanthomonas campestris, Pseudomonas putida, and Rhizobium meliloti. The beta-galactosidase activities of bacterial cultures were determined during exponential and stationary growth phases. Transcriptional activation of the fic promoter in the different bacteria was growth phase dependent as in E. coli and was initiated generally during the transition to stationary phase. The induction of the bolA promoter was also growth phase dependent in the bacteria tested. While the expression in E. coli and R. meliloti was initiated during the transition from exponential to stationary phase, the induction in A. methanolicus, P. putida, and X. campestris started some hours after stationary growth phase was reached. In all the species tested, DNA fragments hybridizing with the rpoS gene of E. coli were detected. The results show that in different gram-negative bacteria, stationary-phase-specific sigma factors which are structurally and functionally homologous to sigma s and are able to recognize the promoter sequences of both bolA and fic exist. PMID:7665531

  10. Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E.coli detection

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Hema; Solanki, Shipra; Sumana, Gajjala

    2016-04-01

    This work reports on a sensitive and selective genosensor fabrication method for Escherichia coli (E.coli) detection. The functionalized multiwalled carbon nanotubes (MWCNT) synthesized via chemical vapour deposition have been deposited electrophoretically onto indium tin oxide coated glass surface and have been utilized as matrices for the covalent immobilization of E.coli specific probe oligonucleotide that was identified from the 16s rRNA coding region of the E.coli genome. This fabricated functionalized MWCNT based platform sought to provide improved fundamental characteristics to electrode interface in terms of electro-active surface area and diffusion coefficient. Electrochemical cyclic voltammetry revealed that this genosensor exhibits a linear response to complementary DNA in the concentration range of 10-7 to 10-12 M with a detection limit of 1×10-12 M.

  11. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals.

    PubMed

    Rau, Martin Holm; Calero, Patricia; Lennen, Rebecca M; Long, Katherine S; Nielsen, Alex T

    2016-10-13

    Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. Here, a systems biology approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, RpoS, OmpR, ArcA, Fur and GadX. These regulators, the genes within their regulons and the above mentioned cellular functions therefore constitute potential targets for increasing E. coli chemical tolerance. Fitness determination of genome-wide transposon mutants (Tn-seq) subjected to the same chemical stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene functions. The combination of the transcriptional response and mutant screening provides general targets that can increase tolerance towards not only single, but multiple chemicals.

  12. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  13. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    PubMed

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Ada protein-RNA polymerase sigma subunit interaction and alpha subunit-promoter DNA interaction are necessary at different steps in transcription initiation at the Escherichia coli Ada and aidB promoters.

    PubMed

    Landini, P; Bown, J A; Volkert, M R; Busby, S J

    1998-05-22

    The methylated form of the Ada protein (meAda) binds the ada and aidB promoters between 60 and 40 base pairs upstream from the transcription start and activates transcription of the Escherichia coli ada and aidB genes. This region is also a binding site for the alpha subunit of RNA polymerase and resembles the rrnB P1 UP element in A/T content and location relative to the core promoter. In this report, we show that deletion of the C-terminal domain of the alpha subunit severely decreases meAda-independent binding of RNA polymerase to ada and aidB, affecting transcription initiation at these promoters. We provide evidence that meAda activates transcription by direct interaction with the C-terminal domain of RNA polymerase sigma70 subunit (amino acids 574-613). Several negatively charged residues in the sigma70 C-terminal domain are important for transcription activation by meAda; in particular, a glutamic acid to valine substitution at position 575 has a dramatic effect on meAda-dependent transcription. Based on these observations, we propose that the role of the alpha subunit at ada and aidB is to allow initial binding of RNA polymerase to the promoters. However, transcription initiation is dependent on meAda-sigma70 interaction.

  15. ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR).

    PubMed

    Yuniati, Yuniati; Hasanah, Nurul; Ismail, Sjarif; Anitasari, Silvia; Paramita, Swandari

    2018-01-01

    Staphylococcus aureus , methicillin-resistant and Escherichia coli , multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.

  16. Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation

    PubMed Central

    Römling, Ute; Bian, Zhao; Hammar, Mårten; Sierralta, Walter D.; Normark, Staffan

    1998-01-01

    Mouse-virulent Salmonella typhimurium strains SR-11 and ATCC 14028-1s express curli fibers, thin aggregative fibers, at ambient temperature on plates as judged by Western blot analysis and electron microscopy. Concomitantly with curli expression, cells develop a rough and dry colony morphology and bind the dye Congo red (called the rdar morphotype). Cloning and characterization of the two divergently transcribed operons required for curli biogenesis, csgBA(C) and csgDEFG, from S. typhimurium SR-11 revealed the same gene order and flanking genes as in Escherichia coli. The divergence of the curli region between S. typhimurium and E. coli at the nucleotide level is above average (22.4%). However, a high level of conservation at the protein level, which ranged from 86% amino acid homology for the fiber subunit CsgA to 99% homology for the lipoprotein CsgG, implies functional constraints on the gene products. Consequently, S. typhimurium genes on low-copy-number plasmids were able to complement respective E. coli mutants, although not always to wild-type levels. rpoS and ompR are required for transcriptional activation of (at least) the csgD promoter. The high degree of conservation at the protein level and the identical regulation patterns in E. coli and S. typhimurium suggest similar roles of curli fibers in the same ecological niche in the two species. PMID:9457880

  17. Cranberry extract inhibits in vitro adhesion of F4 and F18+Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18+ verotoxigenic E. coli.

    PubMed

    Coddens, Annelies; Loos, Michaela; Vanrompay, Daisy; Remon, Jean Paul; Cox, Eric

    2017-04-01

    F4 + E. coli and F18 + E. coli infections are an important threat for pig industry worldwide. Antibiotics are commonly used to treat infected piglets, but the emerging development of resistance against antibiotics raises major concerns. Hence, alternative therapies to prevent pigs from F4 + E. coli and F18 + E. coli infections need to be developed. Since cranberry previously showed anti-adhesive activity against uropathogenic E. coli, we aimed to investigate whether cranberry extract could also inhibit binding of F4 + E. coli and F18 + E. coli to pig intestinal epithelium. Using the in vitro villus adhesion assay, we found that low concentrations of cranberry extract (20μg or 100μg/ml) have strong inhibitory activity on F4 + E. coli (75.3%, S.D.=9.31 or 95.8%, S.D.=2.56, respectively) and F18 + E. coli adherence (100% inhibition). This effect was not due to antimicrobial activity. Moreover, cranberry extract (10mg or 100mg) could also abolish in vivo binding of F4 and F18 fimbriae to the pig intestinal epithelium in ligated loop experiments. Finally, two challenge experiments with F18 + E. coli were performed to address the efficacy of in-feed or water supplemented cranberry extract. No effect could be observed in piglets that received cranberry extract only in feed (1g/kg or 10g/kg). However, supplementation of feed (10g/kg) and drinking water (1g/L) significantly decreased excretion and diarrhea. The decreased infection resulted in a decreased serum antibody response indicating reduced exposure to F18 + E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Antisense Transcription Is Pervasive but Rarely Conserved in Enteric Bacteria

    PubMed Central

    Raghavan, Rahul; Sloan, Daniel B.; Ochman, Howard

    2012-01-01

    ABSTRACT Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell’s transcription machinery. PMID:22872780

  19. Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment

    PubMed Central

    Peron, Rafaela; Vatanabe, Izabela Pereira; Manzine, Patricia Regina; Camins, Antoni

    2018-01-01

    ADAM (a disintegrin and metalloproteinase) is a family of widely expressed, transmembrane and secreted proteins of approximately 750 amino acids in length with functions in cell adhesion and proteolytic processing of the ectodomains of diverse cell-surface receptors and signaling molecules. ADAM10 is the main α-secretase that cleaves APP (amyloid precursor protein) in the non-amyloidogenic pathway inhibiting the formation of β-amyloid peptide, whose accumulation and aggregation leads to neuronal degeneration in Alzheimer’s disease (AD). ADAM10 is a membrane-anchored metalloprotease that sheds, besides APP, the ectodomain of a large variety of cell-surface proteins including cytokines, adhesion molecules and notch. APP cleavage by ADAM10 results in the production of an APP-derived fragment, sAPPα, which is neuroprotective. As increased ADAM10 activity protects the brain from β-amyloid deposition in AD, this strategy has been proved to be effective in treating neurodegenerative diseases, including AD. Here, we describe the physiological mechanisms regulating ADAM10 expression at different levels, aiming to propose strategies for AD treatment. We report in this review on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or translational and post-translational levels. In addition, we describe the conditions that can change ADAM10 expression in vitro and in vivo, and discuss how this knowledge may help in AD treatment. Regulation of ADAM10 is achieved by multiple mechanisms that include transcriptional, translational and post-translational strategies, which we will summarize in this review. PMID:29382156

  20. Expression of cathepsin S antisense transcripts by adenovirus in retinal pigment epithelial cells.

    PubMed

    Rakoczy, P E; Lai, M C; Baines, M G; Spilsbury, K; Constable, I J

    1998-10-01

    To show the production of sense or antisense transcripts by recombinant adenoviruses, to investigate whether the transcripts produced were suitable for downregulating the expression of the targeted gene, cathepsin S (CatS), and to examine the effect of antisense transcript production on the biologic function of retinal pigment epithelial (RPE) cells, including the regulation of endogenous aspartic protease expression. Ad.MLP.CatSAS, Ad.RSV.CatSAS, and Ad.MLP.CatSS recombinant viruses were produced by homologous recombination. The recombinant viruses were tested by restriction enzyme digestion to confirm the orientation of the inserts. The expression of antisense transcripts was tested by northern blot analysis. Western blot analysis was used to study the regulation of the endogenous CatS protein in ARPE19 cells. The biologic effect of CatS downregulation in ARPE19 cells was tested by proliferation and phagocytosis assays, de novo cathepsin D (CatD) synthesis, and measurement of aspartic protease activity. After characterization of the recombinant adenovirus constructs, the production of antisense and sense CatS transcripts was shown in ARPE19 cells. The transcripts appeared at approximately 1.9 kb 48 hours after transduction, and the expression of the antisense transcripts was similar in constructs carrying either the MLP or the RSV promoter. Western blot analysis showed that ARPE19 cells transduced with Ad.MLP.CatSAS and Ad.RSV.CatSAS had no detectable CatS. In contrast, there was a strong signal appearing at 24 kDa in ARPE19 cells transduced with Ad.MLP.CatSS. ARPE19 cells were transduced to a high level. The transduction of ARPE19 cells with the recombinant adenoviruses did not affect the morphologic appearance of the cells, their proliferation, or their phagocytosing ability. However, ARPE19 cells transduced by Ad.MLP.CatSAS recombinant adenovirus showed a significant downregulation of de novo CatD synthesis and a twofold decrease in aspartic protease activity

  1. Dual transcriptional-translational cascade permits cellular level tuneable expression control

    PubMed Central

    Morra, Rosa; Shankar, Jayendra; Robinson, Christopher J.; Halliwell, Samantha; Butler, Lisa; Upton, Mathew; Hay, Sam; Micklefield, Jason; Dixon, Neil

    2016-01-01

    The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems. PMID:26405200

  2. Determination of the Optimal Chromosomal Location(s) for a DNA Element in Escherichia coli Using a Novel Transposon-mediated Approach.

    PubMed

    Frimodt-Møller, Jakob; Charbon, Godefroid; Krogfelt, Karen A; Løbner-Olesen, Anders

    2017-09-11

    The optimal chromosomal position(s) of a given DNA element was/were determined by transposon-mediated random insertion followed by fitness selection. In bacteria, the impact of the genetic context on the function of a genetic element can be difficult to assess. Several mechanisms, including topological effects, transcriptional interference from neighboring genes, and/or replication-associated gene dosage, may affect the function of a given genetic element. Here, we describe a method that permits the random integration of a DNA element into the chromosome of Escherichia coli and select the most favorable locations using a simple growth competition experiment. The method takes advantage of a well-described transposon-based system of random insertion, coupled with a selection of the fittest clone(s) by growth advantage, a procedure that is easily adjustable to experimental needs. The nature of the fittest clone(s) can be determined by whole-genome sequencing on a complex multi-clonal population or by easy gene walking for the rapid identification of selected clones. Here, the non-coding DNA region DARS2, which controls the initiation of chromosome replication in E. coli, was used as an example. The function of DARS2 is known to be affected by replication-associated gene dosage; the closer DARS2 gets to the origin of DNA replication, the more active it becomes. DARS2 was randomly inserted into the chromosome of a DARS2-deleted strain. The resultant clones containing individual insertions were pooled and competed against one another for hundreds of generations. Finally, the fittest clones were characterized and found to contain DARS2 inserted in close proximity to the original DARS2 location.

  3. Methanosarcina acetivorans 16S rRNA and transcription factor nucleotide fluctuation with implications in exobiology and pathology

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Sullivan, R.; Schneider, P.; Flamholz, A.; Marchese, P.; Hiciano, O.; Yao, H.; Lieberman, D.; Cheung, T.

    2008-08-01

    Cultures of the methane-producing archaea Methanosarcina, have recently been isolated from Alaskan sediments. It has been proposed that methanogens are strong candidates for exobiological life in extreme conditions. The spatial environmental gradients, such as those associated with the polygons on Mars' surface, could have been produced by past methanogenesis activity. The 16S rRNA gene has been used routinely to classify phenotypes. Using the fractal dimension of nucleotide fluctuation, a comparative study of the 16S rRNA nucleotide fluctuation in Methanosarcina acetivorans C2A, Deinococcus radiodurans, and E. coli was conducted. The results suggest that Methanosarcina acetivorans has the lowest fractal dimension, consistent with its ancestral position in evolution. Variation in fluctuation complexity was also detected in the transcription factors. The transcription factor B (TFB) was found to have a higher fractal dimension as compared to transcription factor E (TFE), consistent with the fact that a single TFB in Methanosarcina acetivorans can code three different TATA box proteins. The average nucleotide pair-wise free energy of the DNA repair genes was found to be highest for Methanosarcina acetivorans, suggesting a relatively weak bonding, which is consistent with its low prevalence in pathology. Multitasking capacity comparison of type-I and type-II topoisomerases has been shown to correlate with fractal dimension using the methicillin-resistant strain MRSA 252. The analysis suggests that gene adaptation in a changing chemical environment can be measured in terms of bioinformatics. Given that the radiation resistant Deinococcus radiodurans is a strong candidate for an extraterrestrial origin and that the cold temperature Psychrobacter cryohalolentis K5 can function in Siberian permafrost, the fractal dimension comparison in this study suggests that a chemical resistant methanogen could exist in extremely cold conditions (such as that which existed on early

  4. Nitrogen stress response and stringent response are coupled in Escherichia coli

    PubMed Central

    Brown, Daniel R.; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh

    2014-01-01

    Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454

  5. Conformational heterogeneity and bubble dynamics in single bacterial transcription initiation complexes

    PubMed Central

    Duchi, Diego; Gryte, Kristofer; Robb, Nicole C; Morichaud, Zakia; Sheppard, Carol; Wigneshweraraj, Sivaramesh

    2018-01-01

    Abstract Transcription initiation is a major step in gene regulation for all organisms. In bacteria, the promoter DNA is first recognized by RNA polymerase (RNAP) to yield an initial closed complex. This complex subsequently undergoes conformational changes resulting in DNA strand separation to form a transcription bubble and an RNAP-promoter open complex; however, the series and sequence of conformational changes, and the factors that influence them are unclear. To address the conformational landscape and transitions in transcription initiation, we applied single-molecule Förster resonance energy transfer (smFRET) on immobilized Escherichia coli transcription open complexes. Our results revealed the existence of two stable states within RNAP–DNA complexes in which the promoter DNA appears to adopt closed and partially open conformations, and we observed large-scale transitions in which the transcription bubble fluctuated between open and closed states; these transitions, which occur roughly on the 0.1 s timescale, are distinct from the millisecond-timescale dynamics previously observed within diffusing open complexes. Mutational studies indicated that the σ70 region 3.2 of the RNAP significantly affected the bubble dynamics. Our results have implications for many steps of transcription initiation, and support a bend-load-open model for the sequence of transitions leading to bubble opening during open complex formation. PMID:29177430

  6. 10 CFR 1704.9 - Availability and retention of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Availability and retention of transcripts, recordings, and minutes, and applicable fees. 1704.9 Section 1704.9 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.9 Availability and retention of transcripts, recordings...

  7. 10 CFR 1704.9 - Availability and retention of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Availability and retention of transcripts, recordings, and minutes, and applicable fees. 1704.9 Section 1704.9 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.9 Availability and retention of transcripts, recordings...

  8. 10 CFR 1704.9 - Availability and retention of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Availability and retention of transcripts, recordings, and minutes, and applicable fees. 1704.9 Section 1704.9 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.9 Availability and retention of transcripts, recordings...

  9. 10 CFR 1704.9 - Availability and retention of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Availability and retention of transcripts, recordings, and minutes, and applicable fees. 1704.9 Section 1704.9 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.9 Availability and retention of transcripts, recordings...

  10. 10 CFR 1704.9 - Availability and retention of transcripts, recordings, and minutes, and applicable fees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Availability and retention of transcripts, recordings, and minutes, and applicable fees. 1704.9 Section 1704.9 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.9 Availability and retention of transcripts, recordings...

  11. Mutations That Stimulate flhDC Expression in Escherichia coli K-12.

    PubMed

    Fahrner, Karen A; Berg, Howard C

    2015-10-01

    Motility is a beneficial attribute that enables cells to access and explore new environments and to escape detrimental ones. The organelle of motility in Escherichia coli is the flagellum, and its production is initiated by the activating transcription factors FlhD and FlhC. The expression of these factors by the flhDC operon is highly regulated and influenced by environmental conditions. The flhDC promoter is recognized by σ(70) and is dependent on the transcriptional activator cyclic AMP (cAMP)-cAMP receptor protein complex (cAMP-CRP). A number of K-12 strains exhibit limited motility due to low expression levels of flhDC. We report here a large number of mutations that stimulate flhDC expression in such strains. They include single nucleotide changes in the -10 element of the promoter, in the promoter spacer, and in the cAMP-CRP binding region. In addition, we show that insertion sequence (IS) elements or a kanamycin gene located hundreds of base pairs upstream of the promoter can effectively enhance transcription, suggesting that the topology of a large upstream region plays a significant role in the regulation of flhDC expression. None of the mutations eliminated the requirement for cAMP-CRP for activation. However, several mutations allowed expression in the absence of the nucleoid organizing protein, H-NS, which is normally required for flhDC expression. The flhDC operon of Escherichia coli encodes transcription factors that initiate flagellar synthesis, an energetically costly process that is highly regulated. Few deregulating mutations have been reported thus far. This paper describes new single nucleotide mutations that stimulate flhDC expression, including a number that map to the promoter spacer region. In addition, this work shows that insertion sequence elements or a kanamycin gene located far upstream from the promoter or repressor binding sites also stimulate transcription, indicating a role of regional topology in the regulation of flh

  12. CicerTransDB 1.0: a resource for expression and functional study of chickpea transcription factors.

    PubMed

    Gayali, Saurabh; Acharya, Shankar; Lande, Nilesh Vikram; Pandey, Aarti; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-07-29

    Transcription factor (TF) databases are major resource for systematic studies of TFs in specific species as well as related family members. Even though there are several publicly available multi-species databases, the information on the amount and diversity of TFs within individual species is fragmented, especially for newly sequenced genomes of non-model species of agricultural significance. We constructed CicerTransDB (Cicer Transcription Factor Database), the first database of its kind, which would provide a centralized putatively complete list of TFs in a food legume, chickpea. CicerTransDB, available at www.cicertransdb.esy.es , is based on chickpea (Cicer arietinum L.) annotation v 1.0. The database is an outcome of genome-wide domain study and manual classification of TF families. This database not only provides information of the gene, but also gene ontology, domain and motif architecture. CicerTransDB v 1.0 comprises information of 1124 genes of chickpea and enables the user to not only search, browse and download sequences but also retrieve sequence features. CicerTransDB also provides several single click interfaces, transconnecting to various other databases to ease further analysis. Several webAPI(s) integrated in the database allow end-users direct access of data. A critical comparison of CicerTransDB with PlantTFDB (Plant Transcription Factor Database) revealed 68 novel TFs in the chickpea genome, hitherto unexplored. Database URL: http://www.cicertransdb.esy.es.

  13. Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells.

    PubMed

    Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander

    2016-10-13

    Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis , permeabilizes the blood-brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218's effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB.

  14. Pertussis Toxin Exploits Host Cell Signaling Pathways Induced by Meningitis-Causing E. coli K1-RS218 and Enhances Adherence of Monocytic THP-1 Cells to Human Cerebral Endothelial Cells

    PubMed Central

    Starost, Laura Julia; Karassek, Sascha; Sano, Yasuteru; Kanda, Takashi; Kim, Kwang Sik; Dobrindt, Ulrich; Rüter, Christian; Schmidt, Marcus Alexander

    2016-01-01

    Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood–brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhibitor SB203590 blocked PTx-enhanced activity, whereas E. coli K1-RS218’s effects were inhibited by the NF-κB inhibitor Bay 11-7082. Further, we found that PTx enhances the adherence of human monocytic THP-1 cells to human cerebral endothelial TY10 cells, thereby contributing to enhanced translocation. These modulations of host cell signaling pathways by PTx and meningitis-causing E. coli support their contributions to pathogen and monocytic THP-1 cells translocation across the BBB. PMID:27754355

  15. Chromosomal 16S Ribosomal RNA Methyltransferase RmtE1 in Escherichia coli Sequence Type 448

    PubMed Central

    Li, Bin; Pacey, Marissa P.

    2017-01-01

    We identified rmtE1, an uncommon 16S ribosomal methyltransferase gene, in an aminoglycoside- and cephalosporin-resistant Escherichia coli sequence type 448 clinical strain co-harboring blaCMY-2. Long-read sequencing revealed insertion of a 101,257-bp fragment carrying both resistance genes to the chromosome. Our findings underscore E. coli sequence type 448 as a potential high-risk multidrug-resistant clone. PMID:28418308

  16. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco.

    PubMed

    Wang, Chen; Deng, Pengyi; Chen, Liulin; Wang, Xiatian; Ma, Hui; Hu, Wei; Yao, Ningcong; Feng, Ying; Chai, Ruihong; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.). TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polyethylene glycol, NaCl, cold and H2O2. Result of Southern blot indicates that the wheat genome contains three copies of TaWRKY10. The TaWRKY10 protein is localized in the nucleus and functions as a transcriptional activator. Overexpression of TaWRKY10 in tobacco (Nicotiana tabacum L.) resulted in enhanced drought and salt stress tolerance, mainly demonstrated by the transgenic plants exhibiting of increased germination rate, root length, survival rate, and relative water content under these stress conditions. Further investigation showed that transgenic plants also retained higher proline and soluble sugar contents, and lower reactive oxygen species and malonaldehyde contents. Moreover, overexpression of the TaWRKY10 regulated the expression of a series of stress related genes. Taken together, our results indicate that TaWRKY10 functions as a positive factor under drought and salt stresses by regulating the osmotic balance, ROS scavenging and transcription of stress related genes.

  17. Glutamate Ligation in the Ni(II)- and Co(II)-Responsive Escherichia coli Transcriptional Regulator, RcnR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Carolyn E.; Musiani, Francesco; Huang, Hsin-Ting

    Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinatemore » protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are

  18. Rolling Circle Transcription of Ribozymes Targeted to ras and mdr-1

    DTIC Science & Technology

    2001-09-01

    ssDNA) to direct transcription of an tion-PCR, and recyclization were carried out to optimize active hammerhead ribozyme in E. coli cells. transcription...transcription I hammerhead ribozyme I in vitro selection and 12.5 units/ml RNase inhibitor (Promega), in a total reaction volume of 15 tk1. After a...sequence encoding a ssDNA, and splint ssDNA were ethanol-precipitated and used as hammerhead ribozyme . templates to begin the next round of in vitro

  19. Determinants of translation speed are randomly distributed across transcripts resulting in a universal scaling of protein synthesis times

    NASA Astrophysics Data System (ADS)

    Sharma, Ajeet K.; Ahmed, Nabeel; O'Brien, Edward P.

    2018-02-01

    Ribosome profiling experiments have found greater than 100-fold variation in ribosome density along mRNA transcripts, indicating that individual codon elongation rates can vary to a similar degree. This wide range of elongation times, coupled with differences in codon usage between transcripts, suggests that the average codon translation-rate per gene can vary widely. Yet, ribosome run-off experiments have found that the average codon translation rate for different groups of transcripts in mouse stem cells is constant at 5.6 AA/s. How these seemingly contradictory results can be reconciled is the focus of this study. Here, we combine knowledge of the molecular factors shown to influence translation speed with genomic information from Escherichia coli, Saccharomyces cerevisiae and Homo sapiens to simulate the synthesis of cytosolic proteins in these organisms. The model recapitulates a near constant average translation rate, which we demonstrate arises because the molecular determinants of translation speed are distributed nearly randomly amongst most of the transcripts. Consequently, codon translation rates are also randomly distributed and fast-translating segments of a transcript are likely to be offset by equally probable slow-translating segments, resulting in similar average elongation rates for most transcripts. We also show that the codon usage bias does not significantly affect the near random distribution of codon translation rates because only about 10 % of the total transcripts in an organism have high codon usage bias while the rest have little to no bias. Analysis of Ribo-Seq data and an in vivo fluorescent assay supports these conclusions.

  20. DcpS is a transcript-specific modulator of RNA in mammalian cells

    PubMed Central

    Zhou, Mi; Bail, Sophie; Plasterer, Heather L.; Rusche, James

    2015-01-01

    The scavenger decapping enzyme DcpS is a multifunctional protein initially identified by its property to hydrolyze the resulting cap structure following 3′ end mRNA decay. In Saccharomyces cerevisiae, the DcpS homolog Dcs1 is an obligate cofactor for the 5′-3′ exoribonuclease Xrn1 while the Caenorhabditis elegans homolog Dcs-1, facilitates Xrn1 mediated microRNA turnover. In both cases, this function is independent of the decapping activity. Whether DcpS and its decapping activity can affect mRNA steady state or stability in mammalian cells remains unknown. We sought to determine DcpS target genes in mammalian cells using a cell-permeable DcpS inhibitor compound, RG3039 initially developed for therapeutic treatment of spinal muscular atrophy. Global mRNA levels were examined following DcpS decapping inhibition with RG3039. The steady-state levels of 222 RNAs were altered upon RG3039 treatment. Of a subset selected for validation, two transcripts that appear to be long noncoding RNAs HS370762 and BC011766, were dependent on DcpS and its scavenger decapping catalytic activity and referred to as DcpS-responsive noncoding transcripts (DRNT) 1 and 2, respectively. Interestingly, only the increase in DRNT1 transcript was accompanied with an increase of its RNA stability and this increase was dependent on both DcpS and Xrn1. Importantly, unlike in yeast where the DcpS homolog is an obligate cofactor for Xrn1, stability of additional Xrn1 dependent RNAs were not altered by a reduction in DcpS levels. Collectively, our data demonstrate that DcpS in conjunction with Xrn1 has the potential to regulate RNA stability in a transcript-selective manner in mammalian cells. PMID:26001796

  1. Characterization and Genomic Study of Phage vB_EcoS-B2 Infecting Multidrug-Resistant Escherichia coli

    PubMed Central

    Xu, Yue; Yu, Xinyan; Gu, Yu; Huang, Xu; Liu, Genyan; Liu, Xiaoqiu

    2018-01-01

    The potential of bacteriophage as an alternative antibacterial agent has been reconsidered for control of pathogenic bacteria due to the widespread occurrence of multi-drug resistance bacteria. More and more lytic phages have been isolated recently. In the present study, we isolated a lytic phage named vB_EcoS-B2 from waste water. VB_EcoS-B2 has an icosahedral symmetry head and a long tail without a contractile sheath, indicating that it belongs to the family Siphoviridae. The complete genome of vB_EcoS-B2 is composed of a circular double stranded DNA of 44,283 bp in length, with 54.77% GC content. vB_EcoS-B2 is homologous to 14 relative phages (such as Escherichia phage SSL-2009a, Escherichia phage JL1, and Shigella phage EP23), but most of these phages exhibit different gene arrangement. Our results serve to extend our understanding toward phage evolution of family Siphoviridae of coliphages. Sixty-five putative open reading frames were predicted in the complete genome of vB_EcoS-B2. Twenty-one of proteins encoded by vB_EcoS-B2 were determined in phage particles by Mass Spectrometry. Bacteriophage genome and proteome analysis confirmed the lytic nature of vB_EcoS-B2, namely, the absence of toxin-coding genes, islands of pathogenicity, or genes through lysogeny or transduction. Furthermore, vB_EcoS-B2 significantly reduced the growth of E. coli MG1655 and also inhibited the growth of several multi-drug resistant clinical stains of E. coli. Phage vB_EcoS-B2 can kill some of the MRD E. coli entirely, strongly indicating us that it could be one of the components of phage cocktails to treat multi-drug resistant E. coli. This phage could be used to interrupt or reduce the spread of multi-drug resistant E. coli. PMID:29780362

  2. Synthesis of highly water-soluble fluorescent conjugated glycopoly(p-phenylene)s for lectin and Escherichia coli.

    PubMed

    Xue, Cuihua; Jog, Sonali P; Murthy, Pushpalatha; Liu, Haiying

    2006-09-01

    Two facile, convenient, and versatile synthetic approaches are used to covalently attach carbohydrate residues to conjugated poly(p-phenylene)s (PPPs) for highly water-soluble PPPs bearing alpha-mannopyranosyl and beta-glucopyranosyl pendants (polymers A and B), which highly fluoresce in phosphate buffer (pH 7.0). The post-polymerization functionalization approach is to treat bromo-bearing PPP (polymer 1) with 1-thiolethyl-alpha-D-mannose tetraacetate or 1-thiol-beta-D-glucose tetraacetate in THF solution in the presence of K(2)CO(3) at room temperature through formation of thioether bridges, affording polymer 2a or 2b. The prepolymerization functionalization approach is to polymerize a well-defined sugar-carrying monomer, affording polymer 2a. Polymers 2a and 2b were deacetylated under Zemplén conditions in methanol and methylene chloride containing sodium methoxide, affording polymers A and B, respectively. The multivalent display of carbohydrates on the fluorescent conjugated glycopolymer overcomes the characteristic low binding affinity of the individual carbohydrates to their receptor proteins. Titration of concanavalin A (Con A) to alpha-mannose-bearing polymer A resulted in significant fluorescent quenching of the polymer with Stern-Volmer quenching constant of 4.5 x 10(7). Incubation of polymer A with Escherichia coli (E. coli) lead to formation of fluorescently stained bacterial clusters. Beta-glucose-bearing polymer B displayed no response to Con A and E. coli.

  3. An Ancient Relative of Cyclooxygenase in Cyanobacteria Is a Linoleate 10S-Dioxygenase That Works in Tandem with a Catalase-related Protein with Specific 10S-Hydroperoxide Lyase Activity*

    PubMed Central

    Brash, Alan R.; Niraula, Narayan P.; Boeglin, William E.; Mashhadi, Zahra

    2014-01-01

    In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as “cyclooxygenase-2,” appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate. PMID:24659780

  4. Characterization of three types of human alpha s1-casein mRNA transcripts.

    PubMed Central

    Johnsen, L B; Rasmussen, L K; Petersen, T E; Berglund, L

    1995-01-01

    Here we report the molecular cloning and sequencing of three types of human alpha s1-casein transcripts and present evidence indicating that exon skipping is responsible for deleted mRNA transcripts. The largest transcript comprised 981 bp encoding a signal peptide of 15 amino acids followed by the mature alpha s1-casein sequence of 170 amino acids. Human alpha s1-casein has been reported to exist naturally as a multimer in complex with kappa-casein in mature human milk, thereby being unique among alpha s1-caseins [Rasmussen, Due and Petersen (1995) Comp. Biochem. Physiol., in the press]. The present demonstration of three cysteines in the mature protein provides a molecular explanation of the interactions in this complex. Tissue-specific expression of human alpha s1-casein was indicated by Northern-blot analysis. In addition, two cryptic exons were localized in the bovine alpha s1-casein gene. Images Figure 3 PMID:7619062

  5. Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay.

    PubMed

    Roggiani, Manuela; Goulian, Mark

    2015-06-15

    Escherichia coli senses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of the torCAD operon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly, E. coli respires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level of torCAD transcription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels of torCAD transcription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay. Trimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. In E. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported example of a stimulus

  6. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  7. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE PAGES

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; ...

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  8. Cloning and expression in Escherichia coli of a hygromycin B phosphotransferase gene from Streptomyces hygroscopicus.

    PubMed

    Zalacain, M; Malpartida, F; Pulido, D; Jiménez, A

    1987-01-15

    The Streptomyces hygroscopicus hyg gene encoding a hygromycin B phosphotransferase has been introduced into different sites of both the Escherichia coli plasmid pBR322 and the Escherichia coli-Saccharomyces cerevisiae shuttle vector YRp7. When this gene was inserted into the BamHI site of pBR322 and then cloned in E. coli phosphorylating activity was not detected, indicating that the hyg gene promoter was not functional in this bacterium. However, when the hyg gene was inserted into either the unique PstI site of pBR322 or into each of the two PstI sites of YRp7, phosphotransferase activity was observed. Analysis of the translation products from these constructions by coupled in vitro transcription-translation systems suggested that in all cases transcrition was regulated by a promoter not provided by the inserted hyg gene and that the synthesized polypeptide was identical to that present in S. hygroscopicus.

  9. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    PubMed

    Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel

    2015-09-18

    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.

  10. A Wheat WRKY Transcription Factor TaWRKY10 Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco

    PubMed Central

    Chen, Liulin; Wang, Xiatian; Ma, Hui; Hu, Wei; Yao, Ningcong; Feng, Ying; Chai, Ruihong; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    WRKY transcription factors are reported to be involved in defense regulation, stress response and plant growth and development. However, the precise role of WRKY transcription factors in abiotic stress tolerance is not completely understood, especially in crops. In this study, we identified and cloned 10 WRKY genes from genome of wheat (Triticum aestivum L.). TaWRKY10, a gene induced by multiple stresses, was selected for further investigation. TaWRKY10 was upregulated by treatment with polyethylene glycol, NaCl, cold and H2O2. Result of Southern blot indicates that the wheat genome contains three copies of TaWRKY10. The TaWRKY10 protein is localized in the nucleus and functions as a transcriptional activator. Overexpression of TaWRKY10 in tobacco (Nicotiana tabacum L.) resulted in enhanced drought and salt stress tolerance, mainly demonstrated by the transgenic plants exhibiting of increased germination rate, root length, survival rate, and relative water content under these stress conditions. Further investigation showed that transgenic plants also retained higher proline and soluble sugar contents, and lower reactive oxygen species and malonaldehyde contents. Moreover, overexpression of the TaWRKY10 regulated the expression of a series of stress related genes. Taken together, our results indicate that TaWRKY10 functions as a positive factor under drought and salt stresses by regulating the osmotic balance, ROS scavenging and transcription of stress related genes. PMID:23762295

  11. RNA-DNA and DNA-DNA base-pairing at the upstream edge of the transcription bubble regulate translocation of RNA polymerase and transcription rate.

    PubMed

    KIreeva, Maria; Trang, Cyndi; Matevosyan, Gayane; Turek-Herman, Joshua; Chasov, Vitaly; Lubkowska, Lucyna; Kashlev, Mikhail

    2018-06-20

    Translocation of RNA polymerase (RNAP) along DNA may be rate-limiting for transcription elongation. The Brownian ratchet model posits that RNAP rapidly translocates back and forth until the post-translocated state is stabilized by NTP binding. An alternative model suggests that RNAP translocation is slow and poorly reversible. To distinguish between these two models, we take advantage of an observation that pyrophosphorolysis rates directly correlate with the abundance of the pre-translocated fraction. Pyrophosphorolysis by RNAP stabilized in the pre-translocated state by bacteriophage HK022 protein Nun was used as a reference point to determine the pre-translocated fraction in the absence of Nun. The stalled RNAP preferentially occupies the post-translocated state. The forward translocation rate depends, among other factors, on melting of the RNA-DNA base pair at the upstream edge of the transcription bubble. DNA-DNA base pairing immediately upstream from the RNA-DNA hybrid stabilizes the post-translocated state. This mechanism is conserved between E. coli RNAP and S. cerevisiae RNA polymerase II and is partially dependent on the lid domain of the catalytic subunit. Thus, the RNA-DNA hybrid and DNA reannealing at the upstream edge of the transcription bubble emerge as targets for regulation of the transcription elongation rate.

  12. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease

    PubMed Central

    Iyer, Shankar Subramanian; Cheng, Genhong

    2012-01-01

    Interleukin 10 (IL-10) is a cytokine with potent anti-inflammatory properties that plays a central role in limiting host immune response to pathogens, thereby preventing damage to the host and maintaining normal tissue homeostasis. Dysregulation of IL-10 is associated with enhanced immunopathology in response to infection as well as increased risk for development of many autoimmune diseases. Thus a fundamental understanding of IL-10 gene expression is critical for our comprehension of disease progression and resolution of host inflammatory response. In this review, we discuss modes of regulation of IL-10 gene expression in immune effector cell types, including signal transduction, epigenetics, promoter architecture, and post-transcriptional regulation, and how aberrant regulation contributes to immunopathology and disease progression. PMID:22428854

  13. Strategy to reduce E. coli bacteraemia based on cohort data from a London teaching hospital.

    PubMed

    Hsu, Desmond; Melzer, Mark

    2018-04-01

    In 2017, National Health Service Improvement set a 10% reduction target for Escherichia coli bacteraemia by 2018, followed by a 50% reduction in healthcare-associated Gram-negative bacteraemias by 2022. We analysed consecutive cases of E. coli bacteraemia and devised a strategy to achieve these targets. From December 2012 to November 2013, demographic, clinical and microbiological data were prospectively collected on all patients with bacteraemia at the Royal London Hospital in East London, UK. There were 594 significant bacteraemic episodes and 207 (34.8%) were E. coli . Twenty-four (11.6%) of the E. coli isolates were extended spectrum beta-lactamase producers, 22 (10.6%) gentamicin resistant and 2 (1.0%) amikacin resistant. The three most common sites of infection were pyelonephritis 105 (56.7%), catheter-associated urinary tract infection 22 (10.6%), and other medical devices and procedures that cause bacteraemia 32 (15.5%). In the pyelonephritis group, trimethoprim resistance in urinary isolates was 16/47 (34.0%) compared with 3/47 (6.4%) for nitrofurantoin. Twelve months postbacteraemia, recurrent bacteraemia rates were 10/105 (9.5%). There were 44 medical device-associated E. coli bacteraemias, and 22 (50%) were urinary catheter associated. There were 10 patients with E. coli bacteraemia caused by procedures, seven genitourinary or biliary tract instrumentation and three postgastrointestinal surgery. E. coli bacteraemias related to urosepsis could have been prevented by better empirical treatment and targeted prophylaxis. Urinary catheter quality improvement programmes should contribute to a further reduction. For patients undergoing high-risk urinary or biliary tract procedures or device manipulation, we advocate single-dose amikacin prophylaxis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Crowning: a novel Escherichia coli colonizing behaviour generating a self-organized corona

    PubMed Central

    2014-01-01

    Background Encased in a matrix of extracellular polymeric substances (EPS) composed of flagella, adhesins, amyloid fibers (curli), and exopolysaccharides (cellulose, β-1,6-N-acetyl-D-glucosamine polymer-PGA-, colanic acid), the bacteria Escherichia coli is able to attach to and colonize different types of biotic and abiotic surfaces forming biofilms and colonies of intricate morphological architectures. Many of the biological aspects that underlie the generation and development of these E. coli’s formations are largely poorly understood. Results Here, we report the characterization of a novel E. coli sessile behaviour termed "crowning" due to the bacterial generation of a new 3-D architectural pattern: a corona. This bacterial pattern is formed by joining bush-like multilayered "coronal flares or spikes" arranged in a ring, which self-organize through the growth, self-clumping and massive self-aggregation of cells tightly interacting inside semisolid agar on plastic surfaces. Remarkably, the corona’s formation is developed independently of the adhesiveness of the major components of E. coli’s EPS matrix, the function of chemotaxis sensory system, type 1 pili and the biofilm master regulator CsgD, but its formation is suppressed by flagella-driven motility and glucose. Intriguingly, this glucose effect on the corona development is not mediated by the classical catabolic repression system, the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. Thus, corona formation departs from the canonical regulatory transcriptional core that controls biofilm formation in E. coli. Conclusions With this novel "crowning" activity, E. coli expands its repertoire of colonizing collective behaviours to explore, invade and exploit environments whose critical viscosities impede flagella driven-motility. PMID:24568619

  15. The N-degradome of Escherichia coli

    PubMed Central

    Humbard, Matthew A.; Surkov, Serhiy; De Donatis, Gian Marco; Jenkins, Lisa M.; Maurizi, Michael R.

    2013-01-01

    The N-end rule is a conserved mechanism found in Gram-negative bacteria and eukaryotes for marking proteins to be degraded by ATP-dependent proteases. Specific N-terminal amino acids (N-degrons) are sufficient to target a protein to the degradation machinery. In Escherichia coli, the adaptor ClpS binds an N-degron and delivers the protein to ClpAP for degradation. As ClpS recognizes N-terminal Phe, Trp, Tyr, and Leu, which are not found at the N terminus of proteins translated and processed by the canonical pathway, proteins must be post-translationally modified to expose an N-degron. One modification is catalyzed by Aat, an enzyme that adds leucine or phenylalanine to proteins with N-terminal lysine or arginine; however, such proteins are also not generated by the canonical protein synthesis pathway. Thus, the mechanisms producing N-degrons in proteins and the frequency of their occurrence largely remain a mystery. To address these issues, we used a ClpS affinity column to isolate interacting proteins from E. coli cell lysates under non-denaturing conditions. We identified more than 100 proteins that differentially bound to a column charged with wild-type ClpS and eluted with a peptide bearing an N-degron. Thirty-two of 37 determined N-terminal peptides had N-degrons. Most of the proteins were N-terminally truncated by endoproteases or exopeptidases, and many were further modified by Aat. The identities of the proteins point to possible physiological roles for the N-end rule in cell division, translation, transcription, and DNA replication and reveal widespread proteolytic processing of cellular proteins to generate N-end rule substrates. PMID:23960079

  16. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases

    PubMed Central

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-01-01

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2′-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli. Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. coli enzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. PMID:27001521

  17. The ygaVP Genes of Escherichia coli Form a Tributyltin-Inducible Operon▿ †

    PubMed Central

    Gueuné, Hervé; Durand, Marie-José; Thouand, Gérald; DuBow, Michael S.

    2008-01-01

    A tributyltin (TBT) luxAB transcriptional fusion in Escherichia coli revealed that a TBT-activated promoter is located upstream of two cotranscribed orphan genes, ygaV and ygaP. We demonstrate that transcription from the promoter upstream of ygaVP is constitutive in a ygaVP mutant, suggesting that YgaV is an autoregulated, TBT-inducible repressor. PMID:18245262

  18. Evaluation of Oxidative Metabolism in Leukocytes during Phagocytosis of Escherichia coli Carrying Genetic Constructs soxS::lux or katG::lux.

    PubMed

    Karimov, I F; Deryabin, D G; Karimova, D N; Subbotina, T Yu; Manukhov, I V

    2016-06-01

    We studied ROS generation by human peripheral blood monocytes and granulocytes during phagocytosis of Escherichia coli soxS::lux or katG::lux responding by luminescence (bioluminescence) to the development of oxidative stress. Initially high sensitivity of the bioluminescent reaction of E. coli katG::lux strain to the effects of model ROS (KO2 and H2O2) and pronounced induction of luminescence upon contact with granulocytes, whereas E. coli soxS::lux demonstrated less pronounced reaction to chemical oxidants and bioluminescence was observed primarily upon contact with monocytes. A correlation was found between quantitative characteristics of E. coli katG::lux bioluminescence and luminol-dependent chemiluminescence of leukocytes in some patients, but no dependence of this kind was noted for E. coli soxS::lux. The results can provide experimental substantiation of a new approach for evaluation of ROS production by leukocytes during phagocytosis and choosing the optimal object for these studies.

  19. Full shut-off of Escherichia coli RNA-polymerase by T7 phage requires a small phage-encoded DNA-binding protein.

    PubMed

    Tabib-Salazar, Aline; Liu, Bing; Shadrin, Andrey; Burchell, Lynn; Wang, Zhexin; Wang, Zhihao; Goren, Moran G; Yosef, Ido; Qimron, Udi; Severinov, Konstantin; Matthews, Steve J; Wigneshweraraj, Sivaramesh

    2017-07-27

    Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP. Whereas Gp2 is indispensable for T7 growth in E. coli, we show that Gp5.7 is required for optimal infection outcome. Our findings provide novel insights into how phages fine-tune the activity of the host transcription machinery to ensure both successful and efficient phage progeny development. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Affinity isolation and I-DIRT mass spectrometric analysis of the Escherichia coli O157:H7 Sakai RNA polymerase complex.

    PubMed

    Lee, David J; Busby, Stephen J W; Westblade, Lars F; Chait, Brian T

    2008-02-01

    Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the "core" E. coli genome.

  1. The Cation-Responsive Protein NhaR of Escherichia coli Activates pgaABCD Transcription, Required for Production of the Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine▿

    PubMed Central

    Goller, Carlos; Wang, Xin; Itoh, Yoshikane; Romeo, Tony

    2006-01-01

    The pgaABCD operon of Escherichia coli is required for production of the biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine (PGA). We establish here that NhaR, a DNA-binding protein of the LysR family of transcriptional regulators, activates transcription of this operon. Disruption of the nhaR gene decreased biofilm formation without affecting planktonic growth. PGA production was undetectable in an nhaR mutant strain. Expression of a pgaA′-′lacZ translational fusion was induced by NaCl and alkaline pH, but not by CaCl2 or sucrose, in an nhaR-dependent fashion. Primer extension and quantitative real-time reverse transcription-PCR analyses further revealed that NhaR affects the steady-state level of pga mRNA. A purified recombinant NhaR protein bound specifically and with high affinity within the pgaABCD promoter region; one apparent binding site overlaps the −35 element, and a second site lies immediately upstream of the first. This protein was necessary and sufficient for activation of in vitro transcription from the pgaA promoter. These results define a novel mechanism for regulation of biofilm formation in response to environmental conditions and suggest an expanded role for NhaR in promoting bacterial survival. PMID:16997959

  2. Neem (Azadirachta indica A. Juss) Oil to Tackle Enteropathogenic Escherichia coli.

    PubMed

    Del Serrone, Paola; Toniolo, Chiara; Nicoletti, Marcello

    2015-01-01

    Neem (Azadirachta indica A. Juss) oil (NO) was assayed against forty-eight isolates of Escherichia coli by standardised disc diffusion test and microdilution test. By molecular biology characterization, fourteen isolates resulted in diarrheagenic E. coli with sixteen primer pairs that specifically amplify unique sequences of virulence genes and of 16S rRNA. The NO showed biological activity against all isolates. The bacterial growth inhibition zone by disc diffusion method (100 µL NO) ranged between 9.50 ± 0.70 and 30.00 ± 1.00 mm. The antibacterial activity was furthermore determined at lower NO concentrations (1 : 10-1 : 10,000). The percent of growth reduction ranged between 23.71 ± 1.00 and 99.70 ± 1.53. The highest bacterial growth reduction was 1 : 10 NO concentration with 50 µL of bacterial suspension (ca. 1 × 10(6) CFU/mL). There is significant difference between the antibacterial activities against pathogenic and nonpathogenic E. coli, as well as NO and ciprofloxacin activities. Viable cells after the different NO concentration treatments were checked by molecular biology assay using PMA dye. On the basis of the obtained results, NO counteracts E. coli and also influences the virulence of E. coli viable cells after NO treatment. The NO metabolomic composition was obtained using fingerprint HPTLC.

  3. The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields.

    PubMed

    Zituni, Dunya; Schütt-Gerowitt, Heidi; Kopp, Marion; Krönke, Martin; Addicks, Klaus; Hoffmann, Christian; Hellmich, Martin; Faber, Franz; Niedermeier, Wilhelm

    2014-03-01

    Electrical potentials up to 800 mV can be observed between different metallic dental restorations. These potentials produce fields in the mouth that may interfere with microbial communities. The present study focuses on the impact of different electric field strengths (EFS) on the growth of Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922) in vitro. Cultures of S. aureus and E. coli in fluid and gel medium were exposed to different EFS. Effects were determined by calculation of viable counts and measurement of inhibition zones. In gel medium, anodic inhibition zones for S. aureus were larger than those for E. coli at all field strength levels. In fluid medium, the maximum decrease in the viable count of S. aureus cells was at 10 V⋅m(-1). Field-treated S. aureus cells presented ruptured cell walls and disintegrated cytoplasm. Conclusively, S. aureus is more sensitive to increasing electric field strength than E. coli.

  4. Development of a modularized two-step (M2S) chromosome integration technique for integration of multiple transcription units in Saccharomyces cerevisiae.

    PubMed

    Li, Siwei; Ding, Wentao; Zhang, Xueli; Jiang, Huifeng; Bi, Changhao

    2016-01-01

    Saccharomyces cerevisiae has already been used for heterologous production of fuel chemicals and valuable natural products. The establishment of complicated heterologous biosynthetic pathways in S. cerevisiae became the research focus of Synthetic Biology and Metabolic Engineering. Thus, simple and efficient genomic integration techniques of large number of transcription units are demanded urgently. An efficient DNA assembly and chromosomal integration method was created by combining homologous recombination (HR) in S. cerevisiae and Golden Gate DNA assembly method, designated as modularized two-step (M2S) technique. Two major assembly steps are performed consecutively to integrate multiple transcription units simultaneously. In Step 1, Modularized scaffold containing a head-to-head promoter module and a pair of terminators was assembled with two genes. Thus, two transcription units were assembled with Golden Gate method into one scaffold in one reaction. In Step 2, the two transcription units were mixed with modules of selective markers and integration sites and transformed into S. cerevisiae for assembly and integration. In both steps, universal primers were designed for identification of correct clones. Establishment of a functional β-carotene biosynthetic pathway in S. cerevisiae within 5 days demonstrated high efficiency of this method, and a 10-transcriptional-unit pathway integration illustrated the capacity of this method. Modular design of transcription units and integration elements simplified assembly and integration procedure, and eliminated frequent designing and synthesis of DNA fragments in previous methods. Also, by assembling most parts in Step 1 in vitro, the number of DNA cassettes for homologous integration in Step 2 was significantly reduced. Thus, high assembly efficiency, high integration capacity, and low error rate were achieved.

  5. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling.

    PubMed

    Witsø, Ingun Lund; Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli.

  6. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling

    PubMed Central

    Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli. PMID:27309855

  7. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid

    USDA-ARS?s Scientific Manuscript database

    Aims: The aim of this research was to examine relative transcriptional expression of acid resistance (AR) genes, rpoS, gadA and adiA, in O157:H7 and non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes after adaptation to pineapple juice (PJ) and subsequently to determine survival with e...

  8. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.

    PubMed

    Cao, Yingxiu; Li, Xiaofei; Li, Feng; Song, Hao

    2017-09-15

    Extracellular electron transfer (EET) in Shewanella oneidensis MR-1, which is one of the most well-studied exoelectrogens, underlies many microbial electrocatalysis processes, including microbial fuel cells, microbial electrolysis cells, and microbial electrosynthesis. However, regulating the efficiency of EET remains challenging due to the lack of efficient genome regulation tools that regulate gene expression levels in S. oneidensis. Here, we systematically established a transcriptional regulation technology, i.e., clustered regularly interspaced short palindromic repeats interference (CRISPRi), in S. oneidensis MR-1 using green fluorescent protein (GFP) as a reporter. We used this CRISPRi technology to repress the expression levels of target genes, individually and in combination, in the EET pathways (e.g., the MtrCAB pathway and genes affecting the formation of electroactive biofilms in S. oneidensis), which in turn enabled the efficient regulation of EET efficiency. We then established a translational regulation technology, i.e., Hfq-dependent small regulatory RNA (sRNA), in S. oneidensis by repressing the GFP reporter and mtrA, which is a critical gene in the EET pathways in S. oneidensis. To achieve coordinated transcriptional and translational regulation at the genomic level, the CRISPRi and Hfq-dependent sRNA systems were incorporated into a single plasmid harbored in a recombinant S. oneidensis strain, which enabled an even higher efficiency of mtrA gene repression in the EET pathways than that achieved by the CRISPRi and Hfq-dependent sRNA system alone, as exhibited by the reduced electricity output. Overall, we developed a combined CRISPRi-sRNA method that enabled the synergistic transcriptional and translational regulation of target genes in S. oneidensis. This technology involving CRISPRi-sRNA transcriptional-translational regulation of gene expression at the genomic level could be applied to other microorganisms.

  9. Cloning and expression of antibacterial goat lactoferricin from Escherichia coli AD494(DE3)pLysS expression system.

    PubMed

    Chen, Gen-Hung; Yin, Li-Jung; Chiang, I-Hua; Jiang, Shann-Tzong

    2008-12-01

    Goat lactoferricin (GLfcin), an antibacterial peptide, is released from the N terminus of goat lactoferrin by pepsin digestion. Two GLfcin-related cDNAs, GLfcin L and GLfcin S, encoding Ala20-Ser60 and Ser36-Ser60 of goat lactoferrin, respectively, were cloned into the pET-23a(+) expression vector upstream from (His)6-Tag gene and transformed into Escherichia coli AD494(DE3)pLysS expression host. After being induced by isopropyl-beta-D-thiogalactopyranoside (IPTG), two (His)6-Tag fused recombinant lactoferricins, GLfcin L-His*Tag and GLfcin S-His*Tag, were expressed in soluble form within the E. coli cytoplasm. The GLfcin L-His*Tag and GLfcin S-His*Tag were purified using HisTrap affinity chromatography. According to an antibacterial activity assay using the agar diffusion method, GLfcin L-His*Tag had antibacterial activity against E. coli BCRC 11549, Staphylococcus aureus BCRC 25923, and Propionibacterium acnes BCRC 10723, while GLfcin S-His*Tag was able to inhibit the growth of E. coli BCRC 11549 and P. acnes BCRC 10723. These two recombinant lactoferricins behaved as thermostable peptides, which could retain their activity for up to 30 min of exposure at 100 degrees C.

  10. Autoinducer-2 Quorum Sensing Contributes to Regulation of Microcin PDI in Escherichia coli

    PubMed Central

    Lu, Shao-Yeh; Zhao, Zhe; Avillan, Johannetsy J.; Liu, Jinxin; Call, Douglas R.

    2017-01-01

    The Escherichia coli quorum sensing (QS) signal molecule, autoinducer-2 (AI-2), reaches its maximum concentration during mid-to-late growth phase after which it quickly degrades during stationary phase. This pattern of AI-2 concentration coincides with the up- then down-regulation of a recently described microcin PDI (mccPDI) effector protein (McpM). To determine if there is a functional relationship between these systems, a prototypical mccPDI-expressing strain of E. coli 25 was used to generate ΔluxS, ΔlsrACDBFG (Δlsr), and ΔlsrR mutant strains that are deficient in AI-2 production, transportation, and AI-2 transport regulation, respectively. Trans-complementation, RT-qPCR, and western blot assays were used to detect changes of microcin expression and synthesis under co-culture and monoculture conditions. Compared to the wild-type strain, the AI-2-deficient strain (ΔluxS) and -uptake negative strain (Δlsr) were >1,000-fold less inhibitory to susceptible bacteria (P < 0.05). With in trans complementation of luxS, the AI-2 deficient mutant reduced the susceptible E. coli population by 4-log, which was within 1-log of the wild-type phenotype. RT-qPCR and western blot results for the AI-2 deficient E. coli 25 showed a 5-fold reduction in mcpM transcription with an average 2-h delay in McpM synthesis. Furthermore, overexpression of sRNA micC and micF (both involved in porin protein regulation) was correlated with mcpM regulation, consistent with a possible link between QS and mcpM regulation. This is the direct first evidence that microcin regulation can be linked to quorum sensing in a Gram-negative bacterium. PMID:29312248

  11. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase

    PubMed Central

    James, Tamara D.; Cardozo, Timothy; Abell, Lauren E.; Hsieh, Meng-Lun; Jenkins, Lisa M. Miller; Jha, Saheli S.; Hinton, Deborah M.

    2016-01-01

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation. PMID:27458207

  12. The Antibacterial Activity of Date Syrup Polyphenols against S. aureus and E. coli

    PubMed Central

    Taleb, Hajer; Maddocks, Sarah E.; Morris, R. Keith; Kanekanian, Ara D.

    2016-01-01

    Plant-derived products such as date syrup (DS) have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. DS is rich in polyphenols and this study hypothesized that DS polyphenols demonstrate inherent antimicrobial activity, which cause oxidative damage. This investigation revealed that DS has a high content of total polyphenols (605 mg/100 g), and is rich in tannins (357 mg/100 g), flavonoids (40.5 mg/100 g), and flavanols (31.7 mg/100 g) that are known potent antioxidants. Furthermore, DS, and polyphenols extracted from DS, the most abundant bioactive constituent of DS are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus, respectively. It has further been shown that the extracted polyphenols independently suppress the growth of bacteria at minimum inhibitory concentration (MIC) of 30 and 20 mg/mL for E. coli and S. aureus, and have observed that DS behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. At sub-lethal MIC concentrations DS demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations DS demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in DS did not significantly contribute to this effect. These findings highlight that DS’s antimicrobial activity is mediated through hydrogen peroxide generation in inducing oxidative stress in bacteria. PMID:26952177

  13. Comparison of the activities of extracts of Escherichia coli and Salmonella typhimurium in amino acid incorporation.

    PubMed

    Bassel, B A; Curry, M E

    1973-11-01

    We have compared the amino acid incorporating activities of extracts of Escherichia coli and Salmonella typhimurium in in vitro protein-synthesizing systems directed by bacterial messenger ribonucleic acid (mRNA) of both species and by the genomes of coliphages Qbeta and f2. E. coli and S. typhimurium extracts translate both homologous and heterologous bacterial mRNAs at comparable rates. S. typhimurium extracts translate phage RNAs only 10 to 15% as fast as E. coli extracts do. The presence of glucose in the growth medium increases the activity of S. typhimurium extracts three- to fourfold in the phage RNA-directed systems. Glucose has a much more limited effect on the activities of E. coli extracts. We show that similar amounts of phage RNA-ribosome complexes are formed in both the E. coli and the S. typhimurium systems, indicating that the different activities observed may be attributed to different rates of peptide elongation or to the formation of complexes at different sites on the RNA strand.

  14. Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals

    PubMed Central

    Fedoriw, Andrew M.; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2012-01-01

    Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals. PMID:22275877

  15. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12.

    PubMed

    Sellars, Laura E; Bryant, Jack A; Sánchez-Romero, María-Antonia; Sánchez-Morán, Eugenio; Busby, Stephen J W; Lee, David J

    2017-08-03

    In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.

  16. 43 CFR 4.476 - Conduct of hearing; reporter's fees; transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Conduct of hearing; reporter's fees... Procedures (inside and Outside Grazing Districts) § 4.476 Conduct of hearing; reporter's fees; transcript. (a...'s fees shall be borne by the Government. Each party shall pay for any copies of the transcript...

  17. The 70 S monosome accumulation and in vitro initiation complex formation by Escherichia coli ribosomes at 5 C. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Broeze, R. J.; Pope, D. H.

    1978-01-01

    The inhibition of translation which is observed after shifting Escherichia coli to low temperature was investigated. 70 S ribosomes were isolated from E. coli 8 hours after a shift to 5 C synthesized protein in the absence of added mRNA (i.e., endogenous protein synthesis by 70 S monosomes) at a rate which was three times greater than the rate of endogenous protein synthesis by 70 S ribosomes which were isolated at the time of the shift to 5 C. Calculations based on the rates of endogenous protein synthesis and polyphenylalanine synthesis indicate that 70 S monosomes comprise only 0.1% of the total E. coli 70 S ribosome population after 8 hours at 5 c. Experiments designed to test initiation complex formation on ApUpG or formaldehyde treated MS-2 viral RNA demonstrated that, although the rate of formation of 30 S initiation complexes was not inhibited, the rate of formation of active 70 S initiation complexes, able to react with puromycin, was inhibited to a great extent at 5 C. A model depicting the effects of low temperature on the E. coli translation system is proposed.

  18. Transfer of Herb-Resistance Plasmid From Escherichia coli to Staphylococcus aureus Residing in the Human Urinary Tract

    PubMed Central

    Tong, Yan Qing; Xin, Bing; Zhu, Li

    2014-01-01

    Background: Plasmid transfer among bacteria provides a means for dissemination of resistance. Plasmid Analysis has made it possible to track plasmids that induce resistance in bacterial population. Objectives: To screen the presence of herb-resistance plasmid in Escherichia coli strains and determine the transferability of this resistance plasmid directly from E. coli to the Gram-positive, Staphylococcus aureus. Materials and Methods: The donor strain E. coli CP9 and recipient strain S. aureus RN450RF were isolated from UTI patients. E. coli CP9 was highly resistant to herbal concoction. Isolates of S. aureus RN450RF were fully susceptible. Total plasmid DNA was prepared and transferred into E. coli DH5α. Transconjugants were selected on agar plates containing serial dilutions of herbal concoction. Resistance plasmid was transferred to susceptible S. aureus RN450RFin triple replicas. The mating experiments were repeated twice. Results: The identified 45 kb herb-resistance plasmid could be transferred from E. coli CP9 isolates to E. coli DH5α. As a consequence E. coli DH5α transconjugant MIC increased from 0.0125 g/mL to 0.25 g/mL. The plasmid was easily transferred from E. coli CP9 strain to S. aureus RN450RF with a mean transfer rate of 1×10-2 transconjugants/recipient. The E. coli donor and the S. aureus RN450RF transconjugant contained a plasmid of the same size, which was absent in the recipient before mating. Susceptibility testing showed that the S. aureus RN450RF transconjugant was resistant to herbal concoction. Conclusions: E. coli herb-resistance plasmid can replicate and be expressed in S. aureus. PMID:25147679

  19. Affinity Isolation and I-DIRT Mass Spectrometric Analysis of the Escherichia coli O157:H7 Sakai RNA Polymerase Complex▿

    PubMed Central

    Lee, David J.; Busby, Stephen J. W.; Westblade, Lars F.; Chait, Brian T.

    2008-01-01

    Bacteria contain a single multisubunit RNA polymerase that is responsible for the synthesis of all RNA. Previous studies of the Escherichia coli K-12 laboratory strain identified a group of effector proteins that interact directly with RNA polymerase to modulate the efficiency of transcription initiation, elongation, or termination. Here we used a rapid affinity isolation technique to isolate RNA polymerase from the pathogenic Escherichia coli strain O157:H7 Sakai. We analyzed the RNA polymerase enzyme complex using mass spectrometry and identified associated proteins. Although E. coli O157:H7 Sakai contains more than 1,600 genes not present in the K-12 strain, many of which are predicted to be involved in transcription regulation, all of the identified proteins in this study were encoded on the “core” E. coli genome. PMID:18083804

  20. A Novel Selenite- and Tellurite-Inducible Gene in Escherichia coli

    PubMed Central

    Guzzo, Julie; Dubow, Michael S.

    2000-01-01

    Selenium is both an essential and a toxic trace element, and the range of concentrations between the two is extremely narrow. Although tellurium is not essential and is only rarely found in the environment, it is considered to be extremely toxic. Several hypotheses have been proposed to account for the toxic effects of selenite and tellurite. However, these potential mechanisms have yet to be fully substantiated. Through screening of an Escherichia coli luxAB transcriptional gene fusion library, we identified a clone whose luminescence increased in the presence of increasing concentrations of sodium selenite or sodium tellurite. Cloning and sequencing of the luxAB junction revealed that the fusion had occurred in a previously uncharacterized open reading frame, termed o393 or yhfC, which we have now designated gutS, for gene up-regulated by tellurite and selenite. Transcription from gutS in the presence of selenite or tellurite was confirmed by RNA dot blot analysis. In vivo expression of the GutS polypeptide, using the pET expression system, revealed a polypeptide of approximately 43 kDa, in good agreement with its predicted molecular mass. Although the function of GutS remains to be elucidated, homology searches as well as protein motif and secondary-structure analyses have provided clues which may implicate GutS in transport in response to selenite and tellurite. PMID:11055951

  1. Synergistic induction of the heat shock response in Escherichia coli by simultaneous treatment with chemical inducers.

    PubMed Central

    Van Dyk, T K; Reed, T R; Vollmer, A C; LaRossa, R A

    1995-01-01

    Escherichia coli strains carrying transcriptional fusions of four sigma 32-controlled E. coli heat shock promoters to luxCDABE or lacZ reporter genes were stressed by chemicals added singly or in pairs. Much more than additive induction resulted from combinations of cadmium chloride, copper sulfate, ethanol, formamide, 4-nitrophenol, and pentachlorophenol. PMID:7592357

  2. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases.

    PubMed

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-04-20

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Overexpressed Proteins in Hypervirulent Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 Compared to E. coli O157:H7 EDL933 Clade 3 Strain.

    PubMed

    Amigo, Natalia; Zhang, Qi; Amadio, Ariel; Zhang, Qunjie; Silva, Wanderson M; Cui, Baiyuan; Chen, Zhongjian; Larzabal, Mariano; Bei, Jinlong; Cataldi, Angel

    2016-01-01

    Escherichia coli O157:H7 is responsible for severe diarrhea and hemolytic uremic syndrome (HUS), and predominantly affects children under 5 years. The major virulence traits are Shiga toxins, necessary to develop HUS and the Type III Secretion System (T3SS) through which bacteria translocate effector proteins directly into the host cell. By SNPs typing, E. coli O157:H7 was separated into nine different clades. Clade 8 and clade 6 strains were more frequently associated with severe disease and HUS. In this study, we aimed to identify differentially expressed proteins in two strains of E. coli O157:H7 (clade 8 and clade 6), obtained from cattle and compared them with the well characterized reference EDL933 strain (clade 3). Clade 8 and clade 6 strains show enhanced pathogenicity in a mouse model and virulence-related properties. Proteins were extracted and analyzed using the TMT-6plex labeling strategy associated with two dimensional liquid chromatography and mass spectrometry in tandem. We detected 2241 proteins in the cell extract and 1787 proteins in the culture supernatants. Attention was focused on the proteins related to virulence, overexpressed in clade 6 and 8 strains compared to EDL933 strain. The proteins relevant overexpressed in clade 8 strain were the curli protein CsgC, a transcriptional activator (PchE), phage proteins, Stx2, FlgM and FlgD, a dienelactone hydrolase, CheW and CheY, and the SPATE protease EspP. For clade 6 strain, a high overexpression of phage proteins was detected, mostly from Stx2 encoding phage, including Stx2, flagellin and the protease TagA, EDL933_p0016, dienelactone hydrolase, and Haemolysin A, amongst others with unknown function. Some of these proteins were analyzed by RT-qPCR to corroborate the proteomic data. Clade 6 and clade 8 strains showed enhanced transcription of 10 out of 12 genes compared to EDL933. These results may provide new insights in E. coli O157:H7 mechanisms of pathogenesis.

  4. Heterochromatic siRNAs and DDM1 Independently Silence Aberrant 5S rDNA Transcripts in Arabidopsis

    PubMed Central

    Blevins, Todd; Pontes, Olga; Pikaard, Craig S.; Meins, Frederick

    2009-01-01

    5S ribosomal RNA gene repeats are arranged in heterochromatic arrays (5S rDNA) situated near the centromeres of Arabidopsis chromosomes. The chromatin remodeling factor DDM1 is known to maintain 5S rDNA methylation patterns while silencing transcription through 5S rDNA intergenic spacers (IGS). We mapped small-interfering RNAs (siRNA) to a composite 5S rDNA repeat, revealing a high density of siRNAs matching silenced IGS transcripts. IGS transcript repression requires proteins of the heterochromatic siRNA pathway, including RNA polymerase IV (Pol IV), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Using molecular and cytogenetic approaches, we show that the DDM1 and siRNA-dependent silencing effects are genetically independent. DDM1 suppresses production of the siRNAs, however, thereby limiting RNA-directed DNA methylation at 5S rDNA repeats. We conclude that DDM1 and siRNA-dependent silencing are overlapping processes that both repress aberrant 5S rDNA transcription and contribute to the heterochromatic state of 5S rDNA arrays. PMID:19529764

  5. Organization of genes for transcription and translation in the rif region of the Escherichia coli chromosome. [uv radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, M.; Nomura, M.

    1979-01-01

    The lambda rif/sup d/18 transducing phage is known to carry several genes for components of transcriptional and translational machineries; these genes are clustered in the rif region at 88 min on the Escherichia coli genetic map. They include a set of genes for rRNA's (rrnB), a gene for spacer tRNA, tRNA/sub 2//sup Glu/(tgtB), one of the two genes for EF-TU (tufB), genes for four ribosomal proteins (rplK, A, J, and L), genes for the ..beta.. and ..beta..' subunits of RNA polymerase (rpoB and rpoC), and genes for three tRNA's (tyrU, gluT, and thrT). An additional tRNA gene (subsequently identified asmore » thrU by Landy and his co-workers) and a gene for a protein (protein U) with unknown functions were found to be carried by lambda rif/sup d/18. We analyzed the organization of these genes by using various deletion and hybrid phages derived from lambda rif/sup d/18 and lambda rif/sup d/12, a phage related to lambda rif/sup d/18. The expression of various genes was examined in uv-irradiated cells infected with these transducing phages. Two main conclusions were obtained. First, the four tRNA genes are not cotranscribed with the genes in rrnB, even though these tRNA genes are located close to the distal end of rrnB. Second, the four ribosomal protein genes are organized into two separate transcriptional units; rplK and A are in one unit and rplJ and L are in the second unit.« less

  6. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076.

    PubMed

    Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo

    2017-03-12

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli .

  7. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council microbial detection methods in finished compost and regrowth potential of Salmonella spp. and Escherichia coli O157:H7 in finished compost.

    PubMed

    Reynnells, Russell; Ingram, David T; Roberts, Cheryl; Stonebraker, Richard; Handy, Eric T; Felton, Gary; Vinyard, Bryan T; Millner, Patricia D; Sharma, Manan

    2014-07-01

    Bacterial pathogens may survive and regrow in finished compost due to incomplete thermal inactivation during or recontamination after composting. Twenty-nine finished composts were obtained from 19 U.S. states and were separated into three broad feedstock categories: biosolids (n=10), manure (n=4), and yard waste (n=15). Three replicates of each compost were inoculated with ≈ 1-2 log CFU/g of nonpathogenic Escherichia coli, Salmonella spp., and E. coli O157:H7. The U.S. Environmental Protection Agency's (EPA) protocols and U.S. Composting Council's (USCC) Test Methods for the Examination of Composting and Compost (TMECC) were compared to determine which method recovered higher percentages of inoculated E. coli (representing fecal coliforms) and Salmonella spp. from 400-g samples of finished composts. Populations of Salmonella spp. and E. coli O157:H7 were determined over 3 days while stored at 25°C and compared to physicochemical parameters to predict their respective regrowth potentials. EPA Method 1680 recovered significantly (p=0.0003) more inoculated E. coli (68.7%) than TMECC 07.01 (48.1%) due to the EPA method using more compost in the initial homogenate, larger transfer dilutions, and a larger most probable number scheme compared to TMECC 07.01. The recoveries of inoculated Salmonella spp. by Environmental Protection Agency Method 1682 (89.1%) and TMECC 07.02 (72.4%) were not statistically significant (p=0.44). The statistically similar recovery percentages may be explained by the use of a nonselective pre-enrichment step used in both methods. No physicochemical parameter (C:N, moisture content, total organic carbon) was able to serve as a sole predictor of regrowth of Salmonella spp. or E. coli O157:H7 in finished compost. However, statistical analysis revealed that the C:N ratio, total organic carbon, and moisture content all contributed to pathogen regrowth potential in finished composts. It is recommended that the USCC modify TMECC protocols to test

  8. An homolog of the Frz Phosphoenolpyruvate:carbohydrate phosphoTransferase System of extraintestinal pathogenic Escherichia coli is encoded on a genomic island in specific lineages of Streptococcus agalactiae.

    PubMed

    Patron, Kévin; Gilot, Philippe; Camiade, Emilie; Mereghetti, Laurent

    2015-06-01

    We identified a Streptococcus agalactiae metabolic region (fru2) coding for a Phosphoenolpyruvate:carbohydrate phosphoTransferase System (PTS) homologous to the Frz system of extraintestinal pathogenic Escherichia coli strains. The Frz system is involved in environmental sensing and regulation of the expression of adaptation and virulence genes in E. coli. The S. agalactiae fru2 region codes three subunits of a PTS transporter of the fructose-mannitol family, a transcriptional activator of PTSs of the MtlR family, an allulose-6 phosphate-3-epimerase, a transaldolase and a transketolase. We demonstrated that all these genes form an operon. The fru2 operon is present in a 17494-bp genomic island. We analyzed by multilocus sequence typing a population of 492 strains representative of the S. agalactiae population and we showed that the presence of the fru2 operon is linked to the phylogeny of S. agalactiae. The fru2 operon is always present within strains of clonal complexes CC 1, CC 7, CC 10, CC 283 and singletons ST 130 and ST 288, but never found in other CCs and STs. Our results indicate that the fru2 operon was acquired during the evolution of the S. agalactiae species from a common ancestor before the divergence of CC 1, CC 7, CC 10, CC 283, ST 130 and ST 288. As S. agalactiae strains of CC 1 and CC 10 are frequently isolated from adults with invasive disease, we hypothesize that the S. agalactiae Fru2 system senses the environment to allow the bacterium to adapt to new conditions encountered during the infection of adults. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef.

    PubMed

    Reid, Rachael; Fanning, Séamus; Whyte, Paul; Kerry, Joe; Bolton, Declan

    2017-04-01

    This study investigated the fate of Salmonella Typhimurium and Escherichia coli O157 on hot boned versus conventionally chilled beef. Beef samples were individually inoculated with S. Typhimurium ATCC 14028, S. Typhimurium 844, E. coli O157 EDL 933 or E. coli T13. Half the samples were subject to the same time-temperature chilling profile used for conventionally chilling beef carcasses while the other half was subject to hot boned conditions. The surface pH (5.5) and a w (0.95 to 0.97) were stable. S. Typhimurium and E. coli O157 counts, which decreased by up to 1.0 and 1.5log 10 cfucm -2 , respectively, were statistically similar (P>0.05), regardless of the chilling regime applied, with the exception of E. coli O157 EDL 933, where the counts on hot boned beef were significantly (P<0.05) higher. It was concluded that any decrease in pathogenic bacteria during beef chilling may be significantly (P<0.05) less for hot boned beef depending on the bacterial strain. Hot boning may therefore result in an increased risk to the consumer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The polymorphic aggregative phenotype of Shiga toxin-producing Escherichia coli O111 depends on rpoS and curli

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O111 is an emerging non-O157:H7 Shiga toxin-producing E. coli (STEC). We previously reported that outbreak and environmental, but not sporadic case, strains of STEC O111 share a distinct aggregation phenotype (M. E. Diodati, A. H. Bates, M. B. Cooley, S. Walker, R. E. Mandrell, and ...

  11. Enhancement of L-cysteine production by disruption of yciW in Escherichia coli.

    PubMed

    Kawano, Yusuke; Ohtsu, Iwao; Takumi, Kazuhiro; Tamakoshi, Ai; Nonaka, Gen; Funahashi, Eri; Ihara, Masaki; Takagi, Hiroshi

    2015-02-01

    Using in silico analysis, the yciW gene of Escherichia coli was identified as a novel L-cysteine regulon that may be regulated by the transcriptional activator CysB for sulfur metabolic genes. We found that overexpression of yciW conferred tolerance to L-cysteine, but disruption of yciW increased L-cysteine production in E. coli. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. The E. coli Anti-Sigma Factor Rsd: Studies on the Specificity and Regulation of Its Expression

    PubMed Central

    Hofmann, Nina; Wurm, Reinhild; Wagner, Rolf

    2011-01-01

    Background Among the seven different sigma factors in E. coli σ70 has the highest concentration and affinity for the core RNA polymerase. The E. coli protein Rsd is regarded as an anti-sigma factor, inhibiting σ70-dependent transcription at the onset of stationary growth. Although binding of Rsd to σ70 has been shown and numerous structural studies on Rsd have been performed the detailed mechanism of action is still unknown. Methodology/Principal Findings We have performed studies to unravel the function and regulation of Rsd expression in vitro and in vivo. Cross-linking and affinity binding revealed that Rsd is able to interact with σ70, with the core enzyme of RNA polymerase and is able to form dimers in solution. Unexpectedly, we find that Rsd does also interact with σ38, the stationary phase-specific sigma factor. This interaction was further corroborated by gel retardation and footprinting studies with different promoter fragments and σ38- or σ70-containing RNA polymerase in presence of Rsd. Under competitive in vitro transcription conditions, in presence of both sigma factors, a selective inhibition of σ70-dependent transcription was prevailing, however. Analysis of rsd expression revealed that the nucleoid-associated proteins H-NS and FIS, StpA and LRP bind to the regulatory region of the rsd promoters. Furthermore, the major promoter P2 was shown to be down-regulated in vivo by RpoS, the stationary phase-specific sigma factor and the transcription factor DksA, while induction of the stringent control enhanced rsd promoter activity. Most notably, the dam-dependent methylation of a cluster of GATC sites turned out to be important for efficient rsd transcription. Conclusions/Significance The results contribute to a better understanding of the intricate mechanism of Rsd-mediated sigma factor specificity changes during stationary phase. PMID:21573101

  13. The E. coli anti-sigma factor Rsd: studies on the specificity and regulation of its expression.

    PubMed

    Hofmann, Nina; Wurm, Reinhild; Wagner, Rolf

    2011-05-06

    Among the seven different sigma factors in E. coli σ(70) has the highest concentration and affinity for the core RNA polymerase. The E. coli protein Rsd is regarded as an anti-sigma factor, inhibiting σ(70)-dependent transcription at the onset of stationary growth. Although binding of Rsd to σ(70) has been shown and numerous structural studies on Rsd have been performed the detailed mechanism of action is still unknown. We have performed studies to unravel the function and regulation of Rsd expression in vitro and in vivo. Cross-linking and affinity binding revealed that Rsd is able to interact with σ(70), with the core enzyme of RNA polymerase and is able to form dimers in solution. Unexpectedly, we find that Rsd does also interact with σ(38), the stationary phase-specific sigma factor. This interaction was further corroborated by gel retardation and footprinting studies with different promoter fragments and σ(38)- or σ(70)-containing RNA polymerase in presence of Rsd. Under competitive in vitro transcription conditions, in presence of both sigma factors, a selective inhibition of σ(70)-dependent transcription was prevailing, however. Analysis of rsd expression revealed that the nucleoid-associated proteins H-NS and FIS, StpA and LRP bind to the regulatory region of the rsd promoters. Furthermore, the major promoter P2 was shown to be down-regulated in vivo by RpoS, the stationary phase-specific sigma factor and the transcription factor DksA, while induction of the stringent control enhanced rsd promoter activity. Most notably, the dam-dependent methylation of a cluster of GATC sites turned out to be important for efficient rsd transcription. The results contribute to a better understanding of the intricate mechanism of Rsd-mediated sigma factor specificity changes during stationary phase.

  14. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    PubMed

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  15. The T-cell receptor beta chain CDR3 region of BV8S1/BJ1S5 transcripts in type 1 diabetes.

    PubMed

    Naserke, H E; Durinovic-Bellò, I; Seidel, D; Ziegler, A G

    1996-01-01

    We recently described the T-cell receptor (TCR) beta chain CDR3 motif S-SDRLG-NQPQH (BV8S1-BJ1S5) in an islet-specific T-cell clone (K2.12) from a type 1 diabetic patient (AS). A similar motif (RLGNQ) was also reported in a T-cell clone of non-obese diabetic (NOD) mice by others. In order to determine the frequency of our motif in selected and unselected T-cell populations, we cloned and sequenced the CDR3 region of BV8S1-BJ1S5 transcripts. These transcripts were derived from unstimulated peripheral blood T lymphocytes from two type 1 diabetic patients (AS and FS) and their non-diabetic sibling (WS), as well as from an islet-specific T-cell line of one of the patients. In addition, we compared the structure and composition of the CDR3 region in BV8S1-BJ1S5 transcripts from peripheral blood T cells between the patients and their non-diabetic sibling (>50 sequences each). We found that 30% of the islet-specific T-cell line cDNA clones expressed the entire sequence-motif, whereas it was absent in the clones of unstimulated peripheral blood T cells from both patients and their non-diabetic sibling. The average length of the CDR3 region was shorter in the patients (mean AS 9.9, FS 9.9, versus WS 10.7, p = 0.0037) and the number of inserted nucleotides in N nucleotide addition at the DJ-junction lower (mean AS 3.5, FS 3. 2, versus WS 5.2, P = <10(-4)) as compared with their non-diabetic sibling. Moreover, the pattern of amino acid usage in the CDR3 region was dissimilar at positions 5 and 6, where polar amino acids predominated in both diabetic siblings. In contrast, basic amino acids are preferentially used at position 5 in the clones of the non-diabetic sibling. These data provide information on the general structure of the TCR(BV8S1-BJ1S5) CDR3 region in type 1 diabetes and may indicate differences in the amino and nucleic acid composition of the TCR beta chain CDR3 region between two type 1 diabetic patients and their non-diabetic sibling.

  16. Interleukin-10 (IL-10) mediated suppression of IL-12 production in RAW 264.7 cells also involves c-rel transcription factor

    PubMed Central

    Rahim, Sheikh Showkat; Khan, Nooruddin; Boddupalli, Chandra Sekhar; Hasnain, Seyed E; Mukhopadhyay, Sangita

    2005-01-01

    Interleukin-10 (IL-10) is known to inhibit IL-12 production in macrophages primarily at the transcriptional level with the involvement of p50 and p65 nuclear factor-κB (NF-κB). We demonstrate that the c-rel transcription factor also plays a major role in IL-10-mediated IL-12 suppression. Treatment of macrophages with recombinant IL-10 inhibited nuclear c-rel levels, whereas addition of neutralizing anti-IL-10 antibody up-regulated both nuclear c-rel levels and IL-12 production by macrophages. Decreased nuclear c-rel was associated with a reduction in phosphorylation of inhibitory kappa B alpha (IκBα) in the cytoplasm, indicating that IL-10 prevents degradation of IκBα and the subsequent translocation of c-rel into the nucleus. Treatment with leptomycin B, a known inhibitor of c-rel at a concentration of 10 nm, when used with anti-IL-10 antibody, resulted in reduced expression of IL-12. In a complementary experiment, in vitro transient expression of p65 NF-κB could not rescue the inhibitory effect of IL-10 on IL-12 production, suggesting that NF-κB alone was not sufficient to restore IL-12 production during IL-10 treatment. However, over-expression of c-rel resulted in IL-12 restoration upon stimulation with lipopolysaccharide plus interferon-γ during IL-10 treatment. Our studies highlight the involvement of c-rel in IL-10-mediated IL-12 regulation. PMID:15720433

  17. Neem (Azadirachta indica A. Juss) Oil to Tackle Enteropathogenic Escherichia coli

    PubMed Central

    Del Serrone, Paola; Nicoletti, Marcello

    2015-01-01

    Neem (Azadirachta indica A. Juss) oil (NO) was assayed against forty-eight isolates of Escherichia coli by standardised disc diffusion test and microdilution test. By molecular biology characterization, fourteen isolates resulted in diarrheagenic E. coli with sixteen primer pairs that specifically amplify unique sequences of virulence genes and of 16S rRNA. The NO showed biological activity against all isolates. The bacterial growth inhibition zone by disc diffusion method (100 µL NO) ranged between 9.50 ± 0.70 and 30.00 ± 1.00 mm. The antibacterial activity was furthermore determined at lower NO concentrations (1 : 10–1 : 10,000). The percent of growth reduction ranged between 23.71 ± 1.00 and 99.70 ± 1.53. The highest bacterial growth reduction was 1 : 10 NO concentration with 50 µL of bacterial suspension (ca. 1 × 106 CFU/mL). There is significant difference between the antibacterial activities against pathogenic and nonpathogenic E. coli, as well as NO and ciprofloxacin activities. Viable cells after the different NO concentration treatments were checked by molecular biology assay using PMA dye. On the basis of the obtained results, NO counteracts E. coli and also influences the virulence of E. coli viable cells after NO treatment. The NO metabolomic composition was obtained using fingerprint HPTLC. PMID:26064900

  18. Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho.

    PubMed

    Shashni, Rajesh; Qayyum, M Zuhaib; Vishalini, V; Dey, Debashish; Sen, Ranjan

    2014-09-01

    The bacterial transcription terminator, Rho, terminates transcription at half of the operons. According to the classical model derived from in vitro assays on a few terminators, Rho is recruited to the transcription elongation complex (EC) by recognizing specific sites (rut) on the nascent RNA. Here, we explored the mode of in vivo recruitment process of Rho. We show that sequence specific recognition of the rut site, in majority of the Rho-dependent terminators, can be compromised to a great extent without seriously affecting the genome-wide termination function as well as the viability of Escherichia coli. These terminators function optimally only through a NusG-assisted recruitment and activation of Rho. Our data also indicate that at these terminators, Rho-EC-bound NusG interaction facilitates the isomerization of Rho into a translocase-competent form by stabilizing the interactions of mRNA with the secondary RNA binding site, thereby overcoming the defects of the primary RNA binding functions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Translational autocontrol of the Escherichia coli ribosomal protein S15.

    PubMed

    Portier, C; Dondon, L; Grunberg-Manago, M

    1990-01-20

    When rpsO, the gene encoding the ribosomal protein S15 in Escherichia coli, is carried by a multicopy plasmid, the mRNA synthesis rate of S15 increases with the gene dosage but the rate of synthesis of S15 does not rise. A translational fusion between S15 and beta-galactosidase was introduced on the chromosome in a delta lac strain and the expression of beta-galactosidase studied under different conditions. The presence of S15 in trans represses the beta-galactosidase level five- to sixfold, while the synthesis rate of the S15-beta-galactosidase mRNA decreases by only 30 to 50%. These data indicate that S15 is subject to autogenous translational control. Derepressed mutants were isolated and sequenced. All the point mutations map in the second codon of S15, suggesting a location for the operator site that is very near to the translation initiation codon. However, the creation of deletion mutations shows that the operator extends into the 5' non-coding part of the message, thus overlapping the ribosome loading site.

  20. Neutron Scattering and the 30 S Ribosomal Subunit of E. Coli

    DOE R&D Accomplishments Database

    Moore, P. B.; Engelman, D. M.; Langer, J. A.; Ramakrishnan, V. R.; Schindler, D. G.; Schoenborn, B. P.; Sillers, I. Y.; Yabuki, S.

    1982-06-01

    This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today.

  1. Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulations in expression and heterocomplex prevails under the high-temperature stress condition in vitro.

    PubMed

    Park, Soo Min; Kim, Keun Pill; Joe, Myung Kuk; Lee, Mi Ok; Koo, Hyun Jo; Hong, Choo Bong

    2015-04-01

    Seven genomic clones of tobacco (Nicotiana tabacum W38) cytosolic class I small heat shock proteins (sHSPs), probably representing all members in the class, were isolated and found to have 66 to 92% homology between their nucleotide sequences. Even though all seven sHSP genes showed heat shock-responsive accumulation of their transcripts and proteins, each member showed discrepancies in abundance and timing of expression upon high-temperature stress. This was mainly the result of transcriptional regulation during mild stress conditions and transcriptional and translational regulation during strong stress conditions. Open reading frames (ORFs) of these genomic clones were expressed in Escherichia coli and the sHSPs were purified from E. coli. The purified tobacco sHSPs rendered citrate synthase and luciferase soluble under high temperatures. At room temperature, non-denaturing pore exclusion polyacrylamide gel electrophoresis on three sHSPs demonstrated that the sHSPs spontaneously formed homo-oligomeric complexes of 200 ∼ 240 kDa. However, under elevated temperatures, hetero-oligomeric complexes between the sHSPs gradually prevailed. Atomic force microscopy showed that the hetero-oligomer of NtHSP18.2/NtHSP18.3 formed a stable oligomeric particle similar to that of the NtHSP18.2 homo-oligomer. These hetero-oligomers positively influenced the revival of thermally inactivated luciferase. Amino acid residues mainly in the N-terminus are suggested for the exchange of the component sHSPs and the formation of dominant hetero-oligomers under high temperatures. © 2014 John Wiley & Sons Ltd.

  2. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10

    PubMed Central

    Espley, Richard V; Hellens, Roger P; Putterill, Jo; Stevenson, David E; Kutty-Amma, Sumathi; Allan, Andrew C

    2007-01-01

    Anthocyanin concentration is an important determinant of the colour of many fruits. In apple (Malus × domestica), centuries of breeding have produced numerous varieties in which levels of anthocyanin pigment vary widely and change in response to environmental and developmental stimuli. The apple fruit cortex is usually colourless, although germplasm does exist where the cortex is highly pigmented due to the accumulation of either anthocyanins or carotenoids. From studies in a diverse array of plant species, it is apparent that anthocyanin biosynthesis is controlled at the level of transcription. Here we report the transcript levels of the anthocyanin biosynthetic genes in a red-fleshed apple compared with a white-fleshed cultivar. We also describe an apple MYB transcription factor, MdMYB10, that is similar in sequence to known anthocyanin regulators in other species. We further show that this transcription factor can induce anthocyanin accumulation in both heterologous and homologous systems, generating pigmented patches in transient assays in tobacco leaves and highly pigmented apple plants following stable transformation with constitutively expressed MdMYB10. Efficient induction of anthocyanin biosynthesis in transient assays by MdMYB10 was dependent on the co-expression of two distinct bHLH proteins from apple, MdbHLH3 and MdbHLH33. The strong correlation between the expression of MdMYB10 and apple anthocyanin levels during fruit development suggests that this transcription factor is responsible for controlling anthocyanin biosynthesis in apple fruit; in the red-fleshed cultivar and in the skin of other varieties, there is an induction of MdMYB10 expression concurrent with colour formation during development. Characterization of MdMYB10 has implications for the development of new varieties through classical breeding or a biotechnological approach. PMID:17181777

  3. Basic leucine zipper protein Cnc-C is a substrate and transcriptional regulator of the Drosophila 26S proteasome.

    PubMed

    Grimberg, Kristian Björk; Beskow, Anne; Lundin, Daniel; Davis, Monica M; Young, Patrick

    2011-02-01

    While the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein. This screen identified Cnc (cap 'n' collar [CNC]; basic region leucine zipper) as a candidate transcriptional regulator of proteasome component expression. In fact, 20S proteasome activity was reduced in cells depleted of cnc. Immunoblot assays against proteasome components revealed a general decline in both 19S regulatory complex and 20S proteasome subunits after RNAi depletion of this transcription factor. Transcript-specific silencing revealed that the longest of the seven transcripts for the cnc gene, cnc-C, was needed for proteasome and p97 ATPase production. Quantitative reverse transcription-PCR confirmed the role of Cnc-C in activation of transcription of genes encoding proteasome components. Expression of a V5-His-tagged form of Cnc-C revealed that the transcription factor is itself a proteasome substrate that is stabilized when the proteasome is inhibited. We propose that this single cnc gene in Drosophila resembles the ancestral gene family of mammalian nuclear factor erythroid-derived 2-related transcription factors, which are essential in regulating oxidative stress and proteolysis.

  4. Binding of transcription termination protein nun to nascent RNA and template DNA.

    PubMed

    Watnick, R S; Gottesman, M E

    1999-12-17

    The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.

  5. Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF.

    PubMed Central

    Hoe, N P; Minion, F C; Goguen, J D

    1992-01-01

    In Escherichia coli, a yopE::lacZ fusion was found to be regulated by temperature in the presence of the cloned BamHI G fragment of Yersinia pestis plasmid pCD1, which contains the lcrF locus. Increasing the copy number of lcrF relative to that of the yopE reporter had a negligible effect on the induction ratio (26 versus 37 degrees C) but caused large reductions in the absolute levels of yopE transcription. We localized the lcrF gene by monitoring the induction phenotype of BamHI G deletion derivatives. Sequencing revealed an open reading frame capable of encoding a protein of 30.8 kDa. A protein product of this size was detected in a T7 expression system, and LcrF-dependent yopE-specific DNA binding activity was observed. As expected, LcrF exhibited 98% homology to VirF of Yersinia enterocolitica and significant homology to the carboxy termini of other members of the AraC family of transcriptional regulatory proteins. These proteins could be divided into two classes according to function: those regulating operons involved in catabolism of carbon and energy sources and those involved in regulating virulence genes. lcrF::lacZ transcriptional fusions were constructed and analyzed in Y. pestis and E. coli. The activity of the fusions was not affected by the native pCD1 virulence plasmid, an intact lcrF gene, or temperature. Thus, induction of lcrF transcription is not essential for temperature-dependent activation of yopE transcription. A portion of LcrF was found associated with the membrane fraction in E. coli; however, pulse-chase experiments indicated that this result is an artifact of fractionation. Images PMID:1624422

  6. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration

    PubMed Central

    Rydenfelt, Mattias; Cox, Robert Sidney; Garcia, Hernan; Phillips, Rob

    2014-01-01

    Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in correlation (“promoter entanglement”) between transcription of different genes. We develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression for a general set of promoters and the resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could be important for understanding gene expression in many regulatory settings. PMID:24580252

  7. Deactivation of Escherichia coli by the plasma needle

    NASA Astrophysics Data System (ADS)

    Sladek, R. E. J.; Stoffels, E.

    2005-06-01

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 104-105 colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40°C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60°C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  8. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression.

    PubMed

    Borirak, Orawan; Rolfe, Matthew D; de Koning, Leo J; Hoefsloot, Huub C J; Bekker, Martijn; Dekker, Henk L; Roseboom, Winfried; Green, Jeffrey; de Koster, Chris G; Hellingwerf, Klaas J

    2015-10-01

    Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Antisense transcription is pervasive but rarely conserved in enteric bacteria.

    PubMed

    Raghavan, Rahul; Sloan, Daniel B; Ochman, Howard

    2012-01-01

    Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell's transcription machinery. IMPORTANCE Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing

  10. RESISTANCE AND CROSS-RESISTANCE OF ESCHERICHIA COLI S MUTANTS TO THE RADIOMIMETIC AGENT PROFLAVINE

    PubMed Central

    Woody-Karrer, Pearl; Greenberg, Joseph

    1964-01-01

    Woody-Karrer, Pearl (Palo Alto Medical Research Foundation, Palo Alto, Calif.), and Joseph Greenberg. Resistance and cross-resistance of Escherichia coli S mutants to the radiomimetic agent proflavine. J. Bacteriol. 87:536–542. 1964.—All 50 of the first-step mutants of Escherichia coli S selected for resistance to proflavine were resistant to ultraviolet light and each of five different radiomimetic chemicals. The mutants were classified into eight types on the basis of their relative resistance to six different radiomimetic drugs and on the basis of the shape of their ultraviolet survival curves. Three of these types are identical to types previously isolated with other radiomimetic drugs; five of the types are new. A high proportion of the clones surviving proflavine treatment were phenotypically but not genetically resistant, and no strains were isolated which were resistant to proflavine but were not resistant to radiation. PMID:14129667

  11. Evaluation of the impact of quorum sensing transcriptional regulator SdiA on long-term persistence and fecal shedding of Escherichia coli O157:H7 in weaned calves.

    PubMed

    Sharma, V K; Bearson, S M D

    2013-04-01

    Escherichia coli O157:H7 (O157) colonization of bovine intestine is mediated through the locus of enterocyte effacement (LEE)-encoded type III secretion system and secreted virulence proteins that promote colonization of the recto-anal junction (RAJ) of the large intestine of cattle. The quorum sensing transcriptional regulator SdiA, a homolog of LuxR, has been shown in vitro to repress LEE strongly when overexpressed from a multi-copy recombinant plasmid or when its activity is enhanced by the binding of N-acyl-L-homoserine lactones (AHLs), the quorum sensing signals that are detected by SdiA. Since LEE has been shown to be essential for colonization and persistence of O157 in bovine intestine, we examined whether a mutation in sdiA, which normally represses LEE in vitro, would also exert negative effect on colonization and long-term persistence of O157 in weaned calves. Ten-week old weaned calves (n = 4/group) were inoculated orally with 10(10) cfu of either the wild-type or sdiA mutant strain. Initial fecal shedding of the sdiA mutant and the wild-type strain were similar in magnitude and declined during the first 2 weeks post-inoculation. The sdiA mutant was detected in feces of only one of the four calves at low levels (≥10(2) cfu/g feces) from days 19 - 27 post-inoculation, whereas, the fecal shedding of the wild-type strain persisted at approximately 4-logs in all four calves from days 19 - 27. We also confirmed that SdiA represses ler, which encodes a positive transcriptional regulator of LEE, in response to AHLs, and reduces adherence of O157 to HEp-2 cells. In conclusion, this study demonstrates that although in vitro the sdiA gene represses LEE and LEE-mediated adherence to cultured cells, the presence of sdiA is necessary for colonization of bovine large intestine that in turn promotes persistent fecal shedding of O157 by these animals. Published by Elsevier Ltd.

  12. Changes in transcriptional orientation are associated with increases in evolutionary rates of enterobacterial genes.

    PubMed

    Lin, Chieh-Hua; Lian, Chun-Yi; Hsiung, Chao Agnes; Chen, Feng-Chi

    2011-10-05

    Changes in transcriptional orientation ("CTOs") occur frequently in prokaryotic genomes. Such changes usually result from genomic inversions, which may cause a conflict between the directions of replication and transcription and an increase in mutation rate. However, CTOs do not always lead to the replication-transcription confrontation. Furthermore, CTOs may cause deleterious disruptions of operon structure and/or gene regulations. The currently existing CTOs may indicate relaxation of selection pressure. Therefore, it is of interest to investigate whether CTOs have an independent effect on the evolutionary rates of the affected genes, and whether these genes are subject to any type of selection pressure in prokaryotes. Three closely related enterbacteria, Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium, were selected for comparisons of synonymous (dS) and nonsynonymous (dN) substitution rate between the genes that have experienced changes in transcriptional orientation (changed-orientation genes, "COGs") and those that do not (same-orientation genes, "SOGs"). The dN/dS ratio was also derived to evaluate the selection pressure on the analyzed genes. Confounding factors in the estimation of evolutionary rates, such as gene essentiality, gene expression level, replication-transcription confrontation, and decreased dS at gene terminals were controlled in the COG-SOG comparisons. We demonstrate that COGs have significantly higher dN and dS than SOGs when a series of confounding factors are controlled. However, the dN/dS ratios are similar between the two gene groups, suggesting that the increase in dS can sufficiently explain the increase in dN in COGs. Therefore, the increases in evolutionary rates in COGs may be mainly mutation-driven. Here we show that CTOs can increase the evolutionary rates of the affected genes. This effect is independent of the replication-transcription confrontation, which is suggested to be the major cause

  13. Changes in transcriptional orientation are associated with increases in evolutionary rates of enterobacterial genes

    PubMed Central

    2011-01-01

    Background Changes in transcriptional orientation (“CTOs”) occur frequently in prokaryotic genomes. Such changes usually result from genomic inversions, which may cause a conflict between the directions of replication and transcription and an increase in mutation rate. However, CTOs do not always lead to the replication-transcription confrontation. Furthermore, CTOs may cause deleterious disruptions of operon structure and/or gene regulations. The currently existing CTOs may indicate relaxation of selection pressure. Therefore, it is of interest to investigate whether CTOs have an independent effect on the evolutionary rates of the affected genes, and whether these genes are subject to any type of selection pressure in prokaryotes. Methods Three closely related enterbacteria, Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium, were selected for comparisons of synonymous (dS) and nonsynonymous (dN) substitution rate between the genes that have experienced changes in transcriptional orientation (changed-orientation genes, “COGs”) and those that do not (same-orientation genes, “SOGs”). The dN/dS ratio was also derived to evaluate the selection pressure on the analyzed genes. Confounding factors in the estimation of evolutionary rates, such as gene essentiality, gene expression level, replication-transcription confrontation, and decreased dS at gene terminals were controlled in the COG-SOG comparisons. Results We demonstrate that COGs have significantly higher dN and dS than SOGs when a series of confounding factors are controlled. However, the dN/dS ratios are similar between the two gene groups, suggesting that the increase in dS can sufficiently explain the increase in dN in COGs. Therefore, the increases in evolutionary rates in COGs may be mainly mutation-driven. Conclusions Here we show that CTOs can increase the evolutionary rates of the affected genes. This effect is independent of the replication-transcription

  14. Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology

    PubMed Central

    Murashko, Oleg N.; Lin-Chao, Sue

    2017-01-01

    Escherichia coli RNase E is an essential enzyme that forms multicomponent ribonucleolytic complexes known as “RNA degradosomes.” These complexes consist of four major components: RNase E, PNPase, RhlB RNA helicase, and enolase. However, the role of enolase in the RNase E/degradosome is not understood. Here, we report that presence of enolase in the RNase E/degradosome under anaerobic conditions regulates cell morphology, resulting in E. coli MG1655 cell filamentation. Under anaerobic conditions, enolase bound to the RNase E/degradosome stabilizes the small RNA (sRNA) DicF, i.e., the inhibitor of the cell division gene ftsZ, through chaperon protein Hfq-dependent regulation. RNase E/enolase distribution changes from membrane-associated patterns under aerobic to diffuse patterns under anaerobic conditions. When the enolase-RNase E/degradosome interaction is disrupted, the anaerobically induced characteristics disappear. We provide a mechanism by which E. coli uses enolase-bound degradosomes to switch from rod-shaped to filamentous form in response to anaerobiosis by regulating RNase E subcellular distribution, RNase E enzymatic activity, and the stability of the sRNA DicF required for the filamentous transition. In contrast to E. coli nonpathogenic strains, pathogenic E. coli strains predominantly have multiple copies of sRNA DicF in their genomes, with cell filamentation previously being linked to bacterial pathogenesis. Our data suggest a mechanism for bacterial cell filamentation during infection under anaerobic conditions. PMID:28874523

  15. Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system

    PubMed Central

    Ross, Joseph A.; Ellis, Michael J.; Hossain, Shahan; Haniford, David B.

    2013-01-01

    Hfq functions in post-transcriptional gene regulation in a wide range of bacteria, usually by promoting base-pairing of mRNAs and trans-encoded sRNAs that share partial sequence complementarity. It is less clear if Hfq is required for pairing of cis-encoded RNAs (i.e., antisense RNAs) with their target mRNAs. In the current work, we have characterized the interactions between Escherichia coli Hfq and the components of the Tn10/IS10 antisense system, RNA-IN and RNA-OUT. We show that Hfq interacts with RNA-OUT through its proximal RNA-binding surface, as is typical for Hfq and trans-encoded sRNAs. In contrast, RNA-IN binds both proximal and distal RNA-binding surfaces in Hfq with a higher affinity for the latter, as is typical for mRNA interactions in canonical sRNA-mRNA pairs. Importantly, an amino acid substitution in Hfq that interferes with RNA binding to the proximal site negatively impacts RNA-IN:OUT pairing in vitro and suppresses the ability of Hfq to negatively regulate IS10 transposition in vivo. We also show that Hfq binding to RNA-IN and RNA-OUT alters secondary structure elements in both of these RNAs and speculate that this could be important in how Hfq facilitates RNA-IN:OUT pairing. Based on the results presented here, we suggest that Hfq could be involved in regulating RNA pairing in other antisense systems, including systems encoded by other transposable elements. PMID:23510801

  16. Inactivation of Shiga toxin-producing Escherichia coli O104:H4 using cold atmospheric pressure plasma.

    PubMed

    Baier, Matthias; Janssen, Traute; Wieler, Lothar H; Ehlbeck, Jörg; Knorr, Dietrich; Schlüter, Oliver

    2015-09-01

    From cultivation to the end of the post-harvest chain, heat-sensitive fresh produce is exposed to a variety of sources of pathogenic microorganisms. If contaminated, effective gentle means of sanitation are necessary to reduce bacterial pathogen load below their infective dose. The occurrence of rare or new serotypes raises the question of their tenacity to inactivation processes. In this study the antibacterial efficiency of cold plasma by an atmospheric pressure plasma-jet was examined against the Shiga toxin-producing outbreak strain Escherichia coli O104:H4. Argon was transformed into non-thermal plasma at a power input of 8 W and a gas flow of 5 L min(-1). Basic tests were performed on polysaccharide gel discs, including the more common E. coli O157:H7 and non-pathogenic E. coli DSM 1116. At 5 mm treatment distance and 10(5) cfu cm(-2) initial bacterial count, plasma reduced E. coli O104:H4 after 60 s by 4.6 ± 0.6 log, E. coli O157:H7 after 45 s by 4.5 ± 0.6 log, and E. coli DSM 1116 after 30 s by 4.4 ± 1.1 log. On the surface of corn salad leaves, gentle plasma application at 17 mm reduced 10(4) cfu cm(-2) of E. coli O104:H4 by 3.3 ± 1.1 log after 2 min, whereas E. coli O157:H7 was inactivated by 3.2 ± 1.1 log after 60 s. In conclusion, plasma treatment has the potential to reduce pathogens such as E. coli O104:H4 on the surface of fresh produce. However, a serotype-specific adaptation of the process parameters is required. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Payload hardware and experimental protocol development to enable future testing of the effect of space microgravity on the resistance to gentamicin of uropathogenic Escherichia coli and its σs-deficient mutant.

    PubMed

    Matin, A C; Wang, J-H; Keyhan, Mimi; Singh, Rachna; Benoit, Michael; Parra, Macarena P; Padgen, Michael R; Ricco, Antonio J; Chin, Matthew; Friedericks, Charlie R; Chinn, Tori N; Cohen, Aaron; Henschke, Michael B; Snyder, Timothy V; Lera, Matthew P; Ross, Shannon S; Mayberry, Christina M; Choi, Sungshin; Wu, Diana T; Tan, Ming X; Boone, Travis D; Beasley, Christopher C; Piccini, Matthew E; Spremo, Stevan M

    2017-11-01

    Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG), stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm), and that this increase is dependent on the presence of σ s (a transcription regulator encoded by the rpoS gene). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG findings can differ from MG, we report preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) as a free-flying "nanosatellite" in low Earth orbit. Within EcAMSat's payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported here for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes can assess the Gm effect on E. coli viability, permitting telemetric transfer of the spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its ∆rpoS strain to Gm. if σ s plays the same role in space MG as in LSMMG and Earth gravity, countermeasures discovered in recent Earth studies (aimed at weakening the UPEC antioxidant defense) to control UPEC infections would prove useful also in space flights. Further, EcAMSat results should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity and other issues. Copyright © 2017. Published by Elsevier Ltd.

  18. Payload hardware and experimental protocol development to enable future testing of the effect of space microgravity on the resistance to gentamicin of uropathogenic Escherichia coli and its σs-deficient mutant

    NASA Astrophysics Data System (ADS)

    Matin, A. C.; Wang, J.-H.; Keyhan, Mimi; Singh, Rachna; Benoit, Michael; Parra, Macarena P.; Padgen, Michael R.; Ricco, Antonio J.; Chin, Matthew; Friedericks, Charlie R.; Chinn, Tori N.; Cohen, Aaron; Henschke, Michael B.; Snyder, Timothy V.; Lera, Matthew P.; Ross, Shannon S.; Mayberry, Christina M.; Choi, Sungshin; Wu, Diana T.; Tan, Ming X.; Boone, Travis D.; Beasley, Christopher C.; Piccini, Matthew E.; Spremo, Stevan M.

    2017-11-01

    Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG), stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm), and that this increase is dependent on the presence of σs (a transcription regulator encoded by the rpoS gene). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG findings can differ from MG, we report preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) as a free-flying "nanosatellite" in low Earth orbit. Within EcAMSat's payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported here for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes can assess the Gm effect on E. coli viability, permitting telemetric transfer of the spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its ΔrpoS strain to Gm. if σs plays the same role in space MG as in LSMMG and Earth gravity, countermeasures discovered in recent Earth studies (aimed at weakening the UPEC antioxidant defense) to control UPEC infections would prove useful also in space flights. Further, EcAMSat results should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity and other issues.

  19. Differential Expression of Anthocyanin Biosynthetic Genes and Transcription Factor PcMYB10 in Pears (Pyrus communis L.)

    PubMed Central

    Li, Xi-Hong; Wu, Mao-Yu; Wang, Ai-Li; Jiang, Yu-Qian; Jiang, Yun-Hong

    2012-01-01

    Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. ‘Wujiuxiang’), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in ‘Wujiuxiang’ pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10) was strongly positively correlated with anthocyanin accumulation in ‘Wujiuxiang’ pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants. PMID:23029391

  20. Antimicrobial activity and regulation of CXCL9 and CXCL10 in oral keratinocytes.

    PubMed

    Marshall, Alison; Celentano, Antonio; Cirillo, Nicola; Mignogna, Michele D; McCullough, Michael; Porter, Stephen

    2016-10-01

    Chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10 are dysregulated in oral inflammatory conditions, and it is not known if these chemokines target microorganisms that form oral biofilm. The aim of this study was to investigate the antimicrobial activity of CXCL9 and CXCL10 on oral microflora and their expression profiles in oral keratinocytes following exposure to inflammatory and infectious stimuli. Streptococcus sanguinis was used as a model and Escherichia coli as a positive control. The antimicrobial effect of CXCL9/CXCL10 was tested using a radial diffusion assay. mRNA transcripts were isolated from lipopolysaccharide (LPS)-treated and untreated (control) oral keratinocyte cell lines at 2-, 4-, 6-, and 8-h time-points of culture. The CXCL9/10 expression profile in the presence or absence of interferon-γ (IFN-γ) was assessed using semiquantitative PCR. Although both chemokines demonstrated antimicrobial activity, CXCL9 was the most effective chemokine against both S. sanguinis and E coli. mRNA for CXCL10 was expressed in control cells and its production was enhanced at all time-points following stimulation with LPS. Conversely, CXCL9 mRNA was not expressed in control or LPS-stimulated cells. Finally, stimulation with IFN-γ enhanced basal expression of both CXCL9 and CXCL10 in oral keratinocytes. Chemokines derived from oral epithelium, particularly CXCL9, demonstrate antimicrobial properties. Bacterial and inflammatory-stimulated up-regulation of CXCL9/10 could represent a key element in oral bacterial colonization homeostasis and host-defense mechanisms. © 2016 Eur J Oral Sci.

  1. Reassessment of the Genetic Regulation of Fatty Acid Synthesis in Escherichia coli: Global Positive Control by the Dual Functional Regulator FadR

    PubMed Central

    My, L.; Ghandour Achkar, N.; Viala, J. P.

    2015-01-01

    ABSTRACT In Escherichia coli, the FadR transcriptional regulator represses the expression of fatty acid degradation (fad) genes. However, FadR is also an activator of the expression of fabA and fabB, two genes involved in unsaturated fatty acid synthesis. Therefore, FadR plays an important role in maintaining the balance between saturated and unsaturated fatty acids in the membrane. We recently showed that FadR also activates the promoter upstream of the fabH gene (L. My, B. Rekoske, J. J. Lemke, J. P. Viala, R. L. Gourse, and E. Bouveret, J Bacteriol 195:3784–3795, 2013, doi:10.1128/JB.00384-13). Furthermore, recent transcriptomic and proteomic data suggested that FadR activates the majority of fatty acid (FA) synthesis genes. In the present study, we tested the role of FadR in the expression of all genes involved in FA synthesis. We found that FadR activates the transcription of all tested FA synthesis genes, and we identified the FadR binding site for each of these genes. This necessitated the reassessment of the transcription start sites for accA and accB genes described previously, and we provide evidence for the presence of multiple promoters driving the expression of these genes. We showed further that regulation by FadR impacts the amount of FA synthesis enzymes in the cell. Our results show that FadR is a global regulator of FA metabolism in E. coli, acting both as a repressor of catabolism and an activator of anabolism, two directly opposing pathways. IMPORTANCE In most bacteria, a transcriptional regulator tunes the level of FA synthesis enzymes. Oddly, such a global regulator still was missing for E. coli, which nonetheless is one of the prominent model bacteria used for engineering biofuel production using the FA synthesis pathway. Our work identifies the FadR functional dual regulator as a global activator of almost all FA synthesis genes in E. coli. Because FadR also is the repressor of FA degradation, FadR acts both as a repressor and an activator

  2. Data Reduction Approaches for Dissecting Transcriptional Effects on Metabolism

    PubMed Central

    Schwahn, Kevin; Nikoloski, Zoran

    2018-01-01

    The availability of high-throughput data from transcriptomics and metabolomics technologies provides the opportunity to characterize the transcriptional effects on metabolism. Here we propose and evaluate two computational approaches rooted in data reduction techniques to identify and categorize transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approaches determine the partial correlation between two metabolite data profiles upon control of given principal components extracted from transcriptomics data profiles. Therefore, they allow us to investigate both data types with all features simultaneously without doing preselection of genes. The proposed approaches allow us to categorize the relation between pairs of metabolites as being under transcriptional or post-transcriptional regulation. The resulting classification is compared to existing literature and accumulated evidence about regulatory mechanism of reactions and pathways in the cases of Escherichia coli, Saccharomycies cerevisiae, and Arabidopsis thaliana. PMID:29731765

  3. Escherichia coli: the best biological drinking water indicator for public health protection.

    PubMed

    Edberg, S C; Rice, E W; Karlin, R J; Allen, M J

    2000-01-01

    Public health protection requires an indicator of fecal pollution. It is not necessary to analyse drinking water for all pathogens. Escherichia coli is found in all mammal faeces at concentrations of 10 log 9(-1), but it does not multiply appreciably in the environment. In the 1890s, it was chosen as the biological indicator of water treatment safety. Because of method deficiencies, E. coli surrogates such as the 'fecal coliform' and total coliforms tests were developed and became part of drinking water regulations. With the advent of the Defined Substrate Technology in the late 1980s, it became possible to analyse drinking water directly for E. coli (and, simultaneously, total coliforms) inexpensively and simply. Accordingly, E. coli was re-inserted in the drinking water regulations. E. coli survives in drinking water for between 4 and 12 weeks, depending on environmental conditions (temperature, microflora, etc.). Bacteria and viruses are approximately equally oxidant-sensitive, but parasites are less so. Under the conditions in distribution systems, E. coli will be much more long-lived. Therefore, under most circumstances it is possible to design a monitoring program that permits public health protection at a modest cost. Drinking water regulations currently require infrequent monitoring which may not adequately detect intermittent contamination events; however, it is cost-effective to markedly increase testing with E. coli to better protect the public's health. Comparison with other practical candidate fecal indicators shows that E. coli is far superior overall.

  4. Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon

    PubMed Central

    Curran, Thomas D; Abacha, Fatima; Hibberd, Stephen P; Green, Jeffrey

    2017-01-01

    SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases, SlyA activates gene expression by antagonizing repression by the nucleoid-associated protein H-NS. Here, the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different from that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have previously been associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression, and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain. PMID:28073397

  5. Identification of new members of the Escherichia coli K-12 MG1655 SlyA regulon.

    PubMed

    Curran, Thomas D; Abacha, Fatima; Hibberd, Stephen P; Rolfe, Matthew D; Lacey, Melissa M; Green, Jeffrey

    2017-03-01

    SlyA is a member of the MarR family of bacterial transcriptional regulators. Previously, SlyA has been shown to directly regulate only two operons in Escherichia coli K-12 MG1655, fimB and hlyE (clyA). In both cases, SlyA activates gene expression by antagonizing repression by the nucleoid-associated protein H-NS. Here, the transcript profiles of aerobic glucose-limited steady-state chemostat cultures of E. coli K-12 MG1655, slyA mutant and slyA over-expression strains are reported. The transcript profile of the slyA mutant was not significantly different from that of the parent; however, that of the slyA expression strain was significantly different from that of the vector control. Transcripts representing 27 operons were increased in abundance, whereas 3 were decreased. Of the 30 differentially regulated operons, 24 have previously been associated with sites of H-NS binding, suggesting that antagonism of H-NS repression is a common feature of SlyA-mediated transcription regulation. Direct binding of SlyA to DNA located upstream of a selection of these targets permitted the identification of new operons likely to be directly regulated by SlyA. Transcripts of four operons coding for cryptic adhesins exhibited enhanced expression, and this was consistent with enhanced biofilm formation associated with the SlyA over-producing strain.

  6. Using fluorescence measurement of zinc ions liberated from ZnS nanoparticle labels in bioassay for Escherichia coli O157:H7

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.; Zhu, Xiaoshan; Pai, Chi-Yun

    2011-10-01

    In this study, an alternative approach using ZnS nanoparticle biolabels as fluorescence signal transducers is reported for the immunoassay of E. coli O157:H7 in tap water samples. Instead of measuring the fluorescence of ZnS nanoparticles in the assay, the fluorescence signal is generated through the binding of zinc ions released from nanoparticle labels with zinc-ion sensitive fluorescence indicator Fluozin-3. In the assay, ZnS nanoparticles around 50 nm in diameter were synthesized, bioconjugated, and applied for the detection of E. coli O157:H7. The assay shows a detection range over two orders of magnitude and a detection limit around 1000 colony-forming units (cfu) of E. coli O157:H7.

  7. Artificial sRNAs activating the Gac/Rsm signal transduction pathway in Pseudomonas fluorescens.

    PubMed

    Valverde, Claudio

    2009-04-01

    In Pseudomonas fluorescens CHA0, the synthesis of antifungal compounds is post-transcriptionally activated by the Gac/Rsm cascade. The two-component system GacS/GacA promotes transcription of three small regulatory RNAs (i.e., sRNAs), RsmX, RsmY, and RsmZ, which remove the regulatory proteins RsmA and RsmE from the ribosome-binding sites of exoproduct-related mRNAs. The GacS/GacA-dependent accumulation of RsmX/Y/Z and formation of RsmX/Y/Z-RsmA/E complexes relieve mRNA translational repression. Other bacteria as E. coli and Vibrio spp. utilize similar sRNA-protein based systems to adjust mRNA translation (e.g., the E. coli Csr system for carbon storage, motility and biofilm regulation). The Rsm/Csr sRNAs are remarkably similar in that they contain several stem-loops with an invariant GGA trinucleotide exposed in the hairpin loop that would be the characteristic structural-sequence motifs relevant for sRNA activity and stability. Here it is shown that the dysfunctional Gac/Rsm cascade of P. fluorescens DeltarsmXYZ mutants could be restored by appropriate transcription levels of artificial genes encoding RNAs with unrelated primary sequence but with two or more hairpins displaying the RsmA/E binding motifs. The results support the hypothesis that the molecular mimicry of Rsm/Csr sRNAs is based on proper secondary structures that expose critical binding motifs irrespective of their overall sequence.

  8. Genetic Transfer of Salmonella typhimurium and Escherichia coli Lipopolysaccharide Antigens to Escherichia coli K-12

    PubMed Central

    Jones, Randall T.; Koeltzow, Donald E.; Stocker, B. A. D.

    1972-01-01

    Escherichia coli K-12 ϰ971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv+ hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his+ (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F′ factor (FS400) carrying the rfb–his region of S. typhimurium to the same two ilv+ hybrids gave similar results. LPS extracted from two ilv+,his+, factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his+ hybrids obtained from ϰ971 itself by similar HfrK9 and F′FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli ϰ971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli ϰ971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli ϰ971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his+ recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Ω8. This suggests that, although the parental E. coli K-12 strain ϰ971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units. PMID:4559827

  9. A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens.

    PubMed

    Ghosh, Gairika; Reddy, Jayavardhana; Sambhare, Susmit; Sen, Ranjan

    2018-01-01

    Rho is a hexameric molecular motor that functions as a conserved transcription terminator in the majority of bacterial species and is a potential drug target. Psu is a bacteriophage P4 capsid protein that inhibits Escherichia coli Rho by obstructing its ATPase and translocase activities. In this study, we explored the anti-Rho activity of Psu for Rho proteins from different pathogens. Sequence alignment and homology modeling of Rho proteins from pathogenic bacteria revealed the conserved nature of the Psu-interacting regions in all these proteins. We chose Rho proteins from various pathogens, including Mycobacterium smegmatis , Mycobacterium bovis , Mycobacterium tuberculosis , Xanthomonas campestris , Xanthomonas oryzae , Corynebacterium glutamicum , Vibrio cholerae , Salmonella enterica , and Pseudomonas syringae The purified recombinant Rho proteins of these organisms showed variable rates of ATP hydrolysis on poly(rC) as the substrate and were capable of releasing RNA from the E. coli transcription elongation complexes. Psu was capable of inhibiting these two functions of all these Rho proteins. In vivo pulldown assays revealed direct binding of Psu with many of these Rho proteins. In vivo expression of psu induced killing of M. smegmatis , M. bovis , X. campestris , and E. coli expressing S. enterica Rho indicating Psu-induced inhibition of Rho proteins of these strains under physiological conditions. We propose that the "universal" inhibitory function of the Psu protein against the Rho proteins from both Gram-negative and Gram-positive bacteria could be useful for designing peptides with antimicrobial functions and that these peptides could contribute to synergistic antibiotic treatment of the pathogens by compromising the Rho functions. IMPORTANCE Bacteriophage-derived protein factors modulating different bacterial processes could be converted into unique antimicrobial agents. Bacteriophage P4 capsid protein Psu is an inhibitor of the E. coli transcription

  10. On the contributions of topological features to transcriptional regulatory network robustness

    PubMed Central

    2012-01-01

    Background Because biological networks exhibit a high-degree of robustness, a systemic understanding of their architecture and function requires an appraisal of the network design principles that confer robustness. In this project, we conduct a computational study of the contribution of three degree-based topological properties (transcription factor-target ratio, degree distribution, cross-talk suppression) and their combinations on the robustness of transcriptional regulatory networks. We seek to quantify the relative degree of robustness conferred by each property (and combination) and also to determine the extent to which these properties alone can explain the robustness observed in transcriptional networks. Results To study individual properties and their combinations, we generated synthetic, random networks that retained one or more of the three properties with values derived from either the yeast or E. coli gene regulatory networks. Robustness of these networks were estimated through simulation. Our results indicate that the combination of the three properties we considered explains the majority of the structural robustness observed in the real transcriptional networks. Surprisingly, scale-free degree distribution is, overall, a minor contributor to robustness. Instead, most robustness is gained through topological features that limit the complexity of the overall network and increase the transcription factor subnetwork sparsity. Conclusions Our work demonstrates that (i) different types of robustness are implemented by different topological aspects of the network and (ii) size and sparsity of the transcription factor subnetwork play an important role for robustness induction. Our results are conserved across yeast and E Coli, which suggests that the design principles examined are present within an array of living systems. PMID:23194062

  11. Modelling and predicting the simultaneous growth of Escherichia coli and lactic acid bacteria in milk.

    PubMed

    Ačai, P; Valík, L'; Medved'ová, A; Rosskopf, F

    2016-09-01

    Modelling and predicting the simultaneous competitive growth of Escherichia coli and starter culture of lactic acid bacteria (Fresco 1010, Chr. Hansen, Hørsholm, Denmark) was studied in milk at different temperatures and Fresco inoculum concentrations. The lactic acid bacteria (LAB) were able to induce an early stationary state in E. coli The developed model described and tested the growth inhibition of E. coli (with initial inoculum concentration 10(3) CFU/mL) when LAB have reached maximum density in different conditions of temperature (ranging from 12 ℃ to 30 ℃) and for various inoculum sizes of LAB (ranging from approximately 10(3) to 10(7) CFU/mL). The prediction ability of the microbial competition model (the Baranyi and Roberts model coupled with the Gimenez and Dalgaard model) was first performed only with parameters estimated from individual growth of E. coli and the LAB and then with the introduced competition coefficients evaluated from co-culture growth of E. coli and LAB in milk. Both the results and their statistical indices showed that the model with incorporated average values of competition coefficients improved the prediction of E. coli behaviour in co-culture with LAB. © The Author(s) 2015.

  12. Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid

    PubMed Central

    2011-01-01

    Background Mandelic acid (MA), an important component in pharmaceutical syntheses, is currently produced exclusively via petrochemical processes. Growing concerns over the environment and fossil energy costs have inspired a quest to develop alternative routes to MA using renewable resources. Herein we report the first direct route to optically pure MA from glucose via genetic modification of the L-phenylalanine pathway in E. coli. Results The introduction of hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis into E. coli led to a yield of 0.092 g/L S-MA. By combined deletion of competing pathways, further optimization of S-MA production was achieved, and the yield reached 0.74 g/L within 24 h. To produce R-MA, hydroxymandelate oxidase (Hmo) from Streptomyces coelicolor and D-mandelate dehydrogenase (DMD) from Rhodotorula graminis were co-expressed in an S-MA-producing strain, and the resulting strain was capable of producing 0.68 g/L R-MA. Finally, phenylpyruvate feeding experiments suggest that HmaS is a potential bottleneck to further improvement in yields. Conclusions We have constructed E. coli strains that successfully accomplished the production of S- and R-MA directly from glucose. Our work provides the first example of the completely fermentative production of S- and R-MA from renewable feedstock. PMID:21910908

  13. Over-expression of phage HK022 Nun protein is toxic for Escherichia coli

    PubMed Central

    Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.

    2008-01-01

    The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198

  14. Transcription through the roadblocks: the role of RNA polymerase cooperation

    PubMed Central

    Epshtein, Vitaly; Toulmé, Francine; Rahmouni, A.Rachid; Borukhov, Sergei; Nudler, Evgeny

    2003-01-01

    During transcription, cellular RNA polymerases (RNAP) have to deal with numerous potential roadblocks imposed by various DNA binding proteins. Many such proteins partially or completely interrupt a single round of RNA chain elongation in vitro. Here we demonstrate that Escherichia coli RNAP can effectively read through the site-specific DNA-binding proteins in vitro and in vivo if more than one RNAP molecule is allowed to initiate from the same promoter. The anti-roadblock activity of the trailing RNAP does not require transcript cleavage activity but relies on forward translocation of roadblocked complexes. These results support a cooperation model of transcription whereby RNAP molecules behave as ‘partners’ helping one another to traverse intrinsic and extrinsic obstacles. PMID:12970184

  15. Tbx20 Transcription Factor Is a Downstream Mediator for Bone Morphogenetic Protein-10 in Regulating Cardiac Ventricular Wall Development and Function*

    PubMed Central

    Zhang, Wenjun; Chen, Hanying; Wang, Yong; Yong, Weidong; Zhu, Wuqiang; Liu, Yunlong; Wagner, Gregory R.; Payne, R. Mark; Field, Loren J.; Xin, Hongbo; Cai, Chen-Leng; Shou, Weinian

    2011-01-01

    Bone morphogenetic protein 10 (BMP10) belongs to the TGFβ-superfamily. Previously, we had demonstrated that BMP10 is a key regulator for ventricular chamber formation, growth, and maturation. Ablation of BMP10 leads to hypoplastic ventricular wall formation, and elevated levels of BMP10 are associated with abnormal ventricular trabeculation/compaction and wall maturation. However, the molecular mechanism(s) by which BMP10 regulates ventricle wall growth and maturation is still largely unknown. In this study, we sought to identify the specific transcriptional network that is potentially mediated by BMP10. We analyzed and compared the gene expression profiles between α-myosin heavy chain (αMHC)-BMP10 transgenic hearts and nontransgenic littermate controls using Affymetrix mouse exon arrays. T-box 20 (Tbx20), a cardiac transcription factor, was significantly up-regulated in αMHC-BMP10 transgenic hearts, which was validated by quantitative RT-PCR and in situ hybridization. Ablation of BMP10 reduced Tbx20 expression specifically in the BMP10-expressing region of the developing ventricle. In vitro promoter analysis demonstrated that BMP10 was able to induce Tbx20 promoter activity through a conserved Smad binding site in the Tbx20 promoter proximal region. Furthermore, overexpression of Tbx20 in myocardium led to dilated cardiomyopathy that exhibited ventricular hypertrabeculation and an abnormal muscular septum, which phenocopied genetically modified mice with elevated BMP10 levels. Taken together, our findings demonstrate that the BMP10-Tbx20 signaling cascade is important for ventricular wall development and maturation. PMID:21890625

  16. The E. coli 16S rRNA binding site of ribosomal protein S15: higher-order structure in the absence and in the presence of the protein.

    PubMed Central

    Mougel, M; Philippe, C; Ebel, J P; Ehresmann, B; Ehresmann, C

    1988-01-01

    We have investigated in detail the secondary and tertiary structures of E. coli 16S rRNA binding site of protein S15 using a variety of enzymatic and chemical probes. RNase T1 and nuclease S1 were used to probe unpaired nucleotides and RNase V1 to monitor base-paired or stacked nucleotides. Bases were probed with dimethylsulfate (at A(N-1), C(N-3) and G(N-7)), with 1-cyclohexyl-3 (2-(1-methylmorpholino)-ethyl)-carboiimide-p- toluenesulfonate (at U(N-3) and G(N-1)) and with diethylpyrocarbonate (at A(N-7)). The RNA region corresponding to nucleotides 652 to 753 was tested within: (1) the complete 16S rRNA molecule; (2) a 16S rRNA fragment corresponding to nucleotides 578 to 756 obtained by transcription in vitro; (3) the S15-16S rRNA complex; (4) the S15-fragment complex. Cleavage and modification sites were detected by primer extension with reverse transcriptase. Our results show that: (1) The synthetized fragment folds into the same overall secondary structure as in the complete 16S rRNA, with the exception of the large asymmetrical internal loop (nucleotides 673-676/714-733) which is fully accessible in the fragment while it appears conformationally heterogeneous in the 16S rRNA; (2) the reactivity patterns of the S15-16S rRNA and S15-fragment complexes are identical; (3) the protein protects defined RNA regions, located in the large interior loop and in the 3'-end strand of helix [655-672]-[734-751]; (4) the protein also causes enhanced chemical reactivity and enzyme accessibility interpreted as resulting from a local conformational rearrangement, induced by S15 binding. Images PMID:2453025

  17. Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA

    PubMed Central

    Fu, Yan; Bannach, Oliver; Chen, Hao; Teune, Jan-Hendrik; Schmitz, Axel; Steger, Gerhard; Xiong, Liming; Barbazuk, W. Brad

    2009-01-01

    Identifying conserved alternative splicing (AS) events among evolutionarily distant species can prioritize AS events for functional characterization and help uncover relevant cis- and trans-regulatory factors. A genome-wide search for conserved cassette exon AS events in higher plants revealed the exonization of 5S ribosomal RNA (5S rRNA) within the gene of its own transcription regulator, TFIIIA (transcription factor for polymerase III A). The 5S rRNA-derived exon in TFIIIA gene exists in all representative land plant species but not in green algae and nonplant species, suggesting it is specific to land plants. TFIIIA is essential for RNA polymerase III-based transcription of 5S rRNA in eukaryotes. Integrating comparative genomics and molecular biology revealed that the conserved cassette exon derived from 5S rRNA is coupled with nonsense-mediated mRNA decay. Utilizing multiple independent Arabidopsis overexpressing TFIIIA transgenic lines under osmotic and salt stress, strong accordance between phenotypic and molecular evidence reveals the biological relevance of AS of the exonized 5S rRNA in quantitative autoregulation of TFIIIA homeostasis. Most significantly, this study provides the first evidence of ancient exaptation of 5S rRNA in plants, suggesting a novel gene regulation model mediated by the AS of an anciently exonized noncoding element. PMID:19211543

  18. Design of a Temperature-Responsive Transcription Terminator.

    PubMed

    Roßmanith, Johanna; Weskamp, Mareen; Narberhaus, Franz

    2018-02-16

    RNA structures regulate various steps in gene expression. Transcription in bacteria is typically terminated by stable hairpin structures. Translation initiation can be modulated by metabolite- or temperature-sensitive RNA structures, called riboswitches or RNA thermometers (RNATs), respectively. RNATs control translation initiation by occlusion of the ribosome binding site at low temperatures. Increasing temperatures destabilize the RNA structure and facilitate ribosome access. In this study, we exploited temperature-responsive RNAT structures to design regulatory elements that control transcription termination instead of translation initiation in Escherichia coli. In order to mimic the structure of factor-independent intrinsic terminators, naturally occurring RNAT hairpins were genetically engineered to be followed by a U-stretch. Functional temperature-responsive terminators (thermoterms) prevented mRNA synthesis at low temperatures but resumed transcription after a temperature upshift. The successful design of temperature-controlled terminators highlights the potential of RNA structures as versatile gene expression control elements.

  19. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi, E-mail: nomurat@shinshu-u.ac.jp

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly,more » cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.« less

  20. The whole set of the constitutive promoters recognized by four minor sigma subunits of Escherichia coli RNA polymerase

    PubMed Central

    Shimada, Tomohiro; Tanaka, Kan

    2017-01-01

    The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by the sigma subunit. The model prokaryote Escherichia coli K-12 contains seven species of the sigma subunit, each recognizing a specific set of promoters. For identification of the “constitutive promoters” that are recognized by each RNAP holoenzyme alone in the absence of other supporting factors, we have performed the genomic SELEX screening in vitro for their binding sites along the E. coli K-12 W3110 genome using each of the reconstituted RNAP holoenzymes and a collection of genome DNA segments of E. coli K-12. The whole set of constitutive promoters for each RNAP holoenzyme was then estimated based on the location of RNAP-binding sites. The first successful screening of the constitutive promoters was achieved for RpoD (σ70), the principal sigma for transcription of growth-related genes. As an extension, we performed in this study the screening of constitutive promoters for four minor sigma subunits, stationary-phase specific RpoS (σ38), heat-shock specific RpoH (σ32), flagellar-chemotaxis specific RpoF (σ28) and extra-cytoplasmic stress-response RpoE (σ24). The total number of constitutive promoters were: 129~179 for RpoS; 101~142 for RpoH; 34~41 for RpoF; and 77~106 for RpoE. The list of constitutive promoters were compared with that of known promoters identified in vivo under various conditions and using varieties of E. coli strains, altogether allowing the estimation of “inducible promoters” in the presence of additional supporting factors. PMID:28666008

  1. Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence.

    PubMed

    Navarro-Garcia, Fernando

    2014-12-01

    A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.

  2. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water

    PubMed Central

    Guisbiers, G; Wang, Q; Khachatryan, E; Mimun, LC; Mendoza-Cruz, R; Larese-Casanova, P; Webster, TJ; Nash, KL

    2016-01-01

    Nosocomial diseases are mainly caused by two common pathogens, Escherichia coli and Staphylococcus aureus, which are becoming more and more resistant to conventional antibiotics. Therefore, it is becoming increasingly necessary to find other alternative treatments than commonly utilized drugs. A promising strategy is to use nanomaterials such as selenium nanoparticles. However, the ability to produce nanoparticles free of any contamination is very challenging, especially for nano-medical applications. This paper reports the successful synthesis of pure selenium nanoparticles by laser ablation in water and determines the minimal concentration required for ~50% inhibition of either E. coli or S. aureus after 24 hours to be at least ~50 ppm. Total inhibition of E. coli and S. aureus is expected to occur at 107±12 and 79±4 ppm, respectively. In this manner, this study reports for the first time an easy synthesis process for creating pure selenium to inhibit bacterial growth. PMID:27563240

  3. Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water.

    PubMed

    Guisbiers, G; Wang, Q; Khachatryan, E; Mimun, L C; Mendoza-Cruz, R; Larese-Casanova, P; Webster, T J; Nash, K L

    2016-01-01

    Nosocomial diseases are mainly caused by two common pathogens, Escherichia coli and Staphylococcus aureus, which are becoming more and more resistant to conventional antibiotics. Therefore, it is becoming increasingly necessary to find other alternative treatments than commonly utilized drugs. A promising strategy is to use nanomaterials such as selenium nanoparticles. However, the ability to produce nanoparticles free of any contamination is very challenging, especially for nano-medical applications. This paper reports the successful synthesis of pure selenium nanoparticles by laser ablation in water and determines the minimal concentration required for ~50% inhibition of either E. coli or S. aureus after 24 hours to be at least ~50 ppm. Total inhibition of E. coli and S. aureus is expected to occur at 107±12 and 79±4 ppm, respectively. In this manner, this study reports for the first time an easy synthesis process for creating pure selenium to inhibit bacterial growth.

  4. Effects of Stress, Reactive Oxygen Species, and the SOS Response on De Novo Acquisition of Antibiotic Resistance in Escherichia coli

    PubMed Central

    Händel, Nadine; Hoeksema, Marloes; Freijo Mata, Marina; Brul, Stanley

    2015-01-01

    Strategies to prevent the development of antibiotic resistance in bacteria are needed to reduce the threat of infectious diseases to human health. The de novo acquisition of resistance due to mutations and/or phenotypic adaptation occurs rapidly as a result of interactions of gene expression and mutations (N. Handel, J. M. Schuurmans, Y. Feng, S. Brul, and B. H. Ter Kuile, Antimicrob Agents Chemother 58:4371–4379, 2014, http://dx.doi.org/10.1128/AAC.02892-14). In this study, the contribution of several individual genes to the de novo acquisition of antibiotic resistance in Escherichia coli was investigated using mutants with deletions of genes known to be involved in antibiotic resistance. The results indicate that recA, vital for the SOS response, plays a crucial role in the development of antibiotic resistance. Likewise, deletion of global transcriptional regulators, such as gadE or soxS, involved in pH homeostasis and superoxide removal, respectively, can slow the acquisition of resistance to a degree depending on the antibiotic. Deletion of the transcriptional regulator soxS, involved in superoxide removal, slowed the acquisition of resistance to enrofloxacin. Acquisition of resistance occurred at a lower rate in the presence of a second stress factor, such as a lowered pH or increased salt concentration, than in the presence of optimal growth conditions. The overall outcome suggests that a central cellular mechanism is crucial for the development of resistance and that genes involved in the regulation of transcription play an essential role. The actual cellular response, however, depends on the class of antibiotic in combination with environmental conditions. PMID:26666928

  5. Copper Efflux Is Induced during Anaerobic Amino Acid Limitation in Escherichia coli To Protect Iron-Sulfur Cluster Enzymes and Biogenesis

    PubMed Central

    Fung, Danny Ka Chun; Lau, Wai Yin; Chan, Wing Tat

    2013-01-01

    Adaptation to changing environments is essential to bacterial physiology. Here we report a unique role of the copper homeostasis system in adapting Escherichia coli to its host-relevant environment of anaerobiosis coupled with amino acid limitation. We found that expression of the copper/silver efflux pump CusCFBA was significantly upregulated during anaerobic amino acid limitation in E. coli without the supplement of exogenous copper. Inductively coupled plasma mass spectrometry analysis of the total intracellular copper content combined with transcriptional assay of the PcusC-lacZ reporter in the presence of specific Cu(I) chelators indicated that anaerobic amino acid limitation led to the accumulation of free Cu(I) in the periplasmic space of E. coli, resulting in Cu(I) toxicity. Cells lacking cusCFBA and another copper transporter, copA, under this condition displayed growth defects and reduced ATP production during fumarate respiration. Ectopic expression of the Fe-S cluster enzyme fumarate reductase (Frd), or supplementation with amino acids whose biosynthesis involves Fe-S cluster enzymes, rescued the poor growth of ΔcusC cells. Yet, Cu(I) treatment did not impair the Frd activity in vitro. Further studies revealed that the alternative Fe-S cluster biogenesis system Suf was induced during the anaerobic amino acid limitation, and ΔcusC enhanced this upregulation, indicating the impairment of the Fe-S cluster assembly machinery and the increased Fe-S cluster demands under this condition. Taken together, we conclude that the copper efflux system CusCFBA is induced during anaerobic amino acid limitation to protect Fe-S cluster enzymes and biogenesis from the endogenously originated Cu(I) toxicity, thus facilitating the physiological adaptation of E. coli. PMID:23893112

  6. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    PubMed

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  7. Control of bacteriophage P2 gene expression: analysis of transcription of the ogr gene.

    PubMed Central

    Birkeland, N K; Lindqvist, B H; Christie, G E

    1991-01-01

    The bacteriophage P2 ogr gene encodes an 8.3-kDa protein that is a positive effector of P2 late gene transcription. The ogr gene is preceded by a promoter sequence (Pogr) resembling a normal Escherichia coli promoter and is located just downstream of a late transcription unit. We analyzed the kinetics and regulation of ogr gene transcription by using an ogr-specific antisense RNA probe in an S1 mapping assay. During a normal P2 infection, ogr gene transcription starts from Pogr at an intermediate time between the onset of early and late transcription. At late times after infection the ogr gene is cotranscribed with the late FETUD operon; the ogr gene product thus positively regulates its own synthesis from the P2 late promoter PF. Expression of the P2 late genes also requires P2 DNA replication. Complementation experiments and transcriptional analysis show that a nonreplicating P2 phage expresses the ogr gene from Pogr but is unable to transcribe the late genes. A P2 ogr-defective phage makes an increased level of ogr mRNA, consistent with autogenous control from Pogr. Transcription of the ogr gene in the prophage of a P2 heteroimmune lysogen is stimulated after infection with P2, suggesting that Pogr is under indirect immunity control and is activated by a yet-unidentified P2 early gene product during infection. Images FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:1938896

  8. Elevated levels of Era GTPase improve growth, 16S rRNA processing, and 70S ribosome assembly of Escherichia coli lacking highly conserved multifunctional YbeY endoribonuclease.

    PubMed

    Ghosal, Anubrata; Babu, Vignesh M P; Walker, Graham C

    2018-06-18

    YbeY is a highly conserved, multifunctional endoribonuclease that plays a significant role in ribosome biogenesis and has several additional roles. Here, we show in Escherichia coli that overexpressing the conserved GTPase, Era, partially suppresses the growth defect of a ΔybeY strain while improving 16S rRNA processing and 70S ribosome assembly. This suppression requires both Era's ability to hydrolyze GTP and the function of three exoribonucleases, RNase II, RNase R and RNase PH, suggesting a model for Era's action. Overexpressing Vibrio cholerae Era similarly partially suppresses the defects of an E. coli ΔybeY strain indicating this property of Era is conserved in bacteria other than E. coli Importance This work provides additional insights into the critical, but still incompletely understood, mechanism of the processing of the E. coli 16S rRNA 3'-terminus. The highly conserved GTPase, Era, is known to bind to the precursor of the 16S rRNA near its 3-end. Both the endoribonuclease YbeY, which binds to Era, and four exoribonucleases have been implicated in this 3'-end processing. Results reported here offer additional insights into the role of Era in 16S rRNA 3'-maturation and into the relationship between the action of the endoribonuclease YbeY and the four exoribonucleases. This study also hints at why YbeY is only essential in some bacteria and suggests that the YbeY could be a target for a new class of antibiotic in these bacteria. Copyright © 2018 American Society for Microbiology.

  9. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes.

    PubMed

    Li, Shisheng; Smerdon, Michael J

    2004-04-02

    Transcription-coupled repair (TCR) and global genomic repair (GGR) of UV-induced cyclobutane pyrimidine dimers were investigated in the yeast GAL1-10 genes. Both Rpb9- and Rad26-mediated TCR are confined to the transcribed strands, initiating at upstream sites approximately 100 nucleotides from the upstream activating sequence shared by the two genes. However, TCR initiation sites do not correlate with either transcription start sites or TATA boxes. Rad16-mediated GGR tightly correlates with nucleosome positioning when the genes are repressed and are slow in the nucleosome core and fast in linker DNA. Induction of transcription enhanced GGR in nucleosome core DNA, especially in the nucleosomes around and upstream of the transcription start sites. Furthermore, when the genes were induced, GGR was slower in the transcribed regions than in the upstream regions. Finally, simultaneous deletion of RAD16, RAD26, and RPB9 resulted in no detectable repair in all sites along the region analyzed. Our results suggest that (a). TCR may be initiated by a transcription activator, presumably through the loading of RNA polymerase II, rather than by transcription initiation or elongation per se; (b). TCR and nucleosome disruption-enhanced GGR are the major causes of rapid repair in regions around and upstream of transcription start sites; (c). transcription machinery may hinder access of NER factors to a DNA lesion in the absence of a transcription-repair coupling factor; and (d). other than GGR mediated by Rad16 and TCR mediated by Rad26 and Rpb9, no other nucleotide excision repair pathway exists in these RNA polymerase II-transcribed genes.

  10. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.

    PubMed

    Parmar, Manoj B; Wright, Jonathan M

    2013-11-01

    A whole-genome duplication (WGD) early in the teleost fish lineage makes fish ideal organisms to study the fate of duplicated genes and underlying evolutionary trajectories that have led to the retention of ohnologous gene duplicates in fish genomes. Here, we compare the genomic organization and tissue-specific transcription of the ohnologous fabp7 and fabp10 genes in medaka, three-spined stickleback, and spotted green pufferfish to the well-studied duplicated fabp7 and fabp10 genes of zebrafish. Teleost fabp7 and fabp10 genes contain four exons interrupted by three introns. Polypeptide sequences of Fabp7 and Fabp10 show the highest sequence identity and similarity with their orthologs from vertebrates. Orthology was evident as the ohnologous Fabp7 and Fabp10 polypeptides of teleost fishes each formed distinct clades and clustered together with their orthologs from other vertebrates in a phylogenetic tree. Furthermore, ohnologous teleost fabp7 and fabp10 genes exhibit conserved gene synteny with human FABP7 and chicken FABP10, respectively, which provides compelling evidence that the duplicated fabp7 and fabp10 genes of teleost fishes most likely arose from the well-documented WGD. The tissue-specific distribution of fabp7a, fabp7b, fabp10a, and fabp10b transcripts provides evidence of diverged spatial transcriptional regulation between ohnologous gene duplicates of fabp7 and fabp10 in teleost fishes.

  11. Effect of rifampicin and gentamicin on Shiga toxin 2 expression level and the SOS response in Escherichia coli O104:H4.

    PubMed

    Fadlallah, Sukayna M; Rahal, Elias A; Sabra, Ahmad; Kissoyan, Kohar A B; Matar, Ghassan M

    2015-01-01

    A novel pathotype, Shiga toxin-producing Escherichia coli O104:H4, was the cause of a severe outbreak that affected European countries, mainly Germany, in 2011. The effect of different regimens of rifampicin and gentamicin were evaluated to determine possible treatment modes for the novel strain, and to evaluate the SOS response and its effect on toxin release. Pulsed-field gel electrophoresis (PFGE) was performed on the novel E. coli O104:H4 pathotype and two pre-outbreak E. coli O104:H4 CDC strains. Transcript levels of the stx2 and recA gene (SOS response inducer) were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) in the novel E. coli O104:H4 samples subjected to different regimens of rifampicin and gentamicin. Consequently, reverse passive latex agglutination (RPLA) was used to determine the Stx2 titers in these samples. Western blot was performed to determine the LexA levels (SOS response repressor) in E. coli O104:H4. The efficacy of treatment with antimicrobial agents was assessed in BALB/c mice. The outbreak and pre-outbreak strains are closely related as shown by PFGE, which demonstrated slight genomic differences between the three strains. The transcription level of the stx2 gene in the new pathotype was 1.41- and 1.75-fold that of the 2009 EL-2050 and 2009 EL-2071 pre-outbreak strains, respectively. Moreover, the transcription level of the stx2 gene in the new pathotype was substantially decreased as a result of treatment with the different concentrations of the antimicrobial agents, but was enhanced when the antibiotics were administered at two subinhibitory levels. RPLA data were in accordance with the qRT-PCR results. E. coli O104:H4 exposed to gentamicin at both sub-minimum inhibitory concentration (MIC) levels led to high transcription levels of the recA gene and lack of expression of the LexA protein, implying that the SOS response was activated. Rifampicin at both sub-MIC levels resulted in low

  12. Annexin A2-S100A10 heterotetramer is upregulated by PML/RARα fusion protein and promotes plasminogen-dependent fibrinolysis and matrix invasion in acute promyelocytic leukemia.

    PubMed

    Huang, Dan; Yang, Yan; Sun, Jian; Dong, Xiaorong; Wang, Jiao; Liu, Hongchen; Lu, Chengquan; Chen, Xueyu; Shao, Jing; Yan, Jinsong

    2017-09-01

    Aberrant expression of annexin A2-S100A10 heterotetramer (AIIt) associated with PML/RARα fusion protein causes lethal hyperfibrinolysis in acute promyelocytic leukemia (APL), but the mechanism is unclear. To facilitate the investigation of regulatory association between ANXA2 and promyelocytic leukemia/retinoic acid receptor a (PML/RARα) fusion protein, this work was performed to determine the transcription start site of ANXA2 promoter with rapid amplification of 5'-cDNA ends analysis. Zinc-induced U937/PR9 cells expressed PML/RARα fusion protein, and resultant increases in ANXA2 transcripts and translational expressions of both ANXA2 and S100A10, while S100A10 transcripts remained constitutive. The transactivation of ANXA2 promoter by PML/RARα fusion protein was 3.29 ± 0.13 fold higher than that by control pSG5 vector or wild-type RARα. The overexpression of ANXA2 in U937 transfected with full-length ANXA2 cDNA was associated with increased S100A10 subunit, although S100A10 transcripts remained constitutive. The tPA-dependent initial rate of plasmin generation (IRPG) in zinc-treated U937/PR9 increased by 2.13-fold, and cell invasiveness increased by 27.6%. Antibodies against ANXA2, S100A10, or combination of both all remarkably inhibited the IRPG and invasiveness in U937/PR9 and NB4. Treatment of zinc-induced U937/PR9 or circulating APL blasts with all-trans retinoic acid (ATRA) significantly reduced cell surface ANXA2 and S100A10 and associated reductions in IRPG and invasiveness. Thus, PML/RARα fusion protein transactivated the ANXA2 promoter to upregulate ANXA2 and accumulate S100A10. Increased AIIt promoted IRPG and invasiveness, both of which were partly abolished by antibodies against ANXA2 and S100A10 or by ATRA.

  13. The transcription fidelity factor GreA impedes DNA break repair.

    PubMed

    Sivaramakrishnan, Priya; Sepúlveda, Leonardo A; Halliday, Jennifer A; Liu, Jingjing; Núñez, María Angélica Bravo; Golding, Ido; Rosenberg, Susan M; Herman, Christophe

    2017-10-12

    Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. However, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase and hence promotes transcription fidelity. We report that removal of GreA results in markedly enhanced break repair via the classic RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation, we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNA polymerase backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNA polymerase can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor that compromises genomic integrity.

  14. RNA editing and regulation of Drosophila 4f-rnp expression by sas-10 antisense readthrough mRNA transcripts

    PubMed Central

    PETERS, NICK T.; ROHRBACH, JUSTIN A.; ZALEWSKI, BRIAN A.; BYRKETT, COLLEEN M.; VAUGHN, JACK C.

    2003-01-01

    We have previously described an example of extensively A-to-G edited cDNA derived from adult heads of the fruitfly Drosophila melanogaster. In that study, the source of the predicted antisense RNA pairing strand for template recognition by dADAR editase was not identified, and the biological significance of the observed hyperediting was not known. Here, we address each of these questions. 4f-rnp and sas-10 are closely adjacent X-linked genes located on opposite DNA strands that produce convergent transcripts. We show that developmentally regulated antisense sas-10 readthrough mRNA arises by activation of an upstream promoter P2 during the late embryo stage of fly development. The sas-10 readthrough transcripts pair with 4f-rnp mRNA to form double-stranded molecules, as indicated by A-to-G editing observed in both RNA strands. It would be predicted that perfect RNA duplexes would be targeted for modification/degradation by enzyme pathways that recognize double-stranded RNAs, leading to decline in 4f-rnp mRNA levels, and this is what we observe. The observation using quantitative RT-PCR that sas-10 readthrough and 4f-rnp transcript levels are inversely related suggests a role for the antisense RNA in posttranscriptional regulation of 4f-rnp gene expression during development. Potential molecular mechanisms that could lead to this result are discussed, one of which is targeted transcript degradation via the RNAi pathway. Insofar as the dADAR editase and RNAi pathways are known to be constitutive in this system, it is likely that control of antisense RNA transcription is the rate-limiting factor. The results provide insight into roles of naturally occurring antisense RNAs in regulation of eukaryotic gene expression. PMID:12756328

  15. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants

    PubMed Central

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5′ transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5′UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5′end can modulate protein levels up to 160%–300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple

  16. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants.

    PubMed

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5' transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5'UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5'end can modulate protein levels up to 160%-300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for

  17. Role of S fimbriae in Escherichia coli K1 binding to brain microvascular endothelial cells in vitro and penetration into the central nervous system in vivo.

    PubMed

    Wang, Ying; Wen, Zhang Guang; Kim, Kwang Sik

    2004-12-01

    Bacterial binding to host cell surface is considered an important initial step in the pathogenesis of many infectious diseases including meningitis. Previous studies using a laboratory Escherichia coli (E. coli) strain HB101 possessing a recombinant plasmid carrying the cloned S fimbriae gene cluster have shown that S fimbriae are the major contributor to binding to bovine brain microvascular endothelial cells (BMEC) for HB101. Our present study, however, revealed that S fimbriae did not play a major role for E. coli K1's binding to human BMEC in vitro and crossing of the blood-brain barrier in vivo. This was shown by our demonstration that E. coli K1 strain and its S fimbriae-operon deletion mutant exhibited similar rates of binding to human BMEC and similar rates of penetration into the central nervous system in the experimental hematogenous meningitis model. Studies are needed to identify major determinants of E. coli K1 contributing to BMEC binding and subsequent crossing of the blood-brain barrier in vivo.

  18. U.S. EPA, Pesticide Product Label, SANI-CLOTH PLUS GERMICIDAL DISPOSABLE CLOTH, 10/30/2007

    EPA Pesticide Factsheets

    2011-04-21

    ... Escherichia coli (E. coli) 0157:H7 (AIQGE~5Jj:5P) .... ... k1~~~g~:g~l~~I~r~;,'~ 1~~~~:e!g:'tEi#ure~"wiP.Ei!:c)~~b;s:;[~H~';iji~9J!Ii;~~] ...

  19. 5 CFR 2413.7 - Transcripts, recordings or minutes of closed meeting; public availability; retention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pursuant to the provisions of 5 U.S.C. 552b(c). Copies of transcripts or minutes, or transcriptions of... schedule of fees set forth in § 2411.10 of this subchapter and the actual cost of transcription. (c) The...

  20. 5 CFR 2413.7 - Transcripts, recordings or minutes of closed meeting; public availability; retention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pursuant to the provisions of 5 U.S.C. 552b(c). Copies of transcripts or minutes, or transcriptions of... schedule of fees set forth in § 2411.10 of this subchapter and the actual cost of transcription. (c) The...

  1. Persistence of culturable Escherichia coli fecal contaminants in dairy alpine grassland soils.

    PubMed

    Texier, Stéphanie; Prigent-Combaret, Claire; Gourdon, Marie Hélène; Poirier, Marie Andrée; Faivre, Pierre; Dorioz, Jean Marcel; Poulenard, Jérome; Jocteur-Monrozier, Lucile; Moënne-Loccoz, Yvan; Trevisan, Dominique

    2008-01-01

    Our knowledge of Escherichia coli (E. coli) ecology in the field is very limited in the case of dairy alpine grassland soils. Here, our objective was to monitor field survival of E. coli in cow pats and underlying soils in four different alpine pasture units, and to determine whether the soil could constitute an environmental reservoir. E. coli was enumerated by MPN using a selective medium. E. coli survived well in cow pats (10(7) to 10(8) cells g(-1) dry pat), but cow pats disappeared within about 2 mo. In each pasture unit, constant levels of E. coli (10(3) to 10(4) cells g(-1) dry soil) were recovered from all topsoil (0-5 cm) samples regardless of the sampling date, that is, under the snow cover, immediately after snow melting, or during the pasture season (during and after the decomposition of pats). In deeper soil layers below the root zone (5-25 cm), E. coli persistence varied according to soil type, with higher numbers recovered in poorly-drained soils (10(3) to 10(4) cells g(-1) dry soil) than in well-drained soils (< 10(2) cells g(-1) dry soil). A preliminary analysis of 38 partial uidA sequences of E. coli from pat and soils highlighted a cluster containing sequences only found in this work. Overall, this study raises the possibility that fecal E. coli could have formed a naturalized (sub)population, which is now part of the indigenous soil community of alpine pasture grasslands, the soil thus representing an environmental reservoir of E. coli.

  2. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Inhibition of transcription affects synthesis of steroidogenic acute regulatory protein and steroidogenesis in MA-10 mouse Leydig tumor cells.

    PubMed

    Clark, B J; Combs, R; Hales, K H; Hales, D B; Stocco, D M

    1997-11-01

    Hormonal induction of steroidogenesis in the adrenal and gonads is dependent on the synthesis and function of the steroidogenic acute regulatory protein (StAR). As a first approach to investigate the role of translation in the control of StAR expression, we examined StAR protein synthesis and steroid production in MA-10 mouse Leydig tumor cells in the presence of the transcriptional inhibitor, actinomycin D. We show that human CG (hCG)-induced StAR synthesis, as determined by radiolabeling MA-10 cells with [35S]methionine and immunoprecipitation of StAR, is blocked by actinomycin D. The rate of hCG-stimulated progesterone production is also decreased, but not completely blocked, suggesting a possible StAR-independent mechanism that may contribute approximately 10-20% of the acute steroidogenic potential of the cells. When MA-10 cells were pretreated with hCG to increase StAR messenger RNA levels and then the proteins radiolabeled in the presence of hCG or hCG plus actinomycin D, no difference was observed in the amount of the 30-kDa StAR protein synthesized. However, a 50% increase in the precursor form of StAR protein was detected with hCG treatment alone. These data suggest that ongoing StAR protein synthesis is not inhibited by actinomycin D, but that continued synthesis requires transcriptional activity. Progesterone production was inhibited by actinomycin D in the hCG-pretreated cells, supporting the proposal that maintaining StAR protein synthesis is required for optimal steroid production in MA-10 mouse Leydig tumor cells.

  4. Long-range transcriptional interference in E. coli used to construct a dual positive selection system for genetic switches

    PubMed Central

    Hoffmann, Stefan A.; Kruse, Sabrina M.; Arndt, Katja M.

    2016-01-01

    Abstract We have investigated transcriptional interference between convergent genes in E. coli and demonstrate substantial interference for inter-promoter distances of as far as 3 kb. Interference can be elicited by both strong σ70 dependent and T7 promoters. In the presented design, a strong promoter driving gene expression of a ‘forward’ gene interferes with the expression of a ‘reverse’ gene by a weak promoter. This arrangement allows inversely correlated gene expression without requiring further regulatory components. Thus, modulation of the activity of the strong promoter alters expression of both the forward and the reverse gene. We used this design to develop a dual selection system for conditional operator site binding, allowing positive selection both for binding and for non-binding to DNA. This study demonstrates the utility of this novel system using the Lac repressor as a model protein for conditional DNA binding, and spectinomycin and chloramphenicol resistance genes as positive selection markers in liquid culture. Randomized LacI libraries were created and subjected to subsequent dual selection, but mispairing IPTG and selection cues in respect to the wild-type LacI response, allowing the isolation of a LacI variant with a reversed IPTG response within three rounds of library generation and dual selection. PMID:26932362

  5. RNA Initiation with Dinucleoside Monophosphates during Transcription of Bacteriophage T4 DNA with RNA Polymerase of Escherichia coli

    PubMed Central

    Hoffman, David J.; Niyogi, Salil K.

    1973-01-01

    The effects of dinucleoside monophosphates on the transcription of phage T4 DNA by E. coli RNA polymerase have been examined at various concentrations of the sigma subunit and extremely low concentration of ribonucleoside triphosphate. The following conclusions were reached: (i) Labeled specific dinucleoside monophosphates are incorporated as chain initiators. (ii) When the ratio of sigma factor to core enzyme is small, there is a general stimulation by most 5′-guanosyl dinucleoside monophosphates. (iii) When the ratio is increased or holoenzyme is present, ApU, CpA, UpA, and GpU are the most effective stimulators. (iv) At high concentrations of sigma factor, only certain adenosine-containing dinucleoside monophosphates (ApU, CpA, UpA, and ApA) stimulate the reaction. (v) Competition hybridization studies indicate that the RNAs stimulated by dinucleoside monophosphates (ApU, CpA, UpA, and GpU) are of the T4 “early” type. (vi) Studies involving both combinations of stimulatory dinucleoside monophosphates and competitive effects of these compounds on chain initiation by ATP and GTP suggest that the stimulatory dinucleoside monophosphates act as chain initiators and may recognize part of a continuous sequence in a promoter region. Studies based on the incorporation of 3H-labeled stimulatory dinucleoside monophosphates support the above conclusions. PMID:4568732

  6. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida.

    PubMed

    Bojanovič, Klara; D'Arrigo, Isotta; Long, Katherine S

    2017-04-01

    Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one

  7. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida

    PubMed Central

    Bojanovič, Klara; D'Arrigo, Isotta

    2017-01-01

    ABSTRACT Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least

  8. Effects of simulated Mars conditions on the survival and growth of Escherichia coli and Serratia liquefaciens.

    PubMed

    Berry, Bonnie J; Jenkins, David G; Schuerger, Andrew C

    2010-04-01

    Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30 degrees C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl(2), MgSO(4), NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20 degrees C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO(4) maintained at 20 or 30 degrees C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and -50 degrees C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m(-2) for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive

  9. Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus

    PubMed Central

    Lu, Zhongjing; Dockery, Christopher R.; Crosby, Michael; Chavarria, Katherine; Patterson, Brett; Giedd, Matthew

    2016-01-01

    Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural “green” foods. Allyl isothiocyanate (AITC) is an antimicrobial compound naturally present in wasabi (Japanese horseradish) and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil) against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E. coli O157:H7 and S. aureus. Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91 ± 0.59 mg/g. The minimum inhibitory concentration (MIC) of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml). Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 μg/ml. AITC at 500 μg/ml was bactericidal against both pathogens while AITC at 1000 μg/ml eliminated E. coli O157:H7 much faster than S. aureus. The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi against other

  10. Antibacterial Activities of Wasabi against Escherichia coli O157:H7 and Staphylococcus aureus.

    PubMed

    Lu, Zhongjing; Dockery, Christopher R; Crosby, Michael; Chavarria, Katherine; Patterson, Brett; Giedd, Matthew

    2016-01-01

    Escherichia coli O157:H7 and Staphylococcus aureus are two of the major pathogens frequently involved in foodborne outbreaks. Control of these pathogens in foods is essential to food safety. It is of great interest in the use of natural antimicrobial compounds present in edible plants to control foodborne pathogens as consumers prefer more natural "green" foods. Allyl isothiocyanate (AITC) is an antimicrobial compound naturally present in wasabi (Japanese horseradish) and several other edible plants. Although the antibacterial effects of pure AITC and wasabi extract (essential oil) against several bacteria have been reported, the antibacterial property of natural wasabi has not been well studied. This study investigated the antibacterial activities of wasabi as well as AITC against E . coli O157:H7 and S . aureus . Chemical analysis showed that AITC is the major isothiocyanate in wasabi. The AITC concentration in the wasabi powder used in this study was 5.91 ± 0.59 mg/g. The minimum inhibitory concentration (MIC) of wasabi against E. coli O157:H7 or S. aureus was 1% (or 10 mg/ml). Wasabi at 4% displayed higher bactericidal activity against S. aureus than against E. coli O157:H7. The MIC of AITC against either pathogen was between 10 and 100 μg/ml. AITC at 500 μg/ml was bactericidal against both pathogens while AITC at 1000 μg/ml eliminated E. coli O157:H7 much faster than S. aureus . The results from this study showed that wasabi has strong antibacterial property and has high potential to effectively control E. coli O157:H7 and S. aureus in foods. The antibacterial property along with its natural green color, unique flavor, and advantage to safeguard foods at the point of ingestion makes wasabi a promising natural edible antibacterial plant. The results from this study may be of significant interest to the food industry as they develop new and safe foods. These results may also stimulate more research to evaluate the antibacterial effect of wasabi against other

  11. Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: Isolation and molecular identification by partial sequencing of 16S rDNA

    PubMed Central

    Garbaj, Aboubaker M.; Awad, Enas M.; Azwai, Salah M.; Abolghait, Said K.; Naas, Hesham T.; Moawad, Ashraf A.; Gammoudi, Fatim T.; Barbieri, Ilaria; Eldaghayes, Ibrahim M.

    2016-01-01

    Aim: The aim of this work was to isolate and molecularly identify enterohemorrhagic Escherichia coli (EHEC) O157 in milk and dairy products in Libya, in addition; to clear the accuracy of cultural and biochemical identification as compared with molecular identification by partial sequencing of 16S rDNA for the existing isolates. Materials and Methods: A total of 108 samples of raw milk (cow, she-camel, and goat) and locally made dairy products (fermented cow’s milk, Maasora, Ricotta and ice cream) were collected from some regions (Janzour, Tripoli, Kremiya, Tajoura and Tobruk) in Libya. Samples were subjected to microbiological analysis for isolation of E. coli that was detected by conventional cultural and molecular method using polymerase chain reaction and partial sequencing of 16S rDNA. Results: Out of 108 samples, only 27 isolates were found to be EHEC O157 based on their cultural characteristics (Tellurite-Cefixime-Sorbitol MacConkey) that include 3 isolates from cow’s milk (11%), 3 isolates from she-camel’s milk (11%), two isolates from goat’s milk (7.4%) and 7 isolates from fermented raw milk samples (26%), isolates from fresh locally made soft cheeses (Maasora and Ricotta) were 9 (33%) and 3 (11%), respectively, while none of the ice cream samples revealed any growth. However, out of these 27 isolates, only 11 were confirmed to be E. coli by partial sequencing of 16S rDNA and E. coli O157 Latex agglutination test. Phylogenetic analysis revealed that majority of local E. coli isolates were related to E. coli O157:H7 FRIK944 strain. Conclusion: These results can be used for further studies on EHEC O157 as an emerging foodborne pathogen and its role in human infection in Libya. PMID:27956766

  12. Synthetic in vitro transcriptional oscillators

    PubMed Central

    Kim, Jongmin; Winfree, Erik

    2011-01-01

    The construction of synthetic biochemical circuits from simple components illuminates how complex behaviors can arise in chemistry and builds a foundation for future biological technologies. A simplified analog of genetic regulatory networks, in vitro transcriptional circuits, provides a modular platform for the systematic construction of arbitrary circuits and requires only two essential enzymes, bacteriophage T7 RNA polymerase and Escherichia coli ribonuclease H, to produce and degrade RNA signals. In this study, we design and experimentally demonstrate three transcriptional oscillators in vitro. First, a negative feedback oscillator comprising two switches, regulated by excitatory and inhibitory RNA signals, showed up to five complete cycles. To demonstrate modularity and to explore the design space further, a positive-feedback loop was added that modulates and extends the oscillatory regime. Finally, a three-switch ring oscillator was constructed and analyzed. Mathematical modeling guided the design process, identified experimental conditions likely to yield oscillations, and explained the system's robust response to interference by short degradation products. Synthetic transcriptional oscillators could prove valuable for systematic exploration of biochemical circuit design principles and for controlling nanoscale devices and orchestrating processes within artificial cells. PMID:21283141

  13. The iron-binding CyaY and IscX proteins assist the ISC-catalyzed Fe-S biogenesis in Escherichia coli.

    PubMed

    Roche, Béatrice; Huguenot, Allison; Barras, Frédéric; Py, Béatrice

    2015-02-01

    In eukaryotes, frataxin deficiency (FXN) causes severe phenotypes including loss of iron-sulfur (Fe-S) cluster protein activity, accumulation of mitochondrial iron and leads to the neurodegenerative disease Friedreich's ataxia. In contrast, in prokaryotes, deficiency in the FXN homolog, CyaY, was reported not to cause any significant phenotype, questioning both its importance and its actual contribution to Fe-S cluster biogenesis. Because FXN is conserved between eukaryotes and prokaryotes, this surprising discrepancy prompted us to reinvestigate the role of CyaY in Escherichia coli. We report that CyaY (i) potentiates E. coli fitness, (ii) belongs to the ISC pathway catalyzing the maturation of Fe-S cluster-containing proteins and (iii) requires iron-rich conditions for its contribution to be significant. A genetic interaction was discovered between cyaY and iscX, the last gene of the isc operon. Deletion of both genes showed an additive effect on Fe-S cluster protein maturation, which led, among others, to increased resistance to aminoglycosides and increased sensitivity to lambda phage infection. Together, these in vivo results establish the importance of CyaY as a member of the ISC-mediated Fe-S cluster biogenesis pathway in E. coli, like it does in eukaryotes, and validate IscX as a new bona fide Fe-S cluster biogenesis factor. © 2014 John Wiley & Sons Ltd.

  14. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli.

    PubMed

    Pesavento, Christina; Becker, Gisela; Sommerfeldt, Nicole; Possling, Alexandra; Tschowri, Natalia; Mehlis, Anika; Hengge, Regine

    2008-09-01

    During the transition from post-exponential to stationary phase, Escherichia coli changes from the motile-planktonic to the adhesive-sedentary "lifestyle." We demonstrate this transition to be controlled by mutual inhibition of the FlhDC/motility and sigma(S)/adhesion control cascades at two distinct hierarchical levels. At the top level, motility gene expression and the general stress response are inversely coordinated by sigma(70)/sigma(FliA)/sigma(S) competition for core RNA polymerase and the FlhDC-controlled FliZ protein acting as a sigma(S) inhibitor. At a lower level, the signaling molecule bis-(3'-5')-cyclic-diguanosine monophosphate (c-di-GMP) reduces flagellar activity and stimulates transcription of csgD, which encodes an essential activator of adhesive curli fimbriae expression. This c-di-GMP is antagonistically controlled by sigma(S)-regulated GGDEF proteins (mainly YegE) and YhjH, an EAL protein and c-di-GMP phosphodiesterase under FlhDC/FliA control. The switch from motility-based foraging to the general stress response and curli expression requires sigma(S)-modulated down-regulation of expression of the flagellar regulatory cascade as well as proteolysis of the flagellar master regulator FlhDC. Control of YhjH by FlhDC and of YegE by sigma(S) produces a fine-tuned checkpoint system that "unlocks" curli expression only after down-regulation of flagellar gene expression. In summary, these data reveal the logic and sequence of molecular events underlying the motile-to-adhesive "lifestyle" switch in E. coli.

  15. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection.

    PubMed

    Sivick, Kelsey E; Schaller, Matthew A; Smith, Sara N; Mobley, Harry L T

    2010-02-15

    Uropathogenic Escherichia coli is the causative agent for >80% of uncomplicated urinary tract infections (UTIs). Uropathogenic E. coli strains express a number of virulence and fitness factors that allow successful colonization of the mammalian bladder. To combat this, the host has distinct mechanisms to prevent adherence to the bladder wall and to detect and kill uropathogenic E. coli in the event of colonization. In this study, we investigated the role of IL-17A, an innate-adaptive immunomodulatory cytokine, during UTI using a murine model. Splenocytes isolated from mice infected by the transurethral route robustly expressed IL-17A in response to in vitro stimulation with uropathogenic E. coli Ags. Transcript expression of IL-17A in the bladders of infected mice correlated with a role in the innate immune response to UTI, and gammadelta cells seem to be a key source of IL-17A production. Although IL-17A seems to be dispensable for the generation of a protective response to uropathogenic E. coli, its importance in innate immunity is demonstrated by a defect in acute clearance of uropathogenic E. coli in IL-17A(-/-) mice. This clearance defect is likely a result of deficient cytokine and chemokine transcripts and impaired macrophage and neutrophil influx during infection. These results show that IL-17A is a key mediator for the innate immune response to UTIs.

  16. Peptidoglycan Recognition Protein S2 From Silkworm Integument: Characterization, Microbe-Induced Expression, and Involvement in the Immune-Deficiency Pathway

    PubMed Central

    Yang, Jie; Wang, Xiaonan; Tang, Shunming; Shen, Zhongyuan; Wu, Jinmei

    2015-01-01

    Peptidoglycan recognition protein (PGRP) binds specifically to peptidoglycan and plays an important role as a pattern recognition receptor in the innate immunity of insects. The cDNA of a short-type PGRP, an open reading frame of 588 bp encoding a polypeptide of 196 amino acids, was cloned from Bombyx mori. A phylogenetic tree was constructed, and the results showed that BmPGRP-S2 was most similar to Drosophila melanogaster PGRP (DmPGRP-SA). The induced expression profile of BmPGRP-S2 in healthy Escherichia coli- and Bacillus subtilis-challenged B. mori was measured using semiquantitative reverse transcriptase polymerase chain reaction analysis. The expression of BmPGRP-S2 was upregulated at 24 h by E. coli and Ba. subtilis challenge. In addition, in the integument of B. mori, RNAi knockdown of BmPGRP-S2 caused an obvious reduction in the transcription expression of the transcription factor Relish and in antibacterial effector genes Attacin, Gloverin, and Moricin. The results indicated that BmPGRP-S2 participates in the signal transduction pathway of B. mori. PMID:25797797

  17. Interplay between CedA, rpoB and double stranded DNA: A step towards understanding CedA mediated cell division in E. coli.

    PubMed

    Sharma, Pankaj; Tomar, Anil Kumar; Kundu, Bishwajit

    2018-02-01

    Cell division is compromised in DnaAcos mutant E. coli cells due to chromosome over-replication. In these cells, CedA acts as a regulatory protein and initiates cell division by a hitherto unknown mechanism. CedA, a double stranded DNA binding protein, interacts with various subunits of RNA polymerase complex, including rpoB. To reveal how this concert between CedA, rpoB and DNA brings about cell division in E. coli, we performed biophysical and in silico analysis and obtained mechanistic insights. Interaction between CedA and rpoB was shown by circular dichroism spectrometry and in silico docking experiments. Further, CedA and rpoB were allowed to interact individually to a selected DNA and their binding was monitored by fluorescence spectroscopy. The binding constants of these interactions as determined by BioLayer Interferometry clearly show that rpoB binds to DNA with higher affinity (K D2 =<1.0E-12M) as compared to CedA (K D2 =9.58E-09M). These findings were supported by docking analysis where 12 intermolecular H-bonds were formed in rpoB-DNA complex as compared to 4 in CedA-DNA complex. Based on our data we propose that in E. coli cells chromosome over-replication signals CedA to recruit rpoB to specific DNA site(s), which initiates transcription of cell division regulatory elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Plasmid-controlled colonization factor associated with virulence in Esherichia coli enterotoxigenic for humans.

    PubMed Central

    Evans, D G; Silver, R P; Evans, D J; Chase, D G; Gorbach, S L

    1975-01-01

    An enterotoxin-producing strain of Escherichia coli isolated from a case of cholera-like diarrhea (E. coli strain H-10407) was found to possess a surface-associated colonization factor. Colonization was manifested as the ability of small inocula (10(5) bacteria) to attain large (10(9)) populations in the infant rabbit intestine with a concomitant diarrheal response. A laboratory-passed derivative of E. coli H-10407, designated H-10407-P, failed to exhibit an increase in population in the infant rabbit and also failed to induce diarrhea. Cell-free culture supernatant fluids of E. coli H-10407 and H-10407-P produced equivalent enterotoxic responses in infant and in adult rabbits. Specific anti-colonization factor antiserum was produced by adsorbing hyperimmune anti-H-10407 serum with both heat-killed and living cells E. coli H-10407-P. This specific adsorbed serum protected infant rabbits from challenge with living E. coli H-10407 although the serum did not possess bactericidal activity. The anti-colonization factor serum did not agglutinate a strain of E. coli K-12 possessing the K88 colonization factor peculiar to E. coli enterotoxigenic for swine. By electron microscopy it was demonstrated that E. coli H-10407, but not H10407-, possessed pilus-like surface structures which agglutinated with the specific adsorbed (anti-colonization factor) antiserum. E. coli H-10407 possessed three species of plasmid deoxyribonucleic acid, measuring 60 X 10(6), 42 X 10(6), and 3.7 X 10(6) daltons, respectively. E. coli H-10407-P possessed only the 42 X 10(6)- and the 3.7 X 10(6)-dalton plasmid species. Spontaneous loss of the specific H-10407 surface-associated antigen was accompanied by loss of the 60 X 10(6)-dalton species of plasmid deoxyribonucleic acid and loss of colonizing ability. Thus, it is concluded that the E. coli colonization factor described here is a virulence factor which may play an important and possibly essential role in naturally occurring E. coli enterotoxic

  19. Plasmid-controlled colonization factor associated with virulence in Esherichia coli enterotoxigenic for humans.

    PubMed

    Evans, D G; Silver, R P; Evans, D J; Chase, D G; Gorbach, S L

    1975-09-01

    An enterotoxin-producing strain of Escherichia coli isolated from a case of cholera-like diarrhea (E. coli strain H-10407) was found to possess a surface-associated colonization factor. Colonization was manifested as the ability of small inocula (10(5) bacteria) to attain large (10(9)) populations in the infant rabbit intestine with a concomitant diarrheal response. A laboratory-passed derivative of E. coli H-10407, designated H-10407-P, failed to exhibit an increase in population in the infant rabbit and also failed to induce diarrhea. Cell-free culture supernatant fluids of E. coli H-10407 and H-10407-P produced equivalent enterotoxic responses in infant and in adult rabbits. Specific anti-colonization factor antiserum was produced by adsorbing hyperimmune anti-H-10407 serum with both heat-killed and living cells E. coli H-10407-P. This specific adsorbed serum protected infant rabbits from challenge with living E. coli H-10407 although the serum did not possess bactericidal activity. The anti-colonization factor serum did not agglutinate a strain of E. coli K-12 possessing the K88 colonization factor peculiar to E. coli enterotoxigenic for swine. By electron microscopy it was demonstrated that E. coli H-10407, but not H10407-, possessed pilus-like surface structures which agglutinated with the specific adsorbed (anti-colonization factor) antiserum. E. coli H-10407 possessed three species of plasmid deoxyribonucleic acid, measuring 60 X 10(6), 42 X 10(6), and 3.7 X 10(6) daltons, respectively. E. coli H-10407-P possessed only the 42 X 10(6)- and the 3.7 X 10(6)-dalton plasmid species. Spontaneous loss of the specific H-10407 surface-associated antigen was accompanied by loss of the 60 X 10(6)-dalton species of plasmid deoxyribonucleic acid and loss of colonizing ability. Thus, it is concluded that the E. coli colonization factor described here is a virulence factor which may play an important and possibly essential role in naturally occurring E. coli enterotoxic

  20. Altered Distribution of RNA Polymerase Lacking the Omega Subunit within the Prophages along the Escherichia coli K-12 Genome.

    PubMed

    Yamamoto, Kaneyoshi; Yamanaka, Yuki; Shimada, Tomohiro; Sarkar, Paramita; Yoshida, Myu; Bhardwaj, Neerupma; Watanabe, Hiroki; Taira, Yuki; Chatterji, Dipankar; Ishihama, Akira

    2018-01-01

    The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α 2 ββ'ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β', but its functional role remains unsolved except for its involvement in ppGpp binding and stringent response. As an initial approach for elucidation of its functional role, we performed in this study ChIP-chip (chromatin immunoprecipitation with microarray technology) analysis of wild-type and rpoZ -defective mutant strains. The altered distribution of RpoZ-defective RNAP was identified mostly within open reading frames, in particular, of the genes inside prophages. For the genes that exhibited increased or decreased distribution of RpoZ-defective RNAP, the level of transcripts increased or decreased, respectively, as detected by reverse transcription-quantitative PCR (qRT-PCR). In parallel, we analyzed, using genomic SELEX (systemic evolution of ligands by exponential enrichment), the distribution of constitutive promoters that are recognized by RNAP RpoD holoenzyme alone and of general silencer H-NS within prophages. Since all 10 prophages in E. coli K-12 carry only a small number of promoters, the altered occupancy of RpoZ-defective RNAP and of transcripts might represent transcription initiated from as-yet-unidentified host promoters. The genes that exhibited transcription enhanced by RpoZ-defective RNAP are located in the regions of low-level H-NS binding. By using phenotype microarray (PM) assay, alterations of some phenotypes were detected for the rpoZ -deleted mutant, indicating the involvement of RpoZ in regulation of some genes. Possible mechanisms of altered distribution of RNAP inside prophages are discussed. IMPORTANCE The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA

  1. Altered Distribution of RNA Polymerase Lacking the Omega Subunit within the Prophages along the Escherichia coli K-12 Genome

    PubMed Central

    Yamamoto, Kaneyoshi; Yamanaka, Yuki; Shimada, Tomohiro; Sarkar, Paramita; Yoshida, Myu; Bhardwaj, Neerupma; Watanabe, Hiroki; Taira, Yuki

    2018-01-01

    ABSTRACT The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α2ββ′ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β′, but its functional role remains unsolved except for its involvement in ppGpp binding and stringent response. As an initial approach for elucidation of its functional role, we performed in this study ChIP-chip (chromatin immunoprecipitation with microarray technology) analysis of wild-type and rpoZ-defective mutant strains. The altered distribution of RpoZ-defective RNAP was identified mostly within open reading frames, in particular, of the genes inside prophages. For the genes that exhibited increased or decreased distribution of RpoZ-defective RNAP, the level of transcripts increased or decreased, respectively, as detected by reverse transcription-quantitative PCR (qRT-PCR). In parallel, we analyzed, using genomic SELEX (systemic evolution of ligands by exponential enrichment), the distribution of constitutive promoters that are recognized by RNAP RpoD holoenzyme alone and of general silencer H-NS within prophages. Since all 10 prophages in E. coli K-12 carry only a small number of promoters, the altered occupancy of RpoZ-defective RNAP and of transcripts might represent transcription initiated from as-yet-unidentified host promoters. The genes that exhibited transcription enhanced by RpoZ-defective RNAP are located in the regions of low-level H-NS binding. By using phenotype microarray (PM) assay, alterations of some phenotypes were detected for the rpoZ-deleted mutant, indicating the involvement of RpoZ in regulation of some genes. Possible mechanisms of altered distribution of RNAP inside prophages are discussed. IMPORTANCE The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia

  2. The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators.

    PubMed

    De la Cruz, Miguel A; Ruiz-Tagle, Alejandro; Ares, Miguel A; Pacheco, Sabino; Yáñez, Jorge A; Cedillo, Lilia; Torres, Javier; Girón, Jorge A

    2017-05-01

    Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Phage-mediated Delivery of Targeted sRNA Constructs to Knock Down Gene Expression in E. coli.

    PubMed

    Bernheim, Aude G; Libis, Vincent K; Lindner, Ariel B; Wintermute, Edwin H

    2016-03-20

    RNA-mediated knockdowns are widely used to control gene expression. This versatile family of techniques makes use of short RNA (sRNA) that can be synthesized with any sequence and designed to complement any gene targeted for silencing. Because sRNA constructs can be introduced to many cell types directly or using a variety of vectors, gene expression can be repressed in living cells without laborious genetic modification. The most common RNA knockdown technology, RNA interference (RNAi), makes use of the endogenous RNA-induced silencing complex (RISC) to mediate sequence recognition and cleavage of the target mRNA. Applications of this technique are therefore limited to RISC-expressing organisms, primarily eukaryotes. Recently, a new generation of RNA biotechnologists have developed alternative mechanisms for controlling gene expression through RNA, and so made possible RNA-mediated gene knockdowns in bacteria. Here we describe a method for silencing gene expression in E. coli that functionally resembles RNAi. In this system a synthetic phagemid is designed to express sRNA, which may designed to target any sequence. The expression construct is delivered to a population of E. coli cells with non-lytic M13 phage, after which it is able to stably replicate as a plasmid. Antisense recognition and silencing of the target mRNA is mediated by the Hfq protein, endogenous to E. coli. This protocol includes methods for designing the antisense sRNA, constructing the phagemid vector, packaging the phagemid into M13 bacteriophage, preparing a live cell population for infection, and performing the infection itself. The fluorescent protein mKate2 and the antibiotic resistance gene chloramphenicol acetyltransferase (CAT) are targeted to generate representative data and to quantify knockdown effectiveness.

  4. Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs

    PubMed Central

    Morita, Teppei; Nishino, Ryo; Aiba, Hiroji

    2017-01-01

    Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3′ end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs. PMID:28606943

  5. The comprehensive profile of fermentation products during in situ CO2 recycling by Rubisco-based engineered Escherichia coli.

    PubMed

    Yang, Cheng-Han; Liu, En-Jung; Chen, Yi-Ling; Ou-Yang, Fan-Yu; Li, Si-Yu

    2016-08-02

    In our previous study, the feasibility of Rubisco-based engineered E. coli (that contains heterologous phosphoribulokinase (PrkA) and Rubisco) for in situ CO2 recycling during the fermentation of pentoses or hexoses was demonstrated. Nevertheless, it is perplexing to see that only roughly 70 % of the carbon fed to the bacterial culture could be accounted for in the standard metabolic products. This low carbon recovery during fermentation occurred even though CO2 emission was effectively reduced by Rubisco-based engineered pathway. In this study, the heterologous expression of form I Rubisco was found to enhance the accumulation of pyruvate in Escherichia coli MZLF [E. coli BL21(DE3) Δzwf, Δldh, Δfrd]. This may be attributed to the enhanced glycolytic reaction supported by the increased biomass and the ethanol/acetate ratio. Besides, it was found that the transcription of arcA (encodes the redox-dependent transcriptional activators ArcA that positively regulates the transcription of pyruvate formate-lyase) was down-regulated in the presence of Rubisco. The enhanced accumulation of pyruvate also occurs when PrkA is co-expressed with Rubisco in E. coli MZLF. Furthermore, E. coli containing Rubisco-based engineered pathway has a distinct profile of the fermentation products, indicating CO2 was converted into fermentation products. By analyzing the ratio of total C-2 (2-carbon fermentation products) to total C-1 (1-carbon fermentation product) of MZLFB (MZLF containing Rubisco-based engineered pathway), it is estimated that 9 % of carbon is directed into Rubisco-based engineered pathway. Here, we report for the first time the complete profile of fermentation products using E. coli MZLF and its derived strains. It has been shown that the expression of Rubisco alone in MZLF enhances the accumulation of pyruvate. By including the contribution of pyruvate accumulation, the perplexing problem of low carbon recovery during fermentation by E. coli containing Rubisco

  6. Identification of new TSGA10 transcript variants in human testis with conserved regulatory RNA elements in 5'untranslated region and distinct expression in breast cancer.

    PubMed

    Salehipour, Pouya; Nematzadeh, Mahsa; Mobasheri, Maryam Beigom; Afsharpad, Mandana; Mansouri, Kamran; Modarressi, Mohammad Hossein

    2017-09-01

    Testis specific gene antigen 10 (TSGA10) is a cancer testis antigen involved in the process of spermatogenesis. TSGA10 could also play an important role in the inhibition of angiogenesis by preventing nuclear localization of HIF-1α. Although it has been shown that TSGA10 messenger RNA (mRNA) is mainly expressed in testis and some tumors, the transcription pattern and regulatory mechanisms of this gene remain largely unknown. Here, we report that human TSGA10 comprises at least 22 exons and generates four different transcript variants. It was identified that using two distinct promoters and splicing of exons 4 and 7 produced these transcript variants, which have the same coding sequence, but the sequence of 5'untanslated region (5'UTR) is different between them. This is significant because conserved regulatory RNA elements like upstream open reading frame (uORF) and putative internal ribosome entry site (IRES) were found in this region which have different combinations in each transcript variant and it may influence translational efficiency of them in normal or unusual environmental conditions like hypoxia. To indicate the transcription pattern of TSGA10 in breast cancer, expression of identified transcript variants was analyzed in 62 breast cancer samples. We found that TSGA10 tends to express variants with shorter 5'UTR and fewer uORF elements in breast cancer tissues. Our study demonstrates for the first time the expression of different TSGA10 transcript variants in testis and breast cancer tissues and provides a first clue to a role of TSGA10 5'UTR in regulation of translation in unusual environmental conditions like hypoxia. Copyright © 2017. Published by Elsevier B.V.

  7. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation

    USDA-ARS?s Scientific Manuscript database

    E. coli DksA is in a class of transcription factors that modify RNA polymerase (RNAP) in all three kingdoms of life. DksA potentiates the effects of the global regulator ppGpp and the initiating NTP, controlling transcription initiation without binding to DNA. Incorporating benzoyl-phenylalanine (Bp...

  8. GGRNA: an ultrafast, transcript-oriented search engine for genes and transcripts

    PubMed Central

    Naito, Yuki; Bono, Hidemasa

    2012-01-01

    GGRNA (http://GGRNA.dbcls.jp/) is a Google-like, ultrafast search engine for genes and transcripts. The web server accepts arbitrary words and phrases, such as gene names, IDs, gene descriptions, annotations of gene and even nucleotide/amino acid sequences through one simple search box, and quickly returns relevant RefSeq transcripts. A typical search takes just a few seconds, which dramatically enhances the usability of routine searching. In particular, GGRNA can search sequences as short as 10 nt or 4 amino acids, which cannot be handled easily by popular sequence analysis tools. Nucleotide sequences can be searched allowing up to three mismatches, or the query sequences may contain degenerate nucleotide codes (e.g. N, R, Y, S). Furthermore, Gene Ontology annotations, Enzyme Commission numbers and probe sequences of catalog microarrays are also incorporated into GGRNA, which may help users to conduct searches by various types of keywords. GGRNA web server will provide a simple and powerful interface for finding genes and transcripts for a wide range of users. All services at GGRNA are provided free of charge to all users. PMID:22641850

  9. GGRNA: an ultrafast, transcript-oriented search engine for genes and transcripts.

    PubMed

    Naito, Yuki; Bono, Hidemasa

    2012-07-01

    GGRNA (http://GGRNA.dbcls.jp/) is a Google-like, ultrafast search engine for genes and transcripts. The web server accepts arbitrary words and phrases, such as gene names, IDs, gene descriptions, annotations of gene and even nucleotide/amino acid sequences through one simple search box, and quickly returns relevant RefSeq transcripts. A typical search takes just a few seconds, which dramatically enhances the usability of routine searching. In particular, GGRNA can search sequences as short as 10 nt or 4 amino acids, which cannot be handled easily by popular sequence analysis tools. Nucleotide sequences can be searched allowing up to three mismatches, or the query sequences may contain degenerate nucleotide codes (e.g. N, R, Y, S). Furthermore, Gene Ontology annotations, Enzyme Commission numbers and probe sequences of catalog microarrays are also incorporated into GGRNA, which may help users to conduct searches by various types of keywords. GGRNA web server will provide a simple and powerful interface for finding genes and transcripts for a wide range of users. All services at GGRNA are provided free of charge to all users.

  10. An Escherichia coli nitrogen starvation response is important for mutualistic coexistence with Rhodopseudomonas palustris.

    PubMed

    McCully, Alexandra L; Behringer, Megan G; Gliessman, Jennifer R; Pilipenko, Evgeny V; Mazny, Jeffrey L; Lynch, Michael; Drummond, D Allan; McKinlay, James B

    2018-05-04

    Microbial mutualistic cross-feeding interactions are ubiquitous and can drive important community functions. Engaging in cross-feeding undoubtedly affects the physiology and metabolism of individual species involved. However, the nature in which an individual's physiology is influenced by cross-feeding and the importance of those physiological changes for the mutualism have received little attention. We previously developed a genetically tractable coculture to study bacterial mutualisms. The coculture consists of fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli anaerobically ferments sugars into excreted organic acids as a carbon source for R. palustris In return, a genetically-engineered R. palustris constitutively converts N 2 into NH 4 + , providing E. coli with essential nitrogen. Using RNA-seq and proteomics, we identified transcript and protein levels that differ in each partner when grown in coculture versus monoculture. When in coculture with R. palustris , E. coli gene-expression changes resembled a nitrogen starvation response under the control of the transcriptional regulator NtrC. By genetically disrupting E. coli NtrC, we determined that a nitrogen starvation response is important for a stable coexistence, especially at low R. palustris NH 4 + excretion levels. Destabilization of the nitrogen starvation regulatory network resulted in variable growth trends and in some cases, extinction. Our results highlight that alternative physiological states can be important for survival within cooperative cross-feeding relationships. Importance Mutualistic cross-feeding between microbes within multispecies communities is widespread. Studying how mutualistic interactions influence the physiology of each species involved is important for understanding how mutualisms function and persist in both natural and applied settings. Using a bacterial mutualism consisting of Rhodopseudomonas palustris and Escherichia coli

  11. Chromosomal instability in enterohaemorrhagic Escherichia coli O157:H7: impact on adherence, tellurite resistance and colony phenotype

    PubMed Central

    Bielaszewska, Martina; Middendorf, Barbara; Tarr, Phillip I; Zhang, Wenlan; Prager, Rita; Aldick, Thomas; Dobrindt, Ulrich; Karch, Helge; Mellmann, Alexander

    2011-01-01

    Tellurite (Tel) resistant enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is a global pathogen. In strain EDL933 Tel resistance (TelR) is encoded by duplicate ter cluster in O islands (OI) 43 and 48, which also harbour iha, encoding the adhesin and siderophore receptor Iha. We identified five EHEC O157:H7 strains that differentiate into large (L) colonies and small (S) colonies with high and low Tel minimal inhibitory concentrations (MICs) respectively. S colonies (Tel-MICs ≤ 4 µg ml−1) sustained large internal deletions within the TelR OIs via homologous recombination between IS elements and lost ter and iha. Moreover, complete excision of the islands occurred by site-specific recombination between flanking direct repeats. Complete excision of OI 43 and OI 48 occurred in 1.81 × 10−3 and 1.97 × 10−4 cells in culture, respectively; internal deletion of OI 48 was more frequent (9.7 × 10−1 cells). Under iron limitation that promotes iha transcription, iha-negative derivatives adhered less well to human intestinal epithelial cells and grew slower than did their iha-positive counterparts. Experiments utilizing iha deletion and complementation mutants identified Iha as the major factor responsible for these phenotypic differences. Spontaneous deletions affecting TelR OIs contribute to EHEC O157 genome plasticity and might impair virulence and/or fitness. PMID:21299654

  12. The histone modifications governing TFF1 transcription mediated by estrogen receptor.

    PubMed

    Li, Yanyan; Sun, Luyang; Zhang, Yu; Wang, Dandan; Wang, Feng; Liang, Jing; Gui, Bin; Shang, Yongfeng

    2011-04-22

    Transcription regulation by histone modifications is a major contributing factor to the structural and functional diversity in biology. These modifications are encrypted as histone codes or histone languages and function to establish and maintain heritable epigenetic codes that define the identity and the fate of the cell. Despite recent advances revealing numerous histone modifications associated with transcription regulation, how such modifications dictate the process of transcription is not fully understood. Here we describe spatial and temporal analyses of the histone modifications that are introduced during estrogen receptor α (ERα)-activated transcription. We demonstrated that aborting RNA polymerase II caused a disruption of the histone modifications that are associated with transcription elongation but had a minimal effect on modifications deposited during transcription initiation. We also found that the histone H3S10 phosphorylation mark is catalyzed by mitogen- and stress-activated protein kinase 1 (MSK1) and is recognized by a 14-3-3ζ/14-3-3ε heterodimer through its interaction with H3K4 trimethyltransferase SMYD3 and the p52 subunit of TFIIH. We showed that H3S10 phosphorylation is a prerequisite for H3K4 trimethylation. In addition, we demonstrated that SET8/PR-Set7/KMT5A is required for ERα-regulated transcription and its catalyzed H4K20 monomethylation is implicated in both transcription initiation and elongation. Our experiments provide a relatively comprehensive analysis of histone modifications associated with ERα-regulated transcription and define the biological meaning of several key components of the histone code that governs ERα-regulated transcription.

  13. Genotype to Phenotype Mapping of the E. coli lac Promoter

    NASA Astrophysics Data System (ADS)

    Otwinowski, Jakub; Nemenman, Ilya

    2014-03-01

    Genotype-to-phenotype maps and the related fitness landscapes that include epistatic interactions are difficult to measure because of their high dimensional structure. Here we construct such a map using the recently collected corpora of high-throughput sequence data from the 75 base pairs long mutagenized E. coli lac promoter region, where each sequence is associated with induced transcriptional activity measured by a fluorescent reporter. We find that the additive (non-epistatic) contributions of individual mutations account for about two-thirds of the explainable phenotype variance, while pairwise epistasis explains about 7% of the variance for the full mutagenized sequence and about 15% for the subsequence associated with protein binding sites. Surprisingly, there is no evidence for third order epistatic contributions, and our inferred fitness landscape is essentially single peaked, with a small amount of antagonistic epistasis. We identify transcription factor (CRP) and RNA polymerase binding sites in the promotor region and their interactions. We conclude with a cautionary note that inferred properties of fitness landscapes may be severely influenced by biases in the sequence data. Funded in part by HFSP and James S. McDonnell Foundation.

  14. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and resistant Drosophila melanogaster strains in response to DDT and oxidative stress

    USDA-ARS?s Scientific Manuscript database

    Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been...

  15. Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival.

    PubMed

    Dror-Ehre, A; Mamane, H; Belenkova, T; Markovich, G; Adin, A

    2009-11-15

    Silver nanoparticles exhibit antibacterial properties via bacterial inactivation and growth inhibition. The mechanism is not yet completely understood. This work was aimed at elucidating the effect of silver nanoparticles on inactivation of Escherichia coli, by studying particle-particle interactions in aqueous suspensions. Stable, molecularly capped, positively or negatively charged silver nanoparticles were mixed at 1 to 60microgmL(-1) with suspended E. coli cells to examine their effect on inactivation of the bacteria. Gold nanoparticles with the same surfactant were used as a control, being of similar size but made up of a presumably inert metal. Log reduction of 5log(10) and complete inactivation were obtained with the silver nanoparticles while the gold nanoparticles did not show any inactivation ability. The effect of molecularly capped nanoparticles on E. coli survival was dependent on particle number. Log reduction of E. coli was associated with the ratio between the number of nanoparticles and the initial bacterial cell count. Electrostatic attraction or repulsion mechanisms in silver nanoparticle-E. coli cell interactions did not contribute to the inactivation process.

  16. The efficacy of inactivated Escherichia coli autogenous vaccines against the E. coli peritonitis syndrome in layers.

    PubMed

    Landman, W J M; van Eck, J H H

    2017-12-01

    Autogenous Escherichia coli vaccines to prevent the E. coli peritonitis syndrome (EPS) in laying hens are often used in the field, although their effectiveness has not been demonstrated yet. Therefore, in this study, which consisted of two experiments, their efficacy was assessed. In the first experiment, the EPS-inducing ability of three E. coli isolates originating from bone marrow of hens that died due to EPS and with different Pulsed-Field Gel Electrophoresis patterns, was examined by intravenous inoculation of the isolates in 17-week-old brown layers. Based on the results one isolate was chosen for the preparation of the vaccines and for homologous challenge and another one for heterologous challenge performed in the second experiment. In the named experiment, groups of laying hens which had been vaccinated intramuscularly at 14 and 18 weeks of age with inactivated vaccine either formulated as aqueous suspension or as water-in-oil emulsion were homologously or heterologously challenged per aerosol at 30 weeks of age. The vaccines contained ≥10 8.2 formaldehyde-inactivated colony-forming units (cfu) of E. coli per hen dose in 0.5 ml. The estimated E. coli challenge dose uptake ranged from 10 5.8 to 10 6.5  cfu per hen. Groups consisted of 18 hens each and were housed in separate isolators from 27 weeks of age. Control groups were included in this experiment, which was ended eight days after challenge. Vaccinations had no effect on body growth and both vaccine types induced (almost) complete protection against homologous challenge, while protection against heterologous challenge was inconclusive.

  17. The Transcription Factors Ets1 and Sox10 Interact During Murine Melanocyte Development

    PubMed Central

    Saldana-Caboverde, Amy; Perera, Erasmo M.; Watkins-Chow, Dawn; Hansen, Nancy F.; Vemulapalli, Meghana; Mullikin, James C; Pavan, William J.; Kos, Lidia

    2015-01-01

    Melanocytes, the pigment-producing cells, arise from multipotent neural crest (NC) cells during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The variable spotting mouse pigmentation mutant arose spontaneously at the Jackson Laboratory. We identified a G-to-A nucleotide transition in exon 3 of the Ets1 gene in variable spotting, which results in a missense G102E mutation. Homozygous variable spotting mice exhibit sporadic white spotting. Similarly, mice carrying a targeted deletion of Ets1 exhibit hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The transcription factor Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of various NC derivatives, including melanocytes. We show that Ets1 is required early for murine NC cell and melanocyte precursor survival in vivo. Given the importance of Ets1 for Sox10 expression in the chick, we investigated a potential genetic interaction between these genes by comparing the hypopigmentation phenotypes of single and double heterozygous mice. The incidence of hypopigmentation in double heterozygotes was significantly greater than in single heterozygotes. The area of hypopigmentation in double heterozygotes was significantly larger than would be expected from the addition of the areas of hypopigmentation of single heterozygotes, suggesting that Ets1 and Sox10 interact synergistically in melanocyte development. Since Sox10 is also essential for enteric ganglia development, we examined the distal colons of Ets1 null mutants and found a significant decrease in enteric innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate an enhancer critical for Sox10 expression in NC-derived structures. Furthermore, enhancer activation was

  18. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries.

    PubMed

    Lam, Kathy N; Charles, Trevor C

    2015-01-01

    Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite

  19. Dose-dependent fate of GFP-E. coli in the alimentary canal of adult house flies

    PubMed Central

    Naveen, Kumar H.V.; Nayduch, Dana

    2015-01-01

    Adult house flies (Diptera: Muscidae; Musca domestica L.) can disseminate bacteria from microbe-rich substrates to areas where humans and domesticated animals reside. Because bacterial abundance fluctuates widely across substrates, flies encounter and ingest varying amounts of bacteria. We investigated the dose-dependent survival of bacteria in house flies. Flies were fed four different “doses” of GFP-expressing Escherichia coli (GFP E. coli; very low, low, medium, high, defined in text) and survival was determined at 1, 4, 10 and 22 h post-ingestion via culture and epiflourescent microscopy. Over 22 h, decline of GFP E. coli was significant for all treatments (P<0.04) except the very low dose (P=0.235). Change in survival (Δ S) did not differ between flies fed low and very low doses of bacteria across all time points, although both treatments differed from flies fed high and medium bacterial doses at several time points. At 4, 10 and 22 h, GFP E. coli Δ S significantly differed between medium and high dose-fed flies. A threshold dose, above which bacteria are detected and destroyed by house flies, may exist and likely is immune-mediated. Understanding dose-dependent bacterial survival in flies can help in predicting bacteria transmission potential. PMID:26843509

  20. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  1. Escherichia coli EDL933 Requires Gluconeogenic Nutrients To Successfully Colonize the Intestines of Streptomycin-Treated Mice Precolonized with E. coli Nissle 1917

    PubMed Central

    Schinner, Silvia A. C.; Mokszycki, Matthew E.; Adediran, Jimmy; Leatham-Jensen, Mary; Conway, Tyrrell

    2015-01-01

    Escherichia coli MG1655, a K-12 strain, uses glycolytic nutrients exclusively to colonize the intestines of streptomycin-treated mice when it is the only E. coli strain present or when it is confronted with E. coli EDL933, an O157:H7 strain. In contrast, E. coli EDL933 uses glycolytic nutrients exclusively when it is the only E. coli strain in the intestine but switches in part to gluconeogenic nutrients when it colonizes mice precolonized with E. coli MG1655 (R. L. Miranda et al., Infect Immun 72:1666–1676, 2004, http://dx.doi.org/10.1128/IAI.72.3.1666-1676.2004). Recently, J. W. Njoroge et al. (mBio 3:e00280-12, 2012, http://dx.doi.org/10.1128/mBio.00280-12) reported that E. coli 86-24, an O157:H7 strain, activates the expression of virulence genes under gluconeogenic conditions, suggesting that colonization of the intestine with a probiotic E. coli strain that outcompetes O157:H7 strains for gluconeogenic nutrients could render them nonpathogenic. Here we report that E. coli Nissle 1917, a probiotic strain, uses both glycolytic and gluconeogenic nutrients to colonize the mouse intestine between 1 and 5 days postfeeding, appears to stop using gluconeogenic nutrients thereafter in a large, long-term colonization niche, but continues to use them in a smaller niche to compete with invading E. coli EDL933. Evidence is also presented suggesting that invading E. coli EDL933 uses both glycolytic and gluconeogenic nutrients and needs the ability to perform gluconeogenesis in order to colonize mice precolonized with E. coli Nissle 1917. The data presented here therefore rule out the possibility that E. coli Nissle 1917 can starve the O157:H7 E. coli strain EDL933 of gluconeogenic nutrients, even though E. coli Nissle 1917 uses such nutrients to compete with E. coli EDL933 in the mouse intestine. PMID:25733524

  2. RNaseI from Escherichia coli cannot substitute for S-RNase in rejection of Nicotiana plumbaginifolia pollen.

    PubMed

    Beecher, B; Murfett, J; McClure, B A

    1998-03-01

    Unilateral incompatibility often occurs between self-incompatible (SI) species and their self-compatible (SC) relatives. For example, SI Nicotiana alata rejects pollen from SC N. plumbaginifolia, but the reciprocal pollination is compatible. This interspecific pollen rejection system closely resembles intraspecific S-allele-specific pollen rejection. However, the two systems differ in degree of specificity. In SI, rejection is S-allele-specific, meaning that only a single S-RNase causes rejection of pollen with a specific S genotype. Rejection of N. plumbaginifolia pollen is less specific, occurring in response to almost any S-RNase. Here, we have tested whether a non-S-RNase can cause rejection of N. plumbaginifolia pollen. The Escherichia coli rna gene encoding RNAseI was engineered for expression in transgenic (N. plumbaginifolia x SC N. alata) hybrids. Expression levels and pollination behavior of hybrids expressing E. coli RNaseI were compared to controls expressing SA2-RNase from N. alata. Immunoblot analysis and RNase activity assays showed that RNaseI and SA2-RNase were expressed at comparable levels. However, expression of SA2-RNase caused rejection of N. plumbaginifolia pollen, whereas expression of RNaseI did not. Thus, in this system, RNase activity alone is not sufficient for rejection of N. plumbaginifolia pollen. The results suggest that S-RNases may be specially adapted to function in pollen rejection.

  3. Differential cytokine expression in Chlamydophila psittaci genotype A-, B- or D-infected chicken macrophages after exposure to Escherichia coli O2:K1 LPS.

    PubMed

    Beeckman, Delphine Sylvie Anne; Rothwell, Lisa; Kaiser, Pete; Vanrompay, Daisy C G

    2010-08-01

    Chlamydophila (Cp.) psittaci and avian pathogenic Escherichia (E.) coli infections contribute to the respiratory disease complex observed in turkeys. Secondary infection with E. coli exacerbates Cp. psittaci pathogenicity and augments E. coli excretion. The innate immune response initiated by both pathogens in their avian host is unknown. We therefore determined the cytokine responses following Cp. psittaci infection and E. coli superinfection of avian monocytes/macrophages by examining gene transcripts of IL-1beta, IL-6, CXCLi2 (IL-8), CXCLi1 (K60), IL-10, IL-12alpha/beta, IL-18, TGF-beta4 and CCLi2 at 4h post-inoculation with different Cp. psittaci strains or 4h post-treatment with avian E. coli LPS of Cp. psittaci pre-infected HD11 cells. Cp. psittaci strains used were 84/55 and 92/1293 (highly virulent), CP3 (low virulent) and 84/2334 (phylogenetically intermediate between Cp. psittaci and Chlamydophila abortus). At 4h post chlamydial infection, an increased expression of IL-1beta and IL-6 as well as CXCLi2, CXCLi1 and CCLi2 was observed compared to levels in uninfected HD11 controls. This effect was less pronounced for the milder CP3 strain. The pro-inflammatory response of Cp. psittaci infected cells to E. coli LPS was significantly lowered compared to uninfected controls, especially when the cells were pre-infected with highly virulent Cp. psittaci strains. In both experiments, exceptionally high IL-10 and no TGF-beta4 responses were observed, and we propose that this could induce macrophage deactivation and NF-kappaB suppression. Consequently, pro-inflammatory and Th1-promoting responses to both the primary Cp. psittaci infection and E. coli would be inhibited, thus explaining the observed aggravated in vivo pathology. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli.

    PubMed

    Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen

    2009-01-01

    We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity.

  5. Photoinactivation effect of eosin methylene blue and chlorophyllin sodium-copper against Staphylococcus aureus and Escherichia coli.

    PubMed

    Caires, Cynthia S A; Leal, Cassia R B; Ramos, Carlos A N; Bogo, Danielle; Lima, Alessandra R; Arruda, Eduardo J; Oliveira, Samuel L; Caires, Anderson R L; Nascimento, Valter A

    2017-07-01

    The use of eosin methylene blue according to Giemsa as photosensitizer is presented for the first time in this paper. The present study evaluated the potential application of chlorophyllin sodium copper salt (CuChlNa) and eosin methylene blue according to Giemsa (EMB) as antimicrobial photosensitizers (aPS) for photodynamic inactivation (PDI) of Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. The experiments were performed using S. aureus stain ATCC 25923 and E. coli ATCC 25922 in which five aPS concentrations (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 μM for S. aureus and 0.0, 5.0, 10.0, 20.0, 40.0, and 50.0 μM for E. coli) were prepared and added in 2 mL of a saline solution containing the bacterial inoculum. After aPS incubation, the samples were divided into two groups, one kept in the dark and another submitted to the illumination. Then, the bacterial inactivation was determined 18 h after the incubation at 37 °C by counting the colony-forming units (CFU). The results revealed that both EMB and CuChlNa can be used as aPS for the photoinactivation of S. aureus, while only EMB was able to photoinactivate E. coli. Nevertheless, a more complex experimental setup was needed for photoinactivation of E. coli. The data showed that EMB and CuChlNa presented similar photoinactivation effects on S. aureus, in which bacterial growth was completely inhibited at photosensitizer (PS) concentrations over 5 μM, when samples were previously incubated for 30 min and irradiated by a light dose of 30 J cm -2 as a result of an illumination of 1 h at 8.3 mW cm -2 by using a red light at 625 nm with a 1 cm beam diameter and output power of 6.5 mW. In the case of E. coli, bacterial growth was completely inhibited only when combining a PS incubation period of 120 min with concentrations over 20 μM.

  6. RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA

    DOE PAGES

    Gordon, Gina C.; Cameron, Jeffrey C.; Pfleger, Brian F.

    2017-03-28

    Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK,more » and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism. IMPORTANCE: The concerted action and overlapping functions of endoribonucleases, exoribonucleases, and RNA processing enzymes complicate the study of global RNA turnover and recycling of specific transcripts. More information about RNase specificity and activity is

  7. RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Gina C.; Cameron, Jeffrey C.; Pfleger, Brian F.

    Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK,more » and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism. IMPORTANCE: The concerted action and overlapping functions of endoribonucleases, exoribonucleases, and RNA processing enzymes complicate the study of global RNA turnover and recycling of specific transcripts. More information about RNase specificity and activity is

  8. IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in Response to Iron Starvation in Enterotoxigenic Escherichia coli

    PubMed Central

    Arnaud-Barbe, Nadège; Poncet, David; Reverchon, Sylvie; Wawrzyniak, Julien; Nasser, William

    2015-01-01

    ABSTRACT Iron availability functions as an environmental cue for enteropathogenic bacteria, signaling arrival within the human host. As enterotoxigenic Escherichia coli (ETEC) is a major cause of human diarrhea, the effect of iron on ETEC virulence factors was evaluated here. ETEC pathogenicity is directly linked to production of fimbrial colonization factors and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). Efficient colonization of the small intestine further requires at least the flagellin binding adhesin EtpA. Under iron starvation, production of the CFA/I fimbriae was increased in the ETEC H10407 prototype strain. In contrast, LT secretion was inhibited. Furthermore, under iron starvation, gene expression of the cfa (CFA/I) and etp (EtpBAC) operons was induced, whereas transcription of toxin genes was either unchanged or repressed. Transcriptional reporter fusion experiments focusing on the cfa operon further showed that iron starvation stimulated cfaA promoter activity in ETEC, indicating that the impact of iron on CFA/I production was mediated by transcriptional regulation. Evaluation of cfaA promoter activity in heterologous E. coli single mutant knockout strains identified IscR as the regulator responsible for inducing cfa fimbrial gene expression in response to iron starvation, and this was confirmed in an ETEC ΔiscR strain. The global iron response regulator, Fur, was not implicated. IscR binding sites were identified in silico within the cfaA promoter and fixation confirmed by DNase I footprinting, indicating that IscR directly binds the promoter region to induce CFA/I. IMPORTANCE Pathogenic enterobacteria modulate expression of virulence genes in response to iron availability. Although the Fur transcription factor represents the global regulator of iron homeostasis in Escherichia coli, we show that several ETEC virulence factors are modulated by iron, with expression of the major fimbriae under the control of the iron

  9. Overexpression of Escherichia coli udk mimics the absence of T7 Gp2 function and thereby abrogates successful infection by T7 phage.

    PubMed

    Shadrin, Andrey; Sheppard, Carol; Savalia, Dhruti; Severinov, Konstantin; Wigneshweraraj, Sivaramesh

    2013-02-01

    Successful infection of Escherichia coli by bacteriophage T7 relies upon the transcription of the T7 genome by two different RNA polymerases (RNAps). The bacterial RNAp transcribes early T7 promoters, whereas middle and late T7 genes are transcribed by the T7 RNAp. Gp2, a T7-encoded transcription factor, is a 7 kDa product of an essential middle T7 gene 2, and is a potent inhibitor of the host RNAp. The essential biological role of Gp2 is to inhibit transcription of early T7 genes that fail to terminate efficiently in order to facilitate the coordinated usage of the T7 genome by both host and phage RNAps. Overexpression of the E. coli udk gene, which encodes a uridine/cytidine kinase, interferes with T7 infection. We demonstrate that overexpression of udk antagonizes Gp2 function in E. coli in the absence of T7 infection and thus independently of T7-encoded factors. It seems that overexpression of udk reduces Gp2 stability and functionality during T7 infection, which consequently results in inadequate inhibition of host RNAp and in the accumulation of early T7 transcripts. In other words, overexpression of udk mimics the absence of Gp2 during T7 infection. Our study suggests that the transcriptional regulation of the T7 genome is surprisingly complex and might potentially be affected at many levels by phage- and host-encoded factors.

  10. Short-term dynamic behavior of Escherichia coli in response to successive glucose pulses on glucose-limited chemostat cultures.

    PubMed

    Sunya, Sirichai; Bideaux, Carine; Molina-Jouve, Carole; Gorret, Nathalie

    2013-04-15

    The effect of repeated glucose perturbations on dynamic behavior of Escherichia coli DPD2085, yciG::LuxCDABE reporter strain, was studied and characterized on a short-time scale using glucose-limited chemostat cultures at dilution rates close to 0.18h(-1). The substrate disturbances were applied on independent steady-state cultures, firstly using a single glucose pulse under different aeration conditions and secondly using repeated glucose pulses under fully aerobic condition. The dynamic responses of E. coli to a single glucose pulse of different intensities (0.25 and 0.6gL(-1)) were significantly similar at macroscopic level, revealing the independency of the macroscopic microbial behavior to the perturbation intensity in the range of tested glucose concentrations. The dynamic responses of E. coli to repeated glucose pulses to simulate fluctuating environments between glucose-limited and glucose-excess conditions were quantified; similar behavior regarding respiration and by-product formations was observed, except for the first perturbation denoted by an overshoot of the specific oxygen uptake rate in the first minutes after the pulse. In addition, transcriptional induction of yciG promoter gene involved in general stress response, σ(S), was monitored through the bioluminescent E. coli strain. This study aims to provide and compare short-term quantitative kinetics data describing the dynamic behavior of E. coli facing repeated transient substrate conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control.

    PubMed

    Celton, Jean-Marc; Gaillard, Sylvain; Bruneau, Maryline; Pelletier, Sandra; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Navarro, Lionel; Laurens, François; Renou, Jean-Pierre

    2014-07-01

    Characterizing the transcriptome of eukaryotic organisms is essential for studying gene regulation and its impact on phenotype. The realization that anti-sense (AS) and noncoding RNA transcription is pervasive in many genomes has emphasized our limited understanding of gene transcription and post-transcriptional regulation. Numerous mechanisms including convergent transcription, anti-correlated expression of sense and AS transcripts, and RNAi remain ill-defined. Here, we have combined microarray analysis and high-throughput sequencing of small RNAs (sRNAs) to unravel the complexity of transcriptional and potential post-transcriptional regulation in eight organs of apple (Malus × domestica). The percentage of AS transcript expression is higher than that identified in annual plants such as rice and Arabidopsis thaliana. Furthermore, we show that a majority of AS transcripts are transcribed beyond 3'UTR regions, and may cover a significant portion of the predicted sense transcripts. Finally we demonstrate at a genome-wide scale that anti-sense transcript expression is correlated with the presence of both short (21-23 nt) and long (> 30 nt) siRNAs, and that the sRNA coverage depth varies with the level of AS transcript expression. Our study provides a new insight on the functional role of anti-sense transcripts at the genome-wide level, and a new basis for the understanding of sRNA biogenesis in plants. © 2014 INRA. New Phytologist © 2014 New Phytologist Trust.

  12. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine

    PubMed Central

    Báez-Viveros, José Luis; Flores, Noemí; Juárez, Katy; Castillo-España, Patricia; Bolivar, Francisco; Gosset, Guillermo

    2007-01-01

    Background The rational design of L-phenylalanine (L-Phe) overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS) and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase), reaching yields of 0.33 (g-Phe/g-Glc), which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA) of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB), gluconeogenic (ppsA, pckA) and fermentative enzymes (ldhA) were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt) in the best PTS- L-Phe overproducing strain (PB12-ev2). Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to both PTS inactivation

  13. Prevalence and Association of Escherichia coli and Diarrheagenic Escherichia coli in Stored Foods for Young Children and Flies Caught in the Same Households in Rural Bangladesh

    PubMed Central

    Doza, Solaiman; Jabeen Rahman, Musarrat; Islam, Mohammad Aminul; Kwong, Laura H.; Unicomb, Leanne; Ercumen, Ayse; Pickering, Amy J.; Parvez, Sarker Masud; Naser, Abu Mohd; Ashraf, Sania; Das, Kishor Kumar; Luby, Stephen P.

    2018-01-01

    Abstract. Consumption of contaminated stored food can cause childhood diarrhea. Flies carry enteropathogens, although their contribution to food contamination remains unclear. We investigated the role of flies in contaminating stored food by collecting food and flies from the same households in rural Bangladesh. We selected 182 households with children ≤ 24 months old that had stored foods for later feeding at room temperature for ≥ 3 hours. We collected food samples and captured flies with fly tapes hung by the kitchen. We used the IDEXX Quanti-Tray System (Colilert-18 media; IDEXX Laboratories, Inc., Westbrook, ME) to enumerate Escherichia coli with the most probable number (MPN) method. Escherichia coli–positive IDEXX wells were analyzed by polymerase chain reaction for pathogenic E. coli genes (eae, ial, bfp, ipaH, st, lt, aat, aaiC, stx1, and stx2). Escherichia coli was detected in 61% (111/182) of food samples, with a mean of 1.1 log10 MPN/dry g. Fifteen samples (8%) contained pathogenic E. coli; seven (4%) had enteropathogenic E. coli (EPEC) genes (eae and/or bfp); and 10 (5%) had enteroaggregative E. coli genes (aat and/or aaiC). Of flies captured in 68 (37%) households, E. coli was detected in 41 (60%, mean 2.9 log10 MPN/fly), and one fly (1%) had an EPEC gene (eae). For paired fly-food samples, each log10 MPN E. coli increase in flies was associated with a 0.31 log10 MPN E. coli increase in stored food (95% confidence interval: 0.07, 0.55). In rural Bangladesh, flies possibly a likely route for fecal contamination of stored food. Controlling fly populations may reduce contamination of food stored for young children. PMID:29436348

  14. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    PubMed Central

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  15. DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1

    PubMed Central

    de Bruin, R. A. M.; Kalashnikova, T. I.; Aslanian, A.; Wohlschlegel, J.; Chahwan, C.; Yates, J. R.; Russell, P.; Wittenberg, C.

    2008-01-01

    The cell cycle transcriptional program imposes order on events of the cell-cycle and is a target for signals that regulate cell-cycle progression, including checkpoints required to maintain genome integrity. Neither the mechanism nor functional significance of checkpoint regulation of the cell-cycle transcription program are established. We show that Nrm1, an MBF-specific transcriptional repressor acting at the transition from G1 to S phase of the cell cycle, is at the nexus between the cell cycle transcriptional program and the DNA replication checkpoint in fission yeast. Phosphorylation of Nrm1 by the Cds1 (Chk2) checkpoint protein kinase, which is activated in response to DNA replication stress, promotes its dissociation from the MBF transcription factor. This leads to the expression of genes encoding components that function in DNA replication and repair pathways important for cell survival in response to arrested DNA replication. PMID:18682565

  16. SKN-1-independent transcriptional activation of glutathione S-transferase 4 (GST-4) by EGF signaling

    PubMed Central

    Van de Walle, Pieter; Schoofs, Liliane

    2016-01-01

    ABSTRACT In C. elegans research, transcriptional activation of glutathione S-transferase 4 (gst-4) is often used as a read-out for SKN-1 activity. While many heed an assumed non-exclusivity of the GFP reporter signal driven by the gst-4 promoter to SKN-1, this is also often ignored. We here show that gst-4 can also be transcriptionally activated by EOR-1, a transcription factor mediating effects of the epidermal growth factor (EGF) pathway. Along with enhancing exogenous oxidative stress tolerance, EOR-1 inde-pendently of SKN-1 increases gst-4 transcription in response to augmented EGF signaling. Our findings caution researchers within the C. elegans community to always rely on sufficient experimental controls when assaying SKN-1 transcriptional activity with a gst-4p::gfp reporter, such as SKN-1 loss-of-function mutants and/or additional target genes next to gst-4. PMID:28090393

  17. E. coli survival in waters: temperature dependence

    USDA-ARS?s Scientific Manuscript database

    Knowing the survival rates of water-borne Escherichia coli is important for evaluating microbial contamination and in making appropriate management decisions. E. coli survival rates are dependent on temperature; this dependency is routinely expressed using an analog of the Q10 model. This suggestion...

  18. The chemical structure of DNA sequence signals for RNA transcription

    NASA Technical Reports Server (NTRS)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  19. Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish

    NASA Astrophysics Data System (ADS)

    Tong, Xiangjun; Zu, Yao; Li, Zengpeng; Li, Wenyuan; Ying, Lingxiao; Yang, Jing; Wang, Xin; He, Shuonan; Liu, Da; Zhu, Zuoyan; Chen, Jianming; Lin, Shuo; Zhang, Bo

    2014-01-01

    The T-box transcription factor Tbx5 (Tbx5a in zebrafish) plays a crucial role in the formation of cardiac chambers in a dose-dependent manner. Its deregulation leads to congenital heart disease. However, little is known regarding its regulation. Here we isolate a zebrafish mutant with heart malformations, called 34c. The affected gene is identified as kctd10, a member of the potassium channel tetramerization domain (KCTD)-containing family. In the mutant, the expressions of the atrioventricular canal marker genes, such as tbx2b, hyaluronan synthase 2 (has2), notch1b and bmp4, are changed. The knockdown of tbx5 rescues the ectopic expression of has2, and knockdown of either tbx5a or has2 alleviates the heart defects. We show that Kctd10 directly binds to Tbx5 to repress its transcriptional activity. Our results reveal a new essential factor for cardiac development and suggest that KCTD10 could be considered as a new causative gene of congenital heart disease.

  20. Evaluation of mericon E. coli O157 Screen Plus and mericon E. coli STEC O-Type Pathogen Detection Assays in Select Foods: Collaborative Study, First Action 2017.05.

    PubMed

    Bird, Patrick; Benzinger, M Joseph; Bastin, Benjamin; Crowley, Erin; Agin, James; Goins, David; Armstrong, Marcia

    2018-05-01

    QIAGEN mericon Escherichia coli O157 Screen Plus and mericon E. coli Shiga toxin-producing E. coli (STEC) O-Type Pathogen Detection Assays use Real-Time PCR technology for the rapid, accurate detection of E. coli O157 and the "big six" (O26, O45, O103, O111, O121, O145) (non-O157 STEC) in select food types. Using a paired study design, the assays were compared with the U.S. Department of Agriculture, Food Safety Inspection Service Microbiology Laboratory Guidebook Chapter 5.09 reference method for the detection of E. coli O157:H7 in raw ground beef. Both mericon assays were evaluated using the manual and an automated DNA extraction method. Thirteen technicians from five laboratories located within the continental United States participated in the collaborative study. Three levels of contamination were evaluated. Statistical analysis was conducted according to the probability of detection (POD) statistical model. Results obtained for the low-inoculum level test portions produced a difference between laboratories POD (dLPOD) value with a 95% confidence interval of 0.00 (-0.12, 0.12) for the mericon E. coli O157 Screen Plus with manual and automated extraction and mericon E. coli STEC O-Type with manual extraction and -0.01 (-0.13, 0.10) for the mericon E. coli STEC O-Type with automated extraction. The dLPOD results indicate equivalence between the candidate methods and the reference method.

  1. A quantitative real-time PCR assay for the detection of tetR of Tn10 in Escherichia coli using SYBR Green and the Opticon.

    PubMed

    Morsczeck, Christian; Langendörfer, Daniel; Schierholz, Jörg Michael

    2004-06-30

    Bacteria of implant infections are extremely resistant to antibiotics. One reason for this antibiotic resistance are transposons; the well-known transposon Tn10, for example, mediates tetracycline resistance to Escherichia coli. Two genes of Tn10, tetA and tetR, are essential for the mechanism of resistance. These genes encode a drug-specific efflux protein and a tetracycline repressor protein, respectively. Tn10 is also widely used in molecular biology. For example, tTA, a recombinant derivate of tetR, has been utilised for a highly efficient gene regulation system in mammalian cells. We have examined E. coli isolates from implant infections for tetracycline resistance and for the presence of tetR. A real-time PCR assay was developed for detection of tetR with SybrGreen using the Opticon PCR machine of MJ Research. This method offers a quick, sensitive, efficient, and reliable approach to the detection and quantification of genes. Clinical isolates of E. coli were examined successfully for tetracycline resistance and for the presence of tetR. The real-time PCR is effective using a variety of templates including isolated E. coli DNA, pure colonies, or liquid culture sources. Using quantified standard DNA, this assay can accurately detect as few as 15 copies. Moreover, this assay has the ability to quantify the number of tetR genes in the presence of contaminating mammalian DNA. In conclusion, the tetR real-time PCR offers new methods for detection and quantification of tetracycline-resistant bacteria and tTA in transfected cell-lines or transgenic animals.

  2. Sterilization of Escherichia coli O157:H7 using micro corona ionizer.

    PubMed

    Chua, Beelee; Son, Ahjeong

    2014-06-01

    We demonstrated in vitro sterilization of Escherichia coli O157:H7 bacteria on agar by a pin-between-planes micro corona ionizer. The gap between the pin and the grid was ~1.1 mm, the length of the grid was ~2.1 mm and the height was ~1.0 mm. The effective pin radius and discharge length were both approximated to be 200 μm. Ozone generation rates of ~2.3 × 10(-3) mg/s, ~2.7 × 10(-3) mg/s and ~3.5 × 10(-3) mg/s at 1,500 V were calculated for relative humidity (RH) of 35 %, 25 % and 10 % respectively. Analytical ozone generation rate increases as RH decreases and it is consistent with experimental observations. Using target and control petri dishes with E. coli plated agar, the sterilization capability of the micro corona ionizer at 37 °C for 24 h was evaluated. A ~60 % reduction in bacterial colony was shown with plate counting and its kill radius could be tuned from ~ 20 mm to ~5 mm by reducing the duty cycle from 100 % to 50 % with 30 min pulse width. The results suggested that the micro corona ionizer might be suitable as a tunable ozone source in wound dressing for chronic wound management.

  3. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase.

    PubMed

    Baez, Antonino; Shiloach, Joseph

    2013-03-12

    High concentrations of reactive oxygen species (ROS) were reported to cause oxidative stress to E. coli cells associated with reduced or inhibited growth. The high ROS concentrations described in these reports were generated by exposing the bacteria to H2O2 and superoxide-generating chemicals which are non-physiological growth conditions. However, the effect of molecular oxygen on oxidative stress response has not been evaluated. Since the use of oxygen-enriched air is a common strategy to support high density growth of E. coli, it was important to investigate the effect of high dissolved oxygen concentrations on the physiology and growth of E. coli and the way it responds to oxidative stress. To determine the effect of elevated oxygen concentrations on the growth characteristics, specific gene expression and enzyme activity in E. coli, the parental and SOD-deficient strain were evaluated when the dissolved oxygen (dO2) level was increased from 30% to 300%. No significant differences in the growth parameters were observed in the parental strain except for a temporary decrease of the respiration and acetate accumulation profile. By performing transcriptional analysis, it was determined that the parental strain responded to the oxidative stress by activating the SoxRS regulon. However, following the dO2 switch, the SOD-deficient strain activated both the SoxRS and OxyR regulons but it was unable to resume its initial growth rate. The transcriptional analysis and enzyme activity results indicated that when E. coli is exposed to dO2 shift, the superoxide stress regulator SoxRS is activated and causes the stimulation of the superoxide dismutase system. This enables the E. coli to protect itself from the poisoning effects of oxygen. The OxyR protecting system was not activated, indicating that H2O2 did not increase to stressing levels.

  4. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase

    PubMed Central

    2013-01-01

    Background High concentrations of reactive oxygen species (ROS) were reported to cause oxidative stress to E. coli cells associated with reduced or inhibited growth. The high ROS concentrations described in these reports were generated by exposing the bacteria to H2O2 and superoxide-generating chemicals which are non-physiological growth conditions. However, the effect of molecular oxygen on oxidative stress response has not been evaluated. Since the use of oxygen-enriched air is a common strategy to support high density growth of E. coli, it was important to investigate the effect of high dissolved oxygen concentrations on the physiology and growth of E. coli and the way it responds to oxidative stress. Results To determine the effect of elevated oxygen concentrations on the growth characteristics, specific gene expression and enzyme activity in E. coli, the parental and SOD-deficient strain were evaluated when the dissolved oxygen (dO2) level was increased from 30% to 300%. No significant differences in the growth parameters were observed in the parental strain except for a temporary decrease of the respiration and acetate accumulation profile. By performing transcriptional analysis, it was determined that the parental strain responded to the oxidative stress by activating the SoxRS regulon. However, following the dO2 switch, the SOD-deficient strain activated both the SoxRS and OxyR regulons but it was unable to resume its initial growth rate. Conclusion The transcriptional analysis and enzyme activity results indicated that when E. coli is exposed to dO2 shift, the superoxide stress regulator SoxRS is activated and causes the stimulation of the superoxide dismutase system. This enables the E. coli to protect itself from the poisoning effects of oxygen. The OxyR protecting system was not activated, indicating that H2O2 did not increase to stressing levels. PMID:23497217

  5. Protective effects of indigenous Escherichia coli against a pathogenic E. coli challenge strain in pigs.

    PubMed

    Vahjen, W; Cuisiniere, T; Zentek, J

    2017-10-13

    To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic

  6. Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes.

    PubMed

    Holátko, Jiří; Silar, Radoslav; Rabatinová, Alžbeta; Sanderová, Hana; Halada, Petr; Nešvera, Jan; Krásný, Libor; Pátek, Miroslav

    2012-10-01

    To facilitate transcription studies in Corynebacterium glutamicum, we have developed an in vitro transcription system for this bacterium used as an industrial producer of amino acids and a model organism for actinobacteria. This system consists of C. glutamicum RNA polymerase (RNAP) core (α2, β, β'), a sigma factor and a promoter-carrying DNA template, that is specifically recognized by the RNAP holoenzyme formed. The RNAP core was purified from the C. glutamicum strain with the modified rpoC gene, which produced His-tagged β' subunit. The C. glutamicum sigA and sigH genes were cloned and overexpressed using the Escherichia coli plasmid vector, and the sigma subunits σ(A) and σ(H) were purified by affinity chromatography. Using the reconstituted C. glutamicum holo-RNAPs, recognition of the σ(A)- and σ(H)-dependent promoters and synthesis of the specific transcripts was demonstrated. The developed in vitro transcription system is a novel tool that can be used to directly prove the specific recognition of a promoter by the particular σ factor(s) and to analyze transcriptional control by various regulatory proteins in C. glutamicum.

  7. Environmental and genetic factors that contribute to Escherichia coli K-12 biofilm formation

    PubMed Central

    Prüß, Birgit M.; Verma, Karan; Samanta, Priyankar; Sule, Preeti; Kumar, Sunil; Wu, Jianfei; Christianson, David; Horne, Shelley M.; Stafslien, Shane J.; Wolfe, Alan J.; Denton, Anne

    2010-01-01

    Biofilms are communities of bacteria whose formation on surfaces requires a large portion of the bacteria’s transcriptional network. To identify environmental conditions and transcriptional regulators that contribute to sensing these conditions, we used a high-throughput approach to monitor biofilm biomass produced by an isogenic set of Escherichia coli K-12 strains grown under combinations of environmental conditions. Of the environmental combinationsd, growth in tryptic soy broth at 37°C supported the most biofilm production. To analyze the complex relationships between the diverse cell surface organelles, transcriptional regulators, and metabolic enzymes represented by the tested mutant set, we used a novel vector-item pattern-mining algorithm. The algorithm related biofilm amounts to the functional annotations of each mutated protein. The pattern with the best statistical significance was the gene ontology ‘pyruvate catabolic process,’ which is associated with enzymes of acetate metabolism. Phenotype microarray experiments illustrated that carbon sources that are metabolized to acetyl-coenzyme A, acetyl phosphate, and acetate are particularly supportive of biofilm formation. Scanning electron microscopy revealed structural differences between mutants that lack acetate metabolism enzymes and their parent and confirmed the quantitative differences. We conclude that acetate metabolism functions as a metabolic sensor, transmitting changes in environmental conditions to biofilm biomass and structure. PMID:20559621

  8. Expression of chemokine CXCL10 in dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Higuchi, Masashi; Yoshida, Saishu; Tsukada, Takehiro; Ueharu, Hiroki; Chen, Mo; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2014-09-01

    Chemokines are mostly small secreted polypeptides whose signals are mediated by seven trans-membrane G-protein-coupled receptors. Their functions include the control of leukocytes and the intercellular mediation of cell migration, proliferation, and adhesion in several tissues. We have previously revealed that the CXC chemokine ligand 12 (CXCL12) and its receptor 4 (CXCR4) are expressed in the anterior pituitary gland, and that the CXCL12/CXCR4 axis evokes the migration and interconnection of S100β-protein-positive cells (S100β-positive cells), which do not produce classical anterior pituitary hormones. However, little is known of the cells producing the other CXCLs and CXCRs or of their characteristics in the anterior pituitary. We therefore examined whether CXCLs and CXCRs occurred in the rat anterior pituitary lobe. We used reverse transcription plus the polymerase chain reaction to analyze the expression of Cxcl and Cxcr and identified the cells that expressed Cxcl by in situ hybridization. Transcripts of Cxcl10 and its receptor (Cxcr3 and toll-like receptor 4, Tlr4) were clearly detected: cells expressing Cxcl10 and Tlr4 were identified amongst S100β-positive cells and those expressing Cxcr3 amongst adrenocorticotropic hormone (ACTH)-producing cells. We also investigated Cxcl10 expression in subpopulations of S100β-positive cells. We separated cultured S100β-positive cells into the round-type (dendritic-cell-like) and process-type (astrocyte- or epithelial-cell-like) by their adherent activity to laminin, a component of the extracellular matrix; CXCL10 was expressed only in round-type S100β-positive cells. Thus, CXCL10 produced by a subpopulation of S100β-positive cells probably exerts an autocrine/paracrine effect on S100β-positive cells and ACTH-producing cells in the anterior lobe.

  9. Water-quality data and Escherichia coli predictions for selected karst catchments of the upper Duck River watershed in central Tennessee, 2007–10

    USGS Publications Warehouse

    Murphy, Jennifer C.; Farmer, James; Layton, Alice

    2016-06-13

    The U.S. Geological Survey, in cooperation with the Tennessee Duck River Development Agency, monitored water quality at several locations in the upper Duck River watershed between October 2007 and September 2010. Discrete water samples collected at 24 sites in the watershed were analyzed for water quality, and Escherichia coli (E. coli) and enterococci concentrations. Additional analyses, including the determination of anthropogenic-organic compounds, bacterial concentration of resuspended sediment, and bacterial-source tracking, were performed at a subset of sites. Continuous monitoring of streamflow, turbidity, and specific conductance was conducted at seven sites; a subset of sites also was monitored for water temperature and dissolved oxygen concentration. Multiple-regression models were developed to predict instantaneous E. coli concentrations and loads at sites with continuous monitoring. This data collection effort, along with the E. coli models and predictions, support analyses of the relations among land use, bacteria source and transport, and basin hydrology in the upper Duck River watershed.

  10. FBXW10 is negatively regulated in transcription and expression level by protein O-GlcNAcylation.

    PubMed

    Feng, Zhou; Hui, Yan; Ling, Li; Xiaoyan, Liu; Yuqiu, Wang; Peng, Wang; Lianwen, Zhang

    2013-08-23

    Intricate cross-talks exist among multiple post-translational modifications that play critical roles in various cellular events, such as the control of gene expression and regulation of protein function. Here, the cross-talk between O-GlcNAcylation and ubiquitination was investigated in HEK293T cells. By PCR array, 84 ubiquitination-related genes were explored in transcription level in response to the elevation of total protein O-GlcNAcylation due to over-expression of OGT, inhibition of OGA or GlcN treatment. Varied genes were transcriptionally regulated by using different method. But FBXW10, an F-box protein targeting specific proteins for ubiquitination, could be negatively regulated in all ways, suggesting its regulation by protein O-GlcNAcylation. By RT-PCR and Western blot analysis, it was found that FBXW10 could be sharply down-regulated in mRNA and protein level in GlcN-treated cells in a time-dependent way, in line with the enhancement of protein O-GlcNAcylation. It was also found that endogenous FBXW10 was modified by O-GlcNAc in HEK293T cells, implying O-GlcNAcylation might regulate FBXW10 in multiple levels. These findings indicate that O-GlcNAcylation is involved in the regulation of ubiquitination-related genes, and help us understand the cross-talk between O-GlcNAcylation and ubiquitination. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli.

    PubMed

    Park, Young-Ha; Lee, Chang-Ro; Choe, Mangyu; Seok, Yeong-Jae

    2013-12-24

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIA(Glc) (EIIA(Glc)) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIA(Glc) in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ(70) in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ(70). Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ(70)-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ(70) and σ(S) for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ(70) activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd.

  12. HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli

    PubMed Central

    Park, Young-Ha; Lee, Chang-Ro; Choe, Mangyu; Seok, Yeong-Jae

    2013-01-01

    The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIAGlc (EIIAGlc) is known as the central processing unit of carbon metabolism and plays multiple roles, including regulation of adenylyl cyclase, the fermentation/respiration switch protein FrsA, glycerol kinase, and several non-PTS transporters, whereas the only known regulatory role of the E. coli histidine-containing phosphocarrier protein HPr is in the activation of glycogen phosphorylase. Because HPr is known to be more abundant than EIIAGlc in enteric bacteria, we assumed that there might be more regulatory mechanisms connected with HPr. The ligand fishing experiment in this study identified Rsd, an anti-sigma factor known to complex with σ70 in stationary-phase cells, as an HPr-binding protein in E. coli. Only the dephosphorylated form of HPr formed a tight complex with Rsd and thereby inhibited complex formation between Rsd and σ70. Dephosphorylated HPr, but not phosphorylated HPr, antagonized the inhibitory effect of Rsd on σ70-dependent transcriptions both in vivo and in vitro, and also influenced the competition between σ70 and σS for core RNA polymerase in the presence of Rsd. Based on these data, we propose that the anti-σ70 activity of Rsd is regulated by the phosphorylation state-dependent interaction of HPr with Rsd. PMID:24324139

  13. Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs.

    PubMed

    Morita, Teppei; Nishino, Ryo; Aiba, Hiroji

    2017-09-01

    Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3' end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs. © 2017 Morita et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs

    PubMed Central

    Wessely, Frank; Bartl, Martin; Guthke, Reinhard; Li, Pu; Schuster, Stefan; Kaleta, Christoph

    2011-01-01

    While previous studies have shed light on the link between the structure of metabolism and its transcriptional regulation, the extent to which transcriptional regulation controls metabolism has not yet been fully explored. In this work, we address this problem by integrating a large number of experimental data sets with a model of the metabolism of Escherichia coli. Using a combination of computational tools including the concept of elementary flux patterns, methods from network inference and dynamic optimization, we find that transcriptional regulation of pathways reflects the protein investment into these pathways. While pathways that are associated to a high protein cost are controlled by fine-tuned transcriptional programs, pathways that only require a small protein cost are transcriptionally controlled in a few key reactions. As a reason for the occurrence of these different regulatory strategies, we identify an evolutionary trade-off between the conflicting requirements to reduce protein investment and the requirement to be able to respond rapidly to changes in environmental conditions. PMID:21772263

  15. Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry.

    PubMed

    Zhang, Yun; Yan, Chenghui; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-11-01

    Mammal IgG antibodies are normally used in conventional immunoassays for E. coli O157:H7, which could lead to false positive results from the presence of protein A producing S. aureus. In this study, a natural specific bacteriophage was isolated and then conjugated with magnetic beads as a capture element in a sandwich format for the rapid and selective detection of E. coli O157:H7. To the best of our knowledge, it was the first time to utilize a natural bacteriophage to develop a phagomagnetic separation combined with colorimetric assay for E. coli O157:H7. The method has an overall time less than 2h with a detection limit of 4.9×10 4 CFU/mL. No interference from S. aureus was observed. Furthermore, the proposed method was successfully applied to detect E. coli O157:H7 in spiked skim milk. The proposed detection system provided a potential method for E. coli O157:H7 and other pathogenic bacteria in food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The glpD gene is a novel reporter gene for E. coli that is superior to established reporter genes like lacZ and gusA.

    PubMed

    Wegener, Marius; Vogtmann, Kristina; Huber, Madeleine; Laass, Sebastian; Soppa, Jörg

    2016-12-01

    Reporter genes facilitate the characterization of promoter activities, transcript stabilities, translational efficiencies, or intracellular localization. Various reporter genes for Escherichia coli have been established, however, most of them have drawbacks like transcript instability or the inability to be used in genetic selections. Therefore, the glpD gene encoding glycerol-3-phosphate dehydrogenase was introduced as a novel reporter gene for E. coli. The enzymatic assay was optimized, and it was verified that growth on glycerol strictly depends on the presence of GlpD. The 5'-UTRs of three E. coli genes were chosen and cloned upstream of the new reporter gene glpD as well as the established reporter genes lacZ and gusA. Protein and transcript levels were quantified and translational efficiencies were calculated. The lacZ transcript was very unstable and its level highly depended on its translation, compromising its use as a reporter. The results obtained with gusA and glpD were similar, however, only glpD can be used for genetic selections. Therefore, glpD was found to be a superior novel reporter gene compared to the established reporter genes lacZ and gusA. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli

    PubMed Central

    Lemmens, Karen; De Bie, Tijl; Dhollander, Thomas; De Keersmaecker, Sigrid C; Thijs, Inge M; Schoofs, Geert; De Weerdt, Ami; De Moor, Bart; Vanderleyden, Jos; Collado-Vides, Julio; Engelen, Kristof; Marchal, Kathleen

    2009-01-01

    We present DISTILLER, a data integration framework for the inference of transcriptional module networks. Experimental validation of predicted targets for the well-studied fumarate nitrate reductase regulator showed the effectiveness of our approach in Escherichia coli. In addition, the condition dependency and modularity of the inferred transcriptional network was studied. Surprisingly, the level of regulatory complexity seemed lower than that which would be expected from RegulonDB, indicating that complex regulatory programs tend to decrease the degree of modularity. PMID:19265557

  18. Sub-typing of extended-spectrum-β-lactamase-producing isolates from a nosocomial outbreak: application of a 10-loci generic Escherichia coli multi-locus variable number tandem repeat analysis.

    PubMed

    Karami, Nahid; Helldal, Lisa; Welinder-Olsson, Christina; Ahrén, Christina; Moore, Edward R B

    2013-01-01

    Extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) were isolated from infants hospitalized in a neonatal, post-surgery ward during a four-month-long nosocomial outbreak and six-month follow-up period. A multi-locus variable number tandem repeat analysis (MLVA), using 10 loci (GECM-10), for 'generic' (i.e., non-STEC) E. coli was applied for sub-species-level (i.e., sub-typing) delineation and characterization of the bacterial isolates. Ten distinct GECM-10 types were detected among 50 isolates, correlating with the types defined by pulsed-field gel electrophoresis (PFGE), which is recognized to be the 'gold-standard' method for clinical epidemiological analyses. Multi-locus sequence typing (MLST), multiplex PCR genotyping of bla CTX-M, bla TEM, bla OXA and bla SHV genes and antibiotic resistance profiling, as well as a PCR assay specific for detecting isolates of the pandemic O25b-ST131 strain, further characterized the outbreak isolates. Two clusters of isolates with distinct GECM-10 types (G06-04 and G07-02), corresponding to two major PFGE types and the MLST-based sequence types (STs) 131 and 1444, respectively, were confirmed to be responsible for the outbreak. The application of GECM-10 sub-typing provided reliable, rapid and cost-effective epidemiological characterizations of the ESBL-producing isolates from a nosocomial outbreak that correlated with and may be used to replace the laborious PFGE protocol for analyzing generic E. coli.

  19. Physiological and Transcriptional Characterization of Escherichia Coli Strains Lacking Interconversion of Phosphoenolpyruvate and Pyruvate When Glucose and Acetate are Coutilized

    PubMed Central

    Sabido, Andrea; Sigala, Juan Carlos; Hernández-Chávez, Georgina; Flores, Noemí; Gosset, Guillermo; Bolívar, Francisco

    2013-01-01

    Phosphoenolpyruvate (PEP) is a precursor involved in the biosynthesis of aromatics and other valuable compounds in Escherichia coli. The PEP:carbohydrate phosphotransferase system (PTS) is the major glucose transport system and the largest PEP consumer. To increase intracellular PEP availability for aromatics production purposes, mutant strains of E. coli JM101 devoid of the ptsHIcrr operon (PB11 strain) have been previously generated. In this derivative, transport and growth rate on glucose decreased significantly. A laboratory evolved strain derived from PB11 that partially recovered its growth capacity on glucose was named PB12. In the present study, we blocked carbon skeletons interchange between PEP and pyruvate (PYR) in these ptsHIcrr− strains by deleting the pykA, pykF, and ppsA genes. The PB11 pykAF− ppsA− strain exhibited no growth on glucose or acetate alone, but it was viable when both substrates were consumed simultaneously. In contrast, the PB12 pykAF− ppsA− strain displayed a low growth rate on glucose or acetate alone, but in the mixture, growth was significantly improved. RT-qPCR expression analysis of PB11 pykAF− ppsA− growing with both carbon sources showed a downregulation of all central metabolic pathways compared with its parental PB11 strain. Under the same conditions, transcription of most of the genes in PB12 pykAF− ppsA− did not change, and few like aceBAK, sfcA, and poxB were overexpressed compared with PB12. We explored the aromatics production capabilities of both ptsHIcrr− pykAF− ppsA− strains and the engineered PB12 pykAF− ppsA− tyrR− pheAev2+/pJLBaroGfbrtktA enhanced the yield of aromatic compounds when coutilizing glucose and acetate compared with the control strain PB12 tyrR− pheAev2+/pJLBaroGfbrtktA. Biotechnol. Bioeng. 2014;111: 1150–1160. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:24375081

  20. ESCHERICHIA COLI: THE BEST BIOLOGICAL DRINKING WATER INDICATOR FOR PUBLIC HEALTH PROTECTION

    EPA Science Inventory

    Public health protection requires an indicator of fecal pollution. It is not to analyze drinking water for all pathogens. Escherichia coli is found in all mammal feces at concentrations of 10 log 9/gram. It does not multiply appreciably in the environment. In the 1890s, it was ch...

  1. Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, T.; Ingram, L.O.

    1989-07-01

    The gene that encodes 1,2-propanediol oxidoreductase (fucO) from Escherichia coli was sequenced. The reading frame specified a protein of 383 amino acids (including the N-terminal methionine), with an aggregate molecular weight of 40,642. The induction of fucO transcription, which occurred in the presence of fucose, was confirmed by Northern blot analysis. In E. coli, the primary fucO transcript was approximately 2.1 kilobases in length. The 5{prime} end of the transcript began more than 0.7 kilobase upstream of the fucO start codon within or beyond the fucA gene. Propanediol oxidoreductase exhibited 41.7% identity with the iron-containing alcohol dehydrogenase II from Zymomonasmore » mobilis and 39.5% identity with ADH4 from Saccharomyces cerevisiae. These three proteins did not share homology with either short-chain or long-chain zinc-containing alcohol dehydrogenase enzymes. We propose that these three unusual alcohol dehydrogenases define a new family of enzymes.« less

  2. Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli

    PubMed Central

    Loddeke, Melissa; Schneider, Barbara; Oguri, Tamiko; Mehta, Iti; Xuan, Zhenyu

    2017-01-01

    ABSTRACT Salmonella enterica has two CyuR-activated enzymes that degrade cysteine, i.e., the aerobic CdsH and an unidentified anaerobic enzyme; Escherichia coli has only the latter. To identify the anaerobic enzyme, transcript profiling was performed for E. coli without cyuR and with overexpressed cyuR. Thirty-seven genes showed at least 5-fold changes in expression, and the cyuPA (formerly yhaOM) operon showed the greatest difference. Homology suggested that CyuP and CyuA represent a cysteine transporter and an iron-sulfur-containing cysteine desulfidase, respectively. E. coli and S. enterica ΔcyuA mutants grown with cysteine generated substantially less sulfide and had lower growth yields. Oxygen affected the CyuR-dependent genes reciprocally; cyuP-lacZ expression was greater anaerobically, whereas cdsH-lacZ expression was greater aerobically. In E. coli and S. enterica, anaerobic cyuP expression required cyuR and cysteine and was induced by l-cysteine, d-cysteine, and a few sulfur-containing compounds. Loss of either CyuA or RidA, both of which contribute to cysteine degradation to pyruvate, increased cyuP-lacZ expression, which suggests that CyuA modulates intracellular cysteine concentrations. Phylogenetic analysis showed that CyuA homologs are present in obligate and facultative anaerobes, confirming an anaerobic function, and in archaeal methanogens and bacterial acetogens, suggesting an ancient origin. Our results show that CyuA is the major anaerobic cysteine-catabolizing enzyme in both E. coli and S. enterica, and it is proposed that anaerobic cysteine catabolism can contribute to coordination of sulfur assimilation and amino acid synthesis. IMPORTANCE Sulfur-containing compounds such as cysteine and sulfide are essential and reactive metabolites. Exogenous sulfur-containing compounds can alter the thiol landscape and intracellular redox reactions and are known to affect several cellular processes, including swarming motility, antibiotic sensitivity, and

  3. An evolutionarily conserved RNase-based mechanism for repression of transcriptional positive autoregulation

    PubMed Central

    Wurtmann, Elisabeth J.; Ratushny, Alexander V.; Pan, Min; Beer, Karlyn D.; Aitchison, John D.; Baliga, Nitin S.

    2014-01-01

    Summary It is known that environmental context influences the degree of regulation at the transcriptional and post-transcriptional levels. However, the principles governing the differential usage and interplay of regulation at these two levels are not clear. Here, we show that the integration of transcriptional and post-transcriptional regulatory mechanisms in a characteristic network motif drives efficient environment-dependent state transitions. Through phenotypic screening, systems analysis, and rigorous experimental validation, we discovered an RNase (VNG2099C) in Halobacterium salinarum that is transcriptionally co-regulated with genes of the aerobic physiologic state but acts on transcripts of the anaerobic state. Through modeling and experimentation we show that this arrangement generates an efficient state-transition switch, within which RNase-repression of a transcriptional positive autoregulation (RPAR) loop is critical for shutting down ATP-consuming active potassium uptake to reserve energy required for salinity adaptation under aerobic, high potassium, or dark conditions. Subsequently, we discovered that many Escherichia coli operons with energy-associated functions are also putatively controlled by RPAR indicating that this network motif may have evolved independently in phylogenetically distant organisms. Thus, our data suggest that interplay of transcriptional and post-transcriptional regulation in the RPAR motifis a generalized principle for efficient environment-dependent state transitions across prokaryotes. PMID:24612392

  4. Genome-Wide Spectra of Transcription Insertions and Deletions Reveal That Slippage Depends on RNA:DNA Hybrid Complementarity.

    PubMed

    Traverse, Charles C; Ochman, Howard

    2017-08-29

    Advances in sequencing technologies have enabled direct quantification of genome-wide errors that occur during RNA transcription. These errors occur at rates that are orders of magnitude higher than rates during DNA replication, but due to technical difficulties such measurements have been limited to single-base substitutions and have not yet quantified the scope of transcription insertions and deletions. Previous reporter gene assay findings suggested that transcription indels are produced exclusively by elongation complex slippage at homopolymeric runs, so we enumerated indels across the protein-coding transcriptomes of Escherichia coli and Buchnera aphidicola , which differ widely in their genomic base compositions and incidence of repeat regions. As anticipated from prior assays, transcription insertions prevailed in homopolymeric runs of A and T; however, transcription deletions arose in much more complex sequences and were rarely associated with homopolymeric runs. By reconstructing the relocated positions of the elongation complex as inferred from the sequences inserted or deleted during transcription, we show that continuation of transcription after slippage hinges on the degree of nucleotide complementarity within the RNA:DNA hybrid at the new DNA template location. IMPORTANCE The high level of mistakes generated during transcription can result in the accumulation of malfunctioning and misfolded proteins which can alter global gene regulation and in the expenditure of energy to degrade these nonfunctional proteins. The transcriptome-wide occurrence of base substitutions has been elucidated in bacteria, but information on transcription insertions and deletions-errors that potentially have more dire effects on protein function-is limited to reporter gene constructs. Here, we capture the transcriptome-wide spectrum of insertions and deletions in Escherichia coli and Buchnera aphidicola and show that they occur at rates approaching those of base substitutions

  5. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli

    PubMed Central

    Sashital, Dipali G; Greeman, Candacia A; Lyumkis, Dmitry; Potter, Clinton S; Carragher, Bridget; Williamson, James R

    2014-01-01

    Ribosome assembly is a complex process involving the folding and processing of ribosomal RNAs (rRNAs), concomitant binding of ribosomal proteins (r-proteins), and participation of numerous accessory cofactors. Here, we use a quantitative mass spectrometry/electron microscopy hybrid approach to determine the r-protein composition and conformation of 30S ribosome assembly intermediates in Escherichia coli. The relative timing of assembly of the 3′ domain and the formation of the central pseudoknot (PK) structure depends on the presence of the assembly factor RimP. The central PK is unstable in the absence of RimP, resulting in the accumulation of intermediates in which the 3′-domain is unanchored and the 5′-domain is depleted for r-proteins S5 and S12 that contact the central PK. Our results reveal the importance of the cofactor RimP in central PK formation, and introduce a broadly applicable method for characterizing macromolecular assembly in cells. DOI: http://dx.doi.org/10.7554/eLife.04491.001 PMID:25313868

  6. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli.

    PubMed

    Santos, Christine Nicole S; Xiao, Wenhai; Stephanopoulos, Gregory

    2012-08-21

    Although microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine screen towards improving L-tyrosine production in Escherichia coli. This methodology succeeded in generating three strains from two separate mutagenesis libraries (rpoA and rpoD) exhibiting up to a 114% increase in L-tyrosine titer over a rationally engineered parental strain with an already high capacity for production. Subsequent strain characterization through transcriptional analysis and whole genome sequencing allowed complete phenotype reconstruction from well-defined mutations and point to important roles for both the acid stress resistance pathway and the stringent response of E. coli in imparting this phenotype. As such, this study presents one of the first examples in which cell-wide measurements have helped to elucidate the genetic and biochemical underpinnings of an engineered cellular property, leading to the total restoration of metabolite overproduction from specific chromosomal mutations.

  7. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli

    PubMed Central

    Santos, Christine Nicole S.; Xiao, Wenhai; Stephanopoulos, Gregory

    2012-01-01

    Although microbial metabolic engineering has traditionally relied on rational and knowledge-driven techniques, significant improvements in strain performance can be further obtained through the use of combinatorial approaches exploiting phenotypic diversification and screening. Here, we demonstrate the combined use of global transcriptional machinery engineering and a high-throughput L-tyrosine screen towards improving L-tyrosine production in Escherichia coli. This methodology succeeded in generating three strains from two separate mutagenesis libraries (rpoA and rpoD) exhibiting up to a 114% increase in L-tyrosine titer over a rationally engineered parental strain with an already high capacity for production. Subsequent strain characterization through transcriptional analysis and whole genome sequencing allowed complete phenotype reconstruction from well-defined mutations and point to important roles for both the acid stress resistance pathway and the stringent response of E. coli in imparting this phenotype. As such, this study presents one of the first examples in which cell-wide measurements have helped to elucidate the genetic and biochemical underpinnings of an engineered cellular property, leading to the total restoration of metabolite overproduction from specific chromosomal mutations. PMID:22869698

  8. Interaction of Escherichia coli with growing salad spinach plants.

    PubMed

    Warriner, Keith; Ibrahim, Faozia; Dickinson, Matthew; Wright, Charles; Waites, William M

    2003-10-01

    In this study, the interaction of a bioluminescence-labeled Escherichia coli strain with growing spinach plants was assessed. Through bioluminescence profiles, the direct visualization of E. coli growing around the roots of developing seedlings was accomplished. Subsequent in situ glucuronidase (GUS) staining of seedlings confirmed that E. coli had become internalized within root tissue and, to a limited extent, within hypocotyls. When inoculated seeds were sown in soil microcosms and cultivated for 42 days, E. coli was recovered from the external surfaces of spinach roots and leaves as well as from surface-sterilized roots. When 20-day-old spinach seedlings (from uninoculated seeds) were transferred to soil inoculated with E. coli, the bacterium became established on the plant surface, but internalization into the inner root tissue was restricted. However, for seedlings transferred to a hydroponic system containing 10(2) or 10(3) CFU of E. coli per ml of the circulating nutrient solution, the bacterium was recovered from surface-sterilized roots, indicating that it had been internalized. Differences between E. coli interactions in the soil and those in the hydroponic system may be attributed to greater accessibility of the roots in the latter model. Alternatively, the presence of a competitive microflora in soil may have restricted root colonization by E. coli. The implications of this study's findings with regard to the microbiological safety of minimally processed vegetables are discussed.

  9. Escherichia coli Probiotic Strain ED1a in Pigs Has a Limited Impact on the Gut Carriage of Extended-Spectrum-β-Lactamase-Producing E. coli

    PubMed Central

    Mourand, G.; Paboeuf, F.; Fleury, M. A.; Jouy, E.; Bougeard, S.; Denamur, E.

    2016-01-01

    ABSTRACT Four trials were conducted to evaluate the impact of Escherichia coli probiotic strain ED1a administration to pigs on the gut carriage or survival in manure of extended-spectrum-β-lactamase-producing E. coli. Groups of pigs were orally inoculated with strain E. coli M63 carrying the blaCTX-M-1 gene (n = 84) or used as a control (n = 26). In the first two trials, 24 of 40 E. coli M63-inoculated pigs were given E. coli ED1a orally for 6 days starting 8 days after oral inoculation. In the third trial, 10 E. coli M63-inoculated pigs were given either E. coli ED1a or probiotic E. coli Nissle 1917 for 5 days. In the fourth trial, E. coli ED1a was given to a sow and its 12 piglets, and these 12 piglets plus 12 piglets that had not received E. coli ED1a were then inoculated with E. coli M63. Fecal shedding of cefotaxime-resistant Enterobacteriaceae (CTX-RE) was studied by culture, and blaCTX-M-1 genes were quantified by PCR. The persistence of CTX-RE in manure samples from inoculated pigs or manure samples inoculated in vitro with E. coli M63 with or without probiotics was studied. The results showed that E. coli M63 and ED1a were good gut colonizers. The reduction in the level of fecal excretion of CTX-RE in E. coli ED1a-treated pigs compared to that in nontreated pigs was usually less than 1 log10 CFU and was mainly observed during the probiotic administration period. The results obtained with E. coli Nissle 1917 did not differ significantly from those obtained with E. coli ED1a. CTX-RE survival did not differ significantly in manure samples with or without probiotic treatment. In conclusion, under our experimental conditions, E. coli ED1a and E. coli Nissle 1917 could not durably prevent CTX-RE colonization of the pig gut. PMID:27795372

  10. Escherichia coli Probiotic Strain ED1a in Pigs Has a Limited Impact on the Gut Carriage of Extended-Spectrum-β-Lactamase-Producing E. coli.

    PubMed

    Mourand, G; Paboeuf, F; Fleury, M A; Jouy, E; Bougeard, S; Denamur, E; Kempf, I

    2017-01-01

    Four trials were conducted to evaluate the impact of Escherichia coli probiotic strain ED1a administration to pigs on the gut carriage or survival in manure of extended-spectrum-β-lactamase-producing E. coli Groups of pigs were orally inoculated with strain E. coli M63 carrying the bla CTX-M-1 gene (n = 84) or used as a control (n = 26). In the first two trials, 24 of 40 E. coli M63-inoculated pigs were given E. coli ED1a orally for 6 days starting 8 days after oral inoculation. In the third trial, 10 E. coli M63-inoculated pigs were given either E. coli ED1a or probiotic E. coli Nissle 1917 for 5 days. In the fourth trial, E. coli ED1a was given to a sow and its 12 piglets, and these 12 piglets plus 12 piglets that had not received E. coli ED1a were then inoculated with E. coli M63. Fecal shedding of cefotaxime-resistant Enterobacteriaceae (CTX-RE) was studied by culture, and bla CTX-M-1 genes were quantified by PCR. The persistence of CTX-RE in manure samples from inoculated pigs or manure samples inoculated in vitro with E. coli M63 with or without probiotics was studied. The results showed that E. coli M63 and ED1a were good gut colonizers. The reduction in the level of fecal excretion of CTX-RE in E. coli ED1a-treated pigs compared to that in nontreated pigs was usually less than 1 log 10 CFU and was mainly observed during the probiotic administration period. The results obtained with E. coli Nissle 1917 did not differ significantly from those obtained with E. coli ED1a. CTX-RE survival did not differ significantly in manure samples with or without probiotic treatment. In conclusion, under our experimental conditions, E. coli ED1a and E. coli Nissle 1917 could not durably prevent CTX-RE colonization of the pig gut. Copyright © 2016 American Society for Microbiology.

  11. Functional Analysis of Genes Comprising the Locus of Heat Resistance in Escherichia coli

    PubMed Central

    Mercer, Ryan; Nguyen, Oanh; Ou, Qixing; McMullen, Lynn

    2017-01-01

    ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1GI, yfdX2, hdeDGI, orf11, trxGI, kefB, and psiEGI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trxGI, kefB, and psiEGI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control

  12. [Nitrogen oxide is involved in the regulation of the Fe-S cluster assembly in proteins and the formation of biofilms by Escherichia coli cells].

    PubMed

    Vasil'eva, S V; Streltsova, D A; Starostina, I A; Sanina, N A

    2013-01-01

    The functions of nitrogen oxide (NO) in the regulation of the reversible processes of Fe-S cluster assembly in proteins and the formation of Escherichia coli biofilms have been investigated. S-nitrosoglutathione (GSNO) and crystalline nitrosyl complexes of iron with sulfur-containing aliphatic ligands cisaconite (CisA) and penaconite have been used as NO donors for the first time. Wild-type E. coli cells of the strain MC4100, mutants deltaiscA and deltasufA, and the double paralog mutant deltaiscA/sufA with deletions in the alternative pathways of Fe2+ supply for cluster assembly (all derived from the above-named strain) were used in this study. Plankton growth of bacterial cultures, the mass of mature biofilms, and the expression of the SoxRS[2Fe-2S] regulon have been investigated and shown to depend on strain genotype, the process of Fe-S cluster assembly in iron-sulfur proteins, NO donor structure, and the presence of Fe2+ chelator ferene in the incubation medium. The antibiotic ciprofloxacine (CF) was used as an inhibitor of E. coli biofilm formation in the positive control. NO donors regulating Fe-S cluster assembly in E. coli have been shown to control plankton growth of the cultures and the process of mature biofilm formation; toxic doses of NO caused a dramatic (3- to 4-fold) stimulation of cell entry into biofilms as a response to nitrosative stress; NO donors CisA and GSNO in physiological concentrations suppressed the formation of mature biofilms, and the activity of these compounds was comparable to that of CE Regulation of both Fe-S cluster assembly in iron-sulfur proteins and biofilm formation by NO is indicative of the connection between these processes in E. coli.

  13. Survival of Escherichia coli on strawberries grown under greenhouse conditions.

    PubMed

    Shaw, Angela Laury; Svoboda, Amanda; Jie, Beatrice; Nonnecke, Gail; Mendonca, Aubrey

    2015-04-01

    Strawberries are soft fruit that are not recommended to have a post-harvest wash due to quality concerns. Escherichia coli O157:H7 has been linked to outbreaks with strawberries but little is known about the survival of E. coli during the growth cycle of strawberries. The survival of E. coli on strawberry plants during growing under greenhouses conditions was evaluated. Soil, leaves, and strawberries (if present) were artificially contaminated with an E. coli surrogate either at the time of planting, first runner removal (4 wk), second runner removal (8 wk), or one week prior to harvest. At harvest E. coli was recovered from the leaves, soil, and strawberries regardless of the contamination time. Time of contamination influenced (P < 0.05) numbers of viable E. coli on the plant. The highest survival of E. coli (P < 0.0001) was detected in soil that was contaminated at planting (4.27 log10 CFU g soil(-1)), whereas, the survival of E. coli was maximal at later contamination times (8 wk and 1 wk prior to harvest) for the leaves (4.40 and 4.68 log10 CFU g leaves(-1)) and strawberries (3.37 and 3.53 log10 CFU strawberry(-1)). Cross contamination from leaves to fruit was observed during this study, with the presence of E. coli on strawberries which had not been present at the time of contamination. These results indicate that good agricultural best practices to avoid contamination are necessary to minimize the risk of contamination of these popular fruit with enteric pathogens. Practices should include soil testing prior to harvest and avoiding contamination of the leaves. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5.

    PubMed

    Blythe, Amanda; Gunasekara, Sanjika; Walshe, James; Mackay, Joel P; Hartzog, Grant A; Vrielink, Alice

    2014-08-01

    Spt4/5 is a hetero-dimeric transcription elongation factor that can both inhibit and promote transcription elongation by RNA polymerase II (RNAPII). However, Spt4/5's mechanism of action remains elusive. Spt5 is an essential protein and the only universally-conserved RNAP-associated transcription elongation factor. The protein contains multiple Kyrpides, Ouzounis and Woese (KOW) domains. These domains, in other proteins, are thought to bind RNA although there is little direct evidence in the literature to support such a function in Spt5. This could be due, at least in part, to difficulties in expressing and purifying recombinant Spt5. When expressed in Escherichia coli (E. coli), Spt5 is innately insoluble. Here we report a new approach for the successful expression and purification of milligram quantities of three different multi-KOW domain complexes of Saccharomyces cerevisiae Spt4/5 for use in future functional studies. Using the E. coli strain Rosetta2 (DE3) we have developed strategies for co-expression of Spt4 and multi-KOW domain Spt5 complexes from the bi-cistronic pET-Duet vector. In a second strategy, Spt4/5 was expressed via co-transformation of Spt4 in the vector pET-M11 with Spt5 ubiquitin fusion constructs in the vector pHUE. We characterized the multi-KOW domain Spt4/5 complexes by Western blot, limited proteolysis, circular dichroism, SDS-PAGE and size exclusion chromatography-multiangle light scattering and found that the proteins are folded with a Spt4:Spt5 hetero-dimeric stoichiometry of 1:1. These expression constructs encompass a larger region of Spt5 than has previously been reported, and will provide the opportunity to elucidate the biological function of the multi-KOW containing Spt5. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Leukemia and risk of recurrent Escherichia coli bacteremia: genotyping implicates E. coli translocation from the colon to the bloodstream.

    PubMed

    Samet, A; Sledzińska, A; Krawczyk, B; Hellmann, A; Nowicki, S; Kur, J; Nowicki, B

    2013-11-01

    In patients with leukemia, the portal(s) and reasons for the persistence of an Escherichia coli recurrent bacteremia remain unclear. Adult Hematology Clinic (AHC) databases at the State Clinical Hospital in Gdańsk were reviewed to evaluate the frequency of E. coli bacteremia between 2002 and 2005. Blood and bowel E. coli strains were obtained and the genetic relatedness of the strains was analyzed. The rate of E. coli bacteremia per 1,000 admissions at the AHC was higher (85.0) than in the other clinics of the hospital (2.9), p < 0.001. A higher mortality was observed in patients with a history of E. coli versus non-E. coli bacteremia [30/95 (31 %) vs. 53/430 (12 %), p < 0.001]; 72.8 % of patients with leukemia had an unknown source of bacteremia. In 2005, 6 out of 25 (24 %) patients with leukemia had ≥2 episodes of E. coli-positive blood cultures. These gastrointestinal E. coli isolates were replaced within 3-8 weeks with a new E. coli H genotype. A recurrent episode of bacteremia was usually caused by an infection with a transient E. coli H genotype identical to that found in the subject's bowel. Consistent with the definition of bowel/blood translocation, the bowel appeared to be a portal for E. coli in these subjects and, hence, a clear source for their recurring bacteremia.

  16. Pea chloroplast DNA encodes homologues of Escherichia coli ribosomal subunit S2 and the beta'-subunit of RNA polymerase.

    PubMed Central

    Cozens, A L; Walker, J E

    1986-01-01

    The nucleotide sequence has been determined of a segment of 4680 bases of the pea chloroplast genome. It adjoins a sequence described elsewhere that encodes subunits of the F0 membrane domain of the ATP-synthase complex. The sequence contains a potential gene encoding a protein which is strongly related to the S2 polypeptide of Escherichia coli ribosomes. It also encodes an incomplete protein which contains segments that are homologous to the beta'-subunit of E. coli RNA polymerase and to yeast RNA polymerases II and III. PMID:3530249

  17. Occurrence of Coliform and Escherichia coli Contamination and Absence of Escherichia coli O157:H7 on Romaine Lettuce from Retail Stores in the Upper Midwest.

    PubMed

    Greve, Josephine D; Zietlow, Mark S; Miller, Kevin M; Ellingson, Jay L E

    2015-09-01

    A total of 720 whole, romaine lettuce heads were purchased from retail locations in the Upper Midwest and assessed for coliform and Escherichia coli contamination and for the presence of E. coli O157:H7. During a 16-month period (August 2010 through December 2011), coliform and E. coli counts were enumerated on Petrifilm, and the presence of E. coli O157:H7 and the virulence gene eae was evaluated by real-time PCR (qPCR). Over half (400 of 720) of the lettuce samples were processed with an immunomagnetic separation step before the qPCR assay. All retail lettuce samples were negative for E. coli O157:H7 when tested with the R.A.P.I.D. LT qPCR targeting a region of the O-antigen, and only two (0.28%) were positive for the eae gene when tested with LightCycler qPCR. On Petrifilm, coliform counts of most lettuce samples (96.4%) were between <10(1) and 10(3) CFU/g, and E. coli counts for nearly all lettuce samples (98.2%) were <10(1) CFU/g. No seasonal trend in coliform and E. coli counts was observed throughout the examination period nor was a difference in coliform counts observed between packaged and nonpackaged lettuce heads. These results contribute to the limited recorded data and understanding of microbial contamination of whole romaine lettuce heads purchased from retail locations, specifically revealing the absence of E. coli O157:H7 and low levels of contamination with coliforms and other E. coli strains.

  18. Improving Ethanol Tolerance of Escherichia coli by Rewiring Its Global Regulator cAMP Receptor Protein (CRP)

    PubMed Central

    Yeow, Jianwei; Wang, Ivy; Zhang, Hongfang; Song, Hao; Jiang, Rongrong

    2013-01-01

    A major challenge in bioethanol fermentation is the low tolerance of the microbial host towards the end product bioethanol. Here we report to improve the ethanol tolerance of E. coli from the transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP), which is known to regulate over 400 genes in E. coli. Three ethanol tolerant CRP mutants (E1– E3) were identified from error-prone PCR libraries. The best ethanol-tolerant strain E2 (M59T) had the growth rate of 0.08 h−1 in 62 g/L ethanol, higher than that of the control at 0.06 h−1. The M59T mutation was then integrated into the genome to create variant iE2. When exposed to 150 g/l ethanol, the survival of iE2 after 15 min was about 12%, while that of BW25113 was <0.01%. Quantitative real-time reverse transcription PCR analysis (RT-PCR) on 444 CRP-regulated genes using OpenArray® technology revealed that 203 genes were differentially expressed in iE2 in the absence of ethanol, whereas 92 displayed differential expression when facing ethanol stress. These genes belong to various functional groups, including central intermediary metabolism (aceE, acnA, sdhD, sucA), iron ion transport (entH, entD, fecA, fecB), and general stress response (osmY, rpoS). Six up-regulated and twelve down-regulated common genes were found in both iE2 and E2 under ethanol stress, whereas over one hundred common genes showed differential expression in the absence of ethanol. Based on the RT-PCR results, entA, marA or bhsA was knocked out in iE2 and the resulting strains became more sensitive towards ethanol. PMID:23469036

  19. Evidence for Context-Dependent Complementarity of Non-Shine-Dalgarno Ribosome Binding Sites to Escherichia coli rRNA

    PubMed Central

    Barendt, Pamela A.; Shah, Najaf A.; Barendt, Gregory A.; Kothari, Parth A.; Sarkar, Casim A.

    2013-01-01

    While the ribosome has evolved to function in complex intracellular environments, these contexts do not easily allow for the study of its inherent capabilities. We have used a synthetic, well-defined, Escherichia coli (E. coli)-based translation system in conjunction with ribosome display, a powerful in vitro selection method, to identify ribosome binding sites (RBSs) that can promote the efficient translation of messenger RNAs (mRNAs) with a leader length representative of natural E. coli mRNAs. In previous work, we used a longer leader sequence and unexpectedly recovered highly efficient cytosine-rich sequences with complementarity to the 16S ribosomal RNA (rRNA) and similarity to eukaryotic RBSs. In the current study, Shine-Dalgarno (SD) sequences were prevalent but non-SD sequences were also heavily enriched and were dominated by novel guanine- and uracil-rich motifs which showed statistically significant complementarity to the 16S rRNA. Additionally, only SD motifs exhibited position-dependent decreases in sequence entropy, indicating that non-SD motifs likely operate by increasing the local concentration of ribosomes in the vicinity of the start codon, rather than by a position-dependent mechanism. These results further support the putative generality of mRNA-rRNA complementarity in facilitating mRNA translation, but also suggest that context (e.g., leader length and composition) dictates the specific subset of possible RBSs that are used for efficient translation of a given transcript. PMID:23427812

  20. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device.

    PubMed

    Thakur, Bhawana; Zhou, Guihua; Chang, Jingbo; Pu, Haihui; Jin, Bing; Sui, Xiaoyu; Yuan, Xiaochen; Yang, Ching-Hong; Magruder, Matthew; Chen, Junhong

    2018-07-01

    Contamination of surface and drinking water due to the presence of Escherichia coli bacteria is a major cause of water-borne disease outbreak. To address unmet challenges for practical pathogen detection in contaminated samples, we report fabrication of thermally reduced graphene oxide-based field-effect transistor (rGO FET) passivated with an ultrathin layer of Al 2 O 3 for real-time detection of E. coli bacteria. The sensor could detect a single E. coli cell within 50 s in a 1 µL sample volume. The ultrathin layer of Al 2 O 3 acted as a barrier between rGO and potential interferents present in the sample. E. coli specific antibodies anchored on gold nanoparticles acted as probes for selective capture of E. coli. The high density of negative charge on the surface of E. coli cells strongly modulates the concentration of majority charge carriers in the rGO monolayer, thereby allowing real-time monitoring of E. coli concentration in a given sample. With a low detection limit of single cell, the FET sensor had a linear range of 1-100 CFU in 1 µL volume of sample (i.e., 10 3 to 10 5 CFU/ mL). The biosensor with good selectivity and rapid detection was further successfully demonstrated for E. coli sensing in river water. The rGO-based FET sensor provides a low cost and label-free approach, and can be mass produced for detection of a broad spectrum of pathogens in water or other liquid media. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Differential mechanisms of binding of anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA to E. coli RNA polymerase lead to diverse physiological consequences.

    PubMed

    Sharma, Umender K; Chatterji, Dipankar

    2008-05-01

    Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to sigma(70) with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with sigma(70) studied by using the yeast two-hybrid system revealed that region 4 of sigma(70) is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of sigma(70) as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to sigma(70).

  2. Differential Mechanisms of Binding of Anti-Sigma Factors Escherichia coli Rsd and Bacteriophage T4 AsiA to E. coli RNA Polymerase Lead to Diverse Physiological Consequences▿

    PubMed Central

    Sharma, Umender K.; Chatterji, Dipankar

    2008-01-01

    Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, σ70, of E. coli. Though both factors are known to interact with the C-terminal region of σ70, the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to σ70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with σ70 studied by using the yeast two-hybrid system revealed that region 4 of σ70 is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of σ70 as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to σ70. PMID:18359804

  3. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  4. Comparison of methods for recovery of Escherichia coli and Staphylococcus aureus from seeded laundry fabrics.

    PubMed Central

    Cody, H J; Smith, P F; Blaser, M J; LaForce, F M; Wang, W L

    1984-01-01

    To assess the effect of laundry procedures on fabric-associated bacteria, a standard method of enumeration is needed. We evaluated six methods for enumeration of Escherichia coli and Staphylococcus aureus seeded (10(2) and 10(5) CFU/100 cm2 of fabric area) onto sterilized hospital sheets and terry . Two methods involved maceration of seeded swatches in broth followed by passage of the broth through a 0.45-micron-pore-size, 47-mm-diameter filter membrane. Three methods involved agitation of seeded swatches in broth with a paint shaker and membrane filtration of the broth to recover eluted bacterial cells, and the final method involved direct enumeration of cells on fabrics by overlaying seeded swatches with agar containing triphenyltetrazolium chloride as an indicator. The most convenient recovery method employed a 90-s agitation followed by serial dilution of broths and membrane filtration. This method provided 44/57% (low seed/high seed) recovery of E. coli from sheets and 133/31% from terry and 34/74% recovery of S. aureus from sheets and 58/57% from terry . Although maceration provided similar recovery of E. coli and S. aureus, it is a less-practical method. The direct enumeration method was ineffective for enumerating gram-positive bacteria. We conclude that either the agitation or maceration method used enumerated the seeded bacteria to within 1 log10 of their expected number and can be used to assess the bactericidal effectiveness of various steps in the laundering process. PMID:6378092

  5. Molecular mechanism of transcription inhibition by phage T7 gp2 protein.

    PubMed

    Mekler, Vladimir; Minakhin, Leonid; Sheppard, Carol; Wigneshweraraj, Sivaramesh; Severinov, Konstantin

    2011-11-11

    Escherichia coli T7 bacteriophage gp2 protein is a potent inhibitor of host RNA polymerase (RNAP). gp2 inhibits formation of open promoter complex by binding to the β' jaw, an RNAP domain that interacts with downstream promoter DNA. Here, we used an engineered promoter with an optimized sequence to obtain and characterize a specific promoter complex containing RNAP and gp2. In this complex, localized melting of promoter DNA is initiated but does not propagate to include the point of the transcription start. As a result, the complex is transcriptionally inactive. Using a highly sensitive RNAP beacon assay, we performed quantitative real-time measurements of specific binding of the RNAP-gp2 complex to promoter DNA and various promoter fragments. In this way, the effect of gp2 on RNAP interaction with promoters was dissected. As expected, gp2 greatly decreased RNAP affinity to downstream promoter duplex. However, gp2 also inhibited RNAP binding to promoter fragments that lacked downstream promoter DNA that interacts with the β' jaw. The inhibition was caused by gp2-mediated decrease of the RNAP binding affinity to template and non-template strand segments of the transcription bubble downstream of the -10 promoter element. The inhibition of RNAP interactions with single-stranded segments of the transcription bubble by gp2 is a novel effect, which may occur via allosteric mechanism that is set in motion by the gp2 binding to the β' jaw. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Whole-genome sequence of Escherichia coli serotype O157:H7 strain PA20

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli serotype O157:H7 PA20 is a Pennsylvania Department of Health clinical isolate. It has been used to study biofilm formation in O157:H7 clinical isolates where the high incidence of prophage insertions in the mlrA transcription factor disrupts traditional csgD biofilm regulation. Here...

  7. Escherichia coli early-onset sepsis: trends over two decades.

    PubMed

    Mendoza-Palomar, Natalia; Balasch-Carulla, Milena; González-Di Lauro, Sabina; Céspedes, Maria Concepció; Andreu, Antònia; Frick, Marie Antoinette; Linde, Maria Ángeles; Soler-Palacin, Pere

    2017-09-01

    Escherichia coli early-onset sepsis (EOS) is an important cause of mortality and morbidity in neonates, especially in preterm and very low birth weight (VLBW) newborns. The aim of our study was to evaluate potential changes in the clinical and microbiological characteristics of E. coli EOS in our setting. Epidemiological, clinical, and microbiological data from all neonates with proven E. coli EOS from January 1994 to December 2014 were retrospectively collected in a single tertiary care hospital in Barcelona (Spain). Seventy-eight E. coli EOS cases were analyzed. A slight increase in the incidence of E. coli EOS was observed during the study period. VLBW newborns remained the group with higher incidence (10.4 cases per 1000 live births) and mortality (35.3%). Systematic use of PCR increased E. coli EOS diagnosis, mainly in the term newborn group. There was an increase in resistant E. coli strains causing EOS, with especially high resistance to ampicillin and gentamicin (92.8 and 28.6%, respectively). Nonetheless, resistant strains were not associated with poorer clinical outcomes. There is an urgent need to reconsider the empirical therapy used in neonatal EOS, particularly in VLBW newborns. What is Known: • E. coli early-onset sepsis (EOS) and E. coli resistant strains have been described as overall stable but increasing in VLBW neonates (< 1.500 g) in previous studies. What is New: • Our study shows an increasing incidence of E. coli EOS in all age groups, overruling group B Streptoccocus for the last 10 years. E. coli resistant strains also increased equally in all age groups, with high resistance rates to our first line antibiotics (ampicillin and gentamicin). • Empiric antibiotic therapy of EOS, mainly in VLBW newborns, should be adapted to this new scenario.

  8. The Protein Interaction Network of Bacteriophage Lambda with Its Host, Escherichia coli

    PubMed Central

    Blasche, Sonja; Wuchty, Stefan; Rajagopala, Seesandra V.

    2013-01-01

    Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its host Escherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between the E. coli transcriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins and E. coli proteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens. PMID:24049175

  9. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli.

    PubMed

    Pannuri, Archana; Vakulskas, Christopher A; Zere, Tesfalem; McGibbon, Louise C; Edwards, Adrianne N; Georgellis, Dimitris; Babitzke, Paul; Romeo, Tony

    2016-11-01

    Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (RsmA) away from lower

  10. Circuitry Linking the Catabolite Repression and Csr Global Regulatory Systems of Escherichia coli

    PubMed Central

    Pannuri, Archana; Vakulskas, Christopher A.; Zere, Tesfalem; McGibbon, Louise C.; Edwards, Adrianne N.; Georgellis, Dimitris; Babitzke, Paul

    2016-01-01

    ABSTRACT Cyclic AMP (cAMP) and the cAMP receptor protein (cAMP-CRP) and CsrA are the principal regulators of the catabolite repression and carbon storage global regulatory systems, respectively. cAMP-CRP controls the transcription of genes for carbohydrate metabolism and other processes in response to carbon nutritional status, while CsrA binds to diverse mRNAs and regulates translation, RNA stability, and/or transcription elongation. CsrA also binds to the regulatory small RNAs (sRNAs) CsrB and CsrC, which antagonize its activity. The BarA-UvrY two-component signal transduction system (TCS) directly activates csrB and csrC (csrB/C) transcription, while CsrA does so indirectly. We show that cAMP-CRP inhibits csrB/C transcription without negatively regulating phosphorylated UvrY (P-UvrY) or CsrA levels. A crp deletion caused an elevation in CsrB/C levels in the stationary phase of growth and increased the expression of csrB-lacZ and csrC-lacZ transcriptional fusions, although modest stimulation of CsrB/C turnover by the crp deletion partially masked the former effects. DNase I footprinting and other studies demonstrated that cAMP-CRP bound specifically to three sites located upstream from the csrC promoter, two of which overlapped the P-UvrY binding site. These two proteins competed for binding at the overlapping sites. In vitro transcription-translation experiments confirmed direct repression of csrC-lacZ expression by cAMP-CRP. In contrast, cAMP-CRP effects on csrB transcription may be mediated indirectly, as it bound nonspecifically to csrB DNA. In the reciprocal direction, CsrA bound to crp mRNA with high affinity and specificity and yet exhibited only modest, conditional effects on expression. Our findings are incorporated into an emerging model for the response of Csr circuitry to carbon nutritional status. IMPORTANCE Csr (Rsm) noncoding small RNAs (sRNAs) CsrB and CsrC of Escherichia coli use molecular mimicry to sequester the RNA binding protein CsrA (Rsm

  11. Use of acetic and citric acids to inhibit Escherichia coli O157:H7, Salmonella Typhimurium and Staphylococcus aureus in tabbouleh salad.

    PubMed

    Al-Rousan, Walid M; Olaimat, Amin N; Osaili, Tareq M; Al-Nabulsi, Anas A; Ajo, Radwan Y; Holley, Richard A

    2018-08-01

    The objective of the current study was to evaluate the antimicrobial action of different concentrations of acetic (0.3% and 0.4%) or citric (1% and 1.4%) acids and their combinations (1% citric acid plus 0.4% acetic acid and 1.4% citric acid plus 0.3% acetic acid) against Salmonella Typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus in tabbouleh salad stored at 21, 10 and 4 °C. Acetic acid was more inhibitory toward S. Typhimurium and E. coli O157:H7 than citric acid at 21 °C; S. Typhimurium and E. coli O157:H7 cells were not detected in tabbouleh treated with 0.4% acetic acid after 5 and 7 days, respectively. The combined effect of acetic and citric acid was synergistic against S. Typhimurium, and E. coli O157:H7, but not against S. aureus. The combinations of acetic and citric acids reduced S. Typhimurium, and E. coli O157:H7 to below the detection levels after 2 and 3 days at 21 °C, respectively. However, these treatments significantly reduced S. aureus numbers compared to the control at tested temperatures by the end of storage. Acetic and citric acids have the potential to be used in tabbouleh salad to reduce the risk from S. Typhimurium, E. coli O157:H7 and S. aureus. Copyright © 2018. Published by Elsevier Ltd.

  12. A dual switch controls bacterial enhancer-dependent transcription

    PubMed Central

    Wiesler, Simone C.; Burrows, Patricia C.; Buck, Martin

    2012-01-01

    Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ54 factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125

  13. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription

    PubMed Central

    Kang, Jian; Kusnadi, Eric P.; Ogden, Allison J.; Hicks, Rodney J.; Bammert, Lukas; Kutay, Ulrike; Hung, Sandy; Sanij, Elaine; Hannan, Ross D.; Hannan, Katherine M.; Pearson, Richard B.

    2016-01-01

    Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer. PMID:27385002

  14. Continuous-sterilization system that uses photosemiconductor powders. [Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, T.; Tomoda, R.; Nakajima, T.

    1988-06-01

    We report a novel photochemical sterilization system in which Escherichia coli cells were sterilized with photosemiconductor powders (titanium oxide). For sterilization that could be used in practice, it was necessary to separate the TiO/sub 2/ powders from the cell suspension. Therefore, semiconductor powders were immobilized on acetylcellulose membranes. We constructed a continuous-sterilization system consisting of TiO/sub 2/-immobilized acetylcellulose membrane reactor, a mercury lamp, and a masterflex pump. As a result, under the various sterilization conditions examined, E.coli (10/sup 2/ cells per ml) was sterilized to < 1% survival when the cell suspension flowed in this system at a mean residencemore » time of 16.0 min under irradiation (1800 microeinsteins/m/sup 2/ per s). We found that this system was reusable.« less

  15. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli

    PubMed Central

    Biggs, Bradley Walters; Lim, Chin Giaw; Sagliani, Kristen; Shankar, Smriti; Stephanopoulos, Gregory; Ajikumar, Parayil Kumaran

    2016-01-01

    Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature’s favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities. PMID:26951651

  16. The ω Subunit Governs RNA Polymerase Stability and Transcriptional Specificity in Staphylococcus aureus.

    PubMed

    Weiss, Andy; Moore, Brittney D; Tremblay, Miguel H J; Chaput, Dale; Kremer, Astrid; Shaw, Lindsey N

    2017-01-15

    Staphylococcus aureus is a major human pathogen that causes infection in a wide variety of sites within the human body. Its ability to adapt to the human host and to produce a successful infection requires precise orchestration of gene expression. While DNA-dependent RNA polymerase (RNAP) is generally well characterized, the roles of several small accessory subunits within the complex have yet to be fully explored. This is particularly true for the omega (ω or RpoZ) subunit, which has been extensively studied in Gram-negative bacteria but largely neglected in Gram-positive counterparts. In Escherichia coli, it has been shown that ppGpp binding, and thus control of the stringent response, is facilitated by ω. Interestingly, key residues that facilitate ppGpp binding by ω are not conserved in S. aureus, and consequently, survival under starvation conditions is unaffected by rpoZ deletion. Further to this, ω-lacking strains of S. aureus display structural changes in the RNAP complex, which result from increased degradation and misfolding of the β' subunit, alterations in δ and σ factor abundance, and a general dissociation of RNAP in the absence of ω. Through RNA sequencing analysis we detected a variety of transcriptional changes in the rpoZ-deficient strain, presumably as a response to the negative effects of ω depletion on the transcription machinery. These transcriptional changes translated to an impaired ability of the rpoZ mutant to resist stress and to fully form a biofilm. Collectively, our data underline, for the first time, the importance of ω for RNAP stability, function, and cellular physiology in S. aureus IMPORTANCE: In order for bacteria to adjust to changing environments, such as within the host, the transcriptional process must be tightly controlled. Transcription is carried out by DNA-dependent RNA polymerase (RNAP). In addition to its major subunits (α 2 ββ') a fifth, smaller subunit, ω, is present in all forms of life. Although this

  17. Post-transcriptional modifications in the small subunit ribosomal RNA from Thermotoga maritima, including presence of a novel modified cytidine

    PubMed Central

    Guymon, Rebecca; Pomerantz, Steven C.; Ison, J. Nicholas; Crain, Pamela F.; McCloskey, James A.

    2007-01-01

    Post-transcriptional modifications of RNA are nearly ubiquitous in the principal RNAs involved in translation. However, in the case of rRNA the functional roles of modification are far less established than for tRNA, and are subject to less knowledge in terms of specific nucleoside identities and their sequence locations. Post-transcriptional modifications have been studied in the SSU rRNA from Thermotoga maritima (optimal growth 80°C), one of the most deeply branched organisms in the Eubacterial phylogenetic tree. A total of 10 different modified nucleosides were found, the greatest number reported for bacterial SSU rRNA, occupying a net of ∼14 sequence sites, compared with a similar number of sites recently reported for Thermus thermophilus and 11 for Escherichia coli. The relatively large number of modifications in Thermotoga offers modest support for the notion that thermophile rRNAs are more extensively modified than those from mesophiles. Seven of the Thermotoga modified sites are identical (location and identity) to those in E. coli. An unusual derivative of cytidine was found, designated N-330 (M r 330.117), and was sequenced to position 1404 in the decoding region of the rRNA. It was unexpectedly found to be identical to an earlier reported nucleoside of unknown structure at the same location in the SSU RNA of the archaeal mesophile Haloferax volcanii. PMID:17255199

  18. An Archaea 5S rRNA analog is stably expressed in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Fox, G. E.

    1996-01-01

    Mini-genes for 5S-like rRNA were constructed. These genes had a sequence which largely resembles that of the naturally occurring 5S rRNA of a bacterium, Halococcus morrhuae, which phylogenetically belongs to the Archaea. Plasmids carrying the mini-genes were transformed into Escherichia coli (Ec). Ribosomal incorporation was not a prerequisite for stable accumulation of the RNA product. However, only those constructs with a well-base-paired helix I accumulated RNA product. This result strongly implies that this aspect of the structure is likely to be an important condition for stabilizing 5S rRNA-like products. The results are consistent with our current understanding of 5S rRNA processing in Ec. When used in conjunction with rRNA probe technology, the resulting chimeric RNA may be useful as a monitoring tool for genetically engineered microorganisms or naturally occurring organisms that are released into the environment.

  19. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    NASA Astrophysics Data System (ADS)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  20. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli.

    PubMed

    Li, Baoguang; Liu, Huanli; Wang, Weimin

    2017-11-09

    Shiga toxin-producing Escherichia coli (STEC), including E. coli O157:H7, are responsible for numerous foodborne outbreaks annually worldwide. E. coli O157:H7, as well as pathogenic non-O157:H7 STECs, can cause life-threating complications, such as bloody diarrhea (hemolytic colitis) and hemolytic-uremic syndrome (HUS). Previously, we developed a real-time PCR assay to detect E. coli O157:H7 in foods by targeting a unique putative fimbriae protein Z3276. To extend the detection spectrum of the assay, we report a multiplex real-time PCR assay to specifically detect E. coli O157:H7 and screen for non-O157 STEC by targeting Z3276 and Shiga toxin genes (stx1 and stx2). Also, an internal amplification control (IAC) was incorporated into the assay to monitor the amplification efficiency. The multiplex real-time PCR assay was developed using the Life Technology ABI 7500 System platform and the standard chemistry. The optimal amplification mixture of the assay contains 12.5 μl of 2 × Universal Master Mix (Life Technology), 200 nM forward and reverse primers, appropriate concentrations of four probes [(Z3276 (80 nM), stx1 (80 nM), stx2 (20 nM), and IAC (40 nM)], 2 μl of template DNA, and water (to make up to 25 μl in total volume). The amplification conditions of the assay were set as follows: activation of TaqMan at 95 °C for 10 min, then 40 cycles of denaturation at 95 °C for 10 s and annealing/extension at 60 °C for 60 s. The multiplex assay was optimized for amplification conditions. The limit of detection (LOD) for the multiplex assay was determined to be 200 fg of bacterial DNA, which is equivalent to 40 CFU per reaction which is similar to the LOD generated in single targeted PCRs. Inclusivity and exclusivity determinants were performed with 196 bacterial strains. All E. coli O157:H7 (n = 135) were detected as positive and all STEC strains (n = 33) were positive for stx1, or stx2, or stx1 and stx2 (Table 1). No cross reactivity was detected with Salmonella

  1. Studies on transfer ribonucleic acids and related compounds. XXXII. Synthesis of ribonucleotides corresponding to residues 1-5 and 6-10 of tRNAfMet from E. coli and their base conversion analogs.

    PubMed Central

    Ohtsuka, E; Tanaka, T; Ikehara, M

    1979-01-01

    E. Coli tRNAfMet fragments, C-G-C-G-Gp (bases 1-5), U-G-C-G-Gp (base 1 transition, analog) pG-G-C-G-Gp (base 1 transversion analog) and pG-G-s4U-G-Gp (bases 6-10) were synthesized by triester methods using 2'-O-(o-nitrobenzyl) nucleotides including a 3',5'-bisphosphorylated guanosine derivative. The s4U containing pentanucleotide was derived from the pG-G-C-G-Gp by treatment with liquid hydrogen sulfide. Images PMID:390499

  2. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites.

    PubMed

    Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong

    2015-01-01

    Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  3. Measurement and modeling of intrinsic transcription terminators

    PubMed Central

    Cambray, Guillaume; Guimaraes, Joao C.; Mutalik, Vivek K.; Lam, Colin; Mai, Quynh-Anh; Thimmaiah, Tim; Carothers, James M.; Arkin, Adam P.; Endy, Drew

    2013-01-01

    The reliable forward engineering of genetic systems remains limited by the ad hoc reuse of many types of basic genetic elements. Although a few intrinsic prokaryotic transcription terminators are used routinely, termination efficiencies have not been studied systematically. Here, we developed and validated a genetic architecture that enables reliable measurement of termination efficiencies. We then assembled a collection of 61 natural and synthetic terminators that collectively encode termination efficiencies across an ∼800-fold dynamic range within Escherichia coli. We simulated co-transcriptional RNA folding dynamics to identify competing secondary structures that might interfere with terminator folding kinetics or impact termination activity. We found that structures extending beyond the core terminator stem are likely to increase terminator activity. By excluding terminators encoding such context-confounding elements, we were able to develop a linear sequence-function model that can be used to estimate termination efficiencies (r = 0.9, n = 31) better than models trained on all terminators (r = 0.67, n = 54). The resulting systematically measured collection of terminators should improve the engineering of synthetic genetic systems and also advance quantitative modeling of transcription termination. PMID:23511967

  4. Bioinformatics comparisons of RNA-binding proteins of pathogenic and non-pathogenic Escherichia coli strains reveal novel virulence factors.

    PubMed

    Ghosh, Pritha; Sowdhamini, Ramanathan

    2017-08-24

    Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations.

  5. The Mission Transcript Collection: U.S. Human Spaceflight Missions from Mercury Redstone 3 to Apollo 17

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aboard every U.S. piloted spacecraft, from Mercury through Apollo, NASA installed tape recorders that captured nearly every word spoken by the astronauts during their history-making flights into space. For the first time ever, NASA has digitally scanned all of the transcripts made from both the onboard tapes and those tape recordings made on the ground from the air-to-ground transmissions and placed them on this two CD-ROM set. Gathered in this special collection are 80 transcripts totaling nearly 45,000 pages of text that cover every US human spaceflight from the first human Mercury mission through the last lunar landing flight of Apollo 17. Users of this CD will note that the quantity and type of transcripts made for each mission vary. For example, the Mercury flights each had one transcript whereas the Gemini missions produced several. Starting with the Gemini flights, NASA produced a Public Affairs Office (PAO) commentary version, as well as at least one "technical" air-to-ground transcript version, per mission. Most of the Apollo missions produced four transcripts per flight. These included the onboard voice data recorder transcripts made from the Data Storage Equipment (DSE) on the Command Module (CM), and the Data Storage Electronics Assembly (DSEA) onboard the Lunar Module (LM), in addition to the PAO commentary and air-to-ground technical transcripts. The CD set includes an index listing each transcript file by name. Some of the transcripts include a detailed explanation of their contents and how they were made. Also included in this collection is a listing of all the original air-to-ground audiotapes housed in NASA's archives from which many of these transcripts were made. We hope you find this collection of transcripts interesting and useful.

  6. Rhizobium meliloti anthranilate synthase gene: cloning, sequence, and expression in Escherichia coli.

    PubMed Central

    Bae, Y M; Holmgren, E; Crawford, I P

    1989-01-01

    We determined the DNA sequence of the Rhizobium meliloti gene encoding anthranilate synthase, the first enzyme of the tryptophan pathway. Sequences similar to those seen for the two subunits of the enzyme as found in all other procaryotic species studied are present in a single open reading frame of 729 codons. This apparent gene fusion joins the C terminus of the large subunit (TrpE) to the N terminus of the small subunit (TrpG) through a short connecting segment. We designate the fused gene trpE(G). The gene is flanked by a typical rho-independent terminator at the 3' end and a complex regulatory region at the 5' end resembling those of operons under transcriptional attenuation control. The location of the promoter was determined by S1 nuclease protection, using Rhizobium mRNA. Although this promoter was inactive in Escherichia coli, mutations eliciting activity were easily obtained. One of these was a C----T change at position -9 in the -10 region. The +1 position of the mRNA is the first base of the initiation codon of the leader peptide, implying that unlike trpE(G), which has a normal Shine-Dalgarno sequence, the leader peptide gene lacks a ribosome-binding site. Images PMID:2656657

  7. Genome image programs: visualization and interpretation of Escherichia coli microarray experiments.

    PubMed

    Zimmer, Daniel P; Paliy, Oleg; Thomas, Brian; Gyaneshwar, Prasad; Kustu, Sydney

    2004-08-01

    We have developed programs to facilitate analysis of microarray data in Escherichia coli. They fall into two categories: manipulation of microarray images and identification of known biological relationships among lists of genes. A program in the first category arranges spots from glass-slide DNA microarrays according to their position in the E. coli genome and displays them compactly in genome order. The resulting genome image is presented in a web browser with an image map that allows the user to identify genes in the reordered image. Another program in the first category aligns genome images from two or more experiments. These images assist in visualizing regions of the genome with common transcriptional control. Such regions include multigene operons and clusters of operons, which are easily identified as strings of adjacent, similarly colored spots. The images are also useful for assessing the overall quality of experiments. The second category of programs includes a database and a number of tools for displaying biological information about many E. coli genes simultaneously rather than one gene at a time, which facilitates identifying relationships among them. These programs have accelerated and enhanced our interpretation of results from E. coli DNA microarray experiments. Examples are given. Copyright 2004 Genetics Society of America

  8. Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli.

    PubMed

    Baez, Antonino; Shiloach, Joseph

    2017-01-01

    The damaging effect of high oxygen concentration on growth of Escherichia coli is well established. Over-oxygenation increases the intracellular concentration of reactive oxygen species (ROS), causing the destruction of the [4Fe-4S] cluster of dehydratases and limiting the biosynthesis of both branched-chain amino acids and nicotinamide adenine dinucleotide. A key enzyme that reduces the damaging effect of superoxide is superoxide dismutase (SOD). Its transcriptional regulation is controlled by global transcription regulators that respond to changes in oxygen and iron concentrations and pH. Production of biological compounds from E. coli is currently achieved using cultures grown to high cell densities which require oxygen-enriched air supply. It is, therefore, important to study the effect of over-oxygenation on E. coli metabolism and the bacterial protecting mechanism. The effect of over-oxygenation on the superoxide dismutase regulation system was evaluated in cultures grown in a bioreactor by increasing the oxygen concentration from 30 to 300 % air saturation. Following the change in the dissolved oxygen (DO), the expression of sodC, the periplasmic CuZn-containing SOD, and sodA, the cytosolic Mn-containing SOD, was higher in all the tested strains, while the expression of the sodB, the cytosolic Fe-containing SOD, was lower. The down-regulation of the sodB was found to be related to the activation of the small RNA RyhB. It was revealed that iron homeostasis, in particular ferric iron, was involved in the RyhB activation and in sodB regulation but not in sodA. Supplementation of amino acids to the culture medium reduced the intracellular ROS accumulation and reduced the activation of both SodA and SodC following the increase in the oxygen concentration. The study provides evidence that at conditions of over-oxygenation, sodA and sodC are strongly regulated by the amount of ROS, in particular superoxide; and sodB is regulated by iron availability through the

  9. ILG1 : a new integrase-like gene that is a marker of bacterial contamination by the laboratory Escherichia coli strain TOP10F'.

    PubMed Central

    Tian, Wenzhi; Chua, Kevin; Strober, Warren; Chu, Charles C.

    2002-01-01

    BACKGROUND: Identification of differentially expressed genes between normal and diseased states is an area of intense current medical research that can lead to the discovery of new therapeutic targets. However, isolation of differentially expressed genes by subtraction often suffers from unreported contamination of the resulting subtraction library with clones containing DNA sequences not from the original RNA samples. MATERIALS AND METHODS: Subtraction using cDNA representational difference analysis (RDA) was performed on human B cells from normal or common variable immunodeficiency patients. The material remaining after the subtraction was cloned and individual clones were sequenced. The sequence of one clone with similarity to integrases (ILG1, integrase-like gene-1) was used to obtain the full length cDNA sequence and as a probe for the presence of this sequence in RNA or genomic DNA samples. RESULTS: After five rounds of cDNA RDA, 23.3% of the clones from the resulting subtraction library contained Escherichia coli DNA. In addition, three clones contained the sequence of a new integrase, ILG1. The full length cDNA sequence of ILG1 exhibits prokaryotic, but not eukaryotic, features. At the DNA level, ILG1 is not similar to any known gene. At the protein level, ILG1 has 58% similarity to integrases from the cryptic P4 bacteriophage family (S clade). The catalytic domain of ILG1 contains the conserved features found in site-specific recombinases. The critical residues that form the catalytic active site pocket are conserved, including the highly conserved R-H-R-Y hallmark of these recombinases. Interestingly, ILG1 was not present in the original B cell populations. By probing genomic DNA, ILG1 could only be detected in the E. coli TOP10F' strain used in our laboratory for molecular cloning, but not in any of its precursor strains, including TOP10. Furthermore, bacteria cultured from the mouth of the laboratory worker who performed cDNA RDA were also positive for

  10. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic E. coli and Enterotoxigenic E. coli, on Raw Nopalitos (Opuntia ficus-indica L.) and in Nopalitos Salads from Local Retail Markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Torres-Vitela, Mdel Refugio; Villarruel-López, Angelica; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-05-01

    The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico.

  11. [Outbreaks caused by diarrheagenic Escherichia coli].

    PubMed

    Vila Estapé, Jordi; Zboromyrska, Yuliya

    2012-02-01

    Escherichia coli are ubiquitous bacteria from a wide variety of ecosystems including the gastrointestinal tract of humans and warm-blooded animals. E. coli can play a role as an opportunistic bacteria causing a variety of infectious diseases including, among many others, sepsis, urinary tract infections, meningitis, and wound infections. Moreover, these bacteria can also act as primary pathogens in the intestinal tract. There are several pathotypes of E. coli that cause enteritis, and both sporadic cases and outbreaks have been reported. In this article, we review the pathogenicity and epidemiology of enteritis caused by these E. coli pathotypes, and provide some examples of outbreaks described in the scientific literature and the measures required to prevent them. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  12. Current pathogenic Escherichia coli foodborne outbreak cases and therapy development.

    PubMed

    Yang, Shih-Chun; Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2017-08-01

    Food contamination by pathogenic microorganisms has been a serious public health problem and a cause of huge economic losses worldwide. Foodborne pathogenic Escherichia coli (E. coli) contamination, such as that with E. coli O157 and O104, is very common, even in developed countries. Bacterial contamination may occur during any of the steps in the farm-to-table continuum from environmental, animal, or human sources and cause foodborne illness. To understand the causes of the foodborne outbreaks by E. coli and food-contamination prevention measures, we collected and investigated the past 10 years' worldwide reports of foodborne E. coli contamination cases. In the first half of this review article, we introduce the infection and symptoms of five major foodborne diarrheagenic E. coli pathotypes: enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli/enterohemorrhagic E. coli (STEC/EHEC), Shigella/enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAEC), and enterotoxigenic E. coli (ETEC). In the second half of this review article, we introduce the foodborne outbreak cases caused by E. coli in natural foods and food products. Finally, we discuss current developments that can be applied to control and prevent bacterial food contamination.

  13. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants

    PubMed Central

    Shis, David L.; Bennett, Matthew R.

    2013-01-01

    The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host’s native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the circuit. The current repertoire of transcription factors consists of a limited selection of activators and repressors, making the implementation of transcriptional logic a complicated and component-intensive process. To address this, we modified bacteriophage T7 RNA polymerase (T7 RNAP) to create a library of transcriptional AND gates for use in Escherichia coli by first splitting the protein and then mutating the DNA recognition domain of the C-terminal fragment to alter its promoter specificity. We first demonstrate that split T7 RNAP is active in vivo and compare it with full-length enzyme. We then create a library of mutant split T7 RNAPs that have a range of activities when used in combination with a complimentary set of altered T7-specific promoters. Finally, we assay the two-input function of both wild-type and mutant split T7 RNAPs and find that regulated expression of the N- and C-terminal fragments of the split T7 RNAPs creates AND logic in each case. This work demonstrates that mutant split T7 RNAP can be used as a transcriptional AND gate and introduces a unique library of components for use in synthetic gene circuits. PMID:23479654

  14. Distortion in the spacer region of Pm during activation of middle transcription of phage Mu.

    PubMed Central

    Artsimovitch, I; Kahmeyer-Gabbe, M; Howe, M M

    1996-01-01

    Transcription from the middle promoter, Pm, of phage Mu is initiated by Escherichia coli RNA polymerase holoenzyme (E sigma 70; RNAP) and the phage-encoded activator, Mor. Point mutations in the spacer region between the -10 hexamer and the Mor binding site result in changes of promoter activity in vivo. These mutations are located at the junction between a rigid T-tract and adjacent, potentially deformable G + C-rich DNA segment, suggesting that deformation of the spacer region may play a role in the transcriptional activation of Pm. This prediction was tested by using dimethyl sulfate and potassium permanganate footprinting analyses. Helical distortion involving strand separation was detected at positions -32 to -34, close to the predicted interface between Mor and RNAP. Promoter mutants in which this distortion was not detected exhibited a lack of melting in the -12 to -1 region and reduced promoter activity in vivo. We propose that complexes containing the distortion represent stressed intermediates rather than stable open complexes and thus can be envisaged as a transition state in the kinetic pathway of Pm activation in which stored torsional energy could be used to facilitate melting around the transcription start point. Images Fig. 2 Fig. 3 Fig. 4 PMID:8790343

  15. The Nun protein of bacteriophage HK022 inhibits translocation of Escherichia coli RNA polymerase without abolishing its catalytic activities

    PubMed Central

    Hung, Siu Chun; Gottesman, Max E.

    1997-01-01

    Bacteriophage HK022 Nun protein blocks transcription elongation by Escherichia coli RNA polymerase in vitro without dissociating the transcription complex. Nun is active on complexes located at any template site tested. Ultimately, only the 3′-OH terminal nucleotide of the nascent transcript in an arrested complex can turn over; it is removed by pyrophosphate and restored with NTPs. This suggests that Nun inhibits the translocation of RNA polymerase without abolishing its catalytic activities. Unlike spontaneously arrested complexes, Nun-arrested complexes cannot be reactivated by transcription factor GreB. The various complexes show distinct patterns of nucleotide incorporation and pyrophosphorolysis before or after treatment with Nun, suggesting that the configuration of RNAP, transcript, and template DNA is different in each complex. PMID:9334329

  16. An In Vitro Enzymatic Assay to Measure Transcription Inhibition by Gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles

    PubMed Central

    Tang, Grace Y.; Pribisko, Melanie A.; Henning, Ryan K.; Lim, Punnajit; Termini, John; Gray, Harry B.; Grubbs, Robert H.

    2015-01-01

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme

  17. An in vitro enzymatic assay to measure transcription inhibition by gallium(III) and H3 5,10,15-tris(pentafluorophenyl)corroles.

    PubMed

    Tang, Grace Y; Pribisko, Melanie A; Henning, Ryan K; Lim, Punnajit; Termini, John; Gray, Harry B; Grubbs, Robert H

    2015-03-18

    Chemotherapy often involves broad-spectrum cytotoxic agents with many side effects and limited targeting. Corroles are a class of tetrapyrrolic macrocycles that exhibit differential cytostatic and cytotoxic properties in specific cell lines, depending on the identities of the chelated metal and functional groups. The unique behavior of functionalized corroles towards specific cell lines introduces the possibility of targeted chemotherapy. Many anticancer drugs are evaluated by their ability to inhibit RNA transcription. Here we present a step-by-step protocol for RNA transcription in the presence of known and potential inhibitors. The evaluation of the RNA products of the transcription reaction by gel electrophoresis and UV-Vis spectroscopy provides information on inhibitive properties of potential anticancer drug candidates and, with modifications to the assay, more about their mechanism of action. Little is known about the molecular mechanism of action of corrole cytotoxicity. In this experiment, we consider two corrole compounds: gallium(III) 5,10,15-(tris)pentafluorophenylcorrole (Ga(tpfc)) and freebase analogue 5,10,15-(tris)pentafluorophenylcorrole (tpfc). An RNA transcription assay was used to examine the inhibitive properties of the corroles. Five transcription reactions were prepared: DNA treated with Actinomycin D, triptolide, Ga(tpfc), tpfc at a [complex]:[template DNA base] ratio of 0.01, respectively, and an untreated control. The transcription reactions were analyzed after 4 hr using agarose gel electrophoresis and UV-Vis spectroscopy. There is clear inhibition by Ga(tpfc), Actinomycin D, and triptolide. This RNA transcription assay can be modified to provide more mechanistic detail by varying the concentrations of the anticancer complex, DNA, or polymerase enzyme, or by incubating the DNA or polymerase with the complexes prior to RNA transcription; these modifications would differentiate between an inhibition mechanism involving the DNA or the enzyme

  18. Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia coli K-12.

    PubMed

    Van Hove, B; Staudenmaier, H; Braun, V

    1990-12-01

    Citrate and iron have to enter only the periplasmic space in order to induce the citrate-dependent iron(III) transport system of Escherichia coli. The five transport genes fecABCDE form an operon and are transcribed from fecA to fecE. Two genes, termed fecI and fecR, that mediate induction by iron(III) dicitrate have been identified upstream of fecA. The fecI gene encodes a protein of 173 amino acids (molecular weight, 19,478); the fecR gene encodes a protein of 317 amino acids (molecular weight, 35,529). Chromosomal fecI::Mu d1 mutants were unable to grow with iron(III) dicitrate as the sole iron source and synthesized no FecA outer membrane receptor protein. Growth was restored by transformation with plasmids encoding fecI or fecI and fecR. FecA and beta-galactosidase syntheses under transcription control of the fecB gene (fecB::Mu d1) were constitutive in fecI transformants and were regulated by iron(III) dicitrate in fecI fecR transformants. The amino acid sequence of the FecI protein contains a region close to the carboxy-terminal end for which a helix-turn-helix motif is predicted, which is typical for DNA-binding regulatory proteins. The FecI protein was found in the membrane, and the FecR protein was found in the periplasmic fraction. It is proposed that the FecR protein is the sensor that recognizes iron(III) dicitrate in the periplasm. The FecI protein activates fec gene expression by binding to the fec operator region. In the absence of citrate, FecR inactivates FecI. The lack of sequence homologies to other transmembrane signaling proteins and the location of the two proteins suggest a new type of transmembrane control mechanism.

  19. Low cytotoxic trace element selenium nanoparticles and their differential antimicrobial properties against S. aureus and E. coli

    NASA Astrophysics Data System (ADS)

    Tran, Phong A.; O'Brien-Simpson, Neil; Reynolds, Eric C.; Pantarat, Namfon; Biswas, Dhee P.; O'Connor, Andrea J.

    2016-01-01

    Antimicrobial agents that have no or low cytotoxicity and high specificity are desirable to have no or minimal side effects. We report here the low cytotoxicity of polyvinyl alcohol-stabilized selenium (Se) nanoparticles and their differential effects on growth of S. aureus, a gram-positive bacterium and E. coli, a gram-negative bacterium. The nanoparticles were synthesised through redox reactions in an aqueous environment at room temperature and were characterised using UV visible spectrophotometry, transmission electron microscopy, dynamic light scattering and x-ray photoelectron spectroscopy. The nanoparticles showed low toxicity toward fibroblasts which remained more than 70% viable at Se concentrations as high as 128 ppm. The nanoparticles also exhibited very low haemolysis with only 18% of maximal lysis observed at a Se concentration of 128 ppm. Importantly, the nanoparticles showed strong growth inhibition toward S. aureus at a concentration as low as 1 ppm. Interestingly, growth of E. coli was unaffected at all concentrations tested. This study therefore strongly suggests that these nanoparticles should be investigated further to understand this differential effect as well as for potential advanced antimicrobial applications such as S. aureus infection—resisting, non-cytotoxic coatings for medical devices.

  20. Effect of Water Hardness on Efficacy of Sodium Hypochlorite Inactivation of Escherichia coli O157:H7 in Water.

    PubMed

    Swanson, Sara; Fu, Tong-Jen

    2017-03-01

    This study examined how the hardness of water affected the efficacy of sodium hypochlorite in inactivating Escherichia coli O157:H7 in water. Water was prepared at different degrees of total hardness (0, 50, 100, 200, 500, 1,000, 2,000, and 5,000 mg/liter CaCO 3 ). Inactivation was assessed at different levels of free chlorine (0, 0.2, 0.5, and 1.0 ppm) at 2 to 4°C and pH 6.5. Thirty milliliters of chlorinated water was inoculated with 6 log CFU/ml of E. coli O157:H7 and allowed to mix for 3, 10, 20, or 30 s. In the absence of sodium hypochlorite, no reduction in counts of E. coli O157:H7 was observed regardless of the degree of water hardness. However, in the presence of hard water, under certain chlorine concentrations and exposure times, the reduction of E. coli O157:H7 in chlorinated hard water was significantly less than the reduction observed in chlorinated deionized water. For example, after exposure to 0.5 ppm of free chlorine for 10 s, E. coli O157:H7 counts were reduced by 4.8 ± 1.4, 2.0 ± 1.3, 1.6 ± 0.7, 0.5 ± 0.7, and 0.0 ± 0.1 log CFU/ml in water containing 0, 100, 1,000, 2,000, and 5,000 mg/liter CaCO 3 , respectively. With the exception of 5,000 mg/liter CaCO 3 , the effect of water hardness was no longer visible after 20 s of exposure to 0.5 ppm of free chlorine. Also, hard water significantly lowered the efficacy of sodium hypochlorite at 3 s of exposure to 1.0 ppm of free chlorine. But after 20 s of exposure to 1.0 ppm of free chlorine, the impact of water hardness was no longer observed. This study demonstrated that water hardness can affect the germicidal efficacy of sodium hypochlorite, and such an impact may or may not be apparent depending on the condition of the solution and the treatment time at which the observation is made. Under the conditions typically seen in commercial produce washing operations, the impact of water hardness on chlorine efficacy is likely to be insignificant compared with that of organic load.