Science.gov

Sample records for coli nusb-s10 transcription

  1. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli.

    PubMed

    Zaslaver, Alon; Bren, Anat; Ronen, Michal; Itzkovitz, Shalev; Kikoin, Ilya; Shavit, Seagull; Liebermeister, Wolfram; Surette, Michael G; Alon, Uri

    2006-08-01

    E. coli is widely used for systems biology research; there exists a need, however, for tools that can be used to accurately and comprehensively measure expression dynamics in individual living cells. To address this we present a library of transcriptional fusions of gfp to each of about 2,000 different promoters in E. coli K12, covering the great majority of the promoters in the organism. Each promoter fusion is expressed from a low-copy plasmid. We demonstrate that this library can be used to obtain highly accurate dynamic measurements of promoter activity on a genomic scale, in a glucose-lactose diauxic shift experiment. The library allowed detection of about 80 previously uncharacterized transcription units in E. coli, including putative internal promoters within previously known operons, such as the lac operon. This library can serve as a tool for accurate, high-resolution analysis of transcription networks in living E. coli cells.

  2. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli.

    PubMed

    Zaslaver, Alon; Bren, Anat; Ronen, Michal; Itzkovitz, Shalev; Kikoin, Ilya; Shavit, Seagull; Liebermeister, Wolfram; Surette, Michael G; Alon, Uri

    2006-08-01

    E. coli is widely used for systems biology research; there exists a need, however, for tools that can be used to accurately and comprehensively measure expression dynamics in individual living cells. To address this we present a library of transcriptional fusions of gfp to each of about 2,000 different promoters in E. coli K12, covering the great majority of the promoters in the organism. Each promoter fusion is expressed from a low-copy plasmid. We demonstrate that this library can be used to obtain highly accurate dynamic measurements of promoter activity on a genomic scale, in a glucose-lactose diauxic shift experiment. The library allowed detection of about 80 previously uncharacterized transcription units in E. coli, including putative internal promoters within previously known operons, such as the lac operon. This library can serve as a tool for accurate, high-resolution analysis of transcription networks in living E. coli cells. PMID:16862137

  3. The Transcription Unit Architecture of the Escherichia Coli Genome

    SciTech Connect

    Cho, Byung-Kwan; Zengler, Karsten; Qiu, Yu; Park, Young S.; Knight, Eric M.; Barrett, Christian; Gao, Yuan; Palsson, Bernhard O.

    2009-11-01

    Under EMSL User Proposal 25660, the authors reported that bacterial genomes are organized by structural and functional elements, including promoters, transcription start and termination sites, open reading frames, regulatory noncoding regions, untranslated regions and transcription units. Here, we iteratively integrate high-throughput, genome-wide measurements of RNA polymerase binding locations and mRNA transcript abundance, 5' sequences and translation into proteins to determine the organizational structure of the Escherichia coli K-12 MG1655 genome. Integration of the organizational elements provides an experimentally annotated transcription unit architecture, including alternative transcription start sites, 5' untranslated region, boundaries and open reading frames of each transcription unit. A total of 4,661 transcription units were identified, representing an increase of >530% over current knowledge. This comprehensive transcription unit architecture allows for the elucidation of condition-specific uses of alternative sigma factors at the genome scale. Furthermore, the transcription unit architecture provides a foundation on which to construct genome-scale transcriptional and translational regulatory networks.

  4. Transcription mapping of the Escherichia coli chromosome by electron microscopy.

    PubMed

    French, S L; Miller, O L

    1989-08-01

    The distinctive double Christmas tree morphology of rRNA operons as visualized by electron microscopy makes them easy to recognize in chromatin spreads from Escherichia coli. On the basis of the pattern of nascent transcripts on nearby transcription units and the relative distances of the operons from one another and the replication origin, we are now able to specifically identify five of the seven rRNA operons in E. coli. The use of rRNA operons as markers of both position and distance has resulted in the morphological mapping of a significant portion of the E. coli chromosome; over 600 kilobase pairs in the 84- to 90-min and 72-min regions can now be recognized. Since individual rRNA operons could be identified, direct comparisons could be made of their transcriptional activities. As judged by the densities of RNA polymerases along the operons, rrnA, rrnB, rrnC, rrnD, and rrnE were all transcribed at similar levels, with one RNA polymerase every 85 base pairs. The ability to recognize individual operons and specific regions of the chromosome allows direct comparisons of various genetic parameters.

  5. Transcription induces gyration of the DNA template in Escherichia coli.

    PubMed Central

    Figueroa, N; Bossi, L

    1988-01-01

    We show that transcription modulation of a plasmid sequence in exponentially growing Escherichia coli cells leads to a rapid change in the linking number of plasmid DNA. Activation of transcription is accompanied by an increase in the plasmid's level of negative supercoiling. The added superhelical turns, whose number is proportional to the strength of the promoter and to the length of the transcript, are promptly removed when transcription is turned off. The transcription-induced increase of template supercoiling can still be detected in the presence of an inhibitor of ATP-dependent DNA gyrase [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.3]. Altogether, our results indicate that, in addition to being under a general control, DNA superhelicity can be modulated locally in response to the topological perturbations associated with DNA tracking processes. We discuss a model in which supercoiling changes are produced by differential swiveling activities on the opposite sides of a transcriptional flow during transcriptional modulation. Images PMID:2849103

  6. Dissecting the stochastic transcription initiation process in live Escherichia coli

    PubMed Central

    Lloyd-Price, Jason; Startceva, Sofia; Kandavalli, Vinodh; Chandraseelan, Jerome G.; Goncalves, Nadia; Oliveira, Samuel M. D.; Häkkinen, Antti; Ribeiro, Andre S.

    2016-01-01

    We investigate the hypothesis that, in Escherichia coli, while the concentration of RNA polymerases differs in different growth conditions, the fraction of RNA polymerases free for transcription remains approximately constant within a certain range of these conditions. After establishing this, we apply a standard model-fitting procedure to fully characterize the in vivo kinetics of the rate-limiting steps in transcription initiation of the Plac/ara-1 promoter from distributions of intervals between transcription events in cells with different RNA polymerase concentrations. We find that, under full induction, the closed complex lasts ∼788 s while subsequent steps last ∼193 s, on average. We then establish that the closed complex formation usually occurs multiple times prior to each successful initiation event. Furthermore, the promoter intermittently switches to an inactive state that, on average, lasts ∼87 s. This is shown to arise from the intermittent repression of the promoter by LacI. The methods employed here should be of use to resolve the rate-limiting steps governing the in vivo dynamics of initiation of prokaryotic promoters, similar to established steady-state assays to resolve the in vitro dynamics. PMID:27026687

  7. Control of rRNA transcription in Escherichia coli.

    PubMed Central

    Condon, C; Squires, C; Squires, C L

    1995-01-01

    The control of rRNA synthesis in response to both extra- and intracellular signals has been a subject of interest to microbial physiologists for nearly four decades, beginning with the observations that Salmonella typhimurium cells grown on rich medium are larger and contain more RNA than those grown on poor medium. This was followed shortly by the discovery of the stringent response in Escherichia coli, which has continued to be the organism of choice for the study of rRNA synthesis. In this review, we summarize four general areas of E. coli rRNA transcription control: stringent control, growth rate regulation, upstream activation, and anti-termination. We also cite similar mechanisms in other bacteria and eukaryotes. The separation of growth rate-dependent control of rRNA synthesis from stringent control continues to be a subject of controversy. One model holds that the nucleotide ppGpp is the key effector for both mechanisms, while another school holds that it is unlikely that ppGpp or any other single effector is solely responsible for growth rate-dependent control. Recent studies on activation of rRNA synthesis by cis-acting upstream sequences has led to the discovery of a new class of promoters that make contact with RNA polymerase at a third position, called the UP element, in addition to the well-known -10 and -35 regions. Lastly, clues as to the role of antitermination in rRNA operons have begun to appear. Transcription complexes modified at the antiterminator site appear to elongate faster and are resistant to the inhibitory effects of ppGpp during the stringent response. PMID:8531889

  8. Reverse Transcription by Escherichia coli DNA Polymerase I

    PubMed Central

    Karkas, John D.

    1973-01-01

    E. coli DNA polymerase I (EC 2.7.7.7) can engage in either DNA- or RNA-directed DNA synthesis with hybrid templates. The choice of the strand to be transcribed depends primarily on the relative lengths of the two strands of the hybrid, the longer strand serving as the template and the shorter as the primer. If a polynucleotide is reduced in size by exposure to an endonuclease before being hybridized to the complementary strand, the template efficiency of the latter increases several-fold. Under properly selected conditions, highly efficient reverse transcription of the all-ribonucleotide template-primers poly(A)·oligo(U), poly(C)·oligo(I), and poly(I)·oligo(C) can be achieved. “f1 RNA,” the RNA strand of an f1 DNA·RNA hybrid, can also serve as template for reverse transcription either after “nicking” of the hybrid with DNase, or after separation from the DNA strand and priming by DNase-treated f1 DNA. PMID:4129927

  9. Combinatorial transcriptional control of the lactose operon of Escherichia coli.

    PubMed

    Kuhlman, Thomas; Zhang, Zhongge; Saier, Milton H; Hwa, Terence

    2007-04-01

    The goal of systems biology is to understand the behavior of the whole in terms of knowledge of the parts. This is hard to achieve in many cases due to the difficulty of characterizing the many constituents involved in a biological system and their complex web of interactions. The lac promoter of Escherichia coli offers the possibility of confronting "system-level" properties of transcriptional regulation with the known biochemistry of the molecular constituents and their mutual interactions. Such confrontations can reveal previously unknown constituents and interactions, as well as offer insight into how the components work together as a whole. Here we study the combinatorial control of the lac promoter by the regulators Lac repressor (LacR) and cAMP-receptor protein (CRP). A previous in vivo study [Setty Y, Mayo AE, Surette MG, Alon U (2003) Proc Natl Acad Sci USA 100:7702-7707] found gross disagreement between the observed promoter activities and the expected behavior based on the known molecular mechanisms. We repeated the study by identifying and removing several extraneous factors that significantly modulated the expression of the lac promoter. Through quantitative, systematic characterization of promoter activity for a number of key mutants and guided by the thermodynamic model of transcriptional regulation, we were able to account for the combinatorial control of the lac promoter quantitatively, in terms of a cooperative interaction between CRP and LacR-mediated DNA looping. Specifically, our analysis indicates that the sensitivity of the inducer response results from LacR-mediated DNA looping, which is significantly enhanced by CRP. PMID:17376875

  10. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    PubMed

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  11. Replication and transcription of eukaryotic DNA in Escherichia coli.

    PubMed

    Morrow, J F; Cohen, S N; Chang, A C; Boyer, H W; Goodman, H M; Helling, R B

    1974-05-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA.

  12. Controlled transcriptional regulation in eukaryotes by a novel transcription factor derived from Escherichia coli purine repressor.

    PubMed

    Yeon, Eun-Hee; Noh, Ju-Young; Kim, Jong-Min; Lee, Min-Young; Yoon, Sarah; Park, Sang-Kyu; Choi, Kang-Yell; Kim, Kyung-Sup

    2004-06-25

    Unlike the DNA-binding domains (DBD) of most eukaryotic transcription factors, Escherichia coli LacI family transcription factors are unable to bind to specific target DNA sequences without a cofactor-binding domain. In the present study, we reconstructed a novel DBD designated as PurHG, which binds constitutively to a 16bp purine repressor operator, by fusion of the purine repressor (PurR) DBD (residues 1-57) and the GAL4 dimerization domain (DD, residues 42-148). Binding of PurHG to DNA requires the dimerization and a hinge helix of PurR DBD. When the PurHG was expressed as a fusion protein in a form of a transcription activator (PurAD) or an artificial nuclear receptor (PurAPR or PurAER) responding to ligand, such as RU486 or beta-estradiol, it could regulate the expression of the reporter genes in NIH3T3 cells. The prerequisite region of the GAL4 DD for DNA-binding was amino acid residues from 42 to 98 in the form of PurAD, while the amino acid residues from 42 to 75 were sufficient for ligand-dependent regulation in the form of PurAPR. These results suggest that the dimerization function of the progesterone ligand-binding domain could be substituted for region 76-98 of the GAL4 DD. In summary, the fusion of the PurR DBD and the GAL4 DD generates fully active DNA-binding protein, PurHG, in vitro and in vivo, and these results provide the direct evidence of structural predictions that the proximate positioning of PurR hinge helical regions is critical for DNA-binding.

  13. Where to begin? Mapping transcription start sites genome-wide in Escherichia coli.

    PubMed

    Wade, Joseph T

    2015-01-01

    Recent genome-wide studies of bacterial transcription have revealed large numbers of promoters located inside genes. In this issue of the Journal of Bacteriology, Thomason and colleagues (J. Bacteriol. 197:18-28, 2015, doi:10.1128/JB.02096-14) map transcription start sites in Escherichia coli on an unprecedented scale. This work provides important insights into the regulation of transcripts that initiate inside genes and sources of variability between studies aimed at identifying these RNAs.

  14. Meta-Analysis of Transcriptional Responses to Mastitis-Causing Escherichia coli

    PubMed Central

    Younis, Sidra; Javed, Qamar; Blumenberg, Miroslav

    2016-01-01

    Bovine mastitis is a widespread disease in dairy cows, and is often caused by bacterial mammary gland infection. Mastitis causes reduced milk production and leads to excessive use of antibiotics. We present meta-analysis of transcriptional profiles of bovine mastitis from 10 studies and 307 microarrays, allowing identification of much larger sets of affected genes than any individual study. Combining multiple studies provides insight into the molecular effects of Escherichia coli infection in vivo and uncovers differences between the consequences of E. coli vs. Staphylococcus aureus infection of primary mammary epithelial cells (PMECs). In udders, live E. coli elicits inflammatory and immune defenses through numerous cytokines and chemokines. Importantly, E. coli infection causes downregulation of genes encoding lipid biosynthesis enzymes that are involved in milk production. Additionally, host metabolism is generally suppressed. Finally, defensins and bacteria-recognition genes are upregulated, while the expression of the extracellular matrix protein transcripts is silenced. In PMECs, heat-inactivated E. coli elicits expression of ribosomal, cytoskeletal and angiogenic signaling genes, and causes suppression of the cell cycle and energy production genes. We hypothesize that heat-inactivated E. coli may have prophylactic effects against mastitis. Heat-inactivated S. aureus promotes stronger inflammatory and immune defenses than E. coli. Lipopolysaccharide by itself induces MHC antigen presentation components, an effect not seen in response to E. coli bacteria. These results provide the basis for strategies to prevent and treat mastitis and may lead to the reduction in the use of antibiotics. PMID:26933871

  15. Meta-Analysis of Transcriptional Responses to Mastitis-Causing Escherichia coli.

    PubMed

    Younis, Sidra; Javed, Qamar; Blumenberg, Miroslav

    2016-01-01

    Bovine mastitis is a widespread disease in dairy cows, and is often caused by bacterial mammary gland infection. Mastitis causes reduced milk production and leads to excessive use of antibiotics. We present meta-analysis of transcriptional profiles of bovine mastitis from 10 studies and 307 microarrays, allowing identification of much larger sets of affected genes than any individual study. Combining multiple studies provides insight into the molecular effects of Escherichia coli infection in vivo and uncovers differences between the consequences of E. coli vs. Staphylococcus aureus infection of primary mammary epithelial cells (PMECs). In udders, live E. coli elicits inflammatory and immune defenses through numerous cytokines and chemokines. Importantly, E. coli infection causes downregulation of genes encoding lipid biosynthesis enzymes that are involved in milk production. Additionally, host metabolism is generally suppressed. Finally, defensins and bacteria-recognition genes are upregulated, while the expression of the extracellular matrix protein transcripts is silenced. In PMECs, heat-inactivated E. coli elicits expression of ribosomal, cytoskeletal and angiogenic signaling genes, and causes suppression of the cell cycle and energy production genes. We hypothesize that heat-inactivated E. coli may have prophylactic effects against mastitis. Heat-inactivated S. aureus promotes stronger inflammatory and immune defenses than E. coli. Lipopolysaccharide by itself induces MHC antigen presentation components, an effect not seen in response to E. coli bacteria. These results provide the basis for strategies to prevent and treat mastitis and may lead to the reduction in the use of antibiotics.

  16. Dynamic Transcriptional Response of Escherichia coli to Inclusion Body Formation

    PubMed Central

    Baig, Faraz; Fernando, Lawrence P.; Salazar, Mary Alice; Powell, Rhonda R.; Bruce, Terri F.; Harcum, Sarah W.

    2014-01-01

    Escherichia coli is used intensively for recombinant protein production, but one key challenge with recombinant E. coli is the tendency of recombinant proteins to misfold and aggregate into insoluble inclusion bodies (IBs). IBs contain high concentrations of inactive recombinant protein that require recovery steps to salvage a functional recombinant protein. Currently, no universally effective method exists to prevent IB formation in recombinant E. coli. In this study, DNA microarrays were used to compare the E. coli gene expression response dynamics to soluble and insoluble recombinant protein production. As expected and previously reported, the classical heat-shock genes had increased expression due to IB formation, including protein folding chaperones and proteases. Gene expression levels for protein synthesis-related and energy-synthesis pathways were also increased. Many transmembrane transporter and corresponding catabolic pathways genes had decreased expression for substrates not present in the culture medium. Additionally, putative genes represented over one-third of the genes identified to have significant expression changes due to IB formation, indicating many important cellular responses to IB formation still need to be characterized. Interestingly, cells grown in 3% ethanol had significantly reduced gene expression responses due to IB formation. Taken together, these results indicate that IB formation is complex, stimulates the heat-shock response, increases protein and energy synthesis needs, and streamlines transport and catabolic processes, while ethanol diminished all of these responses. PMID:24338599

  17. Fate of the sblA transcript in Streptomyces lividans and Escherichia coli.

    PubMed

    Chouayekh, Hichem; Virolle, Marie-Joëlle

    2007-11-01

    In Streptomyces lividans, the tight temporal regulation of the transient expression of the sblA gene was shown to involve an operator-like sequence located on the sblA transcript. This operator-like structure constitutes a stem-loop structure containing a Shine/Dalgarno-like sequence. Its destruction, by site directed mutagenesis, led to an enhancement of sblA expression. This structure thus plays a negative role in the regulation of sblA expression and might be involved in the regulation of the specific degradation of the sblA transcript. In this issue, the fates of the sblA transcript, in S. lividans and in Escherichia coli, were compared. Analysis of the decay of the sblA transcript revealed that, in both species, the sblA transcript was cleaved just behind the stem-loop structure by an RNAse E-like activity. In E. coli, three discrete products resulting from the cleavage of the full-length transcript by the RNAase E at another site, located 282 nucleotides downstream of the stem-loop structure, were detected whereas only one processed product, corresponding to the 5' end of the gene, was detected in S. lividans. These differences in the mode of degradation of the sblA transcript in S. lividans and E. coli are discussed.

  18. Mapping the Escherichia coli transcription elongation complex with exonuclease III

    PubMed Central

    Liu, Zhaokun; Artsimovitch, Irina

    2014-01-01

    Summary RNA polymerase interactions with the nucleic acids control every step of the transcription cycle. These contacts mediate RNA polymerase recruitment to promoters; induce pausing during RNA chain synthesis, and control transcription termination. These interactions are dissected using footprinting assays, in which a bound protein protects nucleic acids from the digestion by nucleases or modification by chemical probes. Exonuclease III is frequently employed to study protein-DNA interactions owing to relatively simple procedures and low background. Exonuclease III has been used to determine RNA polymerase position in transcription initiation and elongation complexes and to infer the translocation register of the enzyme. In this chapter, we describe probing the location and the conformation of transcription elongation complexes formed by walking of the RNA polymerase along an immobilized template. PMID:25665555

  19. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli.

    PubMed

    Thomason, Maureen K; Bischler, Thorsten; Eisenbart, Sara K; Förstner, Konrad U; Zhang, Aixia; Herbig, Alexander; Nieselt, Kay; Sharma, Cynthia M; Storz, Gisela

    2015-01-01

    While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.

  20. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2014-09-15

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability.

  1. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability. PMID:25222563

  2. Transcriptional effects of polyamines on ribosomal proteins and on polyamine-synthesizing enzymes in Escherichia coli.

    PubMed

    Huang, S C; Panagiotidis, C A; Canellakis, E S

    1990-05-01

    We find that the transcription of various ribosomal proteins can be differentially affected by polyamines and by changes in growth rates. Using strain MG1655 of Escherichia coli K-12 (F-, lambda-), we have determined the effects of polyamines and changes in growth rate on the transcription of several ribosomal genes and the polyamine-synthesizing enzymes ornithine decarboxylase (L-ornithine carboxy-lyase; EC 4.1.1.17) and arginine decarboxylase (L-arginine carboxylyase; EC 4.1.1.19). Ribosomal proteins S20 and L34 can be differentiated from the other ribosomal proteins studied; the transcription of S20 and L34 is especially sensitive to polyamines and less sensitive to changes in growth rates. In contrast, the transcription of S10, S15, S19, L2, L4, L20, L22, and L23 is insensitive to polyamines although it is particularly sensitive to changes in growth rates. Like S20 and L34, the transcription of ornithine decarboxylase and arginine decarboxylase is especially sensitive to polyamines. Polyamines specifically enhance the transcription of ribosomal proteins S20 and L34, and decrease that of ornithine decarboxylase and arginine decarboxylase. It is evident that polyamines can exert both positive and negative regulation of gene expression in E. coli that can be differentiated from the effects caused by changes in growth rates.

  3. Firefly luciferase as the reporter for transcriptional response to the environment in Escherichia coli.

    PubMed

    Ryo, Masashi; Oshikoshi, Yuta; Doi, Shosei; Motoki, Shogo; Niimi, Atsuko; Aoki, Setsuyuki

    2013-12-15

    We demonstrate that firefly luciferase is a good reporter in Escherichia coli for transcription dynamics in response to the environment. E. coli strains, carrying a fusion of the promoter of the ycgZ gene and the coding region of the luciferase gene, showed transient bioluminescence on receiving blue light. This response was compromised in mutants lacking known regulators in manners consistent with each regulator's function. We also show that relA, a gene encoding a (p)ppGpp synthetase, affects ycgZ dynamics when nullified. Moreover, two unstable luciferase variants showed improved response dynamics and should be useful to study quick changes of gene expression.

  4. YjjQ Represses Transcription of flhDC and Additional Loci in Escherichia coli

    PubMed Central

    Wiebe, Helene; Gürlebeck, Doreen; Groß, Jana; Dreck, Katrin; Pannen, Derk; Ewers, Christa; Wieler, Lothar H.

    2015-01-01

    ABSTRACT The presumptive transcriptional regulator YjjQ has been identified as being virulence associated in avian pathogenic Escherichia coli (APEC). In this work, we characterize YjjQ as transcriptional repressor of the flhDC operon, encoding the master regulator of flagellar synthesis, and of additional loci. The latter include gfc (capsule 4 synthesis), ompC (outer membrane porin C), yfiRNB (regulated c-di-GMP synthesis), and loci of poorly defined function (ybhL and ymiA-yciX). We identify the YjjQ DNA-binding sites at the flhDC and gfc promoters and characterize a DNA-binding sequence motif present at all promoters found to be repressed by YjjQ. At the flhDC promoter, the YjjQ DNA-binding site overlaps the RcsA-RcsB DNA-binding site. RcsA-RcsB likewise represses the flhDC promoter, but the repression by YjjQ and that by RcsA-RcsB are independent of each other. These data suggest that YjjQ is an additional regulator involved in the complex control of flhDC at the level of transcription initiation. Furthermore, we show that YjjQ represses motility of the E. coli K-12 laboratory strain and of uropathogenic E. coli (UPEC) strains CFT073 and 536. Regulation of flhDC, yfiRNB, and additional loci by YjjQ may be features relevant for pathogenicity. IMPORTANCE Escherichia coli is a commensal and pathogenic bacterium causing intra- and extraintestinal infections in humans and farm animals. The pathogenicity of E. coli strains is determined by their particular genome content, which includes essential and associated virulence factors that control the cellular physiology in the host environment. However, the gene pools of commensal and pathogenic E. coli are not clearly differentiated, and the function of virulence-associated loci needs to be characterized. In this study, we characterize the function of yjjQ, encoding a transcription regulator that was identified as being virulence associated in avian pathogenic E. coli (APEC). We characterize YjjQ as transcriptional

  5. Transcription of the Escherichia coli fliC gene is regulated by metal ions

    SciTech Connect

    Guzzo, A.; Diorio, C.; DuBow, M.S. )

    1991-08-01

    luxAB gene fusions in the Escherichia coli genome were used to screen for clones displaying transcriptional changes in the presence of aluminum. One clone was found that contained a luciferase gene fusion in which transcription was increased in the presence of aluminum and which was subsequently shown to be induced by copper, iron, and nickel. Cloning of the metal-regulated gene, hybridization to the ordered phage {lambda} bank of the E. coli chromosome, and sequencing of DNA adjacent to the luxAB fusion revealed that the insertion occurred within the fliC (hag) gene of E. coli. This gene encodes flagellin the filament subunit of the bacterial motility organ, and is under the control of several regulatory cascades. These results suggest that environmental metals may play a role in the regulation of the motility potential of E. coli and that this bioluminescent gene fusion clone (or derivatives thereof) may be used to prepare a biosensor for the rapid detection of metal contamination in water samples.

  6. Intracellular Concentrations of 65 Species of Transcription Factors with Known Regulatory Functions in Escherichia coli

    PubMed Central

    Kori, Ayako; Koshio, Etsuko; Yamada, Kayoko; Maeda, Hiroto; Shimada, Tomohiro; Makinoshima, Hideki; Iwata, Akira; Fujita, Nobuyuki

    2014-01-01

    The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature. PMID:24837290

  7. Post-transcriptional processing of the LEE4 operon in Enterohemorrhagic Escherichia coli

    PubMed Central

    Lodato, Patricia B.; Kaper, James B.

    2009-01-01

    SUMMARY Enterohemorrhagic Escherichia coli (EHEC) employs a type III secretion system (T3SS) to export translocator and effector proteins required for mucosal colonization. The T3SS is encoded in a pathogenicity island called the locus of enterocyte effacement (LEE) that is organized in five major operons, LEE1 to LEE5. LEE4 encodes a regulator of secretion (SepL), translocators (EspA, D and B), two chaperones (CesD2 and L0017), a T3SS component (EscF), and an effector protein (EspF). It was originally proposed that the esp transcript is transcribed from a promoter located at the end of sepL but other authors suggested that this transcript is the result of a post-transcriptional processing event. In this study, we established that the espADB mRNA is generated by post-transcriptional processing at the end of the sepL coding sequence. RNase E is the endonuclease involved in the cleavage, but the interaction of this enzyme with other proteins through its C-terminal half is dispensable. A putative transcription termination event in the cesD2 coding region would generate the 3’ end of the transcript. Similar to what has been described for other processed transcripts, the cleavage of LEE4 seems a mechanism to differentially regulate SepL and Esp protein production. PMID:19019141

  8. Cell cycle-dependent transcription from the gid and mioC promoters of Escherichia coli.

    PubMed Central

    Ogawa, T; Okazaki, T

    1994-01-01

    Transcription from the gid and mioC promoters, which neighbor the origin of replication of the Escherichia coli chromosome (oriC), has been implicated in the control of initiation of replication of minichromosomes. The amounts of transcripts from these two promoters on the chromosome were quantified at various times in a synchronized culture of a temperature-sensitive dnaC mutant strain. Transcription from the gid promoter was most active before the initiation of replication and was inhibited after initiation, during the time corresponding to the period of sequestration of the oriC region from the dam methyltransferase. On the other hand, transcription from the mioC promoter was inhibited before initiation and the inhibition was relieved after initiation prior to the recovery of gid transcription. The strict regulation of transcription from the gid and mioC promoters may be involved in positive and negative control of chromosomal replication, respectively, as has been suggested for minichromosome replication. The DnaA protein was involved in repression of mioC transcription, indicating that the activity of the DnaA protein changes during the cell cycle. Images PMID:8132454

  9. Transcriptional responses of Escherichia coli K-12 and O157:H7 associated with lettuce leaves.

    PubMed

    Fink, Ryan C; Black, Elaine P; Hou, Zhe; Sugawara, Masayuki; Sadowsky, Michael J; Diez-Gonzalez, Francisco

    2012-03-01

    An increasing number of outbreaks of gastroenteritis recently caused by Escherichia coli O157:H7 have been linked to the consumption of leafy green vegetables. Although it is known that E. coli survives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identify E. coli genes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparing E. coli K-12, a model system, and E. coli O157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, including tnaA (33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsA and ybiM) and curli production (csgA and csgB) were significantly upregulated in E. coli K-12 and O157:H7. Both csgA and bhsA (ycfR) mutants were impaired in the long-term colonization of the leaf surface, but only csgA mutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction of E. coli K-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.

  10. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae

    PubMed Central

    Guzmán-Vargas, Lev; Santillán, Moisés

    2008-01-01

    Background The regulatory interactions between transcription factors (TF) and regulated genes (RG) in a species genome can be lumped together in a single directed graph. The TF's and RG's conform the nodes of this graph, while links are drawn whenever a transcription factor regulates a gene's expression. Projections onto TF nodes can be constructed by linking every two nodes regulating a common gene. Similarly, projections onto RG nodes can be made by linking every two regulated genes sharing at least one common regulator. Recent studies of the connectivity pattern in the transcription-factor regulatory network of many organisms have revealed some interesting properties. However, the differences between TF and RG nodes have not been widely explored. Results After analysing the RG and TF projections of the transcription-factor gene regulatory networks of Escherichia coli and Saccharomyces cerevisiae, we found several common characteristic as well as some noticeable differences. To better understand these differences, we compared the properties of the E. coli and S. cerevisiae RG- and TF-projected networks with those of the corresponding projections built from randomized versions of the original bipartite networks. These last results indicate that the observed differences are mostly due to the very different ratios of TF to RG counts of the E. coli and S. cerevisiae bipartite networks, rather than to their having different connectivity patterns. Conclusion Since E. coli is a prokaryotic organism while S. cerevisiae is eukaryotic, there are important differences between them concerning processing of mRNA before translation, DNA packing, amount of junk DNA, and gene regulation. From the results in this paper we conclude that the most important effect such differences have had on the development of the corresponding transcription-factor gene regulatory networks is their very different ratios of TF to RG numbers. This ratio is more than three times larger in S

  11. Environmental conditions and transcriptional regulation in Escherichia coli: a physiological integrative approach.

    PubMed

    Martínez-Antonio, Agustino; Salgado, Heladia; Gama-Castro, Socorro; Gutiérrez-Ríos, Rosa María; Jiménez-Jacinto, Verónica; Collado-Vides, Julio

    2003-12-30

    Bacteria develop a number of devices for sensing, responding, and adapting to different environmental conditions. Understanding within a genomic perspective how the transcriptional machinery of bacteria is modulated, as a response for changing conditions, is a major challenge for biologists. Knowledge of which genes are turned on or turned off under specific conditions is essential for our understanding of cell behavior. In this study we describe how the information pertaining to gene expression and associated growth conditions (even with very little knowledge of the associated regulatory mechanisms) is gathered from the literature and incorporated into RegulonDB, a database on transcriptional regulation and operon organization in E. coli. The link between growth conditions, signal transduction, and transcriptional regulation is modeled in the database in a simple format that highlights biological relevant information. As far as we know, there is no other database that explicitly clarifies the effect of environmental conditions on gene transcription. We discuss how this knowledge constitutes a benchmark that will impact future research aimed at integration of regulatory responses in the cell; for instance, analysis of microarrays, predicting culture behavior in biotechnological processes, and comprehension of dynamics of regulatory networks. This integrated knowledge will contribute to the future goal of modeling the behavior of E. coli as an entire cell. The RegulonDB database can be accessed on the web at the URL: http://www.cifn.unam.mx/Computational_Biology/regulondb/. PMID:14708114

  12. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    PubMed Central

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  13. Repression of btuB gene transcription in Escherichia coli by the GadX protein

    PubMed Central

    2011-01-01

    Background BtuB (B  twelve uptake) is an outer membrane protein of Escherichia coli, it serves as a receptor for cobalamines uptake or bactericidal toxin entry. A decrease in the production of the BtuB protein would cause E. coli to become resistant to colicins. The production of BtuB has been shown to be regulated at the post-transcriptional level. The secondary structure switch of 5' untranslated region of butB and the intracellular concentration of adenosylcobalamin (Ado-Cbl) would affect the translation efficiency and RNA stability of btuB. The transcriptional regulation of btuB expression is still unclear. Results To determine whether the btuB gene is also transcriptionally controlled by trans-acting factors, a genomic library was screened for clones that enable E. coli to grow in the presence of colicin E7, and a plasmid carrying gadX and gadY genes was isolated. The lacZ reporter gene assay revealed that these two genes decreased the btuB promoter activity by approximately 50%, and the production of the BtuB protein was reduced by approximately 90% in the presence of a plasmid carrying both gadX and gadY genes in E. coli as determined by Western blotting. Results of electrophoretic mobility assay and DNase I footprinting indicated that the GadX protein binds to the 5' untranslated region of the btuB gene. Since gadX and gadY genes are more highly expressed under acidic conditions, the transcriptional level of btuB in cells cultured in pH 7.4 or pH 5.5 medium was examined by quantitative real-time PCR to investigate the effect of GadX. The results showed the transcription of gadX with 1.4-fold increase but the level of btuB was reduced to 57%. Conclusions Through biological and biochemical analysis, we have demonstrated the GadX can directly interact with btuB promoter and affect the expression of btuB. In conclusion, this study provides the first evidence that the expression of btuB gene is transcriptionally repressed by the acid responsive genes gadX and

  14. Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli.

    PubMed

    Berger, Michael; Gerganova, Veneta; Berger, Petya; Rapiteanu, Radu; Lisicovas, Viktoras; Dobrindt, Ulrich

    2016-01-01

    The extent to which chromosomal gene position in prokaryotes affects local gene expression remains an open question. Several studies have shown that chromosomal re-positioning of bacterial transcription units does not alter their expression pattern, except for a general decrease in gene expression levels from chromosomal origin to terminus proximal positions, which is believed to result from gene dosage effects. Surprisingly, the question as to whether this chromosomal context independence is a cis encoded property of a bacterial transcription unit, or if position independence is a property conferred by factors acting in trans, has not been addressed so far. For this purpose, we established a genetic test system assessing the chromosomal positioning effects by means of identical promoter-fluorescent reporter gene fusions inserted equidistantly from OriC into both chromosomal replichores of Escherichia coli K-12. Our investigations of the reporter activities in mutant cells lacking the conserved nucleoid associated protein HU uncovered various drastic chromosomal positional effects on gene transcription. In addition we present evidence that these positional effects are caused by transcriptional activity nearby the insertion site of our reporter modules. We therefore suggest that the nucleoid-associated protein HU is functionally insulating transcription units, most likely by constraining transcription induced DNA supercoiling. PMID:27545593

  15. Genes on a Wire: The Nucleoid-Associated Protein HU Insulates Transcription Units in Escherichia coli

    PubMed Central

    Berger, Michael; Gerganova, Veneta; Berger, Petya; Rapiteanu, Radu; Lisicovas, Viktoras; Dobrindt, Ulrich

    2016-01-01

    The extent to which chromosomal gene position in prokaryotes affects local gene expression remains an open question. Several studies have shown that chromosomal re-positioning of bacterial transcription units does not alter their expression pattern, except for a general decrease in gene expression levels from chromosomal origin to terminus proximal positions, which is believed to result from gene dosage effects. Surprisingly, the question as to whether this chromosomal context independence is a cis encoded property of a bacterial transcription unit, or if position independence is a property conferred by factors acting in trans, has not been addressed so far. For this purpose, we established a genetic test system assessing the chromosomal positioning effects by means of identical promoter-fluorescent reporter gene fusions inserted equidistantly from OriC into both chromosomal replichores of Escherichia coli K-12. Our investigations of the reporter activities in mutant cells lacking the conserved nucleoid associated protein HU uncovered various drastic chromosomal positional effects on gene transcription. In addition we present evidence that these positional effects are caused by transcriptional activity nearby the insertion site of our reporter modules. We therefore suggest that the nucleoid-associated protein HU is functionally insulating transcription units, most likely by constraining transcription induced DNA supercoiling. PMID:27545593

  16. Model of transcriptional activation by MarA in escherichia coli

    SciTech Connect

    Wall, Michael E; Rosner, Judah L; Martin, Robert G

    2009-01-01

    The AraC family transcription factor MarA activates approximately 40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond.

  17. The functional landscape bound to the transcription factors of Escherichia coli K-12.

    PubMed

    Pérez-Rueda, Ernesto; Tenorio-Salgado, Silvia; Huerta-Saquero, Alejandro; Balderas-Martínez, Yalbi I; Moreno-Hagelsieb, Gabriel

    2015-10-01

    Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria.

  18. Escherichia coli antitoxin MazE as transcription factor: insights into MazE-DNA binding

    PubMed Central

    Zorzini, Valentina; Buts, Lieven; Schrank, Evelyne; Sterckx, Yann G.J.; Respondek, Michal; Engelberg-Kulka, Hanna; Loris, Remy; Zangger, Klaus; van Nuland, Nico A.J.

    2015-01-01

    Toxin-antitoxin (TA) modules are pairs of genes essential for bacterial regulation upon environmental stresses. The mazEF module encodes the MazF toxin and its cognate MazE antitoxin. The highly dynamic MazE possesses an N-terminal DNA binding domain through which it can negatively regulate its own promoter. Despite being one of the first TA systems studied, transcriptional regulation of Escherichia coli mazEF remains poorly understood. This paper presents the solution structure of C-terminal truncated E. coli MazE and a MazE-DNA model with a DNA palindrome sequence ∼10 bp upstream of the mazEF promoter. The work has led to a transcription regulator-DNA model, which has remained elusive thus far in the E. coli toxin–antitoxin family. Multiple complementary techniques including NMR, SAXS and ITC show that the long intrinsically disordered C-termini in MazE, required for MazF neutralization, does not affect the interactions between the antitoxin and its operator. Rather, the MazE C-terminus plays an important role in the MazF binding, which was found to increase the MazE affinity for the palindromic single site operator. PMID:25564525

  19. Model of Transcriptional Activation By MarA in Escherichia Coli

    NASA Astrophysics Data System (ADS)

    Wall, Michael E.; Markowitz, David A.; Rosner, Judah L.; Martin, Robert G.

    2010-01-01

    We have developed a mathematical model of transcriptional activation by MarA in Escherichia coli, and used the model to analyze measurements of MarA-dependent activity of the marRAB, sodA, and micF promoters in mar-rob- cells. The model rationalizes an unexpected poor correlation between the mid-point of in vivo promoter activity profiles and in vitro equilibrium constants for MarA binding to promoter sequences. Analysis of the promoter activity data using the model yielded the following predictions regarding activation mechanisms: (1) MarA activation of the marRAB, sodA, and micF promoters involves a net acceleration of the kinetics of transitions after RNA polymerase binding, up to and including promoter escape and message elongation; (2) RNA polymerase binds to these promoters with nearly unit occupancy in the absence of MarA, making recruitment of polymerase an insignificant factor in activation of these promoters; and (3) instead of recruitment, activation of the micF promoter might involve a repulsion of polymerase combined with a large acceleration of the kinetics of polymerase activity. These predictions are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. A lack of recruitment in transcriptional activation represents an exception to the textbook description of activation of bacterial sigma-70 promoters. However, use of accelerated polymerase kinetics instead of recruitment might confer a competitive advantage to E. coli by decreasing latency in gene regulation.

  20. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese.

  1. Exploring comprehensive within-motif dependence of transcription factor binding in Escherichia coli

    PubMed Central

    Yang, Chi; Chang, Chuan-Hsiung

    2015-01-01

    Modeling the binding of transcription factors helps to decipher the control logic behind transcriptional regulatory networks. Position weight matrix is commonly used to describe a binding motif but assumes statistical independence between positions. Although current approaches take within-motif dependence into account for better predictive performance, these models usually rely on prior knowledge and incorporate simple positional dependence to describe binding motifs. The inability to take complex within-motif dependence into account may result in an incomplete representation of binding motifs. In this work, we applied association rule mining techniques and constructed models to explore within-motif dependence for transcription factors in Escherichia coli. Our models can reflect transcription factor-DNA recognition where the explored dependence correlates with the binding specificity. We also propose a graphical representation of the explored within-motif dependence to illustrate the final binding configurations. Understanding the binding configurations also enables us to fine-tune or design transcription factor binding sites, and we attempt to present the configurations through exploring within-motif dependence. PMID:26592556

  2. Exploring comprehensive within-motif dependence of transcription factor binding in Escherichia coli.

    PubMed

    Yang, Chi; Chang, Chuan-Hsiung

    2015-11-23

    Modeling the binding of transcription factors helps to decipher the control logic behind transcriptional regulatory networks. Position weight matrix is commonly used to describe a binding motif but assumes statistical independence between positions. Although current approaches take within-motif dependence into account for better predictive performance, these models usually rely on prior knowledge and incorporate simple positional dependence to describe binding motifs. The inability to take complex within-motif dependence into account may result in an incomplete representation of binding motifs. In this work, we applied association rule mining techniques and constructed models to explore within-motif dependence for transcription factors in Escherichia coli. Our models can reflect transcription factor-DNA recognition where the explored dependence correlates with the binding specificity. We also propose a graphical representation of the explored within-motif dependence to illustrate the final binding configurations. Understanding the binding configurations also enables us to fine-tune or design transcription factor binding sites, and we attempt to present the configurations through exploring within-motif dependence.

  3. Cloning, in vitro transcription, and biological activity of Escherichia coli 23S ribosomal RNA.

    PubMed

    Weitzmann, C J; Cunningham, P R; Ofengand, J

    1990-06-25

    The 23S rRNA gene was excised from the rrnB operon of pKK3535 and ligated into pUC19 behind the strong class III T7 promoter so that the correct 5' end of mature 23S RNA was produced upon transcription by T7 RNA polymerase. At the 3' end, generation of a restriction site for linearization required the addition of 2 adenosine residues to the mature 23S sequence. In vitro runoff transcripts were indistinguishable from natural 23S RNA in size on denaturing gels and in 5'-terminal sequence. The length and sequence of the 3' terminal T1 fragment was also as expected from the DNA sequence, except that an additional C, A, or U residue was added to 21%, 18%, or 5% of the molecules, respectively. Typical transcription reactions yielded 500-700 moles RNA per mole template. This transcript was used as a substrate for methyl transfer from S-adenosyl methionine catalyzed by Escherichia coli cell extracts. The majority (50-65%) of activity observed in a crude (S30) extract appeared in the post-ribosomal supernatant (S100). Activities catalyzing formation of m5C, m5U, m2G, and m6A residues in the synthetic transcript were observed. PMID:2194163

  4. Insertion of transposon Tn7 into the Escherichia coli glmS transcriptional terminator.

    PubMed Central

    Gay, N J; Tybulewicz, V L; Walker, J E

    1986-01-01

    The transposon Tn7 is unusual as it transposes at high frequencies from episomal elements to a unique site in the Escherichia coli chromosome. This unique site is within a region of dyad symmetry that we have demonstrated to be the transcriptional terminator of the glmS gene which encodes the glutamine amidotransferase, glucosamine synthetase. Transposition of Tn7 abolishes termination of glmS transcription at this site; the transcripts now extend into the left end of Tn7 and terminate at a new site, tm, 127 base pairs from the left end of Tn7. This region of the transposon contains a long open reading frame which encodes a protein sequence that is significantly related to the transposase proteins of the transposable elements IS1 and Tn3. A weak transcript has been identified that emanates from a promoter on the 5' side of this reading frame. This promoter is over-run by glmS transcripts and so it appears that expression of the Tn7 transposase may be regulated by promoter occlusion. Images Fig. 2. Fig. 3. Fig. 6. PMID:3010949

  5. Exploring comprehensive within-motif dependence of transcription factor binding in Escherichia coli.

    PubMed

    Yang, Chi; Chang, Chuan-Hsiung

    2015-01-01

    Modeling the binding of transcription factors helps to decipher the control logic behind transcriptional regulatory networks. Position weight matrix is commonly used to describe a binding motif but assumes statistical independence between positions. Although current approaches take within-motif dependence into account for better predictive performance, these models usually rely on prior knowledge and incorporate simple positional dependence to describe binding motifs. The inability to take complex within-motif dependence into account may result in an incomplete representation of binding motifs. In this work, we applied association rule mining techniques and constructed models to explore within-motif dependence for transcription factors in Escherichia coli. Our models can reflect transcription factor-DNA recognition where the explored dependence correlates with the binding specificity. We also propose a graphical representation of the explored within-motif dependence to illustrate the final binding configurations. Understanding the binding configurations also enables us to fine-tune or design transcription factor binding sites, and we attempt to present the configurations through exploring within-motif dependence. PMID:26592556

  6. Transcription stimulates recombination. II. Generalized transduction of Escherichia coli by phages T1 and T4.

    PubMed

    Dul, J L; Drexler, H

    1988-02-01

    Phage Mu was inserted in the trpE gene of one donor Escherichia coli strain and in the lac promoter of another. Strains with Mu prophage mutations which permitted transcription of genes whose transcription had been polarly blocked by the Mu insertion were isolated and called "bypass" strains. The transducing phages T1am, and T1am,ST, and, in one instance, T4GT7 were grown on both the bypass and the original strains. After growth on the bypass strains transducing phages were able to transduce Trp+ and Lac+, respectively, to a variety of Trp- and Lac- strains more efficiently than after growth on nonbypass strains. These results support the idea that crossovers required for generalized transduction occur more efficiently if the specific region is transcribed by both interacting parental molecules.

  7. Regulation of transcription of cell division genes in the Escherichia coli dcw cluster.

    PubMed

    Vicente, M; Gomez, M J; Ayala, J A

    1998-04-01

    The Escherichia coli dcw cluster contains cell division genes, such as the phylogenetically ubiquitous ftsZ, and genes involved in peptidoglycan synthesis. Transcription in the cluster proceeds in the same direction as the progress of the replication fork along the chromosome. Regulation is exerted at the transcriptional and post-transcriptional levels. The absence of transcriptional termination signals may, in principle, allow extension of the transcripts initiated at the up-stream promoter (mraZ1p) even to the furthest down-stream gene (envA). Complementation tests suggest that they extend into ftsW in the central part of the cluster. In addition, the cluster contains other promoters individually regulated by cis- and trans-acting signals. Dissociation of the expression of the ftsZ gene, located after ftsQ and A near the 3' end of the cluster, from its natural regulatory signals leads to an alteration in the physiology of cell division. The complexities observed in the regulation of gene expression in the cluster may then have an important biological role. Among them, LexA-binding SOS boxes have been found at the 5' end of the cluster, preceding promoters which direct the expression of ftsI (coding for PBP3, the penicillin-binding protein involved in septum formation). A gearbox promoter, ftsQ1p, forms part of the signals regulating the transcription of ftsQ, A and Z. It is an inversely growth-dependent mechanism driven by RNA polymerase containing sigma s, the factor involved in the expression of stationary phase-specific genes. Although the dcw cluster is conserved to a different extent in a variety of bacteria, the regulation of gene expression, the presence or absence of individual genes, and even the essentiality of some of them, show variations in the phylogenetic scale which may reflect adaptation to specific life cycles.

  8. Isolation and characterization of RNA polymerase rpoB mutations that alter transcription slippage during elongation in Escherichia coli.

    PubMed

    Zhou, Yan Ning; Lubkowska, Lucyna; Hui, Monica; Court, Carolyn; Chen, Shuo; Court, Donald L; Strathern, Jeffrey; Jin, Ding Jun; Kashlev, Mikhail

    2013-01-25

    Transcription fidelity is critical for maintaining the accurate flow of genetic information. The study of transcription fidelity has been limited because the intrinsic error rate of transcription is obscured by the higher error rate of translation, making identification of phenotypes associated with transcription infidelity challenging. Slippage of elongating RNA polymerase (RNAP) on homopolymeric A/T tracts in DNA represents a special type of transcription error leading to disruption of open reading frames in Escherichia coli mRNA. However, the regions in RNAP involved in elongation slippage and its molecular mechanism are unknown. We constructed an A/T tract that is out of frame relative to a downstream lacZ gene on the chromosome to examine transcriptional slippage during elongation. Further, we developed a genetic system that enabled us for the first time to isolate and characterize E. coli RNAP mutants with altered transcriptional slippage in vivo. We identified several amino acid residues in the β subunit of RNAP that affect slippage in vivo and in vitro. Interestingly, these highly clustered residues are located near the RNA strand of the RNA-DNA hybrid in the elongation complex. Our E. coli study complements an accompanying study of slippage by yeast RNAP II and provides the basis for future studies on the mechanism of transcription fidelity. PMID:23223236

  9. Involvement of multiple transcription factors for metal-induced spy gene expression in Escherichia coli.

    PubMed

    Yamamoto, Kaneyoshi; Ogasawara, Hiroshi; Ishihama, Akira

    2008-01-20

    Bacteria are directly exposed to metals in environment. To maintain the intracellular metal homeostasis, Escherichia coli contain a number of gene regulation systems, each for response to a specific metal. A periplasmic protein Spy of E. coli was found to be induced upon short-exposure to copper ion in CpxAR-dependent manner. Transcription of the spy gene was also induced by long-exposure to zinc ion. This induction, however, depended on another two-component system BaeSR. Using DNase-I footprinting assay, we identified two BaeR-binding regions on the spy promoter with a direct repeat of the BaeR-box sequence, TCTNCANAA. The zinc-responsive BaeR-binding sites were separated from copper-responsive CpxR-binding site, implying that the spy promoter responds to two species of metal independently through different using sensor-response regulator systems. Since BaeSR-dependent zinc response requires longer time, the induction of spy gene transcription by external zinc may include multiple steps such as through sensing the zinc-induced envelope disorder by BaeSR.

  10. Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism

    PubMed Central

    Liu, Bin; Zuo, Yuhong; Steitz, Thomas A.

    2016-01-01

    In bacteria, multiple σ factors compete to associate with the RNA polymerase (RNAP) core enzyme to form a holoenzyme that is required for promoter recognition. During transcription initiation RNAP remains associated with the upstream promoter DNA via sequence-specific interactions between the σ factor and the promoter DNA while moving downstream for RNA synthesis. As RNA polymerase repetitively adds nucleotides to the 3′-end of the RNA, a pyrophosphate ion is generated after each nucleotide incorporation. It is currently unknown how the release of pyrophosphate affects transcription. Here we report the crystal structures of E. coli transcription initiation complexes (TICs) containing the stress-responsive σS factor, a de novo synthesized RNA oligonucleotide, and a complete transcription bubble (σS-TIC) at about 3.9-Å resolution. The structures show the 3D topology of the σS factor and how it recognizes the promoter DNA, including likely specific interactions with the template-strand residues of the −10 element. In addition, σS-TIC structures display a highly stressed pretranslocated initiation complex that traps a pyrophosphate at the active site that remains closed. The position of the pyrophosphate and the unusual phosphodiester linkage between the two terminal RNA residues suggest an unfinished nucleotide-addition reaction that is likely at equilibrium between nucleotide addition and pyrophosphorolysis. Although these σS-TIC crystals are enzymatically active, they are slow in nucleotide addition, as suggested by an NTP soaking experiment. Pyrophosphate release completes the nucleotide addition reaction and is associated with extensive conformational changes around the secondary channel but causes neither active site opening nor transcript translocation. PMID:27035955

  11. DksA and ppGpp Directly Regulate Transcription of the Escherichia coli Flagellar Cascade

    PubMed Central

    Lemke, Justin J.; Durfee, Tim; Gourse, Richard L.

    2009-01-01

    The components of the Escherichia coli flagella apparatus are synthesized in a three-level transcriptional cascade activated by the master regulator FlhDC. The cascade coordinates the synthesis rates of a large number of gene products with each other and with nutritional conditions. Recent genome-wide studies have reported that flagellar transcription is altered in cells lacking the transcription regulators DksA or ppGpp, but some or all reported effects could be indirect, and some are contradictory. We report here that the activities of promoters at all three levels of the cascade are much higher in strains lacking dksA, resulting in overproduction of flagellin and hyperflagellated cells. In vitro, DksA/ppGpp inhibits the flhDC promoter and the σ70-dependent fliA promoter transcribing the gene for σ28. However, DksA and ppGpp do not affect the σ28-dependent fliA promoter or the σ28-dependent fliC promoter in vitro, suggesting that the dramatic effects on expression of those genes in vivo are mediated indirectly through direct effects of DksA/ppGpp on FlhDC and σ28 expression. We conclude that DksA/ppGpp inhibits expression of the flagellar cascade during stationary phase and following starvation, thereby coordinating flagella and ribosome assembly and preventing expenditure of scarce energy resources on synthesis of two of the cell’s largest macromolecular complexes. PMID:19889089

  12. Identification of Candidate Adherent-Invasive E. coli Signature Transcripts by Genomic/Transcriptomic Analysis

    PubMed Central

    Zhang, Yuanhao; Rowehl, Leahana; Krumsiek, Julia M.; Orner, Erika P.; Shaikh, Nurmohammad; Tarr, Phillip I.; Sodergren, Erica; Weinstock, George M.; Boedeker, Edgar C.; Xiong, Xuejian; Parkinson, John; Frank, Daniel N.; Li, Ellen; Gathungu, Grace

    2015-01-01

    Adherent-invasive Escherichia coli (AIEC) strains are detected more frequently within mucosal lesions of patients with Crohn’s disease (CD). The AIEC phenotype consists of adherence and invasion of intestinal epithelial cells and survival within macrophages of these bacteria in vitro. Our aim was to identify candidate transcripts that distinguish AIEC from non-invasive E. coli (NIEC) strains and might be useful for rapid and accurate identification of AIEC by culture-independent technology. We performed comparative RNA-Sequence (RNASeq) analysis using AIEC strain LF82 and NIEC strain HS during exponential and stationary growth. Differential expression analysis of coding sequences (CDS) homologous to both strains demonstrated 224 and 241 genes with increased and decreased expression, respectively, in LF82 relative to HS. Transition metal transport and siderophore metabolism related pathway genes were up-regulated, while glycogen metabolic and oxidation-reduction related pathway genes were down-regulated, in LF82. Chemotaxis related transcripts were up-regulated in LF82 during the exponential phase, but flagellum-dependent motility pathway genes were down-regulated in LF82 during the stationary phase. CDS that mapped only to the LF82 genome accounted for 747 genes. We applied an in silico subtractive genomics approach to identify CDS specific to AIEC by incorporating the genomes of 10 other previously phenotyped NIEC. From this analysis, 166 CDS mapped to the LF82 genome and lacked homology to any of the 11 human NIEC strains. We compared these CDS across 13 AIEC, but none were homologous in each. Four LF82 gene loci belonging to clustered regularly interspaced short palindromic repeats region (CRISPR)—CRISPR-associated (Cas) genes were identified in 4 to 6 AIEC and absent from all non-pathogenic bacteria. As previously reported, AIEC strains were enriched for pdu operon genes. One CDS, encoding an excisionase, was shared by 9 AIEC strains. Reverse transcription

  13. ppGpp couples transcription to DNA repair in E. coli.

    PubMed

    Kamarthapu, Venu; Epshtein, Vitaly; Benjamin, Bradley; Proshkin, Sergey; Mironov, Alexander; Cashel, Michael; Nudler, Evgeny

    2016-05-20

    The small molecule alarmone (p)ppGpp mediates bacterial adaptation to nutrient deprivation by altering the initiation properties of RNA polymerase (RNAP). ppGpp is generated in Escherichia coli by two related enzymes, RelA and SpoT. We show that ppGpp is robustly, but transiently, induced in response to DNA damage and is required for efficient nucleotide excision DNA repair (NER). This explains why relA-spoT-deficient cells are sensitive to diverse genotoxic agents and ultraviolet radiation, whereas ppGpp induction renders them more resistant to such challenges. The mechanism of DNA protection by ppGpp involves promotion of UvrD-mediated RNAP backtracking. By rendering RNAP backtracking-prone, ppGpp couples transcription to DNA repair and prompts transitions between repair and recovery states.

  14. The Highly Conserved Escherichia coli Transcription Factor YhaJ Regulates Aromatic Compound Degradation

    PubMed Central

    Palevsky, Noa; Shemer, Benjamin; Connolly, James P. R.; Belkin, Shimshon

    2016-01-01

    The aromatic compound 2,4-dinitrotoluene (DNT), a common impurity in 2,4,6-trinitrotoluene (TNT) production, has been suggested as a tracer for the presence of TNT-based landmines due to its stability and high volatility. We have previously described an Escherichia coli bioreporter capable of detecting the presence of DNT vapors, harboring a fusion of the yqjF gene promoter to a reporter element. However, the DNT metabolite which is the direct inducer of yqjF, has not yet been identified, nor has the regulatory mechanism of the induction been clarified. We demonstrate here that the YhaJ protein, a member of the LysR type family, acts as a transcriptional regulator of yqjF activation, as well as of a panel of additional E. coli genes. This group of genes share a common sequence motif in their promoters, which is suggested here as a putative YhaJ-box. In addition, we have linked YhaJ to the regulation of quinol-like compound degradation in the cell, and identified yhaK as playing a role in the degradation of DNT. PMID:27713734

  15. Gene Location and DNA Density Determine Transcription Factor Distributions in E. coli

    NASA Astrophysics Data System (ADS)

    Kuhlman, Thomas; Cox, Edward

    2013-03-01

    The diffusion coefficient of the prototypical transcription factor LacI within living Escherichia coli has been measured directly by in vivo tracking to be D = 0.4 μm2/s. At this rate, simple models of diffusion lead to the expectation that LacI and other proteins will rapidly homogenize throughout the cell. We have tested this expectation of spatial homogeneity by single molecule visualization of LacI molecules non-specifically bound to DNA in fixed cells. Contrary to expectation, we find that the distribution depends on the spatial location of its encoding gene. We demonstrate that the spatial distribution of LacI is also determined by the local state of DNA compaction, and that E. coli can dynamically redistribute proteins by modifying the state of its nucleoid. Finally, we show that LacI inhomogeneity increases the strength with which targets located proximally to the LacI gene are regulated. We propose a model for intranucleoid diffusion which can reconcile these results with previous measurements of LacI diffusion. This work was supported by the National Institutes of Health [GM078591, GM071508] and the Howard Hughes Medical Institute [52005884]. TEK is supported by an NIH Ruth Kirschstein NRSA Fellowship [F32GM090568-01A1].

  16. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli.

    PubMed

    Arbel-Goren, Rinat; Tal, Asaf; Parasar, Bibudha; Dym, Alvah; Costantino, Nina; Muñoz-García, Javier; Court, Donald L; Stavans, Joel

    2016-08-19

    Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts' threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation. PMID:27085802

  17. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli.

    PubMed

    Arbel-Goren, Rinat; Tal, Asaf; Parasar, Bibudha; Dym, Alvah; Costantino, Nina; Muñoz-García, Javier; Court, Donald L; Stavans, Joel

    2016-08-19

    Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts' threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation.

  18. E. coli 6S RNA: a universal transcriptional regulator within the centre of growth adaptation.

    PubMed

    Geissen, René; Steuten, Benedikt; Polen, Tino; Wagner, Rolf

    2010-01-01

    Bacterial 6S RNA has been shown to bind with high affinity to σ(70)-containing RNA polymerase, suppressing σ(70)-dependent transcription during stationary phase, when 6S RNA concentrations are highest. We recently reported a genome-wide transcriptional comparison of wild-type and 6S RNA deficient E. coli strains. Contrary to the expected σ(70)- and stationary phase-specific regulatory effect of 6S RNA it turned out that mRNA levels derived from many alternative sigma factors, including σ(38) or σ(32), were affected during exponential and stationary growth. Among the most noticeably down-regulated genes at stationary growth are ribosomal proteins and factors involved in translation. In addition, a striking number of mRNA levels coding for enzymes involved in the purine metabolism, for transporters and stress regulators are altered both during log- and stationary phase. During the study we discovered a link between 6S RNA and the general stress alarmone ppGpp, which has a higher basal level in cells deficient in 6S RNA. This finding points to a functional interrelation of 6S RNA and the global network of stress and growth adaptation. PMID:20930516

  19. Effect of salt bridge on transcription activation of CRP-dependent lactose operon in Escherichia coli.

    PubMed

    Tutar, Yusuf; Harman, James G

    2006-09-15

    Expression of catabolite-sensitive operons in Escherichia coli is cAMP-dependent and mediated through the CRP:cAMP complex binding to specific sequences in DNA. Five specific ionic or polar interactions occur in cAMP binding pocket of CRP. E72 interacts with the cAMP 2' OH, R82 and S83 interact with the negatively charged phosphate moiety, and T127 and S128 interact with the adenine ring. There is evidence to suggest that E72 and R82 may mediate an essential CRP molecular switch mechanism. Therefore, stimulation of CRP transcription activation was examined by perturbing these residues. Further, CRP:cAMP complex was treated with a specific DNA sequence containing the lac CRP binding site along with RNA polymerase to mimic in vivo conditions. Biochemical and biophysical results revealed that regulation of transcription activation depends on alignment of CRP tertiary structure through inter-domain communication and it was concluded that positions 72 and 82 are essential in the activation of CRP by cAMP. PMID:16934214

  20. Crystal structure of the transcriptional regulator AcrR from Escherichia coli

    PubMed Central

    Li, Ming; Gu, Ruoyu; Su, Chih-Chia; Routh, Mathew D.; Harris, Katherine C.; Jewell, Elizabeth S.; McDermott, Gerry; Yu, Edward W.

    2007-01-01

    The AcrAB multidrug efflux pump, which belongs to the resistance-nodulation-division (RND) family, recognizes and extrudes a wide range of antibiotics and chemotherapeutic agents, and causes the intrinsic antibiotic resistance in Escherichia coli. The expression of AcrAB is controlled by the transcriptional regulator AcrR, whose open reading frame is located 141-base-pair upstream of the acrAB operon. To understand the structural basis of AcrR regulation, we have determined the crystal structure of AcrR, to 2.55 Å resolution, revealing a dimeric two-domain molecule with an entirely helical architecture similar to members of the TetR family of transcriptional regulators. Each monomer of AcrR forms a multi-entrance pocket of 350 cubic angstroms in the ligand-binding domain. The ligand-binding pocket is surrounded with mostly hydrophobic residues. In addition, a completely buried negatively charged glutamate, expected to be critical for drug binding, is located at the center of the binding pocket. The crystal structure provides novel insight into the mechanisms of ligand binding and AcrR regulation. PMID:17950313

  1. Control of transcription of gal repressor and isorepressor genes in Escherichia coli.

    PubMed Central

    Weickert, M J; Adhya, S

    1993-01-01

    Two regulatory proteins, Gal repressor and isorepressor, control the expression of the gal and mgl operons in Escherichia coli. The transcription start sites for galR and galS, the genes for the repressor and isorepressor, were determined by primer extension of in vivo transcripts. Study of the promoter-lacZ gene fusions introduced into the chromosome indicated that galS expression was elevated in cells in which the normal galS gene was interrupted, but not in cells in which the galR gene was deleted. When both genes were disrupted, galS expression was further elevated. Expression from the galS promoter was stimulated by the addition of D-fucose, repressed by glucose, and dependent on cyclic AMP receptor protein (CRP). Expression of a similar gene fusion of the galR promoter to lacZ was unregulated. Both galR and galS genes contain two potential operator sites (OE and OI) and a CRP-binding site. The arrangement of OE, OI, and the CRP-binding site in the galS gene is analogous to the arrangement in the gal and mgl promoters, but the arrangement in galR is atypical. The increased concentration of the isorepressor when inducer is present may facilitate early shutoff of the isorepressor-regulated genes of the gal regulon when inducer (substrate) concentration falls. Images PMID:8416900

  2. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    PubMed

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-10-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles.

  3. Transcriptional Responses of Uropathogenic Escherichia coli to Increased Environmental Osmolality Caused by Salt or Urea

    PubMed Central

    Withman, Benjamin; Gunasekera, Thusitha S.; Beesetty, Pavani; Agans, Richard

    2013-01-01

    Uropathogenic Escherichia coli (UPEC) is the most common causative agent of urinary tract infections in humans. The majority of urinary infections develop via ascending route through the urethra, where bacterial cells come in contact with human urine prior to reaching the bladder or kidneys. Since urine contains significant amounts of inorganic ions and urea, it imposes osmotic and denaturing stresses on bacterial cells. In this study, we determined the transcriptional adaptive responses of UPEC strain CFT073 to the presence of 0.3 M NaCl or 0.6 M urea in the growth medium. The cell responses to these two osmolytes were drastically different. Although most of the genes of the osmotically inducible regulon were overexpressed in medium with salt, urea failed to stimulate osmotic stress response. At the same time, UPEC colonization genes encoding type 1 and F1C fimbriae and capsule biosynthesis were transcriptionally induced in the presence of urea but did not respond to increased salt concentration. We speculate that urea can potentially be sensed by uropathogenic bacteria to initiate infection program. In addition, several molecular chaperone genes were overexpressed in the presence of urea, whereas adding NaCl to the medium led to an upregulation of a number of anaerobic metabolism pathways. PMID:23090957

  4. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes.

    PubMed

    Mekler, Vladimir; Minakhin, Leonid; Kuznedelov, Konstantin; Mukhamedyarov, Damir; Severinov, Konstantin

    2012-12-01

    Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the -10, -35 and UP promoter elements; the TG motif of the extended -10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP-DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.

  5. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  6. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli

    PubMed Central

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J.; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation. PMID:27112822

  7. Heat-shock response transcriptional program enables high-yield and high-quality recombinant protein production in Escherichia coli.

    PubMed

    Zhang, Xin; Liu, Yu; Genereux, Joseph C; Nolan, Chandler; Singh, Meha; Kelly, Jeffery W

    2014-09-19

    The biosynthesis of soluble, properly folded recombinant proteins in large quantities from Escherichia coli is desirable for academic research and industrial protein production. The basal E. coli protein homeostasis (proteostasis) network capacity is often insufficient to efficiently fold overexpressed proteins. Herein we demonstrate that a transcriptionally reprogrammed E. coli proteostasis network is generally superior for producing soluble, folded, and functional recombinant proteins. Reprogramming is accomplished by overexpressing a negative feedback deficient heat-shock response transcription factor before and during overexpression of the protein-of-interest. The advantage of transcriptional reprogramming versus simply overexpressing select proteostasis network components (e.g., chaperones and co-chaperones, which has been explored previously) is that a large number of proteostasis network components are upregulated at their evolved stoichiometry, thus maintaining the system capabilities of the proteostasis network that are currently incompletely understood. Transcriptional proteostasis network reprogramming mediated by stress-responsive signaling in the absence of stress should also be useful for protein production in other cells.

  8. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria. PMID

  9. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli

    PubMed Central

    Santillán, Orlando; Ramírez-Romero, Miguel A.; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M.; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria. PMID

  10. Region 4 of Rhizobium etli Primary Sigma Factor (SigA) Confers Transcriptional Laxity in Escherichia coli.

    PubMed

    Santillán, Orlando; Ramírez-Romero, Miguel A; Lozano, Luis; Checa, Alberto; Encarnación, Sergio M; Dávila, Guillermo

    2016-01-01

    Sigma factors are RNA polymerase subunits engaged in promoter recognition and DNA strand separation during transcription initiation in bacteria. Primary sigma factors are responsible for the expression of housekeeping genes and are essential for survival. RpoD, the primary sigma factor of Escherichia coli, a γ-proteobacteria, recognizes consensus promoter sequences highly similar to those of some α-proteobacteria species. Despite this resemblance, RpoD is unable to sustain transcription from most of the α-proteobacterial promoters tested so far. In contrast, we have found that SigA, the primary sigma factor of Rhizobium etli, an α-proteobacteria, is able to transcribe E. coli promoters, although it exhibits only 48% identity (98% coverage) to RpoD. We have called this the transcriptional laxity phenomenon. Here, we show that SigA partially complements the thermo-sensitive deficiency of RpoD285 from E. coli strain UQ285 and that the SigA region σ4 is responsible for this phenotype. Sixteen out of 74 residues (21.6%) within region σ4 are variable between RpoD and SigA. Mutating these residues significantly improves SigA ability to complement E. coli UQ285. Only six of these residues fall into positions already known to interact with promoter DNA and to comprise a helix-turn-helix motif. The remaining variable positions are located on previously unexplored sites inside region σ4, specifically into the first two α-helices of the region. Neither of the variable positions confined to these helices seem to interact directly with promoter sequence; instead, we adduce that these residues participate allosterically by contributing to correct region folding and/or positioning of the HTH motif. We propose that transcriptional laxity is a mechanism for ensuring transcription in spite of naturally occurring mutations from endogenous promoters and/or horizontally transferred DNA sequences, allowing survival and fast environmental adaptation of α-proteobacteria.

  11. H-NS is a novel transcriptional modulator of the ribonucleotide reductase genes in Escherichia coli.

    PubMed

    Cendra, Maria del mar; Juárez, Antonio; Madrid, Cristina; Torrents, Eduard

    2013-09-01

    Ribonucleotide reductases (RNRs) are essential enzymes for DNA synthesis because they are responsible for the production of the four deoxyribonucleotides (dNTPs) from their corresponding ribonucleotides. Escherichia coli contains two classes of aerobic RNRs, encoded by the nrdAB (class Ia) and nrdHIEF (class Ib) operons, and a third RNR class, which is functional under anaerobic conditions and is encoded by the nrdDG (class III) operon. Because cellular imbalances in the amounts of the four dNTPs cause an increase in the rate of mutagenesis, the activity and the expression of RNRs must be tightly regulated during bacterial chromosome replication. The transcriptional regulation of these genes requires several transcription factors (including DnaA, IciA, FIS [factor for inversion stimulation], Fnr, Fur, and NrdR), depending on the RNR class; however, the factors that dictate the expression of some RNR genes in response to different environmental conditions are not known. We show that H-NS modulates the expression of the nrdAB and nrdDG operons. H-NS represses expression both in aerobically and in anaerobically growing cells. Under aerobic conditions, repression occurs at the exponential phase of growth as well as at the transition from the exponential to the stationary phase, a period when no dNTPs are needed. Under anoxic conditions, repression occurs mainly in exponentially growing cells. Electrophoretic mobility assays performed with two DNA fragments from the regulatory region of the nrdAB operon demonstrated the direct interaction of H-NS with these sequences. PMID:23873909

  12. PafR, a Novel Transcription Regulator, Is Important for Pathogenesis in Uropathogenic Escherichia coli

    PubMed Central

    Baum, Mordechai; Watad, Mobarak; Smith, Sara N.; Alteri, Christopher J.; Gordon, Noa; Rosenshine, Ilan; Mobley, Harry L.

    2014-01-01

    The metV genomic island in the chromosome of uropathogenic Escherichia coli (UPEC) encodes a putative transcription factor and a sugar permease of the phosphotransferase system (PTS), which are predicted to compose a Bgl-like sensory system. The presence of these two genes, hereby termed pafR and pafP, respectively, has been previously shown to correlate with isolates causing clinical syndromes. We show here that deletion of both genes impairs the ability of the resulting mutant to infect the CBA/J mouse model of ascending urinary tract infection compared to that of the parent strain, CFT073. Expressing the two genes in trans in the two-gene knockout mutant complemented full virulence. Deletion of either gene individually generated the same phenotype as the double knockout, indicating that both pafR and pafP are important to pathogenesis. We screened numerous environmental conditions but failed to detect expression from the promoter that precedes the paf genes in vitro, suggesting that they are in vivo induced (ivi). Although PafR is shown here to be capable of functioning as a transcriptional antiterminator, its targets in the UPEC genome are not known. Using microarray analysis, we have shown that expression of PafR from a heterologous promoter in CFT073 affects expression of genes related to bacterial virulence, biofilm formation, and metabolism. Expression of PafR also inhibits biofilm formation and motility. Taken together, our results suggest that the paf genes are implicated in pathogenesis and that PafR controls virulence genes, in particular biofilm formation genes. PMID:25069986

  13. H-NS Is a Novel Transcriptional Modulator of the Ribonucleotide Reductase Genes in Escherichia coli

    PubMed Central

    Cendra, Maria del Mar; Juárez, Antonio; Madrid, Cristina

    2013-01-01

    Ribonucleotide reductases (RNRs) are essential enzymes for DNA synthesis because they are responsible for the production of the four deoxyribonucleotides (dNTPs) from their corresponding ribonucleotides. Escherichia coli contains two classes of aerobic RNRs, encoded by the nrdAB (class Ia) and nrdHIEF (class Ib) operons, and a third RNR class, which is functional under anaerobic conditions and is encoded by the nrdDG (class III) operon. Because cellular imbalances in the amounts of the four dNTPs cause an increase in the rate of mutagenesis, the activity and the expression of RNRs must be tightly regulated during bacterial chromosome replication. The transcriptional regulation of these genes requires several transcription factors (including DnaA, IciA, FIS [factor for inversion stimulation], Fnr, Fur, and NrdR), depending on the RNR class; however, the factors that dictate the expression of some RNR genes in response to different environmental conditions are not known. We show that H-NS modulates the expression of the nrdAB and nrdDG operons. H-NS represses expression both in aerobically and in anaerobically growing cells. Under aerobic conditions, repression occurs at the exponential phase of growth as well as at the transition from the exponential to the stationary phase, a period when no dNTPs are needed. Under anoxic conditions, repression occurs mainly in exponentially growing cells. Electrophoretic mobility assays performed with two DNA fragments from the regulatory region of the nrdAB operon demonstrated the direct interaction of H-NS with these sequences. PMID:23873909

  14. Simple enzymatic assays for the in vitro motor activity of transcription termination factor Rho from Escherichia coli.

    PubMed

    Boudvillain, Marc; Walmacq, Céline; Schwartz, Annie; Jacquinot, Frédérique

    2010-01-01

    The transcription termination factor Rho from Escherichia coli is a ring-shaped homo-hexameric protein that preferentially interacts with naked cytosine-rich Rut (Rho utilization) regions of nascent RNA transcripts. Once bound to the RNA chain, Rho uses ATP as an energy source to produce mechanical work and disruptive forces that ultimately lead to the dissociation of the ternary transcription complex. Although transcription termination assays have been useful to study Rho activity in various experimental contexts, they do not report directly on Rho mechanisms and kinetics. Here, we describe complementary ATP-dependent RNA-DNA helicase and streptavidin displacement assays that can be used to monitor in vitro Rho's motor activity in a more direct and quantitative manner.

  15. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli

    SciTech Connect

    Eraso, Jesus M.; Markillie, Lye Meng; Mitchell, Hugh D.; Taylor, Ronald C.; Orr, Galya; Margolin, William

    2014-05-05

    The mraZ and mraW genes are highly conserved in bacteria, both in sequence and location at the head of the division and cell wall (dcw) gene cluster. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin, and MraW is known to methylate ribosomal RNA, mraZ and mraW null mutants have no detectable growth phenotype in any species tested to date, hampering progress in understanding their physiological role. Here we show that overproduction of Escherichia coli MraZ perturbs cell division and the cell envelope, is more lethal at high levels or in minimal growth medium, and that MraW antagonizes these effects. MraZGFP localizes to the nucleoid, suggesting that it binds DNA. Indeed, purified MraZ directly binds a region upstream from its own promoter containing three direct repeats to regulate its own expression and that of downstream cell division and cell wall genes. MraZ-LacZ fusions are repressed by excess MraZ but not when DNA binding by MraZ is inhibited. RNAseq analysis indicates that MraZ is a global transcriptional regulator with numerous targets in addition to dcw genes. One of these targets, mioC, is directly bound by MraZ in a region with three direct repeats.

  16. Regulation of the bgl operon of Escherichia coli by transcriptional antitermination.

    PubMed Central

    Schnetz, K; Rak, B

    1988-01-01

    The bgl operon of Escherichia coli encodes all functions necessary for the regulated uptake and utilization of aryl beta-glucosides. The operon is unusual, however, in that it is cryptic in wild-type strains, requiring activation by mutational events. The vast majority of these mutations are due to transposition of insertion elements into the promoter region of the operon. In this report we show that integration of IS5 into the vicinity of the bgl promoter (P0) enhances its activity by greater than 60-fold thereby activating the operon. In the activated state the operon is subject to induction by substrate. Recent studies have shown that induction of the bgl operon by substrate involves antitermination within the leader of the operon. We now show that substrate-dependent regulation involves specific termination/antitermination of transcription at two signal structures flanking the first gene of the operon, bglG. Antitermination is mediated by the product of gene bglG. In the absence of substrate this antitermination is prevented by the action of the product of gene bglF (the second gene of the operon), which encodes the beta-glucoside-specific transport protein (enzymeIIBgl of the phosphoenolpyruvate-dependent phosphotransferase system, PTS) resulting in repression of the operon. The bgl promoter (P0) is not subject to substrate-dependent regulation. The bgl operon has two additional promoters (P1 and P2) located within the terminators, which could also participate in regulation. Images PMID:2846278

  17. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase

    PubMed Central

    James, Tamara D.; Cardozo, Timothy; Abell, Lauren E.; Hsieh, Meng-Lun; Jenkins, Lisa M. Miller; Jha, Saheli S.; Hinton, Deborah M.

    2016-01-01

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation. PMID:27458207

  18. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase.

    PubMed

    James, Tamara D; Cardozo, Timothy; Abell, Lauren E; Hsieh, Meng-Lun; Jenkins, Lisa M Miller; Jha, Saheli S; Hinton, Deborah M

    2016-09-19

    The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ(70) subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ(70) Region 4, the N-terminal domain of MotA [MotA(NTD)], and the C-terminal domain of MotA [MotA(CTD)]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation. PMID:27458207

  19. Amplified detection of transcriptional and translational inhibitors in bioluminescent Escherichia coli K-12.

    PubMed

    Galluzzi, Lorenzo; Karp, Matti

    2003-06-01

    The excessive prescription of antimicrobial agents and their use as animal growth promoters lead to the spread of resistance among pathogenic bacteria. Consequently, unnecessary use should be minimized, and new chemicals with novel mechanisms of action are needed. The authors have developed a fast method to measure the activity of antibiotics by means of a genetically engineered strain of Escherichia coli K-12. The system is based on the full-length bacterial luciferase operon coupled to the tetracycline-inducible tetA promoter in the reporter plasmid pTetLux1. Sublethal doses of tetracycline are used to start the luciferase synthesis in cultures that were previously incubated with the antibiotic under investigation. After a variable time frame-from 1 to 4 h, depending on the antimicrobial mode of action-the level of light emission from treated cultures is compared to the level obtained in control cultures. The gap in bioluminescence outlines the antibiotic interference in bacterial metabolism. Throughout this study, freeze-dried sensor cells were used to avoid repeated cultures from day to day. The authors show the results of 10 model antibiotics, representing different molecular structures and mechanisms of action. The results show that no actively dividing cells are needed for sensitive responses, especially when transcriptional and translational inhibitors, directly interfering with the luciferase production, are tested. The assay can be easily automated for high-throughput screening purposes of pharmaceutical industry.

  20. Characterization of hybrid plasmids carrying individual ribosomal ribonucleic acid transcription units of Escherichia coli.

    PubMed Central

    Kenerley, M E; Morgan, E A; Post, L; Lindahl, L; Nomura, M

    1977-01-01

    We have screened the strains with ColE1 hybrid plasmids constructed by Clarke and Carbon (Cell 9:91-99, 1976) for the presence of ribosomal ribonucleic acid (rRNA) genes on the plasmids and identified 16 strains whose plasmids carry rRNA genes. The structures of these 16 plasmids were compared by heteroduplex analysis, and the plasmids were classified into six groups on the basis of their chromosomal origins. Homology with known transducing-phage deoxyribonucleic acids and genetic mapping have assigned locations on the Escherichia coli chromosome to three of the six groups. These are rrnB near rif at 88 min, rrnC near ilvE at 83 min, and rrnD near aroE at 71 min. A fourth group is probably rrnA at 85 min (T. Ikemura and M. Nomura, Cell, 11:779-793, 1977). We conclude that the minimum number of rRNA transcription units per haploid chromosomes is seven, that is, the six groups identified in this work plus a known operon (rrnE near metA at 89 min) that we failed to find among the hybrid plasmids. This heteroduplex analysis also suggests that there are only two kinds of rRNA operons with respect to their spacer region; three of the six rRNA operon groups studied here have one kind, whereas the remaining three have the other kind. Images PMID:336613

  1. Transcriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions.

    PubMed

    Kansal, Rita; Rasko, David A; Sahl, Jason W; Munson, George P; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J; Fleckenstein, James M

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  2. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.

    PubMed

    Pedrolli, Danielle; Langer, Simone; Hobl, Birgit; Schwarz, Julia; Hashimoto, Masayuki; Mack, Matthias

    2015-08-01

    FMN riboswitches are genetic elements that, in many bacteria, control genes responsible for biosynthesis and/or transport of riboflavin (vitamin B2 ). We report that the Escherichia coli ribB FMN riboswitch controls expression of the essential gene ribB coding for the riboflavin biosynthetic enzyme 3,4-dihydroxy-2-butanone-4-phosphate synthase (RibB; EC 4.1.99.12). Our data show that the E. coli ribB FMN riboswitch is unusual because it operates at the transcriptional and also at the translational level. Expression of ribB is negatively affected by FMN and by the FMN analog roseoflavin mononucleotide, which is synthesized enzymatically from roseoflavin and ATP. Consequently, in addition to flavoenzymes, the E. coli ribB FMN riboswitch constitutes a target for the antibiotic roseoflavin produced by Streptomyces davawensis.

  3. The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli and motility in K-12 Escherichia coli.

    PubMed

    Habdas, Benjamin J; Smart, Jennifer; Kaper, James B; Sperandio, Vanessa

    2010-07-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 responds to the host-produced epinephrine and norepinephrine, and bacterially produced autoinducer 3 (AI-3), through two-component systems. Further integration of multiple regulatory signaling networks, involving regulators such as the LysR-type transcriptional regulator (LTTR) QseA, promotes effective regulation of virulence factors. These include the production of flagella, a phage-encoded Shiga toxin, and genes within the locus of enterocyte effacement (LEE) responsible for attaching and effacing (AE) lesion formation. Here, we describe a new member of this signaling cascade, an LTTR heretofore renamed QseD (quorum-sensing E. coli regulator D). QseD is present in all enterobacteria but exists almost exclusively in O157:H7 isolates as a helix-turn-helix (HTH) truncated isoform. This "short" isoform (sQseD) is still able to regulate gene expression through a different mechanism than the full-length K-12 E. coli "long" QseD isoform (lQseD). The EHEC Delta qseD mutant exhibits increased expression of all LEE operons and deregulation of AE lesion formation. The loss of qseD in EHEC does not affect motility, but the K-12 Delta qseD mutant is hypermotile. While the lQseD directly binds to the ler promoter, encoding the LEE master regulator, to repress LEE transcription, the sQseD isoform does not. LTTRs bind to DNA as tetramers, and these data suggest that sQseD regulates ler by forming heterotetramers with another LTTR. The LTTRs known to regulate LEE transcription, QseA and LrhA, do not interact with sQseD, suggesting that sQseD acts as a dominant-negative partner with a yet-unidentified LTTR.

  4. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J; Szubin, Richard; Palsson, Bernhard O

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites. We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress. PMID:26258987

  5. Decoding genome-wide GadEWX-transcriptional regulatory networks reveals multifaceted cellular responses to acid stress in Escherichia coli

    PubMed Central

    Seo, Sang Woo; Kim, Donghyuk; O'Brien, Edward J.; Szubin, Richard; Palsson, Bernhard O.

    2015-01-01

    The regulators GadE, GadW and GadX (which we refer to as GadEWX) play a critical role in the transcriptional regulation of the glutamate-dependent acid resistance (GDAR) system in Escherichia coli K-12 MG1655. However, the genome-wide regulatory role of GadEWX is still unknown. Here we comprehensively reconstruct the genome-wide GadEWX transcriptional regulatory network and RpoS involvement in E. coli K-12 MG1655 under acidic stress. Integrative data analysis reveals that GadEWX regulons consist of 45 genes in 31 transcription units and 28 of these genes were associated with RpoS-binding sites. We demonstrate that GadEWX directly and coherently regulate several proton-generating/consuming enzymes with pairs of negative-feedback loops for pH homeostasis. In addition, GadEWX regulate genes with assorted functions, including molecular chaperones, acid resistance, stress response and other regulatory activities. These results show how GadEWX simultaneously coordinate many cellular processes to produce the overall response of E. coli to acid stress. PMID:26258987

  6. Escherichia coli under Ionic Silver Stress: An Integrative Approach to Explore Transcriptional, Physiological and Biochemical Responses

    PubMed Central

    Saulou-Bérion, Claire; Gonzalez, Ignacio; Enjalbert, Brice; Audinot, Jean-Nicolas; Fourquaux, Isabelle; Jamme, Frédéric; Cocaign-Bousquet, Muriel; Mercier-Bonin, Muriel; Girbal, Laurence

    2015-01-01

    For a better understanding of the systemic effect of sub-lethal micromolar concentrations of ionic silver on Escherichia coli, we performed a multi-level characterization of cells under Ag+-mediated stress using an integrative biology approach combining physiological, biochemical and transcriptomic data. Physiological parameters, namely bacterial growth and survival after Ag+ exposure, were first quantified and related to the accumulation of intracellular silver, probed for the first time by nano secondary ion mass spectroscopy at sub-micrometer lateral resolution. Modifications in E. coli biochemical composition were evaluated under Ag+-mediated stress by in situ synchrotron Fourier-transform infrared microspectroscopy and a comprehensive transcriptome response was also determined. Using multivariate statistics, correlations between the physiological parameters, the extracellular concentration of AgNO3 and the intracellular silver content, gene expression profiles and micro-spectroscopic data were investigated. We identified Ag+-dependent regulation of gene expression required for growth (e.g. transporter genes, transcriptional regulators, ribosomal proteins), for ionic silver transport and detoxification (e.g. copA, cueO, mgtA, nhaR) and for coping with various types of stress (dnaK, pspA, metA,R, oxidoreductase genes). The silver-induced shortening of the acyl chain of fatty acids, mostly encountered in cell membrane, was highlighted by microspectroscopy and correlated with the down-regulated expression of genes involved in fatty acid transport (fadL) and synthesis/modification of lipid A (lpxA and arnA). The increase in the disordered secondary structure of proteins in the presence of Ag+ was assessed through the conformational shift shown for amides I and II, and further correlated with the up-regulated expression of peptidase (hfq) and chaperone (dnaJ), and regulation of transpeptidase expression (ycfS and ycbB). Interestingly, as these transpeptidases act on

  7. Nickel-Specific Response in the Transcriptional Regulator, 'Escherichia Coli'NikR

    SciTech Connect

    Leitch, S.; Bradley, M.J.; Rowe, J.L.; Chivers, P.T.; Maroney, M.J.; /Massachusetts U., Amherst /Washington U., St. Louis

    2007-07-10

    Studies of the transcriptional repression of the Ni-specific permease encoded by the Pnik operon by Escherichia coli NikR using a LacZ reporter assay establish that the NikR response is specific to nickel in vivo. Toward understanding this metal ion-specific response, X-ray absorption spectroscopy (XAS) analysis of various M-NikR complexes (M = Co(II), Ni(II), Cu(II), Cu(I), and Zn(II)) was used to show that each high-affinity binding site metal adopts a unique structure, with Ni(II) and Cu(II) being the only two metal ions to feature planar four-coordinate complexes. The results are consistent with an allosteric mechanism whereby the geometry and ligand selection of the metal present in the high-affinity site induce a unique conformation in NikR that subsequently influences DNA binding. The influence of the high-affinity metal on protein structure was examined using hydrogen/deuterium (H/D) exchange detected by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). Each NikR complex gives rise to differing amounts of H/D exchange; Zn(II)- and Co(II)-NikR are most like apo-NikR, while the exchange time course is substantially different for Ni(II) and to a lesser extent for Cu(II). In addition to the high-affinity metal binding site, E. coli NikR has a low-affinity metal-binding site that affects DNA binding affinity. We have characterized this low-affinity site using XAS in heterobimetallic complexes of NikR. When Cu(II) occupies the high-affinity site and Ni(II) occupies the low-affinity site, the Ni K-edge XAS spectra show that the Ni site is composed of six N/O-donors. A similar low-affinity site structure is found for the NikR complex when Co(II) occupies the low-affinity site and Ni(II) occupies the high-affinity site, except that one of the Co(II) ligands is a chloride derived from the buffer.

  8. Nickel-Specific Response in the Transcriptional Regulator, Escherichia coli NikR

    SciTech Connect

    Leitch,S.; Bradley, M.; Rowe, J.; Chivers, P.; Maroney, M.

    2007-01-01

    Studies of the transcriptional repression of the Ni-specific permease encoded by the P{sub nik} operon by Escherichia coli NikR using a LacZ reporter assay establish that the NikR response is specific to nickel in vivo. Toward understanding this metal ion-specific response, X-ray absorption spectroscopy (XAS) analysis of various M-NikR complexes (M = Co(II), Ni(II), Cu(II), Cu(I), and Zn(II)) was used to show that each high-affinity binding site metal adopts a unique structure, with Ni(II) and Cu(II) being the only two metal ions to feature planar four-coordinate complexes. The results are consistent with an allosteric mechanism whereby the geometry and ligand selection of the metal present in the high-affinity site induce a unique conformation in NikR that subsequently influences DNA binding. The influence of the high-affinity metal on protein structure was examined using hydrogen/deuterium (H/D) exchange detected by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). Each NikR complex gives rise to differing amounts of H/D exchange; Zn(II)- and Co(II)-NikR are most like apo-NikR, while the exchange time course is substantially different for Ni(II) and to a lesser extent for Cu(II). In addition to the high-affinity metal binding site, E. coli NikR has a low-affinity metal-binding site that affects DNA binding affinity. We have characterized this low-affinity site using XAS in heterobimetallic complexes of NikR. When Cu(II) occupies the high-affinity site and Ni(II) occupies the low-affinity site, the Ni K-edge XAS spectra show that the Ni site is composed of six N/O-donors. A similar low-affinity site structure is found for the NikR complex when Co(II) occupies the low-affinity site and Ni(II) occupies the high-affinity site, except that one of the Co(II) ligands is a chloride derived from the buffer.

  9. Shaping the landscape of the Escherichia coli chromosome: replication-transcription encounters in cells with an ectopic replication origin

    PubMed Central

    Ivanova, Darja; Taylor, Toni; Smith, Sarah L.; Dimude, Juachi U.; Upton, Amy L.; Mehrjouy, Mana M.; Skovgaard, Ole; Sherratt, David J.; Retkute, Renata; Rudolph, Christian J.

    2015-01-01

    Each cell division requires the unwinding of millions of DNA base pairs to allow chromosome duplication and gene transcription. As DNA replication and transcription share the same template, conflicts between both processes are unavoidable and head-on collisions are thought to be particularly problematic. Surprisingly, a recent study reported unperturbed cell cycle progression in Escherichia coli cells with an ectopic replication origin in which highly transcribed rrn operons were forced to be replicated opposite to normal. In this study we have re-generated a similar strain and found the doubling time to be twice that of normal cells. Replication profiles of this background revealed significant deviations in comparison to wild-type profiles, particularly in highly transcribed regions and the termination area. These deviations were alleviated by mutations that either inactivate the termination area or destabilise RNA polymerase complexes and allow their easier displacement by replication forks. Our data demonstrate that head-on replication-transcription conflicts are highly problematic. Indeed, analysis of the replication profile of the previously published E. coli construct revealed a chromosomal rearrangement that alleviates replication-transcription conflicts in an intriguingly simple way. Our data support the idea that avoiding head-on collisions has significantly contributed to shaping the distinct architecture of bacterial chromosomes. PMID:26160884

  10. Whole-Genome Transcriptional Analysis of Escherichia coli during Heat Inactivation Processes Related to Industrial Cooking

    PubMed Central

    Guernec, A.; Robichaud-Rincon, P.

    2013-01-01

    Escherichia coli K-12 was grown to the stationary phase, for maximum physiological resistance, in brain heart infusion (BHI) broth at 37°C. Cells were then heated at 58°C or 60°C to reach a process lethality value (Fo7010) of 2 or 3 or to a core temperature of 71°C (control industrial cooking temperature). Growth recovery and cell membrane integrity were evaluated immediately after heating, and a global transcription analysis was performed using gene expression microarrays. Only cells heated at 58°C with Fo = 2 were still able to grow on liquid or solid BHI broth after heat treatment. However, their transcriptome did not differ from that of bacteria heated at 58°C with Fo = 3 (P value for the false discovery rate [P-FDR] > 0.01), where no growth recovery was observed posttreatment. Genome-wide transcriptomic data obtained at 71°C were distinct from those of the other treatments without growth recovery. Quantification of heat shock gene expression by real-time PCR revealed that dnaK and groEL mRNA levels decreased significantly above 60°C to reach levels similar to those of control cells at 37°C (P < 0.0001). Furthermore, despite similar levels of cell inactivation measured by growth on BHI media after heating, 132 and 8 genes were differentially expressed at 71°C compared to 58°C and 60°C at Fo = 3, respectively (P-FDR < 0.01). Among them, genes such as aroA, citE, glyS, oppB, and asd, whose expression was upregulated at 71°C, may be worth investigating as good biomarkers for accurately determining the efficiency of heat treatments, especially when cells are too injured to be enumerated using growth media. PMID:23770902

  11. The trigger enzyme PepA (aminopeptidase A) of Escherichia coli, a transcriptional repressor that generates positive supercoiling.

    PubMed

    Nguyen Le Minh, Phu; Nadal, Marc; Charlier, Daniel

    2016-06-01

    Escherichia coli aminopeptidase A (PepA) is a trigger enzyme endowed with catalytic activity and DNA-binding properties prominent in transcriptional regulation and site-specific DNA recombination. The current work demonstrates that PepA is a repressor in its own right, capable of specifically inhibiting transcription initiation at promoter P1 of the carAB operon, encoding carbamoylphosphate synthase. Furthermore, in vitro topology studies performed with DNA minicircles demonstrate that PepA binding constrains a single positive supercoil in the carP1 control region. Such a topological event is understood to constitute an impediment to transcription initiation and may serve as a mechanism to regulate gene expression.

  12. Escherichia coli RNA polymerase in vitro mimics simian virus 40 in vivo transcription when the template is viral nucleoprotein.

    PubMed Central

    Jakobovits, E B; Saragosti, S; Yaniv, M; Aloni, Y

    1980-01-01

    We have used a low-salt detergent-free extraction procedure on cells infected with simian virus 40 to obtain viral nucleoprotein late after infection. Addition of EScherichia coli RNA polymerase and ribonucleotide triphosphates to the viral minichromosomes permitted transcription of RNA from viral templates. This synthesis was initiated predominantly within a fragment of DNA spanning 0.67 to 0.76 map unit on the genome. The synthesis from this region proceeded primarily along the "late" strand in a clockwise direction. These results were in contrast to the synthesis obtained with naked viral DNA in which initiation occurred on other regions of the genome and from which transcription proceeded counterclockwise along the early strand. These findings indicate that the nucleoprotein template or factors tightly associated with it may be responsible for site(s) and strand selection in transcription of simian virus 40. Images PMID:6256744

  13. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation.

    PubMed

    Ross, Wilma; Vrentas, Catherine E; Sanchez-Vazquez, Patricia; Gaal, Tamas; Gourse, Richard L

    2013-05-01

    The global regulatory nucleotide ppGpp ("magic spot") regulates transcription from a large subset of Escherichia coli promoters, illustrating how small molecules can control gene expression promoter-specifically by interacting with RNA polymerase (RNAP) without binding to DNA. However, ppGpp's target site on RNAP, and therefore its mechanism of action, has remained unclear. We report here a binding site for ppGpp on E. coli RNAP, identified by crosslinking, protease mapping, and analysis of mutant RNAPs that fail to respond to ppGpp. A strain with a mutant ppGpp binding site displays properties characteristic of cells defective for ppGpp synthesis. The binding site is at an interface of two RNAP subunits, ω and β', and its position suggests an allosteric mechanism of action involving restriction of motion between two mobile RNAP modules. Identification of the binding site allows prediction of bacterial species in which ppGpp exerts its effects by targeting RNAP.

  14. Coupled Changes in Translation and Transcription during Cobalamin-Dependent Regulation of btuB Expression in Escherichia coli

    PubMed Central

    Nou, Xiangwu; Kadner, Robert J.

    1998-01-01

    The level of the vitamin B12 transport protein BtuB in the outer membrane of Escherichia coli is strongly reduced by growth in the presence of cobalamins. Previous analyses of regulatory mutants and of btuB-lacZ fusions indicated that the primary site of btuB gene regulation was at the translational level, and this required sequences throughout the 240-nucleotide (nt) leader region. Cobalamin-dependent regulation of transcriptional fusions was of a lesser magnitude but required, in addition to the leader, sequences within the first 100 nt of the coding sequence, termed the translated regulatory region (TRR). To analyze the process of transcription-level regulation of btuB in E. coli, the levels and metabolism of btuB RNA were analyzed by S1 nuclease protection assays, and mutations that alter the coupling of translational and transcriptional control were analyzed. Expression of transcriptional fusions was found to correlate with changes in the level of intact btuB RNA and was related to changes in the metabolic stability of the normally long-lived RNA. Mutational analysis showed that the btuB start codon and a hairpin structure that can sequester the Shine-Dalgarno sequence are necessary for cobalamin-dependent regulation and that translation of the TRR is necessary for extended RNA stability and for expression of the transcriptional fusion. The absence of regulation at the stage of transcription initiation was confirmed by the findings that several truncated btuB RNA fragments were expressed in a constitutive manner and that the normal regulatory response occurred even when the btuB promoter and upstream sequences were replaced by the heterologous bla and lac promoters. Transcription driven by phage T7 RNA polymerase was not regulated by cobalamins, although some regulation at the translational level was retained. Cobalamin-dependent changes in RNA structure were suggested from the RNase III-dependent production of a transcript fragment that is made only in the

  15. Bacteriophage λ N protein inhibits transcription slippage by Escherichia coli RNA polymerase.

    PubMed

    Parks, Adam R; Court, Carolyn; Lubkowska, Lucyna; Jin, Ding J; Kashlev, Mikhail; Court, Donald L

    2014-05-01

    Transcriptional slippage is a class of error in which ribonucleic acid (RNA) polymerase incorporates nucleotides out of register, with respect to the deoxyribonucleic acid (DNA) template. This phenomenon is involved in gene regulation mechanisms and in the development of diverse diseases. The bacteriophage λ N protein reduces transcriptional slippage within actively growing cells and in vitro. N appears to stabilize the RNA/DNA hybrid, particularly at the 5' end, preventing loss of register between transcript and template. This report provides the first evidence of a protein that directly influences transcriptional slippage, and provides a clue about the molecular mechanism of transcription termination and N-mediated antitermination.

  16. Bacteriophage λ N protein inhibits transcription slippage by Escherichia coli RNA polymerase.

    PubMed

    Parks, Adam R; Court, Carolyn; Lubkowska, Lucyna; Jin, Ding J; Kashlev, Mikhail; Court, Donald L

    2014-05-01

    Transcriptional slippage is a class of error in which ribonucleic acid (RNA) polymerase incorporates nucleotides out of register, with respect to the deoxyribonucleic acid (DNA) template. This phenomenon is involved in gene regulation mechanisms and in the development of diverse diseases. The bacteriophage λ N protein reduces transcriptional slippage within actively growing cells and in vitro. N appears to stabilize the RNA/DNA hybrid, particularly at the 5' end, preventing loss of register between transcript and template. This report provides the first evidence of a protein that directly influences transcriptional slippage, and provides a clue about the molecular mechanism of transcription termination and N-mediated antitermination. PMID:24711367

  17. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria

    PubMed Central

    Vogel, Jörg; Bartels, Verena; Tang, Thean Hock; Churakov, Gennady; Slagter-Jäger, Jacoba G.; Hüttenhofer, Alexander; Wagner, E. Gerhart H.

    2003-01-01

    Recent bioinformatics-aided searches have identified many new small RNAs (sRNAs) in the intergenic regions of the bacterium Escherichia coli. Here, a shot-gun cloning approach (RNomics) was used to generate cDNA libraries of small sized RNAs. Besides many of the known sRNAs, we found new species that were not predicted previously. The present work brings the number of sRNAs in E.coli to 62. Experimental transcription start site mapping showed that some sRNAs were encoded from independent genes, while others were processed from mRNA leaders or trailers, indicative of a parallel transcriptional output generating sRNAs co-expressed with mRNAs. Two of these RNAs (SroA and SroG) consist of known (THI and RFN) riboswitch elements. We also show that two recently identified sRNAs (RyeB and SraC/RyeA) interact, resulting in RNase III-dependent cleavage. To the best of our knowledge, this represents the first case of two non-coding RNAs interacting by a putative antisense mechanism. In addition, intracellular metabolic stabilities of sRNAs were determined, including ones from previous screens. The wide range of half-lives (<2 to >32 min) indicates that sRNAs cannot generally be assumed to be metabolically stable. The experimental characterization of sRNAs analyzed here suggests that the definition of an sRNA is more complex than previously assumed. PMID:14602901

  18. AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection

    PubMed Central

    Zhuge, Xiangkai; Tang, Fang; Zhu, Hongfei; Mao, Xiang; Wang, Shaohui; Wu, Zongfu; Lu, Chengping; Dai, Jianjun; Fan, Hongjie

    2016-01-01

    Bacteria can change its lifestyle during inhabiting in host niches where they survive and replicate by rapidly altering gene expression pattern to accommodate the new environment. In this study, two novel regulators in avian pathogenic Escherichia coli (APEC) were identified and designated as AutA and AutR. RT-PCR and β-galactosidase assay results showed that AutA and AutR co-regulated the expression of adhesin UpaB in APEC strain DE205B. Electrophoretic mobility shift assay showed that AutA and AutR could directly bind the upaB promoter DNA. In vitro transcription assay indicated that AutA could activate the upaB transcription, while AutR inhibited the upaB transcription due to directly suppressing the activating effect of AutA on UpaB expression. Transcriptome analysis showed that AutA and AutR coherently affected the expression of hundreds of genes. Our study confirmed that AutA and AutR co-regulated the expression of DE205B K1 capsule and acid resistance systems in E. coli acid fitness island (AFI). Moreover, phenotypic heterogeneity in expression of K1 capsule and acid resistance systems in AFI during host–pathogen interaction was associated with the regulation of AutA and AutR. Collectively speaking, our studies presented that AutA and AutR are involved in APEC adaptive lifestyle change to facilitate its infection. PMID:27113849

  19. AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection.

    PubMed

    Zhuge, Xiangkai; Tang, Fang; Zhu, Hongfei; Mao, Xiang; Wang, Shaohui; Wu, Zongfu; Lu, Chengping; Dai, Jianjun; Fan, Hongjie

    2016-04-26

    Bacteria can change its lifestyle during inhabiting in host niches where they survive and replicate by rapidly altering gene expression pattern to accommodate the new environment. In this study, two novel regulators in avian pathogenic Escherichia coli (APEC) were identified and designated as AutA and AutR. RT-PCR and β-galactosidase assay results showed that AutA and AutR co-regulated the expression of adhesin UpaB in APEC strain DE205B. Electrophoretic mobility shift assay showed that AutA and AutR could directly bind the upaB promoter DNA. In vitro transcription assay indicated that AutA could activate the upaB transcription, while AutR inhibited the upaB transcription due to directly suppressing the activating effect of AutA on UpaB expression. Transcriptome analysis showed that AutA and AutR coherently affected the expression of hundreds of genes. Our study confirmed that AutA and AutR co-regulated the expression of DE205B K1 capsule and acid resistance systems in E. coli acid fitness island (AFI). Moreover, phenotypic heterogeneity in expression of K1 capsule and acid resistance systems in AFI during host-pathogen interaction was associated with the regulation of AutA and AutR. Collectively speaking, our studies presented that AutA and AutR are involved in APEC adaptive lifestyle change to facilitate its infection.

  20. Transcriptional organization and in vivo role of the Escherichia coli rsd gene, encoding the regulator of RNA polymerase sigma D.

    PubMed

    Jishage, M; Ishihama, A

    1999-06-01

    The regulator of sigma D (Rsd) was identified as an RNA polymerase sigma70-associated protein in stationary-phase Escherichia coli with the inhibitory activity of sigma70-dependent transcription in vitro (M. Jishage and A. Ishihama, Proc. Natl. Acad. Sci. USA 95:4953-4958, 1998). Primer extension analysis of rsd mRNA indicated the presence of two promoters, sigmaS-dependent P1 and sigma70-dependent P2 with the gearbox sequence. To get insight into the in vivo role of Rsd, the expression of a reporter gene fused to either the sigma70- or sigmaS-dependent promoter was analyzed in the absence of Rsd or the presence of overexpressed Rsd. In the rsd null mutant, the sigma70- and sigmaS-dependent gene expression was increased or decreased, respectively. On the other hand, the sigma70- or sigmaS-dependent transcription was reduced or enhanced, respectively, after overexpression of Rsd. The repression of the sigmaS-dependent transcription in the rsd mutant is overcome by increased production of the sigmaS subunit. Together these observations support the prediction that Rsd is involved in replacement of the RNA polymerase sigma subunit from sigma70 to sigmaS during the transition from exponential growth to the stationary phase.

  1. Temperature-Dependent Model of Multi-step Transcription Initiation in Escherichia coli Based on Live Single-Cell Measurements

    PubMed Central

    Lloyd-Price, Jason; Tran, Huy; Ribeiro, Andre S.

    2016-01-01

    Transcription kinetics is limited by its initiation steps, which differ between promoters and with intra- and extracellular conditions. Regulation of these steps allows tuning both the rate and stochasticity of RNA production. We used time-lapse, single-RNA microscopy measurements in live Escherichia coli to study how the rate-limiting steps in initiation of the Plac/ara-1 promoter change with temperature and induction scheme. For this, we compared detailed stochastic models fit to the empirical data in maximum likelihood sense using statistical methods. Using this analysis, we found that temperature affects the rate limiting steps unequally, as nonlinear changes in the closed complex formation suffice to explain the differences in transcription dynamics between conditions. Meanwhile, a similar analysis of the PtetA promoter revealed that it has a different rate limiting step configuration, with temperature regulating different steps. Finally, we used the derived models to explore a possible cause for why the identified steps are preferred as the main cause for behavior modifications with temperature: we find that transcription dynamics is either insensitive or responds reciprocally to changes in the other steps. Our results suggests that different promoters employ different rate limiting step patterns that control not only their rate and variability, but also their sensitivity to environmental changes. PMID:27792724

  2. The primary σ factor in Escherichia coli can access the transcription elongation complex from solution in vivo

    PubMed Central

    Goldman, Seth R; Nair, Nikhil U; Wells, Christopher D; Nickels, Bryce E; Hochschild, Ann

    2015-01-01

    The σ subunit of bacterial RNA polymerase (RNAP) confers on the enzyme the ability to initiate promoter-specific transcription. Although σ factors are generally classified as initiation factors, σ can also remain associated with, and modulate the behavior of, RNAP during elongation. Here we establish that the primary σ factor in Escherichia coli, σ70, can function as an elongation factor in vivo by loading directly onto the transcription elongation complex (TEC) in trans. We demonstrate that σ70 can bind in trans to TECs that emanate from either a σ70-dependent promoter or a promoter that is controlled by an alternative σ factor. We further demonstrate that binding of σ70 to the TEC in trans can have a particularly large impact on the dynamics of transcription elongation during stationary phase. Our findings establish a mechanism whereby the primary σ factor can exert direct effects on the composition of the entire transcriptome, not just that portion that is produced under the control of σ70-dependent promoters. DOI: http://dx.doi.org/10.7554/eLife.10514.001 PMID:26371553

  3. The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli.

    PubMed

    Morin, Manon; Ropers, Delphine; Letisse, Fabien; Laguerre, Sandrine; Portais, Jean-Charles; Cocaign-Bousquet, Muriel; Enjalbert, Brice

    2016-05-01

    Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism.

  4. sRNA-Mediated Control of Transcription Termination in E. coli.

    PubMed

    Sedlyarova, Nadezda; Shamovsky, Ilya; Bharati, Binod K; Epshtein, Vitaly; Chen, Jiandong; Gottesman, Susan; Schroeder, Renée; Nudler, Evgeny

    2016-09-22

    Bacterial small RNAs (sRNAs) have been implicated in various aspects of post-transcriptional gene regulation. Here, we demonstrate that sRNAs also act at the level of transcription termination. We use the rpoS gene, which encodes a general stress sigma factor σ(S), as a model system, and show that sRNAs DsrA, ArcZ, and RprA bind the rpoS 5'UTR to suppress premature Rho-dependent transcription termination, both in vitro and in vivo. sRNA-mediated antitermination markedly stimulates transcription of rpoS during the transition to the stationary phase of growth, thereby facilitating a rapid adjustment of bacteria to global metabolic changes. Next generation RNA sequencing and bioinformatic analysis indicate that Rho functions as a global "attenuator" of transcription, acting at the 5'UTR of hundreds of bacterial genes, and that its suppression by sRNAs is a widespread mode of bacterial gene regulation. PMID:27662085

  5. Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters.

    PubMed

    Winkelman, Jared T; Chandrangsu, Pete; Ross, Wilma; Gourse, Richard L

    2016-03-29

    Most Escherichia coli promoters initiate transcription with a purine 7 or 8 nt downstream from the -10 hexamer, but some promoters, including the ribosomal RNA promoter rrnB P1, start 9 nt from the -10 element. We identified promoter and RNA polymerase determinants of this noncanonical rrnB P1 start site using biochemical and genetic approaches including mutational analysis of the promoter, Fe(2+) cleavage assays to monitor template strand positions near the active-site, and Bpa cross-linking to map the path of open complex DNA at amino acid and nucleotide resolution. We find that mutations in several promoter regions affect transcription start site (TSS) selection. In particular, we show that the absence of strong interactions between the discriminator region and σ region 1.2 and between the extended -10 element and σ region 3.0, identified previously as a determinant of proper regulation of rRNA promoters, is also required for the unusual TSS. We find that the DNA in the single-stranded transcription bubble of the rrnB P1 promoter complex expands and is "scrunched" into the active site channel of RNA polymerase, similar to the situation in initial transcribing complexes. However, in the rrnB P1 open complex, scrunching occurs before RNA synthesis begins. We find that the scrunched open complex exhibits reduced abortive product synthesis, suggesting that scrunching and unusual TSS selection contribute to the extraordinary transcriptional activity of rRNA promoters by increasing promoter escape, helping to offset the reduction in promoter activity that would result from the weak interactions with σ.

  6. Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters.

    PubMed

    Winkelman, Jared T; Chandrangsu, Pete; Ross, Wilma; Gourse, Richard L

    2016-03-29

    Most Escherichia coli promoters initiate transcription with a purine 7 or 8 nt downstream from the -10 hexamer, but some promoters, including the ribosomal RNA promoter rrnB P1, start 9 nt from the -10 element. We identified promoter and RNA polymerase determinants of this noncanonical rrnB P1 start site using biochemical and genetic approaches including mutational analysis of the promoter, Fe(2+) cleavage assays to monitor template strand positions near the active-site, and Bpa cross-linking to map the path of open complex DNA at amino acid and nucleotide resolution. We find that mutations in several promoter regions affect transcription start site (TSS) selection. In particular, we show that the absence of strong interactions between the discriminator region and σ region 1.2 and between the extended -10 element and σ region 3.0, identified previously as a determinant of proper regulation of rRNA promoters, is also required for the unusual TSS. We find that the DNA in the single-stranded transcription bubble of the rrnB P1 promoter complex expands and is "scrunched" into the active site channel of RNA polymerase, similar to the situation in initial transcribing complexes. However, in the rrnB P1 open complex, scrunching occurs before RNA synthesis begins. We find that the scrunched open complex exhibits reduced abortive product synthesis, suggesting that scrunching and unusual TSS selection contribute to the extraordinary transcriptional activity of rRNA promoters by increasing promoter escape, helping to offset the reduction in promoter activity that would result from the weak interactions with σ. PMID:26976590

  7. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli

    PubMed Central

    Gutierrez-Ríos, Rosa María; Freyre-Gonzalez, Julio A; Resendis, Osbaldo; Collado-Vides, Julio; Saier, Milton; Gosset, Guillermo

    2007-01-01

    Background Glucose is the preferred carbon and energy source for Escherichia coli. A complex regulatory network coordinates gene expression, transport and enzyme activities in response to the presence of this sugar. To determine the extent of the cellular response to glucose, we applied an approach combining global transcriptome and regulatory network analyses. Results Transcriptome data from isogenic wild type and crp- strains grown in Luria-Bertani medium (LB) or LB + 4 g/L glucose (LB+G) were analyzed to identify differentially transcribed genes. We detected 180 and 200 genes displaying increased and reduced relative transcript levels in the presence of glucose, respectively. The observed expression pattern in LB was consistent with a gluconeogenic metabolic state including active transport and interconversion of small molecules and macromolecules, induction of protease-encoding genes and a partial heat shock response. In LB+G, catabolic repression was detected for transport and metabolic interconversion activities. We also detected an increased capacity for de novo synthesis of nucleotides, amino acids and proteins. Cluster analysis of a subset of genes revealed that CRP mediates catabolite repression for most of the genes displaying reduced transcript levels in LB+G, whereas Fis participates in the upregulation of genes under this condition. An analysis of the regulatory network, in terms of topological functional units, revealed 8 interconnected modules which again exposed the importance of Fis and CRP as directly responsible for the coordinated response of the cell. This effect was also seen with other not extensively connected transcription factors such as FruR and PdhR, which showed a consistent response considering media composition. Conclusion This work allowed the identification of eight interconnected regulatory network modules that includes CRP, Fis and other transcriptional factors that respond directly or indirectly to the presence of glucose. In

  8. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli.

    PubMed

    Hsu, Shao-Yen; Lin, Yu-Sheng; Li, Shu-Jyuan; Lee, Wen-Chien

    2014-09-01

    A co-expression system was established in Escherichia coli for enhancing the cellular expression of heat shock transcription factor, sigma 32 (σ(32)). A Shine-Dalgarno sequence and the rpoH gene of E. coli, which encodes σ(32), were cloned into a bacterial plasmid containing a gene fusion encoding a doubly tagged N-acetyl-d-neuraminic acid aldolase (GST-Neu5Ac aldolase-5R). After the IPTG induction, a substantially higher level of sigma 32 was observed up to 3 h in the co-expression cells, but an enhancement in the solubility of target protein was manifest only in the first hour. Nevertheless, the co-expression of sigma 32 led to higher level of Neu5Ac aldolase enzymatic activity in both the soluble and insoluble (inclusion body) fractions. The Neu5Ac aldolase activity of the supernatant from the lysate of cells co-expressing GST-Neu5Ac aldolase-5R and recombinant σ(32) was 3.4-fold higher at 3 h postinduction than that in cells overexpressing GST-Neu5Ac aldolase-5R in the absence of recombinantly expressed σ(32). The results of acrylamide quenching indicated that the conformational quality of the fusion protein was improved by the co-expression of recombinant σ(32). Thus, the increased level of intracellular σ(32) might have created favorable conditions for the proper folding of recombinant proteins through the cooperative effects of chaperones/heat shock proteins expressed by the E. coli host, which resulted in smaller inclusion bodies, improved conformational quality and a higher specific activity of the overexpressed GST-Neu5Ac aldolase-5R protein.

  9. GreA and GreB Enhance Expression of Escherichia coli RNA Polymerase Promoters in a Reconstituted Transcription-Translation System.

    PubMed

    Maddalena, Lea L de; Niederholtmeyer, Henrike; Turtola, Matti; Swank, Zoe N; Belogurov, Georgiy A; Maerkl, Sebastian J

    2016-09-16

    Cell-free environments are becoming viable alternatives for implementing biological networks in synthetic biology. The reconstituted cell-free expression system (PURE) allows characterization of genetic networks under defined conditions but its applicability to native bacterial promoters and endogenous genetic networks is limited due to the poor transcription rate of Escherichia coli RNA polymerase in this minimal system. We found that addition of transcription elongation factors GreA and GreB to the PURE system increased transcription rates of E. coli RNA polymerase from sigma factor 70 promoters up to 6-fold and enhanced the performance of a genetic network. Furthermore, we reconstituted activation of natural E. coli promoters controlling flagella biosynthesis by the transcriptional activator FlhDC and sigma factor 28. Addition of GreA/GreB to the PURE system allows efficient expression from natural and synthetic E. coli promoters and characterization of their regulation in minimal and defined reaction conditions, making the PURE system more broadly applicable to study genetic networks and bottom-up synthetic biology.

  10. Quorum sensing transcriptional regulator QseA is essential for the expression of multiple virulence regulons of enterohemorrhagic Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction and Objectives: QseA is one of several transcriptional regulators that regulates the virulence gene expression in enterohemorrhagic Escherichia coli (EHEC) O157:H7 through quorum sensing. QseA has been shown to regulate the expression of the locus of enterocyte effacement (LEE), non-LEE...

  11. Enterohemorrhagic Escherichia coli O157:H7 requires quorum sensing transcriptional regulators QseA and SdiA for colonization and persistence in the bovine intestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    QseA and SdiA are two of several transcriptional regulators that regulate virulence gene expression of enterohemorrhagic Escherichia coli (EHEC) O157:H7 via quorum sensing (QS). QseA regulates the expression of the locus of enterocyte effacement (LEE). LEE encodes for a type III secretion (T3S) sys...

  12. Transcriptional repressor HipB regulates the multiple promoters in Escherichia coli.

    PubMed

    Lin, Chun-Yi; Awano, Naoki; Masuda, Hisako; Park, Jung-Ho; Inouye, Masayori

    2013-01-01

    HipB is a DNA-binding protein in Escherichia coli and negatively regulates its own promoter by binding to the palindromic sequences [TATCCN8GGATA (N represents any nucleotides)] on the hipBA promoter. For such sequences, bioinformatic analysis revealed that there are a total of 39 palindromic sequences (TATCCN(x)GGATA: N is any nucleotides and x is the number of nucleotides from 1 to 30) in the promoter regions of 33 genes on the E. coli genome. Notably, eutH and fadH have two and three TATCCN(x)GGATA palindromic sequences located in their promoters, respectively. Another significant finding was that a palindromic sequence was also identified in the promoter region of hipAB locus, known to be involved in the RelA-dependent persister cell formation in bacteria. Here, we demonstrated that HipB binds to the palindromic structures in the eutH, fadH, as well as the relA promoter regions and represses their expressions. We further demonstrated that HipA enhances the repression of the relA promoter activity by HipB. This effect was not observed with D291A HipA mutant which was previously shown to lack an ability to interact with HipB, indicating that HipA enhances the HipB's repressor activity through direct interaction with HipB.

  13. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: Identifying a surface that binds σ54

    PubMed Central

    Bordes, Patricia; Wigneshweraraj, Siva R.; Schumacher, Jörg; Zhang, Xiaodong; Chaney, Matthew; Buck, Martin

    2003-01-01

    Members of the protein family called ATPases associated with various cellular activities (AAA+) play a crucial role in transforming chemical energy into biological events. AAA+ proteins are complex molecular machines and typically form ring-shaped oligomeric complexes that are crucial for ATPase activity and mechanism of action. The Escherichia coli transcription activator phage shock protein F (PspF) is an AAA+ mechanochemical enzyme that functions to sense and relay the energy derived from nucleoside triphosphate hydrolysis to catalyze transcription by the σ54-RNA polymerase. Closed promoter complexes formed by the σ54-RNA polymerase are substrates for the action of PspF. By using a protein fragmentation approach, we identify here at least one σ54-binding surface in the PspF AAA+ domain. Results suggest that ATP hydrolysis by PspF is coupled to the exposure of at least one σ54-binding surface. This nucleotide hydrolysis-dependent presentation of a substrate binding surface can explain why complexes that form between σ54 and PspF are transient and could be part of a mechanism used generally by other AAA+ proteins to regulate activity. PMID:12601152

  14. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine

    PubMed Central

    Báez-Viveros, José Luis; Flores, Noemí; Juárez, Katy; Castillo-España, Patricia; Bolivar, Francisco; Gosset, Guillermo

    2007-01-01

    Background The rational design of L-phenylalanine (L-Phe) overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS) and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase), reaching yields of 0.33 (g-Phe/g-Glc), which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA) of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB), gluconeogenic (ppsA, pckA) and fermentative enzymes (ldhA) were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt) in the best PTS- L-Phe overproducing strain (PB12-ev2). Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to both PTS inactivation

  15. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase

    PubMed Central

    2009-01-01

    Background The aging process of bacteria in stationary phase is halted if cells are subcultured and enter lag phase and it is then followed by cellular division. Network science has been applied to analyse the transcriptional response, during lag phase, of bacterial cells starved previously in stationary phase for 1 day (young cells) and 16 days (old cells). Results A genome scale network was constructed for E. coli K-12 by connecting genes with operons, transcription and sigma factors, metabolic pathways and cell functional categories. Most of the transcriptional changes were detected immediately upon entering lag phase and were maintained throughout this period. The lag period was longer for older cells and the analysis of the transcriptome revealed different intracellular activity in young and old cells. The number of genes differentially expressed was smaller in old cells (186) than in young cells (467). Relatively, few genes (62) were up- or down-regulated in both cultures. Transcription of genes related to osmotolerance, acid resistance, oxidative stress and adaptation to other stresses was down-regulated in both young and old cells. Regarding carbohydrate metabolism, genes related to the citrate cycle were up-regulated in young cells while old cells up-regulated the Entner Doudoroff and gluconate pathways and down-regulated the pentose phosphate pathway. In both old and young cells, anaerobic respiration and fermentation pathways were down-regulated, but only young cells up-regulated aerobic respiration while there was no evidence of aerobic respiration in old cells. Numerous genes related to DNA maintenance and replication, translation, ribosomal biosynthesis and RNA processing as well as biosynthesis of the cell envelope and flagellum and several components of the chemotaxis signal transduction complex were up-regulated only in young cells. The genes for several transport proteins for iron compounds were up-regulated in both young and old cells. Numerous

  16. Functional analysis of the Escherichia coli K-12 cyn operon transcriptional regulation.

    PubMed Central

    Lamblin, A F; Fuchs, J A

    1994-01-01

    The cynTSX operon enables Escherichia coli K-12 to degrade and use cyanate as a sole nitrogen source. The promoter of this operon is positively regulated by cyanate and the CynR protein. CynR, a member of the LysR family of regulatory proteins, binds specifically to a 136-bp DNA fragment containing both the cynR and the cynTSX promoters. In this study, we report the results of DNase I digestion studies showing that CynR protects a 60-bp region on the cynR coding strand and a 56-bp sequence on the cynTSX coding strand. CynR binding was not affected by cyanate or its structural homolog azide, a gratuitous inducer of the operon. However, CynR-induced bending of two different DNA fragments was detected. The amount of bending was decreased by cyanate. Images PMID:7961413

  17. Functional analysis of the Escherichia coli K-12 cyn operon transcriptional regulation.

    PubMed

    Lamblin, A F; Fuchs, J A

    1994-11-01

    The cynTSX operon enables Escherichia coli K-12 to degrade and use cyanate as a sole nitrogen source. The promoter of this operon is positively regulated by cyanate and the CynR protein. CynR, a member of the LysR family of regulatory proteins, binds specifically to a 136-bp DNA fragment containing both the cynR and the cynTSX promoters. In this study, we report the results of DNase I digestion studies showing that CynR protects a 60-bp region on the cynR coding strand and a 56-bp sequence on the cynTSX coding strand. CynR binding was not affected by cyanate or its structural homolog azide, a gratuitous inducer of the operon. However, CynR-induced bending of two different DNA fragments was detected. The amount of bending was decreased by cyanate.

  18. In vitro transcription accurately predicts lac repressor phenotype in vivo in Escherichia coli

    PubMed Central

    2014-01-01

    A multitude of studies have looked at the in vivo and in vitro behavior of the lac repressor binding to DNA and effector molecules in order to study transcriptional repression, however these studies are not always reconcilable. Here we use in vitro transcription to directly mimic the in vivo system in order to build a self consistent set of experiments to directly compare in vivo and in vitro genetic repression. A thermodynamic model of the lac repressor binding to operator DNA and effector is used to link DNA occupancy to either normalized in vitro mRNA product or normalized in vivo fluorescence of a regulated gene, YFP. An accurate measurement of repressor, DNA and effector concentrations were made both in vivo and in vitro allowing for direct modeling of the entire thermodynamic equilibrium. In vivo repression profiles are accurately predicted from the given in vitro parameters when molecular crowding is considered. Interestingly, our measured repressor–operator DNA affinity differs significantly from previous in vitro measurements. The literature values are unable to replicate in vivo binding data. We therefore conclude that the repressor-DNA affinity is much weaker than previously thought. This finding would suggest that in vitro techniques that are specifically designed to mimic the in vivo process may be necessary to replicate the native system. PMID:25097824

  19. Transcriptional regulation by iron of a Vibrio cholerae virulence gene and homology of the gene to the Escherichia coli fur system.

    PubMed

    Goldberg, M B; Boyko, S A; Calderwood, S B

    1990-12-01

    We have previously described an iron-regulated virulence determinant in Vibrio cholerae. Strain MBG40, which contains a TnphoA insertion mutation in the iron-regulated gene irgA, has reduced virulence in a newborn mouse model and has lost the major 77-kDa iron-regulated outer membrane protein. We report here the cloning of the irgA'-'phoA gene fusion, the sequencing of the 5'-proximal portion of irgA, and the definition of its promoter region by primer extension. The deduced amino acid sequence of the amino-terminal portion of IrgA is homologous to the ferrienterochelin receptor of Escherichia coli (FepA), suggesting that IrgA may be the iron-vibriobactin outer membrane receptor. Iron regulation of irgA in an E. coli background and that of the E. coli gene slt-IA in a V. cholerae background are reciprocal, suggesting a common mechanism of iron regulation. Regulation of irgA by iron in V. cholerae occurs at the transcriptional level, and there is an interrupted dyad symmetric sequence in the vicinity of the promoter that is homologous to Fur binding sites of E. coli. Unlike iron-regulated genes in E. coli, however, transcription of irgA requires an additional 900 bp of upstream DNA that contains an open reading frame in inverse orientation to irgA.

  20. LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli.

    PubMed

    Lehnen, D; Blumer, C; Polen, T; Wackwitz, B; Wendisch, V F; Unden, G

    2002-07-01

    The function of the LysR-type regulator LrhA of Escherichia coli was defined by comparing whole-genome mRNA profiles from wild-type E. coli and an isogenic lrhA mutant on a DNA microarray. In the lrhA mutant, a large number (48) of genes involved in flagellation, motility and chemotaxis showed relative mRNA abundances increased by factors between 3 and 80. When a representative set of five flagellar, motility and chemotaxis genes was tested in lacZ reporter gene fusions, similar factors for derepression were found in the lrhA mutant. In gel retardation experiments, the LrhA protein bound specifically to flhD and lrhA promoter DNA (apparent K(D) approximately 20 nM), whereas the promoters of fliC, fliA and trg were not bound by LrhA. The expression of flhDC (encoding FlhD(2)C(2)) was derepressed by a factor of 3.5 in the lrhA mutant. FlhD(2)C(2) is known as the master regulator for the expression of flagellar and chemotaxis genes. By DNase I footprinting, LrhA binding sites at the flhDC and lrhA promoters were identified. The lrhA gene was under positive autoregulation by LrhA as shown by gel retardation and lrhA expression studies. It is suggested that LrhA is a key regulator controlling the transcription of flagellar, motility and chemotaxis genes by regulating the synthesis and concentration of FlhD(2)C(2). PMID:12123461

  1. Transcription of AAT•ATT Triplet Repeats in Escherichia coli Is Silenced by H-NS and IS1E Transposition

    PubMed Central

    Pan, Xuefeng; Liao, Lingni; Yang, Li; Li, Hongquan

    2010-01-01

    Background The trinucleotide repeats AAT•ATT are simple DNA sequences that potentially form different types of non-B DNA secondary structures and cause genomic instabilities in vivo. Methodology and Principal Findings The molecular mechanism underlying the maintenance of a 24-triplet AAT•ATT repeat was examined in E.coli by cloning the repeats into the EcoRI site in plasmid pUC18 and into the attB site on the E.coli genome. Either the AAT or the ATT strand acted as lagging strand template in a replication fork. Propagations of the repeats in either orientation on plasmids did not affect colony morphology when triplet repeat transcription using the lacZ promoter was repressed either by supplementing LacIQ in trans or by adding glucose into the medium. In contrast, transparent colonies were formed by inducing transcription of the repeats, suggesting that transcription of AAT•ATT repeats was toxic to cell growth. Meanwhile, significant IS1E transposition events were observed both into the triplet repeats region proximal to the promoter side, the promoter region of the lacZ gene, and into the AAT•ATT region itself. Transposition reversed the transparent colony phenotype back into healthy, convex colonies. In contrast, transcription of an 8-triplet AAT•ATT repeat in either orientation on plasmids did not produce significant changes in cell morphology and did not promote IS1E transposition events. We further found that a role of IS1E transposition into plasmids was to inhibit transcription through the repeats, which was influenced by the presence of the H-NS protein, but not of its paralogue StpA. Conclusions and Significance Our findings thus suggest that the longer AAT•ATT triplet repeats in E.coli become vulnerable after transcription. H-NS and its facilitated IS1E transposition can silence long triplet repeats transcription and preserve cell growth and survival. PMID:21151567

  2. Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium

    PubMed Central

    Bergholz, Teresa M; Wick, Lukas M; Qi, Weihong; Riordan, James T; Ouellette, Lindsey M; Whittam, Thomas S

    2007-01-01

    Background: Global patterns of gene expression of Escherichia coli K-12 during growth transitions have been deeply investigated, however, comparable studies of E. coli O157:H7 have not been explored, particularly with respect to factors regulating virulence genes and genomic islands specific to this pathogen. To examine the impact of growth phase on the dynamics of the transcriptome, O157:H7 Sakai strain was cultured in MOPS minimal media (0.1% glucose), RNA harvested at 10 time points from early exponential to full stationary phase, and relative gene expression was measured by co-hybridization on high-density DNA microarrays. Expression levels of 14 genes, including those encoding Shiga toxins and other virulence factors associated with the locus of enterocyte effacement (LEE), were confirmed by Q-PCR. Results: Analysis of variance (R/MAANOVA, Fs test) identified 442 (36%) of 1239 O157-specific ORFs and 2110 (59%) of 3647 backbone ORFs that changed in expression significantly over time. QT cluster analysis placed 2468 of the 2552 significant ORFs into 12 groups; each group representing a distinct expression pattern. ORFs from the largest cluster (n = 1078) decreased in expression from late exponential to early stationary phase: most of these ORFs are involved in functions associated with steady state growth. Also represented in this cluster are ORFs of the TAI island, encoding tellurite resistance and urease activity, which decreased ~4-fold. Most ORFs of the LEE pathogenicity island also decreased ~2-fold by early stationary phase. The ORFs encoding proteins secreted via the LEE encoded type III secretion system, such as tccP and espJ, also decreased in expression from exponential to stationary phase. Three of the clusters (n = 154) comprised genes that are transiently upregulated at the transition into stationary phase and included genes involved in nutrient scavenging. Upregulated genes with an increase in mRNA levels from late exponential to early stationary

  3. NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence.

    PubMed

    Naveen, Vankadari; Hsiao, Chwan-Deng

    2016-01-01

    Bacterial ribonucleotide reductases (RNRs) play an important role in the synthesis of dNTPs and their expression is regulated by the transcription factors, NrdR and Fur. Recent transcriptomic studies using deletion mutants have indicated a role for NrdR in bacterial chemotaxis and in the maintenance of topoisomerase levels. However, NrdR deletion alone has no effect on bacterial growth or virulence in infected flies or in human blood cells. Furthermore, transcriptomic studies are limited to the deletion strain alone, and so are inadequate for drawing biological implications when the NrdR repressor is active or abundant. Therefore, further examination is warranted of changes in the cellular proteome in response to both NrdR overexpression, as well as deletion, to better understand its functional relevance as a bacterial transcription repressor. Here, we profile bacterial fate under conditions of overexpression and deletion of NrdR in E. coli. Biochemical assays show auxiliary zinc enhances the DNA binding activity of NrdR. We also demonstrate at the physiological level that increased nrdR expression causes a significant reduction in bacterial growth and fitness even at normal temperatures, and causes lethality at elevated temperatures. Corroborating these direct effects, global proteome analysis following NrdR overexpression showed a significant decrease in global protein expression. In parallel, studies on complementary expression of downregulated essential genes polA, eno and thiL showed partial rescue of the fitness defect caused by NrdR overexpression. Deletion of downregulated non-essential genes ygfK and trxA upon NrdR overexpression resulted in diminished bacterial growth and fitness suggesting an additional role for NrdR in regulating other genes. Moreover, in comparison with NrdR deletion, E. coli cells overexpressing NrdR showed significantly diminished adherence to human epithelial cells, reflecting decreased bacterial virulence. These results suggest

  4. NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence

    PubMed Central

    Naveen, Vankadari; Hsiao, Chwan-Deng

    2016-01-01

    Bacterial ribonucleotide reductases (RNRs) play an important role in the synthesis of dNTPs and their expression is regulated by the transcription factors, NrdR and Fur. Recent transcriptomic studies using deletion mutants have indicated a role for NrdR in bacterial chemotaxis and in the maintenance of topoisomerase levels. However, NrdR deletion alone has no effect on bacterial growth or virulence in infected flies or in human blood cells. Furthermore, transcriptomic studies are limited to the deletion strain alone, and so are inadequate for drawing biological implications when the NrdR repressor is active or abundant. Therefore, further examination is warranted of changes in the cellular proteome in response to both NrdR overexpression, as well as deletion, to better understand its functional relevance as a bacterial transcription repressor. Here, we profile bacterial fate under conditions of overexpression and deletion of NrdR in E. coli. Biochemical assays show auxiliary zinc enhances the DNA binding activity of NrdR. We also demonstrate at the physiological level that increased nrdR expression causes a significant reduction in bacterial growth and fitness even at normal temperatures, and causes lethality at elevated temperatures. Corroborating these direct effects, global proteome analysis following NrdR overexpression showed a significant decrease in global protein expression. In parallel, studies on complementary expression of downregulated essential genes polA, eno and thiL showed partial rescue of the fitness defect caused by NrdR overexpression. Deletion of downregulated non-essential genes ygfK and trxA upon NrdR overexpression resulted in diminished bacterial growth and fitness suggesting an additional role for NrdR in regulating other genes. Moreover, in comparison with NrdR deletion, E. coli cells overexpressing NrdR showed significantly diminished adherence to human epithelial cells, reflecting decreased bacterial virulence. These results suggest

  5. Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli.

    PubMed

    Blumer, Caroline; Kleefeld, Alexandra; Lehnen, Daniela; Heintz, Margit; Dobrindt, Ulrich; Nagy, Gábor; Michaelis, Kai; Emödy, Levente; Polen, Tino; Rachel, Reinhard; Wendisch, Volker F; Unden, Gottfried

    2005-10-01

    Type 1 fimbriae of Escherichia coli facilitate attachment to the host mucosa and promote biofilm formation on abiotic surfaces. The transcriptional regulator LrhA, which is known as a repressor of flagellar, motility and chemotaxis genes, regulates biofilm formation and expression of type 1 fimbriae. Whole-genome expression profiling revealed that inactivation of lrhA results in an increased expression of structural components of type 1 fimbriae. In vitro, LrhA bound to the promoter regions of the two fim recombinases (FimB and FimE) that catalyse the inversion of the fimA promoter, and to the invertible element itself. Translational lacZ fusions with these genes and quantification of fimE transcript levels by real-time PCR showed that LrhA influences type 1 fimbrial phase variation, primarily via activation of FimE, which is required for the ON-to-OFF transition of the fim switch. Enhanced type 1 fimbrial expression as a result of lrhA disruption was confirmed by mannose-sensitive agglutination of yeast cells. Biofilm formation was stimulated by lrhA inactivation and completely suppressed upon LrhA overproduction. The effects of LrhA on biofilm formation were exerted via the changed levels of surface molecules, most probably both flagella and type 1 fimbriae. Together, the data show a role for LrhA as a repressor of type 1 fimbrial expression, and thus as a regulator of the initial stages of biofilm development and, presumably, bacterial adherence to epithelial host cells also. PMID:16207912

  6. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli.

    PubMed

    Cohen, Susan E; Walker, Graham C

    2010-01-12

    Stress-induced mutagenesis describes the accumulation of mutations that occur in nongrowing cells, in contrast to mutagenesis that occurs in actively dividing populations, and has been referred to as stationary-phase or adaptive mutagenesis. The most widely studied system for stress-induced mutagenesis involves monitoring the appearance of Lac(+) revertants of the strain FC40 under starvation conditions in Escherichia coli. The SOS-inducible translesion DNA polymerase DinB plays an important role in this phenomenon. Loss of DinB (DNA pol IV) function results in a severe reduction of Lac(+) revertants. We previously reported that NusA, an essential component of elongating RNA polymerases, interacts with DinB. Here we report our unexpected observation that wild-type NusA function is required for stress-induced mutagenesis. We present evidence that this effect is unlikely to be due to defects in transcription of lac genes but rather is due to an inability to adapt and mutate in response to environmental stress. Furthermore, we extended our analysis to the formation of stress-induced mutants in response to antibiotic treatment, observing the same striking abolition of mutagenesis under entirely different conditions. Our results are the first to implicate NusA as a crucial participant in the phenomenon of stress-induced mutagenesis. PMID:20036541

  7. Long-range transcriptional interference in E. coli used to construct a dual positive selection system for genetic switches

    PubMed Central

    Hoffmann, Stefan A.; Kruse, Sabrina M.; Arndt, Katja M.

    2016-01-01

    We have investigated transcriptional interference between convergent genes in E. coli and demonstrate substantial interference for inter-promoter distances of as far as 3 kb. Interference can be elicited by both strong σ70 dependent and T7 promoters. In the presented design, a strong promoter driving gene expression of a ‘forward’ gene interferes with the expression of a ‘reverse’ gene by a weak promoter. This arrangement allows inversely correlated gene expression without requiring further regulatory components. Thus, modulation of the activity of the strong promoter alters expression of both the forward and the reverse gene. We used this design to develop a dual selection system for conditional operator site binding, allowing positive selection both for binding and for non-binding to DNA. This study demonstrates the utility of this novel system using the Lac repressor as a model protein for conditional DNA binding, and spectinomycin and chloramphenicol resistance genes as positive selection markers in liquid culture. Randomized LacI libraries were created and subjected to subsequent dual selection, but mispairing IPTG and selection cues in respect to the wild-type LacI response, allowing the isolation of a LacI variant with a reversed IPTG response within three rounds of library generation and dual selection. PMID:26932362

  8. RNA initiation with dinucleoside monophosphates during transcription of bacteriophage T4 DNA with RNA polymerase of Escherichia coli.

    PubMed

    Hoffman, D J; Niyogi, S K

    1973-02-01

    The effects of dinucleoside monophosphates on the transcription of phage T4 DNA by E. coli RNA polymerase have been examined at various concentrations of the sigma subunit and extremely low concentration of ribonucleoside triphosphate. The following conclusions were reached: (i) Labeled specific dinucleoside monophosphates are incorporated as chain initiators. (ii) When the ratio of sigma factor to core enzyme is small, there is a general stimulation by most 5'-guanosyl dinucleoside monophosphates. (iii) When the ratio is increased or holoenzyme is present, ApU, CpA, UpA, and GpU are the most effective stimulators. (iv) At high concentrations of sigma factor, only certain adenosine-containing dinucleoside monophosphates (ApU, CpA, UpA, and ApA) stimulate the reaction. (v) Competition hybridization studies indicate that the RNAs stimulated by dinucleoside monophosphates (ApU, CpA, UpA, and GpU) are of the T4 "early" type. (vi) Studies involving both combinations of stimulatory dinucleoside monophosphates and competitive effects of these compounds on chain initiation by ATP and GTP suggest that the stimulatory dinucleoside monophosphates act as chain initiators and may recognize part of a continuous sequence in a promoter region. Studies based on the incorporation of (3)H-labeled stimulatory dinucleoside monophosphates support the above conclusions.

  9. Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli.

    PubMed

    Schalow, Brandy J; Courcelle, Charmain T; Courcelle, Justin

    2012-05-01

    Transcription-coupled repair (TCR) is a cellular process by which some forms of DNA damage are repaired more rapidly from transcribed strands of active genes than from nontranscribed strands or the overall genome. In humans, the TCR coupling factor, CSB, plays a critical role in restoring transcription following both UV-induced and oxidative DNA damage. It also contributes indirectly to the global repair of some forms of oxidative DNA damage. The Escherichia coli homolog, Mfd, is similarly required for TCR of UV-induced lesions. However, its contribution to the restoration of transcription and to global repair of oxidative damage has not been examined. Here, we report the first direct study of transcriptional recovery following UV-induced and oxidative DNA damage in E. coli. We observed that mutations in mfd or uvrA reduced the rate that transcription recovered following UV-induced damage. In contrast, no difference was detected in the rate of transcription recovery in mfd, uvrA, fpg, nth, or polB dinB umuDC mutants relative to wild-type cells following oxidative damage. mfd mutants were also fully resistant to hydrogen peroxide (H(2)O(2)) and removed oxidative lesions from the genome at rates comparable to wild-type cells. The results demonstrate that Mfd promotes the rapid recovery of gene expression following UV-induced damage in E. coli. In addition, these findings imply that Mfd may be functionally distinct from its human CSB homolog in that it does not detectably contribute to the recovery of gene expression or global repair following oxidative damage.

  10. Transcription termination at the Escherichia coli thra terminator by spinach chloroplast RNA polymerase in vitro is influenced by downstream DNA sequences.

    PubMed Central

    Chen, L J; Liang, Y J; Jeng, S T; Orozco, E M; Gumport, R I; Lin, C H; Yang, M T

    1995-01-01

    We have investigated the mechanism of transcription termination in vitro by spinach chloroplast RNA polymerase using templates encoding variants of the transcription-termination structure (attenuator) of the regulatory region of the threonine (thr) operon of Escherichia coli. Fourteen sequence variants located within its d(G+C) stem-loop and d(A+T)-rich regions were studied. We found that the helix integrity in the stem-loop structure is necessary for termination but that its stability is not directly correlated with termination efficiency. The sequence of the G+C stem-loop itself also influences termination. Moreover, the dA template stretch at the 3' end of the terminator plays a major role in termination efficiency, but base pairing between the A and U tract of the transcript does not. From the studies using deletion variants and a series of mutants that alter the sequences immediately downstream from the transcription termination site, we found that termination of transcription by spinach chloroplast RNA polymerase was also modulated by downstream DNA sequences in a sequence-specific manner. The second base immediately following the poly(T) tract is crucial for determining the termination efficiency by chloroplast RNA polymerase, but not of the T7 or E.coli enzymes. Images PMID:8524662

  11. Physiological and Transcriptional Characterization of Escherichia Coli Strains Lacking Interconversion of Phosphoenolpyruvate and Pyruvate When Glucose and Acetate are Coutilized

    PubMed Central

    Sabido, Andrea; Sigala, Juan Carlos; Hernández-Chávez, Georgina; Flores, Noemí; Gosset, Guillermo; Bolívar, Francisco

    2013-01-01

    Phosphoenolpyruvate (PEP) is a precursor involved in the biosynthesis of aromatics and other valuable compounds in Escherichia coli. The PEP:carbohydrate phosphotransferase system (PTS) is the major glucose transport system and the largest PEP consumer. To increase intracellular PEP availability for aromatics production purposes, mutant strains of E. coli JM101 devoid of the ptsHIcrr operon (PB11 strain) have been previously generated. In this derivative, transport and growth rate on glucose decreased significantly. A laboratory evolved strain derived from PB11 that partially recovered its growth capacity on glucose was named PB12. In the present study, we blocked carbon skeletons interchange between PEP and pyruvate (PYR) in these ptsHIcrr− strains by deleting the pykA, pykF, and ppsA genes. The PB11 pykAF− ppsA− strain exhibited no growth on glucose or acetate alone, but it was viable when both substrates were consumed simultaneously. In contrast, the PB12 pykAF− ppsA− strain displayed a low growth rate on glucose or acetate alone, but in the mixture, growth was significantly improved. RT-qPCR expression analysis of PB11 pykAF− ppsA− growing with both carbon sources showed a downregulation of all central metabolic pathways compared with its parental PB11 strain. Under the same conditions, transcription of most of the genes in PB12 pykAF− ppsA− did not change, and few like aceBAK, sfcA, and poxB were overexpressed compared with PB12. We explored the aromatics production capabilities of both ptsHIcrr− pykAF− ppsA− strains and the engineered PB12 pykAF− ppsA− tyrR− pheAev2+/pJLBaroGfbrtktA enhanced the yield of aromatic compounds when coutilizing glucose and acetate compared with the control strain PB12 tyrR− pheAev2+/pJLBaroGfbrtktA. Biotechnol. Bioeng. 2014;111: 1150–1160. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:24375081

  12. Characterization of the LysR-type transcriptional regulator YcjZ-like from Xylella fastidiosa overexpressed in Escherichia coli.

    PubMed

    Santiago, André S; Santos, Clelton A; Mendes, Juliano S; Toledo, Marcelo A S; Beloti, Lilian L; Souza, Alessandra A; Souza, Anete P

    2015-09-01

    The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress. PMID:25979465

  13. Transcriptional termination at a fully rho-independent site in Escherichia coli is prevented by uninterrupted translation of the nascent RNA.

    PubMed Central

    Wright, J J; Hayward, R S

    1987-01-01

    We have examined the possibility that translation reading through a fully rho-independent transcriptional terminator in Escherichia coli might prevent termination, as already established for rho-dependent terminators. Plasmids were constructed with and without interposition of the rho-independent coliphage T7 'early' terminator between a promoter and galK. Our constructions ensured either that there was no upstream translation, or that translation (initiated at the galE ribosome binding site) stopped upstream of, or at the normal position (the T7 gene 1.3 stop codon) with respect to, the transcriptional terminator; or else downstream of both this stop codon and the terminator. Our galactokinase enzyme and mRNA measurements on strains harbouring these plasmids indicate that 'readthrough translation' eliminates transcriptional termination at the T7 site. This effect is suppressed if the rate of ribosome movement is reduced with fusidic acid. PMID:3036492

  14. Transcriptional Regulation of the Outer Membrane Porin Gene ompW Reveals its Physiological Role during the Transition from the Aerobic to the Anaerobic Lifestyle of Escherichia coli.

    PubMed

    Xiao, Minfeng; Lai, Yong; Sun, Jian; Chen, Guanhua; Yan, Aixin

    2016-01-01

    Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in Escherichia coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  15. Transcriptional Regulation of the Outer Membrane Porin Gene ompW Reveals its Physiological Role during the Transition from the Aerobic to the Anaerobic Lifestyle of Escherichia coli.

    PubMed

    Xiao, Minfeng; Lai, Yong; Sun, Jian; Chen, Guanhua; Yan, Aixin

    2016-01-01

    Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in Escherichia coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli. PMID:27303386

  16. Transcriptional Regulation of the Outer Membrane Porin Gene ompW Reveals its Physiological Role during the Transition from the Aerobic to the Anaerobic Lifestyle of Escherichia coli

    PubMed Central

    Xiao, Minfeng; Lai, Yong; Sun, Jian; Chen, Guanhua; Yan, Aixin

    2016-01-01

    Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in Escherichia coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli. PMID:27303386

  17. Identification and transcriptional analysis of the Escherichia coli htrE operon which is homologous to pap and related pilin operons.

    PubMed Central

    Raina, S; Missiakas, D; Baird, L; Kumar, S; Georgopoulos, C

    1993-01-01

    We have characterized a new Escherichia coli operon consisting of two genes, ecpD and htrE. The ecpD gene encodes a 27-kDa protein which is 40% identical at the amino acid level to the pilin chaperone PapD family of proteins. Immediately downstream of the ecpD gene is the htrE gene. The htrE gene encodes a polypeptide of 95 kDa which is processed to a 92-kDa mature species. The HtrE protein is 38% identical to the type II pilin porin protein PapC. The ecpD htrE operon is located at 3.3 min on the genetic map, corresponding to the region from kbp 153 to 157 of the E. coli physical map. The htrE gene was identified on the basis of a Tn5 insertion mutation which resulted in a temperature-sensitive growth phenotype above 43.5 degrees C. The transcription of this operon is induced with a temperature shift from 22 to 37 or 42 degrees C but not to higher temperatures, e.g., 50 degrees C. Consistent with this result, the temperature-induced transcription was shown to be independent of the rpoH gene product (sigma 32). The transcription of this operon was further shown to require functional integration host factor protein, since himA or himD mutant bacteria possessed lower levels of ecpD htrE transcripts. Among the three transcriptional start sites discovered, one, defined by the P2 promoter, was found to be under the positive regulation of the katF (rpoS) gene, which encodes a putative sigma factor required for the transcription of many growth phase-regulated genes. Images PMID:8102362

  18. Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp.

    PubMed

    My, Laetitia; Rekoske, Brian; Lemke, Justin J; Viala, Julie P; Gourse, Richard L; Bouveret, Emmanuelle

    2013-08-01

    In Escherichia coli, FadR and FabR are transcriptional regulators that control the expression of fatty acid degradation and unsaturated fatty acid synthesis genes, depending on the availability of fatty acids. In this report, we focus on the dual transcriptional regulator FadR. In the absence of fatty acids, FadR represses the transcription of fad genes required for fatty acid degradation. However, FadR is also an activator, stimulating transcription of the products of the fabA and fabB genes responsible for unsaturated fatty acid synthesis. In this study, we show that FadR directly activates another fatty acid synthesis promoter, PfabH, which transcribes the fabHDG operon, indicating that FadR is a global regulator of both fatty acid degradation and fatty acid synthesis. We also demonstrate that ppGpp and its cofactor DksA, known primarily for their role in regulation of the synthesis of the translational machinery, directly inhibit transcription from the fabH promoter. ppGpp also inhibits the fadR promoter, thereby reducing transcription activation of fabH by FadR indirectly. Our study shows that both ppGpp and FadR have direct roles in the control of fatty acid promoters, linking expression in response to both translation activity and fatty acid availability.

  19. Contribution of individual promoters in the ddlB-ftsZ region to the transcription of the essential cell-division gene ftsZ in Escherichia coli.

    PubMed

    Flärdh, K; Garrido, T; Vicente, M

    1997-06-01

    The essential cell-division gene ftsZ is transcribed in Escherichia coli from at least six promoters found within the coding regions of the upstream ddlB, ftsQ, and ftsA genes. The contribution of each one to the final yield of ftsZ transcription has been estimated using transcriptional lacZ fusions. The most proximal promoter, ftsZ2p, contributes less than 5% of the total transcription from the region that reaches ftsZ. The ftsZ4p and ftsZ3p promoters, both located inside ftsA, produce almost 37% of the transcription. An ftsAp promoter within the ftsQ gene yields nearly 12% of total transcription from the region. A large proportion of transcription (approximately 46%) derives from promoters ftsQ2p and ftsQ1p, which are located inside the upstream ddlB gene. Thus, the ftsQAZ genes are to a large extent transcribed as a polycistronic mRNA. However, we find that the ftsZ proximal region is necessary for full expression, which is in agreement with a recent report that mRNA cleavage by RNase E at the end of the ftsA cistron has a significant role in the contol of ftsZ expression.

  20. Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli.

    PubMed Central

    Gish, K; Yanofsky, C

    1995-01-01

    Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and transcription attenuation. Elevated levels of tryptophan induce transcription antitermination at one or more Rho factor-dependent termination sites in the leader region of the operon. Induction requires translation of a 24-residue coding region, tnaC, located in the 319-nucleotide transcribed leader region preceding tnaA, the structural gene for tryptophanase. In the present paper, we show that two bacterial species that lack tryptophanase activity, Enterobacter aerogenes and Salmonella typhimurium, allow tryptophanase induction and tna operon regulation when they carry a plasmid containing the E. coli tna operon. The role of tnaC in induction was examined by introducing mutations in a 24-nucleotide segment of tnaC of E. coli surrounding and including the crucial Trp codon 12. Some mutations resulted in a noninducible phenotype; these mostly introduced nonconservative amino acid substitutions in TnaC. Other mutations had little or no effect; these generally were in third positions of codons or introduced conservative amino acid replacements. A tryptophan-inserting, UGA-reading glutamine suppressor tRNA was observed to restore partial regulation when Trp codon 12 of tnaC was changed to UGA. Stop codons introduced downstream of Trp codon 12 in all three reading frames established that induction requires translation in the natural tnaC reading frame. Our findings suggest that the TnaC leader peptide acts in cis to prevent Rho-dependent termination. PMID:8522534

  1. Regulation of Expression of the adhE Gene, Encoding Ethanol Oxidoreductase in Escherichia coli: Transcription from a Downstream Promoter and Regulation by Fnr and RpoS

    PubMed Central

    Membrillo-Hernández, Jorge; Lin, E. C. C.

    1999-01-01

    The adhE gene of Escherichia coli, located at min 27 on the chromosome, encodes the bifunctional NAD-linked oxidoreductase responsible for the conversion of acetyl-coenzyme A to ethanol during fermentative growth. The expression of adhE is dependent on both transcriptional and posttranscriptional controls and is about 10-fold higher during anaerobic than during aerobic growth. Two putative transcriptional start sites have been reported: one at position −292 and the other at −188 from the translational start codon ATG. In this study we show, by using several different transcriptional and translational fusions to the lacZ gene, that both putative transcriptional start sites can be functional and each site can be redox regulated. Although both start sites are NarL repressible in the presence of nitrate, Fnr activates only the −188 start site and Fis is required for the transcription of only the −292 start site. In addition, it was discovered that RpoS activates adhE transcription at both start sites. Under all experimental conditions tested, however, only the upstream start site is active. Available evidence indicates that under those conditions, the upstream promoter region acts as a silencer of the downstream transcriptional start site. Translation of the mRNA starting at −292, but not the one starting at −188, requires RNase III. The results support the previously postulated ribosomal binding site (RBS) occlusion model, according to which RNase III cleavage is required to release the RBS from a stem-loop structure in the long transcript. PMID:10601216

  2. CD14 and Complement Crosstalk and Largely Mediate the Transcriptional Response to Escherichia coli in Human Whole Blood as Revealed by DNA Microarray

    PubMed Central

    Lau, Corinna; Nygård, Ståle; Fure, Hilde; Olstad, Ole Kristoffer; Holden, Marit; Lappegård, Knut Tore; Brekke, Ole-Lars; Espevik, Terje; Hovig, Eivind; Mollnes, Tom Eirik

    2015-01-01

    Systemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation. PMID:25706641

  3. The Molybdate-Responsive Escherichia coli ModE Transcriptional Regulator Coordinates Periplasmic Nitrate Reductase (napFDAGHBC) Operon Expression with Nitrate and Molybdate Availability

    PubMed Central

    McNicholas, Paul M.; Gunsalus, Robert P.

    2002-01-01

    Expression of the Escherichia coli napFDAGHBC operon (also known as aeg46.5), which encodes the periplasmic molybdoenzyme for nitrate reduction, is increased in response to anaerobiosis and further stimulated by the addition of nitrate or to a lesser extent by nitrite to the cell culture medium. These changes are mediated by the transcription factors Fnr and NarP, respectively. Utilizing a napF-lacZ operon fusion, we demonstrate that napF gene expression is impaired in strain defective for the molybdate-responsive ModE transcription factor. This control abrogates nitrate- or nitrite-dependent induction during anaerobiosis. Gel shift and DNase I footprinting analyses establish that ModE binds to the napF promoter with an apparent Kd of about 35 nM at a position centered at −133.5 relative to the start of napF transcription. Although the ModE binding site sequence is similar to other E. coli ModE binding sites, the location is atypical, because it is not centered near the start of transcription. Introduction of point mutations in the ModE recognition site severely reduced or abolished ModE binding in vitro and conferred a modE phenotype (i.e., loss of molybdate-responsive gene expression) in vivo. In contrast, deletion of the upstream ModE region site rendered napF expression independent of modE. These findings indicate the involvement of an additional transcription factor to help coordinate nitrate- and molybdate-dependent napF expression by the Fnr, NarP, NarL, and ModE proteins. The upstream ModE regulatory site functions to override nitrate control of napF gene expression when the essential enzyme component, molybdate, is limiting in the cell environment. PMID:12029041

  4. Escherichia coli Mutants Thermosensitive for Deoxyribonucleic Acid Gyrase Subunit A: Effects on Deoxyribonucleic Acid Replication, Transcription, and Bacteriophage Growth

    PubMed Central

    Kreuzer, Kenneth N.; Cozzarelli, Nicholas R.

    1979-01-01

    Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [3H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [3H]uridine pulses and continuously administered [3H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages φX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling

  5. Escherichia coli mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth.

    PubMed

    Kreuzer, K N; Cozzarelli, N R

    1979-11-01

    Temperature-sensitive nalA mutants of Escherichia coli have been used to investigate the structure and functions of deoxyribonucleic acid (DNA) gyrase. Extracts of one such mutant (nalA43) had thermosensitive DNA gyrase subunit A activity but normal gyrase subunit B activity, proving definitively that nalA is the structural gene for subunit A. Extracts of a second nalA (Ts) mutant (nalA45) had a 50-fold deficiency of gyrase subunit A activity. The residual DNA supertwisting was catalyzed by the mutant DNA gyrase rather than by a novel supertwisting enzyme. The nalA45(Ts) extract was also deficient in the nalidixic acid target, which is defined as the protein necessary to confer drug sensitivity to in vitro DNA replication directed by a nalidixic acid-resistant mutant extract. Thus, gyrase subunit A and the nalidixic acid target are one and the same protein, the nalA gene product. Shift of the nalA43(Ts) mutant to a nonpermissive temperature resulted in a precipitous decline in the rate of [(3)H]thymidine incorporation, demonstrating an obligatory role of the nalA gene product in DNA replication. The rates of incorporation of [(3)H]uridine pulses and continuously administered [(3)H]uracil were quickly reduced approximately twofold upon temperature shift of the nalA43(Ts) mutant, and therefore some but not all transcription requires the nalA gene product. The thermosensitive growth of bacteriophages phiX174 and T4 in the nalA43(Ts) host shows that these phages depend on the host nalA gene product. In contrast, the growth of phage T7 was strongly inhibited by nalidixic acid but essentially unaffected by the nalA43(Ts) mutation. The inhibition of T7 growth by nalidixic acid was, however, eliminated by temperature inactivation of the nal43 gene product. Therefore, nalidixic acid may block T7 growth by a corruption rather than a simple elimination of the nalidixic acid target. Possible mechanisms for such a corruption are considered, and their relevance to the puzzling

  6. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock.

    PubMed

    Zhao, Peng; Zhou, Zhengfu; Zhang, Wei; Lin, Min; Chen, Ming; Wei, Gehong

    2015-04-01

    Improving the microbial tolerance to stresses is very important for bioprocesses. Our previous study showed that IrrE, a global regulator from the extremely radioresistant bacterium Deinococcus radiodurans, dramatically enhanced the multi-stress tolerance of Escherichia coli when expressed exogenously. However, the function of IrrE is still unclear. In this study, we used whole-genome microarray assays to profile the global gene expression of the IrrE-expressing E. coli strain MGE and the control strain MGT with or without salt shock. The analysis showed that IrrE expression led to many differentially expressed genes in E. coli, which were responsible for the transport and metabolism of trehalose and glycerol, nucleotide biosynthesis, carbon source utilization, amino acid utilization, and acid resistance, including many RpoS-dependent genes, e.g., the trehalose biosynthesis genes otsAB, the acid-resistance genes gadABC and uspB, the osmotic and oxidative stress response genes katE (response to DNA damage stimulus and stress) and osmBC (response to stress), and gadWX (which controls the transcription of pH-inducible genes). The intracellular content of trehalose and glycerol increased significantly in the IrrE-expressing strain after NaCl treatment for 0 and 60 min as determined by HPLC. These results indicated the possibility that IrrE regulates the global regulator RpoS. Interestingly, we found that although IrrE did not affect the level of the rpoS transcript, it enhanced the accumulation of the RpoS protein by increasing the expression of the antiadaptors, AppY, IraM and IraD, which inhibit RpoS degradation, suggesting that the accumulation of RpoS due to IrrE regulation is an important way to improve tolerance to salt and other stresses in E. coli. PMID:25703007

  7. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock.

    PubMed

    Zhao, Peng; Zhou, Zhengfu; Zhang, Wei; Lin, Min; Chen, Ming; Wei, Gehong

    2015-04-01

    Improving the microbial tolerance to stresses is very important for bioprocesses. Our previous study showed that IrrE, a global regulator from the extremely radioresistant bacterium Deinococcus radiodurans, dramatically enhanced the multi-stress tolerance of Escherichia coli when expressed exogenously. However, the function of IrrE is still unclear. In this study, we used whole-genome microarray assays to profile the global gene expression of the IrrE-expressing E. coli strain MGE and the control strain MGT with or without salt shock. The analysis showed that IrrE expression led to many differentially expressed genes in E. coli, which were responsible for the transport and metabolism of trehalose and glycerol, nucleotide biosynthesis, carbon source utilization, amino acid utilization, and acid resistance, including many RpoS-dependent genes, e.g., the trehalose biosynthesis genes otsAB, the acid-resistance genes gadABC and uspB, the osmotic and oxidative stress response genes katE (response to DNA damage stimulus and stress) and osmBC (response to stress), and gadWX (which controls the transcription of pH-inducible genes). The intracellular content of trehalose and glycerol increased significantly in the IrrE-expressing strain after NaCl treatment for 0 and 60 min as determined by HPLC. These results indicated the possibility that IrrE regulates the global regulator RpoS. Interestingly, we found that although IrrE did not affect the level of the rpoS transcript, it enhanced the accumulation of the RpoS protein by increasing the expression of the antiadaptors, AppY, IraM and IraD, which inhibit RpoS degradation, suggesting that the accumulation of RpoS due to IrrE regulation is an important way to improve tolerance to salt and other stresses in E. coli.

  8. Time-dependent effects of transcription- and translation-halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes.

    PubMed

    Bakshi, Somenath; Choi, Heejun; Mondal, Jagannath; Weisshaar, James C

    2014-11-01

    Previously observed effects of rifampicin and chloramphenicol indicate that transcription and translation activity strongly affect the coarse spatial organization of the bacterial cytoplasm. Single-cell, time-resolved, quantitative imaging of chromosome and ribosome spatial distributions and ribosome diffusion in live Escherichia coli provides insight into the underlying mechanisms. Monte Carlo simulations of model DNA-ribosome mixtures support a novel nucleoid-ribosome mixing hypothesis. In normal conditions, 70S-polysomes and the chromosomal DNA segregate, while 30S and 50S ribosomal subunits are able to penetrate the nucleoids. Growth conditions and drug treatments determine the partitioning of ribosomes into 70S-polysomes versus free 30S and 50S subunits. Entropic and excluded volume effects then dictate the resulting chromosome and ribosome spatial distributions. Direct observation of radial contraction of the nucleoids 0-5 min after treatment with either transcription- or translation-halting drugs supports the hypothesis that simultaneous transcription, translation, and insertion of proteins into the membrane ('transertion') exerts an expanding force on the chromosomal DNA. Breaking of the DNA-RNA polymerase-mRNA-ribosome-membrane chain in either of two ways causes similar nucleoid contraction on a similar timescale. We suggest that chromosomal expansion due to transertion enables co-transcriptional translation throughout the nucleoids.

  9. Domain I of 23S rRNA competes with a paused transcription complex for ribosomal protein L4 of Escherichia coli.

    PubMed Central

    Zengel, J M; Lindahl, L

    1993-01-01

    Ribosomal protein L4 of Escherichia coli regulates expression of its own eleven gene S10 operon both by inhibiting translation and by stimulating premature termination of transcription. Both regulatory processes presumably involve L4 recognition of the S10 leader RNA. To help define L4's regulatory target, we have investigated the protein's cognate target on 23S rRNA. Binding of L4 to various fragments of the 23S rRNA was monitored by determining their ability to sequester L4 in an in vitro transcription system and thereby eliminate the protein's effect on transcription. Using this approach we identified a region of about 110 bases within domain I of 23S rRNA which binds L4. A two base deletion within this region, close to the base to which L4 has been cross-linked in intact 50S subunits, eliminates L4 binding. These results also confirm the prediction of the autogenous control model, that L4 bound to its target on rRNA is not active in regulating transcription of the S10 operon. Images PMID:7685080

  10. The Escherichia coli FIS protein is not required for the activation of tyrT transcription on entry into exponential growth.

    PubMed Central

    Lazarus, L R; Travers, A A

    1993-01-01

    The Escherichia coli DNA bending protein factor for inversion stimulation (FIS), is neither necessary nor responsible for the stimulation of transcription from the wild type promoter for the tyrT operon (encoding a species of tyrosine tRNA) that occurs upon resumption of exponential growth. This conclusion is unexpected given that the regulatory element required for optimal transcription of tyrT contains three binding sites for FIS protein. In addition, it is in apparent conflict with reports from other laboratories which have described FIS-dependent activation of the stable RNA promoters rrnB P1 and thrU(tufB) in vivo. However, tyrT transcription is stimulated in a FIS-dependent manner both in vivo and in vitro when promoter function is impaired by mutation of the promoter itself or by the addition of the polymerase effector guanosine 5'-diphosphate 3'-diphosphate. These conditions, which expose a requirement for activation of stable RNA synthesis by FIS, suggest that FIS serves an adaptive role permitting high levels of stable RNA transcription on nutritional shift-up when RNA polymerase levels are depleted. In principle such a mechanism could confer a significant selective advantage thus accounting for the conservation of FIS binding sites in the regulatory regions of stable RNA promoters. Images PMID:7685276

  11. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32.

    PubMed Central

    Tomoyasu, T; Gamer, J; Bukau, B; Kanemori, M; Mori, H; Rutman, A J; Oppenheim, A B; Yura, T; Yamanaka, K; Niki, H

    1995-01-01

    Escherichia coli FtsH is an essential integral membrane protein that has an AAA-type ATPase domain at its C-terminal cytoplasmic part, which is homologous to at least three ATPase subunits of the eukaryotic 26S proteasome. We report here that FtsH is involved in degradation of the heat-shock transcription factor sigma 32, a key element in the regulation of the E. coli heat-shock response. In the temperature-sensitive ftsH1 mutant, the amount of sigma 32 at a non-permissive temperature was higher than in the wild-type under certain conditions due to a reduced rate of degradation. In an in vitro system with purified components, FtsH catalyzed ATP-dependent degradation of biologically active histidine-tagged sigma 32. FtsH has a zinc-binding motif similar to the active site of zinc-metalloproteases. Protease activity of FtsH for histidine-tagged sigma 32 was stimulated by Zn2+ and strongly inhibited by the heavy metal chelating agent o-phenanthroline. We conclude that FtsH is a novel membrane-bound, ATP-dependent metalloprotease with activity for sigma 32. These findings indicate a new mechanism of gene regulation in E. coli. Images PMID:7781608

  12. A Novel Two-Component Signaling System That Activates Transcription of an Enterohemorrhagic Escherichia coli Effector Involved in Remodeling of Host Actin▿

    PubMed Central

    Reading, Nicola C.; Torres, Alfredo G.; Kendall, Melissa M.; Hughes, David T.; Yamamoto, Kaneyoshi; Sperandio, Vanessa

    2007-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for worldwide outbreaks of bloody diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome. After colonizing the large intestine, EHEC forms attaching and effacing (AE) lesions on intestinal epithelial cells. These lesions cause destruction of the microvilli and elicit actin rearrangement to form pedestals that cup each bacterium individually. EHEC responds to a signal produced by the intestinal microbial flora, autoinducer-3 (AI-3), and the host hormones epinephrine and norepinephrine to activate transcription of the genes involved in AE lesion formation. These three signals, involved in interkingdom communication, are sensed by bacterial sensor kinases. Here we describe a novel two-component system, QseEF (quorum-sensing E. coli regulators E and F), which is part of the AI-3/epinephrine/norepinephrine signaling system. QseE is the sensor kinase and QseF the response regulator. The qseEF genes are cotranscribed, and transcription of qseEF is activated by epinephrine through the QseC sensor. A qseF mutant does not form AE lesions. QseF activates transcription of the gene encoding EspFu, an effector protein translocated to the host cell by the EHEC, which mimics a eukaryotic SH2/SH3 adapter protein to engender actin polymerization during pedestal formation. Expression of the espFu gene from a plasmid restored AE lesion formation to the qseF mutant, suggesting that lack of espFu expression in this mutant was responsible for the loss of pedestal formation. These findings suggest the QseEF is a two-component system involved in the regulation of AE lesion formation by EHEC. PMID:17220220

  13. Insights into transcription termination of Hfq-binding sRNAs of Escherichia coli and characterization of readthrough products

    PubMed Central

    Morita, Teppei; Ueda, Masaki; Kubo, Kento; Aiba, Hiroji

    2015-01-01

    The genes encoding Hfq-dependent sRNAs possess a typical Rho-independent transcription terminator. Here, we have studied the molecular events occurring at Rho-independent terminators of sRNA genes, focusing on two well-characterized Hfq-binding sRNAs, SgrS and RyhB. We constructed several hybrid genes in which the DNA sequence corresponding to a strong Rho-independent terminator was placed just downstream from the Rho-independent terminators of sRNA genes. By using this system, we demonstrate that transcripts frequently read through the Rho-independent terminators of sgrS and ryhB in normally growing cells. We show that Hfq does not affect the transcriptional readthrough event itself. We also find that the readthrough products no longer bind to Hfq in vivo. We have developed a competition assay based on a biotin–streptavidin system to analyze the interaction of Hfq and a particular RNA molecule in vitro. By using this method, we verify that the 3′-extended form of SgrS does not bind to Hfq in vitro. Finally, we demonstrate that transcription termination is significantly enhanced under stress conditions where transcription initiation of sRNA genes on the chromosome is induced. We conclude that the production of sRNAs is regulated not only at the step of transcription initiation but also at the step of transcription termination. The mechanism by which transcription termination is enhanced under stress conditions remains to be understood. PMID:26106215

  14. Insights into the architecture and stoichiometry of Escherichia coli PepA*DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy.

    PubMed

    Minh, Phu Nguyen Le; Devroede, Neel; Massant, Jan; Maes, Dominique; Charlier, Daniel

    2009-04-01

    Multifunctional Aminopeptidase A (PepA) from Escherichia coli is involved in the control of two distinct DNA transaction processes: transcriptional repression of the carAB operon, encoding carbamoyl phosphate synthase and site-specific resolution of ColE1-type plasmid multimers. Both processes require communication at a distance along a DNA molecule and PepA is the major structural component of the nucleoprotein complexes that underlie this communication. Atomic Force Microscopy was used to analyze the architecture of PepA.carAB and PepA.cer site complexes. Contour length measurements, bending angle analyses and volume determinations demonstrate that the carP1 operator is foreshortened by approximately 235 bp through wrapping around one PepA hexamer. The highly deformed part of the operator extends from slightly upstream of the -35 hexamer of the carP1 promoter to just downstream of the IHF-binding site, and comprises the binding sites for the PurR and RutR transcriptional regulators. This extreme remodeling of the carP1 control region provides a straightforward explanation for the strict requirement of PepA in the establishment of pyrimidine and purine-specific repression of carAB transcription. We further provide a direct physical proof that PepA is able to synapse two cer sites in direct repeat in a large interwrapped nucleoprotein complex, likely comprising two PepA hexamers. PMID:19136463

  15. The impact of oregano (Origanum heracleoticum) essential oil and carvacrol on virulence gene transcription by Escherichia coli O157:H7.

    PubMed

    Mith, Hasika; Clinquart, Antoine; Zhiri, Abdesselam; Daube, Georges; Delcenserie, Véronique

    2015-01-01

    The aim of the current study was to determine, via reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, the effect of oregano essential oil (Origanum heracleoticum) and carvacrol, its major component, on the expression of virulence-associated genes in enterohaemorrhagic Escherichia coli (EHEC) O157:H7 ATCC strain 35150. Both oregano oil and carvacrol demonstrated their efficacy firstly, by inhibiting the transcription of the ler gene involved in upregulation of the LEE2, LEE3 and LEE4 promoters and of attaching and effacing lesions and secondly by decreasing both Shiga toxin and fliC genes expression. In addition, a decrease in luxS gene transcription involved in quorum sensing was observed. These results were dose dependent and showed a specific effect of O. heracleoticum and carvacrol in downregulating the expression of virulence genes in EHEC O157:H7. These findings suggest that oregano oil and carvacrol have the potential to mitigate the adverse health effects caused by virulence gene expression in EHEC O157:H7, through the use of these substances as natural antibacterial additives in foods or as an alternative to antibiotics. PMID:25790499

  16. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard; Palsson, Bernhard O

    2015-08-25

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs) belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids), cell wall synthesis (lipid A biosynthesis and peptidoglycan growth), and divalent metal ion transport (Mn(2+), Zn(2+), and Mg(2+)). Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs.

  17. Links between Transcription, Environmental Adaptation and Gene Variability in Escherichia coli: Correlations between Gene Expression and Gene Variability Reflect Growth Efficiencies.

    PubMed

    Feugeas, Jean-Paul; Tourret, Jerome; Launay, Adrien; Bouvet, Odile; Hoede, Claire; Denamur, Erick; Tenaillon, Olivier

    2016-10-01

    Gene expression is known to be the principle factor explaining how fast genes evolve. Highly transcribed genes evolve slowly because any negative impact caused by a particular mutation is magnified by protein abundance. However, gene expression is a phenotype that depends both on the environment and on the strains or species. We studied this phenotypic plasticity by analyzing the transcriptome profiles of four Escherichia coli strains grown in three different culture media, and explored how expression variability was linked to gene allelic diversity. Genes whose expression changed according to the media and not to the strains were less polymorphic than other genes. Genes for which transcription depended predominantly on the strain were more polymorphic than other genes and were involved in sensing and responding to environmental changes, with an overrepresentation of two-component system genes. Surprisingly, we found that the correlation between transcription and gene diversity was highly variable among growth conditions and could be used to quantify growth efficiency of a strain in a medium. Genetic variability was found to increase with gene expression in poor growth conditions. As such conditions are also characterized by down-regulation of all DNA repair systems, including transcription-coupled repair, we suggest that gene expression under stressful conditions may be mutagenic and thus leads to a variability in mutation rate among genes in the genome which contributes to the pattern of protein evolution.

  18. An Interplay among FIS, H-NS, and Guanosine Tetraphosphate Modulates Transcription of the Escherichia coli cspA Gene under Physiological Growth Conditions

    PubMed Central

    Brandi, Anna; Giangrossi, Mara; Giuliodori, Anna M.; Falconi, Maurizio

    2016-01-01

    CspA, the most characterized member of the csp gene family of Escherichia coli, is highly expressed not only in response to cold stress, but also during the early phase of growth at 37°C. Here, we investigate at molecular level the antagonistic role played by the nucleoid proteins FIS and H-NS in the regulation of cspA expression under non-stress conditions. By means of both probing experiments and immunological detection, we demonstrate in vitro the existence of binding sites for these proteins on the cspA regulatory region, in which FIS and H-NS bind simultaneously to form composite DNA-protein complexes. While the in vitro promoter activity of cspA is stimulated by FIS and repressed by H-NS, a compensatory effect is observed when both proteins are added in the transcription assay. Consistently with these findings, inactivation of fis and hns genes reversely affect the in vivo amount of cspA mRNA. In addition, by means of strains expressing a high level of the alarmone guanosine tetraphosphate ((p)ppGpp) and in vitro transcription assays, we show that the cspA promoter is sensitive to (p)ppGpp inhibition. The (p)ppGpp-mediated expression of fis and hns genes is also analyzed, thus clarifying some aspects of the regulatory loop governing cspA transcription. PMID:27252944

  19. An Interplay among FIS, H-NS, and Guanosine Tetraphosphate Modulates Transcription of the Escherichia coli cspA Gene under Physiological Growth Conditions.

    PubMed

    Brandi, Anna; Giangrossi, Mara; Giuliodori, Anna M; Falconi, Maurizio

    2016-01-01

    CspA, the most characterized member of the csp gene family of Escherichia coli, is highly expressed not only in response to cold stress, but also during the early phase of growth at 37°C. Here, we investigate at molecular level the antagonistic role played by the nucleoid proteins FIS and H-NS in the regulation of cspA expression under non-stress conditions. By means of both probing experiments and immunological detection, we demonstrate in vitro the existence of binding sites for these proteins on the cspA regulatory region, in which FIS and H-NS bind simultaneously to form composite DNA-protein complexes. While the in vitro promoter activity of cspA is stimulated by FIS and repressed by H-NS, a compensatory effect is observed when both proteins are added in the transcription assay. Consistently with these findings, inactivation of fis and hns genes reversely affect the in vivo amount of cspA mRNA. In addition, by means of strains expressing a high level of the alarmone guanosine tetraphosphate ((p)ppGpp) and in vitro transcription assays, we show that the cspA promoter is sensitive to (p)ppGpp inhibition. The (p)ppGpp-mediated expression of fis and hns genes is also analyzed, thus clarifying some aspects of the regulatory loop governing cspA transcription. PMID:27252944

  20. The impact of oregano (Origanum heracleoticum) essential oil and carvacrol on virulence gene transcription by Escherichia coli O157:H7.

    PubMed

    Mith, Hasika; Clinquart, Antoine; Zhiri, Abdesselam; Daube, Georges; Delcenserie, Véronique

    2015-01-01

    The aim of the current study was to determine, via reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, the effect of oregano essential oil (Origanum heracleoticum) and carvacrol, its major component, on the expression of virulence-associated genes in enterohaemorrhagic Escherichia coli (EHEC) O157:H7 ATCC strain 35150. Both oregano oil and carvacrol demonstrated their efficacy firstly, by inhibiting the transcription of the ler gene involved in upregulation of the LEE2, LEE3 and LEE4 promoters and of attaching and effacing lesions and secondly by decreasing both Shiga toxin and fliC genes expression. In addition, a decrease in luxS gene transcription involved in quorum sensing was observed. These results were dose dependent and showed a specific effect of O. heracleoticum and carvacrol in downregulating the expression of virulence genes in EHEC O157:H7. These findings suggest that oregano oil and carvacrol have the potential to mitigate the adverse health effects caused by virulence gene expression in EHEC O157:H7, through the use of these substances as natural antibacterial additives in foods or as an alternative to antibiotics.

  1. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655.

    PubMed

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard; Palsson, Bernhard O

    2015-08-25

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs) belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids), cell wall synthesis (lipid A biosynthesis and peptidoglycan growth), and divalent metal ion transport (Mn(2+), Zn(2+), and Mg(2+)). Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs. PMID:26279566

  2. Solubility Partner IF2 Domain I Enables High Yield Synthesis of Transducible Transcription Factors in E. coli

    PubMed Central

    Yang, William C.; Welsh, John P.; Lee, Jieun; Cooke, John P.; Swartz, James

    2011-01-01

    Since the discovery that somatic cells could be reprogrammed back to a pluripotent state through the viral expression of a certain set of transcription factors, there has been great interest in reprogramming using a safer and more clinically relevant protein-based approach. However, the search for an efficient reprogramming approach utilizing the transcription factors in protein form requires a significant amount of protein material. Milligram quantities of transcription factors are challenging to obtain due to low yields and poor solubility. In this work, we describe enhanced production of the pluripotency transcription factors Oct4, Sox2, Klf4, Nanog, and Lin28 after fusing them to a solubility partner, IF2 Domain I (IF2D1). We expressed and purified milligram quantities of the fusion proteins. Though the transcription factor passenger proteins became insoluble after removal of the IF2D1, the un-cleaved Oct4, Sox2, Klf4, Nanog fusion proteins exhibited specific binding to their consensus DNA sequences. However, when we administered the un-cleaved IF2D1-Oct4-R9 and IF2D1-Sox2-R9 to fibroblasts and measured their ability to influence transcriptional activity, we found that they were not fully bioactive; IF2D1-Oct4-R9 and IF2D1-Sox2-R9 influenced only a subset of their downstream gene targets. Thus, while the IF2D1 solubility partner enabled soluble production of the fusion protein at high levels, it did not yield fully bioactive transcription factors. PMID:21757009

  3. Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene.

    PubMed

    Aldea, M; Garrido, T; Hernández-Chico, C; Vicente, M; Kushner, S R

    1989-12-01

    The bolA gene, which is involved in the morphogenetic pathways of Escherichia coli, was sequenced and two potential promoters were identified. Expression from promoter P1, proximal to the bolA structural gene is specifically induced during the transition to the stationary phase of growth. This promoter contains an unusual--10 region (CGGCTAGTA), which defines a new class of E. coli promoters necessary for the dramatic increase in the rate of synthesis of a large set of proteins during the cessation of logarithmic growth. This conclusion was confirmed by identifying two additional E. coli promoters and one plasmid promoter, which also were induced during the transition to the stationary phase of growth. Analysis of proteins produced during the exponential and stationary phases of growth in a bolA null mutant suggest a possible role for the BolA protein in the induction of the expression of penicillin-binding protein 6 (PBP6) in the transition to the stationary phase. Supporting this hypothesis is the presence of a putative DNA-binding domain within the bolA coding sequence.

  4. Transcription factor CecR (YbiH) regulates a set of genes affecting the sensitivity of Escherichia coli against cefoperazone and chloramphenicol.

    PubMed

    Yamanaka, Yuki; Shimada, Tomohiro; Yamamoto, Kaneyoshi; Ishihama, Akira

    2016-07-01

    Genomic SELEX (systematic evolution of ligands by exponential enrichment) screening was performed for identification of the binding site of YbiH, an as yet uncharacterized TetR-family transcription factor, on the Escherichia coli genome. YbiH was found to be a unique single-target regulator that binds in vitro within the intergenic spacer located between the divergently transcribed ybiH-ybhGFSR and rhlE operons. YbhG is an inner membrane protein and YbhFSR forms a membrane-associated ATP-binding cassette (ABC) transporter while RhlE is a ribosome-associated RNA helicase. Gel shift assay and DNase footprinting analyses indicated one clear binding site of YbiH, including a complete palindromic sequence of AATTAGTT-AACTAATT. An in vivo reporter assay indicated repression of the ybiH operon and activation of the rhlE operon by YbiH. After phenotype microarray screening, YbiH was indicated to confer resistance to chloramphenicol and cefazoline (a first-generation cephalosporin). A systematic survey of the participation of each of the predicted YbiH-regulated genes in the antibiotic sensitivity indicated involvement of the YbhFSR ABC-type transporter in the sensitivity to cefoperazone (a third-generation cephalosporin) and of the membrane protein YbhG in the control of sensitivity to chloramphenicol. Taken together with the growth test in the presence of these two antibiotics and in vitro transcription assay, it was concluded that the hitherto uncharacterized YbiH regulates transcription of both the bidirectional transcription units, the ybiH-ybhGFSR operon and the rhlE gene, which altogether are involved in the control of sensitivity to cefoperazone and chloramphenicol. We thus propose to rename YbiH as CecR (regulator of cefoperazone and chloramphenicol sensitivity). PMID:27112147

  5. Correlation of Antagonistic Regulation of leuO Transcription with the Cellular Levels of BglJ-RcsB and LeuO in Escherichia coli

    PubMed Central

    Breddermann, Hannes; Schnetz, Karin

    2016-01-01

    LeuO is a conserved and pleiotropic transcription regulator, antagonist of the nucleoid-associated silencer protein H-NS, and important for pathogenicity and multidrug resistance in Enterobacteriaceae. Regulation of transcription of the leuO gene is complex. It is silenced by H-NS and its paralog StpA, and it is autoregulated. In addition, in Escherichia coli leuO is antagonistically regulated by the heterodimeric transcription regulator BglJ-RcsB and by LeuO. BglJ-RcsB activates leuO, while LeuO inhibits activation by BglJ-RcsB. Furthermore, LeuO activates expression of bglJ, which is likewise H-NS repressed. Mutual activation of leuO and bglJ resembles a double-positive feedback network, which theoretically can result in bi-stability and heterogeneity, or be maintained in a stable OFF or ON states by an additional signal. Here we performed quantitative and single-cell expression analyses to address the antagonistic regulation and feedback control of leuO transcription by BglJ-RcsB and LeuO using a leuO promoter mVenus reporter fusion and finely tunable bglJ and leuO expression plasmids. The data revealed uniform regulation of leuO expression in the population that correlates with the relative cellular concentration of BglJ and LeuO. The data are in agreement with a straightforward model of antagonistic regulation of leuO expression by the two regulators, LeuO and BglJ-RcsB, by independent mechanisms. Further, the data suggest that at standard laboratory growth conditions feedback regulation of leuO is of minor relevance and that silencing of leuO and bglJ by H-NS (and StpA) keeps these loci in the OFF state.

  6. Transcriptional activation of the aldehyde reductase YqhD by YqhC and its implication in glyoxal metabolism of Escherichia coli K-12.

    PubMed

    Lee, Changhan; Kim, Insook; Lee, Junghoon; Lee, Kang-Lok; Min, Bumchan; Park, Chankyu

    2010-08-01

    The reactive alpha-oxoaldehydes such as glyoxal (GO) and methylglyoxal (MG) are generated in vivo from sugars through oxidative stress. GO and MG are believed to be removed from cells by glutathione-dependent glyoxalases and other aldehyde reductases. We isolated a number of GO-resistant (GO(r)) mutants from Escherichia coli strain MG1655 on LB plates containing 10 mM GO. By tagging the mutations with the transposon TnphoA-132 and determining their cotransductional linkages, we were able to identify a locus to which most of the GO(r) mutations were mapped. DNA sequencing of the locus revealed that it contains the yqhC gene, which is predicted to encode an AraC-type transcriptional regulator of unknown function. The GO(r) mutations we identified result in missense changes in yqhC and were concentrated in the predicted regulatory domain of the protein, thereby constitutively activating the product of the adjacent gene yqhD. The transcriptional activation of yqhD by wild-type YqhC and its mutant forms was established by an assay with a beta-galactosidase reporter fusion, as well as with real-time quantitative reverse transcription-PCR. We demonstrated that YqhC binds to the promoter region of yqhD and that this binding is abolished by a mutation in the potential target site, which is similar to the consensus sequence of its homolog SoxS. YqhD facilitates the removal of GO through its NADPH-dependent enzymatic reduction activity by converting it to ethadiol via glycolaldehyde, as detected by nuclear magnetic resonance, as well as by spectroscopic measurements. Therefore, we propose that YqhC is a transcriptional activator of YqhD, which acts as an aldehyde reductase with specificity for certain aldehydes, including GO.

  7. Correlation of Antagonistic Regulation of leuO Transcription with the Cellular Levels of BglJ-RcsB and LeuO in Escherichia coli

    PubMed Central

    Breddermann, Hannes; Schnetz, Karin

    2016-01-01

    LeuO is a conserved and pleiotropic transcription regulator, antagonist of the nucleoid-associated silencer protein H-NS, and important for pathogenicity and multidrug resistance in Enterobacteriaceae. Regulation of transcription of the leuO gene is complex. It is silenced by H-NS and its paralog StpA, and it is autoregulated. In addition, in Escherichia coli leuO is antagonistically regulated by the heterodimeric transcription regulator BglJ-RcsB and by LeuO. BglJ-RcsB activates leuO, while LeuO inhibits activation by BglJ-RcsB. Furthermore, LeuO activates expression of bglJ, which is likewise H-NS repressed. Mutual activation of leuO and bglJ resembles a double-positive feedback network, which theoretically can result in bi-stability and heterogeneity, or be maintained in a stable OFF or ON states by an additional signal. Here we performed quantitative and single-cell expression analyses to address the antagonistic regulation and feedback control of leuO transcription by BglJ-RcsB and LeuO using a leuO promoter mVenus reporter fusion and finely tunable bglJ and leuO expression plasmids. The data revealed uniform regulation of leuO expression in the population that correlates with the relative cellular concentration of BglJ and LeuO. The data are in agreement with a straightforward model of antagonistic regulation of leuO expression by the two regulators, LeuO and BglJ-RcsB, by independent mechanisms. Further, the data suggest that at standard laboratory growth conditions feedback regulation of leuO is of minor relevance and that silencing of leuO and bglJ by H-NS (and StpA) keeps these loci in the OFF state. PMID:27695690

  8. Genome-Wide Transcriptional Analysis of the Cold Shock Response in Wild-Type and Cold-Sensitive, Quadruple-csp-Deletion Strains of Escherichia coli

    PubMed Central

    Phadtare, Sangita; Inouye, Masayori

    2004-01-01

    A DNA microarray-based global transcript profiling of Escherichia coli in response to cold shock showed that in addition to the known cold shock-inducible genes, new genes such as the flagellar operon, those encoding proteins involved in sugar transport and metabolism, and remarkably, genes encoding certain heat shock proteins are induced by cold shock. In the light of strong reduction in metabolic activity of the cell after temperature downshift, the induction of sugar metabolism machinery is unexpected. The deletion of four csps (cspA, cspB, cspG, and cspE) affected cold shock induction of mostly those genes that are transiently induced in the acclimation phase, emphasizing that CspA homologues are essential in the acclimation phase. Relevance of these findings with respect to the known RNA chaperone function of CspA homologues is discussed. PMID:15466053

  9. Fnr-, NarP- and NarL-dependent regulation of transcription initiation from the Haemophilus influenzae Rd napF (periplasmic nitrate reductase) promoter in Escherichia coli K-12.

    PubMed

    Stewart, Valley; Bledsoe, Peggy J

    2005-10-01

    Periplasmic nitrate reductase (napFDAGHBC operon product) functions in anaerobic respiration. Transcription initiation from the Escherichia coli napF operon control region is activated by the Fnr protein in response to anaerobiosis and by the NarQ-NarP two-component regulatory system in response to nitrate or nitrite. The binding sites for the Fnr and phospho-NarP proteins are centered at positions -64.5 and -44.5, respectively, with respect to the major transcription initiation point. The E. coli napF operon is a rare example of a class I Fnr-activated transcriptional control region, in which the Fnr protein binding site is located upstream of position -60. To broaden our understanding of napF operon transcriptional control, we studied the Haemophilus influenzae Rd napF operon control region, expressed as a napF-lacZ operon fusion in the surrogate host E. coli. Mutational analysis demonstrated that expression required binding sites for the Fnr and phospho-NarP proteins centered at positions -81.5 and -42.5, respectively. Transcription from the E. coli napF operon control region is activated by phospho-NarP but antagonized by the orthologous protein, phospho-NarL. By contrast, expression from the H. influenzae napF-lacZ operon fusion in E. coli was stimulated equally well by nitrate in both narP and narL null mutants, indicating that phospho-NarL and -NarP are equally effective regulators of this promoter. Overall, the H. influenzae napF operon control region provides a relatively simple model for studying synergistic transcription by the Fnr and phospho-NarP proteins acting from class I and class II locations, respectively.

  10. Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR.

    PubMed

    Petersen, C; Møller, L B

    2000-12-31

    We have isolated and characterized a copper sensitive Escherichia coli mutant that is deficient in the copper transporting P-type ATPase encoded by the copA gene (previously ybaR). Measurements of uptake and efflux of 64Cu by wild-type and mutant cells implicated the CopA protein in copper efflux from the cytoplasm, and further demonstrated that cell-associated copper in intact E. coli cells is distributed between two kinetically distinguishable pools, the ratio of which was dramatically disturbed by the copA mutation. Using a copA-lacZ gene fusion the copA promoter was found to be specifically induced by copper, and this induction was shown to be dependent on a MerR-like transcriptional activator encoded by a previously uncharacterized gene, copR (previously ybbI). In the copA deficient background the copA-lacZ fusion was super induced to very high levels even in the absence of copper addition to the medium, and this induction was dependent on CopR. These results indicated that the cytoplasmic copper concentration was dramatically increased in the copA mutant, in agreement with the 64Cu uptake experiments. Moreover, they implied, that the copper concentration in wild type cells is determined primarily by the CopA efflux pump, while copper is taken up by an essentially constitutive mechanism. PMID:11167016

  11. Transcription Analysis of Central Metabolism Genes in Escherichia coli. Possible Roles of σ38 in Their Expression, as a Response to Carbon Limitation

    PubMed Central

    Flores, Noemí; Olvera, Maricela; Sigala, Juan Carlos; Gosset, Guillermo; Morett, Enrique; Bolívar, Francisco

    2009-01-01

    The phosphoenolpyruvate: carbohydrate transferase system (PTS) transports glucose in Escherichia coli. Previous work demonstrated that strains lacking PTS, such as PB11, grow slow on glucose. PB11 has a reduced expression of glycolytic, and upregulates poxB and acs genes as compared to the parental strain JM101, when growing on glucose. The products of the latter genes are involved in the production of AcetylCoA. Inactivation of rpoS that codes for the RNA polymerase σ38 subunit, reduces further (50%) growth of PB11, indicating that σ38 plays a central role in the expression of central metabolism genes in slowly growing cells. In fact, transcription levels of glycolytic genes is reduced in strain PB11rpoS− as compared to PB11. In this report we studied the role of σ70 and σ38 in the expression of the complete glycolytic pathway and poxB and acs genes in certain PTS− strains and their rpoS− derivatives. We determined the transcription start sites (TSSs) and the corresponding promoters, in strains JM101, PB11, its derivative PB12 that recovered its growth capacity, and in their rpoS− derivatives, by 5′RACE and pyrosequencing. In all these genes the presence of sequences resembling σ38 recognition sites allowed the proposition that they could be transcribed by both sigma factors, from overlapping putative promoters that initiate transcription at the same site. Fourteen new TSSs were identified in seventeen genes. Besides, more than 30 putative promoters were proposed and we confirmed ten previously reported. In vitro transcription experiments support the functionality of putative dual promoters. Alternatives that could also explain lower transcription levels of the rpoS− derivatives are discussed. We propose that the presence if real, of both σ70 and σ38 dependent promoters in all glycolytic genes and operons could allow a differential transcription of these central metabolism genes by both sigma subunits as an adaptation response to carbon

  12. Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli.

    PubMed

    Qayyum, M Zuhaib; Dey, Debashish; Sen, Ranjan

    2016-04-01

    NusA is an essential protein that binds to RNA polymerase and also to the nascent RNA and influences transcription by inducing pausing and facilitating the process of transcription termination/antitermination. Its participation in Rho-dependent transcription termination has been perceived, but the molecular nature of this involvement is not known. We hypothesized that, because both Rho and NusA are RNA-binding proteins and have the potential to target the same RNA, the latter is likely to influence the global pattern of the Rho-dependent termination. Analyses of the nascent RNA binding properties and consequent effects on the Rho-dependent termination functions of specific NusA-RNA binding domain mutants revealed an existence of Rho-NusA direct competition for the overlappingnut(NusA-binding site) andrut(Rho-binding site) sites on the RNA. This leads to delayed entry of Rho at therutsite that inhibits the latter's RNA release process. High density tiling microarray profiles of these NusA mutants revealed that a significant number of genes, together with transcripts from intergenic regions, are up-regulated. Interestingly, the majority of these genes were also up-regulated when the Rho function was compromised. These results provide strong evidence for the existence of NusA-binding sites in different operons that are also the targets of Rho-dependent terminations. Our data strongly argue in favor of a direct competition between NusA and Rho for the access of specific sites on the nascent transcripts in different parts of the genome. We propose that this competition enables NusA to function as a global antagonist of the Rho function, which is unlike its role as a facilitator of hairpin-dependent termination.

  13. Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli.

    PubMed

    Qayyum, M Zuhaib; Dey, Debashish; Sen, Ranjan

    2016-04-01

    NusA is an essential protein that binds to RNA polymerase and also to the nascent RNA and influences transcription by inducing pausing and facilitating the process of transcription termination/antitermination. Its participation in Rho-dependent transcription termination has been perceived, but the molecular nature of this involvement is not known. We hypothesized that, because both Rho and NusA are RNA-binding proteins and have the potential to target the same RNA, the latter is likely to influence the global pattern of the Rho-dependent termination. Analyses of the nascent RNA binding properties and consequent effects on the Rho-dependent termination functions of specific NusA-RNA binding domain mutants revealed an existence of Rho-NusA direct competition for the overlappingnut(NusA-binding site) andrut(Rho-binding site) sites on the RNA. This leads to delayed entry of Rho at therutsite that inhibits the latter's RNA release process. High density tiling microarray profiles of these NusA mutants revealed that a significant number of genes, together with transcripts from intergenic regions, are up-regulated. Interestingly, the majority of these genes were also up-regulated when the Rho function was compromised. These results provide strong evidence for the existence of NusA-binding sites in different operons that are also the targets of Rho-dependent terminations. Our data strongly argue in favor of a direct competition between NusA and Rho for the access of specific sites on the nascent transcripts in different parts of the genome. We propose that this competition enables NusA to function as a global antagonist of the Rho function, which is unlike its role as a facilitator of hairpin-dependent termination. PMID:26872975

  14. Evaluation of the impact of quorum sensing transcriptional regulator SdiA on long-term persistence and fecal shedding of Escherichia coli O157:H7 in weaned calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quorum sensing transcriptional regulator SdiA has been shown to enhance the survival of Escherichia coli O157:H7 (O157) in the acidic compartment of bovine rumen in response to N-acyl-L-homoserine lactones (AHLs) produced by the rumen bacteria. Bacteria that survive the rumen environment subsequentl...

  15. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE PAGES

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; Cheng, Xiaodong

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  16. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    SciTech Connect

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; Cheng, Xiaodong

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify a DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.

  17. Non-Invasive Analysis of Recombinant mRNA Stability in Escherichia coli by a Combination of Transcriptional Inducer Wash-Out and qRT-PCR

    PubMed Central

    Kucharova, Veronika; Strand, Trine Aakvik; Almaas, Eivind; Naas, Adrian E.; Brautaset, Trygve; Valla, Svein

    2013-01-01

    mRNA stability is one among many parameters that can potentially affect the level of recombinant gene expression in bacteria. Blocking of the entire prokaryotic transcription machinery by addition of rifampicin is commonly used in protocols for analysis of mRNA stability. Here we show that such treatment can be effectively replaced by a simple, non-invasive method based on removal of the relevant transcriptional inducers and that the mRNA decay can then be followed by qRT-PCR. To establish the methodology we first used the m-toluate-inducible XylS/Pm expression cassette as a model system and analyzed several examples of DNA modifications causing gene expression stimulation in Escherichia coli. The new method allowed us to clearly discriminate whether an improvement in mRNA stability contributes to observed increases in transcript amounts for each individual case. To support the experimental data a simple mathematical fitting model was developed to calculate relative decay rates. We extended the relevance of the method by demonstrating its application also for an IPTG-inducible expression cassette (LacI/Ptac) and by analyzing features of the bacteriophage T7-based expression system. The results suggest that the methodology is useful in elucidating factors controlling mRNA stability as well as other specific features of inducible expression systems. Moreover, as expression systems based on diffusible inducers are almost universally available, the concept can be most likely used to measure mRNA decay for any gene in any cell type that is heavily used in molecular biology research. PMID:23840466

  18. Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation.

    PubMed

    Kaintz, Cornelia; Molitor, Christian; Thill, Jana; Kampatsikas, Ioannis; Michael, Claudia; Halbwirth, Heidi; Rompel, Annette

    2014-09-17

    Polyphenol oxidases are involved in aurone biosynthesis but the gene responsible for 4-deoxyaurone formation in Asteraceae was so far unknown. Three novel full-length cDNA sequences were isolated from Coreopsis grandiflora with sizes of 1.80kb (cgAUS1) and 1.85kb (cgAUS2a, 2b), encoding for proteins of 68-69kDa, respectively. cgAUS1 is preferably expressed in young petals indicating a specific role in pigment formation. The 58.9kDa AUS1 holoproenzyme, was recombinantly expressed in E. coli and purified to homogeneity. The enzyme shows only diphenolase activity, catalyzing the conversion of chalcones to aurones and was characterized by SDS-PAGE and shot-gun type nanoUHPLC-ESI-MS/MS.

  19. Cloning and functional expression in E. coli of a polyphenol oxidase transcript from Coreopsis grandiflora involved in aurone formation☆

    PubMed Central

    Kaintz, Cornelia; Molitor, Christian; Thill, Jana; Kampatsikas, Ioannis; Michael, Claudia; Halbwirth, Heidi; Rompel, Annette

    2014-01-01

    Polyphenol oxidases are involved in aurone biosynthesis but the gene responsible for 4-deoxyaurone formation in Asteraceae was so far unknown. Three novel full-length cDNA sequences were isolated from Coreopsis grandiflora with sizes of 1.80 kb (cgAUS1) and 1.85 kb (cgAUS2a, 2b), encoding for proteins of 68–69 kDa, respectively. cgAUS1 is preferably expressed in young petals indicating a specific role in pigment formation. The 58.9 kDa AUS1 holoproenzyme, was recombinantly expressed in E. coli and purified to homogeneity. The enzyme shows only diphenolase activity, catalyzing the conversion of chalcones to aurones and was characterized by SDS–PAGE and shot-gun type nanoUHPLC–ESI-MS/MS. PMID:25109778

  20. CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress

    PubMed Central

    Holyoake, Louise V.; Hunt, Stuart; Sanguinetti, Guido; Cook, Gregory M.; Howard, Mark J.; Rowe, Michelle L.; Poole, Robert K.; Shepherd, Mark

    2015-01-01

    The glutathione/cysteine exporter CydDC maintains redox balance in Escherichia coli. A cydD mutant strain was used to probe the influence of CydDC upon reduced thiol export, gene expression, metabolic perturbations, intracellular pH homoeostasis and tolerance to nitric oxide (NO). Loss of CydDC was found to decrease extracytoplasmic thiol levels, whereas overexpression diminished the cytoplasmic thiol content. Transcriptomic analysis revealed a dramatic up-regulation of protein chaperones, protein degradation (via phenylpropionate/phenylacetate catabolism), β-oxidation of fatty acids and genes involved in nitrate/nitrite reduction. 1H NMR metabolomics revealed elevated methionine and betaine and diminished acetate and NAD+ in cydD cells, which was consistent with the transcriptomics-based metabolic model. The growth rate and ΔpH, however, were unaffected, although the cydD strain did exhibit sensitivity to the NO-releasing compound NOC-12. These observations are consistent with the hypothesis that the loss of CydDC-mediated reductant export promotes protein misfolding, adaptations to energy metabolism and sensitivity to NO. The addition of both glutathione and cysteine to the medium was found to complement the loss of bd-type cytochrome synthesis in a cydD strain (a key component of the pleiotropic cydDC phenotype), providing the first direct evidence that CydDC substrates are able to restore the correct assembly of this respiratory oxidase. These data provide an insight into the metabolic flexibility of E. coli, highlight the importance of bacterial redox homoeostasis during nitrosative stress, and report for the first time the ability of periplasmic low molecular weight thiols to restore haem incorporation into a cytochrome complex. PMID:26699904

  1. CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress.

    PubMed

    Holyoake, Louise V; Hunt, Stuart; Sanguinetti, Guido; Cook, Gregory M; Howard, Mark J; Rowe, Michelle L; Poole, Robert K; Shepherd, Mark

    2016-03-15

    The glutathione/cysteine exporter CydDC maintains redox balance in Escherichia coli. A cydD mutant strain was used to probe the influence of CydDC upon reduced thiol export, gene expression, metabolic perturbations, intracellular pH homoeostasis and tolerance to nitric oxide (NO). Loss of CydDC was found to decrease extracytoplasmic thiol levels, whereas overexpression diminished the cytoplasmic thiol content. Transcriptomic analysis revealed a dramatic up-regulation of protein chaperones, protein degradation (via phenylpropionate/phenylacetate catabolism), β-oxidation of fatty acids and genes involved in nitrate/nitrite reduction. (1)H NMR metabolomics revealed elevated methionine and betaine and diminished acetate and NAD(+) in cydD cells, which was consistent with the transcriptomics-based metabolic model. The growth rate and ΔpH, however, were unaffected, although the cydD strain did exhibit sensitivity to the NO-releasing compound NOC-12. These observations are consistent with the hypothesis that the loss of CydDC-mediated reductant export promotes protein misfolding, adaptations to energy metabolism and sensitivity to NO. The addition of both glutathione and cysteine to the medium was found to complement the loss of bd-type cytochrome synthesis in a cydD strain (a key component of the pleiotropic cydDC phenotype), providing the first direct evidence that CydDC substrates are able to restore the correct assembly of this respiratory oxidase. These data provide an insight into the metabolic flexibility of E. coli, highlight the importance of bacterial redox homoeostasis during nitrosative stress, and report for the first time the ability of periplasmic low molecular weight thiols to restore haem incorporation into a cytochrome complex.

  2. CydDC-mediated reductant export in Escherichia coli controls the transcriptional wiring of energy metabolism and combats nitrosative stress.

    PubMed

    Holyoake, Louise V; Hunt, Stuart; Sanguinetti, Guido; Cook, Gregory M; Howard, Mark J; Rowe, Michelle L; Poole, Robert K; Shepherd, Mark

    2016-03-15

    The glutathione/cysteine exporter CydDC maintains redox balance in Escherichia coli. A cydD mutant strain was used to probe the influence of CydDC upon reduced thiol export, gene expression, metabolic perturbations, intracellular pH homoeostasis and tolerance to nitric oxide (NO). Loss of CydDC was found to decrease extracytoplasmic thiol levels, whereas overexpression diminished the cytoplasmic thiol content. Transcriptomic analysis revealed a dramatic up-regulation of protein chaperones, protein degradation (via phenylpropionate/phenylacetate catabolism), β-oxidation of fatty acids and genes involved in nitrate/nitrite reduction. (1)H NMR metabolomics revealed elevated methionine and betaine and diminished acetate and NAD(+) in cydD cells, which was consistent with the transcriptomics-based metabolic model. The growth rate and ΔpH, however, were unaffected, although the cydD strain did exhibit sensitivity to the NO-releasing compound NOC-12. These observations are consistent with the hypothesis that the loss of CydDC-mediated reductant export promotes protein misfolding, adaptations to energy metabolism and sensitivity to NO. The addition of both glutathione and cysteine to the medium was found to complement the loss of bd-type cytochrome synthesis in a cydD strain (a key component of the pleiotropic cydDC phenotype), providing the first direct evidence that CydDC substrates are able to restore the correct assembly of this respiratory oxidase. These data provide an insight into the metabolic flexibility of E. coli, highlight the importance of bacterial redox homoeostasis during nitrosative stress, and report for the first time the ability of periplasmic low molecular weight thiols to restore haem incorporation into a cytochrome complex. PMID:26699904

  3. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing

    PubMed Central

    Romero, David A; Hasan, Ayad H; Lin, Yu-fei; Kime, Louise; Ruiz-Larrabeiti, Olatz; Urem, Mia; Bucca, Giselda; Mamanova, Lira; Laing, Emma E; van Wezel, Gilles P; Smith, Colin P; Kaberdin, Vladimir R; McDowall, Kenneth J

    2014-01-01

    Streptomyces coelicolor is a model for studying bacteria renowned as the foremost source of natural products used clinically. Post-genomic studies have revealed complex patterns of gene expression and links to growth, morphological development and individual genes. However, the underlying regulation remains largely obscure, but undoubtedly involves steps after transcription initiation. Here we identify sites involved in RNA processing and degradation as well as transcription within a nucleotide-resolution map of the transcriptional landscape. This was achieved by combining RNA-sequencing approaches suited to the analysis of GC-rich organisms. Escherichia coli was analysed in parallel to validate the methodology and allow comparison. Previously, sites of RNA processing and degradation had not been mapped on a transcriptome-wide scale for E. coli. Through examples, we show the value of our approach and data sets. This includes the identification of new layers of transcriptional complexity associated with several key regulators of secondary metabolism and morphological development in S. coelicolor and the identification of host-encoded leaderless mRNA and rRNA processing associated with the generation of specialized ribosomes in E. coli. New regulatory small RNAs were identified for both organisms. Overall the results illustrate the diversity in mechanisms used by different bacterial groups to facilitate and regulate gene expression. PMID:25266672

  4. Structural modeling of the ExuR and UxuR transcription factors of E. coli: search for the ligands affecting their regulatory properties.

    PubMed

    Tutukina, Maria N; Potapova, Anna V; Vlasov, Peter K; Purtov, Yuri A; Ozoline, Olga N

    2016-10-01

    Gammaproteobacteria get energy for their growth from different carbon sources using either glycolysis or alternative metabolic pathways induced in stress conditions. These metabolic switches are coordinated by complex interplay of regulatory proteins sensing concentrations of available metabolites by mechanisms yet to be understood. Here, we use two transcriptional regulators, ExuR and UxuR, controlling d-galacturonate (d-gal) and d-glucuronate metabolism in Escherichia coli, as the targets for computational search of low-molecular compounds capable to bind their ligand-binding domains. Using a flexible molecular docking, we modeled the interactions of these proteins with substrates and intermediates of glycolysis, Ashwell and Entner-Doudoroff pathways. For UxuR, the two preferred sites of ligand binding were found: one is located within the C-terminal domain, while another occupies the interdomain space. For ExuR, the only one preferred site was detected in the interdomain area. Availability of this area to different ligands suggests that, similar to the Lac repressor, the DNA-binding properties of UxuR and ExuR may be changed by repositioning of their domains. Experimental assays confirmed the ability of ligands with highest affinities to bind the regulatory proteins and affect their interaction with DNA. d-gal that is carried into the cell by the ExuT transporter appeared to be the best ligand for repressor of the exuT transcription, ExuR. For UxuR, the highest affinity was found for d-fructuronate transported by GntP, which biosynthesis is repressed by UxuR. Providing a feedback loop to balance the concentrations of different nutrients, such ligand-mediated modulation can also coordinate switching between different metabolic pathways in bacteria.

  5. Transcriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is dependent on BarA, a probable two-component regulator.

    PubMed

    Mukhopadhyay, S; Audia, J P; Roy, R N; Schellhorn, H E

    2000-07-01

    The stationary phase expression of many conserved, adaptive bacterial proteins is dependent on RpoS, a second vegetative sigma factor. The regulation of RpoS itself, however, is complex and not fully understood, particularly at the level of transcription. In this report, we show that the observed hydrogen peroxide sensitivity of a mutant defective in expression of barA, a bacterial virulence factor, can be explained by a reduction in catalase activity, an RpoS-controlled function. Levels of katE mRNA, encoding the major catalase of Escherichia coli, were much lower in the barA mutant, suggesting that BarA is required for the expression of this RpoS-regulated gene. Expression of another RpoS-regulated gene, osmY, was also found to be severely reduced in the barA mutant. Employing Western analyses with anti-RpoS antisera and Northern analyses using probes specific for rpoS, we found that BarA is required for the exponential phase induction of RpoS itself. Operon lacZ fusion expression studies and Northern analyses indicate that BarA itself is maximally expressed in early exponential phase cultures immediately preceding the transcriptional induction of RpoS. Results of primer extension studies indicate that exponential phase expression from the rpoSp1 promoter is reduced by more than 85% in a barA mutant but could be efficiently complemented by a plasmid-borne copy of barA in trans. These results suggest that regulatory signals that are operant in exponentially growing cultures play an important role in effecting stationary phase gene expression.

  6. Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy.

    PubMed

    Rippe, K; Guthold, M; von Hippel, P H; Bustamante, C

    1997-07-11

    Scanning force microscopy (SFM) has been used to study transcriptional activation of Escherichia coli RNA polymerase x sigma 54 (RNAP x sigma 54) at the glnA promoter by the constitutive mutant NtrC(D54E,S160F) of the NtrC Protein (nitrogen regulatory protein C). DNA-protein complexes were deposited on mica and images were recorded in air. The DNA template was a 726 bp linear fragment with two NtrC binding sites located at the end and about 460 bp away from the RNAP x sigma 54 glnA promoter. By choosing appropriate conditions the structure of various intermediates in the transcription process could be visualized and analyzed: (1) different multimeric complexes of NtrC(D54E,S160F) dimers bound to the DNA template; (2) the closed complex of RNAP x sigma 54 at the glnA promoter; (3) association between DNA bound RNAP x sigma 54 and NtrC(D54E,S160F) with the intervening DNA looped out; and (4) the activated open promoter complex of RNAP x sigma 54. Measurements of the DNA bending angle of RNAP x sigma 54 closed promoter complexes yielded an apparent bending angle of 49(+/-24) degrees. Under conditions that allowed the formation of the open promoter complex, the distribution of bending angles displayed two peaks at 50(+/-24) degrees and 114(+/-18) degrees, suggesting that the transition from the RNAP x sigma 54 closed complex to the open complex is accompanied by an increase of the DNA bending angle.

  7. Crystallization and preliminary X-ray diffraction studies of the transcriptional repressor PaaX, the main regulator of the phenylacetic acid degradation pathway in Escherichia coli W

    PubMed Central

    Rojas-Altuve, Alzoray; Carrasco-López, César; Hernández-Rocamora, Víctor M.; Sanz, Jesús M.; Hermoso, Juan A.

    2011-01-01

    PaaX is the main regulator of the phenylacetic acid aerobic degradation pathway in bacteria and acts as a transcriptional repressor in the absence of its inducer phenylacetyl-coenzyme A. The natural presence and the recent accumulation of a variety of highly toxic aromatic compounds owing to human pollution has created considerable interest in the study of degradation pathways in bacteria, the most important microorganisms capable of recycling these compounds, in order to design and apply novel bioremediation strategies. PaaX from Escherichia coli W was cloned, overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of 0.9 M Li2SO4 and 0.5 M sodium citrate pH 5.8. These crystals, which belonged to the monoclinic space group C2 with unit-cell parameters a = 167.88, b = 106.23, c = 85.87 Å, β = 108.33°, allowed the collection of an X-ray data set to 2.3 Å resolution. PMID:22102047

  8. TdcA, a transcriptional activator of the tdcABC operon of Escherichia coli, is a member of the LysR family of proteins.

    PubMed

    Ganduri, Y L; Sadda, S R; Datta, M W; Jambukeswaran, R K; Datta, P

    1993-09-01

    The tdcB and tdcC genes of the tdcABC operon of Escherichia coli encode threonine dehydratase and a threonine-serine permease, respectively. These proteins are involved in transport and metabolism of threonine and serine during anaerobic growth. In this study, we functionally characterized tdcA, which encodes a 35 kDa polypeptide consisting of 312 amino acid residues. Non-polar and partially polar mutations introduced into tdcA drastically reduced the expression of the genes down-stream from tdcA. Complementation studies using single-copy chromosomal integrants of a tdcB-lacZ fusion harboring an in-frame deletion of tdcA with chromosomal or plasmid-borne tdcA+ in trans showed complete restoration of tdc operon expression in vivo. The amino acid sequence at the amino-terminal end of TdcA revealed a significant homology to the helix-turn-helix motifs of typical DNA binding proteins. Sequence alignment of TdcA with LysR also showed considerable sequence similarity throughout their entire lengths. Our results suggest that TdcA is related to the LysR family of proteins by common ancestry and, based on its functional role in tdc expression, belongs to the LysR family of transcriptional activators.

  9. Transcriptional and Physiological Characterizations of Escherichia coli MG1655 that have been grown under Low Shear Stress Environment for 1000 Generations

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Tirumalai, Madhan R.; Nelman-Gonzalez, Mayra A.; Sams, Clarence F.; Ott, Mark C.; Pierson, Duane L.; Fofanov, Yuriy; Willson, Richard C.; Fox, George E.

    Human space travelers experience a unique environment that affects homeostasis and physio-logic adaptation. One of the important regulatory biology interactions affected by space flight is the alteration of the immune response. As such, the impairment of the immune system may lead to higher risk of bacterial and/or viral infection during human space flight missions. Mi-crobiological contaminants have been a source of concern over the years for NASA and there is evidence to suggest that microbes in space do not behave like they do on Earth. Previ-ous studies have examined the physiological response of bacteria when exposed to short-term microgravity either during spaceflight or in a Low Shear Modeled Microgravity (LSMMG) en-vironment. Exposure to these environments has been found to induce increased resistance to stresses and antibiotics, and in one case increase of virulence. As NASA increases the duration of space flight missions and is starting to envision human presence on the lunar surface and Mars, it becomes legitimate to question the long-term effects of microgravity on bacteria. The effect of long-term exposure to LSMMG on microbial gene expression and physiology in Escherichia coli (E. coli) is being examined using functional genomics, and molecular tech-niques. In previous E. coli short term studies, reproducible changes in transcription were seen but no direct responses to changes in the gravity vector were identified. Instead, absence of shear and a randomized gravity vector appeared to cause local extra-cellular environmental changes, which elicited cellular responses. In order to evaluate the long-term effects of micro-gravity on bacteria, E. coli was grown under simulated microgravity for 1000 generations and gene expression patterns and cellular physiology were analyzed in comparison with short-term exposure. The analysis revealed that the long-term response differed significantly from the short-term exposure and 357 genes were expressed

  10. Structural Basis of Low-Affinity Nickel Binding to the Nickel-Responsive Transcription Factor NikR from Escherichia coli

    SciTech Connect

    Phillips, C.; Schreiter, E; Stultz, C; Drennan, C

    2010-01-01

    Escherichia coli NikR regulates cellular nickel uptake by binding to the nik operon in the presence of nickel and blocking transcription of genes encoding the nickel uptake transporter. NikR has two binding affinities for the nik operon: a nanomolar dissociation constant with stoichiometric nickel and a picomolar dissociation constant with excess nickel [Bloom, S. L., and Zamble, D. B. (2004) Biochemistry 43, 10029-10038; Chivers, P. T., and Sauer, R. T. (2002) Chem. Biol. 9, 1141-1148]. While it is known that the stoichiometric nickel ions bind at the NikR tetrameric interface [Schreiter, E. R., et al. (2003) Nat. Struct. Biol. 10, 794-799; Schreiter, E. R., et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13676-13681], the binding sites for excess nickel ions have not been fully described. Here we have determined the crystal structure of NikR in the presence of excess nickel to 2.6 {angstrom} resolution and have obtained nickel anomalous data (1.4845 {angstrom}) in the presence of excess nickel for both NikR alone and NikR cocrystallized with a 30-nucleotide piece of double-stranded DNA containing the nik operon. These anomalous data show that excess nickel ions do not bind to a single location on NikR but instead reveal a total of 22 possible low-affinity nickel sites on the NikR tetramer. These sites, for which there are six different types, are all on the surface of NikR, and most are found in both the NikR alone and NikR-DNA structures. Using a combination of crystallographic data and molecular dynamics simulations, the nickel sites can be described as preferring octahedral geometry, utilizing one to three protein ligands (typically histidine) and at least two water molecules.

  11. Role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of Dr+ Escherichia coli receptor protein Decay Accelerating Factor (DAF or CD55) by Nitric oxide

    PubMed Central

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2012-01-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr+). The epithelial invasion of Dr+ E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by down-regulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the down-regulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5′-untranslated region and mapped NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5′-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3′-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. The NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. PMID:23176121

  12. Comparative transcriptional profiling reveals differential expression of pathways directly and indirectly influencing biofilm formation in Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Escherichia coli O157:H7 (O157) is a frequent cause of foodborne disease outbreaks. O157 encodes virulence factors for colonizing and survival in reservoir animals and the environment. For example, genetic factors promoting biofilm formation are linked to survival of O157 in and outsid...

  13. E. Coli

    MedlinePlus

    ... E. coli is short for the medical term Escherichia coli . The strange thing about these bacteria — and lots ... cause a very serious infection. Someone who has E. coli infection may have these symptoms: bad stomach cramps and ...

  14. Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides.

    PubMed

    Lang, H P; Cogdell, R J; Gardiner, A T; Hunter, C N

    1994-07-01

    In the purple photosynthetic bacterium Rhodobacter sphaeroides, the desaturation of phytoene has already been implicated in the assembly of the light-harvesting 2 complex (H.P. Lang and C.N. Hunter, Biochem. J. 298:197-205, 1994). The phytoene synthase and desaturase enzymes mediate the first steps specific for carotenoid biosynthesis up to and including the synthesis of the colored carotenoid neurosporene. In this report, we present the DNA and deduced amino acid sequences of the genes encoding these proteins, namely, crtB and crtI, from R. sphaeroides and present evidence for the existence of a crtIB operon. Both genes have been shown to possess putative puc and puf operon-like promoter sequences, and oxygen regulation and the point of initiation of the crtI transcript have been demonstrated. The complete crtI gene has been overexpressed in Escherichia coli and R. sphaeroides and shown to catalyze three desaturations of phytoene to give neurosporene. This activity was shown to be ATP dependent, and the cofactor requirement was investigated by using a spectroscopic assay for in vitro carotenogenic activity. Although the crtI and crtB genes have been sequenced from a number of different organisms, the transcriptional organization and regulation of these genes have not been analyzed in detail. In this report, we have located the transcription initiation point and have shown that R. sphaeroides possesses an oxygen-regulated CrtI-type phytoene desaturase gene that forms a transcriptional operon with crtB.

  15. Divergent transcription of pdxB and homology between the pdxB and serA gene products in Escherichia coli K-12.

    PubMed Central

    Schoenlein, P V; Roa, B B; Winkler, M E

    1989-01-01

    We report the DNA sequence and in vivo transcription start of pdxB, which encodes a protein required for de novo biosynthesis of pyridoxine (vitamin B6). The DNA sequence confirms results from previous minicell experiments showing that pdxB encodes a 41-kilodalton polypeptide. RNase T2 mapping of in vivo transcripts and corroborating experiments with promoter expression vector pKK232-8 demonstrated that the pdxB promoter shares its -10 region with an overlapping, divergent promoter. Thus, pdxB must be the first gene in the complex pdxB-hisT operon. The steady-state transcription level from these divergent promoters, which probably occlude each other, is approximately equal in bacteria growing in rich medium at 37 degrees C. The divergent transcript could encode a polypeptide whose amino-terminal domain is rich in proline and glutamine residues. Similarity searches of protein data bases revealed a significant number of amino acid matches between the pdxB gene product and D-3-phosphoglycerate dehydrogenase, which is encoded by serA and catalyzes the first step in the phosphorylated pathway of serine biosynthesis. FASTA and alignment score analyses indicated that PdxB and SerA are indeed homologs and share a common ancestor. The amino acid alignment between PdxB and SerA implies that PdxB is a 2-hydroxyacid dehydrogenase and suggests possible NAD+, substrate binding, and active sites of both enzymes. Furthermore, the fact that 4-hydroxythreonine, a probable intermediate in pyridoxine biosynthesis, is structurally related to serine strongly suggests that the pdxB gene product is erythronate-4-phosphate dehydrogenase. The homology between PdxB and SerA provides considerable support for Jensen's model of enzyme recruitment as the basis for the evolution of different biosynthetic pathways. Images PMID:2681152

  16. Expression, Functional Characterization and X-ray Analysis of HosA, A Member of MarR Family of Transcription Regulator from Uropathogenic Escherichia coli.

    PubMed

    Roy, Ajit; Reddi, Ravikumar; Sawhney, Bhavik; Ghosh, Debasish Kumar; Addlagatta, Anthony; Ranjan, Akash

    2016-08-01

    Regulators belonging to multiple antibiotic resistance regulator (MarR) family are widespread in prokaryotes and are involved in regulation of genes that are responsible for virulence and pathogenicity in most of the clinically important pathogens. Here we report the transcriptional, biophysical, and X-ray analyses of homologue of SlyA (HosA), a member of MarR family that is predominantly present in the pathogenic strains of Enterobacteriaceae family. The initiation of hosA transcription was observed to occur at two independent start sites and subsequent binding study has revealed that the purified HosA interacts with its upstream region suggesting a probable autoregulation. The secondary structure analysis through circular dichroism spectroscopy demonstrated that HosA is predominantly composed of the alpha helix with higher thermal stability. To further understand the three-dimensional structure, HosA was crystallized and the crystals were diffracted to maximum of 2.9 Ǻ on exposure to X-rays. Analysis of the X-ray crystallographic data suggested a primitive space group (P 6 ? 2 2), with unit cell parameters a = b = 64.19 Å and c = 244.25 Å. The solvent content and Matthews coefficient were 41 % and 2.11 Å(3) Da(-1), respectively, which indicated the existence of two molecules of HosA in the asymmetric unit of crystal. PMID:27325406

  17. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR)-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli

    PubMed Central

    Guruge, Keerthi S.; Yamanaka, Noriko; Sonobe, Miyuki; Fujizono, Wataru; Yoshioka, Miyako; Akiba, Masato; Yamamoto, Takehisa; Joshua, Derrick I.; Balakrishna, Keshava; Yamashita, Nobuyoshi; Kannan, Kurunthachalam; Tsutsui, Toshiyuki

    2015-01-01

    Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of

  18. Genome-wide screen identifies Escherichia coli TCA cycle-related mutants with extended chronological lifespan dependent on acetate metabolism and the hypoxia-inducible transcription factor ArcA

    PubMed Central

    Gonidakis, Stavros; Finkel, Steven E.; Longo, Valter D.

    2010-01-01

    Summary Single-gene mutants with extended lifespan have been described in several model organisms. We performed a genome-wide screen for long-lived mutants in Escherichia coli which revealed strains lacking TCA cycle-related genes that exhibit longer stationary phase survival and increased resistance to heat stress compared to wild-type. Extended lifespan in the sdhA mutant, lacking subunit A of succinate dehydrogenase, is associated with reduced production of superoxide and increased stress resistance. On the other hand, the longer lifespan of the lipoic acid synthase mutant (lipA) is associated with reduced oxygen consumption and requires the acetate-producing enzyme pyruvate oxidase, as well as acetyl-CoA synthetase, the enzyme that converts extracellular acetate to acetyl-CoA. The hypoxia-inducible transcription factor ArcA, acting independently of acetate metabolism, is also required for maximum lifespan extension in the lipA and lpdA mutants, indicating that these mutations promote entry into a mode normally associated with a low-oxygen environment. Since analogous changes from respiration to fermentation have been observed in long-lived Saccharomyces cerevisiae and Caenorhabditis elegans strains, such metabolic alterations may represent an evolutionarily conserved strategy to extend lifespan. PMID:20707865

  19. Strategies for Protein Overproduction in Escherichia coli.

    ERIC Educational Resources Information Center

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  20. Structure of the Escherichia coli Antitoxin MqsA (YgiT/b3021) Bound to Its Gene Promoter Reveals Extensive Domain Rearrangements and the Specificity of Transcriptional Regulation

    SciTech Connect

    B Brown; T Wood; W Peti; R Page

    2011-12-31

    Bacterial cultures, especially biofilms, produce a small number of persister cells, a genetically identical subpopulation of wild type cells that are metabolically dormant, exhibit multidrug tolerance, and are highly enriched in bacterial toxins. The gene most highly up-regulated in Escherichia coli persisters is mqsR, a ribonuclease toxin that, along with mqsA, forms a novel toxin-antitoxin (TA) system. Like all known TA systems, both the MqsR-MqsA complex and MqsA alone regulate their own transcription. Despite the importance of TA systems in persistence and biofilms, very little is known about how TA modules, and antitoxins in particular, bind and recognize DNA at a molecular level. Here, we report the crystal structure of MqsA bound to a 26-bp fragment from the mqsRA promoter. We show that MqsA binds DNA predominantly via its C-terminal helix-turn-helix domain, with direct binding of recognition helix residues Asn{sup 97} and Arg{sup 010} to the DNA major groove. Unexpectedly, the structure also revealed that the MqsA N-terminal domain interacts with the DNA phosphate backbone. This results in a more than 105{sup o} rotation of the N-terminal domains between the free and complexed states, an unprecedented rearrangement for an antitoxin. The structure also shows that MqsA bends the DNA by more than 55{sup o} in order to achieve symmetrical binding. Finally, using a combination of biochemical and NMR studies, we show that the DNA sequence specificity of MqsA is mediated by direct readout.

  1. E. Coli and Pregnancy

    MedlinePlus

    ... care provider. What is E. coli? E. coli (Escherichia coli) is a bacterium that lives in your colon ( ... 10):1411-1413. Jones B, et al. 2004. Escherichia coli: a growing problem in early onset neonatal sepsis. ...

  2. E. Coli Infection

    MedlinePlus

    ... is E. coli? E. coli is short for Escherichia coli -- bacteria (germs) that cause severe cramps and diarrhea. E. ... and especially in people who have another illness. E. coli infection is more common during the summer months and ...

  3. Specificity and robustness in transcription control networks.

    PubMed

    Sengupta, Anirvan M; Djordjevic, Marko; Shraiman, Boris I

    2002-02-19

    Recognition by transcription factors of the regulatory DNA elements upstream of genes is the fundamental step in controlling gene expression. How does the necessity to provide stability with respect to mutation constrain the organization of transcription control networks? We examine the mutation load of a transcription factor interacting with a set of n regulatory response elements as a function of the factor/DNA binding specificity and conclude on theoretical grounds that the optimal specificity decreases with n. The predicted correlation between variability of binding sites (for a given transcription factor) and their number is supported by the genomic data for Escherichia coli. The analysis of E. coli genomic data was carried out using an algorithm suggested by the biophysical model of transcription factor/DNA binding. Complete results of the search for candidate transcription factor binding sites are available at http://www.physics.rockefeller.edu/~boris/public/search_ecoli. PMID:11854503

  4. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  5. E. coli

    MedlinePlus

    ... sure that ground beef has reached a safe internal temperature of 160° F. Wash hands before preparing food, after diapering infants, and after contact with cows, sheep, or goats, their food or treats, or their living environment . General Information E. coli Infections (NIH MedlinePlus) Trusted ...

  6. Structural basis of transcription activation.

    PubMed

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. PMID:27284196

  7. E. coli enteritis

    MedlinePlus

    Traveler's diarrhea - E. coli ; Food poisoning - E. coli ; E. coli diarrhea; Hamburger disease ... properly reheated Fish or oysters Raw fruits or vegetables that have not been washed well Raw vegetable ...

  8. Activation of P2 late transcription by P2 Ogr protein requires a discrete contact site on the C terminus of the alpha subunit of Escherichia coli RNA polymerase.

    PubMed

    Wood, L F; Tszine, N Y; Christie, G E

    1997-11-21

    Bacteriophage P2 late transcription requires the product of the P2 ogr gene. Ogr-dependent transcription from P2 late promoters is blocked by certain point mutations affecting the alpha subunits of the host RNA polymerase. An alanine scan spanning the putative activation target in the alpha C-terminal domain (alphaCTD) was carried out to identify individual residues essential for Ogr-dependent transcription from P2 late promoters. In addition, the effects of alanine substitutions in the regions of the alphaCTD previously reported to affect CAP-dependent activation of the lac promoter and UP-element DNA binding were examined. Residues E286, V287, L289 and L290 in helix 3, and residue L300 at the beginning of helix 4, define a surface-exposed patch on the alphaCTD important for Ogr-dependent activation. These residues, adjacent to the recently identified DNA-binding determinants, constitute a newly identified activation surface for protein:protein contact. Alanine substitutions at some of the residues that affect UP-element DNA binding also impaired activation. This suggests that upstream DNA-alpha contacts, in addition to alpha-Ogr contacts, may be important in P2 late transcription. Other residues implicated in the interaction of alpha with CAP are not required for activation by Ogr, consistent with previous genetic evidence suggesting that these activators contact different sites on the alphaCTD. PMID:9398509

  9. Transcriptional regulation of the cydDC operon, encoding a heterodimeric ABC transporter required for assembly of cytochromes c and bd in Escherichia coli K-12: regulation by oxygen and alternative electron acceptors.

    PubMed Central

    Cook, G M; Membrillo-Hernández, J; Poole, R K

    1997-01-01

    The expression of the cydDC operon was investigated by using a chromosomal phi(cydD-lacZ) transcriptional fusion and primer extension analysis. A single transcriptional start site was found for cydD located 68 bp upstream of the translational start site, and Northern blot analysis confirmed that cydDC is transcribed as a polycistronic message independently of the upstream gene trxB. cydDC was highly expressed under aerobic growth conditions and during anaerobic growth with alternative electron acceptors. Aerobic expression was independent of ArcA and Fnr, but induction of cydDC by nitrate and nitrite was dependent on NarL and Fnr. PMID:9335308

  10. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  11. Runaway transcription

    PubMed Central

    2013-01-01

    A newly demonstrated defect in RNA polymerase II termination caused by 7SK snRNA knockdown may have revealed a novel mechanism uncoupling RNA processing from transcription. Please see related Research article, http://genomebiology.com/2013/14/9/R98 PMID:24079702

  12. Heritable Change Caused by Transient Transcription Errors

    PubMed Central

    Halliday, Jennifer A.; Herman, Christophe

    2013-01-01

    Transmission of cellular identity relies on the faithful transfer of information from the mother to the daughter cell. This process includes accurate replication of the DNA, but also the correct propagation of regulatory programs responsible for cellular identity. Errors in DNA replication (mutations) and protein conformation (prions) can trigger stable phenotypic changes and cause human disease, yet the ability of transient transcriptional errors to produce heritable phenotypic change (‘epimutations’) remains an open question. Here, we demonstrate that transcriptional errors made specifically in the mRNA encoding a transcription factor can promote heritable phenotypic change by reprogramming a transcriptional network, without altering DNA. We have harnessed the classical bistable switch in the lac operon, a memory-module, to capture the consequences of transient transcription errors in living Escherichia coli cells. We engineered an error-prone transcription sequence (A9 run) in the gene encoding the lac repressor and show that this ‘slippery’ sequence directly increases epigenetic switching, not mutation in the cell population. Therefore, one altered transcript within a multi-generational series of many error-free transcripts can cause long-term phenotypic consequences. Thus, like DNA mutations, transcriptional epimutations can instigate heritable changes that increase phenotypic diversity, which drives both evolution and disease. PMID:23825966

  13. A new way to start: nanoRNA-mediated priming of transcription initiation.

    PubMed

    Nickels, Bryce E

    2012-01-01

    A recent study provides evidence that RNA polymerase uses 2- to ~4-nt RNAs, species termed "nanoRNAs," to prime transcription initiation in Escherichia coli. Priming of transcription initiation with nanoRNAs represents a previously undocumented component of transcription start site selection and gene expression.

  14. New discoveries linking transcription to DNA repair and damage tolerance pathways.

    PubMed

    Cohen, Susan E; Walker, Graham C

    2011-01-01

    In Escherichia coli, the transcription elongation factor NusA is associated with all elongating RNA polymerases where it functions in transcription termination and antitermination. Here, we review our recent results implicating NusA in the recruitment of DNA repair and damage tolerance mechanisms to sites of stalled transcription complexes.

  15. Problem-Solving Test: The Mechanism of Transcription Termination by the Rho Factor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Transcription termination comes in two forms in "E. coli" cells. Rho-dependent termination requires the binding of a termination protein called Rho factor to the transcriptional machinery at the terminator region, whereas Rho-independent termination is achieved by conformational changes in the transcript itself. This article presents a test…

  16. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans

    PubMed Central

    Govindan, J. Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-01-01

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli. PMID:26392561

  17. Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.

    PubMed

    Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary

    2015-10-01

    The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.

  18. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  19. Power graph compression reveals dominant relationships in genetic transcription networks.

    PubMed

    Ahnert, Sebastian E

    2013-11-01

    We introduce a framework for the discovery of dominant relationship patterns in transcription networks, by compressing the network into a power graph with overlapping power nodes. Our application of this approach to the transcription networks of S. cerevisiae and E. coli, paired with GO term enrichment analysis, provides a highly informative overview of the most prominent relationships in the gene regulatory networks of these two organisms.

  20. E. Coli Infections

    MedlinePlus

    ... You can also get the infection by swallowing water in a swimming pool contaminated with human waste. Most cases of E. coli infection get better without treatment in 5 to 10 days. NIH: National Institute ...

  1. Complete Structural Model of Escherichia coli RNA Polymerase from a Hybrid Approach

    SciTech Connect

    Opalka, N.; Brown, J; Lane, W; Twist, K; Landick, R; Asturias, F; Darst, S

    2010-01-01

    The Escherichia coli transcription system is the best characterized from a biochemical and genetic point of view and has served as a model system. Nevertheless, a molecular understanding of the details of E. coli transcription and its regulation, and therefore its full exploitation as a model system, has been hampered by the absence of high-resolution structural information on E. coli RNA polymerase (RNAP). We use a combination of approaches, including high-resolution X-ray crystallography, ab initio structural prediction, homology modeling, and single-particle cryo-electron microscopy, to generate complete atomic models of E. coli core RNAP and an E. coli RNAP ternary elongation complex. The detailed and comprehensive structural descriptions can be used to help interpret previous biochemical and genetic data in a new light and provide a structural framework for designing experiments to understand the function of the E. coli lineage-specific insertions and their role in the E. coli transcription program. Transcription, or the synthesis of RNA from DNA, is one of the most important processes in the cell. The central enzyme of transcription is the DNA-dependent RNA polymerase (RNAP), a large, macromolecular assembly consisting of at least five subunits. Historically, much of our fundamental information on the process of transcription has come from genetic and biochemical studies of RNAP from the model bacterium Escherichia coli. More recently, major breakthroughs in our understanding of the mechanism of action of RNAP have come from high resolution crystal structures of various bacterial, archaebacterial, and eukaryotic enzymes. However, all of our high-resolution bacterial RNAP structures are of enzymes from the thermophiles Thermus aquaticus or T. thermophilus, organisms with poorly characterized transcription systems. It has thus far proven impossible to obtain a high-resolution structure of E. coli RNAP, which has made it difficult to relate the large collection

  2. Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles.

    PubMed

    Traverse, Charles C; Ochman, Howard

    2016-03-22

    Errors that occur during transcription have received much less attention than the mutations that occur in DNA because transcription errors are not heritable and usually result in a very limited number of altered proteins. However, transcription error rates are typically several orders of magnitude higher than the mutation rate. Also, individual transcripts can be translated multiple times, so a single error can have substantial effects on the pool of proteins. Transcription errors can also contribute to cellular noise, thereby influencing cell survival under stressful conditions, such as starvation or antibiotic stress. Implementing a method that captures transcription errors genome-wide, we measured the rates and spectra of transcription errors in Escherichia coli and in endosymbionts for which mutation and/or substitution rates are greatly elevated over those of E. coli Under all tested conditions, across all species, and even for different categories of RNA sequences (mRNA and rRNAs), there were no significant differences in rates of transcription errors, which ranged from 2.3 × 10(-5) per nucleotide in mRNA of the endosymbiont Buchnera aphidicola to 5.2 × 10(-5) per nucleotide in rRNA of the endosymbiont Carsonella ruddii The similarity of transcription error rates in these bacterial endosymbionts to that in E. coli (4.63 × 10(-5) per nucleotide) is all the more surprising given that genomic erosion has resulted in the loss of transcription fidelity factors in both Buchnera and Carsonella.

  3. Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles

    PubMed Central

    Traverse, Charles C.; Ochman, Howard

    2016-01-01

    Errors that occur during transcription have received much less attention than the mutations that occur in DNA because transcription errors are not heritable and usually result in a very limited number of altered proteins. However, transcription error rates are typically several orders of magnitude higher than the mutation rate. Also, individual transcripts can be translated multiple times, so a single error can have substantial effects on the pool of proteins. Transcription errors can also contribute to cellular noise, thereby influencing cell survival under stressful conditions, such as starvation or antibiotic stress. Implementing a method that captures transcription errors genome-wide, we measured the rates and spectra of transcription errors in Escherichia coli and in endosymbionts for which mutation and/or substitution rates are greatly elevated over those of E. coli. Under all tested conditions, across all species, and even for different categories of RNA sequences (mRNA and rRNAs), there were no significant differences in rates of transcription errors, which ranged from 2.3 × 10−5 per nucleotide in mRNA of the endosymbiont Buchnera aphidicola to 5.2 × 10−5 per nucleotide in rRNA of the endosymbiont Carsonella ruddii. The similarity of transcription error rates in these bacterial endosymbionts to that in E. coli (4.63 × 10−5 per nucleotide) is all the more surprising given that genomic erosion has resulted in the loss of transcription fidelity factors in both Buchnera and Carsonella. PMID:26884158

  4. Comprehensive Mapping of the Escherichia coli Flagellar Regulatory Network

    PubMed Central

    Fitzgerald, Devon M.; Bonocora, Richard P.; Wade, Joseph T.

    2014-01-01

    Flagellar synthesis is a highly regulated process in all motile bacteria. In Escherichia coli and related species, the transcription factor FlhDC is the master regulator of a multi-tiered transcription network. FlhDC activates transcription of a number of genes, including some flagellar genes and the gene encoding the alternative Sigma factor FliA. Genes whose expression is required late in flagellar assembly are primarily transcribed by FliA, imparting temporal regulation of transcription and coupling expression to flagellar assembly. In this study, we use ChIP-seq and RNA-seq to comprehensively map the E. coli FlhDC and FliA regulons. We define a surprisingly restricted FlhDC regulon, including two novel regulated targets and two binding sites not associated with detectable regulation of surrounding genes. In contrast, we greatly expand the known FliA regulon. Surprisingly, 30 of the 52 FliA binding sites are located inside genes. Two of these intragenic promoters are associated with detectable noncoding RNAs, while the others either produce highly unstable RNAs or are inactive under these conditions. Together, our data redefine the E. coli flagellar regulatory network, and provide new insight into the temporal orchestration of gene expression that coordinates the flagellar assembly process. PMID:25275371

  5. Biophysical models of transcription in cells

    NASA Astrophysics Data System (ADS)

    Choubey, Sandeep

    Cells constantly face environmental challenges and deal with them by changing their gene expression patterns. They make decisions regarding which genes to express and which genes not to express based on intra-cellular and environmental cues. These decisions are often made by regulating the process of transcription. While the identities of the different molecules that take part in regulating transcription have been determined for a number of different genes, their dynamics inside the cell are still poorly understood. One key feature of these regulatory dynamics is that the numbers of the bio-molecules involved is typically small, resulting in large temporal fluctuations in transcriptional outputs (mRNA and protein). In this thesis I show that measurements of the cell-to-cell variability of the distribution of transcribing RNA polymerases along a gene provide a previously unexplored method for deciphering the mechanism of its transcription in vivo. First, I propose a simple kinetic model of transcription initiation and elongation from which I calculate transcribing RNA polymerase copy-number fluctuations. I test my theory against published data obtained for yeast genes and propose a novel mechanism of transcription. Rather than transcription being initiated through a single rate-limiting step, as was previously proposed, my single-cell analysis reveals the presence of at least two rate limiting steps. Second, I compute the distribution of inter-polymerase distance distribution along a gene and propose a method for analyzing inter-polymerase distance distributions acquired in experiments. By applying this method to images of polymerases transcribing ribosomal genes in E.coli I show that one model of regulation of these genes is consistent with inter-polymerase distance data while a number of other models are not. The analytical framework described in this thesis can be used to extract quantitative information about the dynamics of transcription from single

  6. The different roles of tryptophan transfer RNA in regulating trp operon expression in E. coli versus B. subtilis.

    PubMed

    Yanofsky, Charles

    2004-08-01

    Escherichia coli and Bacillus subtilis use different mechanisms of sensing and responding to tryptophan and uncharged tRNA(Trp) as regulatory signals. In E. coli, tryptophan activates a repressor that binds to the trp promoter- operator, inhibiting transcription initiation. In B. subtilis, tryptophan activates an RNA-binding protein, TRAP, which binds to the trp operon leader RNA, causing transcription termination. In E. coli uncharged tRNA(Trp) accumulation stalls the ribosome attempting translation of tandem Trp codons in the leader-peptide coding region of the operon. This stalling permits the formation of an RNA antiterminator structure, preventing transcription termination. In B. subtilis uncharged tRNA(Trp) accumulation activates transcription and translation of the at operon. AT protein inhibits tryptophan-activated TRAP, thereby preventing TRAP-mediated transcription termination. These differences might reflect the unique organizational features of the respective trp operons and their ancestry. PMID:15262409

  7. Transcription in archaea

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  8. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  9. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy.

  10. Mechanistic studies on the impact of transcription on sequence-specific termination of DNA replication and vice versa.

    PubMed

    Mohanty, B K; Sahoo, T; Bastia, D

    1998-01-30

    Since DNA replication and transcription often temporally and spatially overlap each other, the impact of one process on the other is of considerable interest. We have reported previously that transcription is impeded at the replication termini of Escherichia coli and Bacillus subtilis in a polar mode and that, when transcription is allowed to invade a replication terminus from the permissive direction, arrest of replication fork at the terminus is abrogated. In the present report, we have addressed four significant questions pertaining to the mechanism of transcription impedance by the replication terminator proteins. Is transcription arrested at the replication terminus or does RNA polymerase dissociate from the DNA causing authentic transcription termination? How does transcription cause abrogation of replication fork arrest at the terminus? Are the points of arrest of the replication fork and transcription the same or are these different? Are eukaryotic RNA polymerases also arrested at prokaryotic replication termini? Our results show that replication terminator proteins of E. coli and B. subtilis arrest but do not terminate transcription. Passage of an RNA transcript through the replication terminus causes the dissociation of the terminator protein from the terminus DNA, thus causing abrogation of replication fork arrest. DNA and RNA chain elongation are arrested at different locations on the terminator sites. Finally, although bacterial replication terminator proteins blocked yeast RNA polymerases in a polar fashion, a yeast transcription terminator protein (Reb1p) was unable to block T7 RNA polymerase and E. coli DnaB helicase.

  11. Defects in polynucleotide phosphorylase impairs virulence in Escherichia coli O157:H7.

    PubMed

    Hu, Jia; Zhu, Mei-Jun

    2015-01-01

    Polynucleotide phosphorylase (PNPase) is reported to regulate virulence in Salmonella, Yersinia sp. and Campylobacter jejuni, yet its role in Escherichia coli O157:H7 has not been investigated. To gain insights into its roles in E. coli O157:H7 virulence, pnp deletion mutants were generated and the major virulence factors were compared to their parental wild type strains. Deletion of pnp in E. coli O157:H7 dramatically decreased stx2 mRNA expression and Stx2 protein production, and impaired lambdoid prophage activation in E. coli O157:H7. Quantitative PCR further confirmed that the Stx2 phage lytic growth was repressed by pnp deletion. Consistent with reduced Stx2 production and Stx2 phage activation, the transcriptional levels of genes involved in phage lysis and replication were down-regulated. In addition, disruption of pnp in E. coli O157:H7 decreased its adhesion to intestinal epithelial cells as well as cattle colonic explant tissues. On the other hand, PNPase inactivation in E. coli O157:H7 enhanced Tir protein content and the transcription of type three secretion system components, including genes encoding intimin, Tir, and EspB as well as locus of enterocyte and effacement positive regulator, Ler. Collectively, data indicate that PNPase has pleiotropic effects on the virulence of E. coli O157:H7. PMID:26347717

  12. Morphology of nuclear transcription.

    PubMed

    Weipoltshammer, Klara; Schöfer, Christian

    2016-04-01

    Gene expression control is a fundamental determinant of cellular life with transcription being the most important step. The spatial nuclear arrangement of the transcription process driven by RNA polymerases II and III is nonrandomly organized in foci, which is believed to add another regulatory layer on gene expression control. RNA polymerase I transcription takes place within a specialized organelle, the nucleolus. Transcription of ribosomal RNA directly responds to metabolic requirements, which in turn is reflected in the architecture of nucleoli. It differs from that of the other polymerases with respect to the gene template organization, transcription rate, and epigenetic expression control, whereas other features are shared like the formation of DNA loops bringing genes and components of the transcription machinery in close proximity. In recent years, significant advances have been made in the understanding of the structural prerequisites of nuclear transcription, of the arrangement in the nuclear volume, and of the dynamics of these entities. Here, we compare ribosomal RNA and mRNA transcription side by side and review the current understanding focusing on structural aspects of transcription foci, of their constituents, and of the dynamical behavior of these components with respect to foci formation, disassembly, and cell cycle. PMID:26847177

  13. A Nonnatural Transcriptional Coactivator

    NASA Astrophysics Data System (ADS)

    Nyanguile, Origene; Uesugi, Motonari; Austin, David J.; Verdine, Gregory L.

    1997-12-01

    In eukaryotes, sequence-specific DNA-binding proteins activate gene expression by recruiting the transcriptional apparatus and chromatin remodeling proteins to the promoter through protein-protein contacts. In many instances, the connection between DNA-binding proteins and the transcriptional apparatus is established through the intermediacy of adapter proteins known as coactivators. Here we describe synthetic molecules with low molecular weight that act as transcriptional coactivators. We demonstrate that a completely nonnatural activation domain in one such molecule is capable of stimulating transcription in vitro and in vivo. The present strategy provides a means of gaining external control over gene activation through intervention using small molecules.

  14. Growth rate of Escherichia coli.

    PubMed Central

    Marr, A G

    1991-01-01

    It should be possible to predict the rate of growth of Escherichia coli of a given genotype in a specified environment. The idea that the rate of synthesis of ATP determines the rate of growth and that the yield of ATP determines the yield of growth is entrenched in bacterial physiology, yet this idea is inconsistent with experimental results. In minimal media the growth rate and yield vary with the carbon source in a manner independent of the rate of formation and yield of ATP. With acetate as the carbon source, anapleurotic reactions, not ATP synthesis, limit the growth rate. For acetate and other gluconeogenic substrates the limiting step appears to be the formation of triose phosphate. I conclude that the rate of growth is controlled by the rate of formation of a precursor metabolite and, thus, of monomers such as amino acids derived from it. The protein-synthesizing system is regulated according to demand for protein synthesis. I examine the conjecture that the signal for this regulation is the ratio of uncharged tRNA to aminoacyl-tRNA, that this signal controls the concentration of guanosine tetraphosphate, and that the concentration of guanosine tetraphosphate controls transcription of rrn genes. Differential equations describing this system were solved numerically for steady states of growth; the computed values of ribosomes and guanosine tetraphosphate and the maximal growth rate agree with experimental values obtained from the literature of the past 35 years. These equations were also solved for dynamical states corresponding to nutritional shifts up and down. PMID:1886524

  15. Maintenance of Transcription-Translation Coupling by Elongation Factor P

    PubMed Central

    Elgamal, Sara

    2016-01-01

    ABSTRACT Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu fully restored translation. EF-P was also shown to inhibit premature termination during synthesis and translation of mRNAs encoding intrinsic terminators. The effects of EF-P loss on expression of polyproline mRNAs were augmented by a substitution in RNA polymerase that accelerates transcription. Analyses of previously reported ribosome profiling and global proteomic data identified several candidate gene clusters where EF-P could act to prevent premature transcription termination. In vivo probing allowed detection of some predicted premature termination products in the absence of EF-P. Our findings support a model in which EF-P maintains coupling of translation and transcription by decreasing ribosome stalling at polyproline motifs. Other regulators that facilitate ribosome translocation through roadblocks to prevent premature transcription termination upon uncoupling remain to be identified. PMID:27624127

  16. Transcription is regulated by NusA:NusG interaction

    PubMed Central

    Strauß, Martin; Vitiello, Christal; Schweimer, Kristian; Gottesman, Max; Rösch, Paul; Knauer, Stefan H.

    2016-01-01

    NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (AR2) of NusA. The interaction surface of either transcription factor overlaps with the respective binding site for RNAP. We show that NusA-AR2 is able to remove NusG from RNAP. Our in vivo and in vitro results suggest that interaction between NusA and NusG could play various regulatory roles during transcription, including recruitment of NusG to RNAP, resynchronization of transcription:translation coupling, and modulation of termination efficiency. PMID:27174929

  17. The chemical structure of DNA sequence signals for RNA transcription

    NASA Technical Reports Server (NTRS)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  18. Unusually Situated Binding Sites for Bacterial Transcription Factors Can Have Hidden Functionality

    PubMed Central

    Haycocks, James R. J.; Grainger, David C.

    2016-01-01

    A commonly accepted paradigm of molecular biology is that transcription factors control gene expression by binding sites at the 5' end of a gene. However, there is growing evidence that transcription factor targets can occur within genes or between convergent genes. In this work, we have investigated one such target for the cyclic AMP receptor protein (CRP) of enterotoxigenic Escherichia coli. We show that CRP binds between two convergent genes. When bound, CRP regulates transcription of a small open reading frame, which we term aatS, embedded within one of the adjacent genes. Our work demonstrates that non-canonical sites of transcription factor binding can have hidden functionality. PMID:27258043

  19. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. PMID:25611733

  20. Analyzing stochastic transcription to elucidate the nucleoid's organization

    PubMed Central

    Riva, Alessandra; Carpentier, Anne-Sophie; Barloy-Hubler, Frédérique; Chéron, Angélique; Hénaut, Alain

    2008-01-01

    Background The processes of gene transcription, translation, as well as the reactions taking place between gene products, are subject to stochastic fluctuations. These stochastic events are being increasingly examined as it emerges that they can be crucial in the cell's survival. In a previous study we had examined the transcription patterns of two bacterial species (Escherichia coli and Bacillus subtilis) to elucidate the nucleoid's organization. The basic idea is that genes that share transcription patterns, must share some sort of spatial relationship, even if they are not close to each other on the chromosome. We had found that picking any gene at random, its transcription will be correlated with genes at well-defined short – as well as long-range distances, leaving the explanation of the latter an open question. In this paper we study the transcription correlations when the only transcription taking place is stochastic, in other words, no active or "deterministic" transcription takes place. To this purpose we use transcription data of Sinorhizobium meliloti. Results Even when only stochastic transcription takes place, the co-expression of genes varies as a function of the distance between genes: we observe again the short-range as well as the regular, long-range correlation patterns. Conclusion We explain these latter with a model based on the physical constraints acting on the DNA, forcing it into a conformation of groups of a few successive large and transcribed loops, which are evenly spaced along the chromosome and separated by small, non-transcribed loops. We discuss the question about the link between shared transcription patterns and physiological relationship and come to the conclusion that when genes are distantly placed along the chromosome, the transcription correlation does not imply a physiological relationship. PMID:18331647

  1. Involvement of DNA gyrase in replication and transcription of bacteriophage T7 DNA.

    PubMed Central

    De Wyngaert, M; Hinkle, D C

    1979-01-01

    Growth of bacteriophage T7 is inhibited by the antibiotic coumermycin A1, an inhibitor of the Escherichia coli DNA gyrase. Since growth of the phage is insensitive to the antibiotic in strains containing a coumermycin-resistant DNA gyrase, this enzyme appears to be required for phage growth. We have investigated the effect of coumermycin on the kinetics of DNA, RNA, and protein synthesis during T7 infection. DNA synthesis is completely inhibited by the antibiotic. In addition, coumermycin significantly inhibits transcription of late but not early genes. Thus, E. coli DNA gyrase may play an important role in transcription as well as in replication of T7 DNA. Images PMID:372560

  2. Aging of Escherichia coli

    PubMed Central

    Clifton, C. E.

    1966-01-01

    Clifton, C. E. (Stanford University, Stanford, Calif.). Aging of Escherichia coli. J. Bacteriol. 92:905–912. 1966.—The rates of endogenous and exogenous (glucose) respiration decreased much more rapidly than did the viable count during the first 24 hr of aging of washed, C14-labeled cells of Escherichia coli K-12 suspended in a basal salt medium devoid of ammonium salts. The rates of decrease of respiration and of death approached each other as the age of the cells increased, but death was not the only factor involved in decreased respiratory activity of the suspensions. The greatest decrease in cellular contents with aging was noted in the ribonucleic acid fraction, of which the ribose appeared to be oxidized, while uracil accumulated in the suspension medium. The viable count and respiratory activities remained higher in glucose-fed than in nonfed suspensions. Proline-labeled cells fed glucose tended to lose more of their proline and to convert more proline into C14O2 than in unfed controls. On the other hand, uracil-labeled cells fed glucose retained more of the uracil than did nonfed cells, but glucose elicited some oxidation of uracil. An exogenous energy source such as glucose aided in the maintenance of a population, but it was not the only factor needed for such maintenance. PMID:5332874

  3. ASTP Onboard Voice Transcription

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.

  4. A DNA structural atlas for Escherichia coli.

    PubMed

    Pedersen, A G; Jensen, L J; Brunak, S; Staerfeldt, H H; Ussery, D W

    2000-06-16

    We have performed a computational analysis of DNA structural features in 18 fully sequenced prokaryotic genomes using models for DNA curvature, DNA flexibility, and DNA stability. The structural values that are computed for the Escherichia coli chromosome are significantly different from (and generally more extreme than) that expected from the nucleotide composition. To aid this analysis, we have constructed tools that plot structural measures for all positions in a long DNA sequence (e.g. an entire chromosome) in the form of color-coded wheels (http://www.cbs.dtu. dk/services/GenomeAtlas/). We find that these "structural atlases" are useful for the discovery of interesting features that may then be investigated in more depth using statistical methods. From investigation of the E. coli structural atlas, we discovered a genome-wide trend, where an extended region encompassing the terminus displays a high of level curvature, a low level of flexibility, and a low degree of helix stability. The same situation is found in the distantly related Gram-positive bacterium Bacillus subtilis, suggesting that the phenomenon is biologically relevant. Based on a search for long DNA segments where all the independent structural measures agree, we have found a set of 20 regions with identical and very extreme structural properties. Due to their strong inherent curvature, we suggest that these may function as topological domain boundaries by efficiently organizing plectonemically supercoiled DNA. Interestingly, we find that in practically all the investigated eubacterial and archaeal genomes, there is a trend for promoter DNA being more curved, less flexible, and less stable than DNA in coding regions and in intergenic DNA without promoters. This trend is present regardless of the absolute levels of the structural parameters, and we suggest that this may be related to the requirement for helix unwinding during initiation of transcription, or perhaps to the previously observed

  5. Expression of the Streptomyces enzyme endoglycosidase H in Escherichia coli.

    PubMed

    Robbins, P W; Wirth, D F; Hering, C

    1981-10-25

    Endoglycosidase H is one of a large number of enzymes secreted by Streptomyces plicatus and other Streptomyces species. When the structural gene for this enzyme is introduced into Escherichia coli attached to the plasmid pBR-322 or Charon 4 phage, the enzyme is synthesized and is found in the periplasmic space, culture medium, and cells. Attachment of the UV-5 lac promoter to a site in the plasmid adjacent to the Streptomyces insert stimulates enzyme synthesis as much as 100-fold. This result demonstrates that transcription of the Streptomyces gene can be initiated from sequences outside of the Streptomyces insert. Initiation of transcription on a Streptomyces promoter is also a suggested but unproven possibility. In contrast to the situation in Streptomyces, where the enzyme has a molecular weight of 27,000, the enzyme made in E. coli has a molecular weight of approximately 30,000. Possible explanations for this difference in size are lack of cleavage of the Streptomyces secretion "signal sequence" in E. coli or protein "processing" by enzymes secreted into the medium by STreptomyces.

  6. LOX-1 transcription.

    PubMed

    Hermonat, Paul L; Zhu, Hongqing; Cao, Maohua; Mehta, Jawahar L

    2011-10-01

    The importance of the lectin-like oxidized LDL receptor (LOX-1) gene in cardiovascular and other diseases is slowly being revealed. LOX-1 gene expression appears to be a "canary in a coal mine" for atherogenesis, being strongly up-regulated early on in a number of cell types when they are activated, and predicting the sites of future disease. From this early time point the LOX-1 protein often participates in the disease process itself. While gene/protein expression can be regulated on a multiplicity of levels, the most basic and important mode of regulation is usually transcriptional. There are very few studies on the transcriptional regulation of the human LOX-1 promoter; fewer still on definitive mapping of the transcription factors involved. It is known that a wide variety of stimuli up-regulate LOX-1, usually/probably on the transcriptional level. Angiotensin II (Ang II) is one important regulator of renin-angiotensin system and stimulator LOX-1. Ang II is known to up-regulate LOX-1 transcription through an NF-kB motif located at nt -2158. Oxidized low density lipoprotein (ox-LDL) is another important cardiovascular regulator, particularly of atherosclerotic disease, and a strong stimulator of LOX-1. Ox-LDL is known to up-regulate LOX-1 transcription through an Oct-1 motif located at nt -1556. The subsequent enhanced LOX-1 receptor numbers and their binding by ox-LDL ligand triggers a positive feedback loop, increasing further LOX-1 expression, with a presently unknown regulatory governor. The Oct-1 gene also has its own Oct-1-driven positive feedback loop, which likely also contributes to LOX-1 up-regulation. There is also data which suggests the involvement of the transcription factor AP-1 during stimulation with Phorbol 12-myristate acetate. While the importance of NF-κB as a transcriptional regulator of cardiovascular-relevant genes is well known, the importance of Oct-1 is not. Data suggests that Oct-1-mediated up-regulation of transcription is an early

  7. Rous sarcoma virus contains sequences which permit expression of the gag gene in Escherichia coli.

    PubMed Central

    Mermer, B; Malamy, M; Coffin, J M

    1983-01-01

    Several aspects of Rous sarcoma virus gene expression, including transcription, translation, and protein processing, can occur within Escherichia coli containing cloned viral DNA. The viral long terminal repeat contains a bacterial promoter, and viral sequences at or near the authentic viral initiation codon permit the initiation of translation. These signals can direct the synthesis in E. coli of the viral gag gene precursor Pr76 or, when fused to a portion of the lacZ gene, a gag-beta-galactosidase fusion protein. Pr76 is processed into gag structural proteins in E. coli in a process which is dependent upon the gag product p15. These observations suggest that E. coli can be used for the introduction and analysis of mutations in sequences relevant to viral gene expression. Images PMID:6316124

  8. Thiophene metabolism by E. coli

    SciTech Connect

    Clark, D.P.

    1990-01-01

    The objective of this project is to investigate the mechanism of degradation of sulfur containing heterocyclic molecules such as those found in coal, by mutants of Escherichia coli K-12. We previously isolated multiple mutants of E. coli which were selected for improved oxidation of furan and thiophene derivatives. We have focused on the thdA mutation in our subsequent research as it appears to be of central importance in thiophene oxidation. We hope that analysis of the thd genes of E. coli will lead to improvement of our thiophene metabolizing bacterial strains. 1 tab.

  9. Thiophene metabolism by E. coli

    SciTech Connect

    Clark, D.P.

    1990-01-01

    The objective of this project is to investigate the mechanism of degradation of sulfur containing heterocyclic molecules by mutants of Escherichia coli K-12. We previously isolated multiple mutants of E. coli which were selected for improved oxidation of furan and thiophene derivatives. We have focused on the thdA mutation in our subsequent research as it appears to be of central importance in thiophene oxidation. We hope that analysis of the thd gene of E. coli will lead to improvement of our thiophene metabolizing bacterial strains.

  10. Toward Network Biology in E. coli Cell.

    PubMed

    Mori, Hirotada; Takeuchi, Rikiya; Otsuka, Yuta; Bowden, Steven; Yokoyama, Katsushi; Muto, Ai; Libourel, Igor; Wanner, Barry L

    2015-01-01

    E. coli has been a critically important model research organism for more than 50 years, particularly in molecular biology. In 1997, the E. coli draft genome sequence was published. Post-genomic techniques and resources were then developed that allowed E. coli to become a model organism for systems biology. Progress made since publication of the E. coli genome sequence will be summarized.

  11. Thermoresponsive oligomers reduce Escherichia coli O157:H7 biofouling and virulence.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Hyun Seob; Kim, Jintae; Kim, Seong-Cheol; Cho, Moo Hwan; Lee, Jintae

    2014-01-01

    Thermoresponsive polymers have potential biomedical applications for drug delivery and tissue engineering. Here, two thermoresponsive oligomers were synthesized, viz. oligo(N-isopropylacrylamide) (ONIPAM) and oligo(N-vinylcaprolactam) (OVCL), and their anti-biofouling abilities investigated against enterohemorrhagic E. coli O157:H7, which produces Shiga-like toxins and forms biofilms. Biofilm formation (biofouling) is closely related to E. coli O157:H7 infection and constitutes a major mechanism of antimicrobial resistance. The synthetic OVCL (MW 679) and three commercial OVCLs (up to MW 54,000) at 30 μg ml(-1) were found to inhibit biofouling by E. coli O157:H7 at 37 °C by more than 80% without adversely affecting bacterial growth. The anti-biofouling activity of ONIPAM was weaker than that of OVCL. However, at 25 °C, ONIPAM and OVCL did not affect E. coli O157:H7 biofouling. Transcriptional analysis showed that OVCL temperature-dependently downregulated curli genes in E. coli O157:H7, and this finding was in line with observed reductions in fimbriae production and biofouling. In addition, OVCL downregulated the Shiga-like toxin genes stx1 and stx2 in E. coli O157:H7 and attenuated its in vivo virulence in the nematode Caenorhabditis elegans. These results suggest that OVCL has potential use in antivirulence strategies against persistent E. coli O157:H7 infection.

  12. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks

    PubMed Central

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540

  13. Chromosomal organization and expression of Escherichia coli pabA.

    PubMed Central

    Tran, P V; Bannor, T A; Doktor, S Z; Nichols, B P

    1990-01-01

    The pabA gene in Escherichia coli and Salmonella typhimurium encodes the glutamine amidotransferase subunit of para-aminobenzoate synthase, which catalyzes the first reaction in the conversion of chorismate to para-aminobenzoate (PABA). We have determined the nucleotide sequences of 1,362 base pairs preceding E. coli pabA and of 981 base pairs preceding S. typhimurium pabA. The nucleotide sequences suggest the presence of two protein-coding regions immediately upstream of pabA, designated orf1 and fic. Transcription analysis indicates that E. coli pabA is encoded by two overlapping transcriptional units. The polycistronic transcriptional unit includes orf1-fic-pabA and is initiated by the promoter designated P2. The monocistronic unit includes only pabA and is initiated by the promoter designated P1, which is located in the fic-coding region. Both promoters transcribe pabA to about the same steady-state level. However, expression analysis using chromosomal pabA-lacZ translational fusions indicated that P1 expressed PabA at least 50-fold more efficiently than P2. pabA-dependent growth rate analysis indicates that P1 is essential and P2 is dispensable for PABA metabolism. In the absence of P1, growth was reduced as a result of insufficient PabA expressed from P2. The significance of these results and possible posttranscriptional control mechanisms which affect PabA expression from the P2-initiated polycistronic unit are discussed. Images FIG. 6 FIG. 7 PMID:2403545

  14. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    NASA Astrophysics Data System (ADS)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  15. Extraintestinal pathogenic Escherichia coli.

    PubMed

    Smith, James L; Fratamico, Pina M; Gunther, Nereus W

    2007-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) possesses virulence traits that allow it to invade, colonize, and induce disease in bodily sites outside of the gastrointestinal tract. Human diseases caused by ExPEC include urinary tract infections, neonatal meningitis, sepsis, pneumonia, surgical site infections, as well as infections in other extraintestinal locations. ExPEC-induced diseases represent a large burden in terms of medical costs and productivity losses. In addition to human illnesses, ExPEC strains also cause extraintestinal infections in domestic animals and pets. A commonality of virulence factors has been demonstrated between human and animal ExPEC, suggesting that the organisms are zoonotic pathogens. ExPEC strains have been isolated from food products, in particular from raw meats and poultry, indicating that these organisms potentially represent a new class of foodborne pathogens. This review discusses various aspects of ExPEC, including its presence in food products, in animals used for food or as companion pets; the diseases ExPEC can cause; and the virulence factors and virulence mechanisms that cause disease.

  16. Advances in Escherichia coli production of therapeutic proteins.

    PubMed

    Swartz, J R

    2001-04-01

    Escherichia coli offers a means for the rapid and economical production of recombinant proteins. These advantages, coupled with a wealth of biochemical and genetic knowledge, have enabled the production of such economically sensitive products as insulin and bovine growth hormone. Although significant progress has been made in transcription, translation and secretion, one of the major challenges is obtaining the product in a soluble and bioactive form. Recent progress in oxidative cytoplasmic folding and cell-free protein synthesis offers attractive alternatives to standard expression methods.

  17. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  18. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  19. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E. coli DksA is in a class of transcription factors that modify RNA polymerase (RNAP) in all three kingdoms of life. DksA potentiates the effects of the global regulator ppGpp and the initiating NTP, controlling transcription initiation without binding to DNA. Incorporating benzoyl-phenylalanine (Bp...

  20. High-Density Microarray-Mediated Gene Expression Profiling of Escherichia coli

    PubMed Central

    Wei, Yan; Lee, Jian-Ming; Richmond, Craig; Blattner, Frederick R.; Rafalski, J. Antoni; LaRossa, Robert A.

    2001-01-01

    A nearly complete collection of 4,290 Escherichia coli open reading frames was amplified and arrayed in high density on glass slides. To exploit this reagent, conditions for RNA isolation from E. coli cells, cDNA production with attendant fluorescent dye incorporation, DNA-DNA hybridization, and hybrid quantitation have been established. A brief isopropyl-β-d-thiogalactopyranoside (IPTG) treatment elevated lacZ, lacY, and lacA transcript content about 30-fold; in contrast, most other transcript titers remained unchanged. Distinct RNA expression patterns between E. coli cultures in the exponential and transitional phases of growth were catalogued, as were differences associated with culturing in minimal and rich media. The relative abundance of each transcript was estimated by using hybridization of a genomic DNA-derived, fluorescently labeled probe as a correction factor. This inventory provided a quantitative view of the steady-state level of each mRNA species. Genes the expression of which was detected by this method were enumerated, and results were compared with the current understanding of E. coli physiology. PMID:11133948

  1. The oligomerization of CynR in Escherichia coli

    PubMed Central

    Knapp, Gwendowlyn S; Hu, James C

    2009-01-01

    Deletion analysis and alanine-scanning based on a homology-based interaction model were used to identify determinants of oligomerization in the transcriptional regulator CynR, a member of the LysR-type transcriptional regulator (LTTR) family. Deletion analysis confirmed that the putative regulatory domain of CynR was essential for driving the oligomerization of λ repressor-CynR fusion proteins. The interaction surface of a different LTTR and OxyR was mapped onto a multiple sequence alignment of the LTTR family. This mapping identified putative contacts in the CynR regulatory domain dimer interface, which were targeted for alanine-scanning mutagenesis. Oligomerization was assayed by the ability of mutant λ repressor-CynR fusions to assemble in E. coli revealing interesting similarities and differences between OxyR and CynR. PMID:19760662

  2. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling

    PubMed Central

    Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli. PMID:27309855

  3. Transcript CONTU Meeting #10.

    ERIC Educational Resources Information Center

    National Commission on New Technological Uses of Copyrighted Works, Washington, DC.

    Testimony on the copyrightability of computer software was heard at the 10th Commission meeting held at the New York Public Library in November 1976. This transcript of the meeting also includes reports of the Commission subcommittees on photocopying, software, networks, and data bases. (Author/AP)

  4. Automatic Music Transcription

    NASA Astrophysics Data System (ADS)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  5. Transcription Dynamics in Living Cells.

    PubMed

    Lenstra, Tineke L; Rodriguez, Joseph; Chen, Huimin; Larson, Daniel R

    2016-07-01

    The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

  6. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration.

    PubMed

    Rydenfelt, Mattias; Cox, Robert Sidney; Garcia, Hernan; Phillips, Rob

    2014-01-01

    Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in correlation ("promoter entanglement") between transcription of different genes. We develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression for a general set of promoters and the resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could be important for understanding gene expression in many regulatory settings.

  7. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration

    NASA Astrophysics Data System (ADS)

    Rydenfelt, Mattias; Cox, Robert Sidney, III; Garcia, Hernan; Phillips, Rob

    2014-01-01

    Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in correlation (“promoter entanglement”) between transcription of different genes. We develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression for a general set of promoters and the resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could be important for understanding gene expression in many regulatory settings.

  8. The PurR regulon in Escherichia coli K-12 MG1655.

    PubMed

    Cho, Byung-Kwan; Federowicz, Stephen A; Embree, Mallory; Park, Young-Seoub; Kim, Donghyuk; Palsson, Bernhard Ø

    2011-08-01

    The PurR transcription factor plays a critical role in transcriptional regulation of purine metabolism in enterobacteria. Here, we elucidate the role of PurR under exogenous adenine stimulation at the genome-scale using high-resolution chromatin immunoprecipitation (ChIP)-chip and gene expression data obtained under in vivo conditions. Analysis of microarray data revealed that adenine stimulation led to changes in transcript level of about 10% of Escherichia coli genes, including the purine biosynthesis pathway. The E. coli strain lacking the purR gene showed that a total of 56 genes are affected by the deletion. From the ChIP-chip analysis, we determined that over 73% of genes directly regulated by PurR were enriched in the biosynthesis, utilization and transport of purine and pyrimidine nucleotides, and 20% of them were functionally unknown. Compared to the functional diversity of the regulon of the other general transcription factors in E. coli, the functions and size of the PurR regulon are limited.

  9. Model-based redesign of global transcription regulation

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso

    2009-01-01

    Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology. PMID:19188257

  10. Characterization of a Novel Microcin That Kills Enterohemorrhagic Escherichia coli O157:H7 and O26

    PubMed Central

    Eberhart, Lauren J.; Deringer, James R.; Brayton, Kelly A.; Sawant, Ashish A.; Besser, Thomas E.

    2012-01-01

    A novel phenotype was recently identified in which specific strains of Escherichia coli inhibit competing E. coli strains via a mechanism that was designated “proximity-dependent inhibition” (PDI). PDI-expressing (PDI+) E. coli is known to inhibit susceptible (PDI−) E. coli strains, including several enterohemorrhagic (EHEC) and enterotoxigenic (ETEC) E. coli strains. In this study, every strain from a genetically diverse panel of E. coli O157:H7 (n = 25) and additional strains of E. coli serovar O26 were susceptible to the PDI phenotype. LIVE/DEAD staining was consistent with inhibition by killing of susceptible cells. Comparative genome analysis identified the genetic component of PDI, which is composed of a plasmid-borne (Incl1) operon encoding a putative microcin and associated genes for transport, immunity, and microcin activation. Transfer of the plasmid to a PDI− strain resulted in transfer of the phenotype, and deletion of the genes within the operon resulted in loss of the inhibition phenotype. Deletion of chromosomally encoded tolC also resulted in loss of the inhibitory phenotype, and this confirmed that the putative microcin is most likely secreted via a type I secretion pathway. Deletion of an unrelated plasmid gene did not affect the PDI phenotype. Quantitative reverse transcription (RT)-PCR demonstrated that microcin expression is correlated with logarithmic-phase growth. The ability to inhibit a diversity of E. coli strains indicates that this microcin may influence gut community composition and could be useful for control of important enteric pathogens. PMID:22773653

  11. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    PubMed

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc.

  12. Bacterial RNA polymerase can retain σ70 throughout transcription

    PubMed Central

    Harden, Timothy T.; Wells, Christopher D.; Friedman, Larry J.; Landick, Robert; Hochschild, Ann; Kondev, Jane

    2016-01-01

    Production of a messenger RNA proceeds through sequential stages of transcription initiation and transcript elongation and termination. During each of these stages, RNA polymerase (RNAP) function is regulated by RNAP-associated protein factors. In bacteria, RNAP-associated σ factors are strictly required for promoter recognition and have historically been regarded as dedicated initiation factors. However, the primary σ factor in Escherichia coli, σ70, can remain associated with RNAP during the transition from initiation to elongation, influencing events that occur after initiation. Quantitative studies on the extent of σ70 retention have been limited to complexes halted during early elongation. Here, we used multiwavelength single-molecule fluorescence-colocalization microscopy to observe the σ70–RNAP complex during initiation from the λ PR′ promoter and throughout the elongation of a long (>2,000-nt) transcript. Our results provide direct measurements of the fraction of actively transcribing complexes with bound σ70 and the kinetics of σ70 release from actively transcribing complexes. σ70 release from mature elongation complexes was slow (0.0038 s−1); a substantial subpopulation of elongation complexes retained σ70 throughout transcript elongation, and this fraction depended on the sequence of the initially transcribed region. We also show that elongation complexes containing σ70 manifest enhanced recognition of a promoter-like pause element positioned hundreds of nucleotides downstream of the promoter. Together, the results provide a quantitative framework for understanding the postinitiation roles of σ70 during transcription. PMID:26733675

  13. Identification and characterization of transcription networks in environmentally significant species

    SciTech Connect

    Lawrence, Charles E.; McCue, Lee Ann

    2005-11-30

    Understanding the regulation of gene expression, transcription regulation in particular, is one of the grand challenges of molecular biology. Transcription regulation is arguably the most important foundation of cellular function, since it exerts the most fundamental control of the abundance of virtually all of a cell's functional macromolecules. Nevertheless, this process, perhaps because of its difficulty, has been the subject of only a limited number of genomic level analyses. We have undertaken bioinformatics projects to address this issue by developing (1) a cross-species comparison method (i.e. phylogenetic footprinting) for the identification of transcription factor binding sites, (2) a Bayesian clustering method to identify regulons, (3) an improved scanning algorithm that uses a position weight matrix and several related species sequence data to locate transcription factor binding sites, and (4) a method to predict cognate binding sites for transcription factors of unknown specificity. These bioinformatics methods were developed using the model proteobacterium Escherichia coli, with further applications to the genomes of environmentally significant microbes (Rhodopseudomonas palustris, Shewanella oneidensis) in later years of the grant.

  14. Antisense transcription as a tool to tune gene expression.

    PubMed

    Brophy, Jennifer A N; Voigt, Christopher A

    2016-01-14

    A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.

  15. Honing the message: post-transcriptional and post-translational control in attaching and effacing pathogens.

    PubMed

    Bhatt, Shantanu; Romeo, Tony; Kalman, Daniel

    2011-05-01

    Bacteria evolve their capacity to cause disease by acquiring virulence genes that are usually clustered in discrete genetic modules termed pathogenicity islands (PAI). Stable integration of PAIs into pre-existing transcriptional networks coordinates expression from PAIs with ancestral genes in response to diverse environmental cues. Such transcriptional controls are evident in the regulation of the locus of enterocyte effacement (LEE), a PAI of enteropathogenic and enterohemorrhagic Escherichia coli. However, recent reports indicate that global post-transcriptional and post-translational regulators, including CsrA, Hfq and ClpXP, fine-tune the transcriptional output from the LEE. In this opinion article, we highlight recent advances in the understanding of post-transcriptional and post-translational regulation in attaching and effacing pathogens.

  16. DNA Bending and Wrapping around RNA Polymerase: a “Revolutionary” Model Describing Transcriptional Mechanisms

    PubMed Central

    Coulombe, Benoit; Burton, Zachary F.

    1999-01-01

    A model is proposed in which bending and wrapping of DNA around RNA polymerase causes untwisting of the DNA helix at the RNA polymerase catalytic center to stimulate strand separation prior to initiation. During elongation, DNA bending through the RNA polymerase active site is proposed to lower the energetic barrier to the advance of the transcription bubble. Recent experiments with mammalian RNA polymerase II along with accumulating evidence from studies of Escherichia coli RNA polymerase indicate the importance of DNA bending and wrapping in transcriptional mechanisms. The DNA-wrapping model describes specific roles for general RNA polymerase II transcription factors (TATA-binding protein [TBP], TFIIB, TFIIF, TFIIE, and TFIIH), provides a plausible explanation for preinitiation complex isomerization, suggests mechanisms underlying the synergy between transcriptional activators, and suggests an unforseen role for TBP-associating factors in transcription. PMID:10357858

  17. Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria

    PubMed Central

    Garcia, Hernan G.; Sanchez, Alvaro; Boedicker, James Q.; Osborne, Melisa; Gelles, Jeff; Kondev, Jane; Phillips, Rob

    2012-01-01

    SUMMARY A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression. PMID:22840405

  18. Transcription Dynamics in Plant Immunity

    PubMed Central

    Moore, John W.; Loake, Gary J.; Spoel, Steven H.

    2011-01-01

    Plant cells maintain sophisticated gene transcription programs to regulate their development, communication, and response to the environment. Environmental stress cues, such as pathogen encounter, lead to dramatic reprogramming of transcription to favor stress responses over normal cellular functions. Transcription reprogramming is conferred by the concerted action of myriad transcription (co)factors that function directly or indirectly to recruit or release RNA Polymerase II. To establish an effective defense response, cells require transcription (co)factors to deploy their activity rapidly, transiently, spatially, and hierarchically. Recent findings suggest that in plant immunity these requirements are met by posttranslational modifications that accurately regulate transcription (co)factor activity as well as by sequential pulse activation of specific gene transcription programs that provide feedback and feedforward properties to the defense gene network. Here, we integrate these recent findings from plant defense studies into the emerging field of transcription dynamics in eukaryotes. PMID:21841124

  19. Machine Transcription--Practically Speaking.

    ERIC Educational Resources Information Center

    Clippinger, Dorinda A.

    1984-01-01

    Draws transcription teaching principles from Gagne's theories about learning. Recommends 12-16 weeks of instruction, pre-transcription development of related skills, frequent feedback, and use of teaching materials that are arranged to take advantage of learning cycles. (SK)

  20. DNA sequence of the Escherichia coli tonB gene.

    PubMed Central

    Postle, K; Good, R F

    1983-01-01

    The nucleotide sequence of a cloned section of the Escherichia coli chromosome containing the tonB gene has been determined. Transcription initiation and termination sites for tonB RNA have been determined by S1 nuclease mapping. The tonB promoter and terminator resemble other E. coli promoters and terminators; the sequence of the tonB terminator region suggests that it may function bidirectionally. The DNA sequence specifies an open translation reading frame between the 5' and 3' RNA termini whose location is consistent with the position of previously isolated tonB::IS1 mutations. The DNA sequence predicts a proline-rich protein with a calculated size of 26.1-26.6 kilodaltons (239-244 amino acids), depending on which of three potential initiation codons is utilized. The predicted NH2 terminus of tonB protein resembles the proteolytically cleaved signal sequences of E. coli periplasmic and outer membrane proteins; the overall hydrophilic character of the protein sequence suggests that the bulk of the tonB protein is not embedded within the inner or outer membrane. A significant discrepancy exists between the calculated size of tonB protein and the apparent size of 36 kilodaltons determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Images PMID:6310567

  1. Shiga Toxin Producing Escherichia coli.

    PubMed

    Bryan, Allen; Youngster, Ilan; McAdam, Alexander J

    2015-06-01

    Shiga toxin-producing Escherichia coli (STEC) is among the common causes of foodborne gastroenteritis. STEC is defined by the production of specific toxins, but within this pathotype there is a diverse group of organisms. This diversity has important consequences for understanding the pathogenesis of the organism, as well as for selecting the optimum strategy for diagnostic testing in the clinical laboratory. This review includes discussions of the mechanisms of pathogenesis, the range of manifestations of infection, and the several different methods of laboratory detection of Shiga toxin-producing E coli.

  2. Experimental evolution of E. coli

    NASA Astrophysics Data System (ADS)

    Zhang, Mengshi

    The evolution from unicellular to multicellular behavior is an essential step in the history of life. Our aim is to investigate the emergence of collective behavior in the model organism Escherichia coli (E. coli) and its selection advantages, such as better utilization of public goods. Our preliminary results suggest that the evolution of collective behavior may be a natural response to stressed conditions. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: mengshi0928@gmail.com.

  3. Invariant distribution of promoter activities in Escherichia coli.

    PubMed

    Zaslaver, Alon; Kaplan, Shai; Bren, Anat; Jinich, Adrian; Mayo, Avi; Dekel, Erez; Alon, Uri; Itzkovitz, Shalev

    2009-10-01

    Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest design constraints that shape the allocation of transcriptional resources.

  4. Invariant Distribution of Promoter Activities in Escherichia coli

    PubMed Central

    Zaslaver, Alon; Kaplan, Shai; Bren, Anat; Jinich, Adrian; Mayo, Avi; Dekel, Erez; Alon, Uri; Itzkovitz, Shalev

    2009-01-01

    Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest design constraints that shape the allocation of transcriptional resources. PMID:19851443

  5. Analysis of E. coli promoter sequences.

    PubMed Central

    Harley, C B; Reynolds, R P

    1987-01-01

    We have compiled and analyzed 263 promoters with known transcriptional start points for E. coli genes. Promoter elements (-35 hexamer, -10 hexamer, and spacing between these regions) were aligned by a program which selects the arrangement consistent with the start point and statistically most homologous to a reference list of promoters. The initial reference list was that of Hawley and McClure (Nucl. Acids Res. 11, 2237-2255, 1983). Alignment of the complete list was used for reference until successive analyses did not alter the structure of the list. In the final compilation, all bases in the -35 (TTGACA) and -10 (TATAAT) hexamers were highly conserved, 92% of promoters had inter-region spacing of 17 +/- 1 bp, and 75% of the uniquely defined start points initiated 7 +/- 1 bases downstream of the -10 region. The consensus sequence of promoters with inter-region spacing of 16, 17 or 18 bp did not differ. This compilation and analysis should be useful for studies of promoter structure and function and for programs which identify potential promoter sequences. PMID:3550697

  6. Sequence of the pckA gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae.

    PubMed Central

    Medina, V; Pontarollo, R; Glaeske, D; Tabel, H; Goldie, H

    1990-01-01

    The sequence of the pckA gene coding for phosphoenolpyruvate carboxykinase in Escherichia coli K-12 and previous molecular weight determinations indicate that this allosteric enzyme is a monomer of Mr 51,316. The protein is homologous to ATP-dependent phosphoenolpyruvate carboxykinases from Trypanosoma brucei and Saccharomyces cerevisiae. A potential ATP binding site was conserved in all three sequences. A potential binding site for the allosteric activator, calcium, identified in the E. coli enzyme, was only partially conserved in T. brucei and S. cerevisiae, consistent with the observation that the enzymes from the latter organisms were not activated by calcium. The published sequence of the ompR and envZ genes from Salmonella typhimurium is followed by a partial sequence that is highly homologous to pckA from E. coli. The order of these genes and the direction of transcription of the presumptive S. typhimurium pckA gene are the same as those in E. coli. The potential calcium binding site of the E. coli enzyme is conserved in the partial predicted sequence of the S. typhimurium phosphoenolpyruvate carboxykinase, consistent with the observation that calcium activation of the S. typhimurium phosphoenolpyruvate carboxykinase is very similar to that observed for the E. coli enzyme. A pckA mRNA transcript was observed in stationary-phase cells but not in logarithmically growing cells. The mRNA start site was mapped relative to the sequence of the pckA structural gene. Images PMID:1701430

  7. A Positive Selection for Nucleoside Kinases in E. coli

    PubMed Central

    Shelat, Nirav Y.; Parhi, Sidhartha; Ostermeier, Marc

    2016-01-01

    Engineering heterologous nucleoside kinases inside E. coli is a difficult process due to the integral role nucleosides play in cell division and transcription. Nucleoside analogs are used in many kinase screens that depend on cellular metabolization of the analogs. However, metabolic activation of these analogs can be toxic through disruptions of DNA replication and transcription because of the analogs’ structural similarities to native nucleosides. Furthermore, the activity of engineered kinases can be masked by endogenous kinases in the cytoplasm, which leads to more difficulties in assessing target activity. A positive selection method that can discern a heterologous kinases’ enzymatic activity without significantly influencing the cell’s normal metabolic systems would be beneficial. We have developed a means to select for a nucleoside kinase’s activity by transporting the kinase to the periplasmic space of an E. coli strain that has its PhoA alkaline phosphatase knocked out. Our proof-of-principle studies demonstrate that the herpes simplex virus thymidine kinase (HSV-TK) can be transported to the periplasmic space in functional form by attaching a tat-signal sequence to the N-terminus of the protein. HSV-TK phosphorylates the toxic nucleoside analog 3’-azido-3’-deoxythymidine (AZT), and this charged, monophosphate form of AZT cannot cross the inner membrane. The translocation of HSV-TK provides significant resistance to AZT when compared to bacteria lacking a periplasmic HSV-TK. However, resistance decreased dramatically above 40 μg/ml AZT. We propose that this threshold can be used to select for higher activity variants of HSV-TK and other nucleoside kinases in a manner that overcomes the efficiency and localization issues of previous selection schemes. Furthermore, our selection strategy should be a general strategy to select or evaluate nucleoside kinases that phosphorylate nucleosides such as prodrugs that would otherwise be toxic to E. coli

  8. "In Vitro" Synthesis and Activity of Reporter Proteins in an "Escherichia coli" S30 Extract System: An Undergraduate Experiment

    ERIC Educational Resources Information Center

    Higgins, Pamela J.

    2005-01-01

    This undergraduate laboratory experiment integrates multiple techniques ("in vitro" synthesis, enzyme assays, Western blotting) to determine the production and detection sensitivity of two common reporter proteins (beta-galactosidase and luciferase) within an "Escherichia coli" S30 transcription/translation extract. Comparison of the data suggests…

  9. Thermodynamic modeling of variations in the rate of RNA chain elongation of E. coli rrn operons.

    PubMed

    Fange, David; Mellenius, Harriet; Dennis, Patrick P; Ehrenberg, Måns

    2014-01-01

    Previous electron-microscopic imaging has shown high RNA polymerase occupation densities in the 16S and 23S encoding regions and low occupation densities in the noncoding leader, spacer, and trailer regions of the rRNA (rrn) operons in E. coli. This indicates slower transcript elongation within the coding regions and faster elongation within the noncoding regions of the operon. Inactivation of four of the seven rrn operons increases the transcript initiation frequency at the promoters of the three intact operons and reduces the time for RNA polymerase to traverse the operon. We have used the DNA sequence-dependent standard free energy variation of the transcription complex to model the experimentally observed changes in the elongation rate along the rrnB operon. We also model the stimulation of the average transcription rate over the whole operon by increasing rate of transcript initiation. Monte Carlo simulations, taking into account initiation of transcription, translocation, and backward and forward tracking of RNA polymerase, partially reproduce the observed transcript elongation rate variations along the rrn operon and fully account for the increased average rate in response to increased frequency of transcript initiation.

  10. EXTRAINTESTINAL PATHOGENIC ESCHERICHIA COLI (EXPEC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extraintestinal pathogenic Escherichia coli (ExPEC) possess virulence traits that allow them to invade, colonize, and induce disease in bodily sites outside of the gastrointestinal tract. Human diseases caused by ExPEC include urinary tract infections, neonatal meningitis, sepsis, pneumonia, surgic...

  11. In vitro transcription of pathogenesis-related genes by purified RNA polymerase from Staphylococcus aureus.

    PubMed Central

    Rao, L; Karls, R K; Betley, M J

    1995-01-01

    The RNA polymerase (RNAP) holoenzyme of Staphylococcus aureus was purified by DNA affinity, gel filtration, and ion-exchange chromatography. This RNAP contained four major subunits with apparent molecular masses of 165, 130, 60, and 47 kDa. All four subunits of the RNAP were serologically related to the subunits of Escherichia coli E sigma 70 holoenzyme by Western immunoblot analysis. The 60-kDa subunit was subsequently isolated and found to react with a monoclonal antibody specific to the E. coli sigma 70 subunit. This sigma 70-related protein allowed E. coli core RNAP promoter-specific initiation and increased transcription by S. aureus RNAP that is unsaturated with sigma. We therefore suggest that this 60-kDa protein is a sigma factor. Purified S. aureus RNAP transcribed from the promoters of several important S. aureus virulence genes (sea, sec, hla, and agr P2) in vitro. The in vitro transcription start sites of the sea, sec, and agr P2 promoters, mapped by primer extension, were similar to those identified in vivo. The putative promoter hexamers of these three genes showed strong sequence similarity to the E. coli sigma 70 consensus promoter, and transcription by E sigma 70 from some of these promoters has been observed. Conversely, S. aureus RNAP does not transcribe from all E. coli sigma 70-dependent promoters. Taken together, our results indicate that the promoter sequences recognized by purified S. aureus RNAP are similar but not identical to those recognized by E. coli E sigma 70. PMID:7751267

  12. RHON1 mediates a Rho-like activity for transcription termination in plastids of Arabidopsis thaliana.

    PubMed

    Chi, Wei; He, Baoye; Manavski, Nikolay; Mao, Juan; Ji, Daili; Lu, Congming; Rochaix, Jean David; Meurer, Jörg; Zhang, Lixin

    2014-12-01

    Although transcription termination is essential to generate functional RNAs, its underlying molecular mechanisms are still poorly understood in plastids of vascular plants. Here, we show that the RNA binding protein RHON1 participates in transcriptional termination of rbcL (encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase) in Arabidopsis thaliana. Inactivation of RHON1 leads to enhanced rbcL read-through transcription and to aberrant accD (encoding β-subunit of the acetyl-CoA carboxylase) transcriptional initiation, which may result from inefficient transcription termination of rbcL. RHON1 can bind to the mRNA as well as to single-stranded DNA of rbcL, displays an RNA-dependent ATPase activity, and terminates transcription of rbcL in vitro. These results suggest that RHON1 terminates rbcL transcription using an ATP-driven mechanism similar to that of Rho of Escherichia coli. This RHON1-dependent transcription termination occurs in Arabidopsis but not in rice (Oryza sativa) and appears to reflect a fundamental difference between plastomes of dicotyledonous and monocotyledonous plants. Our results point to the importance and significance of plastid transcription termination and provide insights into its machinery in an evolutionary context.

  13. Aromatic acid metabolites of Escherichia coli K-12 can induce the marRAB operon.

    PubMed

    Chubiz, Lon M; Rao, Christopher V

    2010-09-01

    MarR is a key regulator of the marRAB operon involved in antibiotic resistance and solvent stress tolerance in Escherichia coli. We show that two metabolic intermediates, 2,3-dihydroxybenzoate and anthranilate, involved in enterobactin and tryptophan biosynthesis, respectively, can activate marRAB transcription. We also found that a third intermediate involved in ubiquinone biosynthesis, 4-hydroxybenzoate, activates marRAB transcription in the absence of TolC. Of the three, however, only 2,3-dihydroxybenzoate directly binds MarR and affects its activity. PMID:20639340

  14. Export of cytochrome P450 105D1 to the periplasmic space of Escherichia coli.

    PubMed

    Kaderbhai, M A; Ugochukwu, C C; Kelly, S L; Lamb, D C

    2001-05-01

    CYP105D1, a cytochrome P450 from Streptomyces griseus, was appended at its amino terminus to the secretory signal of Escherichia coli alkaline phosphatase and placed under the transcriptional control of the native phoA promoter. Heterologous expression in E. coli phosphate-limited medium resulted in abundant synthesis of recombinant CYP105D1 that was translocated across the bacterial inner membrane and processed to yield authentic, heme-incorporated P450 within the periplasmic space. Cell extract and whole-cell activity studies showed that the periplasmically located CYP105D1 competently catalyzed NADH-dependent oxidation of the xenobiotic compounds benzo[a]pyrene and erythromycin, further revealing the presence in the E. coli periplasm of endogenous functional redox partners. This system offers substantial advantages for the application of P450 enzymes to whole-cell biotransformation strategies, where the ability of cells to take up substrates or discard products may be limited.

  15. Data set for transcriptome analysis of Escherichia coli exposed to nickel.

    PubMed

    Gault, Manon; Rodrigue, Agnès

    2016-12-01

    Ni is recognized as an element that is toxic to humans, acting as an allergen and a carcinogenic agent, and it is also toxic to plants. The toxicity of Ni has been understudied in microorganisms. The data presented here were obtained by submitting the model bacterium Escherichia coli K-12 to nickel stress. To identify expressed genes, RNA-Seq was performed. Bacteria were exposed to 50 µM NiCl2 during 10 min. Exposure to Ni lead to the deregulation of 57% of the E. coli transcripts. Further analysis using DAVID identified most affected biological pathways. The list of differentially expressed genes and physiological consequences of Ni stress are described in "Ni exposure impacts the pool of free Fe and modifies DNA supercoiling via metal-induced oxidative stress in Escherichia coli K-12" (M. Gault, G. Effantin, A. Rodrigue, 2016) [1]. PMID:27668277

  16. Escherichia coli purB gene: cloning, nucleotide sequence, and regulation by purR.

    PubMed

    He, B; Smith, J M; Zalkin, H

    1992-01-01

    Escherichia coli purB encodes adenylosuccinate lyase (ASL), the enzyme that catalyzes step 8 in the pathway for de novo synthesis of IMP and also the final reaction in the two-step sequence from IMP to AMP. Gene purB was cloned and found to encode an ASL protein of 435 amino acids having a calculated molecular weight of 49,225. E. coli ASL is homologous to the corresponding enzymes from Bacillus subtilis and chickens and also to fumarase from B. subtilis. Gene phoP is 232 bp downstream of purB. Gene purB is regulated threefold by the purine pool and purR. Transcriptional regulation of purB involves binding of the purine repressor to the 16-bp conserved pur regulon operator. The purB operator is 224 bp downstream of the transcription start site and overlaps codons 62 to 67 in the protein-coding sequence.

  17. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli.

    PubMed

    Veses-Garcia, Marta; Liu, Xuan; Rigden, Daniel J; Kenny, John G; McCarthy, Alan J; Allison, Heather E

    2015-12-01

    Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli. PMID:26386055

  18. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli.

    PubMed

    Veses-Garcia, Marta; Liu, Xuan; Rigden, Daniel J; Kenny, John G; McCarthy, Alan J; Allison, Heather E

    2015-12-01

    Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli.

  19. Transcriptomic Analysis of Shiga-Toxigenic Bacteriophage Carriage Reveals a Profound Regulatory Effect on Acid Resistance in Escherichia coli

    PubMed Central

    Veses-Garcia, Marta; Liu, Xuan; Rigden, Daniel J.; Kenny, John G.; McCarthy, Alan J.

    2015-01-01

    Shiga-toxigenic bacteriophages are converting lambdoid phages that impart the ability to produce Shiga toxin to their hosts. Little is known about the function of most of the genes carried by these phages or the impact that lysogeny has on the Escherichia coli host. Here we use next-generation sequencing to compare the transcriptomes of E. coli strains infected with an Stx phage, before and after triggering of the bacterial SOS response that initiates the lytic cycle of the phage. We were able to discriminate between bacteriophage genes expressed in the lysogenic and lytic cycles, and we describe transcriptional changes that occur in the bacterial host as a consequence of Stx phage carriage. Having identified upregulation of the glutamic acid decarboxylase (GAD) operon, confirmed by reverse transcription-quantitative PCR (RT-qPCR), we used phenotypic assays to establish the ability of the Stx prophage to confer a greater acid resistance phenotype on the E. coli host. Known phage regulators were overexpressed in E. coli, and the acid resistance of the recombinant strains was tested. The phage-encoded transcriptional regulator CII was identified as the controller of the acid response in the lysogen. Infection of an E. coli O157 strain, from which integrated Stx prophages were previously removed, showed increased acid resistance following infection with a nontoxigenic phage, ϕ24B. In addition to demonstrating this link between Stx phage carriage and E. coli acid resistance, with its implications for survival postingestion, the data set provides a number of other potential insights into the impact of lambdoid phage carriage on the biology of E. coli. PMID:26386055

  20. Genetic organization and transcriptional analysis of a major gene cluster involved in siderophore biosynthesis in Pseudomonas putida WCS358.

    PubMed Central

    Marugg, J D; Nielander, H B; Horrevoets, A J; van Megen, I; van Genderen, I; Weisbeek, P J

    1988-01-01

    In iron-limited environments, the plant-growth-stimulating Pseudomonas putida WCS358 produces a yellow-green fluorescent siderophore called pseudobactin 358. The transcriptional organization and the iron-regulated expression of a major gene cluster involved in the biosynthesis and transport of pseudobactin 358 were analyzed in detail. The cluster comprises a region with a minimum length of 33.5 kilobases and contains at least five transcriptional units, of which some are relatively large. The directions of transcription of four transcriptional units were determined by RNA-RNA hybridization and by analysis in Escherichia coli minicells. The latter also demonstrated that large polypeptides were encoded by these transcriptional units. The results allowed us to localize several promoter regions on the DNA. The iron-dependent expression of at least two genes within this cluster appears to be regulated at the transcriptional level. Images PMID:2450869

  1. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  2. Infection strategies of enteric pathogenic Escherichia coli

    PubMed Central

    Clements, Abigail; Young, Joanna C.; Constantinou, Nicholas; Frankel, Gad

    2012-01-01

    Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection. PMID:22555463

  3. Clinical implications of enteroadherent Escherichia coli.

    PubMed

    Arenas-Hernández, Margarita M P; Martínez-Laguna, Ygnacio; Torres, Alfredo G

    2012-10-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including nonintimate adherence mediated by various adhesins. These so called "enteroadherent E. coli" categories subsequently produce toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  4. Regulation in the rpoS regulon of Escherichia coli.

    PubMed

    Loewen, P C; Hu, B; Strutinsky, J; Sparling, R

    1998-08-01

    In Escherichia coli, the transcription factor sigma s, encoded by rpoS, controls the expression of a large number of genes involved in cellular responses to a diverse number of stresses, including starvation, osmotic stress, acid shock, cold shock, heat shock, oxidative DNA damage, and transition to stationary phase. A list of over 50 genes under the control of rpoS has been compiled. The transcription factor sigma s acts predominantly as a positive effector, but it does have a negative effect on some genes. The synthesis and accumulation of sigma s are controlled by mechanisms affecting transcription, translation, proteolysis, and the formation of the holoenzyme complex. Transcriptional control of rpoS involves guanosine 3',5'-bispyrophosphate (ppGpp) and polyphosphate as positive regulators and the cAMP receptor protein-cAMP complex (CRP-cAMP) as a negative regulator. Translation of rpoS mRNA is controlled by a cascade of interacting factors, including Hfq, H-NS, dsrA RNA, LeuO, and oxyS RNA that seem to modulate the stability of a region of secondary structure in the ribosome-binding region of the gene's mRNA. The transcription factor sigma s is sensitive to proteolysis by ClpPX in a reaction that is promoted by RssB and inhibited by the chaperone DnaK. Despite the demonstrated involvement of so many factors, arguments have been presented suggesting that sensitivity to proteolysis may be the single most important modulator of sigma s levels. The activity of sigma s may also be modulated by trehalose and glutamate, which activate holoenzyme formation and promote holoenzyme binding to certain promoters.

  5. An S6:S18 complex inhibits translation of E. coli rpsF

    PubMed Central

    Babina, Arianne M.; Soo, Mark W.; Fu, Yang; Meyer, Michelle M.

    2015-01-01

    More than half of the ribosomal protein operons in Escherichia coli are regulated by structures within the mRNA transcripts that interact with specific ribosomal proteins to inhibit further protein expression. This regulation is accomplished using a variety of mechanisms and the RNA structures responsible for regulation are often not conserved across bacterial phyla. A widely conserved mRNA structure preceding the ribosomal protein operon containing rpsF and rpsR (encoding S6 and S18) was recently identified through comparative genomics. Examples of this RNA from both E. coli and Bacillus subtilis were shown to interact in vitro with an S6:S18 complex. In this work, we demonstrate that in E. coli, this RNA structure regulates gene expression in response to the S6:S18 complex. β-galactosidase activity from a lacZ reporter translationally fused to the 5′ UTR and first nine codons of E. coli rpsF is reduced fourfold by overexpression of a genomic fragment encoding both S6 and S18 but not by overexpression of either protein individually. Mutations to the mRNA structure, as well as to the RNA-binding site of S18 and the S6–S18 interaction surfaces of S6 and S18, are sufficient to derepress β-galactosidase activity, indicating that the S6:S18 complex is the biologically active effector. Measurement of transcript levels shows that although reporter levels do not change upon protein overexpression, levels of the native transcript are reduced fourfold, suggesting that the mRNA regulator prevents translation and this effect is amplified on the native transcript by other mechanisms. PMID:26447183

  6. Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa.

    PubMed Central

    Grant, C C; Vasil, M L

    1986-01-01

    Analysis of RNA isolated from Pseudomonas aeruginosa PA103 and PAKS grown under Fe2+-limiting (0.08 microgram/ml) and Fe2+-sufficient (10 micrograms/ml) conditions demonstrated that exotoxin A (ETA) expression is regulated by Fe2+ at the level of transcription. S1 nuclease mapping revealed two 5' termini of the tox transcript, 89 base pairs (bp) (S1A) and 62 bp (S1B) 5' to the ETA initiation codon. There appeared to be no consensus promoter sequence for either tox transcript. An 8-bp direct repeat was found 5' to the start of transcript S1A. Transcript S1B mapped 8 bp upstream of a dodecamer sequence conserved between the ETA and phospholipase C genes of P. aeruginosa. Multicopy plasmids in which the expression of ETA is directed from the Escherichia coli trp promoter (ptrpETA-RSF1010) or the tox promoter (pCMtox) were constructed and mobilized into a Tox-P. aeruginosa strain, WR5. WR5 synthesized and secreted high levels of ETA when it was expressed from the E. coli trp promoter; however, the synthesis of ETA from its own promoter in this strain was very low. These and other data suggest that the expression of ETA is under a positive control mechanism. A fusion of the ETA promoter fragment to lacZ was constructed. Use of this fusion plasmid revealed that this DNA fragment directed the synthesis of beta-galactosidase in E. coli at very low levels and that the synthesis of beta-galactosidase from this fusion in E. coli was not regulated by Fe2+. Images PMID:2430945

  7. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli.

    PubMed

    Alteri, Christopher J; Lindner, Jonathon R; Reiss, Daniel J; Smith, Sara N; Mobley, Harry L T

    2011-10-01

    PhoP is considered a virulence regulator despite being conserved in both pathogenic and non-pathogenic Enterobacteriaceae. While Escherichia coli strains represent non-pathogenic commensal isolates and numerous virulent pathotypes, the PhoP virulence regulator has only been studied in commensal E. coli. To better understand how conserved transcription factors contribute to virulence, we characterized PhoP in pathogenic E. coli. Deletion of phoP significantly attenuated E. coli during extraintestinal infection. This was not surprising since we demonstrated that PhoP differentially regulated the transcription of > 600 genes. In addition to survival at acidic pH and resistance to polymyxin, PhoP was required for repression of motility and oxygen-independent changes in the expression of primary dehydrogenase and terminal reductase respiratory chain components. All phenotypes have in common a reliance on an energized membrane. Thus, we hypothesized that PhoP mediates these effects by regulating genes encoding proteins that generate proton motive force. Indeed, bacteria lacking PhoP exhibited a hyperpolarized membrane and dissipation of the transmembrane electrochemical gradient increased susceptibility of the phoP mutant to acidic pH, while inhibiting respiratory generation of the proton gradient restored resistance to antimicrobial peptides independent of lipopolysaccharide modification. These findings demonstrate a connection between PhoP, virulence and the energized state of the membrane. PMID:21854465

  8. RNA-Based Detection Does not Accurately Enumerate Living Escherichia coli O157:H7 Cells on Plants

    PubMed Central

    Ju, Wenting; Moyne, Anne-Laure; Marco, Maria L.

    2016-01-01

    The capacity to distinguish between living and dead cells is an important, but often unrealized, attribute of rapid detection methods for foodborne pathogens. In this study, the numbers of enterohemorrhagic Escherichia coli O157:H7 after inoculation onto Romaine lettuce plants and on plastic (abiotic) surfaces were measured over time by culturing, and quantitative PCR (qPCR), propidium monoazide (PMA)-qPCR, and reverse transcriptase (RT)-qPCR targeting E. coli O157:H7 gapA, rfbE, eae, and lpfA genes and gene transcripts. On Romaine lettuce plants incubated at low relative humidity, E. coli O157:H7 cell numbers declined 107-fold within 96 h according to culture-based assessments. In contrast, there were no reductions in E. coli levels according to qPCR and only 100- and 1000-fold lower numbers per leaf by RT-qPCR and PMA-qPCR, respectively. Similar results were obtained upon exposure of E. coli O157:H7 to desiccation conditions on a sterile plastic surface. Subsequent investigation of mixtures of living and dead E. coli O157:H7 cells strongly indicated that PMA-qPCR detection was subject to false-positive enumerations of viable targets when in the presence of 100-fold higher numbers of dead cells. RT-qPCR measurements of killed E. coli O157:H7 as well as for RNaseA-treated E. coli RNA confirmed that transcripts from dead cells and highly degraded RNA were also amplified by RT-qPCR. These findings show that neither PMA-qPCR nor RT-qPCR provide accurate estimates of bacterial viability in environments where growth and survival is limited. PMID:26955370

  9. RNA-Based Detection Does not Accurately Enumerate Living Escherichia coli O157:H7 Cells on Plants.

    PubMed

    Ju, Wenting; Moyne, Anne-Laure; Marco, Maria L

    2016-01-01

    The capacity to distinguish between living and dead cells is an important, but often unrealized, attribute of rapid detection methods for foodborne pathogens. In this study, the numbers of enterohemorrhagic Escherichia coli O157:H7 after inoculation onto Romaine lettuce plants and on plastic (abiotic) surfaces were measured over time by culturing, and quantitative PCR (qPCR), propidium monoazide (PMA)-qPCR, and reverse transcriptase (RT)-qPCR targeting E. coli O157:H7 gapA, rfbE, eae, and lpfA genes and gene transcripts. On Romaine lettuce plants incubated at low relative humidity, E. coli O157:H7 cell numbers declined 10(7)-fold within 96 h according to culture-based assessments. In contrast, there were no reductions in E. coli levels according to qPCR and only 100- and 1000-fold lower numbers per leaf by RT-qPCR and PMA-qPCR, respectively. Similar results were obtained upon exposure of E. coli O157:H7 to desiccation conditions on a sterile plastic surface. Subsequent investigation of mixtures of living and dead E. coli O157:H7 cells strongly indicated that PMA-qPCR detection was subject to false-positive enumerations of viable targets when in the presence of 100-fold higher numbers of dead cells. RT-qPCR measurements of killed E. coli O157:H7 as well as for RNaseA-treated E. coli RNA confirmed that transcripts from dead cells and highly degraded RNA were also amplified by RT-qPCR. These findings show that neither PMA-qPCR nor RT-qPCR provide accurate estimates of bacterial viability in environments where growth and survival is limited. PMID:26955370

  10. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli.

    PubMed Central

    Canellakis, E S; Paterakis, A A; Huang, S C; Panagiotidis, C A; Kyriakidis, D A

    1993-01-01

    The ornithine decarboxylase antizyme gene of Escherichia coli was identified by immunological screening of an E. coli genomic library. A 6.4-kilobase fragment containing the antizyme gene was subcloned and sequenced. The open reading frame encoding the antizyme was identified on the basis of its ability to direct the synthesis of immunoreactive antizyme. Antizyme shares significant homology with bacterial transcriptional activators of the two-component regulatory system family; these systems consist of a "sensor" kinase and a transcriptional regulator. The open reading frame next to antizyme is homologous to sensor kinases. Antizyme overproduction inhibits the activities of both ornithine and arginine decarboxylases without affecting their protein levels. Extracts from E. coli bearing an antizyme gene-containing plasmid exhibit increased antizyme activity. These data strongly suggest that (i) the cloned gene encodes the ornithine decarboxylase antizyme and (ii) antizyme is a bifunctional protein serving as both an inhibitor of polyamine biosynthesis as well as a transcriptional regulator of an as yet unknown set of genes. Images Fig. 2 Fig. 4 Fig. 6 PMID:8346225

  11. Optimality and thermodynamics determine the evolution of transcriptional regulatory networks†

    PubMed Central

    Yarmush, Martin L.

    2014-01-01

    Transcriptional motifs are small regulatory interaction patterns that regulate biological functions in highly-interacting cellular networks. Recently, attempts have been made to explain the significance of transcriptional motifs through dynamic function. However, fundamental questions remain unanswered. Why are certain transcriptional motifs with similar dynamic function abundant while others occur rarely? What are the criteria for topological generalization of these motifs into complex networks? Here, we present a novel paradigm that combines non-equilibrium thermodynamics with multiobjective-optimality for network analysis. We found that energetic cost, defined herein as specific dissipation energy, is minimal at the optimal environmental conditions and it correlates inversely with the abundance of the network motifs obtained experimentally for E. coli and S. cerevisiae. This yields evidence that dissipative energetics is the underlying criteria used during evolution for motif selection and that biological systems during transcription tend towards evolutionary selection of subgraphs which produces minimum specific heat dissipation under optimal conditions, thereby explaining the abundance/rare occurrence of some motifs. We show that although certain motifs had similar dynamical functionality, they had significantly different energetic cost, thus explaining the abundance/rare occurrence of these motifs. The presented insights may establish global thermodynamic analysis as a backbone in designing and understanding complex networks systems, such as metabolic and protein interaction networks. PMID:22076617

  12. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes.

    PubMed

    Galán-Vásquez, Edgardo; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2016-01-01

    The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs.

  13. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes.

    PubMed

    Galán-Vásquez, Edgardo; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2016-01-01

    The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs. PMID:26766575

  14. Thiophene metabolism by E. coli

    SciTech Connect

    Clark, D.P.

    1991-01-01

    The objective of this project is to investigate the mechanism of degradation of sulfur-containing heterocyclic molecules by mutant strains of Escherichia coli K-12. We have previously isolated multiple mutants of E. coli which had gained the capacity to oxidize thiophene compounds and their furan analogs. We have focused on the thdA mutation in our subsequent research, as this appears to be in a regulatory gene central to the thiophene/furan oxidation system. The thdF gene appears to be more directly involved in the oxidation reactions, whereas thdC and thdD are apparently required for increased protection against the toxic effects of thiophene and furan compounds. 4 tabs.

  15. Core human mitochondrial transcription apparatus is a regulated two-component system in vitro.

    PubMed

    Shutt, Timothy E; Lodeiro, Maria F; Cotney, Justin; Cameron, Craig E; Shadel, Gerald S

    2010-07-01

    The core human mitochondrial transcription apparatus is currently regarded as an obligate three-component system comprising the bacteriophage T7-related mitochondrial RNA polymerase, the rRNA methyltransferase-related transcription factor, h-mtTFB2, and the high mobility group box transcription/DNA-packaging factor, h-mtTFA/TFAM. Using a faithful recombinant human mitochondrial transcription system from Escherichia coli, we demonstrate that specific initiation from the mtDNA promoters, LSP and HSP1, only requires mitochondrial RNA polymerase and h-mtTFB2 in vitro. When h-mtTFA is added to these basal components, LSP exhibits a much lower threshold for activation and a larger amplitude response than HSP1. In addition, when LSP and HSP1 are together on the same transcription template, h-mtTFA-independent transcription from HSP1 and h-mtTFA-dependent transcription from both promoters is enhanced and a higher concentration of h-mtTFA is required to stimulate HSP1. Promoter competition experiments revealed that, in addition to LSP competing transcription components away from HSP1, additional cis-acting signals are involved in these aspects of promoter regulation. Based on these results, we speculate that the human mitochondrial transcription system may have evolved to differentially regulate transcription initiation and transcription-primed mtDNA replication in response to the amount of h-mtTFA associated with nucleoids, which could begin to explain the heterogeneity of nucleoid structure and activity in vivo. Furthermore, this study sheds new light on the evolution of mitochondrial transcription components by showing that the human system is a regulated two-component system in vitro, and thus more akin to that of budding yeast than thought previously.

  16. Core human mitochondrial transcription apparatus is a regulated two-component system in vitro

    PubMed Central

    Shutt, Timothy E.; Lodeiro, Maria F.; Cotney, Justin; Cameron, Craig E.; Shadel, Gerald S.

    2010-01-01

    The core human mitochondrial transcription apparatus is currently regarded as an obligate three-component system comprising the bacteriophage T7-related mitochondrial RNA polymerase, the rRNA methyltransferase-related transcription factor, h-mtTFB2, and the high mobility group box transcription/DNA-packaging factor, h-mtTFA/TFAM. Using a faithful recombinant human mitochondrial transcription system from Escherichia coli, we demonstrate that specific initiation from the mtDNA promoters, LSP and HSP1, only requires mitochondrial RNA polymerase and h-mtTFB2 in vitro. When h-mtTFA is added to these basal components, LSP exhibits a much lower threshold for activation and a larger amplitude response than HSP1. In addition, when LSP and HSP1 are together on the same transcription template, h-mtTFA-independent transcription from HSP1 and h-mtTFA-dependent transcription from both promoters is enhanced and a higher concentration of h-mtTFA is required to stimulate HSP1. Promoter competition experiments revealed that, in addition to LSP competing transcription components away from HSP1, additional cis-acting signals are involved in these aspects of promoter regulation. Based on these results, we speculate that the human mitochondrial transcription system may have evolved to differentially regulate transcription initiation and transcription-primed mtDNA replication in response to the amount of h-mtTFA associated with nucleoids, which could begin to explain the heterogeneity of nucleoid structure and activity in vivo. Furthermore, this study sheds new light on the evolution of mitochondrial transcription components by showing that the human system is a regulated two-component system in vitro, and thus more akin to that of budding yeast than thought previously. PMID:20562347

  17. Apolipoprotein A1 in channel catfish: Transcriptional analysis, antimicrobial activity, and efficacy as plasmid DNA immunostimulant against Aeromonas hydrophila infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to: 1) determine transcriptional profiles of apolipoprotein A1 (ApoA1) in collected channel catfish tissues after infection with A. hydrophila by bath immersion; 2) investigate whether recombinant channel catfish apolipoprotein A1 produced in E. coli expression syst...

  18. Transcriptional Regulation: a Genomic Overview

    PubMed Central

    Riechmann, José Luis

    2002-01-01

    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription. PMID:22303220

  19. O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities.

    PubMed

    Ha, Changhoon; Lim, Kihong

    2015-11-13

    The addition of O-linked N-acetylglucosamine (O-GlcNAc) on serine or threonine modifies a myriad of proteins and regulates their function, stability and localization. O-GlcNAc modification is common among chromosome-associated proteins, such as transcription factors, suggesting its extensive involvement in gene expression regulation. In this study, we demonstrate the O-GlcNAc status of the Sp family members of transcription factors and the functional impact on their transcriptional activities. We highlight the presence of O-GlcNAc residues in Sp3 and Sp4, but not Sp2, as demonstrated by their enrichment in GlcNAc positive protein fractions and by detection of O-GlcNAc residues on Sp3 and Sp4 co-expressed in Escherichia coli together with O-GlcNAc transferase (OGT) using an O-GlcNAc-specific antibody. Deletion mutants of Sp3 and Sp4 indicate that the majority of O-GlcNAc sites reside in their N-terminal transactivation domain. Overall, using reporter gene assays and co-immunoprecipitations, we demonstrate a functional inhibitory role of O-GlcNAc modifications in Sp3 and Sp4 transcription factors. Thereby, our study strengthens the current notion that O-GlcNAc modification is an important regulator of protein interactome.

  20. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation.

    PubMed Central

    Kullik, I; Toledano, M B; Tartaglia, L A; Storz, G

    1995-01-01

    OxyR is a redox-sensitive transcriptional regulator of the LysR family which activates the expression of genes important for the defense against hydrogen peroxide in Escherichia coli and Samonella typhimurium. OxyR is sensitive to oxidation and reduction, and only oxidized OxyR is able to activate transcription of its target genes. Using site-directed mutagenesis, we found that one cysteine residue (C-199) is critical for the redox sensitivity of OxyR, and a C-199-->S mutation appears to lock the OxyR protein in the reduced form. We also used a random mutagenesis approach to isolate eight constitutively active mutants. All of the mutations are located in the C-terminal half of the protein, and four of the mutations map near the critical C-199 residue. In vivo as well as in vitro transcription experiments showed that the constitutive mutant proteins were able to activate transcription under both oxidizing and reducing conditions, and DNase I footprints showed that this activation is due to the ability of the mutant proteins to induce cooperative binding of RNA polymerase. Unexpectedly, RNA polymerase was also found to reciprocally affect OxyR binding. PMID:7868602

  1. Mechanism of transcriptional repression at a bacterial promoter by analysis of single molecules.

    PubMed

    Sanchez, Alvaro; Osborne, Melisa L; Friedman, Larry J; Kondev, Jane; Gelles, Jeff

    2011-10-01

    The molecular basis for regulation of lactose metabolism in Escherichia coli is well studied. Nonetheless, the physical mechanism by which the Lac repressor protein prevents transcription of the lactose promoter remains unresolved. Using multi-wavelength single-molecule fluorescence microscopy, we visualized individual complexes of fluorescently tagged RNA polymerase holoenzyme bound to promoter DNA. Quantitative analysis of the single-molecule observations, including use of a novel statistical partitioning approach, reveals highly kinetically stable binding of polymerase to two different sites on the DNA, only one of which leads to transcription. Addition of Lac repressor directly demonstrates that bound repressor prevents the formation of transcriptionally productive open promoter complexes; discrepancies in earlier studies may be attributable to transcriptionally inactive polymerase binding. The single-molecule statistical partitioning approach is broadly applicable to elucidating mechanisms of regulatory systems including those that are kinetically rather than thermodynamically controlled. PMID:21829165

  2. Transcription by single molecules of RNA polymerase observed by light microscopy.

    PubMed

    Schafer, D A; Gelles, J; Sheetz, M P; Landick, R

    1991-08-01

    The kinetics of transcription by Escherichia coli RNA polymerase relate directly to the regulation of transcription and to the properties of processive enzymes in general, but analysis of RNA polymerase movement along the DNA template has so far been limited to the study of populations of enzyme molecules. The ability to view nanometre-sized particles with the light microscope suggested a method of monitoring transcription by individual RNA polymerase molecules. We describe here the behaviour of 40-nm-diameter particles of colloidal gold attached to the ends of DNA molecules being transcribed by RNA polymerase immobilized on a glass surface. The tethered gold particles are released from the surface at times after addition of nucleoside triphosphates that are consistent with the kinetics of transcription by RNA polymerase in solution. Analysis of the brownian motion of the gold particles enabled us to measure the movement along the template DNA of individual polymerase molecules.

  3. Development of a LacZ-based transcriptional reporter system for use with Moraxella catarrhalis.

    PubMed

    Evans, Amanda S; Pybus, Christine; Hansen, Eric J

    2013-03-01

    The lack of a transcriptional reporter system for use in Moraxella catarrhalis has hindered studies of gene regulation in this pathogen. PCR and recombinant DNA methods were used to insert a multicloning site (MCS) and promoterless full-length Escherichia coli lacZ gene, flanked by transcriptional terminators both immediately upstream and downstream, into the M. catarrhalis recombinant plasmid pWW115. Insertion into the MCS in the newly constructed plasmid pASE222 of M. catarrhalis promoter regions controlled by either a repressor (i.e., NsrR) or activator (i.e., PhoB) yielded transcriptional fusion constructs that were appropriately responsive to signal inputs dependent on the host strain genotype, as measured quantitatively by means of a Miller β-galactosidase assay. The transcriptional reporter plasmid pASE222 should prove to be a useful tool for rapid screening of factors affecting gene expression in M. catarrhalis. PMID:23219721

  4. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination

    PubMed Central

    Figueroa-Bossi, Nara; Schwartz, Annie; Guillemardet, Benoit; D’Heygère, François; Bossi, Lionello; Boudvillain, Marc

    2014-01-01

    RNA-binding protein CsrA is a key regulator of a variety of cellular processes in bacteria, including carbon and stationary phase metabolism, biofilm formation, quorum sensing, and virulence gene expression in pathogens. CsrA binds to bipartite sequence elements at or near the ribosome loading site in messenger RNA (mRNA), most often inhibiting translation initiation. Here we describe an alternative novel mechanism through which CsrA achieves negative regulation. We show that CsrA binding to the upstream portion of the 5′ untranslated region of Escherichia coli pgaA mRNA—encoding a polysaccharide adhesin export protein—unfolds a secondary structure that sequesters an entry site for transcription termination factor Rho, resulting in the premature stop of transcription. These findings establish a new paradigm for bacterial gene regulation in which remodeling of the nascent transcript by a regulatory protein promotes Rho-dependent transcription attenuation. PMID:24888591

  5. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12

    PubMed Central

    Zhang, Yongzhu; Wu, Ying

    2016-01-01

    Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress. PMID:27077011

  6. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12.

    PubMed

    Gu, Shaobin; Zhang, Yongzhu; Wu, Ying

    2016-01-01

    Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress.

  7. Tellurite-exposed Escherichia coli exhibits increased intracellular {alpha}-ketoglutarate

    SciTech Connect

    Reinoso, Claudia A.; Auger, Christopher; Appanna, Vasu D.; Vasquez, Claudio C.

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Tellurite-exposed E. coli exhibits decreased {alpha}-KG dehydrogenase activity. Black-Right-Pointing-Pointer Cells lacking {alpha}-KGDH genes are more sensitive to ROS than isogenic, wt E. coli. Black-Right-Pointing-Pointer KG accumulation may serve to face tellurite-mediated oxidative damage in E. coli. -- Abstract: The tellurium oxyanion tellurite is toxic to most organisms because of its ability to generate oxidative stress. However, the detailed mechanism(s) how this toxicant interferes with cellular processes have yet to be fully understood. As part of our effort to decipher the molecular interactions of tellurite with living systems, we have evaluated the global metabolism of {alpha}-ketoglutarate a known antioxidant in Escherichia coli. Tellurite-exposed cells displayed reduced activity of the KG dehydrogenase complex (KGDHc), resulting in increased intracellular KG content. This complex's reduced activity seems to be due to decreased transcription in the stressed cells of sucA, a gene that encodes the E1 component of KGDHc. Furthermore, it was demonstrated that the increase in total reactive oxygen species and superoxide observed upon tellurite exposure was more evident in wild type cells than in E. coli with impaired KGDHc activity. These results indicate that KG may be playing a pivotal role in combating tellurite-mediated oxidative damage.

  8. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12.

    PubMed

    Gu, Shaobin; Zhang, Yongzhu; Wu, Ying

    2016-01-01

    Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress. PMID:27077011

  9. Prostaglandin synthesis genes are differentially transcripted in normal and pyometra endometria of bitches.

    PubMed

    Silva, E; Leitão, S; Ferreira-Dias, G; Lopes da Costa, L; Mateus, L

    2009-07-01

    Pro-inflammatory stimuli, such as endotoxins released by Gram-negative bacteria, are potent stimulators of prostaglandin (PG) synthesis. The aim of this study was to evaluate the gene transcription pattern of PG synthesis enzymes in normal (anestrous, n = 6 and diestrous, n = 8) and pyometra (n = 7) endometria of bitches. Uteri were collected during routine ovariohysterectomy, processed for histopathological evaluation and uterine contents cultured. Gene transcription of COX-1, COX-2, mPGES-1 and PGF-synthase (PGFS) were evaluated by relative real-time PCR and normalized with the ribosomal protein L27 (RPL27) housekeeping gene. Normal uteri had no histological abnormalities and were negative for bacteriology. All pyometra uteri were hyperplasic and Escherichia coli was the only isolated bacterium. Except for COX-1, gene transcription was significantly higher in pyometra than in normal endometria. No significant differences in gene transcription were observed between normal diestrous and anestrous endometria. COX-2 gene transcription was 19 and 69 times higher in pyometra than in diestrous and anestrous endometria (p < 0.001), while PGFS gene transcription had a 3- and 600-fold increase in pyometra endometria compared to normal diestrous and anestrous endometria (p < 0.001). Gene transcription of mPGES-1 was 9 times higher in pyometra than in normal uteri (p < 0.01). Based on these results, we suggest that pyometra-associated E. coli endotoxin release stimulates the up-regulation of COX-2 PGFS and mPGES-1 gene transcription in the endometrium. PMID:19754568

  10. The Stress Response of Escherichia coli under Microgravity.

    NASA Astrophysics Data System (ADS)

    Lynch, S.; Matin, A.

    At the onset of adverse environmental conditions, bacteria induce a controlled stress response to enable survival. Escherichia coli induces stress-specific reactions in response to a variety of environmental strains. A family of proteins termed sigma (s) factors is pivotal to the regulation of stress responses in bacteria. In particular Sigma S (ss) regulates several stress responses in E. coli and serves as an important global stress regulatory protein. Under optimal growth conditions, levels of ss are maintained at low cellular concentrations primarily via a proteolytic regulatory mechanism. At the onset of stress, ss levels increase due to increased stability of the molecule, facilitating transcriptional initiation and up regulation of specific stress related proteins. Concentrations of ss can therefore be indicative of cellular stress levels. Recent work by Kendrick et al demonstrated that Salmonella species grown under conditions of simulated microgravity display increased virulence - a stress-related phenotype. Using E. coli as a model system we aim to investigate the stress response elicited by the organism under conditions of simulated microgravity (SMG). SMG is generated in specially constructed rotary cell culture systems termed HARVs (High Aspect Ratio Vessels- Synthecon Inc.). By rotating at constant velocity around a vertical axis an environment is produced in which the gravitational vectors are randomized over the surface of the cell, resulting in an overall-time-averaged gravitational vector of 10-2 x g (4). E. coli cultures grown in HARVs under conditions of normal gravity (NG) and SMG repeatedly display slower growth kinetics under SMG. Western analysis of cells at exponential and stationary phase of growth from both cultures reveal similar levels of ss exist in exponential phase under both SMG and NG conditions. However, during stationary phase, levels of ss are at least 2-fold higher under conditions of SMG as compared to NG. Translational fusion

  11. Gene algD coding for GDPmannose dehydrogenase is transcriptionally activated in mucoid Pseudomonas aeruginosa.

    PubMed Central

    Deretic, V; Gill, J F; Chakrabarty, A M

    1987-01-01

    Transcriptional regulation of alginate biosynthesis by Pseudomonas aeruginosa was studied. A DNA region complementing the alg-5 mutation within the alginate gene cluster was found by RNA-DNA dot blot and Northern hybridization to be transcriptionally activated in mucoid P. aeruginosa. This region was subcloned as a 3.2-kilobase BglII-ClaI DNA fragment on the broad-host-range controlled transcription vector pMMB24, and gene products were analyzed by expression from the tac promoter. A 48-kilodalton polypeptide was detected in extracts of P. aeruginosa and 35S-labeled Escherichia coli maxicells. By using the same expression system, GDPmannose dehydrogenase activity was detected in both P. aeruginosa and E. coli. Thus, gene algD coding for this enzyme was found to be present in the transcriptionally active DNA area. Insertion of the xylE gene within the BglII-ClaI fragment disrupted the induction of the 48-kilodalton polypeptide, GDPmannose dehydrogenase activity, and alg-5 complementing ability. With the algD-xylE transcription fusion, activation of algD gene expression was shown to occur in mucoid P. aeruginosa of different origins. In addition, regulation of the algD promoter activity was demonstrated to be mediated by a diffusible factor. Images PMID:3025179

  12. A synthetic oscillatory network of transcriptional regulators

    NASA Astrophysics Data System (ADS)

    Elowitz, Michael B.; Leibler, Stanislas

    2000-01-01

    Networks of interacting biomolecules carry out many essential functions in living cells, but the `design principles' underlying the functioning of such intracellular networks remain poorly understood, despite intensive efforts including quantitative analysis of relatively simple systems. Here we present a complementary approach to this problem: the design and construction of a synthetic network to implement a particular function. We used three transcriptional repressor systems that are not part of any natural biological clock to build an oscillating network, termed the repressilator, in Escherichia coli. The network periodically induces the synthesis of green fluorescent protein as a readout of its state in individual cells. The resulting oscillations, with typical periods of hours, are slower than the cell-division cycle, so the state of the oscillator has to be transmitted from generation to generation. This artificial clock displays noisy behaviour, possibly because of stochastic fluctuations of its components. Such `rational network design' may lead both to the engineering of new cellular behaviours and to an improved understanding of naturally occurring networks.

  13. Spatial organization of bacterial transcription and translation.

    PubMed

    Castellana, Michele; Hsin-Jung Li, Sophia; Wingreen, Ned S

    2016-08-16

    In bacteria such as Escherichia coli, DNA is compacted into a nucleoid near the cell center, whereas ribosomes-molecular complexes that translate mRNAs into proteins-are mainly localized to the poles. We study the impact of this spatial organization using a minimal reaction-diffusion model for the cellular transcriptional-translational machinery. Although genome-wide mRNA-nucleoid segregation still lacks experimental validation, our model predicts that [Formula: see text] of mRNAs are segregated to the poles. In addition, our analysis reveals a "circulation" of ribosomes driven by the flux of mRNAs, from synthesis in the nucleoid to degradation at the poles. We show that our results are robust with respect to multiple, biologically relevant factors, such as mRNA degradation by RNase enzymes, different phases of the cell division cycle and growth rates, and the existence of nonspecific, transient interactions between ribosomes and mRNAs. Finally, we confirm that the observed nucleoid size stems from a balance between the forces that the chromosome and mRNAs exert on each other. This suggests a potential global feedback circuit in which gene expression feeds back on itself via nucleoid compaction. PMID:27486246

  14. Escherichia coli in Europe: an overview.

    PubMed

    Allocati, Nerino; Masulli, Michele; Alexeyev, Mikhail F; Di Ilio, Carmine

    2013-11-25

    Escherichia coli remains one of the most frequent causes of several common bacterial infections in humans and animals. E. coli is the prominent cause of enteritis, urinary tract infection, septicaemia and other clinical infections, such as neonatal meningitis. E. coli is also prominently associated with diarrhoea in pet and farm animals. The therapeutic treatment of E. coli infections is threatened by the emergence of antimicrobial resistance. The prevalence of multidrug-resistant E. coli strains is increasing worldwide principally due to the spread of mobile genetic elements, such as plasmids. The rise of multidrug-resistant strains of E. coli also occurs in Europe. Therefore, the spread of resistance in E. coli is an increasing public health concern in European countries. This paper summarizes the current status of E. coli strains clinically relevant in European countries. Furthermore, therapeutic interventions and strategies to prevent and control infections are presented and discussed. The article also provides an overview of the current knowledge concerning promising alternative therapies against E. coli diseases.

  15. Characterization of the cyn operon in Escherichia coli K12.

    PubMed

    Sung, Y C; Fuchs, J A

    1988-10-15

    Escherichia coli can overcome the toxicity of environmental cyanate by hydrolysis of cyanate to ammonia and bicarbonate. This reaction is catalyzed by the enzyme cyanase, encoded by the cynS gene. The nucleotide sequence of cynS has been reported (Sung, Y.-c., Anderson, P. M., and Fuchs, J. A. (1987) J. Bacteriol. 169, 5224-5230). The nucleotide sequence of the complete cyn operon has now been determined. The cyn operon is approximately 2600 base pairs and includes cynT, cynS, and cynX, which encode cyanate permease, cyanase, and a protein of unknown function, respectively. Two cyanate-inducible transcripts of 1500 and 2500 nucleotides, respectively, were detected by Northern blot analysis. S1 nuclease mapping experiments indicated that two different cyn mRNAs have a common 5'-end and two different 3'-ends. One 3'-end was located within the coding region of cynX, whereas the other 3'-end includes the entire DNA sequence of cynX. The longer transcript contained 98 nucleotides complementary to lac mRNA produced by the predominant lac transcription termination sequence. Termination vectors were used to show that both 3'-ends were generated by sequences that caused transcriptional termination in vivo. Expression vectors were used to demonstrate that a protein corresponding to the expected size was synthesized from the DNA fragment containing the open reading frame designated cynX. The predicted amino acid sequence of cynX indicates that it is a very hydrophobic protein. The level of cynX expression was significantly less than that of cynT or cynS expression.

  16. Strategies for efficient production of heterologous proteins in Escherichia coli.

    PubMed

    Jana, S; Deb, J K

    2005-05-01

    In recent years, the number of recombinant proteins used for therapeutic applications has increased dramatically. Production of these proteins has a remarkable demand in the market. Escherichia coli offers a means for the rapid and economical production of recombinant proteins. These advantages, coupled with a wealth of biochemical and genetic knowledge, have enabled the production of such economically therapeutic proteins such as insulin and bovine growth hormone. These demands have driven the development of a variety of strategies for achieving high-level expression of protein, particularly involving several aspects such as expression vectors design, gene dosage, promoter strength (transcriptional regulation), mRNA stability, translation initiation and termination (translational regulation), host design considerations, codon usage, and fermentation factors available for manipulating the expression conditions, which are the major challenges is obtaining the high yield of protein at low cost.

  17. Phenotypic bistability in Escherichia coli's central carbon metabolism

    PubMed Central

    Kotte, Oliver; Volkmer, Benjamin; Radzikowski, Jakub L; Heinemann, Matthias

    2014-01-01

    Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine experiment and theory to demonstrate that a clonal Escherichia coli population splits into two stochastically generated phenotypic subpopulations after glucose-gluconeogenic substrate shifts. Most cells refrain from growth, entering a dormant persister state that manifests as a lag phase in the population growth curve. The subpopulation-generating mechanism resides at the metabolic core, overarches the metabolic and transcriptional networks, and only allows the growth of cells initially achieving sufficiently high gluconeogenic flux. Thus, central metabolism does not ensure the gluconeogenic growth of individual cells, but uses a population-level adaptation resulting in responsive diversification upon nutrient changes. PMID:24987115

  18. Uropathogenic Escherichia coli Epigenetically Manipulate Host Cell Death Pathways.

    PubMed

    Zhang, Zhengguo; Wang, Ming; Eisel, Florian; Tchatalbachev, Svetlin; Chakraborty, Trinad; Meinhardt, Andreas; Bhushan, Sudhanshu

    2016-04-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in human. It is well established that UPEC can subvert innate immune responses, but the role of UPEC in interfering with host cell death pathways is not known. Here, we show that UPEC abrogates activation of the host cell prosurvival protein kinase B signaling pathway, which results in the activation of mammalian forkhead box O (FOXO) transcription factors. Although FOXOs were localized in the nucleus and showed increased DNA-binding activity, no change in the expression levels of FOXO target genes were observed. UPEC can suppress BIM expression induced by LY249002, which results in attenuation of caspase 3 activation and blockage of apoptosis. Mechanistically, BIM expression appears to be epigenetically silenced by a decrease in histone 4 acetylation at the BIM promoter site. Taken together, these results suggest that UPEC can epigenetically silence BIM expression, a molecular switch that prevents apoptosis.

  19. Importance of understanding the main metabolic regulation in response to the specific pathway mutation for metabolic engineering of Escherichia coli

    PubMed Central

    Matsuoka, Yu; Shimizu, Kazuyuki

    2013-01-01

    Recent metabolic engineering practice was briefly reviewed in particular for the useful metabolite production such as natural products and biofuel productions. With the emphasis on systems biology approach, the metabolic regulation of the main metabolic pathways in E. coli was discussed from the points of view of enzyme level (allosteric and phosphorylation/ dephosphorylation) regulation, and gene level (transcriptional) regulation. Then the effects of the specific pathway gene knockout such as pts, pgi, zwf, gnd, pyk, ppc, pckA, lpdA, pfl gene knockout on the metabolism in E. coli were overviewed from the systems biology point of view with possible application for strain improvement point. PMID:24688678

  20. RNA polymerase and the regulation of transcription

    SciTech Connect

    Reznikoff, W.S.; Gross, C.A.; Burgess, R.R.; Record, M.T.; Dahlberg, J.E.; Wickens, M.P.

    1987-01-01

    This book consists of eight sections, each containing several papers. The section titles are: RNA Polymerases; Transcription Initiation - Bacterial; Regulation of Bacterial Transcription Initiation; Stable RNA Synthesis in Eukaryotes: Chromatin Structure; Promoters; Enhancers; and the Global Control of Eukaryotic Transcription; Specific Eukaryotic Transcription Factors; Termination of Transcription; and Short Communications.

  1. Multiple transcribed elements control expression of the Escherichia coli btuB gene.

    PubMed Central

    Franklund, C V; Kadner, R J

    1997-01-01

    Repression by vitamin B12 of the cobalamin transport protein BtuB in the outer membrane of Escherichia coli operates at both the transcriptional and translational levels and is controlled by transcribed sequences within the leader and proximal portion of the btuB coding sequence. The effects of deletions from either end of this region on repression and expression were determined with lac fusions. An element at the 5' end of the transcript and the putative attenuator within the coding sequence were required for transcriptional repression. The presence of either element caused a marked reduction in btuB-lacZ expression which was reversed by the presence of a conserved sequence element in the leader, suggesting the importance of long-range interactions in the btuB leader for expression and regulation. PMID:9190822

  2. Mapping of Protein-Protein Interactions of E. coli RNA Polymerase with Microfluidic Mechanical Trapping

    PubMed Central

    Bates, Steven R.; Quake, Stephen R.

    2014-01-01

    The biophysical details of how transcription factors and other proteins interact with RNA polymerase are of great interest as they represent the nexus of how structure and function interact to regulate gene expression in the cell. We used an in vitro microfluidic approach to map interactions between a set of ninety proteins, over a third of which are transcription factors, and each of the four subunits of E. coli RNA polymerase, and we compared our results to those of previous large-scale studies. We detected interactions between RNA polymerase and transcription factors that earlier high-throughput screens missed; our results suggest that such interactions can occur without DNA mediation more commonly than previously appreciated. PMID:24643045

  3. The dynamic nature and territory of transcriptional machinery in the bacterial chromosome

    PubMed Central

    Jin, Ding J.; Cagliero, Cedric; Martin, Carmen M.; Izard, Jerome; Zhou, Yan N.

    2015-01-01

    Our knowledge of the regulation of genes involved in bacterial growth and stress responses is extensive; however, we have only recently begun to understand how environmental cues influence the dynamic, three-dimensional distribution of RNA polymerase (RNAP) in Escherichia coli on the level of single cell, using wide-field fluorescence microscopy and state-of-the-art imaging techniques. Live-cell imaging using either an agarose-embedding procedure or a microfluidic system further underscores the dynamic nature of the distribution of RNAP in response to changes in the environment and highlights the challenges in the study. A general agreement between live-cell and fixed-cell images has validated the formaldehyde-fixing procedure, which is a technical breakthrough in the study of the cell biology of RNAP. In this review we use a systems biology perspective to summarize the advances in the cell biology of RNAP in E. coli, including the discoveries of the bacterial nucleolus, the spatial compartmentalization of the transcription machinery at the periphery of the nucleoid, and the segregation of the chromosome territories for the two major cellular functions of transcription and replication in fast-growing cells. Our understanding of the coupling of transcription and bacterial chromosome (or nucleoid) structure is also summarized. Using E. coli as a simple model system, co-imaging of RNAP with DNA and other factors during growth and stress responses will continue to be a useful tool for studying bacterial growth and adaptation in changing environment. PMID:26052320

  4. Why Is Carbonic Anhydrase Essential to Escherichia coli?

    PubMed Central

    Merlin, Christophe; Masters, Millicent; McAteer, Sean; Coulson, Andrew

    2003-01-01

    The can (previously yadF) gene of Escherichia coli encodes a β-class carbonic anhydrase (CA), an enzyme which interconverts CO2 and bicarbonate.Various essential metabolic processes require either CO2 or bicarbonate and, although carbon dioxide and bicarbonate spontaneously equilibrate in solution, the low concentration of CO2 in air and its rapid diffusion from the cell mean that insufficient bicarbonate is spontaneously made in vivo to meet metabolic and biosynthetic needs. We calculate that demand for bicarbonate is 103- to 104-fold greater than would be provided by uncatalyzed intracellular hydration and that enzymatic conversion of CO2 to bicarbonate is therefore necessary for growth. We find that can expression is ordinarily required for growth in air. It is dispensable if the atmospheric partial pressure of CO2 is high or during anaerobic growth in a closed vessel at low pH, where copious CO2 is generated endogenously. CynT, the single E. coli Can paralog, can, when induced with azide, replace Can; also, the γ-CA from Methanosarcina thermophila can at least partially replace it. Expression studies showed that can transcription does not appear to respond to carbon dioxide concentration or to be autoregulated. However, can expression is influenced by growth rate and the growth cycle; it is expressed best in slow-growing cultures and at higher culture densities. Expression can vary over a 10-fold range during the growth cycle and is also elevated during starvation or heat stress. PMID:14563877

  5. Transcription of Trypanosoma brucei maxicircles

    SciTech Connect

    Michelotti, E.F.; Hajduk, S.L.

    1987-05-01

    Trypanosoma brucei is a protozoan parasite which developmentally regulates mitochondrial activity. In the mammal T. brucei produces ATP entirely by glycolysis while cytochrome mediated respiration resumes in the life-stage in the midgut of the insect vector. Using quantitative S1 nuclease protection assays two types of regulation of the steady state levels of the mitochondrial transcripts were found. Transcription of cytochrome b, cytochrome oxidase, and the rRNA genes is repressed in early bloodstream developmental stages, undergoes dramatic activation in later bloodstream stages, and finally a lesser activation in the insect developmental stage. Transcription of NADH dehydrogenase genes, however, is unregulated. Mitochondrial transcripts with a 5' triphosphate terminus, representing the site of transcription initiation, were capped using guanylyl transferase. The in vitro capped RNA hybridized to only one of eight mitochondrial restriction fragments on a Southern blot, however, hybridization of Southern blots with RNA from ..cap alpha..-/sup 32/P-UTP pulsed mitochondria labelled all restriction fragments equally. These results suggest that each DNA strand has a single promoter which directs the transcription of a full-length RNA which is subsequently processed. Different mitochondrial genes, despite being expressed on the same precursor RNA molecule, are independently regulated by both transcription initiation and RNA processing.

  6. AthaMap, integrating transcriptional and post-transcriptional data

    PubMed Central

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403 173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  7. AthaMap, integrating transcriptional and post-transcriptional data.

    PubMed

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403,173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  8. Promoters of Escherichia coli versus Promoter Islands: Function and Structure Comparison

    PubMed Central

    Panyukov, Valeriy V.; Ozoline, Olga N.

    2013-01-01

    Expression of bacterial genes takes place under the control of RNA polymerase with exchangeable σ-subunits and multiple transcription factors. A typical promoter region contains one or several overlapping promoters. In the latter case promoters have the same or different σ-specificity and are often subjected to different regulatory stimuli. Genes, transcribed from multiple promoters, have on average higher expression levels. However, recently in the genome of Escherichia coli we found 78 regions with an extremely large number of potential transcription start points (promoter islands, PIs). It was shown that all PIs interact with RNA polymerase in vivo and are able to form transcriptionally competent open complexes both in vitro and in vivo but their transcriptional activity measured by oligonucleotide microarrays was very low, if any. Here we confirmed transcriptional defectiveness of PIs by analyzing the 5′-end specific RNA-seq data, but showed their ability to produce short oligos (9–14 bases). This combination of functional properties indicated a deliberate suppression of transcriptional activity within PIs. According to our data this suppression may be due to a specific conformation of the DNA double helix, which provides an ideal platform for interaction with both RNA polymerase and the histone-like nucleoid protein H-NS. The genomic DNA of E.coli contains therefore several dozen sites optimized by evolution for staying in a heterochromatin-like state. Since almost all promoter islands are associated with horizontally acquired genes, we offer them as specific components of bacterial evolution involved in acquisition of foreign genetic material by turning off the expression of toxic or useless aliens or by providing optimal promoter for beneficial genes. The putative molecular mechanism underlying the appearance of promoter islands within recipient genomes is discussed. PMID:23717391

  9. Sigma Factors for Cyanobacterial Transcription

    PubMed Central

    Imamura, Sousuke; Asayama, Munehiko

    2009-01-01

    Cyanobacteria are photosynthesizing microorganisms that can be used as a model for analyzing gene expression. The expression of genes involves transcription and translation. Transcription is performed by the RNA polymerase (RNAP) holoenzyme, comprising a core enzyme and a sigma (σ) factor which confers promoter selectivity. The unique structure, expression, and function of cyanobacterial σ factors (and RNAP core subunits) are summarized here based on studies, reported previously. The types of promoter recognized by the σ factors are also discussed with regard to transcriptional regulation. PMID:19838335

  10. Mutations in the CRE pocket of bacterial RNA polymerase affect multiple steps of transcription.

    PubMed

    Petushkov, Ivan; Pupov, Danil; Bass, Irina; Kulbachinskiy, Andrey

    2015-07-13

    During transcription, the catalytic core of RNA polymerase (RNAP) must interact with the DNA template with low-sequence specificity to ensure efficient enzyme translocation and RNA extension. Unexpectedly, recent structural studies of bacterial promoter complexes revealed specific interactions between the nontemplate DNA strand at the downstream edge of the transcription bubble (CRE, core recognition element) and a protein pocket formed by core RNAP (CRE pocket). We investigated the roles of these interactions in transcription by analyzing point amino acid substitutions and deletions in Escherichia coli RNAP. The mutations affected multiple steps of transcription, including promoter recognition, RNA elongation and termination. In particular, we showed that interactions of the CRE pocket with a nontemplate guanine immediately downstream of the active center stimulate RNA-hairpin-dependent transcription pausing but not other types of pausing. Thus, conformational changes of the elongation complex induced by nascent RNA can modulate CRE effects on transcription. The results highlight the roles of specific core RNAP-DNA interactions at different steps of RNA synthesis and suggest their importance for transcription regulation in various organisms.

  11. Mutations in the CRE pocket of bacterial RNA polymerase affect multiple steps of transcription

    PubMed Central

    Petushkov, Ivan; Pupov, Danil; Bass, Irina; Kulbachinskiy, Andrey

    2015-01-01

    During transcription, the catalytic core of RNA polymerase (RNAP) must interact with the DNA template with low-sequence specificity to ensure efficient enzyme translocation and RNA extension. Unexpectedly, recent structural studies of bacterial promoter complexes revealed specific interactions between the nontemplate DNA strand at the downstream edge of the transcription bubble (CRE, core recognition element) and a protein pocket formed by core RNAP (CRE pocket). We investigated the roles of these interactions in transcription by analyzing point amino acid substitutions and deletions in Escherichia coli RNAP. The mutations affected multiple steps of transcription, including promoter recognition, RNA elongation and termination. In particular, we showed that interactions of the CRE pocket with a nontemplate guanine immediately downstream of the active center stimulate RNA-hairpin-dependent transcription pausing but not other types of pausing. Thus, conformational changes of the elongation complex induced by nascent RNA can modulate CRE effects on transcription. The results highlight the roles of specific core RNAP–DNA interactions at different steps of RNA synthesis and suggest their importance for transcription regulation in various organisms. PMID:25990734

  12. Monitoring RNA transcription in real time by using surface plasmon resonance

    PubMed Central

    Greive, Sandra J.; Weitzel, Steven E.; Goodarzi, Jim P.; Main, Lisa J.; Pasman, Zvi; von Hippel, Peter H.

    2008-01-01

    The decision to elongate or terminate the RNA chain at specific DNA template positions during transcription is kinetically regulated, but the methods used to measure the rates of these processes have not been sufficiently quantitative to permit detailed mechanistic analysis of the steps involved. Here, we use surface plasmon resonance (SPR) technology to monitor RNA transcription by Escherichia coli RNA polymerase (RNAP) in solution and in real time. We show that binding of RNAP to immobilized DNA templates to form active initiation or elongation complexes can be resolved and monitored by this method, and that changes during transcription that involve the gain or loss of bound mass, including the release of the sigma factor during the initiation–elongation transition, the synthesis of the RNA transcript, and the release of core RNAP and nascent RNA at intrinsic terminators, can all be observed. The SPR method also permits the discrimination of released termination products from paused and other intermediate complexes at terminators. We have used this approach to show that the rate constant for transcript release at intrinsic terminators tR2 and tR′ is ≈2–3 s−1 and that the extent of release at these terminators is consistent with known termination efficiencies. Simulation techniques have been used to fit the measured parameters to a simple kinetic model of transcription and the implications of these results for transcriptional regulation are discussed. PMID:18299563

  13. Peptidoglycan Hydrolases of Escherichia coli

    PubMed Central

    van Heijenoort, Jean

    2011-01-01

    Summary: The review summarizes the abundant information on the 35 identified peptidoglycan (PG) hydrolases of Escherichia coli classified into 12 distinct families, including mainly glycosidases, peptidases, and amidases. An attempt is also made to critically assess their functions in PG maturation, turnover, elongation, septation, and recycling as well as in cell autolysis. There is at least one hydrolytic activity for each bond linking PG components, and most hydrolase genes were identified. Few hydrolases appear to be individually essential. The crystal structures and reaction mechanisms of certain hydrolases having defined functions were investigated. However, our knowledge of the biochemical properties of most hydrolases still remains fragmentary, and that of their cellular functions remains elusive. Owing to redundancy, PG hydrolases far outnumber the enzymes of PG biosynthesis. The presence of the two sets of enzymes acting on the PG bonds raises the question of their functional correlations. It is difficult to understand why E. coli keeps such a large set of PG hydrolases. The subtle differences in substrate specificities between the isoenzymes of each family certainly reflect a variety of as-yet-unidentified physiological functions. Their study will be a far more difficult challenge than that of the steps of the PG biosynthesis pathway. PMID:22126997

  14. Reinitiation enhances reliable transcriptional responses in eukaryotes.

    PubMed

    Liu, Bo; Yuan, Zhanjiang; Aihara, Kazuyuki; Chen, Luonan

    2014-08-01

    Gene transcription is a noisy process carried out by the transcription machinery recruited to the promoter. Noise reduction is a fundamental requirement for reliable transcriptional responses which in turn are crucial for signal transduction. Compared with the relatively simple transcription initiation in prokaryotes, eukaryotic transcription is more complex partially owing to its additional reinitiation mechanism. By theoretical analysis, we showed that reinitiation reduces noise in eukaryotic transcription independent of the transcription level. Besides, a higher reinitiation rate enables a stable scaffold complex an advantage in noise reduction. Finally, we showed that the coupling between scaffold formation and transcription can further reduce transcription noise independent of the transcription level. Furthermore, compared with the reinitiation mechanism, the noise reduction effect of the coupling can be of more significance in the case that the transcription level is low and the intrinsic noise dominates. Our results uncover a mechanistic route which eukaryotes may use to facilitate a more reliable response in the noisy transcription process. PMID:24850905

  15. Third International E. coli genome meeting

    SciTech Connect

    1994-12-31

    Proceedings of the Third E. Coli Genome Meeting are provided. Presentations were divided into sessions entitled (1) Large Scale Sequencing, Sequence Analysis; (2) Databases; (3) Sequence Analysis; (4) Sequence Divergence in E. coli Strains; (5) Repeated Sequences and Regulatory Motifs; (6) Mutations, Rearrangements and Stress Responses; and (7) Origins of New Genes. The document provides a collection of abstracts of oral and poster presentations.

  16. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  17. Survival of Escherichia coli in stormwater biofilters.

    PubMed

    Chandrasena, G I; Deletic, A; McCarthy, D T

    2014-04-01

    Biofilters are widely adopted in Australia for stormwater treatment, but the reported removal of common faecal indicators (such as Escherichia coli (E. coli)) varies from net removal to net leaching. Currently, the underlying mechanisms that govern the faecal microbial removal in the biofilters are poorly understood. Therefore, it is important to study retention and subsequent survival of faecal microorganisms in the biofilters under different biofilter designs and operational characteristics. The current study investigates how E. coli survival is influenced by temperature, moisture content, sunlight exposure and presence of other microorganisms in filter media and top surface sediment. Soil samples were taken from two different biofilters to investigate E. coli survival under controlled laboratory conditions. Results revealed that the presence of other microorganisms and temperature are vital stressors which govern the survival of E. coli captured either in the top surface sediment or filter media, while sunlight exposure and moisture content are important for the survival of E. coli captured in the top surface sediment compared to that of the filter media. Moreover, increased survival was found in the filter media compared to the top sediment, and sand filter media was found be more hostile than loamy sand filter media towards E. coli survival. Results also suggest that the contribution from the tested environmental stressors on E. coli survival in biofilters will be greatly affected by the seasonality and may vary from one site to another.

  18. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA.

    PubMed

    Alrowais, Hind; McElheny, Christi L; Spychala, Caressa N; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A; Doi, Yohei

    2015-11-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase-producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described.

  19. Autoregulation of topoisomerase I expression by supercoiling sensitive transcription

    PubMed Central

    Ahmed, Wareed; Menon, Shruti; D. N. B. Karthik, Pullela V.; Nagaraja, Valakunja

    2016-01-01

    The opposing catalytic activities of topoisomerase I (TopoI/relaxase) and DNA gyrase (supercoiling enzyme) ensure homeostatic maintenance of bacterial chromosome supercoiling. Earlier studies in Escherichia coli suggested that the alteration in DNA supercoiling affects the DNA gyrase and TopoI expression. Although, the role of DNA elements around the promoters were proposed in regulation of gyrase, the molecular mechanism of supercoiling mediated control of TopoI expression is not yet understood. Here, we describe the regulation of TopoI expression from Mycobacterium tuberculosis and Mycobacterium smegmatis by a mechanism termed Supercoiling Sensitive Transcription (SST). In both the organisms, topoI promoter(s) exhibited reduced activity in response to chromosome relaxation suggesting that SST is intrinsic to topoI promoter(s). We elucidate the role of promoter architecture and high transcriptional activity of upstream genes in topoI regulation. Analysis of the promoter(s) revealed the presence of sub-optimal spacing between the −35 and −10 elements, rendering them supercoiling sensitive. Accordingly, upon chromosome relaxation, RNA polymerase occupancy was decreased on the topoI promoter region implicating the role of DNA topology in SST of topoI. We propose that negative supercoiling induced DNA twisting/writhing align the −35 and −10 elements to facilitate the optimal transcription of topoI. PMID:26496944

  20. The unexhausted potential of E. coli.

    PubMed

    Blount, Zachary D

    2015-03-25

    E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of 'wild' E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism.

  1. Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation

    PubMed Central

    Junier, Ivan; Rivoire, Olivier

    2016-01-01

    Genome-wide measurements of transcriptional activity in bacteria indicate that the transcription of successive genes is strongly correlated beyond the scale of operons. Here, we analyze hundreds of bacterial genomes to identify supra-operonic segments of genes that are proximal in a large number of genomes. We show that these synteny segments correspond to genomic units of strong transcriptional co-expression. Structurally, the segments contain operons with specific relative orientations (co-directional or divergent) and nucleoid-associated proteins are found to bind at their boundaries. Functionally, operons inside a same segment are highly co-expressed even in the apparent absence of regulatory factors at their promoter regions. Remote operons along DNA can also be co-expressed if their corresponding segments share a transcriptional or sigma factor, without requiring these factors to bind directly to the promoters of the operons. As evidence that these results apply across the bacterial kingdom, we demonstrate them both in the Gram-negative bacterium Escherichia coli and in the Gram-positive bacterium Bacillus subtilis. The underlying process that we propose involves only RNA-polymerases and DNA: it implies that the transcription of an operon mechanically enhances the transcription of adjacent operons. In support of a primary role of this regulation by facilitated co-transcription, we show that the transcription en bloc of successive operons as a result of transcriptional read-through is strongly and specifically enhanced in synteny segments. Finally, our analysis indicates that facilitated co-transcription may be evolutionary primitive and may apply beyond bacteria. PMID:27195891

  2. Transcriptional Regulation of Hepatic Lipogenesis

    PubMed Central

    Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook

    2016-01-01

    Fatty acid and fat synthesis in liver is a highly regulated metabolic pathway critical for energy distribution. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcription level. Transcription factors, such as USF, SREBP-1c, LXR and ChREBP play critical roles in this process. Recently, insights have been gained into how various signaling pathways regulate these transcription factors. After feeding, high blood glucose and insulin induce lipogenic genes through several pathways, including DNA-PK, aPKC and Akt-mTOR. Various transcription factors and coregulators undergo specific modifications, such as phosphorylation, acetylation, or ubiquitination, which affect their function, stability, or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance. PMID:26490400

  3. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  4. Transcriptional Control of Inflammatory Responses

    PubMed Central

    Smale, Stephen T.; Natoli, Gioacchino

    2014-01-01

    The inflammatory response requires the activation of a complex transcriptional program that is both cell-type- and stimulus-specific and involves the dynamic regulation of hundreds of genes. In the context of an inflamed tissue, extensive changes in gene expression occur in both parenchymal cells and infiltrating cells of the immune system. Recently, basic transcriptional mechanisms that control inflammation have been clarified at a genome scale, particularly in macrophages and conventional dendritic cells. The regulatory logic of distinct groups of inflammatory genes can be explained to some extent by identifiable sequence-encoded features of their chromatin organization, which impact on transcription factor (TF) accessibility and impose different requirements for gene activation. Moreover, it has become apparent that the interplay between TFs activated by inflammatory stimuli and master regulators exerts a crucial role in controlling cell-type-specific transcriptional outputs. PMID:25213094

  5. The transcriptional foundation of pluripotency.

    PubMed

    Chambers, Ian; Tomlinson, Simon R

    2009-07-01

    A fundamental goal in biology is to understand the molecular basis of cell identity. Pluripotent embryonic stem (ES) cell identity is governed by a set of transcription factors centred on the triumvirate of Oct4, Sox2 and Nanog. These proteins often bind to closely localised genomic sites. Recent studies have identified additional transcriptional modulators that bind to chromatin near sites occupied by Oct4, Sox2 and Nanog. This suggests that the combinatorial control of gene transcription might be fundamental to the ES cell state. Here we discuss how these observations advance our understanding of the transcription factor network that controls pluripotent identity and highlight unresolved issues that arise from these studies. PMID:19542351

  6. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain.

    PubMed Central

    Provence, D L; Curtiss, R

    1994-01-01

    In this article, we report the isolation and characterization of a gene that may be important in the adherence of avian pathogenic Escherichia coli to the avian respiratory tract. The E. coli strain HB101, which is unable to agglutinate chicken erythrocytes, was transduced with cosmid libraries from the avian pathogenic E. coli strain chi 7122. Enrichment of transductants that could agglutinate chicken erythrocytes yielded 19 colonies. These isolates contained cosmids that encompassed four nonoverlapping regions of the E. coli chromosome. Only one group of cosmids, represented by pYA3104, would cause E. coli CC118 to agglutinate chicken erythrocytes. A 10-kb fragment of this cosmid was subcloned in pACYC184. Transposon mutagenesis of this fragment with Tn5seq1 indicated that a contiguous 4.4-kb region of cloned DNA was required for hemagglutination. In vitro transcription/translation assays indicated that this 4.4-kb region of DNA encoded one protein of approximately 140 kDa. The nucleotide sequence of this region was determined and found to encode one open reading frame of 4,134 nucleotides that would encode a protein of 1,377 amino acids with a deduced molecular weight of 148,226. This gene confers on E. coli K-12 a temperature-sensitive hemagglutination phenotype that is best expressed when cells are grown at 26 degrees C, and we have designated this gene tsh and the deduced gene product Tsh. Insertional mutagenesis of the chromosomal tsh gene in chi 7122 had no effect on hemagglutination titers. The deduced protein was found to contain significant homology to the Haemophilus influenzae and Neisseria gonorrhoeae immunoglobulin A1 proteases. These data indicate that (i) a single gene isolated from the avian pathogenic E. coli strain chi 7122 will confer on E. coli K-12 a hemagglutination-positive phenotype, (ii) chi 7122 contains at least two distinct mechanisms to allow hemagglutination to occur, and (iii) the hemagglutinin Tsh has homology with a class of

  7. Metal-specific control of gene expression mediated by Bradyrhizobium japonicum Mur and Escherichia coli Fur is determined by the cellular context.

    PubMed

    Hohle, Thomas H; O'Brian, Mark R

    2016-07-01

    Bradyrhizobium japonicum Mur and Escherichia coli Fur are manganese- and iron-responsive transcriptional regulators, respectively, that belong to the same protein family. Here, we show that neither Mur nor Fur discriminate between Fe(2+) and Mn(2+) in vitro nor is there a metal preference for conferral of DNA-binding activity on the purified proteins. When expressed in E. coli, B. japonicum Mur responded to iron, but not manganese, as determined by in vivo promoter occupancy and transcriptional repression activity. Moreover, E. coli Fur activity was manganese-dependent in B. japonicum. Total and chelatable iron levels were higher in E. coli than in B. japonicum under identical growth conditions, and Mur responded to iron in a B. japonicum iron export mutant that accumulated high levels of the metal. However, elevated manganese content in E. coli did not confer activity on Fur or Mur, suggesting a regulatory pool of manganese in B. japonicum that is absent in E. coli. We conclude that the metal selectivity of Mur and Fur depends on the cellular context in which they function, not on intrinsic properties of the proteins. Also, the novel iron sensing mechanism found in the rhizobia may be an evolutionary adaptation to the cellular manganese status.

  8. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    SciTech Connect

    Svintradze, David V.; Peterson, Darrell L.; Collazo-Santiago, Evys A.; Lewis, Janina P.; Wright, H. Tonie

    2013-10-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.

  9. RNA polymerase supply and flux through the lac operon in Escherichia coli.

    PubMed

    Sendy, Bandar; Lee, David J; Busby, Stephen J W; Bryant, Jack A

    2016-11-01

    Chromatin immunoprecipitation, followed by quantification of immunoprecipitated DNA, can be used to measure RNA polymerase binding to any DNA segment in Escherichia coli By calibrating measurements against the signal from a single RNA polymerase bound at a single promoter, we can calculate both promoter occupancy levels and the flux of transcribing RNA polymerase through transcription units. Here, we have applied the methodology to the E. coli lactose operon promoter. We confirm that promoter occupancy is limited by recruitment and that the supply of RNA polymerase to the lactose operon promoter depends on its location in the E. coli chromosome. Measurements of RNA polymerase binding to DNA segments within the lactose operon show that flux of RNA polymerase through the operon is low, with, on average, over 18 s elapsing between the passage of transcribing polymerases. Similar low levels of flux were found when semi-synthetic promoters were used to drive transcript initiation, even when the promoter elements were changed to ensure full occupancy of the promoter by RNA polymerase.This article is part of the themed issue 'The new bacteriology'. PMID:27672157

  10. RNA polymerase supply and flux through the lac operon in Escherichia coli

    PubMed Central

    Sendy, Bandar; Lee, David J.; Bryant, Jack A.

    2016-01-01

    Chromatin immunoprecipitation, followed by quantification of immunoprecipitated DNA, can be used to measure RNA polymerase binding to any DNA segment in Escherichia coli. By calibrating measurements against the signal from a single RNA polymerase bound at a single promoter, we can calculate both promoter occupancy levels and the flux of transcribing RNA polymerase through transcription units. Here, we have applied the methodology to the E. coli lactose operon promoter. We confirm that promoter occupancy is limited by recruitment and that the supply of RNA polymerase to the lactose operon promoter depends on its location in the E. coli chromosome. Measurements of RNA polymerase binding to DNA segments within the lactose operon show that flux of RNA polymerase through the operon is low, with, on average, over 18 s elapsing between the passage of transcribing polymerases. Similar low levels of flux were found when semi-synthetic promoters were used to drive transcript initiation, even when the promoter elements were changed to ensure full occupancy of the promoter by RNA polymerase. This article is part of the themed issue ‘The new bacteriology’. PMID:27672157

  11. A universally conserved ATPase regulates the oxidative stress response in Escherichia coli.

    PubMed

    Wenk, Meike; Ba, Qiaorui; Erichsen, Veronika; MacInnes, Katherine; Wiese, Heike; Warscheid, Bettina; Koch, Hans-Georg

    2012-12-21

    YchF is an evolutionarily conserved ATPase of unknown function. In humans, the YchF homologue hOla1 appears to influence cell proliferation and was found to be up-regulated in many tumors. A possible involvement in regulating the oxidative stress response was also suggested, but details on the underlying mechanism are lacking. For gaining insight into YchF function, we used Escherichia coli as a model organism and found that YchF overexpression resulted in H(2)O(2) hypersensitivity. This was not caused by transcriptional or translational down-regulation of H(2)O(2)-scavenging enzymes. Instead, we observed YchF-dependent inhibition of catalase activity and a direct interaction with the major E. coli catalase KatG. KatG inhibition was dependent on the ATPase activity of YchF and was regulated by post-translational modifications, most likely including an H(2)O(2)-dependent dephosphorylation. We furthermore showed that YchF expression is repressed by the transcription factor OxyR and further post-translationally modified in response to H(2)O(2). In summary, our data show that YchF functions as a novel negative regulator of the oxidative stress response in E. coli. Considering the available data on hOla1, YchF/Ola1 most likely execute similar functions in bacteria and humans, and their up-regulation inhibits the ability of the cells to scavenge damaging reactive oxygen species.

  12. RegR virulence regulon of rabbit-specific enteropathogenic Escherichia coli strain E22.

    PubMed

    Srikhanta, Yogitha N; Hocking, Dianna M; Praszkier, Judyta; Wakefield, Matthew J; Robins-Browne, Roy M; Yang, Ji; Tauschek, Marija

    2013-04-01

    AraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli, enteroaggregative E. coli, and Citrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, of C. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target, sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression of sefA by binding to a region upstream of the sefA promoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22. PMID:23340312

  13. Pathway of assembly of ribulosebisphosphate carboxylase/oxygenase from Anabaena 7210 expressed in Escherichia coli

    SciTech Connect

    Gurevitz, M.; Somerville, C.R.; McIntosh, L.

    1985-10-01

    The authors have placed the genes encoding ribulosebisphosphate carboxylase/oxygenase from the Anabaena 7120 operon under transcriptional control of the lac promoter carried on the Escherichia coli plasmid pUC19. The genes encoding both the large and small subunit polypeptides (rbcL and rbcS) are transcribed and translated so that approx. = 0.6% of the soluble protein in E. coli extracts is a fully functional holoenzyme with a sedimentation coefficient of approximately 18S, which contains stoichiometric amounts of the two subunits. However, expression of the large subunit polypeptide vastly exceeds that of the small subunit because the majority of transcripts terminate in the intergenic region between the rbcL and rbcS genes. As a result, excess large subunit is synthesized and accumulates in E. coli as an insoluble and catalytically inactive form. Because small subunit is found only in the high molecular weight soluble form of ribulosebisphosphate carboxylase/oxygenase, the authors propose that the small subunit promotes assembly of the hexadecameric form of the enzyme via heterodimers of large and small subunits.

  14. RNA polymerase supply and flux through the lac operon in Escherichia coli.

    PubMed

    Sendy, Bandar; Lee, David J; Busby, Stephen J W; Bryant, Jack A

    2016-11-01

    Chromatin immunoprecipitation, followed by quantification of immunoprecipitated DNA, can be used to measure RNA polymerase binding to any DNA segment in Escherichia coli By calibrating measurements against the signal from a single RNA polymerase bound at a single promoter, we can calculate both promoter occupancy levels and the flux of transcribing RNA polymerase through transcription units. Here, we have applied the methodology to the E. coli lactose operon promoter. We confirm that promoter occupancy is limited by recruitment and that the supply of RNA polymerase to the lactose operon promoter depends on its location in the E. coli chromosome. Measurements of RNA polymerase binding to DNA segments within the lactose operon show that flux of RNA polymerase through the operon is low, with, on average, over 18 s elapsing between the passage of transcribing polymerases. Similar low levels of flux were found when semi-synthetic promoters were used to drive transcript initiation, even when the promoter elements were changed to ensure full occupancy of the promoter by RNA polymerase.This article is part of the themed issue 'The new bacteriology'.

  15. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    SciTech Connect

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-07-01

    The crystal structure of the dimethyllysine derivative of the E. coli RNA polymerase α subunit C-terminal domain is reported at 2.0 Å resolution. The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2{sub 1} and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R{sub free} = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction.

  16. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli acid adapted in pineapple juice and exposed to synthetic gastric fluid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this research was to examine relative transcriptional expression of acid resistance (AR) genes, rpoS, gadA and adiA, in O157:H7 and non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes after adaptation to pineapple juice (PJ) and subsequently to determine survival with e...

  17. Thermodynamic Modeling of Variations in the Rate of RNA Chain Elongation of E. coli rrn Operons

    PubMed Central

    Fange, David; Mellenius, Harriet; Dennis, Patrick P.; Ehrenberg, Måns

    2014-01-01

    Previous electron-microscopic imaging has shown high RNA polymerase occupation densities in the 16S and 23S encoding regions and low occupation densities in the noncoding leader, spacer, and trailer regions of the rRNA (rrn) operons in E. coli. This indicates slower transcript elongation within the coding regions and faster elongation within the noncoding regions of the operon. Inactivation of four of the seven rrn operons increases the transcript initiation frequency at the promoters of the three intact operons and reduces the time for RNA polymerase to traverse the operon. We have used the DNA sequence-dependent standard free energy variation of the transcription complex to model the experimentally observed changes in the elongation rate along the rrnB operon. We also model the stimulation of the average transcription rate over the whole operon by increasing rate of transcript initiation. Monte Carlo simulations, taking into account initiation of transcription, translocation, and backward and forward tracking of RNA polymerase, partially reproduce the observed transcript elongation rate variations along the rrn operon and fully account for the increased average rate in response to increased frequency of transcript initiation. PMID:24411237

  18. relA Enhances the Adherence of Enteropathogenic Escherichia coli

    PubMed Central

    Spira, Beny; Ferreira, Gerson Moura; de Almeida, Luiz Gustavo

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) is a known causative agent of diarrhea in children. In the process of colonization of the small intestine, EPEC synthesizes two types of adhesins, the bundle-forming pilus (BFP) and intimin. The BFP pilus is an adhesin associated with the initial stages of adherence of EPEC to epithelial cells, while the outer membrane protein intimin carries out the intimate adherence that takes place at the third stage of infection. BFP is encoded by the bfp operon located in plasmid EAF, present only in typical EPEC isolates, while eae, the gene that encodes intimin is situated in the LEE, a chromosomal pathogenicity island. Transcription of bfp and eae is regulated by the products of the perABC operon, also present in plasmid EAF. Here we show that deletion of relA, that encodes a guanosine penta and tetraphosphate synthetase impairs EPEC adherence to epithelial cells in vitro. In the absence of relA, the transcription of the regulatory operon perABC is reduced, resulting in lower levels of BFP and intimin. Bacterial adherence, BFP and intimin synthesis and perABC expression are restored upon complementation with the wild-type relA allele. PMID:24643076

  19. IscR regulates RNase LS activity by repressing rnlA transcription.

    PubMed

    Otsuka, Yuichi; Miki, Kumiko; Koga, Mitsunori; Katayama, Natsu; Morimoto, Wakako; Takahashi, Yasuhiro; Yonesaki, Tetsuro

    2010-07-01

    The Escherichia coli endoribonuclease LS was originally identified as a potential antagonist of bacteriophage T4. When the T4 dmd gene is defective, RNase LS cleaves T4 mRNAs and antagonizes T4 reproduction. This RNase also plays an important role in RNA metabolisms in E. coli. rnlA is an essential gene for RNase LS activity, but the transcriptional regulation of this gene remains to be elucidated. An Fe-S cluster protein, IscR, acts as a transcription factor and controls the expression of genes that are necessary for Fe-S cluster biogenesis. Here, we report that overexpression of IscR suppressed RNase LS activity, causing the loss of antagonist activity against phage T4. This suppressive effect did not require the ligation of Fe-S cluster into IscR. beta-Galactosidase reporter assays showed that transcription from an rnlA promoter increased in iscR-deleted cells compared to wild-type cells, and gel-mobility shift assays revealed specific binding of IscR to the rnlA promoter region. RT-PCR analysis demonstrated that endogenous rnlA mRNA was reduced by overexpression of IscR and increased by deletion of iscR. From these results, we conclude that IscR negatively regulates transcription of rnlA and represses RNase LS activity.

  20. Influence of major-groove chemical modifications of DNA on transcription by bacterial RNA polymerases

    PubMed Central

    Raindlová, Veronika; Janoušková, Martina; Slavíčková, Michaela; Perlíková, Pavla; Boháčová, Soňa; Milisavljevič, Nemanja; Šanderová, Hana; Benda, Martin; Barvík, Ivan; Krásný, Libor; Hocek, Michal

    2016-01-01

    DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2′-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli. Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. coli enzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription. PMID:27001521

  1. Nonchemotactic Mutants of Escherichia coli

    PubMed Central

    Armstrong, John B.; Adler, Julius; Dahl, Margaret M.

    1967-01-01

    We have isolated 40 mutants of Escherichia coli which are nonchemotactic as judged by their failure to swarm on semisolid tryptone plates or to make bands in capillary tubes containing tryptone broth. All the mutants have normal flagella, a fact shown by their shape and reaction with antiflagella serum. All are fully motile under the microscope and all are sensitive to the phage chi. Unlike its parent, one of the mutants, studied in greater detail, failed to show chemotaxis toward oxygen, glucose, serine, threonine, or aspartic acid. The failure to exhibit chemotaxis does not result from a failure to use the chemicals. The swimming of this mutant was shown to be random. The growth rate was normal under several conditions, and the growth requirements were unchanged. Images PMID:5335897

  2. Structure of Escherichia coli tryptophanase.

    PubMed

    Ku, Shao Yang; Yip, Patrick; Howell, P Lynne

    2006-07-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the alpha-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the alpha-proton of the substrate for beta-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  3. Most RNAs regulating ribosomal protein biosynthesis in Escherichia coli are narrowly distributed to Gammaproteobacteria

    PubMed Central

    Fu, Yang; Deiorio-Haggar, Kaila; Anthony, Jon; Meyer, Michelle M.

    2013-01-01

    In Escherichia coli, 12 distinct RNA structures within the transcripts encoding ribosomal proteins interact with specific ribosomal proteins to allow autogenous regulation of expression from large multi-gene operons, thus coordinating ribosomal protein biosynthesis across multiple operons. However, these RNA structures are typically not represented in the RNA Families Database or annotated in genomic sequences databases, and their phylogenetic distribution is largely unknown. To investigate the extent to which these RNA structures are conserved across eubacterial phyla, we created multiple sequence alignments representing 10 of these messenger RNA (mRNA) structures in E. coli. We find that while three RNA structures are widely distributed across many phyla of bacteria, seven of the RNAs are narrowly distributed to a few orders of Gammaproteobacteria. To experimentally validate our computational predictions, we biochemically confirmed dual L1-binding sites identified in many Firmicute species. This work reveals that RNA-based regulation of ribosomal protein biosynthesis is used in nearly all eubacterial phyla, but the specific RNA structures that regulate ribosomal protein biosynthesis in E. coli are narrowly distributed. These results highlight the limits of our knowledge regarding ribosomal protein biosynthesis regulation outside of E. coli, and the potential for alternative RNA structures responsible for regulating ribosomal proteins in other eubacteria. PMID:23396277

  4. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.

    PubMed

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-09-15

    The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC₅₀ value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells.

  5. Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V.

    PubMed

    Goodman, Myron F; McDonald, John P; Jaszczur, Malgorzata M; Woodgate, Roger

    2016-08-01

    It is now close to 40 years since the isolation of non-mutable umu/uvm strains of Escherichia coli and the realization that damage induced mutagenesis in E.coli is not a passive process. Early models of mutagenesis envisioned the Umu proteins as accessory factors to the cell's replicase that not only reduced its normally high fidelity, but also allowed the enzyme to traverse otherwise replication-blocking lesions in the genome. However, these models underwent a radical revision approximately 15 years ago, with the discovery that the Umu proteins actually encode for a DNA polymerase, E.coli pol V. The polymerase lacks 3'→5' exonucleolytic proofreading activity and is inherently error-prone when replicating both undamaged and damage DNA. So as to limit any "gratuitous" mutagenesis, the activity of pol V is strictly regulated in the cell at multiple levels. This review will summarize our current understanding of the myriad levels of regulation imposed on pol V including transcriptional control, posttranslational modification, targeted proteolysis, activation of the catalytic activity of pol V through protein-protein interactions and the very recently described intracellular spatial regulation of pol V. Remarkably, despite the multiple levels at which pol V is regulated, the enzyme is nevertheless able to contribute to the genetic diversity and evolutionary fitness of E.coli. PMID:27236212

  6. Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids

    PubMed Central

    Hazen, Tracy H.; Kaper, James B.; Nataro, James P.

    2015-01-01

    Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates. PMID:26238712

  7. Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids.

    PubMed

    Hazen, Tracy H; Kaper, James B; Nataro, James P; Rasko, David A

    2015-10-01

    Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates.

  8. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Escherichia coli.

    PubMed

    Paltansing, Sunita; Tengeler, Anouk C; Kraakman, Margriet E M; Claas, Eric C J; Bernards, Alexandra T

    2013-12-01

    Resistance to ciprofloxacin in Escherichia coli is increasing parallel to increased use of fluoroquinolones both in The Netherlands and in other European countries. The objective was to investigate the contribution of active efflux and expression of outer membrane proteins (OMPs) in a collection of clinical E. coli isolates collected at a clinical microbiology department in a Dutch hospital. Forty-seven E. coli isolates a wide range of ciprofloxacin minimum inhibitory concentrations and known mutations in the quinolone resistance determining region were included. A fluorometric determination of bisbenzimide efflux was used two different efflux pump inhibitors and compared to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for the expression levels of acrA, acrB, tolC, yhiV, and mdfA efflux pump genes and the OMPs ompF and ompX. Six isolates (12.7%) showed increased efflux. Although in 35 isolates (76%), overexpression of ≥1 efflux pump genes using qRT-PCR was present. Only the combined overexpression of acrAB-TolC and mdfA correlated with the phenotypic efflux assay using glucose/carbonyl cyanide m-chlorophenylhydrazone with glucose. Thus, efflux was involved in ciprofloxacin resistance in a limited number of E. coli isolates collected at a clinical microbiology department in a Dutch hospital complementing other resistance mechanisms.

  9. Genome engineering Escherichia coli for L-DOPA overproduction from glucose.

    PubMed

    Wei, Tao; Cheng, Bi-Yan; Liu, Jian-Zhong

    2016-01-01

    Genome engineering has become a powerful tool for creating useful strains in research and industry. In this study, we applied singleplex and multiplex genome engineering approaches to construct an E. coli strain for the production of L-DOPA from glucose. We first used the singleplex genome engineering approach to create an L-DOPA-producing strain, E. coli DOPA-1, by deleting transcriptional regulators (tyrosine repressor tyrR and carbon storage regulator A csrA), altering glucose transport from the phosphotransferase system (PTS) to ATP-dependent uptake and the phosphorylation system overexpressing galactose permease gene (galP) and glucokinase gene (glk), knocking out glucose-6-phosphate dehydrogenase gene (zwf) and prephenate dehydratase and its leader peptide genes (pheLA) and integrating the fusion protein chimera of the downstream pathway of chorismate. Then, multiplex automated genome engineering (MAGE) based on 23 targets was used to further improve L-DOPA production. The resulting strain, E. coli DOPA-30N, produced 8.67 g/L of L-DOPA in 60 h in a 5 L fed-batch fermentation. This titer is the highest achieved in metabolically engineered E. coli having PHAH activity from glucose. PMID:27417146

  10. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Zhang, Shenghua; Ye, Chengsong; Lin, Huirong; Lv, Lu; Yu, Xin

    2015-02-01

    The occurrence of a viable but nonculturable (VBNC) state in bacteria may dramatically underestimate the health risks associated with drinking water. Therefore, the potential for UV treatment to induce a VBNC state in Escherichia coli and Pseudomonas aeruginosa was investigated. UV disinfection effectively reduced the culturability of E. coli and P. aeruginosa, with the destruction of nucleic acids demonstrated using gadA long gene fragment qPCR amplification. Following UV radiation, copy numbers for the high transcriptional levels of the 16S rRNA gene varied insignificantly in both strains, confirming results from plate counting assays indicating that VBNC states were induced in both strains. Furthermore, the virulence genes gadA and oprL remained highly expressed, suggesting that the VBNC bacteria still displayed pathogenicity. Propidium monoazide qPCR indicated that cell membranes remained intact even at a UV dose of 300 mJ/cm(2). The RT-qPCR results after UV and chlorine treatments in E. coli were significantly different (8.41 and 5.59 log units, respectively), further confirming the induction of VBNC bacteria induced by UV radiation. Finally, resuscitation was achieved, with E. coli showing greater resuscitation ability than P. aeruginosa. These results systematically revealed the potential health risks of UV disinfection and strongly suggest a combined disinfection strategy.

  11. Genome engineering Escherichia coli for L-DOPA overproduction from glucose

    PubMed Central

    Wei, Tao; Cheng, Bi-Yan; Liu, Jian-Zhong

    2016-01-01

    Genome engineering has become a powerful tool for creating useful strains in research and industry. In this study, we applied singleplex and multiplex genome engineering approaches to construct an E. coli strain for the production of L-DOPA from glucose. We first used the singleplex genome engineering approach to create an L-DOPA-producing strain, E. coli DOPA-1, by deleting transcriptional regulators (tyrosine repressor tyrR and carbon storage regulator A csrA), altering glucose transport from the phosphotransferase system (PTS) to ATP-dependent uptake and the phosphorylation system overexpressing galactose permease gene (galP) and glucokinase gene (glk), knocking out glucose-6-phosphate dehydrogenase gene (zwf) and prephenate dehydratase and its leader peptide genes (pheLA) and integrating the fusion protein chimera of the downstream pathway of chorismate. Then, multiplex automated genome engineering (MAGE) based on 23 targets was used to further improve L-DOPA production. The resulting strain, E. coli DOPA-30N, produced 8.67 g/L of L-DOPA in 60 h in a 5 L fed-batch fermentation. This titer is the highest achieved in metabolically engineered E. coli having PHAH activity from glucose. PMID:27417146

  12. Genome engineering Escherichia coli for L-DOPA overproduction from glucose.

    PubMed

    Wei, Tao; Cheng, Bi-Yan; Liu, Jian-Zhong

    2016-01-01

    Genome engineering has become a powerful tool for creating useful strains in research and industry. In this study, we applied singleplex and multiplex genome engineering approaches to construct an E. coli strain for the production of L-DOPA from glucose. We first used the singleplex genome engineering approach to create an L-DOPA-producing strain, E. coli DOPA-1, by deleting transcriptional regulators (tyrosine repressor tyrR and carbon storage regulator A csrA), altering glucose transport from the phosphotransferase system (PTS) to ATP-dependent uptake and the phosphorylation system overexpressing galactose permease gene (galP) and glucokinase gene (glk), knocking out glucose-6-phosphate dehydrogenase gene (zwf) and prephenate dehydratase and its leader peptide genes (pheLA) and integrating the fusion protein chimera of the downstream pathway of chorismate. Then, multiplex automated genome engineering (MAGE) based on 23 targets was used to further improve L-DOPA production. The resulting strain, E. coli DOPA-30N, produced 8.67 g/L of L-DOPA in 60 h in a 5 L fed-batch fermentation. This titer is the highest achieved in metabolically engineered E. coli having PHAH activity from glucose.

  13. The Role of α-CTD in the Genome-Wide Transcriptional Regulation of the Bacillus subtilis Cells

    PubMed Central

    Murayama, Satohiko; Ishikawa, Shu; Chumsakul, Onuma; Ogasawara, Naotake; Oshima, Taku

    2015-01-01

    The amino acid sequence of the RNA polymerase (RNAP) α-subunit is well conserved throughout the Eubacteria. Its C-terminal domain (α-CTD) is important for the transcriptional regulation of specific promoters in both Escherichia coli and Bacillus subtilis, through interactions with transcription factors and/or a DNA element called the “UP element”. However, there is only limited information regarding the α-CTD regulated genes in B. subtilis and the importance of this subunit in the transcriptional regulation of B. subtilis. Here, we established strains and the growth conditions in which the α-subunit of RNAP was replaced with a C-terminally truncated version. Transcriptomic and ChAP-chip analyses revealed that α-CTD deficiency reduced the transcription and RNAP binding of genes related to the utilization of secondary carbon sources, transition state responses, and ribosome synthesis. In E. coli, it is known that α-CTD also contributes to the expression of genes related to the utilization of secondary carbon sources and ribosome synthesis. Our results suggest that the biological importance of α-CTD is conserved in B. subtilis and E. coli, but that its specific roles have diversified between these two bacteria. PMID:26154296

  14. Cloning and expression of a species-specific early immunogenic 36-kilodalton protein of Mycoplasma hyopneumoniae in Escherichia coli.

    PubMed Central

    Strasser, M; Frey, J; Bestetti, G; Kobisch, M; Nicolet, J

    1991-01-01

    Mycoplasma hyopneumoniae, the etiologic agent of porcine enzootic pneumonia, synthesizes a 36-kDa protein which is an early and strong immunogenic factor in experimentally and naturally infected swine. The gene encoding this protein was cloned by screening a gene library of M. hyopneumoniae DNA with rabbit hyperimmune serum made against whole M. hyopneumoniae cells and convalescent-phase swine serum. Analysis of the recombinant protein expressed in Escherichia coli by immunoblot techniques showed that the protein is expressed in E. coli in its full length and does not cross-react with proteins from M. flocculare or M. hyorhinis. Genetic analysis showed that the gene was expressed from the lac promoter of the vector and seems to be translationally initiated from its own ribosome binding site. Subcloning in a transcriptional fusion vector to optimize expression resulted in production of the 36-kDa protein in E. coli at levels up to 30% of total protein. Images PMID:2004806

  15. The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products.

    PubMed

    Stoebel, Daniel M; Dean, Antony M; Dykhuizen, Daniel E

    2008-03-01

    Transcriptional regulatory networks allow bacteria to express proteins only when they are needed. Adaptive hypotheses explaining the evolution of regulatory networks assume that unneeded expression is costly and therefore decreases fitness, but the proximate cause of this cost is not clear. We show that the cost in fitness to Escherichia coli strains constitutively expressing the lactose operon when lactose is absent is associated with the process of making the lac gene products, i.e., associated with the acts of transcription and/or translation. These results reject the hypotheses that regulation exists to prevent the waste of amino acids in useless protein or the detrimental activity of unnecessary proteins. While the cost of the process of protein expression occurs in all of the environments that we tested, the expression of the lactose permease could be costly or beneficial, depending on the environment. Our results identify the basis of a single selective pressure likely acting across the entire E. coli transcriptome. PMID:18245823

  16. Characteristics of verotoxigenic Escherichia coli from pigs.

    PubMed Central

    Gannon, V P; Gyles, C L; Friendship, R W

    1988-01-01

    Porcine verotoxigenic Escherichia coli were characterized with respect to frequency of occurrence, serogroup, and association with disease, weaning, and selected properties of the bacterium. Of 668 strains of E. coli from southern Ontario pigs with enteric disease, 32 (4.8%) produced verotoxin at 10(3)-10(7) cytotoxic doses per mL of culture supernatant. Of 22 isolates which belonged to O serogroups 138, 139 and 141, 15 produced verotoxin. Among other enterotoxigenic types of E. coli, two of 57 isolates of O157:K"V17" and two of 96 isolates of O149:K91 were verotoxigenic. The remaining 13 verotoxigenic E. coli belonged to O groups 2, 107, 120, 121 and 130. An additional 21 verotoxigenic E. coli belonging to O groups 138, 139 and 141 and three to O157:K"V17" were identified in a collection of 47 E. coli recovered from weaned pigs with enteric disease. Verotoxigenic E. coli were associated with postweaning diarrhea, bloody stools, sudden death and edema disease. They were isolated at similar frequencies (14%) from healthy weaned pigs, and from weaned pigs with enteric disease. Isolation rates from neonates were low and significantly different from rates in weaned pigs. Neutralizing antibody to verotoxin was not detected in the sera of 45 pigs, which included pigs from herds with a history of edema disease. Verotoxin was not associated with production of colicin, hemolysin, or enterotoxins or with any of 23 biochemical properties of the organisms. The serological data indicate that porcine verotoxigenic E. coli are not a common source of verotoxigenic E. coli for humans. Porcine verotoxin may play a role in postweaning diarrhea and absence of detectable neutralizing antibody in serum may be an important aspect of pathogenesis. PMID:3048621

  17. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    PubMed

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.

  18. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    PubMed

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic. PMID:26854666

  19. A transcription activator-like effector induction system mediated by proteolysis

    PubMed Central

    Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.

    2016-01-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666

  20. Nitrogen stress response and stringent response are coupled in Escherichia coli

    PubMed Central

    Brown, Daniel R.; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh

    2014-01-01

    Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454

  1. Escherichia coli O157:H7 gene expression in the presence of catecholamine norepinephrine.

    PubMed

    Dowd, Scot E

    2007-08-01

    Various forms of host stresses (e.g. physiological, psychological) are thought to influence susceptibility to pathogenic microorganisms. Catecholamines such as norepinephrine are released into the GI environment during acute stress and may influence the infective process of bacterial pathogens associated with the GI tract. To examine the effects of norepinephrine on expression of virulence factors in Escherichia coli O157:H7, the clinical-type isolate EDL933 (ATCC 43895) was grown in serum-Standard American Petroleum Institute media in the presence or absence of norepinephrine. After 5 h of exposure to norepinephrine, treatment and control cultures (not exposed to norepinephrine) were harvested, their RNA isolated, and gene expression evaluated. There was a dramatic increase in the expression of virulence factor transcripts including stx1, stx2, and eae. Also induced were transcripts involved in iron metabolism. Conversely, there was comparative repression of iron acquisition and phage shock protein-related transcripts in the presence of norepinephrine. Novel observations from these data suggested that exposure to norepinephrine induced glutamate decarboxylase acid resistance as well as an SOS response in E. coli O157:H7. The results corroborate many of the previous findings detailed in the literature and provide new observations that could expand the scope of microbial endocrinology. PMID:17573936

  2. Structure and gene expression of the E. coli Mn-superoxide dismutase gene.

    PubMed

    Takeda, Y; Avila, H

    1986-06-11

    Superoxide dismutase is an enzyme which converts superoxide O2- to hydrogen peroxide. Using a single synthetic oligonucleotide 33mer, we screened the E. coli DNA library and isolated a clone containing the E. coli manganese-superoxide dismutase gene. We determined the DNA sequence. The analysis of the DNA sequence and in vivo as well as in vitro transcription has shown the following. The DNA sequence suggests two possible promoters. However, only one of them seems active during normal aerobic growth. Purified RNA polymerase initiates in vitro transcription from the same promoter. It is not clear whether the second promoter is functional. It is possible that this promoter could be activated under different growth conditions. There is an inverted repeat sequence which could form a stem-loop structure downstream of the translation stop codon TAA of the Mn-SOD gene. The results of the analysis of in vivo and in vitro RNA have shown that this is the transcription termination signal. Thus, the Mn-SOD gene constitutes a single gene operon. There is an almost perfect 19 base palindrome at the -35 region. The position and the size of the palindrome suggest that this could be a regulatory site.

  3. Nitrogen stress response and stringent response are coupled in Escherichia coli.

    PubMed

    Brown, Daniel R; Barton, Geraint; Pan, Zhensheng; Buck, Martin; Wigneshweraraj, Sivaramesh

    2014-01-01

    Assimilation of nitrogen is an essential process in bacteria. The nitrogen regulation stress response is an adaptive mechanism used by nitrogen-starved Escherichia coli to scavenge for alternative nitrogen sources and requires the global transcriptional regulator NtrC. In addition, nitrogen-starved E. coli cells synthesize a signal molecule, guanosine tetraphosphate (ppGpp), which serves as an effector molecule of many processes including transcription to initiate global physiological changes, collectively termed the stringent response. The regulatory mechanisms leading to elevated ppGpp levels during nutritional stresses remain elusive. Here, we show that transcription of relA, a key gene responsible for the synthesis of ppGpp, is activated by NtrC during nitrogen starvation. The results reveal that NtrC couples these two major bacterial stress responses to manage conditions of nitrogen limitation, and provide novel mechanistic insights into how a specific nutritional stress leads to elevating ppGpp levels in bacteria. PMID:24947454

  4. Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli

    PubMed Central

    Zhou, Yuzhen; Zhu, Weidong; Bellur, Padmanetra S.; Rewinkel, Dustin; Becker, Donald F.

    2009-01-01

    Summary The control of gene expression by enzymes provides a direct pathway for cells to respond to fluctuations in metabolites and nutrients. One example is the proline utilization A (PutA) protein from Escherichia coli. PutA is a membrane-associated enzyme that catalyzes the oxidation of L-proline to glutamate using a flavin containing proline dehydrogenase domain and a NAD+ dependent Δ1-pyrroline-5-carboxylate dehydrogenase domain. In some Gram-negative bacteria such as E. coli, PutA is also endowed with a ribbon-helix-helix DNA-binding domain and acts as a transcriptional repressor of the proline utilization genes. PutA switches between transcriptional repressor and enzymatic functions in response to proline availability. Molecular insights into the redox based mechanism of PutA functional switching from recent studies are reviewed. In addition, new results from cell-based transcription assays are presented which correlate PutA membrane localization with put gene expression levels. General membrane localization of PutA, however, is not sufficient to activate the put genes. PMID:18324349

  5. Phylogenetic and Transcription Analysis of Chrysanthemum WRKY Transcription Factors

    PubMed Central

    Song, Aiping; Li, Peiling; Jiang, Jiafu; Chen, Sumei; Li, Huiyun; Zeng, Jun; Shao, Yafeng; Zhu, Lu; Zhang, Zhaohe; Chen, Fadi

    2014-01-01

    WRKY transcription factors are known to function in a number of plant processes. Here we have characterized 15 WRKY family genes of the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of 15 distinct sequences were isolated; initially internal fragments were amplified based on transcriptomic sequence, and then the full length cDNAs were obtained using RACE (rapid amplification of cDNA ends) PCR. The transcription of these 15 genes in response to a variety of phytohormone treatments and both biotic and abiotic stresses was characterized. Some of the genes behaved as would be predicted based on their homology with Arabidopsis thaliana WRKY genes, but others showed divergent behavior. PMID:25196345

  6. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli

    PubMed Central

    Wang, Yanlong; Hu, Bin; Du, Shipeng; Gao, Shan; Chen, Xiwen; Chen, Defu

    2016-01-01

    We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli. PMID:27135411

  7. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    PubMed

    Wang, Yanlong; Hu, Bin; Du, Shipeng; Gao, Shan; Chen, Xiwen; Chen, Defu

    2016-01-01

    We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  8. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    PubMed

    Wang, Yanlong; Hu, Bin; Du, Shipeng; Gao, Shan; Chen, Xiwen; Chen, Defu

    2016-01-01

    We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli. PMID:27135411

  9. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... matter may be excluded from the transcript by order of the Judicial Officer. A copy of the transcript... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only... changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  10. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... matter may be excluded from the transcript by order of the Judicial Officer. A copy of the transcript... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only... changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  11. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... matter may be excluded from the transcript by order of the Judicial Officer. A copy of the transcript... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only... changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  12. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  13. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  14. A ratchet mechanism of transcription elongation and its control.

    PubMed

    Bar-Nahum, Gil; Epshtein, Vitaly; Ruckenstein, Andrei E; Rafikov, Ruslan; Mustaev, Arkady; Nudler, Evgeny

    2005-01-28

    RNA chain elongation is a highly processive and accurate process that is finely regulated by numerous intrinsic and extrinsic signals. Here we describe a general mechanism that governs RNA polymerase (RNAP) movement and response to regulatory inputs such as pauses, terminators, and elongation factors. We show that E.coli RNAP moves by a complex Brownian ratchet mechanism, which acts prior to phosphodiester bond formation. The incoming substrate and the flexible F bridge domain of the catalytic center serve as two separate ratchet devices that function in concert to drive forward translocation. The adjacent G loop domain controls F bridge motion, thus keeping the proper balance between productive and inactive states of the elongation complex. This balance is critical for cell viability since it determines the rate, processivity, and fidelity of transcription.

  15. Engineering an allosteric transcription factor to respond to new ligands

    PubMed Central

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-01-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol or sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  16. A self-inducible heterologous protein expression system in Escherichia coli

    PubMed Central

    Briand, L.; Marcion, G.; Kriznik, A.; Heydel, J. M.; Artur, Y.; Garrido, C.; Seigneuric, R.; Neiers, F.

    2016-01-01

    Escherichia coli is an important experimental, medical and industrial cell factory for recombinant protein production. The inducible lac promoter is one of the most commonly used promoters for heterologous protein expression in E. coli. Isopropyl-β-D-thiogalactoside (IPTG) is currently the most efficient molecular inducer for regulating this promoter’s transcriptional activity. However, limitations have been observed in large-scale and microplate production, including toxicity, cost and culture monitoring. Here, we report the novel SILEX (Self-InducibLe Expression) system, which is a convenient, cost-effective alternative that does not require cell density monitoring or IPTG induction. We demonstrate the broad utility of the presented self-inducible method for a panel of diverse proteins produced in large amounts. The SILEX system is compatible with all classical culture media and growth temperatures and allows protein expression modulation. Importantly, the SILEX system is proven to be efficient for protein expression screening on a microplate scale. PMID:27611846

  17. A self-inducible heterologous protein expression system in Escherichia coli.

    PubMed

    Briand, L; Marcion, G; Kriznik, A; Heydel, J M; Artur, Y; Garrido, C; Seigneuric, R; Neiers, F

    2016-01-01

    Escherichia coli is an important experimental, medical and industrial cell factory for recombinant protein production. The inducible lac promoter is one of the most commonly used promoters for heterologous protein expression in E. coli. Isopropyl-β-D-thiogalactoside (IPTG) is currently the most efficient molecular inducer for regulating this promoter's transcriptional activity. However, limitations have been observed in large-scale and microplate production, including toxicity, cost and culture monitoring. Here, we report the novel SILEX (Self-InducibLe Expression) system, which is a convenient, cost-effective alternative that does not require cell density monitoring or IPTG induction. We demonstrate the broad utility of the presented self-inducible method for a panel of diverse proteins produced in large amounts. The SILEX system is compatible with all classical culture media and growth temperatures and allows protein expression modulation. Importantly, the SILEX system is proven to be efficient for protein expression screening on a microplate scale. PMID:27611846

  18. The E.coli fis promoter is subject to stringent control and autoregulation.

    PubMed Central

    Ninnemann, O; Koch, C; Kahmann, R

    1992-01-01

    The DNA binding protein FIS is involved in processes like site specific DNA inversion, lambda excision and stimulation of stable RNA synthesis in Escherichia coli. The amount of FIS protein is subject to dramatic changes during growth. We demonstrate that fis is part of an operon with one ORF of unknown function preceding the fis gene. Regulation of fis synthesis occurs at the transcriptional level. Within 15 min after nutritional upshift a large burst of fis mRNA is produced which levels off when cells begin to grow. By mutational analysis using promoter-lacZ fusions we demonstrate that the fis promoter is autoregulated by FIS. Growth phase regulation of the fis promoter depends on the presence of a GC motif downstream of the -10 region. We show that the fis promoter is subject to stringent control and discuss this unusual feature with respect to the known and putative functions FIS serves in E. coli. Images PMID:1547773

  19. High Levels of Transcription Stimulate Transversions at GC Base Pairs in Yeast

    PubMed Central

    Alexander, Matthew P.; Begins, Kaitlyn J.; Crall, William C.; Holmes, Margaret P.; Lippert, Malcolm J.

    2016-01-01

    High-levels of transcription through a gene stimulate spontaneous mutation rate, a phenomenon termed transcription-associated mutation (TAM). While transcriptional effects on specific mutation classes have been identified using forward mutation and frameshift-reversion assays, little is yet known about transcription-associated base substitutions in yeast. To address this issue, we developed a new base substitution reversion assay (the lys2-TAG allele). We report a 22-fold increase in overall reversion rate in the high- relative to the low-transcription strain (from 2.1- to 47- × 10−9). While all detectable base substitution types increased in the high-transcription strain, G→T and G→C transversions increased disproportionately by 58- and 52-fold, respectively. To assess a potential role of DNA damage in the TAM events, we measured mutation rates and spectra in individual strains defective in the repair of specific DNA lesions or null for the error-prone translesion DNA polymerase zeta (Pol zeta). Results exclude a role of 8-oxoGuanine, general oxidative damage, or apurinic/apyrimidinic sites in the generation of TAM G→T and G→C transversions. In contrast, the TAM transversions at GC base pairs depend on Pol zeta for occurrence implicating DNA damage, other than oxidative lesions or AP sites, in the TAM mechanism. Results further indicate that transcription-dependent G→T transversions in yeast differ mechanistically from equivalent events in E. coli reported by others. Given their occurrences in repair-proficient cells, transcription-associated G→T and G→C events represent a novel type of transcription-associated mutagenesis in normal cells with potentially important implications for evolution and genetic disease. PMID:23055242

  20. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    PubMed

    Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel

    2015-09-18

    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells. PMID:26017572

  1. Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    PubMed

    Ruano-Gallego, David; Álvarez, Beatriz; Fernández, Luis Ángel

    2015-09-18

    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these "molecular syringes" for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells.

  2. Survival of pathogenic Escherichia coli on basil, lettuce, and spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contamination of lettuce, spinach and basil with pathogenic E. coli has caused numerous illnesses over the past decade. E. coli O157:H7, E. coli O104:H4 and avian pathogenic E. coli (APECstx- and APECstx+) were inoculated on basil plants and in promix soiless substrate using drip and overhead ir...

  3. Advances in genoserotyping and subtyping of Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E. coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera a...

  4. High-Density Transcriptional Initiation Signals Underline Genomic Islands in Bacteria

    PubMed Central

    Huang, Qianli; Cheng, Xuanjin; Cheung, Man Kit; Kiselev, Sergey S.; Ozoline, Olga N.; Kwan, Hoi Shan

    2012-01-01

    Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of “alien” elements which probably undergo special temporal–spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these “exotic” regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased “non-optimal” codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for “alien” regions, but also provide hints to the special

  5. Genomic mapping of cAMP receptor protein (CRPMt) in Mycobacterium tuberculosis: relation to transcriptional start sites and the role of CRPMt as a transcription factor

    PubMed Central

    Kahramanoglou, Christina; Cortes, Teresa; Matange, Nishad; Hunt, Debbie M.; Visweswariah, Sandhya S.; Young, Douglas B.; Buxton, Roger S.

    2014-01-01

    Chromatin immunoprecipitation identified 191 binding sites of Mycobacterium tuberculosis cAMP receptor protein (CRPMt) at endogenous expression levels using a specific α-CRPMt antibody. Under these native conditions an equal distribution between intragenic and intergenic locations was observed. CRPMt binding overlapped a palindromic consensus sequence. Analysis by RNA sequencing revealed widespread changes in transcriptional profile in a mutant strain lacking CRPMt during exponential growth, and in response to nutrient starvation. Differential expression of genes with a CRPMt-binding site represented only a minor portion of this transcriptional reprogramming with ∼19% of those representing transcriptional regulators potentially controlled by CRPMt. The subset of genes that are differentially expressed in the deletion mutant under both culture conditions conformed to a pattern resembling canonical CRP regulation in Escherichia coli, with binding close to the transcriptional start site associated with repression and upstream binding with activation. CRPMt can function as a classical transcription factor in M. tuberculosis, though this occurs at only a subset of CRPMt-binding sites. PMID:24957601

  6. Pervasive transcription: detecting functional RNAs in bacteria.

    PubMed

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  7. Internal deletion mutants of Xenopus transcription factor IIIA.

    PubMed Central

    Hanas, J S; Littell, R M; Gaskins, C J; Zebrowski, R

    1989-01-01

    Xenopus transcription factor IIIA (TFIIIA) or TFIIIA mutants with internal deletions were expressed in E. coli utilizing a bacteriophage T7 RNA polymerase system. TFIIIA or deletion mutant TFIIIAs, isolated from E.coli cell extracts, were identified by SDS PAGE and immunoblotting with rabbit antiserum against native TFIIIA purified from Xenopus immature oocytes. Specific DNA binding of intact or internally deleted TFIIIA was compared by analyzing their abilities to protect the internal control gene (ICR) of the Xenopus 5S RNA gene from DNase I digestion. Intact protein, synthesized from a full-length TFIIIA cDNA, bound specifically to the entire ICR (+96 to +43) and promoted 5S RNA gene transcription in vitro. One TFIIIA deletion mutant, expressed from cDNA lacking the coding sequence for the putative fourth zinc finger (designated from the N-terminus, amino acids 103-132) protected the ICR from DNase I digestion from nucleotide positions +96 to +78. A second TFIIIA mutant resulting from fusion of putative zinc fingers 7 and 8 (deletion of amino acids 200-224) protected the 5S gene ICR from positions +96 to +63. The DNase I protection patterns of these mutant proteins are consistent with the formation of strong ICR contacts by those regions of the protein on the N-terminal side of the mutation but not by those regions on the C-terminal side of the mutation. The regions of the protein comprising the N-terminal 3 fingers and N-terminal six fingers appear to be in contact with approximately 18 and 33 bp of DNA respectively on the 3' side of the 5S gene ICR. These internal deletion mutants promoted 5S RNA synthesis in vitro and DNA renaturation. Images PMID:2690011

  8. Transcription Profiling of the Stringent Response in Escherichia coli▿ †

    PubMed Central

    Durfee, Tim; Hansen, Anne-Marie; Zhi, Huijun; Blattner, Frederick R.; Jin, Ding Jun

    2008-01-01

    The bacterial stringent response serves as a paradigm for understanding global regulatory processes. It can be triggered by nutrient downshifts or starvation and is characterized by a rapid RelA-dependent increase in the alarmone (p)ppGpp. One hallmark of the response is the switch from maximum-growth-promoting to biosynthesis-related gene expression. However, the global transcription patterns accompanying the stringent response in Escherichia coli have not been analyzed comprehensively. Here, we present a time series of gene expression profiles for two serine hydroxymate-treated cultures: (i) MG1655, a wild-type E. coli K-12 strain, and (ii) an isogenic relAΔ251 derivative defective in the stringent response. The stringent response in MG1655 develops in a hierarchical manner, ultimately involving almost 500 differentially expressed genes, while the relAΔ251 mutant response is both delayed and limited in scope. We show that in addition to the down-regulation of stable RNA-encoding genes, flagellar and chemotaxis gene expression is also under stringent control. Reduced transcription of these systems, as well as metabolic and transporter-encoding genes, constitutes much of the down-regulated expression pattern. Conversely, a significantly larger number of genes are up-regulated. Under the conditions used, induction of amino acid biosynthetic genes is limited to the leader sequences of attenuator-regulated operons. Instead, up-regulated genes with known functions, including both regulators (e.g., rpoE, rpoH, and rpoS) and effectors, are largely involved in stress responses. However, one-half of the up-regulated genes have unknown functions. How these results are correlated with the various effects of (p)ppGpp (in particular, RNA polymerase redistribution) is discussed. PMID:18039766

  9. [Transcriptional control of ciliary genes].

    PubMed

    Vieillard, Jennifer; Jerber, Julie; Durand, Bénédicte

    2014-11-01

    Cilia are found in many eukaryotic species and share a common microtubule architecture that can nonetheless show very diverse features within one animal. The genesis of cilia and their diversity require the expression of different specific genes. At least two classes of transcription factors are involved in ciliogenesis: the RFX family, essential for the assembly of most cilia and the FOXJ1 transcription factors that are key regulators of motile cilia assembly. These two different families of transcription factors have both specific and common target genes and they can also cooperate for the formation of cilia. In collaboration with cell type specific factors, they also contribute to the specialisation of cilia. As a consequence, the identification of RFX and FOXJ1 target genes has emerged as an efficient strategy to identify novel ciliary genes, and in particular genes potentially implicated in ciliopathies.

  10. Circadian Control of Global Transcription

    PubMed Central

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  11. Biofuels from E. Coli: Engineering E. coli as an Electrofuels Chassis for Isooctane Production

    SciTech Connect

    2010-07-16

    Electrofuels Project: Ginkgo Bioworks is bypassing photosynthesis and engineering E. coli to directly use carbon dioxide (CO2) to produce biofuels. E. coli doesn’t naturally metabolize CO2, but Ginkgo Bioworks is manipulating and incorporating the genes responsible for CO2 metabolism into the microorganism. By genetically modifying E. coli, Ginkgo Bioworks will enhance its rate of CO2 consumption and liquid fuel production. Ginkgo Bioworks is delivering CO2 to E. coli as formic acid, a simple industrial chemical that provides energy and CO2 to the bacterial system.

  12. Transcription rates in DNA brushes.

    PubMed

    Yamamoto, Tetsuya; Safran, S A

    2015-04-21

    We theoretically predict the rate of transcription (TX) in DNA brushes by introducing the concept of TX dipoles that takes into account the unidirectional motion of enzymes (RNAP) along DNA during transcription as correlated pairs of sources and sinks in the relevant diffusion equation. Our theory predicts that the TX rates dramatically change upon the inversion of the orientation of the TX dipoles relative to the substrate because TX dipoles modulate the concentrations of RNAP in the solution. Comparing our theory with experiments suggests that, in some cases, DNA chain segments are relatively uniformly distributed in the brush, in contrast to the parabolic profile expected for flexible polymer brushes.

  13. Making Sense of Transcription Networks

    PubMed Central

    Sorrells, Trevor R; Johnson, Alexander D

    2015-01-01

    When transcription regulatory networks are compared among distantly related eukaryotes, a number of striking similarities are observed: a larger-than-expected number of genes, extensive overlapping connections, and an apparently high degree of functional redundancy. It is often assumed that the complexity of these networks represents optimized solutions, precisely sculpted by natural selection; their common features are often asserted to be adaptive. Here, we discuss support for an alternative hypothesis: the common structural features of transcription networks arise from evolutionary trajectories of “least resistance,” that is, the relative ease by which certain types of network structures are formed during their evolution. PMID:25957680

  14. First international E. coli genome meeting

    SciTech Connect

    Not Available

    1992-01-01

    This volume is a collection of abstracts of oral presentations and poster sessions of studies reported at the First International E. Coli Genome Meeting, held September 10-14, 1992 at the University of Wisconsin.

  15. First international E. coli genome meeting

    SciTech Connect

    Not Available

    1992-12-31

    This volume is a collection of abstracts of oral presentations and poster sessions of studies reported at the First International E. Coli Genome Meeting, held September 10-14, 1992 at the University of Wisconsin.

  16. Escherichia coli in retail processed food.

    PubMed

    Pinegar, J A; Cooke, E M

    1985-08-01

    Four thousand two hundred and forty six samples of retail processed food were examined for the presence of Escherichia coli. Overall 12% of samples contained this organism, cakes and confectionery being more frequently contaminated (28%) than meat and meat based products (9%). Contamination was more frequent in the summer months than in the colder weather and 27% of the contaminated foods contained greater than 10(3) E. coli/g. E. coli from meat and meat based products were more commonly resistant to one or more antibiotics (14%) than were confectionery strains (1%). The significance of these findings in relation to the E. coli population of the human bowel is discussed. PMID:3894508

  17. [Acute appendicitis caused by Balantidium coli].

    PubMed

    González Sánchez, O

    1978-01-01

    A patient who was surgically treated for acute appendicitis is presented. In the sections of cecal appendix many Balantidium coli trophozoites were found. The history, characteristics, habitat, location, biological aspects and reproduction of this parasite are commented. PMID:358326

  18. Methane production from kitchen waste using Escherichia coli.

    PubMed

    Jayalakshmi, S; Joseph, Kurian; Sukumaran, V

    2007-04-01

    Escherichia coli (E. coli) strain isolated from biogas plant sludge was examined for its ability to enhance biogas from kitchen waste during solid phase anaerobic digestion. The laboratory experiments were conducted for total solid concentrations of 20% and 22%. Kitchen waste was characterized for physico-chemical parameters and laboratory experiments were conducted with and without E. coli strain. It was found that the reactor with E. coli produced 17% more biogas than the reactors that are operated without E. coli strain.

  19. Native valve Escherichia coli endocarditis following urosepsis

    PubMed Central

    Rangarajan, D.; Ramakrishnan, S.; Patro, K. C.; Devaraj, S.; Krishnamurthy, V.; Kothari, Y.; Satyaki, N.

    2013-01-01

    Gram-negative organisms are a rare cause of infective endocarditis. Escherichia coli, the most common cause of urinary tract infection and gram-negative septicemia involves endocardium rarely. In this case report, we describe infection of native mitral valve by E. coli following septicemia of urinary tract origin in a diabetic male; subsequently, he required prosthetic tissue valve replacement indicated by persistent sepsis and congestive cardiac failure. PMID:23814428

  20. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  1. Fosfomycin Resistance in Escherichia coli, Pennsylvania, USA

    PubMed Central

    Alrowais, Hind; McElheny, Christi L.; Spychala, Caressa N.; Sastry, Sangeeta; Guo, Qinglan; Butt, Adeel A.

    2015-01-01

    Fosfomycin resistance in Escherichia coli is rare in the United States. An extended-spectrum β-lactamase–producing E. coli clinical strain identified in Pennsylvania, USA, showed high-level fosfomycin resistance caused by the fosA3 gene. The IncFII plasmid carrying this gene had a structure similar to those found in China, where fosfomycin resistance is commonly described. PMID:26488485

  2. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate.

    PubMed

    Wajima, Takeaki; Sabui, Subrata; Kano, Shigeyuki; Ramamurthy, Thandavarayan; Chatterjee, Nabendu Sekhar; Hamabata, Takashi

    2013-11-01

    Coli surface antigen 6 (CS6) is one of the most prevalent colonization factors among enterotoxigenic Escherichia coli (ETEC) isolated in developing countries. Although it is known that CS6 is encoded by a plasmid, there are no reports on the sequence analysis of the CS6-encoding plasmid or genes exhibiting similar behavior to CS6. Here, we report the isolation of the CS6-encoding plasmid, pCss165Kan, from 4266 ΔcssB::kanamycin (Km) and its complete nucleotide sequence. This plasmid consisted of 165,311bp and 222 predicted coding sequences. Remarkably, there were many insertion sequence (IS) elements, which comprised 24.4% of the entire sequence. Virulence-associated genes such as heat-stable enterotoxin, homologues of ATP-binding cassette transporter in enteroaggregative E. coli (EAEC), and ETEC autotransporter A were also present, although the ETEC autotransporter A gene was disrupted by the integration of IS629. We found that 2 transcriptional regulators belonging to the AraC family were not involved in CS6 expression. Interestingly, pCss165 had conjugative transfer genes, as well as 3 toxin-antitoxin systems that potentially exclude other plasmid-free host bacteria. These genes might be involved in the prevalence of CS6 among ETEC isolates. PMID:23933356

  3. A framework and model system to investigate linear system behavior in Escherichia coli

    PubMed Central

    2011-01-01

    Background The ability to compose biological systems from smaller elements that act independently of the other upon assembly may help make the forward engineering of biological systems practical. Engineering biology in this manner is made difficult by the inherent nonlinear response of organisms to genetic devices. Devices are inevitably coupled to one another in the cell because they share the same transcriptional machinery for expression. Thus, new properties can emerge when devices that had been characterized in isolation are expressed concurrently. We show in this report that, similar to physical systems, the Escherichia coli (E. coli) transcriptional system can exhibit linear behavior under "small" perturbation conditions. This, in turn, allows devices to be treated as independent modules. Results We developed a framework and model system consisting of three devices to investigate linear system behavior in E. coli. Our framework employed the transfer curve concept to determine the amount of nonlinearity elicited by the E. coli transcriptional system in response to the devices. To this effect, the model system was quantitatively characterized using real-time quantitative PCR to produce device transfer curves (DTCs). Two of the devices encoded the bacterial neomycin phosphotransferase II (nptII) and chloramphenicol acetyl transferase (cat), while the third encoded the jellyfish-originating green fluorescent protein (gfp). The gfp device was the most nonlinear in our system, with nptII and cat devices eliciting linear responses. Superposition experiments verified these findings, with independence among the three devices having been lost when gfp was present at copy numbers above the lowest one used. Conclusions We show that linear system behavior is possible in E. coli. Elucidation of the mechanism underlying the nonlinearity observed in gfp may lead to design rules that ensure linear system behavior, enabling the accurate prediction of the quantitative behavior

  4. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass. PMID:27223822

  5. [Selective detection of viable pathogenic bacteria in water using reverse transcription quantitative PCR].

    PubMed

    Lin, Yi-Wen; Li, Dan; Wu, Shu-Xu; He, Miao; Yang, Tian

    2012-11-01

    A reverse transcription q quantitative PCR (RT-qPCR) assay method was established, which can quantify the copy numbers of RNA in pathogenic bacteria of E. coli and Enterococcus faecium. The results showed that cDNA was generated with the RT-PCR reagents, target gene was quantified with the qPCR, the copy numbers of RNA were stable at about 1 copies x CFU(-1) for E. coli and 7.98 x 10(2) copies x CFU(-1) for Enterococcus faecium respectively during the stationary grow phase for the both indicator bacteria [E. coli (6-18 h) and Enterococcus faecium (10-38 h)]. The established RT-qPCR method can quantify the numbers of viable bacteria through detecting bacterial RNA targets. Through detecting the heat-treated E. coli and Enterococcus faecium by three methods (culture method, qPCR, RT-qPCR), we found that the qPCR and RT-qPCR can distinguish 1.43 lg copy non-viable E. coli and 2.5 lg copy non-viable Enterococcus faecium. These results indicated that the established methods could effectively distinguish viable bacteria from non-viable bacteria. Finally we used this method to evaluate the real effluents of the secondary sedimentation of wastewater treatment plant (WWTP), the results showed that the correlation coefficients (R2) between RT-qPCR and culture method were 0.930 (E. coli) and 0.948 (Enterococcus faecium), and this established RT-PCR method can rapidly detect viable pathogenic bacteria in genuine waters.

  6. Succinate production in Escherichia coli

    PubMed Central

    Thakker, Chandresh; Martínez, Irene; San, Ka-Yiu; Bennett, George N.

    2012-01-01

    Succinate has been recognized as an important platform chemical that can be produced from biomass. While a number of organisms are capable of succinate production naturally, this review focuses on the engineering of Escherichia coli for production of the four-carbon dicarboxylic acid. Important features of a succinate production system are to achieve optimal balance of reducing equivalents generated by consumption of the feedstock, while maximizing the amount of carbon that is channeled to the product. Aerobic and anaerobic production strains have been developed and applied to production from glucose as well as other abundant carbon sources. Metabolic engineering methods and strain evolution have been used and supplemented by the recent application of systems biology and in silico modeling tools to construct optimal production strains. The metabolic capacity of the production strain, as well as the requirement for efficient recovery of succinate and the reliability of the performance under scale-up are important in the overall process. The costs of the overall biorefinery compatible process will determine the economical commercialization of succinate and its impact in larger chemical markets. PMID:21932253

  7. E. coli on the move

    NASA Astrophysics Data System (ADS)

    Calne, S.

    2012-04-01

    Lynn Grove High School in Great Yarmouth, UK has been awarded a Royal Society partnership grant. Lynn Grove pupils aged between 11 and 16 years will carry out an investigation collaborating with scientists at the John Innes Centre in Norwich, UK to investigate the distribution of E.coli and other coliform bacteria within a school. The information will be used as an evidence base to educate pupils about the transmission of microbes and about methods of control. Through this work pupils will gain an appreciation of the diversity of microbial biochemistry and the chemistry behind chromogenic detection methodologies for specific bacterial enzymes. Inferences from the use of diagnostic selective media will be confirmed by carrying out DNA isolation and PCR to identify the genes responsible for the biochemical reactions. PCR will also be used to identify species of coliforms by reference to genomic sequence databases. These techniques will allow pupils to look into an unseen world in a way which has direct relevance to their everyday lives. Furthermore this partnership study will demonstrate to pupils that solving scientific questions requires the integration of a variety of scientific disciplines. The project will run from January 2012 until June 2012. We will present our preliminary results from the investigation and outline our future plans.

  8. Murein segregation in Escherichia coli.

    PubMed Central

    de Pedro, M A; Quintela, J C; Höltje, J V; Schwarz, H

    1997-01-01

    Peptidoglycan (murein) segregation has been studied by means of a new labeling method. The method relies on the ability of Escherichia coli cells to incorporate D-Cys into macromolecular murein. The incorporation depends on a periplasmic amino acid exchange reaction. At low concentrations, D-Cys is innocuous to the cell. The distribution of modified murein in purified sacculi can be traced and visualized by immunodetection of the -SH groups by fluorescence and electron microscopy techniques. Analysis of murein segregation in wild-type and cell division mutant strains revealed that murein in polar caps is metabolically inert and is segregated in a conservative fashion. Elongation of the sacculus apparently occurs by diffuse insertion of precursors over the cylindrical part of the cell surface. At the initiation of cell division, there is a FtsZ-dependent localized activation of murein synthesis at the potential division sites. Penicillin-binding protein 3 and the products of the division genes ftsA and ftsQ are dispensable for the activation of division sites. As a consequence, under restrictive conditions ftsA,ftsI,or ftsQ mutants generate filamentous sacculi with rings of all-new murein at the positions where septa would otherwise develop. PMID:9139895

  9. Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid.

    PubMed

    Pasupuleti, Sasikiran; Sule, Nitesh; Cohn, William B; MacKenzie, Duncan S; Jayaraman, Arul; Manson, Michael D

    2014-12-01

    Norepinephrine (NE), the primary neurotransmitter of the sympathetic nervous system, has been reported to be a chemoattractant for enterohemorrhagic Escherichia coli (EHEC). Here we show that nonpathogenic E. coli K-12 grown in the presence of 2 μM NE is also attracted to NE. Growth with NE induces transcription of genes encoding the tyramine oxidase, TynA, and the aromatic aldehyde dehydrogenase, FeaB, whose respective activities can, in principle, convert NE to 3,4-dihydroxymandelic acid (DHMA). Our results indicate that the apparent attractant response to NE is in fact chemotaxis to DHMA, which was found to be a strong attractant for E. coli. Only strains of E. coli K-12 that produce TynA and FeaB exhibited an attractant response to NE. We demonstrate that DHMA is sensed by the serine chemoreceptor Tsr and that the chemotaxis response requires an intact serine-binding site. The threshold concentration for detection is ≤5 nM DHMA, and the response is inhibited at DHMA concentrations above 50 μM. Cells producing a heterodimeric Tsr receptor containing only one functional serine-binding site still respond like the wild type to low concentrations of DHMA, but their response persists at higher concentrations. We propose that chemotaxis to DHMA generated from NE by bacteria that have already colonized the intestinal epithelium may recruit E. coli and other enteric bacteria that possess a Tsr-like receptor to preferred sites of infection.

  10. Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid.

    PubMed

    Pasupuleti, Sasikiran; Sule, Nitesh; Cohn, William B; MacKenzie, Duncan S; Jayaraman, Arul; Manson, Michael D

    2014-12-01

    Norepinephrine (NE), the primary neurotransmitter of the sympathetic nervous system, has been reported to be a chemoattractant for enterohemorrhagic Escherichia coli (EHEC). Here we show that nonpathogenic E. coli K-12 grown in the presence of 2 μM NE is also attracted to NE. Growth with NE induces transcription of genes encoding the tyramine oxidase, TynA, and the aromatic aldehyde dehydrogenase, FeaB, whose respective activities can, in principle, convert NE to 3,4-dihydroxymandelic acid (DHMA). Our results indicate that the apparent attractant response to NE is in fact chemotaxis to DHMA, which was found to be a strong attractant for E. coli. Only strains of E. coli K-12 that produce TynA and FeaB exhibited an attractant response to NE. We demonstrate that DHMA is sensed by the serine chemoreceptor Tsr and that the chemotaxis response requires an intact serine-binding site. The threshold concentration for detection is ≤5 nM DHMA, and the response is inhibited at DHMA concentrations above 50 μM. Cells producing a heterodimeric Tsr receptor containing only one functional serine-binding site still respond like the wild type to low concentrations of DHMA, but their response persists at higher concentrations. We propose that chemotaxis to DHMA generated from NE by bacteria that have already colonized the intestinal epithelium may recruit E. coli and other enteric bacteria that possess a Tsr-like receptor to preferred sites of infection. PMID:25182492

  11. Transcription factor-based biosensor

    SciTech Connect

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  12. Transcriptional networks in plant immunity.

    PubMed

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.

  13. Crystallization and preliminary X-ray crystallographic studies of Mycobacterium tuberculosis CRP/FNR family transcription regulator

    SciTech Connect

    Akif, Mohd; Akhter, Yusuf; Hasnain, Seyed E.; Mande, Shekhar C.

    2006-09-01

    The CRP/FNR family transcription factor from M. tuberculosis H37Rv has been crystallized in space group P2{sub 1}2{sub 1}2{sub 1} in the absence of cAMP. The crystals show the presence of a dimeric molecule in the asymmetric unit. CRP/FNR family members are transcription factors that regulate the transcription of many genes in Escherichia coli and other organisms. Mycobacterium tuberculosis H37Rv contains a probable CRP/FNR homologue encoded by the open reading frame Rv3676. The deletion of this gene is known to cause growth defects in cell culture, in bone marrow-derived macrophages and in a mouse model of tuberculosis. The mycobacterial gene Rv3676 shares ∼32% sequence identity with prototype E. coli CRP. The structure of the protein might provide insight into transcriptional regulation in the pathogen by this protein. The M. tuberculosis CRP/FNR transcription regulator was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 54.1, b = 84.6, c = 101.2 Å. The crystal diffracted to a resolution of 2.9 Å. Matthews coefficient and self-rotation function calculations reveal the presence of two monomers in the asymmetric unit.

  14. Recombinant production of omega-3 fatty acids by probiotic Escherichia coli Nissle 1917.

    PubMed

    Amiri-Jami, Mitra; Abdelhamid, Ahmed Ghamry; Hazaa, Mahmoud; Kakuda, Yukio; Griffths, Mansel W

    2015-10-01

    Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on human health. The probiotic bacterium Escherichia coli Nissle is unable to produce either EPA or DHA. Escherichia coli Nissle was transformed with the pfBS-PS plasmid carrying the EPA/DHA gene cluster, previously isolated from a marine bacterium. The transgenic E. coli Nissle produced EPA when grown at 10ºC (16.52 ± 1.4 mg g(-1) cell dry weight), 15ºC (31.36 ± 0.25 mg g(-1) cell dry weight), 20ºC (13.71 ± 2.8 mg g(-1) cell dry weight), 25ºC (11.33 ± 0.44 mg g(-1) cell dry weight) or 30ºC (0.668 ± 0.073 mg g(-1) cell dry weight). Although DHA was also produced at all these temperatures, it comprised less than 0.2% of total extracted fatty acids. Transcriptomic analysis using Reverse Transcription qPCR showed upregulation of the entire gene cluster in E. coli Nissle. Among EPA/DHA genes, pfaB, pfaC and pfaD were overexpressed (expression ratio of 181.9, 39.86 and 131.61, respectively) as compared to pfaA (expression ratio of 3.40) and pfaE (expression ratio of 4.05). The EPA/DHA-producing probiotic E. coli Nissle may be used as a safe, alternative and economic source for the industrial and pharmaceutical production of EPA and DHA. PMID:26371149

  15. Escherichia coli and the French School of Molecular Biology.

    PubMed

    Ullmann, Agnes

    2010-09-01

    André Lwoff, Jacques Monod, and François Jacob, the leaders of the French school of molecular biology, greatly contributed between 1937 and 1965 to its development and triumph. The main discovery of Lwoff was the elucidation of the mechanism of bacteriophage induction, the phenomenon of lysogeny, that led to the model of genetic regulation uncovered later by Jacob and Monod. Working on bacterial growth, Monod discovered in 1941 the phenomenon of diauxy and uncovered the nature of enzyme induction. By combining genetic and biochemical approaches, Monod brought to light the structure and functions of the Escherichia coli lactose system, comprising the genes necessary for lactose metabolism, i.e., β-galactosidase and lactose permease, a pump responsible for accumulation of galactosides into the cells. An additional genetic factor (the i gene) determines the inducibility and constitutivity of enzyme synthesis. Around the same time, François Jacob and Elie Wollman dissected the main events of bacterial conjugation that enabled them to construct a map of the E. coli chromosome and to demonstrate its circularity. The genetic analysis of the lactose system led Monod and Jacob to elucidate the mechanism of the regulation of gene expression and to propose the operon model: a unit of coordinate transcription. One of the new concepts that emerged from the operon model was messenger RNA. In 1963, Monod developed one of the most elegant concepts of molecular biology, the theory of allostery. In 1965, Lwoff, Monod and Jacob were awarded the Nobel Prize in Physiology or Medicine. PMID:26443784

  16. Escherichia coli and the French School of Molecular Biology.

    PubMed

    Ullmann, Agnes

    2010-09-01

    André Lwoff, Jacques Monod, and François Jacob, the leaders of the French school of molecular biology, greatly contributed between 1937 and 1965 to its development and triumph. The main discovery of Lwoff was the elucidation of the mechanism of bacteriophage induction, the phenomenon of lysogeny, that led to the model of genetic regulation uncovered later by Jacob and Monod. Working on bacterial growth, Monod discovered in 1941 the phenomenon of diauxy and uncovered the nature of enzyme induction. By combining genetic and biochemical approaches, Monod brought to light the structure and functions of the Escherichia coli lactose system, comprising the genes necessary for lactose metabolism, i.e., β-galactosidase and lactose permease, a pump responsible for accumulation of galactosides into the cells. An additional genetic factor (the i gene) determines the inducibility and constitutivity of enzyme synthesis. Around the same time, François Jacob and Elie Wollman dissected the main events of bacterial conjugation that enabled them to construct a map of the E. coli chromosome and to demonstrate its circularity. The genetic analysis of the lactose system led Monod and Jacob to elucidate the mechanism of the regulation of gene expression and to propose the operon model: a unit of coordinate transcription. One of the new concepts that emerged from the operon model was messenger RNA. In 1963, Monod developed one of the most elegant concepts of molecular biology, the theory of allostery. In 1965, Lwoff, Monod and Jacob were awarded the Nobel Prize in Physiology or Medicine.

  17. Binding motifs in bacterial gene promoters modulate transcriptional effect of global regulators

    SciTech Connect

    Leuze, Michael Rex; Karpinets, Tatiana V; Syed, Mustafa H; Beliaev, Alexander S; Uberbacher, Edward C

    2012-01-01

    Bacterial gene regulation involves transcription factors (TFs) that influence the expression of many genes. Global regulators, including CRP (cAMP Receptor Protein), ArcA, and FNR, can modulate the transcriptional activity of multiple operons. The similarity of a regulatory element s sequence to a TF s consensus binding site (BS) and the position of the regulatory element in an operon promoter are considered the most important determinants of this TF s regulatory influence. In this study we explore the hypothesis that the number of TFBS half-sites (where a half-site is one half of the palindromic BS consensus sequence, which we shall refer to as a binding motif or a BM) of a global regulator in an operon s promoter plays an important role in the operon s transcriptional regulation. We examine empirical data from transcriptional profiling of the CRP regulon in Shewanella oneidenses MR 1 and Escherichia coli, and of the ArcA regulon in S. oneidenses MR 1. We compare the power of CRP BM counts and of full, symmetrical CRP TFBS characteristics, namely similarity to consensus and location, to predict CRP-induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full-length TFBS quality or location. Regression analysis indicates that IHF (Integration Host Factor) and ArcA have synergistic effects on CRP-induced gene transcription, positive and negative, respectively. Based on these results, we propose that the fine-tuning of bacterial transcriptional activity by CRP may involves not only the bending of the operon promoter, facilitated by CRP in cooperation with the histone-like protein IHF, but also the cumulative binding affinity of multiple weak BMs.

  18. Autoregulation of Escherichia coli purR requires two control sites downstream of the promoter.

    PubMed

    Rolfes, R J; Zalkin, H

    1990-10-01

    The expression of Escherichia coli purR, which encodes the pur regulon repressor protein, is autoregulated. Autoregulation at the level of transcription requires two operator sites, designated purRo1 and purRo2 (O1 and O2). Operator O1 is in the region of DNA between the transcription start site and the site for translation initiation, and O2 is in the protein-coding region. The repressor protein binds noncooperatively to O1 with a sixfold-higher affinity than to O2, and saturation of O1 by the repressor precedes saturation of O2. Both O1 and O2 function in the two- to threefold autoregulation in vivo, as determined by measurement of beta-galactosidase and mRNA from purR-lacZ translational fusions. Of all the genes thus far known to be regulated by the Pur repressor, only purR employs a two-operator mechanism.

  19. The RNA-Protein Complexes of E. coli Hfq: Form and Function

    NASA Astrophysics Data System (ADS)

    Lee, Taewoo; Feig, Andrew L.

    E. coli Hfq is an RNA binding protein that has received significant attention due to its role in post-transcriptional gene regulation. Hfq facilitates the base-pairing between mRNAs and ncRNAs leading to translational activation, translational repression and/or degradation of mRNAs — the bacterial analog of the RNA interference pathway. Hfq is the bacterial homolog of the Sm and Lsm proteins and has a similar doughnut-shaped structure. This review summarizes what is known about the diverse physiological roles of Hfq and how its structure facilitates a diverse array of RNA—protein and protein—protein interactions. These interactions are put into context to explain the models of how Hfq is thought to help facilitate post-transcriptional gene regulation by non-coding RNAs in bacteria.

  20. Regulation of adhE (Encoding Ethanol Oxidoreductase) by the Fis Protein in Escherichia coli

    PubMed Central

    Membrillo-Hernández, Jorge; Kwon, Ohsuk; De Wulf, Peter; Finkel, Steven E.; Lin, E. C. C.

    1999-01-01

    The adhE gene of Escherichia coli encodes a multifunctional ethanol oxidoreductase whose expression is 10-fold higher under anaerobic than aerobic conditions. Transcription of the gene is under the negative control of the Cra (catabolite repressor-activator) protein, whereas translation of the adhE mRNA requires processing by RNase III. In this report, we show that the expression of adhE also depends on the Fis (factor for inversion stimulation) protein. A strain bearing a fis::kan null allele failed to grow anaerobically on glucose solely because of inadequate adhE transcription. However, fis expression itself is not under redox control. Sequence inspection of the adhE promoter revealed three potential Fis binding sites. Electrophoretic mobility shift analysis, using purified Fis protein and adhE promoter DNA, showed three different complexes. PMID:10572146

  1. GlnB is specifically required for Azospirillum brasilense NifA activity in Escherichia coli.

    PubMed

    Araújo, Luiza M; Monteiro, Rose A; Souza, Emanuel M; Steffens, M Berenice R; Rigo, Liu U; Pedrosa, Fábio O; Chubatsu, Leda S

    2004-01-01

    The Azospirillum brasilense transcription regulator NifA and the nitrogen-status signaling proteins GlnB, GlnZ and GlnK were expressed in Escherichia coli and analyzed for their ability to activate nif gene expression. When expressed separately, none of the proteins were able to activate nifH promoter expression in any tested conditions; in contrast, nifH expression was observed in cells grown in the absence of ammonium and oxygen and when expressing simultaneously NifA and GlnB proteins, but not when expressing NifA and GlnZ or GlnK. Our results show that the GlnB protein is required for transcription activation by Azospirillum brasilense NifA and it cannot be replaced by GlnZ or GlnK.

  2. Investigating transcription reinitiation through in vitro approaches.

    PubMed

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.

  3. Transcription Blockage Leads to New Beginnings

    PubMed Central

    Andrade-Lima, Leonardo C.; Veloso, Artur; Ljungman, Mats

    2015-01-01

    Environmental agents are constantly challenging cells by damaging DNA, leading to the blockage of transcription elongation. How do cells deal with transcription-blockage and how is transcription restarted after the blocking lesions are removed? Here we review the processes responsible for the removal of transcription-blocking lesions, as well as mechanisms of transcription restart. We also discuss recent data suggesting that blocked RNA polymerases may not resume transcription from the site of the lesion following its removal but, rather, are forced to start over from the beginning of genes. PMID:26197343

  4. Cloning and transcriptional control of a eucaryotic permease gene.

    PubMed Central

    Chevallier, M R

    1982-01-01

    The uracil permease gene of the yeast Saccharomyces cerevisiae was cloned on a hybrid plasmid which replicates autonomously in both yeast and Escherichia coli. Cloning was carried out by complementation in yeast. The smallest DNA fragment found to complement the uracil permease deficiency in recipient yeast cells measured approximately 2.3 kilobases. In strains transformed by the plasmid with the uracil permease gene inserted, initial rates of uracil uptake increased up to 25 times more than the rates found in the wild type. Using DNA probes carrying several regions of the cloned gene, I showed that a strain carrying the dhul-I mutation, which is not linked to the permease structural gene and is responsible for enhanced uptake velocity of uracil, had enhanced transcription of the permease gene. By using DNA probes recloned in phage M13 mp7, the direction of transcription of the permease gene relative to the restriction map was deduced. A half-life of 2 min was found for the permease mRNA in labeling kinetics experiments. PMID:6290876

  5. Characterization of an oxidative stress response regulator, homologous to Escherichia coli OxyR, from the phytopathogen Xylella fastidiosa.

    PubMed

    Toledo, M A S; Schneider, D R; Azzoni, A R; Favaro, M T P; Pelloso, A C; Santos, C A; Saraiva, A M; Souza, A P

    2011-02-01

    The OxyR oxidative stress transcriptional regulator is a DNA-binding protein that belongs to the LysR-type transcriptional regulators (LTTR) family. It has the ability to sense oxidative species inside the cell and to trigger the cell's response, activating the transcription of genes involved in scavenging oxidative species. In the present study, we have overexpressed, purified and characterized the predicted OxyR homologue (orf xf1273) of the phytopathogen Xylella fastidiosa. This bacterium is the causal agent of citrus variegated chlorosis (CVC) disease caused by the 9a5c strain, resulting in economic and social losses. The secondary structure of the recombinant protein was analyzed by circular dichroism. Gel filtration showed that XfoxyR is a dimer in solution. Gel shift assays indicated that it does bind to its own predicted promoter under in vitro conditions. However, considering our control experiment we cannot state that this interaction occurs in vivo. Functional complementation assays indicated that xfoxyR is able to restore the oxidative stress response in an oxyr knockout Escherichia coli strain. These results show that the predicted orfxf1273 codes for a transcriptional regulator, homologous to E. coli OxyR, involved in the oxidative stress response. This may be important for X. fastidiosa to overcome the defense mechanisms of its host during the infection and colonization processes. PMID:20951212

  6. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH.

    PubMed

    Basak, Souvik; Geng, Hefang; Jiang, Rongrong

    2014-03-10

    Bioprocesses such as production of organic acids or acid hydrolysis of bioresources during biofuel production often suffer limitations due to microbial sensitivity under acidic conditions. Approaches for improving the acid tolerance of these microbes have mainly focused on using metabolic engineering tools. Here, we tried to improve strain acidic tolerance from its transcription level, i.e. we adopted error-prone PCR method to engineer global regulator cAMP receptor protein (CRP) of Escherichia coli to improve its performance at low pH. The best mutant AcM1 was identified from random mutagenesis libraries based on its growth performance. AcM1 almost doubled (0.113h(-1)) the growth rate of the control (0.062h(-1)) at pH 4.24. It also demonstrated better thermotolerance than the control at 48°C, whose growth was completely inhibited at this temperature. Quantitative real time reverse transcription PCR results revealed a stress response overlap among low pH stress-, oxidative stress- and osmotic stress-related genes. The chief enzyme responsible for cell acid tolerance, glutamate decarboxylase, demonstrated over twofold activity in AcM1 compared to the control. Differential binding properties of AcM1 mutant CRP with Class-I, II, and III CRP-dependent promoters suggested that modifications to native CRP may lead to transcription profile changes. Hence, we believe that transcriptional engineering of global regulator CRP can provide a new strain engineering alternative for E. coli.

  7. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  8. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  9. Cleavage of a putative metal permease in Chlamydia trachomatis yields an iron-dependent transcriptional repressor.

    PubMed

    Thompson, Christopher C; Nicod, Sophie S; Malcolm, Denise S; Grieshaber, Scott S; Carabeo, Rey A

    2012-06-26

    The regulation of iron homeostasis is essential for most organisms, because iron is required for a variety of conserved biochemical processes, yet can be toxic at high concentrations. Upon experiencing iron starvation in vitro, the obligate intracellular human pathogen Chlamydia trachomatis exhibits elevated expression of a putative iron-transport system encoded by the ytg operon. The third component of the ytg operon, CT069 (YtgCR), encodes a protein with two distinct domains: a membrane-anchored metal ion permease and a diphtheria toxin repressor (DtxR)-like transcriptional repressor. In this report, we demonstrate that the C-terminal domain of CT069 (YtgR) serves as an iron-dependent autorepressor of the ytg operon. Moreover, the nascent full-length metal permease-transcriptional repressor protein was processed during the course of infection, and heterologously when expressed in Escherichia coli. The products produced by heterologous cleavage in E. coli were functional in the repression of a reporter gene downstream of a putative YtgR operator. We report a bona fide mechanism of iron-dependent regulation of transcription in Chlamydia. Moreover, the unusual membrane permease-DNA-binding polypeptide fusion configuration was found in several bacteria. Therefore, the DNA-binding capability and liberation of the YtgR domain from a membrane-anchored permease in C. trachomatis could represent a previously uncharacterized mechanism for prokaryotic regulation of iron-homeostasis.

  10. Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy

    PubMed Central

    Drögemüller, Johanna; Strauß, Martin; Schweimer, Kristian; Jurk, Marcel; Rösch, Paul; Knauer, Stefan H.

    2015-01-01

    In bacteria, RNA polymerase (RNAP), the central enzyme of transcription, is regulated by N-utilization substance (Nus) transcription factors. Several of these factors interact directly, and only transiently, with RNAP to modulate its function. As details of these interactions are largely unknown, we probed the RNAP binding surfaces of Escherichia coli (E. coli) Nus factors by nuclear magnetic resonance (NMR) spectroscopy. Perdeuterated factors with [1H,13C]-labeled methyl groups of Val, Leu, and Ile residues were titrated with protonated RNAP. After verification of this approach with the N-terminal domain (NTD) of NusG and RNAP we determined the RNAP binding site of NusE. It overlaps with the NusE interaction surface for the NusG C-terminal domain, indicating that RNAP and NusG compete for NusE and suggesting possible roles for the NusE:RNAP interaction, e.g. in antitermination and direct transcription:translation coupling. We solved the solution structure of NusA-NTD by NMR spectroscopy, identified its RNAP binding site with the same approach we used for NusG-NTD, and here present a detailed model of the NusA-NTD:RNAP:RNA complex. PMID:26560741

  11. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    SciTech Connect

    Tan, K.; Borovilos, M.; Zhou, M; Horer, S; Clancy, S; Moy, S; Volkart, LL; Sassoon, J; Baumann, U; Joachimiak, A

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representing a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.

  12. Acetylation of the response regulator RcsB controls transcription from a small RNA promoter.

    PubMed

    Hu, Linda I; Chi, Bui Khanh; Kuhn, Misty L; Filippova, Ekaterina V; Walker-Peddakotla, Arti J; Bäsell, Katrin; Becher, Dörte; Anderson, Wayne F; Antelmann, Haike; Wolfe, Alan J

    2013-09-01

    Nε-lysine acetylation was recently discovered on many bacterial proteins that function in diverse cellular processes. Thus, many questions remain unanswered. For example, what mechanisms regulate lysine acetylation? Does acetylation affect physiology? To help answer these questions, we studied the Escherichia coli response regulator and transcription factor RcsB, which is reported to be acetylated in vitro. To characterize RcsB acetylation, we monitored transcription from the rprA promoter, which requires RcsB. The conventional view is that RcsB is activated by phosphorylation through either the Rcs phosphorelay or acetyl phosphate. We affirmed that rprA transcription requires phosphorylated RcsB and showed that acetyl-phosphate (AcP) is a phosphoryl group donor to RcsB. However, a mutant that accumulates AcP (ackA) exhibited a reduction in rprA transcription instead of the predicted increase. rprA transcription also diminished in the cobB mutant, which lacks the only known E. coli protein deacetylase. This suggests the existence of an inhibitory mechanism that involves lysine acetylation, a supposition supported by the observation that RcsB isolated from the ackA or cobB mutant was hyperacetylated. Finally, we used a genetic approach to identify an AckA- and CobB-sensitive lysine (Lys-154) that controls RcsB activity. We propose that acetylation inhibits RcsB activity and that some of this inhibition acts through the acetylation of Lys-154. PMID:23852870

  13. Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter

    PubMed Central

    Hu, Linda I.; Chi, Bui Khanh; Kuhn, Misty L.; Filippova, Ekaterina V.; Walker-Peddakotla, Arti J.; Bäsell, Katrin; Becher, Dörte; Anderson, Wayne F.; Antelmann, Haike

    2013-01-01

    Nε-lysine acetylation was recently discovered on many bacterial proteins that function in diverse cellular processes. Thus, many questions remain unanswered. For example, what mechanisms regulate lysine acetylation? Does acetylation affect physiology? To help answer these questions, we studied the Escherichia coli response regulator and transcription factor RcsB, which is reported to be acetylated in vitro. To characterize RcsB acetylation, we monitored transcription from the rprA promoter, which requires RcsB. The conventional view is that RcsB is activated by phosphorylation through either the Rcs phosphorelay or acetyl phosphate. We affirmed that rprA transcription requires phosphorylated RcsB and showed that acetyl-phosphate (AcP) is a phosphoryl group donor to RcsB. However, a mutant that accumulates AcP (ackA) exhibited a reduction in rprA transcription instead of the predicted increase. rprA transcription also diminished in the cobB mutant, which lacks the only known E. coli protein deacetylase. This suggests the existence of an inhibitory mechanism that involves lysine acetylation, a supposition supported by the observation that RcsB isolated from the ackA or cobB mutant was hyperacetylated. Finally, we used a genetic approach to identify an AckA- and CobB-sensitive lysine (Lys-154) that controls RcsB activity. We propose that acetylation inhibits RcsB activity and that some of this inhibition acts through the acetylation of Lys-154. PMID:23852870

  14. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    SciTech Connect

    Rodionov, Dmitry A.; Novichkov, Pavel; Stavrovskaya, Elena D.; Rodionova, Irina A.; Li, Xiaoqing; Kazanov, Marat D.; Ravcheev, Dmitry A.; Gerasimova, Anna V.; Kazakov, Alexey E.; Kovaleva, Galina Y.; Permina, Elizabeth A.; Laikova, Olga N.; Overbeek, Ross; Romine, Margaret F.; Fredrickson, Jim K.; Arkin, Adam P.; Dubchak, Inna; Osterman, Andrei L.; Gelfand, Mikhail S.

    2011-06-15

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. Despite the growing number of genome-scale gene expression studies, our abilities to convert the results of these studies into accurate regulatory annotations and to project them from model to other organisms are extremely limited. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. However, even orthologous regulators with conserved DNA-binding motifs may control substantially different gene sets, revealing striking differences in regulatory strategies between the Shewanella spp. and E. coli. Multiple examples of regulatory network rewiring include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), and numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. NagR for N-acetylglucosamine catabolism and PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp).

  15. Expression, fermentation and purification of a predicted intrinsically disordered region of the transcription factor, NFAT5.

    PubMed

    DuMond, Jenna F; He, Yi; Burg, Maurice B; Ferraris, Joan D

    2015-11-01

    Hypertonicity stimulates Nuclear Factor of Activated T-cells 5 (NFAT5) nuclear localization and transactivating activity. Many transcription factors are known to contain intrinsically disordered regions (IDRs) which become more structured with local environmental changes such as osmolality, temperature and tonicity. The transactivating domain of NFAT5 is predicted to be intrinsically disordered under normal tonicity, and under high NaCl, the activity of this domain is increased. To study the binding of co-regulatory proteins at IDRs a cDNA construct expressing the NFAT5 TAD was created and transformed into Escherichia coli cells. Transformed E. coli cells were mass produced by fermentation and extracted by cell lysis to release the NFAT5 TAD. The NFAT5 TAD was subsequently purified using a His-tag column, cation exchange chromatography as well as hydrophobic interaction chromatography and then characterized by mass spectrometry (MS). PMID:26256058

  16. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  17. Logarithmic Sensing in Escherichia coli Bacterial Chemotaxis

    PubMed Central

    Kalinin, Yevgeniy V.; Jiang, Lili; Tu, Yuhai; Wu, Mingming

    2009-01-01

    We studied the response of swimming Escherichia coli (E. coli) bacteria in a comprehensive set of well-controlled chemical concentration gradients using a newly developed microfluidic device and cell tracking imaging technique. In parallel, we carried out a multi-scale theoretical modeling of bacterial chemotaxis taking into account the relevant internal signaling pathway dynamics, and predicted bacterial chemotactic responses at the cellular level. By measuring the E. coli cell density profiles across the microfluidic channel at various spatial gradients of ligand concentration grad[L] and the average ligand concentration [L]¯near the peak chemotactic response region, we demonstrated unambiguously in both experiments and model simulation that the mean chemotactic drift velocity of E. coli cells increased monotonically with grad [L]/[L]¯ or ∼grad(log[L])—that is E. coli cells sense the spatial gradient of the logarithmic ligand concentration. The exact range of the log-sensing regime was determined. The agreements between the experiments and the multi-scale model simulation verify the validity of the theoretical model, and revealed that the key microscopic mechanism for logarithmic sensing in bacterial chemotaxis is the adaptation kinetics, in contrast to explanations based directly on ligand occupancy. PMID:19289068

  18. Profiling of Escherichia coli Chromosome database.

    PubMed

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers. PMID:18392982

  19. The unexhausted potential of E. coli

    PubMed Central

    Blount, Zachary D

    2015-01-01

    E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of ‘wild’ E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism. DOI: http://dx.doi.org/10.7554/eLife.05826.001 PMID:25807083

  20. Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi

    PubMed Central

    2011-01-01

    Background Borrelia burgdorferi contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts. Results RT-PCR of B. burgdorferi N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNAAla); tRNAIle; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a relBbu deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of E. coli relA mutants. Conclusions We conclude that rRNA transcription in B. burgdorferi is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate. PMID:21251259

  1. Novel scanning force microscopy methods for investigation of transcription complexes

    NASA Astrophysics Data System (ADS)

    Guthold, Martin

    1997-11-01

    Scanning force microscopy (SFM) methods were developed to investigate the structure and the dynamics of E. coli transcription complexes. The described techniques will also be applicable to the study of other protein-nucleic acid complexes. First, the deposition process of DNA molecules onto a mica surface was investigated using polymer chain statistics. Conditions were found in which DNA molecules, and also protein-DNA complexes, are able to equilibrate on the surface. These findings imply that DNA and protein-DNA complexes attain a lowest energy state on the surface, and that meaningful structural information can, therefore, be obtained from the corresponding SFM images. Using these imaging conditions, SFM was then used to investigate various transcription complexes. The structures of crucial intermediates in the transcriptional activation of RNA polymeraseċsigma54 by NtrC were visualized and analyzed. Moreover, a new method was pioneered to identify the position of specific subunits in multi- protein assemblies. In this method, a specific subunit is tagged with a short piece of DNA which renders it easily recognizable in SFM images. This technique was employed to determine the positions of the two α subunits and the βsp/prime subunit in RNA polymerase-DNA complexes. Finally, SFM imaging in liquid was used to investigate the dynamics of the specific and non-specific interactions between RNA polymerase and DNA. Image sequences of an RNA polymerase actively transcribing a DNA template were obtained and analyzed. Image sequences of non-specific complexes were also obtained, and showed the RNA polymerase moving along the DNA in a one- dimensional random walk. The latter experiments provide some of the first direct evidence that RNA polymerase diffuses along DNA to facilitate promoter location. Chapters II, III, V and VI of this dissertation include material which has been previously published with co- authors. The co-authors are acknowledged at the beginning of

  2. GroEL to DnaK chaperone network behind the stability modulation of σ(32) at physiological temperature in Escherichia coli.

    PubMed

    Patra, Monobesh; Roy, Sourav Singha; Dasgupta, Rakhi; Basu, Tarakdas

    2015-12-21

    The stability of heat-shock transcription factor σ(32) in Escherichia coli has long been known to be modulated only by its own transcribed chaperone DnaK. Very few reports suggest a role for another heat-shock chaperone, GroEL, for maintenance of cellular σ(32) level. The present study demonstrates in vivo physical association between GroEL and σ(32) in E. coli at physiological temperature. This study further reveals that neither DnaK nor GroEL singly can modulate σ(32) stability in vivo; there is an ordered network between them, where GroEL acts upstream of DnaK.

  3. De novo design of a synthetic riboswitch that regulates transcription termination.

    PubMed

    Wachsmuth, Manja; Findeiß, Sven; Weissheimer, Nadine; Stadler, Peter F; Mörl, Mario

    2013-02-01

    Riboswitches are regulatory RNA elements typically located in the 5'-untranslated region of certain mRNAs and control gene expression at the level of transcription or translation. These elements consist of a sensor and an adjacent actuator domain. The sensor usually is an aptamer that specifically interacts with a ligand. The actuator contains an intrinsic terminator or a ribosomal binding site for transcriptional or translational regulation, respectively. Ligand binding leads to structural rearrangements of the riboswitch and to presentation or masking of these regulatory elements. Based on this modular organization, riboswitches are an ideal target for constructing synthetic regulatory systems for gene expression. Although riboswitches for translational control have been designed successfully, attempts to construct synthetic elements regulating transcription have failed so far. Here, we present an in silico pipeline for the rational design of synthetic riboswitches that regulate gene expression at the transcriptional level. Using the well-characterized theophylline aptamer as sensor, we designed the actuator part as RNA sequences that can fold into functional intrinsic terminator structures. In the biochemical characterization, several of the designed constructs show ligand-dependent control of gene expression in Escherichia coli, demonstrating that it is possible to engineer riboswitches not only for translational but also for transcriptional regulation. PMID:23275562

  4. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli.

    PubMed

    Tan, Lendl; Moriel, Danilo G; Totsika, Makrina; Beatson, Scott A; Schembri, Mark A

    2016-01-01

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen. PMID:27598999

  5. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli

    PubMed Central

    Tan, Lendl; Moriel, Danilo G.; Totsika, Makrina; Beatson, Scott A.

    2016-01-01

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen. PMID:27598999

  6. Functionality of Intergenic Transcription: An Evolutionary Comparison

    PubMed Central

    Visagie, Johann; Giger, Thomas; Joerchel, Sabrina; Petzold, Ekkehard; Green, Richard E; Lachmann, Michael; Pääbo, Svante

    2006-01-01

    Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts. PMID:17040132

  7. Mechanism of Transcriptional Bursting in Bacteria

    PubMed Central

    Chong, Shasha; Chen, Chongyi; Ge, Hao; Xie, X. Sunney

    2014-01-01

    SUMMARY Transcription of highly expressed genes has been shown to occur in stochastic bursts. But the origin of such ubiquitous phenomenon has not been understood. Here we present the mechanism in bacteria. We developed a high-throughput in vitro single-molecule assay to follow transcription on individual DNA templates in real time. We showed that positive supercoiling buildup on a DNA segment by transcription slows down transcription elongation and eventually stops transcription initiation. Transcription can be resumed upon gyrase binding to the DNA segment. Furthermore, using single-cell mRNA counting fluorescence in situ hybridization (FISH), we found the extent of transcriptional bursting depends on the intracellular gyrase concentration. Together, these findings prove that transcriptional bursting of highly expressed genes in bacteria is primarily caused by reversible gyrase dissociation from and rebinding to a DNA segment, changing the supercoiling level of the segment. PMID:25036631

  8. The primary transcriptome of the Escherichia coli O104:H4 pAA plasmid and novel insights into its virulence gene expression and regulation

    PubMed Central

    Berger, Petya; Knödler, Michael; Förstner, Konrad U.; Berger, Michael; Bertling, Christian; Sharma, Cynthia M.; Vogel, Jörg; Karch, Helge; Dobrindt, Ulrich; Mellmann, Alexander

    2016-01-01

    Escherichia coli O104:H4 (E. coli O104:H4), which caused a massive outbreak of acute gastroenteritis and hemolytic uremic syndrome in 2011, carries an aggregative adherence fimbriae I (AAF/I) encoding virulence plasmid, pAA. The importance of pAA in host-pathogen interaction and disease severity has been demonstrated, however, not much is known about its transcriptional organization and gene regulation. Here, we analyzed the pAA primary transcriptome using differential RNA sequencing, which allows for the high-throughput mapping of transcription start site (TSS) and non-coding RNA candidates. We identified 248 TSS candidates in the 74-kb pAA and only 21% of them could be assigned as TSS of annotated genes. We detected TSS for the majority of pAA-encoded virulence factors. Interestingly, we mapped TSS, which could allow for the transcriptional uncoupling of the AAF/I operon, and potentially regulatory antisense RNA candidates against the genes encoding dispersin and the serine protease SepA. Moreover, a computational search for transcription factor binding sites suggested for AggR-mediated activation of SepA expression, which was additionally experimentally validated. This work advances our understanding of the molecular basis of E. coli O104:H4 pathogenicity and provides a valuable resource for further characterization of pAA virulence gene regulation. PMID:27748404

  9. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    SciTech Connect

    Tennyson, C.N.; Worton, R.G.

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  10. Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms.

    PubMed Central

    Cruz Ramos, H; Boursier, L; Moszer, I; Kunst, F; Danchin, A; Glaser, P

    1995-01-01

    Bacillus subtilis is able to grow anaerobically using alternative electron acceptors, including nitrate or fumarate. We characterized an operon encoding the dissimilatory nitrate reductase subunits homologous to the Escherichia coli narGHJI operon and the narK gene encoding a protein with nitrite extrusion activity. Downstream from narK and co-transcribed with it a gene (fnr) encoding a protein homologous to E.coli FNR was found. Disruption of fnr abolished both nitrate and fumarate utilization as electron acceptors and anaerobic induction of narK. Four putative FNR binding sites were found in B.subtilis sequences. The consensus sequence, centred at position -41.5, is identical to the consensus for the DNA site for E.coli CAP. Bs-FNR contained a four cysteine residue cluster at its C-terminal end. This is in contrast to Ec-FNR, where a similar cluster is present at the N-terminal end. It is possible that oxygen modulates the activity of both activators by a similar mechanism involving iron. Unlike in E.coli, where fnr expression is weakly repressed by anaerobiosis, fnr gene expression in B.subtilis is strongly activated by anaerobiosis. We have identified in the narK-fnr intergenic region a promotor activated by anaerobiosis independently of FNR. Thus induction of genes involved in anaerobic respiration requires in B.subtilis at least two levels of regulation: activation of fnr transcription and activation of FNR to induce transcription of FNR-dependent promoters. Images PMID:8846791

  11. Hybridization Histochemistry of Neural Transcripts.

    PubMed

    Young, W Scott; Song, June; Mezey, Éva

    2016-01-01

    Expression of genes is manifested by the production of RNA transcripts within cells. Hybridization histochemistry (or in situ hybridization) permits localization of these transcripts with cellular resolution or better. Furthermore, the relative amounts of transcripts detected in different tissues or in the same tissues in different states (e.g., physiological or developmental) may be quantified. This unit describes hybridization histochemical techniques using either oligodeoxynucleotide probes (see Basic Protocols 1 and 2, Alternate Protocol 1) or RNA probes (riboprobes; see Basic Protocols 3 and 5). These methods include a more recent approach using commercially available sets of oligodeoxynucleotide pairs for colorimetric and fluorescent detection (see Basic Protocol 2), as well as a method for detection of the Y chromosome using either mouse or human riboprobes (see Basic Protocol 5). Additional methods include colorimetric detection (see Basic Protocol 4) and tyramide signal amplification (TSA) of digoxigenin-labeled probes (see Alternate Protocol 2), and autoradiographic detection of radiolabeled probes (see Basic Protocol 6). Finally, methods are provided for labeling oligodeoxynucleotide (see Support Protocol 1) and RNA (see Support Protocol 2) probes, and verifying the probes by northern analysis (see Support Protocol 3). PMID:27063785

  12. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  13. Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability

    PubMed Central

    Treviño-Quintanilla, Luis Gerardo; Freyre-González, Julio Augusto; Martínez-Flores, Irma

    2013-01-01

    In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli. PMID:24396271

  14. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli.

    PubMed

    Massé, Eric; Escorcia, Freddy E; Gottesman, Susan

    2003-10-01

    RyhB is a small antisense regulatory RNA that is repressed by the Fur repressor and negatively regulates at least six mRNAs encoding Fe-binding or Fe-storage proteins in Escherichia coli. When Fe is limiting, RyhB levels rise, and target mRNAs are rapidly degraded. RyhB is very stable when measured after treatment of cells with the transcription inhibitor rifampicin, but is unstable when overall mRNA transcription continues. We propose that RyhB turnover is coupled to and dependent on pairing with the target mRNAs. Degradation of both mRNA targets and RyhB is dependent on RNase E and is slowed in degradosome mutants. RyhB requires the RNA chaperone Hfq. In the absence of Hfq, RyhB is unstable, even when general transcription is inhibited; degradation is dependent upon RNase E. Hfq and RNase E bind similar sites on the RNA; pairing may allow loss of Hfq and access by RNase E. Two other Hfq-dependent small RNAs, DsrA and OxyS, are also stable when overall transcription is off, and unstable when it is not, suggesting that they, too, are degraded when their target mRNAs are available for pairing. Thus, this large class of regulatory RNAs share an unexpected intrinsic mechanism for shutting off their action.

  15. Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli.

    PubMed

    Godiska, Ronald; Mead, David; Dhodda, Vinay; Wu, Chengcang; Hochstein, Rebecca; Karsi, Attila; Usdin, Karen; Entezam, Ali; Ravin, Nikolai

    2010-04-01

    Despite recent advances in sequencing, complete finishing of large genomes and analysis of novel proteins they encode typically require cloning of specific regions. However, many of these fragments are extremely difficult to clone in current vectors. Superhelical stress in circular plasmids can generate secondary structures that are substrates for deletion, particularly in regions that contain numerous tandem or inverted repeats. Common vectors also induce transcription and translation of inserted fragments, which can select against recombinant clones containing open reading frames or repetitive DNA. Conversely, transcription from cloned promoters can interfere with plasmid stability. We have therefore developed a novel Escherichia coli cloning vector (termed 'pJAZZ' vector) that is maintained as a linear plasmid. Further, it contains transcriptional terminators on both sides of the cloning site to minimize transcriptional interference between vector and insert. We show that this vector stably maintains a variety of inserts that were unclonable in conventional plasmids. These targets include short nucleotide repeats, such as those of the expanded Fragile X locus, and large AT-rich inserts, such as 20-kb segments of genomic DNA from Pneumocystis, Plasmodium, Oxytricha or Tetrahymena. The pJAZZ vector shows decreased size bias in cloning, allowing more uniform representation of larger fragments in libraries. PMID:20040575

  16. Antimicrobial Susceptibility and SOS-Dependent Increase in Mutation Frequency Are Impacted by Escherichia coli Topoisomerase I C-Terminal Point Mutation

    PubMed Central

    Yang, Jenny; Annamalai, Thirunavukkarasu; Cheng, Bokun; Banda, Srikanth; Tyagi, Rakhi

    2015-01-01

    Topoisomerase functions are required in all organisms for many vital cellular processes, including transcription elongation. The C terminus domains (CTD) of Escherichia coli topoisomerase I interact directly with RNA polymerase to remove transcription-driven negative supercoiling behind the RNA polymerase complex. This interaction prevents inhibition of transcription elongation from hypernegative supercoiling and R-loop accumulation. The physiological function of bacterial topoisomerase I in transcription is especially important for a rapid network response to an antibiotic challenge. In this study, Escherichia coli with a topA66 single nucleotide deletion mutation, which results in a frameshift in the TopA CTD, was shown to exhibit increased sensitivity to trimethoprim and quinolone antimicrobials. The topoisomerase I-RNA polymerase interaction and the SOS response to the antimicrobial agents were found to be significantly reduced by this topA66 mutation. Consequently, the mutation frequency measured by rifampin selection following SOS induction was diminished in the topA66 mutant. The increased antibiotic sensitivity for the topA66 mutant can be reversed by the expression of recombinant E. coli topoisomerase I but not by the expression of recombinant Mycobacterium tuberculosis topoisomerase I that has a nonhomologous CTD even though the recombinant M. tuberculosis topoisomerase I can restore most of the plasmid DNA linking number deficiency caused by the topA66 mutation. Direct interactions of E. coli topoisomerase I as part of transcription complexes are likely to be required for the rapid network response to an antibiotic challenge. Inhibitors of bacterial topoisomerase I functions and interactions may sensitize pathogens to antibiotic treatment and limit the mutagenic response. PMID:26248366

  17. Antimicrobial Susceptibility and SOS-Dependent Increase in Mutation Frequency Are Impacted by Escherichia coli Topoisomerase I C-Terminal Point Mutation.

    PubMed

    Yang, Jenny; Annamalai, Thirunavukkarasu; Cheng, Bokun; Banda, Srikanth; Tyagi, Rakhi; Tse-Dinh, Yuk-Ching

    2015-10-01

    Topoisomerase functions are required in all organisms for many vital cellular processes, including transcription elongation. The C terminus domains (CTD) of Escherichia coli topoisomerase I interact directly with RNA polymerase to remove transcription-driven negative supercoiling behind the RNA polymerase complex. This interaction prevents inhibition of transcription elongation from hypernegative supercoiling and R-loop accumulation. The physiological function of bacterial topoisomerase I in transcription is especially important for a rapid network response to an antibiotic challenge. In this study, Escherichia coli with a topA66 single nucleotide deletion mutation, which results in a frameshift in the TopA CTD, was shown to exhibit increased sensitivity to trimethoprim and quinolone antimicrobials. The topoisomerase I-RNA polymerase interaction and the SOS response to the antimicrobial agents were found to be significantly reduced by this topA66 mutation. Consequently, the mutation frequency measured by rifampin selection following SOS induction was diminished in the topA66 mutant. The increased antibiotic sensitivity for the topA66 mutant can be reversed by the expression of recombinant E. coli topoisomerase I but not by the expression of recombinant Mycobacterium tuberculosis topoisomerase I that has a nonhomologous CTD even though the recombinant M. tuberculosis topoisomerase I can restore most of the plasmid DNA linking number deficiency caused by the topA66 mutation. Direct interactions of E. coli topoisomerase I as part of transcription complexes are likely to be required for the rapid network response to an antibiotic challenge. Inhibitors of bacterial topoisomerase I functions and interactions may sensitize pathogens to antibiotic treatment and limit the mutagenic response.

  18. Interplay between DNA supercoiling and transcription elongation.

    PubMed

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.