Ecology of coliphages in southern California coastal waters.
Reyes, V C; Jiang, S C
2010-08-01
This study aims to investigate the ecology of coliphages, an important microbial pollution indicator. Specifically, our experiments address (i) the ability of environmental Escherichia coli (E. coli) to serve as hosts for coliphage replication, and (ii) the temporal and spatial distribution of coliphages in coastal waters. Water samples from three locations in California's Newport Bay watershed were tested for the presence of coliphages every 2 weeks for an entire year. A total of nine E. coli strains isolated from various sources served as hosts for coliphage detection. Coliphage occurrence was significantly different between freshwater, estuarine and coastal locations and correlated with water temperature, salinity and rainfall in the watershed. The coliphages isolated on the environmental hosts had a broad host-range relative to the coliphages isolated on an E. coli strain from sewage and a US EPA recommended strain for coliphage detection. Coliphage occurrence was related to the temperature, rainfall and salinity within the bay. The adaptation to a broad host-range may enable the proliferation of coliphages in the aquatic environment. Understanding the seasonal variation of phages is useful for establishing a background level of coliphage presence in coastal waters. The broad host-range of coliphages isolated on the environmental E. coli host calls for investigation of coliphage replication in the aquatic environment.
Cole, Dana; Long, Sharon C; Sobsey, Mark D
2003-11-01
Male-specific (F+) coliphages have been investigated as viral indicators of fecal contamination that may provide source-specific information for impacted environmental waters. This study examined the presence and proportions of the different subgroups of F+ coliphages in a variety of fecal wastes and surface waters with well-defined potential waste impacts. Municipal wastewater samples had high proportions of F+ DNA and group II and III F+ RNA coliphages. Bovine wastewaters also contained a high proportion of F+ DNA coliphages, but group I and IV F+ RNA coliphages predominated. Swine wastewaters contained approximately equal proportions of F+ DNA and RNA coliphages, and group I and III F+ RNA coliphages were most common. Waterfowl (gull and goose) feces contained almost exclusively F+ RNA coliphages of groups I and IV. No F+ coliphages were isolated from the feces of the other species examined. F+ coliphage recovery from surface waters was influenced by precipitation events and animal or human land use. There were no significant differences in coliphage density among land use categories. Significant seasonal variation was observed in the proportions of F+ DNA and RNA coliphages. Group I F+ RNA coliphages were the vast majority (90%) of those recovered from surface waters. The percentage of group I F+ RNA coliphages detected was greatest at background sites, and the percentage of group II F+ RNA coliphages was highest at human-impacted sites. Monitoring of F+ coliphage groups can indicate the presence and major sources of microbial inputs to surface waters, but environmental effects on the relative occurrence of different groups need to be considered.
Cole, Dana; Long, Sharon C.; Sobsey, Mark D.
2003-01-01
Male-specific (F+) coliphages have been investigated as viral indicators of fecal contamination that may provide source-specific information for impacted environmental waters. This study examined the presence and proportions of the different subgroups of F+ coliphages in a variety of fecal wastes and surface waters with well-defined potential waste impacts. Municipal wastewater samples had high proportions of F+ DNA and group II and III F+ RNA coliphages. Bovine wastewaters also contained a high proportion of F+ DNA coliphages, but group I and IV F+ RNA coliphages predominated. Swine wastewaters contained approximately equal proportions of F+ DNA and RNA coliphages, and group I and III F+ RNA coliphages were most common. Waterfowl (gull and goose) feces contained almost exclusively F+ RNA coliphages of groups I and IV. No F+ coliphages were isolated from the feces of the other species examined. F+ coliphage recovery from surface waters was influenced by precipitation events and animal or human land use. There were no significant differences in coliphage density among land use categories. Significant seasonal variation was observed in the proportions of F+ DNA and RNA coliphages. Group I F+ RNA coliphages were the vast majority (90%) of those recovered from surface waters. The percentage of group I F+ RNA coliphages detected was greatest at background sites, and the percentage of group II F+ RNA coliphages was highest at human-impacted sites. Monitoring of F+ coliphage groups can indicate the presence and major sources of microbial inputs to surface waters, but environmental effects on the relative occurrence of different groups need to be considered. PMID:14602607
Molecular characterization of bacteriophages for microbial source tracking in Korea.
Lee, Jung Eun; Lim, Mi Young; Kim, Sei Yoon; Lee, Sunghee; Lee, Heetae; Oh, Hyun-Myung; Hur, Hor-Gil; Ko, Gwangpyo
2009-11-01
We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.
Coliphages as indicators of enteroviruses.
Stetler, R E
1984-01-01
Coliphages were monitored in conjunction with indicator bacteria and enteroviruses in a drinking-water plant modified to reduce trihalomethane production. Coliphages could be detected in the source water by direct inoculation, and sufficient coliphages were detected in enterovirus concentrates to permit following the coliphage levels through different water treatment processes. The recovery efficiency by different filter types ranged from 1 to 53%. Statistical analysis of the data indicated that enterovirus isolates were better correlated with coliphages than with total coliforms, fecal coliforms, fecal streptococci, or standard plate count organisms. Coliphages were not detected in finished water. PMID:6093694
Concentration and recovery of coliphages from water with bituminous coal.
Dafale, Nishant; Lakhe, Shrikumar; Yadav, Krishnakant; Purohit, Hemant; Chakrabarti, Tapan
2008-03-01
Coliphages represent a process indicator for fecal pollution. The coal bed concentration method prepared for enterovirus was refined for a concentration of coliphages. A bed made from 1.5 g of 120-mesh coal powder was used for concentrating coliphage from 200 mL of a water sample with or without the addition of aluminum chloride at different pH values. The isolated E. coli strain EC-R8 was found to be more susceptible to the desired coliphage and showed significant coliphage-coliform response, with clear plaque used for further studies. The complete coliphage adsorption was achieved with the addition of 0.0005 M AlCl3 at pH 6.0. Adsorbed coliphages were eluted with 3% beef extract in Mcllvaine buffer at pH 7.1, with an average recovery of 78.74%. This concentration technique was applied for the detection of coliphages from the well water of Nagpur city (India) and found to contain coliphages in the range of 2 to 28 plaque-forming units per liter (PFU/L).
Is the replication of somatic coliphages in water environments significant?
Jofre, J
2009-04-01
Somatic coliphages are amid several groups of bacteriophages that have been suggested as indicators in water quality assessment. One of the limitations frequently endorsed to somatic coliphages as indicators is that they can replicate in the water environment. This review intends to evaluate the significance of this potential replication. In view of: the threshold densities of somatic coliphages and host bacteria needed for productive infection to occur, the densities of both host cells supporting somatic coliphages replication and these phages in water environments, and the poor contribution of lysogenic induction to the free somatic coliphage numbers in water, it can be concluded that replication of somatic coliphages in waters is very unlikely. Consequently, the contribution of replication in the environment of somatic coliphages is expected to have a non-noticeable influence on the numbers of somatic coliphages detected in water environments. Thus, the replication in the environment should not be argued as a limitation to the use of somatic coliphages as indicators.
Coliphages and Gastrointestinal Illness in Recreational Waters
Benjamin-Chung, Jade; Arnold, Benjamin F.; Wade, Timothy J.; Schiff, Kenneth; Griffith, John F.; Dufour, Alfred P.; Weisberg, Stephen B.
2017-01-01
Background: Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between coliphages and gastrointestinal illness and compared it with the association with culturable enterococci. Methods: We pooled data from six prospective cohort studies that enrolled coastal beachgoers in California, Alabama, and Rhode Island. Water samples were collected and gastrointestinal illness within 10 days of the beach visit was recorded. Samples were tested for enterococci and male-specific and somatic coliphages. We estimated cumulative incidence ratios (CIR) for the association between swimming in water with detectable coliphage and gastrointestinal illness when human fecal pollution was likely present, not likely present, and under all conditions combined. The reference group was unexposed swimmers. We defined continuous and threshold-based exposures (coliphage present/absent, enterococci >35 vs. ≤35 CFU/100 ml). Results: Under all conditions combined, there was no association between gastrointestinal illness and swimming in water with detectable coliphage or enterococci. When human fecal pollution was likely present, coliphage and enterococci were associated with increased gastrointestinal illness, and there was an association between male-specific coliphage level and illness that was somewhat stronger than the association between enterococci and illness. There were no substantial differences between male-specific and somatic coliphage. Conclusions: Somatic coliphage and enterococci had similar associations with gastrointestinal illness; there was some evidence that male-specific coliphage had a stronger association with illness than enterococci in marine waters with human fecal contamination. PMID:28489717
Benjamin-Chung, Jade; Arnold, Benjamin F; Wade, Timothy J; Schiff, Kenneth; Griffith, John F; Dufour, Alfred P; Weisberg, Stephen B; Colford, John M
2017-09-01
Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between coliphages and gastrointestinal illness and compared it with the association with culturable enterococci. We pooled data from six prospective cohort studies that enrolled coastal beachgoers in California, Alabama, and Rhode Island. Water samples were collected and gastrointestinal illness within 10 days of the beach visit was recorded. Samples were tested for enterococci and male-specific and somatic coliphages. We estimated cumulative incidence ratios (CIR) for the association between swimming in water with detectable coliphage and gastrointestinal illness when human fecal pollution was likely present, not likely present, and under all conditions combined. The reference group was unexposed swimmers. We defined continuous and threshold-based exposures (coliphage present/absent, enterococci >35 vs. ≤35 CFU/100 ml). Under all conditions combined, there was no association between gastrointestinal illness and swimming in water with detectable coliphage or enterococci. When human fecal pollution was likely present, coliphage and enterococci were associated with increased gastrointestinal illness, and there was an association between male-specific coliphage level and illness that was somewhat stronger than the association between enterococci and illness. There were no substantial differences between male-specific and somatic coliphage. Somatic coliphage and enterococci had similar associations with gastrointestinal illness; there was some evidence that male-specific coliphage had a stronger association with illness than enterococci in marine waters with human fecal contamination.
Male-Specific Coliphages as Indicators of Thermal Inactivation of Pathogens in Biosolids
Nappier, Sharon P.; Aitken, Michael D.; Sobsey, Mark D.
2006-01-01
Male-specific (F+) coliphages have been proposed as a candidate indicator of fecal contamination and of virus reduction in waste treatment. However, in this and earlier work with a laboratory thermophilic anaerobic digester, a heat-resistant fraction of F+ coliphage populations indigenous to municipal wastewater and sludge was evident. We therefore isolated coliphages from municipal wastewater sludge and from biosolid samples after thermophilic anaerobic digestion to evaluate the susceptibility of specific groups to thermal inactivation. Similar numbers of F+ DNA and F+ RNA coliphages were found in untreated sludge, but the majority of isolates in digested biosolids were group I F+ RNA phages. Separate experiments on individual isolates at 53°C confirmed the apparent heat resistance of group I F+ RNA coliphages as well as the susceptibility of group III F+ RNA coliphages. Although few F+ DNA coliphages were recovered from the treated biosolid samples, thermal inactivation experiments indicated heat resistance similar to that of group I F+ RNA phages. Hence, F+ DNA coliphage reductions during thermophilic anaerobic digestion are probably related to mechanisms other than thermal inactivation. Further studies should focus on the group III F+ RNA coliphages as potential indicators of reductions of heat-resistant pathogens in thermal processes for sludge treatment. PMID:16597945
Haramoto, E; Otagiri, M; Morita, H; Kitajima, M
2012-04-01
To determine the genogroup distribution of F-specific coliphages in aquatic environments using the plaque isolation procedure combined with genogroup-specific real-time PCR. Thirty water samples were collected from a wastewater treatment plant and a river in the Kofu basin in Japan on fine weather days. F-specific coliphages were detected in all tested samples, 187 (82%) of 227 phage plaques isolated were classified into one of the 4 F-specific RNA (F-RNA) coliphage genogroups and 24 (11%) plaques were F-specific DNA coliphages. Human genogroups II and III F-RNA coliphages were more abundant in raw sewage than animal genogroups I and IV, excluding one sample that was suspected to be heavily contaminated with sporadic heavy animal faeces. The secondary-treated sewage samples were highly contaminated with genogroup I F-RNA coliphages, probably because of different behaviours among the coliphage genogroups during wastewater treatment. The river water samples were expected to be mainly contaminated with human faeces, independent of rainfall effects. A wide range of F-specific coliphage genogroups were successfully identified in wastewater and river water samples. Our results clearly show the usefulness of the genogroup-specific real-time PCR for determining the genogroups of F-specific coliphages present in aquatic environments. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.
Specificity of coliphages in evaluating marker efficacy: a new insight for water quality indicators.
Mookerjee, Subham; Batabyal, Prasenjit; Halder, Madhumanti; Palit, Anup
2014-11-01
Conventional procedures for qualitative assessment of coliphage are time consuming multiple step approach for achieving results. A modified and rapid technique has been introduced for determination of coliphage contamination among potable water sources during water borne outbreaks. During December 2013, 40 water samples from different potable water sources, were received for water quality analyses, from a jaundice affected Municipality of West Bengal, India. Altogether, 30% water samples were contaminated with coliform (1-20 cfu/ml) and 5% with E. coli (2-5 cfu/ml). Among post-outbreak samples, preponderance of coliform has decreased (1-4 cfu/ml) with total absence of E. coli. While standard technique has detected 55% outbreak samples with coliphage contamination, modified technique revealed that 80%, double than that of bacteriological identification rate, were contaminated with coliphages (4-20 pfu/10 ml). However, post-outbreak samples were detected with 1-5 pfu/10 ml coliphages among 20% samples. Coliphage detection rate through modified technique was nearly double (50%) than that of standard technique (27.5%). In few samples (with coliform load of 10-100 cfu/ml), while modified technique could detect coliphages among six samples (10-20 pfu/10 ml), standard protocol failed to detect coliphage in any of them. An easy, rapid and accurate modified technique has thereby been implemented for coliphage assessment from water samples. Coliform free water does not always signify pathogen free potable water and it is demonstrated that coliphage is a more reliable 'biomarker' to ascertain contamination level in potable water. Copyright © 2014 Elsevier B.V. All rights reserved.
Agulló-Barceló, Miriam; Galofré, Belén; Sala, Lluís; García-Aljaro, Cristina; Lucena, Francisco; Jofre, Juan
2016-09-01
Bacteriophages are increasingly being used as water quality indicators. Two groups of phages infecting Escherichia coli, somatic and F-specific coliphages, are being considered as indicators of fecal and viral contamination for several types of water around the world. However, some uncertainties remain regarding which coliphages to assess. Recently, E. coli strain CB390 has been reported to be suitable for simultaneous detection of both groups, which seems to be more informative than determining only one of the groups. Here, a significant number of samples from different settings, mostly those where F-specific phages have been reported to outnumber somatic coliphages, are analyzed for somatic coliphages, F-specific RNA phages by standardized methods and coliphages detected by host strain CB390. The results presented here confirm that the numbers of phages counted using CB390 are equivalent to the sum of the somatic and F-specific coliphages counted independently in all settings. Hence the usefulness of this strain for simultaneous detection of somatic and F-specific coliphages is confirmed. Also, sets of data on the presence of coliphages in reclaimed and groundwater are reported. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Jones, Tineke H.; Brassard, Julie; Topp, Edward; Wilkes, Graham
2016-01-01
ABSTRACT From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml−1, respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml−1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. IMPORTANCE This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships between viable F-specific coliphages and molecularly detected viruses do exist, but they are not always positive. Caution should be employed if viable F-specific coliphages are to be used as indicators of virus presence in surface waters. This study elucidates relative effects of agriculture, wildlife, and human activity on virus and F-specific coliphage detection. Seasonal and meteorological attributes play a strong role in the detection of most virus and F-specific coliphage targets. PMID:27836843
Jones, Tineke H; Brassard, Julie; Topp, Edward; Wilkes, Graham; Lapen, David R
2017-02-01
From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml -1 , respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml -1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships between viable F-specific coliphages and molecularly detected viruses do exist, but they are not always positive. Caution should be employed if viable F-specific coliphages are to be used as indicators of virus presence in surface waters. This study elucidates relative effects of agriculture, wildlife, and human activity on virus and F-specific coliphage detection. Seasonal and meteorological attributes play a strong role in the detection of most virus and F-specific coliphage targets. © Crown copyright 2017.
Host range, immunity and antigenic properties of lambdoid coliphage HK97.
Dhillon, E K; Dhillon, T S; Lai, A N; Linn, S
1980-09-01
Temperate coliphage HK97 was isolated from pig dung. Although HK97 is antigenically unrelated to coliphage lambda, it has similar morphology, host range and immunity properties, and can recombine with it.
Individual and Collective Protection Program
2007-11-30
98 8.2.1 PREPARATION OF STOCK SUSPENSION OF MS2 COLIPHAGE ...103 8.3.1 PROCEDURE FOR ASSAYING MS2 COLIPHAGE ...CHALLENGE NUMBER OF TEST MICROORGANISMS..................106 8.4.1 METHOD FOR DETERMINATION OF CHALLENGE NUMBER OF MS2 COLIPHAGE
Pérez-Méndez, A; Chandler, J C; Bisha, B; Goodridge, L D
2014-08-01
Enteric viral contaminants in water represent a public health concern, thus methods for detecting these viruses or their indicator microorganisms are needed. Because enteric viruses and their viral indicators are often found at low concentrations in water, their detection requires upfront concentration methods. In this study, a strong basic anion exchange resin was evaluated as an adsorbent material for the concentration of F-RNA coliphages (MS2, Qβ, GA, and HB-P22). These coliphages are recognized as enteric virus surrogates and fecal indicator organisms. Following adsorption of the coliphages from 50ml water samples, direct RNA isolation and real time RT-PCR detection were performed. In water samples containing 10(5)pfu/ml of the F-RNA coliphages, the anion exchange resin (IRA-900) adsorbed over 96.7% of the coliphages present, improving real time RT-PCR detection by 5-7 cycles compared to direct testing. F-RNA coliphage RNA recovery using the integrated method ranged from 12.6% to 77.1%. Resin-based concentration of samples with low levels of the F-RNA coliphages allowed for 10(0)pfu/ml (MS2 and Qβ) and 10(-1)pfu/ml (GA and HB-P22) to be detected. The resin-based method offers considerable advantages in cost, speed, simplicity and field adaptability. Copyright © 2014 Elsevier B.V. All rights reserved.
Vergara, G G R V; Goh, S G; Rezaeinejad, S; Chang, S Y; Sobsey, M D; Gin, K Y H
2015-08-01
This study aimed to evaluate the relationship between FRNA coliphages (FRNA GI to GIV) and human enteric viruses (human adenoviruses, HAdV, astroviruses, AstV, noroviruses, NoV, and rotaviruses, RoV) in a tropical urban freshwater catchment. Positive associations between human-specific coliphages and human viral pathogens substantiate their use as viral indicators and in microbial source tracking. Reverse transcription qPCR was used to measure the concentrations of viruses and FRNA coliphages in concentrated water samples. Environmental water samples were also analyzed for male-specific (F+) and somatic (Som) coliphages using plaque assay. The most abundant enteric virus was NoV (55%) followed by HAdV (33%), RoV (33%), and AstV (23%), while the most abundant FRNA genogroup was GI (85%) followed by GII (48%), GIV (8%) and GIII (7%). Concentrations of human-specific coliphages FRNA GII were positively correlated with NoV, HAdV, RoV, AstV, F+ and Som (τ = 0.5 to 0.3, P < 0.05) while concentrations of animal-specific coliphages FRNA GI were negatively correlated with HAdV and RoV (τ = -0.2, P < 0.05). This study demonstrates statistical relationships between human-specific coliphages and a suite of human enteric viruses in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Decay of Coliphages in Sewage-Contaminated Freshwater: Uncertainty and Seasonal Effects.
Wu, Jianyong; Cao, Yiping; Young, Brianna; Yuen, Yvonne; Jiang, Sharon; Melendez, Daira; Griffith, John F; Stewart, Jill R
2016-11-01
Understanding the fate of enteric viruses in water is vital for protection of water quality. However, the decay of enteric viruses is not well characterized, and its uncertainty has not been examined yet. In this study, the decay of coliphages, an indicator for enteric viruses, was investigated in situ under both sunlit and shaded conditions as well as in summer and winter. The decay rates of coliphages and their uncertainties were analyzed using a Bayesian approach. The results from the summer experiments revealed that the decay rates of somatic coliphages were significantly higher in sunlight (1.29 ± 0.06 day -1 ) than in shade (0.96 ± 0.04 day -1 ), but the decay rates of male-specific (F+) coliphages were not significantly different between sunlight (1.09 ± 0.09 day -1 ) and shaded treatments (1.11 ± 0.08 day -1 ). The decay rates of both F+ coliphages (0.25 ± 0.02 day -1 ) and somatic coliphages (0.12 ± 0.01 day -1 ) in winter were considerably lower than those in summer. Temperature and chlorophyll a (chla) concentration varied significantly (p < 0.001) between the two seasons, suggesting that these parameters might be important contributors to the seasonal variation of coliphage decay. Additionally, the Bayesian approach provided full distributions of decay rates and reduced the uncertainty, offering useful information for comparing decay rates under different conditions.
Salter, Robert S.; Durbin, Gregory W.; Conklin, Ernestine; Rosen, Jeff; Clancy, Jennifer
2010-01-01
Coliphages are microbial indicators specified in the Ground Water Rule that can be used to monitor for potential fecal contamination of drinking water. The Total Coliform Rule specifies coliform and Escherichia coli indicators for municipal water quality testing; thus, coliphage indicator use is less common and advances in detection methodology are less frequent. Coliphages are viral structures and, compared to bacterial indicators, are more resistant to disinfection and diffuse further distances from pollution sources. Therefore, coliphage presence may serve as a better predictor of groundwater quality. This study describes Fast Phage, a 16- to 24-h presence/absence modification of U.S. Environmental Protection Agency (EPA) Method 1601 for detection of coliphages in 100 ml water. The objective of the study is to demonstrate that the somatic and male-specific coliphage modifications provide results equivalent to those of Method 1601. Five laboratories compared the modifications, featuring same-day fluorescence-based prediction, to Method 1601 by using the performance-based measurement system (PBMS) criterion. This requires a minimum 50% positive response in 10 replicates of 100-ml water samples at coliphage contamination levels of 1.3 to 1.5 PFU/100 ml. The laboratories showed that Fast Phage meets PBMS criteria with 83.5 to 92.1% correlation of the same-day rapid fluorescence-based prediction with the next-day result. Somatic coliphage PBMS data are compared to manufacturer development data that followed the EPA alternative test protocol (ATP) validation approach. Statistical analysis of the data sets indicates that PBMS utilizes fewer samples than does the ATP approach but with similar conclusions. Results support testing the coliphage modifications by using an EPA-approved national PBMS approach with collaboratively shared samples. PMID:20935123
Salter, Robert S; Durbin, Gregory W; Conklin, Ernestine; Rosen, Jeff; Clancy, Jennifer
2010-12-01
Coliphages are microbial indicators specified in the Ground Water Rule that can be used to monitor for potential fecal contamination of drinking water. The Total Coliform Rule specifies coliform and Escherichia coli indicators for municipal water quality testing; thus, coliphage indicator use is less common and advances in detection methodology are less frequent. Coliphages are viral structures and, compared to bacterial indicators, are more resistant to disinfection and diffuse further distances from pollution sources. Therefore, coliphage presence may serve as a better predictor of groundwater quality. This study describes Fast Phage, a 16- to 24-h presence/absence modification of U.S. Environmental Protection Agency (EPA) Method 1601 for detection of coliphages in 100 ml water. The objective of the study is to demonstrate that the somatic and male-specific coliphage modifications provide results equivalent to those of Method 1601. Five laboratories compared the modifications, featuring same-day fluorescence-based prediction, to Method 1601 by using the performance-based measurement system (PBMS) criterion. This requires a minimum 50% positive response in 10 replicates of 100-ml water samples at coliphage contamination levels of 1.3 to 1.5 PFU/100 ml. The laboratories showed that Fast Phage meets PBMS criteria with 83.5 to 92.1% correlation of the same-day rapid fluorescence-based prediction with the next-day result. Somatic coliphage PBMS data are compared to manufacturer development data that followed the EPA alternative test protocol (ATP) validation approach. Statistical analysis of the data sets indicates that PBMS utilizes fewer samples than does the ATP approach but with similar conclusions. Results support testing the coliphage modifications by using an EPA-approved national PBMS approach with collaboratively shared samples.
Concentration and Quantification of Somatic and F+ Coliphage from Recreational Waters
Somatic and F+ coliphages are promising alternative fecal indicators, but current detection methods are hindered by lower levels of coliphages in surface waters compared to traditional bacterial fecal indicators. We evaluated the ability of dead-end hollow fiber ultrafiltration (...
Surveillance of enteric viruses and coliphages in a tropical urban catchment.
Rezaeinejad, S; Vergara, G G R V; Woo, C H; Lim, T T; Sobsey, M D; Gin, K Y H
2014-07-01
An assessment of the occurrence and concentration of enteric viruses and coliphages was carried out in highly urbanized catchment waters in the tropical city-state of Singapore. Target enteric viruses in this study were noroviruses, adenoviruses, astroviruses and rotaviruses. In total, 65 water samples were collected from canals and the reservoir of the Marina catchment on a monthly basis over a period of a year. Quantitative PCR (qPCR) and single agar layer plaque assay (SAL) were used to enumerate target enteric viruses and coliphages in water samples, respectively. The most prevalent pathogen were noroviruses, detected in 37 samples (57%), particularly norovirus genogroup II (48%), with a mean concentration of 3.7 × 10(2) gene copies per liter. Rotavirus was the second most prevalent virus (40%) with a mean concentration of 2.5 × 10(2) GC/L. The mean concentrations of somatic and male-specific coliphages were 2.2 × 10(2) and 1.1 × 10(2) PFU/100 ml, respectively. The occurrence and concentration of each target virus and the ratio of somatic to male-specific coliphages varied at different sampling sites in the catchment. For sampling sites with higher frequency of occurrence and concentration of viruses, the ratio of somatic to male-specific coliphages was generally much lower than other sampling sites with lower incidences of enteric viruses. Overall, higher statistical correlation was observed between target enteric viruses than between enteric viruses and coliphages. However, male-specific coliphages were positively correlated with norovirus concentrations. A multi-level integrated surveillance system, which comprises the monitoring of bacterial indicators, coliphages and selected enteric viruses, could help to meet recreational and surface water quality criteria in a complex urbanized catchment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, K; Farahbakhsh, K
2007-06-01
The efficacy of a conventional activated sludge wastewater treatment process and the membrane bioreactor technology in removing microbial pathogens was investigated. Total and fecal coliforms and somatic and F-specific coliphages were used as indicators of pathogenic bacteria and viruses. Up to 5.7 logs removal of coliforms and 5.5 logs of coliphages were observed in the conventional treatment process with advanced tertiary treatment. Addition of chemical coagulants seemed to improve the efficacy of primary and secondary treatment for microorganism removal. Complete removal of fecal coliforms and up to 5.8 logs removal of coliphages was observed in the MBR system. It was shown that the MBR system was capable of high removal of coliphages despite the variation in feed coliphage concentrations. The results of this study indicated that the MBR system can achieve better microbial removal in far fewer steps than the conventional activated sludge process with advanced tertiary treatment. The final effluent from either treatment processes can be potentially reused.
Rates of inactivation of waterborne coliphages by monochloramine.
Dee, S W; Fogleman, J C
1992-01-01
A sophisticated water quality monitoring program was established to evaluate virus removal through Denver's 1-million-gal (ca. 4-million-liter)/day Direct Potable Reuse Demonstration Plant. As a comparison point for the reuse demonstration plant, Denver's main water treatment facility was also monitored for coliphage organisms. Through the routine monitoring of the main plant, it was discovered that coliphage organisms were escaping the water treatment processes. Monochloramine residuals and contact times (CT values) required to achieve 99% inactivation were determined for coliphage organisms entering and leaving this conventional water treatment plant. The coliphage tested in the effluent waters had higher CT values on the average than those of the influent waters. CT values established for some of these coliphages suggest that monochloramine alone is not capable of removing 2 orders of magnitude of these specific organisms in a typical water treatment facility. Electron micrographs revealed one distinct type of phage capable of escaping the water treatment processes and three distinct types of phages in all. Images PMID:1444427
Background: Coliphages have been proposed as potential indicators of fecal contamination of marine recreational waters because they may better predict the presence of viruses than fecal indicator bacteria. We estimated the association between the presence of coliphages and self-r...
Incidence of Somatic and F+ Coliphage at Three Great Lake Beaches
There is a growing interest for the potential use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect E. coli and are commonly used as models to infer the likely presence of human enteric viral pa...
Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters.
Wanjugi, Pauline; Sivaganesan, Mano; Korajkic, Asja; McMinn, Brian; Kelty, Catherine A; Rhodes, Eric; Cyterski, Mike; Zepp, Richard; Oshima, Kevin; Stachler, Elyse; Kinzelman, Julie; Kurdas, Stephan R; Citriglia, Mark; Hsu, Fu-Chih; Shanks, Orin C
2018-04-25
There is a growing interest for the use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect Escherichia coli and are considered as potential surrogates to infer the likely presence of enteric viral pathogens. We report the use of a dead-end hollow fiber ultrafiltration single agar layer method to enumerate F+ and somatic coliphage from surface waters collected from three Great Lake areas. At each location, three sites (two beaches; one river) were sampled five days a week over the 2015 beach season (n = 609 total samples). In addition, culturable E. coli and enterococci concentrations, as well as 16 water quality and recreational area parameters were assessed such as rainfall, turbidity, dissolved oxygen, pH, and ultra violet absorbance. Overall, somatic coliphage levels ranged from non-detectable to 4.39 log 10 plaque forming units per liter and were consistently higher compared to F+ (non-detectable to 3.15 log 10 PFU/L), regardless of sampling site. Coliphage concentrations weakly correlated with cultivated fecal indicator bacteria levels (E. coli and enterococci) at 75% of beach sites tested in study (r = 0.28 to 0.40). In addition, ultraviolet light absorption and water temperature were closely associated with coliphage concentrations, but not fecal indicator bacteria levels suggesting different persistence trends in Great Lake waters between indicator types (bacteria versus virus). Finally, implications for coliphage water quality management and future research directions are discussed. Copyright © 2018. Published by Elsevier Ltd.
Somatic Coliphage Profiles of Produce and Environmental Samples from Farms in Northern México.
Bartz, Faith E; Hodge, Domonique Watson; Heredia, Norma; de Aceituno, Anna Fabiszewski; Solís, Luisa; Jaykus, Lee-Ann; Garcia, Santos; Leon, Juan S
2016-09-01
Somatic coliphages were quantified in 459 produce and environmental samples from 11 farms in Northern Mexico to compare amounts of somatic coliphages among different types of fresh produce and environmental samples across the production steps on farms. Rinsates from cantaloupe melons, jalapeño peppers, tomatoes, and the hands of workers, soil, and water were collected during 2011-2012 at four successive steps on each farm, from the field before harvest through the packing facility, and assayed by FastPhage MPN Quanti-tray method. Cantaloupe farm samples contained more coliphages than jalapeño or tomato (p range <0.01-0.03). Across production steps, jalapeños had higher coliphage percentages before harvest than during packing (p = 0.03), while tomatoes had higher coliphage concentrations at packing than all preceding production steps (p range <0.01-0.02). These findings support the use of targeted produce-specific interventions at multiple points in the process of growing and packing produce to reduce the risk of enteric virus contamination and improve food safety during fruit and vegetable production.
Concentration and quantification of somatic and F+ coliphages from recreational waters.
McMinn, Brian R; Huff, Emma M; Rhodes, Eric R; Korajkic, Asja
2017-11-01
Somatic and F+ coliphages are promising alternative fecal indicators, but current detection methods are hindered by lower levels of coliphages in surface waters compared to traditional bacterial fecal indicators. We evaluated the ability of dead-end hollow fiber ultrafiltration (D- HFUF) and single agar layer (SAL) procedure to concentrate and enumerate coliphages from 1L and 10L volumes of ambient surface waters (lake, river, marine), river water with varying turbidities (3.74-118.7 NTU), and a simulated combined sewer overflow (CSO) event. Percentage recoveries for surface waters were 40-79% (somatic) and 35-94% (F+). The method performed equally well in all three matrices at 1L volumes, but percent recoveries were significantly higher in marine waters at 10L volumes when compared to freshwater. Percent recoveries at 1L and 10L were similar, except in river water where recoveries were significantly lower at higher volume. In highly turbid waters, D-HFUF-SAL had a recovery range of 25-77% (somatic) and 21-80% (F+). The method produced detectable levels of coliphages in diluted wastewater and in unspiked surface waters, emphasizing its applicability to CSO events and highlighting its utility in recovery of low coliphage densities from surface waters. Thus D-HFUF-SAL is a good candidate method for routine water quality monitoring of coliphages. Published by Elsevier B.V.
Gibbons, C D; Rodríguez, R A; Tallon, L; Sobsey, M D
2010-08-01
To evaluate the electropositive, alumina nanofibre (NanoCeram) cartridge filter as a primary concentration method for recovering adenovirus, norovirus and male-specific coliphages from natural seawater. Viruses were concentrated from 40 l of natural seawater using a NanoCeram cartridge filter and eluted from the filter either by soaking the filter in eluent or by recirculating the eluent continuously through the filter using a peristaltic pump. The elution solution consisted of 3% beef extract and 0.1 mol l(-1) of glycine. The method using a peristaltic pump was more effective in removing the viruses from the filter. High recoveries of norovirus and male-specific coliphages (>96%) but not adenovirus (<3%) were observed from seawater. High adsorption to the filter was observed for adenovirus and male-specific coliphages (>98%). The adsorption and recovery of adenovirus and male-specific coliphages were also determined for fresh finished water and source water. The NanoCeram cartridge filter was an effective primary concentration method for the concentration of norovirus and male-specific coliphages from natural seawater, but not for adenovirus, in spite of the high adsorption of adenovirus to the filter. This study demonstrates that NanoCeram cartridge filter is an effective primary method for concentrating noroviruses and male-specific coliphages from seawater, thereby simplifying collection and processing of water samples for virus recovery.
40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for the presence of E. coli, enterococci, or coliphage: Analytical Methods for Source Water Monitoring... Microbiology, 62:3881-3884. 10 EPA Method 1601: Male-specific (F+) and Somatic Coliphage in Water by Two-step... 20460. 11 EPA Method 1602: Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL...
40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for the presence of E. coli, enterococci, or coliphage: Analytical Methods for Source Water Monitoring... Microbiology, 62:3881-3884. 10 EPA Method 1601: Male-specific (F+) and Somatic Coliphage in Water by Two-step... 20460. 11 EPA Method 1602: Male-specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Power, U.F.; Collins, J.K.
1989-06-01
The elimination of sewage effluent-associated poliovirus, Escherichia coli, and a 22-nm icosahedral coliphage by the common mussel, Mytilus edulis, was studied. Both laboratory-and commercial-scale recirculating, UV depuration systems were used in this study. In the laboratory system, the logarithms of the poliovirus, E. coli, and coliphage levels were reduced by 1.86, 2.9, and 2.16, respectively, within 52 h of depuration. The relative patterns and rates of elimination of the three organisms suggest that they are eliminated from mussels by different mechanisms during depuration under suitable conditions. Poliovirus was not included in experiments undertaken in the commercial-scale depuration system. The differencesmore » in the relative rates and patterns of elimination were maintained for E. coli and coliphage in this system, with the logarithm of the E. coli levels being reduced by 3.18 and the logarithm of the coliphage levels being reduced by 0.87. The results from both depuration systems suggest that E. coli is an inappropriate indicator of the efficiency of virus elimination during depuration. The coliphage used appears to be a more representative indicator. Depuration under stressful conditions appeared to have a negligible affect on poliovirus and coliphage elimination rates from mussels. However, the rate and pattern of E. coli elimination were dramatically affected by these conditions. Therefore, monitoring E. coli counts might prove useful in ensuring that mussels are functioning well during depuration.« less
Field-based evaluation of a male-specific (F+) RNA coliphage concentration method.
Chandler, J C; Pérez-Méndez, A; Paar, J; Doolittle, M M; Bisha, B; Goodridge, L D
2017-01-01
Fecal contamination of water poses a significant risk to public health due to the potential presence of pathogens, including enteric viruses. Therefore, sensitive, reliable and easy to use methods for the concentration, detection and quantification of microorganisms associated with the safety and quality of water are needed. In this study, we performed a field evaluation of an anion exchange resin-based method to concentrate male-specific (F+) RNA coliphages (FRNA), fecal indicator organisms, from diverse environmental waters that were suspected to be contaminated with feces. In this system, FRNA coliphages are adsorbed to anion exchange resin and direct nucleic acid isolation is performed, yielding a sample amenable to real-time reverse transcriptase (RT)-PCR detection. Matrix-dependent inhibition of this method was evaluated using known quantities of spiked FRNA coliphages belonging to four genogroups (GI, GII, GII and GIV). RT-PCR-based detection was successful in 97%, 72%, 85% and 98% of the samples spiked (10 6 pfu/l) with GI, GII, GIII and GIV, respectively. Differential FRNA coliphage genogroup detection was linked to inhibitors that altered RT-PCR assay efficiency. No association between inhibition and the physicochemical properties of the water samples was apparent. Additionally, the anion exchange resin method facilitated detection of naturally present FRNA coliphages in 40 of 65 environmental water samples (61.5%), demonstrating the viability of this system to concentrate FRNA coliphages from water. Copyright © 2016 Elsevier B.V. All rights reserved.
Hepatitis E virus and coliphages in waters proximal to swine concentrated animal feeding operations.
Gentry-Shields, Jennifer; Myers, Kevin; Pisanic, Nora; Heaney, Christopher; Stewart, Jill
2015-02-01
North Carolina is the second leading state in pork production in the United States, with over 10 million swine. Swine manure in NC is typically collected and stored in open-pit lagoons before the liquid waste is sprayed onto agricultural fields for disposal. Components of this waste may be able to impact surface water quality with the potential for human exposure. This study examined viruses of public health concern in creeks adjacent to swine concentrated animal feeding operation (CAFO) spray fields. Surface water samples (n=154) were collected from public access waters in proximity to swine CAFO spray fields for six months and were tested for hepatitis E virus (HEV) and coliphages. HEV was detected in one sample. Somatic coliphages were detected in 98% of samples (geometric mean 24 ± 4.1 PFU per 100 ml), and F+ coliphages were detected in 85% of samples (geometric mean 6.8 ± 5.0 PFU per 100 ml). Only 3% (21) of the F+ coliphage isolates were RNA phage, and all of the F+ RNA coliphages belonged to genogroup I. Although the pervasiveness of swine CAFOs in this area prevented a comparison with samples from un-impacted sites, the near ubiquity of coliphages, as well as the presence of HEV, suggests that current waste management practices may be associated with the dissemination of viruses of public health concern in waters proximal to CAFO spray fields. Copyright © 2014 Elsevier B.V. All rights reserved.
Yazdi, Mojgan; Yavarmanesh, Masoud; Bahreini, Masumeh; Mohebbi, Mohebbat
2017-03-01
The aim of this research was to preliminary track fecal source male-specific F + RNA coliphages including human and animals in lettuce. At first, two published virus extraction procedures of ultracentrifugation and PEG precipitation were compared using DAL assay for determining the recovery efficiency in lettuce spiked artificially with three concentrations (10 2 , 10 4 , 10 6 pfu/100 ml) of MS2 coliphage. The results showed that PEG precipitation had the highest recovery in which the recovery efficiency at the spiked level of 10 6 pfu/100 ml was 16.63 %. Aqueous phase obtained from the final step of PEG method was applied for enumeration of coliphage and viral RNA extraction in naturally contaminated lettuce samples (N = 30) collected from two sources (market and farm). The samples were then analyzed based on (I, II, III, and IV primer sets) using RT-PCR method. Coliphages were detected in 9 (60 %) and 12 (80 %) out of 15 market and farm samples, respectively, using DAL assay, whereas male-specific F + RNA coliphages were detected using the RT-PCR method in 9 (60 %) and 13 (86.6 %) out of 15 samples of market and farm, respectively. Based on the results, only genotype I of male-specific F + RNA coliphages was detected in lettuce samples and no sample tested was positive for other genotypes (II, III, and IV).
Gino, Efrat; Starosvetsky, Jeana; Armon, Robert
2007-10-01
In view of various studies looking for the merit of coliphages as indicators of water pollution with viruses originating from faecal material, a small agricultural community (population of approximately 1500 inhabitants of all ages, 2-3 km from Haifa) was selected in order to understand these bacteriophage ecology (F-RNA and somatic coliphages) in its sewer and oxidation pond system. Along the sewer lines, it was possible to isolate constantly both bacteriophage types (F-RNA and somatic coliphages) at 10(2)-10(4) plaque-forming units (pfu) ml(-1). The average numbers of somatic and F-RNA phages isolated from oxidation pond were 10(3)-10(4) pfu ml(-1); however, somatic coliphages were undetectable for several months (April-August). Significant high correlation (0.944 < R(2) < 0.99) was found between increased anionic detergent concentrations and F-RNA coliphage numbers. Infants less than 1 year old excreted both phage types and few only F-RNA coliphages (at high numbers > 10(5) pfu g(-1)) for up to 1 year. The excretion of F-RNA coliphages was highly linked to Escherichia coli F(+) harborage in the intestinal track as found in their faecal content. Finally, three bacterial hosts E. coli F(+), F(-) and CN(13) tested for survivability in sewage filtrate revealed that E. coli F(+) had the highest survivability under these conditions. Presence of somatic and F male-specific phages in sewer lines of a small community are influenced by several factors such as: anionic detergents, nutrients, temperature, source (mainly infants), shedding and survival capability of the host strain. Better understanding of coliphages ecology in sewer systems can enhance our evaluation of these proposed indicator/index microorganisms used in tracking environmental pollution of water, soil and crop contamination with faecal material containing enteric viruses.
Antimicrobial Efficiency of Iodinated Individual Protection Filters
2004-11-01
additional 2 logs of attenuation vs. a standard COTS canister when challenged with MS2 coliphage . U U U UU 9 Joseph D. Wander 850-283-6240 NOTICES USING...versus a standard COTS canister when challenged with MS2 coliphage . INTRODUCTION Biological weapons are not new, and have been used as warfare...canisters and the iodinated clip-on prototypes were challenged with aerosolized MS2 coliphage . EXPERIMENTAL METHODS Escherichia coli (ATCC 15597) was
Kim, Hyung-Eun; Nguyen, Thuy T M; Lee, Hongshin; Lee, Changha
2015-12-15
The inactivation of Escherichia coli and MS2 coliphage by Cu(II) is found to be significantly enhanced in the presence of hydroxylamine (HA). The addition of a small amount of HA (i.e., 5-20 μM) increased the inactivation efficacies of E. coli and MS2 coliphage by 5- to 100-fold, depending on the conditions. Dual effects were anticipated to enhance the biocidal activity of Cu(II) by the addition of HA, viz. (i) the accelerated reduction of Cu(II) into Cu(I) (a stronger biocide) and (ii) the production of reactive oxidants from the reaction of Cu(I) with dissolved oxygen (evidenced by the oxidative transformation of methanol into formaldehyde). Deaeration enhanced the inactivation of E. coli but slightly decreased the inactivation efficacy of MS2 coliphage. The addition of 10 μM hydrogen peroxide (H2O2) greatly enhanced the MS2 inactivation, whereas the same concentration of H2O2 did not significantly affect the inactivation efficacy of E. coli Observations collectively indicate that different biocidal actions lead to the inactivation of E. coli and MS2 coliphage. The toxicity of Cu(I) is dominantly responsible for the E. coli inactivation. However, for the MS2 coliphage inactivation, the oxidative damage induced by reactive oxidants is as important as the effect of Cu(I).
Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco
2017-10-01
The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was <4 PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.
Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi
2016-08-01
Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.
2005-09-01
Escherichia coliphage virus, and ovalbumnin (OV) protein species. The work suggests certain improvements that can be made to the IMS detection System...Escherichia coliphage virus, and ovalbumin (OV) protein species. However, the origin and structural identities of the pyrolyzate peaks observed in the GC-IMS...niger), Gram-negative Pantoea agglomerans ((EH) formerly Erwinia herbicola ), ovalbumin protein (OV), and the MS-2 Escherichia coliphage virus were
Microbiological, coliphages and physico-chemical assessments of the Umgeni River, South Africa.
Singh, Atheesha; Lin, Johnson
2015-01-01
The water quality of Umgeni River in KwaZulu-Natal (South Africa) was investigated from April 2011 to January 2012. Indicator bacterial populations, physico-chemical properties, heavy metal contaminants and the presence of coliphages were determined according to standard protocols. The results showed that all sampling points failed to comply with the set guidelines for turbidity, total coliform, faecal coliform and total heterotrophic counts. Salmonella spp., Shigella spp. and Vibrio cholerae were also detected in all the water samples. The somatic coliphages and F-RNA coliphages were detected more frequently in the lower reaches of the river during summer. Temperature, electrical conductivity and pH were found to have positive relationships with the microbial communities especially in the lower catchment area during spring and summer indicating the impacts of various anthropogenic activities in the surrounding areas.
Jebri, Sihem; Jofre, Juan; Barkallah, Insaf; Saidi, Mouldi; Hmaied, Fatma
2012-07-01
The role of water in the transmission of infectious diseases is well defined; it may act as a reservoir of different types of pathogens. Enteric viruses can survive and persist for a long time in water, maintaining infectivity in many instances. This suggests the need to include virus detection in the evaluation of the microbiological quality of waters. In this study, enteric viruses (enteroviruses and hepatitis A virus (HAV)) were investigated by RT-PCR and coliphages (known as indicators of viral contamination) were enumerated with the double-layer technique agar in effluents and sewage sludge from three Tunisian wastewater treatment plants. The molecular detection of enteric viruses revealed 7.7% of positive activated sludge samples for enteroviruses. None of the samples was positive for HAV. Molecular virus detection threshold was estimated to be 10(3) PFU/100 ml. All samples contained high concentrations of coliphages except those of dry sludge. Reductions in the concentrations of bacteriophages attained by the wastewater treatment plants are of the order of magnitude as reductions described elsewhere. Peak concentrations in raw wastewater were associated with winter rains and suspended materials rate in analysed samples. Our data which is the first in North Africa showed that similar trends of coliphages distribution to other studies in other countries. No clear correlation between studied enteric viruses and coliphages concentration was proved. Coliphages abundance in collected samples should raise concerns about human enteric viruses transmission as these residues are reused in agricultural fields.
Espinosa, Ana C; Arias, Carlos F; Sánchez-Colón, Salvador; Mazari-Hiriart, Marisa
2009-10-27
Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied. The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration. The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus. Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones.
A Structure-Function Analysis of Shiga-Like Toxin Type 2 of Enterohemorrhagic Escherichia Coli
1990-05-07
like toxins are summarized in Table 2. The genes coding for both SLT-I and SLT-II are borne on coliphage , and toxin expression by E. coli occurs as...A stock | | ’ • * suspension of toxin-converting W coliphage was prepared by inducing the phage from | "fif the E. coli C600(933W) lysogen with...mitomycin C as described previously (Marques et al., 1987). An appropriate amount of the W coliphage stock was added to an l| exponential culture of
Free Available Chlorine Disinfection Criteria for Fixed Army Installation Primary Drinking Water
1981-12-01
Buffered Water with Fuivic Acid (5 C.U.) at pH 9 and 60C ............................................ 6. FAC Disinfection of f 2 Coliphage in Buffered Water ...with and without 250 mg/L -Ca+ at pH 5, 7, and 9 and 6°C ............... 31 10. FAC Disinfection of f 2 Coliphage in Water Containing 5 NTU Bentonite2...rngi L Ca+ 2 at pH- 5, 7, and q and 60C ...... ........................ 34 13. FAC Disinfection of f 2 Coliphage in Borate-Buffered Water with 250 mg
Rodríguez, Roberto A; Love, David C; Stewart, Jill R; Tajuba, Julianne; Knee, Jacqueline; Dickerson, Jerold W; Webster, Laura F; Sobsey, Mark D
2012-04-01
Methods for detection of two fecal indicator viruses, F+ and somatic coliphages, were evaluated for application to recreational marine water. Marine water samples were collected during the summer of 2007 in Southern California, United States from transects along Avalon Beach (n=186 samples) and Doheny Beach (n=101 samples). Coliphage detection methods included EPA method 1601 - two-step enrichment (ENR), EPA method 1602 - single agar layer (SAL), and variations of ENR. Variations included comparison of two incubation times (overnight and 5-h incubation) and two final detection steps (lysis zone assay and a rapid latex agglutination assay). A greater number of samples were positive for somatic and F+ coliphages by ENR than by SAL (p<0.01). The standard ENR with overnight incubation and detection by lysis zone assay was the most sensitive method for the detection of F+ and somatic coliphages from marine water, although the method takes up to three days to obtain results. A rapid 5-h enrichment version of ENR also performed well, with more positive samples than SAL, and could be performed in roughly 24h. Latex agglutination-based detection methods require the least amount of time to perform, although the sensitivity was less than lysis zone-based detection methods. Rapid culture-based enrichment of coliphages in marine water may be possible by further optimizing culture-based methods for saline water conditions to generate higher viral titers than currently available, as well as increasing the sensitivity of latex agglutination detection methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Jones, T H; Muehlhauser, V; Thériault, G
2014-09-01
Increasing attention is being paid to the impact of agricultural activities on water quality to understand the impact on public health. F-RNA coliphages have been proposed as viral indicators of fecal contamination while porcine teschovirus (PTV) and porcine adenovirus (PAdV) are proposed indicators of fecal contamination of swine origin. Viruses and coliphages are present in water in very low concentrations and must be concentrated to permit their detection. There is little information comparing the effectiveness of the methods for concentrating F-RNA coliphages with concentration methods for other viruses and vice versa. The objective of this study was to compare 5 current published methods for recovering F-RNA coliphages, PTV and PAdV from river water samples concentrated by electronegative nitrocellulose membrane filters (methods A and B) or electropositive Zeta Plus 60S filters (methods C-E). Method A is used routinely for the detection of coliphages (Méndez et al., 2004) and method C (Brassard et al., 2005) is the official method in Health Canada's compendium for the detection of viruses in bottled mineral or spring water. When river water was inoculated with stocks of F-RNA MS2, PAdV, and PTV to final concentrations of 1×10(6) PFU/100 mL, 1×10(5) gc/100 mL and 3×10(5) gc/100 mL, respectively, a significantly higher recovery for each virus was consistently obtained for method A with recoveries of 52% for MS2, 95% for PAdV, and 1.5% for PTV. When method A was compared with method C for the detection of F-coliphages, PAdV and PTV in river water samples, viruses were detected with higher frequencies and at higher mean numbers with method A than with method C. With method A, F-coliphages were detected in 11/12 samples (5-154 PFU/100 mL), PTV in 12/12 samples (397-10,951 gc/100 mL), PAdV in 1/12 samples (15 gc/100 mL), and F-RNA GIII in 1/12 samples (750 gc/100 mL) while F-RNA genotypes I, II, and IV were not detected by qRT-PCR. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Gerba, Charles P; Riley, Kelley R; Nwachuku, Nena; Ryu, Hodon; Abbaszadegan, Morteza
2003-07-01
The removal of the Microsporidia, Encephalitozoon intestinalis, feline calicivirus and coliphages MS-2, PRD-1, and Fr were evaluated during conventional drinking water treatment in a pilot plant. The treatment consisted of coagulation, sedimentation, and mixed media filtration. Fr coliphage was removed the most (3.21 log), followed by feline calicivirus (3.05 log), E. coli (2.67 log), E. intestinalis (2.47 log), MS-2 (2.51 log). and PRD-1 (1.85 log). With the exception of PRD-1 the greatest removal of the viruses occurred during the flocculation step of the water treatment process.
Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Nevers, M.B.; Byappanahalli, M.N.
2009-01-01
Beach sand contains fecal indicator bacteria, often in densities greatly exceeding the adjacent swimming waters. We examined the transferability of Escherichia coli and F+ coliphage (MS2) from beach sand to hands in order to estimate the potential subsequent health risk. Sand with high initial E. coli concentrations was collected from a Chicago beach. Individuals manipulated the sand for 60 seconds, and rinse water was analysed for E. coli and coliphage. E. coli densities transferred were correlated with density in sand rather than surface area of an individual's hand, and the amount of coliphage transferred from seeded sand was different among individuals. In sequential rinsing, percentage reduction was 92% for E. coli and 98% for coliphage. Using dose-response estimates developed for swimming water, it was determined that the number of individuals per thousand that would develop gastrointestinal symptoms would be 11 if all E. coli on the fingertip were ingested or 33 if all E. coli on the hand were ingested. These results suggest that beach sand may be an important medium for microbial exposure; bacteria transfer is related to initial concentration in the sand; and rinsing may be effective in limiting oral exposure to sand-borne microbes of human concern.
Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A
2015-06-01
Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.
2009-01-01
Background Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied. Methods The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration. Results The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus. Conclusion Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones. PMID:19860917
Assessment of coliphage surrogates for testing drinking water treatment devices.
Gerba, Charles P; Abd-Elmaksoud, Sherif; Newick, Huikheng; El-Esnawy, Nagwa A; Barakat, Ahmed; Ghanem, Hossam
2015-03-01
Test protocols have been developed by the United States Environmental Protection Agency (USEPA) and the World Health Organization (WHO) to test water treatment devices/systems that are used at the individual and home levels to ensure the removal of waterborne viruses. The goal of this study was to assess if coliphage surrogates could be used in this testing in place of the currently required use of animal or human enteric viruses. Five different coliphages (MS-2, PRD1, ΦX-174, Qβ, and fr) were compared to the removal of poliovirus type 1 (LSc-2ab) by eight different water treatment devices/systems using a general case and a challenge case (high organic load, dissolved solids, and turbidity) test water as defined by the USEPA. The performance of the units was rated as a pass/fail based on a 4 log removal/inactivation of the viruses. In all cases, a failure or a pass of the units/system for poliovirus also corresponded to a pass/fail by all of the coliphages. In summary, in using pass/fail criteria as recommended under USEPA guidelines for testing water treatment device/systems, the use of coliphages should be considered as an alternative to reduce cost and time of testing such devices/systems.
Field-based evaluation of a male-specific (F+) RNA coliphage ...
Fecal contamination of water poses a significant risk to public health due to the potential presence of pathogens, including enteric viruses. Thus, sensitive, reliable and easy to use methods for the detection of microorganisms are needed to evaluate water quality. In this study, we performed a field evaluation of an anion-exchange resin based platform to concentrate F-RNA coliphages (fecal/enteric virus indicators) from diverse fecally impacted environmental waters. In this platform, F-RNA coliphages are adsorbed to anion-exchange resin and direct nucleic acid isolation is performed, yielding a sample amenable to real-time reverse transcriptase PCR detection. Matrix-dependent inhibition was evaluated using known quantities of spiked F-RNA coliphage genogroups GI, GII, GII and GIV. Detection was successful in 97%, 72%, 85% and 98% of the samples for spiked F-RNA coliphage GI, GII, GIII and GIV, respectively, and was differentially affected by inhibitory properties specific to each water sample. No association between inhibition and the water samples’ physicochemical properties was apparent. Parallel evaluations of the spiked samples with internal amplification control (IAC) reactions (a widely used control to assess inhibition) demonstrated that IAC reaction inhibition was not agreement with that observed for spiked samples, suggesting that testing of spiked samples allows for better assessments of matrix-dependent inhibition. Additionally, the anion-
COLIPHAGES AS POTENTIAL VIRAL INDICATORS OF FECAL POLLUTION
Friedman, Stephanie D. In press. Coliphages as Potential Viral Indicators of Fecal Pollution (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems of the Gulf of Mexico and Southeastern United States, 6-9 October ...
Franke, Christiane; Rechenburg, Andrea; Baumanns, Susanne; Willkomm, Marlene; Christoffels, Ekkehard; Exner, Martin; Kistemann, Thomas
2009-05-01
Different land use patterns were investigated for their potential as non-point sources of coliphage emissions into surface waters. Water samples were taken regularly at five locations in the upper reaches of the river Swist, Germany. Samples of surface and subsurface run-off were taken within the same catchment area after rainfall events using a newly developed device that made it possible to collect current concentrations of the effluent compounds. The water quality was examined for the occurrence of somatic coliphages and F(+)-specific RNA-bacteriophages as well as for various bacteria over the period of a hydrological year. The potential of various bacteria as indicators for the occurrence of phages was evaluated using statistical correlations. The load of coliphages varied depending on the land use type, but it did not differ as much as the bacterial parameters. River sections in intensively used areas turned out to be more contaminated than in less intensively used regions. The concentrations of phages from surface and subsurface run-off in most samples were quite low for all land use types and did not show conspicuous variations of surface and subsurface run-off within one land use type. Therefore, high concentrations of phages in river water cannot be explained only by non-point effluent from open ground. Following consideration of the statistical results, conventional indicator bacteria seem not to be reliable indicator organisms for coliphages and subsequently for human pathogen viruses. The detected concentrations of coliphages in several water samples of river sections surrounded by intensively used areas underpin an existing health risk in the use of river water for e.g. recreational activities or irrigation.
BACKGROUND: Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between co...
Coherent Soft X-ray Diffraction Imaging of Coliphage PR772 at the Linac Coherent Light Source
Reddy, Hemanth, K.N.
2017-01-05
A dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source.
Interaction of human adenoviruses and coliphages with kaolinite and bentonite.
Bellou, Maria I; Syngouna, Vasiliki I; Tselepi, Maria A; Kokkinos, Petros A; Paparrodopoulos, Spyros C; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V
2015-06-01
Human adenoviruses (hAdVs) are pathogenic viruses responsible for public health problems worldwide. They have also been used as viral indicators in environmental systems. Coliphages (e.g., MS2, ΦX174) have also been studied as indicators of viral pollution in fecally contaminated water. Our objective was to evaluate the distribution of three viral fecal indicators (hAdVs, MS2, and ΦΧ174), between two different phyllosilicate clays (kaolinite and bentonite) and the aqueous phase. A series of static and dynamic experiments were conducted under two different temperatures (4, 25°C) for a time period of seven days. HAdV adsorption was examined in DNase I reaction buffer (pH=7.6, and ionic strength (IS)=1.4mM), whereas coliphage adsorption in phosphate buffered saline solution (pH=7, IS=2mM). Moreover, the effect of IS on hAdV adsorption under static conditions was evaluated. The adsorption of hAdV was assessed by real-time PCR and its infectivity was tested by cultivation methods. The coliphages MS2 and ΦΧ174 were assayed by the double-layer overlay method. The experimental results have shown that coliphage adsorption onto both kaolinite and bentonite was higher for the dynamic than the static experiments; whereas hAdV adsorption was lower under dynamic conditions. The adsorption of hAdV increased with decreasing temperature, contrary to the results obtained for the coliphages. This study examines the combined effect of temperature, agitation, clay type, and IS on hAdV adsorption onto clays. The results provide useful new information on the effective removal of viral fecal indicators (MS2, ΦX174 and hAdV) from dilute aqueous solutions by adsorption onto kaolinite and bentonite. Factors enabling enteric viruses to penetrate soils, groundwater and travel long distances within aquifers are important public health issues. Because the observed adsorption behavior of surrogate coliphages MS2 and ΦΧ174 is substantially different to that of hAdV, neither MS2 nor ΦΧ174 is recommended as a suitable model for adenovirus. Copyright © 2015 Elsevier B.V. All rights reserved.
Nkwe, Keitumetse Idah; Ateba, Collins Njie; Sithebe, Nomathamsanqa Patricia; Bezuidenhout, Cornelius Carlos
2015-07-01
Bacteriophages are regarded as enteric viral indicators in faecally contaminated water systems and may indicate the presence of human viral pollution. They are relatively resistant to inactivation by natural and treatment processes. In this study, the presence of somatic coliphages and F-RNA coliphages was investigated in potable water from rural areas in the North West province. Water samples were aseptically collected from boreholes and tap water from some rural communities in the North West Province. Physical parameters of the water, such as the temperature, pH and turbidity, were measured before sample collection. Double-agar layer assay was performed using ISO, (1995, 2000) standard methods. Bottled water was used as a negative control and the strains фX174 and MS2 as positive controls. Of the 16 water samples collected, 15 were positive for somatic bacteriophages while F-RNA coliphages were detected in only two samples. Amongst the positive samples 189 and three plaque forming units were obtained for both somatic and F-RNA coliphages, respectively. No coliphage was detected in water from Masamane tap 1. The rest of the samples obtained from various rural areas were positive and did not comply with national and international standards for potable water. This was a cause for concern and should be further investigated.
Nkwe, Keitumetse Idah; Ateba, Collins Njie; Sithebe, Nomathamsanqa Patricia; Bezuidenhout, Cornelius Carlos
2015-01-01
Bacteriophages are regarded as enteric viral indicators in faecally contaminated water systems and may indicate the presence of human viral pollution. They are relatively resistant to inactivation by natural and treatment processes. In this study, the presence of somatic coliphages and F-RNA coliphages was investigated in potable water from rural areas in the North West province. Water samples were aseptically collected from boreholes and tap water from some rural communities in the North West Province. Physical parameters of the water, such as the temperature, pH and turbidity, were measured before sample collection. Double-agar layer assay was performed using ISO, (1995, 2000) standard methods. Bottled water was used as a negative control and the strains фX174 and MS2 as positive controls. Of the 16 water samples collected, 15 were positive for somatic bacteriophages while F-RNA coliphages were detected in only two samples. Amongst the positive samples 189 and three plaque forming units were obtained for both somatic and F-RNA coliphages, respectively. No coliphage was detected in water from Masamane tap 1. The rest of the samples obtained from various rural areas were positive and did not comply with national and international standards for potable water. This was a cause for concern and should be further investigated. PMID:26140675
Goals of reducing fecal contamination in recreational, drinking, shellfishing and other waters and accurately assessing risk from exposure can best be attained if tools to distinguish between sources of pollution are available. The male-specific RNA coliphage (FRNA) genogroups h...
Past studies have indicated that sunlight plays an important role in altering densities of coliphages, other indicator microorganisms and pathogens in aquatic environments. Fate and transport modeling of bacteriophage requires mathematical relationships that describe the waveleng...
Inactivation Rates of Coliphages Isolated from Waste Water Treatment Plant Effluents in Georgia
Coliphages are a type of host-specific bacteriophages that infect E. coli and are found abundantly in the gut of animals, including humans. They share many structural similarities with human enteric viruses and are being evaluated as indicators for the presence of enteric viral c...
Groundwater samples from two sites in Alabama, USA were plaque assayed for F-specific RNA (FRNA) coliphages using Salmonella typhimurium WG49 as the host bacterium. While numerous plaques were detected with WG49 (a strain possessing Escherichia coli F pili), plaques were also obs...
Assignment of two new host range types to the P2 family of temperate coliphages.
Poon, A P; Dhillon, T S
1986-04-01
Six non-inducible coliphages which grow on Escherichia coli C but not on K12 (C-specific) were shown to be antigenically related to P2. All six were shown to be P4 helpers and some of them could also recombine with P2.
Male-specific ssRNA (FRNA) coliphages belong to the family Leviviridae. Two genera subdivided into four genogroups (Levivirus, genogroups I and II and Allolevivirus, genogroups III and IV) comprise the lower taxonomic levels. Strains isolated from several continents have been p...
Microbiological quality of Puget Sound Basin streams and identification of contaminant sources
Embrey, S.S.
2001-01-01
Fecal coliforms, Escherichia coli, enterococci, and somatic coliphages were detected in samples from 31 sites on streams draining urban and agricultural regions of the Puget Sound Basin Lowlands. Densities of bacteria in 48 and 71 percent of the samples exceeded U.S. Environmental Protection Agency's freshwater recreation criteria for Escherichia coli and enterococci, respectively, and 81 percent exceeded Washington State fecal coliform standards. Male-specific coliphages were detected in samples from 15 sites. Male-specific F+RNA coliphages isolated from samples taken at South Fork Thornton and Longfellow Creeks were serotyped as Group II, implicating humans as potential contaminant sources. These two sites are located in residential, urban areas. F+RNA coliphages in samples from 10 other sites, mostly in agricultural or rural areas, were serotyped as Group I, implicating non-human animals as likely sources. Chemicals common to wastewater, including fecal sterols, were detected in samples from several urban streams, and also implicate humans, at least in part, as possible sources of fecal bacteria and viruses to the streams.
Potable and monitoring wells located in close proximity to a large groundwater recharge project which utilizes a blend of surface water and reclaimed wastewater for recharge were tested for coliphage over a period of 6 months to assess the potential for virus migration. During th...
A real-time, reverse transcription-PCR (RT-qPCR) assay was developed to differentiate the four genogroups of male-specific ssRNA coliphages (FRNA) (family Leviviridae). As FRNA display a trend of source-specificity (human sewage or animal waste) at the genogroup level, this assa...
Inactivation of a model coliphage virus in water by iodine
NASA Technical Reports Server (NTRS)
Brion, Gail M.; Silverstein, Joann
1992-01-01
Until now, NASA's space water reuse research program has not considered the transport of water-borne infectious enteric viruses; however, viral diseases probably are a signifficant concern in long-duration space missions. To simplify monitoring and prediction of pathogen distribution, model indicator strains historically have been used. In this research, the male specific RNA coliphage MS-2 is used as a model of enteric viruses due to their similar size and biochemical composition. Inactivation of some water-borne enteric viruses by iodine has previously been characterized. In this paper, iodine inactivation of the model coliphage MS-2 in buffered water is compared with earlier bench-scale disinfection survival data and with survival in iodinated simulated shower water used in a test water recycling system.
Lindsey, Bruce D.; Rasberry, Jennifer S.; Zimmerman, Tammy M.
2002-01-01
Samples were collected from 59 noncommunity water supplies in the Commonwealth of Pennsylvania from September 2000 to January 2001 and analyzed for pathogens and microbiological indicator organisms. The pathogens sampled were culturable viruses and Helicobacter pylori (H. pylori). The indicator organisms sampled were total coliform, Escherichia coli (E. coli), Clostridium perfringens (C. perfringens), somatic coliphage, male- specific coliphage, and enterococcus. The two primary areas sampled for the project completed by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection (PaDEP), were carbonate aquifers and crystalline aquifers. The results of all sampling showed culturable viruses were detected in 8 percent of the wells, H. pyloriin 7 percent of the wells, E. coli in 12 percent of the wells, total coliform in 46 percent of the wells, C. perfringens in 15 percent of the wells, somatic coliphage in 8 percent of the wells, male-specific coliphage in 5 percent of the wells, and enterococcus in 14 percent of the wells. Carbonate aquifers tended to have higher detection rates for the pathogens and indicators sampled than the crystalline aquifers. Detections of the pathogens and indicator organisms were not related statistically to the amounts of urban, agricultural, or forested area in a 1,500-foot radius around the sampled well. Somatic and male-specific coliphage showed the best relation to occurrence of culturable viruses. Culturable viruses and H. pylori were detected in wells in which no indicator organisms were present; therefore, none of the indicator organisms sampled provide complete assurance of pathogenfree water. The best predictive tool for virus screening was a combination of indicator organisms.
Payment, P; Franco, E
1993-01-01
To find the most suitable indicator of viral and parasitic contamination of drinking water, large-volume samples were collected and analyzed for the presence of pathogens (cultivable human enteric viruses, Giardia lamblia cysts, and Cryptosporidium oocysts) and potential indicators (somatic and male-specific coliphages, Clostridium perfringens). The samples were obtained from three water treatment plants by using conventional or better treatments (ozonation, biological filtration). All samples of river water contained the microorganisms sought, and only C. perfringens counts were correlated with human enteric viruses, cysts, or oocysts. For settled and filtered water samples, all indicators were statistically correlated with human enteric viruses but not with cysts or oocysts. By using multiple regression, the somatic coliphage counts were the only explanatory variable for the human enteric virus counts in settled water, while in filtered water samples it was C. perfringens counts. Finished water samples of 1,000 liters each were free of all microorganisms, except for a single sample that contained low levels of cysts and oocysts of undetermined viability. Three of nine finished water samples of 20,000 liters each revealed residual levels of somatic coliphages at 0.03, 0.10, and 0.26 per 100 liters. Measured virus removal was more than 4 to 5 log10, and cyst removal was more than 4 log10. Coliphage and C. perfringens counts suggested that the total removal and inactivation was more than 7 log10 viable microorganisms. C. perfringens counts appear to be the most suitable indicator for the inactivation and removal of viruses in drinking water treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8368831
Nasser, Abidelfatah M; Benisti, Neta-Lee; Ofer, Naomi; Hovers, Sivan; Nitzan, Yeshayahu
2017-01-28
Advanced wastewater treatment processes are applied to prevent the environmental dissemination of pathogenic microorganisms. Giardia lamblia causes a severe disease called giardiasis, and is highly prevalent in untreated wastewater worldwide. Monitoring the microbial quality of wastewater effluents is usually based on testing for the levels of indicator microorganisms in the effluents. This study was conducted to compare the suitability of fecal coliforms, F+ coliphages and sulfide reducing clostridia (SRC) as indicators for the reduction of Giardia cysts in two full-scale wastewater treatment plants. The treatment process consists of activated sludge, coagulation, high rate filtration and either chlorine or UV disinfection. The results of the study demonstrated that Giardia cysts are highly prevalent in raw wastewater at an average concentration of 3600 cysts/L. Fecal coliforms, F+ coliphages and SRC were also detected at high concentrations in raw wastewater. Giardia cysts were efficiently removed (3.6 log 10 ) by the treatment train. The greatest reduction was observed for fecal coliforms (9.6 log 10 ) whereas the least reduction was observed for F+ coliphages (2.1 log 10 ) following chlorine disinfection. Similar reduction was observed for SRC by filtration and disinfection by either UV (3.6 log 10 ) or chlorine (3.3 log 10 ). Since F+ coliphage and SRC were found to be more resistant than fecal coliforms for the tertiary treatment processes, they may prove to be more suitable as indicators for Giardia. The results of this study demonstrated that advanced wastewater treatment may prove efficient for the removal of Giardia cysts and may prevent its transmission when treated effluents are applied for crop irrigation or streams restoration.
Ravva, Subbarao V; Sarreal, Chester Z; Cooley, Michael B
2015-07-01
To provide data for traditional trace-back studies from fork to farm, it is necessary to determine the environmental sources for Shiga-toxigenic Escherichia coli. We developed SYBR green based reverse-transcriptase PCR methods to determine the prevalence of F+ RNA coliphages (FRNA) as indicators of fecal contamination. Male-specific coliphages, determined using a single-agar overlay method, were prevalent in all surface waters sampled for 8 months. F+ DNA coliphages (FDNA) were predominant compared to FRNA in water samples from majority of sampling locations. Most (90%) of the FRNA were sourced to humans and originated from human-impacted sites. Members of genogroup III represented 77% of FRNA originated from human sources. Furthermore, 93% of FRNA sourced to animals were also detected in water samples from human-impacted sites. Eighty percent of all FRNA were isolated during the winter months indicating seasonality in prevalence. In contrast, FDNA were more prevalent during summer months. E. coli O157:H7 and Shiga-toxigenic E. coli were detected in water samples from locations predominantly influenced by agriculture. Owing to their scarcity, their numbers could not be correlated with the prevalence of FRNA or FDNA in water samples. Both coliform bacteria and generic E. coli from agricultural or human-impacted sites were similar in numbers and thus could not be used to determine the sources of fecal contamination. Data on the prevalence of male-specific coliphages may be invaluable for predicting the sources of fecal contamination and aid in developing methods to prevent enteric pathogen contamination from likely sources during produce production.
Application of F⁺RNA Coliphages as Source Tracking Enteric Viruses on Parsley and Leek Using RT-PCR.
Shahrampour, Dina; Yavarmanesh, Masoud; Najafi, Mohammad Bagher Habibi; Mohebbi, Mohebbat
2015-12-01
The objective of this study was to identify sources of fecal contamination in leek and parsley, by using four different F(+)RNA coliphage genogroups (IV, I indicate animal fecal contamination and II, III indicate human fecal contamination). Three different concentrations (10(2), 10(4), 10(6) pfu/ml) of MS2 coliphage were inoculated on the surface of parsley and leek samples for detection of phage recovery efficiency among two methods of elution concentration (PEG-precipitation and Ultracentrifugation) by performing double agar layer (DAL) assay in three replications. Highest recovery of MS2 was observed in PEG method and in 10(6) inoculation concentration. Accordingly, the PEG method was used for washing and isolation of potentially contaminated phages of 30 collected samples (15 samples from the market and 15 samples from the farm). The final solutions of PEG method were tested for the enumeration of plaques by DAL assay. Total RNA was then extracted from recovered phages, and RT-PCR was performed by using four primer sets I, II, III, and IV. Incidence of F(+)RNA coliphages was observed in 12/15 (80 %) and 10/15 (66/6 %) of samples were obtained from farm and market, respectively, using both DAL and RT-PCR test methods. Different genotypes (I, II, and IV) of F(+)RNA coliphages were found in farm samples, while only genotype I was detected in market samples by using the primer sets. Due to the higher frequency of genotype I and IV, the absence of genotype III, and also the low frequency of genotype II, it is concluded that the contamination of vegetable (parsley and leek) in Neyshabour, Iran is most likely originated from animal sources.
Oishi, Wakana; Sano, Daisuke; Decrey, Loic; Kadoya, Syunsuke; Kohn, Tamar; Funamizu, Naoyuki
2017-11-15
Volume reduction (condensation) is a key for the practical usage of human urine as a fertilizer because it enables the saving of storage space and the reduction of transportation cost. However, concentrated urine may carry infectious disease risks resulting from human pathogens frequently present in excreta, though the survival of pathogens in concentrated urine is not well understood. In this study, the inactivation of MS2 coliphage, a surrogate for single-stranded RNA human enteric viruses, in concentrated synthetic urine was investigated. The infectious titer reduction of MS2 coliphage in synthetic urine samples was measured by plaque assay, and the reduction of genome copy number was monitored by reverse transcription-quantitative PCR (RTqPCR). Among chemical-physical conditions such as pH and osmotic pressure, uncharged ammonia was shown to be the predominant factor responsible for MS2 inactivation, independently of urine concentration level. The reduction rate of the viral genome number varied among genome regions, but the comprehensive reduction rate of six genome regions was well correlated with that of the infectious titer of MS2 coliphage. This indicates that genome degradation is the main mechanism driving loss of infectivity, and that RT-qPCR targeting the six genome regions can be used as a culture-independent assay for monitoring infectivity loss of the coliphage in urine. MS2 inactivation rate constants were well predicted by a model using ion composition and speciation in synthetic urine samples, which suggests that MS2 infectivity loss can be estimated solely based on the solution composition, temperature and pH, without explicitly accounting for effects of osmotic pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii.
Paul, J H; Rose, J B; Jiang, S C; London, P; Xhou, X; Kellogg, C
1997-01-01
Public concern over the discharge of primarily treated sewage by two offshore outfalls in Mamala Bay, Oahu, prompted a multidisciplinary study to determine the impact of such activities on the water quality in the bay and at adjacent recreational beaches. As part of this study, we determined the abundance of coliphage as an indicator of fecal pollution along with total viral direct counts and phages infective for Vibrio parahaemoltyicus 16 at stations in Mamala Bay in four quarterly samplings over 13 months. Coliphage (< 1 to 1.2 x 10(3)/liter) were found during each quarterly sampling along an offshore transect to the Sand Island waste treatment facility outfall. The nonpoint coastal stations (Pearl Harbor, Ala Wai Canal, and Ke'ehi Lagoon) had high levels of coliphage during the storm event sampling in February 1994 but much lower levels or none when sampled during dry weather. Coliphage were absent at all samplings at Waikiki Beach and at the control station off Diamond Head. Viral direct counts in eutrophic coastal stations (Pearl Harbor, Ke'ehi Lagoon, Ala Moana Beach, and Ala Wai canal) averaged 10(9)/liter, while counts at offshore stations ranged from 9 x 10(7) to 1 x 10(9) viruses/liter, values similar to those for other marine environments. Vibriophage were found mainly in eutrophic coastal environments (Ala Wai Canal, Pearl Harbor, and Ke'ehi Lagoon) and at the Sand Island Transect stations D1 and D2. The greatest abundance was found during the storm event (February 1994) sampling. These results suggest that the Sand Island outfall influenced the water quality of the immediate surrounding waters but had little effect on the quality of the recreational beaches. Nonpoint discharge sources appeared to be more important in the distribution of fecal indicators in the coastal zone.
Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung
2014-03-01
The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.
Muniesa, M; Ballesté, E; Imamovic, L; Pascual-Benito, M; Toribio-Avedillo, D; Lucena, F; Blanch, A R; Jofre, J
2018-01-01
The use of somatic coliphages as indicators of fecal and viral pollution in water and food has great potential due to the reliability, reproducibility, speed and cost effectiveness of methods for their detection. Indeed, several countries already use this approach in their water management policies. Although standardized protocols for somatic coliphage detection are available, user-friendly commercial kits would facilitate their routine implementation in laboratories. The new method presented here allows detection of up to 1 somatic coliphage in under 3.5 h, well within one working day. The method is based on a modified Escherichia coli strain with knocked-out uidB and uidC genes, which encode the transport of glucuronic acid inside cells, and overexpressing uidA, which encodes the enzyme β-glucuronidase. The enzyme accumulated in the bacterial cells only has contact with its substrate after cell lysis, such as that caused by phages, since the strain cannot internalize the substrate. When the enzyme is released into the medium, which contains a chromogen analogous to glucuronic acid, it produces a change of color from yellow to dark blue. This microbiological method for the determination of fecal pollution via the detection of culturable microorganisms can be applied to diverse sample types and volumes for qualitative (presence/absence) and quantitative analysis and is the fastest reported to date. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Hee Suk; Sobsey, Mark D
2011-06-01
The potential use of specific somatic coliphage taxonomic groups as viral indicators based on their persistence and prevalence in water was investigated. Representative type strains of the 4 major somatic coliphage taxonomic groups were seeded into reagent water and an ambient surface water source of drinking water and the survival of the added phages was measured over 90 days at temperatures of 23-25 and 4 °C. Microviridae (type strain PhiX174), Siphoviridae (type strain Lambda), and Myoviridae (type strain T4) viruses were the most persistent in water at the temperatures tested. The Microviridae (type strain PhiX174) and the Siphoviridae (type strain Lambda) were the most resistant viruses to UV radiation and the Myoviridae (type strain T4) and the Microviridae (type strain PhiX174) were the most resistant viruses to heat. Based on their greater persistence in water over time and their relative resistance to heat and/or UV radiation, the Myoviridae (type strain T4), the Microviridae (type strain PhiX174), and the Siphoviridae (type strain Lambda) were the preferred candidate somatic coliphages as fecal indicator viruses in water, with the Microviridae (type strain PhiX174) the most resistant to these conditions overall. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.
2005-01-01
The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate that the detections reported for ground-water samples represented low-level field or laboratory contamination, and it would appear that coliphage were effectively attenuated to less than 1 PFU/100 mL over distances of several feet of transport in the La Pine aquifer and (or) overlying unsaturated zone. Organic wastewater compounds were frequently detected in onsite wastewater. Of the 63 organic wastewater compounds in the analytical schedule, 45 were detected in the 21 samples of onsite wastewater. Concentrations of organic wastewater compounds reached a maximum of 1,300 ug/L (p-cresol). Caffeine was detected at concentrations as high as 320 ug/L. Fourteen of the 45 compounds were detected in more than 90 percent of onsite wastewater samples. Fewer (nine) organic wastewater compounds were detected in ground water, despite the presence of nitrate and chloride likely from onsite wastewater sources. The nine organic wastewater compounds that were detected in ground-water samples were acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), caffeine, cholesterol, hexahydrohexamethyl-cyclopentabenzopyran, N,N-diethyl-meta-toluamide (DEET), tetrachloroethene, tris (2-chloroethyl) phosphate, tris (dichloroisopropyl) phosphate, and tributyl phosphate. Frequent detection of household-chemical type organic wastewater compounds in onsite wastewater provides evidence that some of these organic wastewater compounds may be useful indicators of human waste effluent dispersal in some hydrologic environments. The occurrence of organic wastewater compounds in ground water downgradient from onsite wastewater treatment systems demonstrates that a subgroup of organic wastewater compounds is transported in the La Pine aquifer. The consistently low concentrations (generally less than 1 ug/L) of organic wastewater compounds in water samples collected from wells located no more than 19 feet from drainfield lines indicates that the reactivity (sorption, degradation) of this suite of organic waste
A Single Molecule Study of Two Bacteriophage Epigenetic Switches
NASA Astrophysics Data System (ADS)
Wang, Haowei
Epigenetic switches allow organisms to evolve into different states by activating/repressing different sets of genes without mutations of the underlying DNA sequence. The study of epigenetic switches is very important to understand the mechanism of human development, the origin of cancer, mental illness and fundamental processes such as gene regulation. The coliphage lambda epigenetic switch, which allows switching from lysogeny to lysis, has been studied for more than 50 years as a paradigm, and has recently received renewed attention. Atomic force microscopy (AFM) was used here to show that the lambda repressor oligomerizes on DNA, primarily as a dodecamer, to secure a DNA loop, which is the basis of the lambda switch. This study also provides support for the idea that specifically bound repressor stabilizes adjacent, non-specifically bound repressor molecules, which confers robustness to the switch. 186 is a member of a different coliphage family. One of the major differences between the two coliphage families is that lambda phages can be induced to switch from the lysogenic to the lytic state by UV radiation, but most coliphages of P2 family, to which 186 belongs, cannot. Interaction between coliphage 186 repressor and DNA is characterized by AFM and tethered particle motion (TPM). To expedite analysis of the AFM data, MatLab codes were written to automate the laborious, manual tracing procedures. The programs automatically recognize DNA segments and protein particles in an image, in order to measure the DNA length and position of bound particles as well as their height, diameter and volume. Application of these algorithms greatly improved the efficiency of AFM analysis. It was showed that 186 CI dimers form heptameric wheels, which induce DNA wrapping and different kinds of DNA looping producing various conformations of nucleoprotein complexes. Information about the dynamics of DNA wrapping and looping on 186 CI particles was also obtained by TPM.
Haramoto, Eiji; Kitajima, Masaaki; Kishida, Naohiro; Katayama, Hiroyuki; Asami, Mari; Akiba, Michihiro
2012-09-01
A nationwide survey of viruses, protozoa, and indicator microorganisms in drinking water sources of Japan was conducted. Among 64 surface water samples collected from 16 drinking water treatment plants, 51 (80 %) samples were positive for at least one of the 11 pathogen types tested, including noroviruses of genogroups I (positive rate, 13 %) and II (2 %), human sapoviruses (5 %), human adenoviruses of serotypes 40 and 41 (39 %), Cryptosporidium oocysts (41 %), and Giardia cysts (36 %). Total coliforms, Escherichia coli, and F-specific coliphages were detected in 63 (98 %), 33 (52 %), and 17 (27 %) samples, respectively, and E. coli was judged to be the most suitable indicator of pathogen contamination of drinking water sources. Genogroup-specific real-time PCR for F-specific coliphages revealed the presence of F-specific RNA coliphages of animal genogroup I and human genogroups II and III in 13 (41 %), 12 (39 %), and 1 (3 %), respectively, of 31 plaques isolated.
Evidence of neutralizing activity against T3 coliphage in oyster Crassostrea gigas hemolymph.
Bachère, E; Hervio, D; Mialhe, E; Grizel, H
1990-01-01
To investigate defense reactions of bivalve molluscs against viruses, experimental in vitro assays have been developed using T3 coliphage as a test virus. A native neutralizing factor in oyster Crassostrea gigas serum showed high individual variability and was enhanced significantly by repeated sampling of hemolymph from the same oysters. The responsible factor is apparently thermolabile and sensitive to EDTA treatment. Because of an inhibitory effect by the enzymatic inhibitor, phenylmethylsulphonyl fluoride (PMSF), the T3-neutralizing factor may be related to serine protease.
1980-05-01
the manufacturer are to inflate the isolator to a pressure of 10 mm of water on the gauge and seal off all air lines. If the pressure drops more than 4...results of these tests, it must be borne in mind that the tests were conducted using non-pathogenic Tl coliphage virus and B. subtilis var. niger spores...order as that for Tl coliphage . Also, the procedures described in- clude a large safety factor and would be expected to be adequate to eliminate all
Practical direct plaque assay for coliphages in 100-ml samples of drinking water.
Grabow, W O; Coubrough, P
1986-01-01
A practical single-agar-layer plaque assay for the direct detection of coliphages in 100-ml samples of water was designed and evaluated. With this assay a 100-ml sample of water, an agar medium containing divalent cations, and the host Escherichia coli C (ATCC 13706) were mixed in a single container, and the mixture was plated on 10 14-cm-diameter petri dishes. It was more sensitive, reliable, and accurate than various other methods and proved rapid, simple, and economic. PMID:3532952
1983-11-23
during their replication in B. subtilis cells. IV. CLONING THE 0.3 GENE OF COLIPHAGE T7 IN SPP1v We are currently investigating the fidelity of synthesis...of the product of the 0.3 gene of coliphage T7 in infected cells of E.. g by determining the frequency of misincorporation of S-cysteine into this...using a sealed hydrolysis chamber. BC1 was evaporated under vacuum and the hydrolysate resuspended in water . Unlabeled cysteine (12 ug) and methionine
Assessment of the microbial removal capabilities of riverbank filtration
NASA Astrophysics Data System (ADS)
Partinoudi, V.; Collins, M.; Margolin, A.; Brannaka, L.
2003-04-01
Riverbank filtrate includes both groundwater and river water that has percolated through the banks or bed of a river to an extraction well. One of the primary objectives of this study was to assess the microbial removal capabilities of riverbank filtration (RBF) independent of any groundwater dilution, i.e. a worse case scenario. A total of five sites were chosen: the Pembroke Waterworks (NH), the Milford State Fish Hatchery (NH), Jackson (NH) (where an infiltration gallery exists), Louisville Water Company (KY), and Cedar Rapids (IA). This study has been monitoring total coliforms, E.coli and aerobic spore forming bacteria amongst other water quality parameters over the past twelve months. Male specific (MS2) and somatic coliphage viruses were also monitored intensively for two weeks, using a single agar overlay and a two-step enrichment method, in December 2002 in Louisville, KY and in Cedar Rapids, IA. This intensive coliphage monitoring was followed by the collection of samples for special analysis of enteric viruses (Adenovirus type 40 and 41, Astrovirus, Poliovirus, Coxsackie virus, Rotavirus and Echovirus). The virus samples were analyzed using the ICC-nPCR method, due to its high specificity and sensitivity. Typical river water total coliforms, E.coli and aerobic spore forming bacteria concentrations ranged between 43-145000 CFU/100mL, 0-24192 CFU/100mL and 83-1997 CFU/100mL, respectively. All three of these microbial concentrations were below detection limits (<1CFU/100mL) in the riverbank filtration extraction well water, even after eliminating the “dilution” effects with groundwater. The male specific and the somatic coliphages ranged between 328-491 PFU/25mL and 3-21 PFU/25mL, respectively, in the river water. The concentration of the male specific coliphages was reduced by as much as 77% by the riverbank passage whereas the concentrations of the somatic coliphages were reduced by 100%. In summary the sites evaluated in this study indicated the conservative effectiveness of RBF in removing bacteria and virus indicators. Any groundwater dilution with the RBF extract should contribute to even lower microbial concentrations.
Mackowiak, Martin; Leifels, Mats; Hamza, Ibrahim Ahmed; Jurzik, Lars; Wingender, Jost
2018-06-01
Fecal contamination of surface water is commonly evaluated by quantification of bacterial or viral indicators such as Escherichia coli and coliphages, or by direct testing for pathogens such as enteric viruses. Retention of fecally derived organisms in biofilms and sediments is less frequently considered. In this study, we assessed the distribution of E. coli, somatic coliphages, and enteric viruses including human adenovirus (HAdV), enterovirus (EV), norovirus genogroup GII (NoV GII) and group A rotavirus (RoV) in an urban river environment in Germany. 24 samples each of water, epilithic biofilms and sediments were examined. E. coli and somatic coliphages were prevalent not only in the flowing water, but also in epilithic biofilms and sediments, where they were accumulated compared to the overlying water. During enhanced rainfall, E. coli and coliphage concentrations increased by approximately 2.5 and 1 log unit, respectively, in the flowing water, whereas concentrations did not change significantly in epilithic biofilms and sediments. The occurrence of human enteric viruses detected by qPCR was higher in water than in biofilms and sediments. 87.5% of all water samples were positive for HAdV. Enteric viruses found less frequently were EV, RoV and NoV GII in 20.8%, 16.7% and 8.3% of the water samples, respectively. In epilithic biofilms and sediments, HAdV was found in 54.2% and 50.0% of the samples, respectively, and EV was found in 4.2% of both biofilm and sediment samples. RoV and NoV GII were not detected in any of the biofilms and sediments. Overall, the prevalence of enteric viruses was in the order of HAdV > EV > RoV ≥ NoV GII. In conclusion, epilithic biofilms and sediments can be reservoirs for fecal indicators and enteric viruses and thus should be taken into consideration when assessing microbial pollution of surface water environments. Copyright © 2018 Elsevier B.V. All rights reserved.
Novel approach for modifying microporous filters for virus concentration from water.
Preston, D R; Vasudevan, T V; Bitton, G; Farrah, S R; Morel, J L
1988-01-01
Electronegative microporous filters composed of epoxyfiberglass (Filterite) were treated with cationic polymers to enhance their virus-adsorbing properties. This novel and inexpensive approach to microporous filter modification entails soaking filters in an aqueous solution of a cationic polymer such as polyethyleneimine (PEI) for 2 h at room temperature and then allowing the filters to air dry overnight on absorbent paper towels. PEI-treated filters were evaluated for coliphage (MS2, T2, and phi X174) and enterovirus (poliovirus type 1 and coxsackievirus type B5) adsorption from buffer at pH 3.5 to 9.0 and for indigenous coliphages from unchlorinated secondary effluent at ambient pH. Adsorbed viruses were recovered with 3% beef extract (pH 9). Several other cationic polymers were used to modify epoxyfiberglass filters and were evaluated for their ability to concentrate viruses from water. Zeta potentials of disrupted filter material indicated that electronegative epoxyfiberglass filters were made more electropositive when treated with cationic polymers. In general, epoxyfiberglass filters treated with cationic polymers were found to adsorb a greater percentage of coliphages and enteroviruses than were untreated filters. PMID:2843091
Sprenger, C; Lorenzen, G; Grunert, A; Ronghang, M; Dizer, H; Selinka, H-C; Girones, R; Lopez-Pila, J M; Mittal, A K; Szewzyk, R
2014-06-01
Emerging countries frequently afflicted by waterborne diseases require safe and cost-efficient production of drinking water, a task that is becoming more challenging as many rivers carry a high degree of pollution. A study was conducted on the banks of the Yamuna River, Delhi, India, to ascertain if riverbank filtration (RBF) can significantly improve the quality of the highly polluted surface water in terms of virus removal (coliphages, enteric viruses). Human adenoviruses and noroviruses, both present in the Yamuna River in the range of 10(5) genomes/100 mL, were undetectable after 50 m infiltration and approximately 119 days of underground passage. Indigenous somatic coliphages, used as surrogates of human pathogenic viruses, underwent approximately 5 log10 removal after only 3.8 m of RBF. The initial removal after 1 m was 3.3 log10, and the removal between 1 and 2.4 m and between 2.4 and 3.8 m was 0.7 log10 each. RBF is therefore an excellent candidate to improve the water situation in emerging countries with respect to virus removal.
Kang, Jin Young; Olinares, Paul Dominic B; Chen, James; Campbell, Elizabeth A; Mustaev, Arkady; Chait, Brian T; Gottesman, Max E; Darst, Seth A
2017-01-01
Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λ DNA. To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β’ subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs. DOI: http://dx.doi.org/10.7554/eLife.25478.001 PMID:28318486
Skraber, S; Gassilloud, B; Schwartzbrod, L; Gantzer, C
2004-07-01
The microbiological quality of water is currently assessed by search for fecal bacteria indicators. There is, however, a body of knowledge demonstrating that bacterial indicators are less resistant to environmental factors than human pathogenic viruses and therefore underestimate the viral risk. As river water is often used as a resource for drinking water production, it is particularly important to obtain a valid estimation of the health hazard, including specific viral risk. This work was conducted to compare the survival of infectious Poliovirus-1 used as a pathogenic virus model to the persistence of, on the one hand, thermotolerant coliforms commonly used as indicators and on the other hand, to somatic coliphages and Poliovirus-1 genome considered as potential indicators. We studied the behavior of infectious Poliovirus-1 and the three (potential) indicators of viral contamination in river water at three different temperatures (4 degrees C,18 degrees C and 25 degrees C). This experiment was performed twice with river water sampled at two different periods, once in winter and once in summer. Our results showed that the survival of thermotolerant coliforms can be 1.5-fold lower than infectious Poliovirus-1. In contrast, under all our experimental conditions, somatic coliphages and Poliovirus-1 genome persisted longer than infectious Poliovirus-1, surviving, respectively, 2-6-fold and about 2-fold longer than infectious Poliovirus-1. According to our results exclusively based on survival capacity, somatic coliphages and viral genome, unlike thermotolerant coliforms appear to be better indicators of viral contamination in river water. Moreover, the disappearance of viral genome is well-correlated to that one of infectious virus irrespective of the conditions tested.
Jofre, J; Ollé, E; Ribas, F; Vidal, A; Lucena, F
1995-01-01
The presence of bacteriophages at different stages in three drinking water treatment plants was evaluated to study the usefulness of phages as model organisms for assessing the efficiency of the processes. The bacteriophages tested were somatic coliphages, F-specific coliphages, and phages infecting Bacteroides fragilis. The presence of enteroviruses and currently used bacterial indicators was also determined. Most bacteriophages were removed during the prechlorination-flocculation-sedimentation step. In these particular treatment plants, which include prechlorination, phages were, in general, more resistant to the treatment processes than present bacterial indicators, with the exception, in some cases, of clostridia. Bacteriophages infecting B. fragilis were found to be more resistant to water treatment than either somatic or F-specific coliphages or even clostridia. Enteric viruses were found only in untreated water in low numbers, and consequently, the efficiency of the plants in the removal of viruses could not be evaluated with precision. The numbers and frequencies of detection of the various microorganisms in water samples taken in the distribution network served by the three plants confirm the results found in the finished water at the plants. PMID:7574632
Rijal, G K; Fujioka, R S
2003-01-01
Aluminum reflectors were added to solar units designed to inactivate faecal microorganisms (faecal coliform, E. coli, enterococci, FRNA coliphage, C. perfringens) in stream water and diluted sewage by the two mechanisms (solar heat, solar UV) known to inactivate microorganisms. During sunny conditions, solar units with and without reflectors inactivated E. coli to <1 CFU/100 ml to meet drinking water standards. Solar units with reflectors disinfected the water sooner by increasing the water temperature by 8-10 degrees C to 64-75 degrees C. However, FRNA coliphages were still detected in these samples, indicating that this treatment may not inactivate pathogenic human enteric viruses. During cloudy conditions, reflectors only increased the water temperature by 3-4 degrees C to a maximum of 43-49 degrees C and E. coli was not completely inactivated. Under sunny and cloudy conditions, the UV wavelengths of sunlight worked synergistically with increasing water temperatures and were able to disinfect microorganisms at temperatures (45-56 degrees C), which were not effective in inactivating microorganisms. Relative resistance to the solar disinfecting effects were C. perfringens > FRNA coliphages > enterococci > E. coli > faecal coliform.
Francy, Donna S; Stelzer, Erin A; Bushon, Rebecca N; Brady, Amie M G; Williston, Ashley G; Riddell, Kimberly R; Borchardt, Mark A; Spencer, Susan K; Gellner, Terry M
2012-09-01
Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment processes, somatic coliphage may best represent the removal of viruses across secondary treatment in both MBR and conventional secondary plants. F-specific coliphage and Escherichia coli may best represent the removal of viruses across the disinfection process in MBR facilities, but none of the indicators represented the removal of viruses across disinfection in conventional secondary plants. Published by Elsevier Ltd.
Francy, Donna S.; Erin, A. Stelzer; Bushon, Rebecca N.; Brady, Amie M.G.; Williston, Ashley G.; Riddell, Kimberly R.; Borchardt, Mark A.; Spencer, Susan K.; Gellner, Terry M.
2012-01-01
Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment processes, somatic coliphage may best represent the removal of viruses across secondary treatment in both MBR and conventional secondary plants. F-specific coliphage and Escherichia coli may best represent the removal of viruses across the disinfection process in MBR facilities, but none of the indicators represented the removal of viruses across disinfection in conventional secondary plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Mitra, S.
Escherichia coli RNA polymerase binds specifically to the single-stranded circular DNA of coliphage M13 in the presence of a saturating concentration of the bacterial DNA binding protein presumably as an essential step in the synthesis of the RNA primer required for synthesizing the complementary DNA strand in parental replicative-form DNA. The RNA polymerase-protected DNA regions were isolated after extensive digestion with pancreatic DNase, S1 endonuclease of Aspergillus oryzae, and exonuclease I of E. coli. The physicochemical properties of the RNA polymerase-protected segments (called PI and PII) were compared with those of the naturally occurring hairpin regions.
Enterococcus phages as potential tool for identifying sewage inputs in the Great Lakes region
Vijayavel, K.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Ebdon, J.; Taylor, H.; Kashian, D.R.
2014-01-01
Bacteriophages are viruses living in bacteria that can be used as a tool to detect fecal contamination in surface waters around the world. However, the lack of a universal host strain makes them unsuitable for tracking fecal sources. We evaluated the suitability of two newly isolated Enterococcus host strains (ENT-49 and ENT-55) capable for identifying sewage contamination in impacted waters by targeting phages specific to these hosts. Both host strains were isolated from wastewater samples and identified as E. faecium by 16S rRNA gene sequencing. Occurrence of Enterococcus phages was evaluated in sewage samples (n = 15) from five wastewater treatment plants and in fecal samples from twenty-two species of wild and domesticated animals (individual samples; n = 22). Levels of Enterococcus phages, F + coliphages, Escherichia coli and enterococci were examined from four rivers, four beaches, and three harbors. Enterococcus phages enumeration was at similar levels (Mean = 6.72 Log PFU/100 mL) to F + coliphages in all wastewater samples, but were absent from all non-human fecal sources tested. The phages infecting Enterococcus spp. and F + coliphages were not detected in the river samples (detection threshold < 10 PFU/100 mL), but were present in the beach and harbor samples (range = 1.83 to 2.86 Log PFU/100 mL). Slightly higher concentrations (range = 3.22 to 3.69 Log MPN/100 mL) of E. coli and enterococci when compared to F + coliphages and Enterococcus phages, were observed in the river, beach and harbor samples. Our findings suggest that the bacteriophages associated with these particular Enterococcus host strains offer potentially sensitive and human-source specific indicators of enteric pathogen risk.
Paar, Jack; Doolittle, Mark M; Varma, Manju; Siefring, Shawn; Oshima, Kevin; Haugland, Richard A
2015-05-01
A method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for detecting interferences in RNA recovery and analysis, was developed for the direct, culture-independent detection of genetic markers from FRNA coliphage genogroups I, II & IV in water samples. Results were obtained from an initial evaluation of the performance of this method in analyses of waste water, ambient surface water and stormwater drain and outfall samples from predominantly urban locations. The evaluation also included a comparison of the occurrence of the FRNA genetic markers with genetic markers from general and human-related bacterial fecal indicators determined by current or pending EPA-validated qPCR methods. Strong associations were observed between the occurrence of the putatively human related FRNA genogroup II marker and the densities of the bacterial markers in the stormwater drain and outfall samples. However fewer samples were positive for FRNA coliphage compared to either the general bacterial fecal indicator or the human-related bacterial fecal indicator markers particularly for ambient water samples. Together, these methods show promise as complementary tools for the identification of contaminated storm water drainage systems as well as the determination of human and non-human sources of contamination. Published by Elsevier B.V.
Microbial (Pathogen)/Recreational Water Quality Criteria
Documents pertaining to Recreational Human Health Ambient Water Quality Criteria for Microbial Organisms (Pathogens). These documents include safe levels for cyanotoxins microcystin and cylindrospermopsin, and Coliphage to protect human health.
Structure of nascent replicative form DNA of coliphage M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Mitra, S.
Nascent replicative form type II (RFII) DNA of coliphage M13 synthesized in an Escherichia coli mutant deficient in the 5' ..-->.. 3' exonuclease associated with DNA polymerase I contains ribonucleotides that are retained in the covalently closed RFI DNA sealed in vitro by the joint action of T5 phage DNA polymerase and T4 phage DNA ligase. These RFI molecules are labile to alkali and RNase H, unlike the RFI produced either in vivo or from RFII with E. coli DNA polymerase I and E. coli DNA ligase. The ribonucleotides are located at one site and predominantly in one strand ofmore » the nascent RF DNA. Furthermore, these molecules contain multiple small gaps, randomly located, and one large gap in the intracistronic region.« less
Giddings, Elise M.; Oblinger, Carolyn J.
2004-01-01
Water quality in the Newfound Creek watershed has been shown to be affected by bacteria, sediment, and nutrients. In this study, Escherichia coli (E. coli) bacteria were sampled at five sites in Newfound Creek and five tributary sites during low flow on May 28, 2003, and high flow on November 19, 2003. In addition, a subset of five sites was sampled for fecal coliform bacteria, E. coli bacteria in streambed sediments (low flow only), and coliphage virus for serotyping. Coliphage virus serotyping has been used to identify human and animal sources of bacterial contamination. A streamflow gage was installed and operated to support ongoing water-quality studies in the watershed. Fecal coliform densities ranged from 92 to 27,000 colony-forming units per 100 milliliters of water for E. coli and 140 to an estimated 29,000 colony-forming units per 100 milliliters of water for fecal coliform during the two sampling visits. Ninety percent of the E. coli and fecal coliform samples exceeded corresponding U.S. Environmental Protection Agency or North Carolina water-quality criteria for recreational and ambient waters. During low flow, the middle part of the Newfound Creek watershed and the Dix Creek tributary had the highest densities of E. coli bacteria. During the high-flow sampling, all tributaries contained high densities of E. coli bacteria, although Dix Creek and Round Hill Branch were the largest contributors of these bacteria to Newfound Creek. Coliphage virus serotyping results were inconclusive because most samples did not contain the male-specific RNA coliphage needed for serotyping. Positive results indicated, however, that during low flow, non-human sources of bacteria were present in Sluder Branch, and during high flow, human sources of bacteria were present in Round Hill Branch. Sampling of bacteria in streambed sediments during low flow indicated that sediments do not appear to be a substantial source of bacteria relative to the water column, with the exception of an area near the confluence of Sluder Branch and Newfound Creek.
Burbano-Rosero, E. M.; Ueda-Ito, M.; Kisielius, J. J.; Nagasse-Sugahara, T. K.; Almeida, B. C.; Souza, C. P.; Markman, C.; Martins, G. G.; Albertini, L.; Rivera, I. N. G.
2011-01-01
Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 103 PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 102 PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 101 PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption. PMID:21531842
Somatic coliphages as surrogates for enteroviruses in sludge hygienization treatments.
Martín-Díaz, Julia; Casas-Mangas, Raquel; García-Aljaro, Cristina; Blanch, Anicet R; Lucena, Francisco
2016-01-01
Conventional bacterial indicators present serious drawbacks giving information about viral pathogens persistence during sludge hygienization treatments. This calls for the search of alternative viral indicators. Somatic coliphages' (SOMCPH) ability for acting as surrogates for enteroviruses was assessed in 47 sludge samples subjected to novel treatment processes. SOMCPH, infectious enteroviruses and genome copies of enteroviruses were monitored. Only one of these groups, the bacteriophages, was present in the sludge at concentrations that allowed the evaluation of treatment's performance. An indicator/pathogen relationship of 4 log10 (PFU/g dw) was found between SOMCPH and infective enteroviruses and their detection accuracy was assessed. The obtained results and the existence of rapid and standardized methods encourage the inclusion of SOMCPH quantification in future sludge directives. In addition, an existing real-time quantitative polymerase chain reaction (RT-qPCR) for enteroviruses was adapted and applied.
Water quality indicators: bacteria, coliphages, enteric viruses.
Lin, Johnson; Ganesh, Atheesha
2013-12-01
Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.
Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.
Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y
2002-01-01
To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.
Inactivation of coliphage Q beta by potassium ferrate.
Kazama, F
1994-05-15
The kinetics of inactivation of a bacteriophage by potassium ferrate were studied with the F-specific RNA-coliphage Q beta. Inactivation in phosphate buffer (pH 6, 7 and 8) containing ferrate could be described by Hom's model. The inactivation rate depended on the pH. However, the relative effects of ferrate concentration and exposure time on inactivation were not affected by a change in pH from 6 to 8. In a study of the mechanism by which ferrate inactivated the virus, the efficiency of viral inactivation after ferrate decomposed in buffer was assayed. Inactivation was still effective and still followed Hom's equation after the complete decomposition of ferrate ion; however, the efficiency of that inactivation disappeared when sodium thiosulfate was added, suggesting that long-lived oxidative intermediates capable of viral inactivation were generated during the decomposition of ferrate ions.
Amarasiri, Mohan; Kitajima, Masaaki; Nguyen, Thanh H; Okabe, Satoshi; Sano, Daisuke
2017-09-15
The multiple-barrier concept is widely employed in international and domestic guidelines for wastewater reclamation and reuse for microbiological risk management, in which a wastewater reclamation system is designed to achieve guideline values of the performance target of microbe reduction. Enteric viruses are one of the pathogens for which the target reduction values are stipulated in guidelines, but frequent monitoring to validate human virus removal efficacy is challenging in a daily operation due to the cumbersome procedures for virus quantification in wastewater. Bacteriophages have been the first choice surrogate for this task, because of the well-characterized nature of strains and the presence of established protocols for quantification. Here, we performed a meta-analysis to calculate the average log 10 reduction values (LRVs) of somatic coliphages, F-specific phages, MS2 coliphage and T4 phage by membrane bioreactor, activated sludge, constructed wetlands, pond systems, microfiltration and ultrafiltration. The calculated LRVs of bacteriophages were then compared with reported human enteric virus LRVs. MS2 coliphage LRVs in MBR processes were shown to be lower than those of norovirus GII and enterovirus, suggesting it as a possible validation and operational monitoring tool. The other bacteriophages provided higher LRVs compared to human viruses. The data sets on LRVs of human viruses and bacteriophages are scarce except for MBR and conventional activated sludge processes, which highlights the necessity of investigating LRVs of human viruses and bacteriophages in multiple treatment unit processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zanetti, F; De Luca, G; Sacchetti, R; Stampi, S
2007-11-01
The aim of the study was to assess the efficiency of low doses of peracetic acid against viral and bacterial indicators in wastewater and to evaluate if the treatment allows regulatory requirements to be satisfied. A total of 31 samplings were carried out, each involving the collection of secondary effluent and of effluent disinfected with 1.2 or 1.5 mg l(-1) of peracetic acid (contact time 20 minutes). In each sample were measured: somatic coliphages, F-specific RNA bacteriophages, Escherichia coli, total and faecal coliforms, enterococci. Peracetic acid disinfection showed significant differences between the reductions of the microorganisms tested: E. coli showed the highest reduction (1.78 and 2.43 Log respectively with 1.2 and 1.5 mg l(-1) of peracetic acid) and phages the lowest (ranging between 0.52 and 0.60 Log). Only a concentration of 1.5 mg l(-1) of peracetic acid would enable the effluent to be discharged into surface waters in compliance with Italian regulations. The variability of microbial resistance against the peracetic acid disinfection treatment, underlines the importance of assessing disinfection efficiency by using more than one indicator microorganism. The detection of E. coli could be usefully accompanied by tests for more resistant microorganisms such as enterococci or coliphages. In conclusion, peracetic acid can be used for the disinfection of effluents even at low doses, with the advantage of reducing costs and preventing the formation of significant amounts of genotoxic by-products.
Haramoto, Eiji; Yamada, Kaoru; Nishida, Kei
2011-12-01
Limited information is available on the prevalence of waterborne pathogens in aquatic environments in developing countries. In this study, water samples were collected from nine shallow wells and a river in the Kathmandu Valley, Nepal, during the rainy season in 2009 and were subjected to detection of waterborne protozoa, viruses and coliphages using a recently developed method for simultaneous concentration of protozoa and viruses in water. Escherichia coli and total coliforms were also tested as indicator bacteria. At least one type of the five pathogens tested (Cryptosporidium, Giardia, human adenoviruses, and noroviruses of genogroups I and II) was detected in five groundwater samples (56%) (1000 ml each) from shallow wells. Compared with groundwater samples, the pathogens were more abundant in the river water sample (100ml); the concentrations of Cryptosporidium and Giardia were 140 oocysts/l and 8500 cysts/l, respectively, and the mean threshold cycle (Ct) values in real-time RT-PCR were 34.3, 36.8 and 34.0 for human adenoviruses and noroviruses of genogroups I and II, respectively. Genotyping of F-RNA coliphages by real-time RT-PCR was successfully used to differentiate human and animal faecal contamination in the samples. Moreover, for the groundwater samples, protozoa and viruses were detected only in E. coli-positive samples, suggesting that E. coli may be an appropriate indicator of pathogen contamination of valley groundwater. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Muniesa, Maite; Lucena, Francisco; Blanch, Anicet R; Payán, Andrey; Jofre, Juan
2012-12-01
Water contaminated with human faeces is a risk to human health and management of water bodies can be improved by determining the sources of faecal pollution. Field studies show that existing methods are insufficient and that different markers are required. This study proposes the combined use of two microbial indicators, the concentrations of which are presented as ratios. This provides a more reliable approach to identifying faecal sources as it avoids variation due to treatment or ageing of the contamination. Among other indicators, bacteriophages have been proposed as rapid and cheap indicators of faecal pollution. Samples analysed in this study were derived from wastewater treatment plants (raw sewage, secondary and tertiary effluents and raw sewage sludge) river water, seawater and animal related wastewater. The abundance ratios of faecal coliforms and Bacteroides phages, either strain RYC2056 (non-specific for faecal origin) or strain GA17 (specific for human pollution), and among somatic coliphages and phages infecting both Bacteroides strains, were evaluated. The results indicate that the ratio of somatic coliphages and phages infecting Bacteroides strain GA17, which is specific to human faecal sources, provides a robust method for discriminating samples, even those presenting different levels and ages of pollution, and allows samples polluted with human faeces to be distinguished from those containing animal faecal pollution. This method allows the generation of numerical data that can be further applied to numerical methods for faecal pollution discrimination. Copyright © 2012 Elsevier Ltd. All rights reserved.
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu
2017-01-01
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...
2017-06-27
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less
Base-unpaired regions in supercoiled replicative form DNA of coliphage M13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Allison, D.P.; Snyder, C.E.
Superhelical covalently closed circular replicative form DNA (RF I) of coliphage M13 appears as a relaxed molecule that has a base-unpaired region in the form of a bubble (100 to 200 base pairs long) seen in electron micrographs when spread in the presence of formaldehyde and formamide or after pretreatment with glyoxal. S1 endonuclease, specific for single-stranded DNA, converts superhelical M13 RF I DNA, but not nonsuperhelical M13 RF I to a significant extent, into unit-length linear molecules by sequential nicking of two strands. The locations of S1 nuclease-susceptible sites and glyoxal-fixed base-unpaired regions were both related to the fivemore » A-T-rich regions in M13 RF DNA. While S1 nuclease does not show preference for any of these sites, glyoxal-fixed bubbles occur predominantly at the major A-T-rich region in M13 RF DNA.« less
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.
Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu
2017-06-27
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
Praveen, Chandni; Jesudhasan, Palmy R; Reimers, Robert S; Pillai, Suresh D
2013-09-01
Microbial pathogens in municipal sewage sludges need to be inactivated prior to environmental disposal. The efficacy of high energy (10 MeV) e-beam irradiation to inactivate a variety of selected microbial pathogens and indicator organisms in aerobically and anaerobically digested sewage sludge was evaluated. Both bacterial and viral pathogens and indicator organisms are susceptible to e-beam irradiation. However, as expected there was a significant difference in their respective e-beam irradiation sensitivity. Somatic coliphages, bacterial endospores and enteric viruses were more resistant compared to bacterial pathogens. The current US EPA mandated 10 kGy minimum dose was capable of achieving significant reduction of both bacterial and viral pathogens. Somatic coliphages can be used as a microbial indicator for monitoring e-beam processes in terms of pathogen inactivation in sewage sludges. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluating UV-C LED disinfection performance and ...
This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of
NASA Astrophysics Data System (ADS)
Fout, G. Shay; Borchardt, Mark A.; Kieke, Burney A.; Karim, Mohammad R.
2017-06-01
Groundwater quality is often evaluated using microbial indicators. This study examines data from 12 international groundwater studies (conducted 1992-2013) of 718 public drinking-water systems located in a range of hydrogeological settings. Focus was on testing the value of indicator organisms for identifying virus-contaminated wells. One or more indicators and viruses were present in 37 and 15% of 2,273 samples and 44 and 27% of 746 wells, respectively. Escherichia coli ( E. coli) and somatic coliphage are 7-9 times more likely to be associated with culturable virus-positive samples when the indicator is present versus when it is absent, while F-specific and somatic coliphages are 8-9 times more likely to be associated with culturable virus-positive wells. However, single indicators are only marginally associated with viruses detected by molecular methods, and all microbial indicators have low sensitivity and positive predictive values for virus occurrence, whether by culturable or molecular assays, i.e., indicators are often absent when viruses are present and the indicators have a high false-positive rate. Wells were divided into three susceptibility subsets based on presence of (1) total coliform bacteria or (2) multiple indicators, or (3) location of wells in karst, fractured bedrock, or gravel/cobble settings. Better associations of some indicators with viruses were observed for (1) and (3). Findings indicate the best indicators are E. coli or somatic coliphage, although both indicators may underestimate virus occurrence. Repeat sampling for indicators improves evaluation of the potential for viral contamination in a well.
Hygienization performances of innovative sludge treatment solutions to assure safe land spreading.
Levantesi, C; Beimfohr, C; Blanch, A R; Carducci, A; Gianico, A; Lucena, F; Tomei, M C; Mininni, G
2015-05-01
The present research aims at the evaluation of the hygienization performances of innovative sludge treatment processes applied for the separated treatment of secondary sludge. Namely, two digestion pretreatments (sonication and thermal hydrolysis) and two sequential biological processes (mesophilic/thermophilic and anaerobic/aerobic digestion) were compared to the mesophilic (MAD) and thermophilic anaerobic digestion (TAD). Microbial indicators (Escherichia coli, somatic coliphages and Clostridium perfringens spores) and pathogens (Salmonella and enteroviruses), which show different resistances to treatment processes, were monitored in untreated and treated sludge. Overall, microbial load in secondary sludge was shown to be similar or lower than previously reported in literature for mixed sludge. Notably, the anaerobic/aerobic digestion process increased the removal of E. coli and somatic coliphages compared to the simple MAD and always achieved the hygienization requirement (2-log-unit removal of E. coli) proposed by EU Commission in the 3rd Working Document on sludge (April 2000) for the use of treated sludges in agriculture with restriction on their application. The microbial quality limits for the unrestricted use of sludge in agriculture (no Salmonella in 50 g wet weight (WW) and E. coli <500 CFU/g) were always met when thermal digestion or pretreatment was applied; however, the required removal level (6-log-unit removal of E. coli) could not be assessed due to the low level of this microorganism in raw sludge. Observed levels of indicator removal showed a higher resistance of viral particles to thermal treatment compared with bacterial cells and confirmed the suitability of somatic coliphages as indicators in thermal treatment processes.
Griffin, Dale W.; Stokes, Rodger; Rose, J.B.; Paul, J.H.
2000-01-01
A microbiological water quality study of Homosassa Springs State Wildlife Park (HSSWP) and surrounding areas was undertaken. Samples were collected in November of 1997 (seven sites) and again in November of 1998 (nine sites). Fecal bacterial concentrations (total and fecal coliforms, Clostridium perfringens, and enterococci) were measured as relative indicators of fecal contamination. F+-specific coliphage genotyping was performed to determine the source of fecal contamination at the study sites. Bacterial levels were considerably higher at most sites in the 1997 sampling compared to the 1998 sampling, probably because of the greater rainfall that year. In November of 1997, 2 of the 7 sites were in violation of all indicator standards and guidance levels. In November of 1998, 1 of 9 sites was in violation of all indicator standard and guidance levels. The highest concentrations of all fecal indicators were found at a station downstream of the animal holding pens in HSSWP. The lowest levels of indicators were found at the Homosassa Main Spring vent. Levels of fecal indicators downstream of HSSWP (near the point of confluence with the river) were equivalent to those found in the Southeastern Fork and areas upstream of the park influences. F+ specific RNA coliphage analysis indicated that fecal contamination at all sites that tested positive was from animal sources (mammals and birds). These results suggest that animal (indigenous and those in HSSWP) and not human sources influenced microbial water quality in the area of Homosassa River covered by this study.
Monitoring programs for recreational waters utilize indicator bacteria concentrations as predictors of sewage-exposure related illness risks. However, most illnesses contracted through exposure to recreational waters may be of viral etiology. Identifying the fecal sources (non-...
Griffin, Dale W.; Gibson, Charles J.; Lipp, Erin K.; Riley, Kelley; Paul, John H.; Rose, Joan B.
1999-01-01
In order to assess the microbial water quality in canal waters throughout the Florida Keys, a survey was conducted to determine the concentration of microbial fecal indicators and the presence of human pathogenic microorganisms. A total of 19 sites, including 17 canal sites and 2 nearshore water sites, were assayed for total coliforms, fecal coliforms, Escherichia coli, Clostridium perfringens, enterococci, coliphages, F-specific (F+) RNA coliphages, Giardia lamblia, Cryptosporidium parvum, and human enteric viruses (polioviruses, coxsackie A and B viruses, echoviruses, hepatitis A viruses, Norwalk viruses, and small round-structured viruses). Numbers of coliforms ranged from <1 to 1,410, E. coli organisms from <1 to 130, Clostridium spp. from <1 to 520, and enterococci from <1 to 800 CFU/100 ml of sample. Two sites were positive for coliphages, but no F+ phages were identified. The sites were ranked according to microbial water quality and compared to various water quality standards and guidelines. Seventy-nine percent of the sites were positive for the presence of enteroviruses by reverse transcriptase PCR (polioviruses, coxsackie A and B viruses, and echoviruses). Sixty-three percent of the sites were positive for the presence of hepatitis A viruses. Ten percent of the sites were positive for the presence of Norwalk viruses. Ninety-five percent of the sites were positive for at least one of the virus groups. These results indicate that the canals and nearshore waters throughout the Florida Keys are being impacted by human fecal material carrying human enteric viruses through current wastewater treatment strategies such as septic tanks. Exposure to canal waters through recreation and work may be contributing to human health risks. PMID:10473424
High pressure-induced inactivation of Qbeta coliphage and c2 phage in oysters and in culture media.
Smiddy, Mary; Kelly, Alan L; Patterson, Margaret F; Hill, Colin
2006-02-01
High pressure (HP) treatment inactivates bacteria in shellfish, but its effects on viruses in shellfish have not yet been determined, although viral illness is frequently associated with shellfish consumption. The aim of this study was to investigate the baroresistance of two bacteriophage viruses, Qbeta coliphage and c2 phage, in oysters and in culture media. High numbers (>or=10(7) ml(-1) or g(-1)) of both phages were obtained in culture media and in oysters. Samples were HP treated at 200-800 MPa at 20 degrees C for up to 30 min. Little or no inactivation of either phage was observed in oysters or in culture media after treatment at
Ryu, Hodon; Alum, Absar; Alvarez, Maria; Mendoza, Jose; Abbaszadegan, Morteza
2005-06-01
Increased reliance of urban populations on Rio Grande water has necessitated an expanded microbial surveillance of the river to help identify and evaluate sources of human pathogens, which could pose a public health risk. The objectives of this study were to investigate microbial and chemical water quality in Rio Grande water and to perform risk assessment analyses for Cryptosporidium. No oocysts in any of the ten-litre samples were detected. However, the limit of detection in the water samples ranged between 20 and 200 oocysts/100 L. The limits of detection obtained in this study would result in one to two orders of magnitude higher risk of infection for Cryptosporidium than the U.S.EPA annual acceptable risk level of 10(-4). The bacterial data showed the significance of animal farming and raw sewage as sources of fecal pollution. Male specific and somatic coliphages were detected in 52% (11/21) and 62% (24/39) of the samples, respectively. Somatic coliphages were greater by one order of magnitude, and were better correlated with total (r2 = 0.6801; p < or = 0.05) and fecal coliform bacteria (r2 = 0.7366; p < or = 0.05) than male specific coliphages. The dissolved organic carbon (DOC) and specific ultraviolet absorbance (SUVA) values ranged 2.58-5.59mg/L and 1.23-2.29 m(-1) (mg/I)(-1), respectively. Low SUVA values of raw water condition make it difficult to remove DOC during physical and chemical treatment processes. The microbial and chemical data provided from this study can help drinking water utilities to maintain balance between greater microbial inactivation and reduced disinfection by-products (DBPs) formation.
Kator, H; Rhodes, M
2001-06-01
Declining oyster (Crassostrea virginica) production in the Chesapeake Bay has stimulated aquaculture based on floats for off-bottom culture. While advantages of off-bottom culture are significant, the increased use of floating containers raises public health and microbiological concerns, because oysters in floats may be more susceptible to fecal contamination from storm runoff compared to those cultured on-bottom. We conducted four commercial-scale studies with market-size oysters naturally contaminated with fecal coliforms (FC) and a candidate viral indicator, F-specific RNA (FRNA) coliphage. To facilitate sampling and to test for location effects, 12 replicate subsamples, each consisting of 15 to 20 randomly selected oysters in plastic mesh bags, were placed at four characteristic locations within a 0.6- by 3.0-m "Taylor" float, and the remaining oysters were added to a depth not exceeding 15.2 cm. The float containing approximately 3,000 oysters was relaid in the York River, Virginia, for 14 days. During relay, increases in shellfish FC densities followed rain events such that final mean levels exceeded initial levels or did not meet an arbitrary product end point of 50 FC/100 ml. FRNA coliphage densities decreased to undetectable levels within 14 days (16 to 28 degrees C) in all but the last experiment, when temperatures fell between 12 and 16 degrees C. Friedman (nonparametric analysis of variance) tests performed on FC/Escherichia coli and FRNA densities indicated no differences in counts as a function of location within the float. The public health consequences of these observations are discussed, and future research and educational needs are identified.
Volkova, Victoriya V; Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T
2014-07-01
Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits ("worst-case scenario") of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 10(8) E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ~2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 10(3) times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T.
2014-01-01
Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits (“worst-case scenario”) of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 108 E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ∼2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 103 times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli. PMID:24814786
Quantifying viruses and bacteria in wastewater—Results, interpretation methods, and quality control
Francy, Donna S.; Stelzer, Erin A.; Bushon, Rebecca N.; Brady, Amie M.G.; Mailot, Brian E.; Spencer, Susan K.; Borchardt, Mark A.; Elber, Ashley G.; Riddell, Kimberly R.; Gellner, Terry M.
2011-01-01
Membrane bioreactors (MBR), used for wastewater treatment in Ohio and elsewhere in the United States, have pore sizes small enough to theoretically reduce concentrations of protozoa and bacteria, but not viruses. Sampling for viruses in wastewater is seldom done and not required. Instead, the bacterial indicators Escherichia coli (E. coli) and fecal coliforms are the required microbial measures of effluents for wastewater-discharge permits. Information is needed on the effectiveness of MBRs in removing human enteric viruses from wastewaters, particularly as compared to conventional wastewater treatment before and after disinfection. A total of 73 regular and 28 quality-control (QC) samples were collected at three MBR and two conventional wastewater plants in Ohio during 23 regular and 3 QC sampling trips in 2008-10. Samples were collected at various stages in the treatment processes and analyzed for bacterial indicators E. coli, fecal coliforms, and enterococci by membrane filtration; somatic and F-specific coliphage by the single agar layer (SAL) method; adenovirus, enterovirus, norovirus GI and GII, rotavirus, and hepatitis A virus by molecular methods; and viruses by cell culture. While addressing the main objective of the study-comparing removal of viruses and bacterial indicators in MBR and conventional plants-it was realized that work was needed to identify data analysis and quantification methods for interpreting enteric virus and QC data. Therefore, methods for quantifying viruses, qualifying results, and applying QC data to interpretations are described in this report. During each regular sampling trip, samples were collected (1) before conventional or MBR treatment (post-preliminary), (2) after secondary or MBR treatment (post-secondary or post-MBR), (3) after tertiary treatment (one conventional plant only), and (4) after disinfection (post-disinfection). Glass-wool fiber filtration was used to concentrate enteric viruses from large volumes, and small volume grab samples were collected for direct-plating analyses for bacterial indicators and coliphage. After filtration, the viruses were eluted from the filter and further concentrated. The final concentrated sample volume (FCSV) was used for enteric virus analysis by use of two methods-cell culture and a molecular method, polymerase chain reaction (PCR). Quantitative PCR (qPCR) for DNA viruses and quantitative reverse-transcriptase PCR (qRT-PCR) for RNA viruses were used in this study. To support data interpretations, the assay limit of detection (ALOD) was set for each virus assay and used to determine sample reporting limits (SRLs). For qPCR and qRT-PCR the ALOD was an estimated value because it was not established according to established method detection limit procedures. The SRLs were different for each sample because effective sample volumes (the volume of the original sample that was actually used in each analysis) were different for each sample. Effective sample volumes were much less than the original sample volumes because of reductions from processing steps and (or) from when dilutions were made to minimize the effects from PCR-inhibiting substances. Codes were used to further qualify the virus data and indicate the level of uncertainty associated with each measurement. Quality-control samples were used to support data interpretations. Field and laboratory blanks for bacteria, coliphage, and enteric viruses were all below detection, indicating that it was unlikely that samples were contaminated from equipment or processing procedures. The absolute value log differences (AVLDs) between concurrent replicate pairs were calculated to identify the variability associated with each measurement. For bacterial indicators and coliphage, the AVLD results indicated that concentrations <10 colony-forming units or plaque-forming units per 100 mL can differ between replicates by as much as 1 log, whereas higher concentrations can differ by as much as 0.3 log. The AVLD results for viruses indicated that differences between replicates can be as great as 1.2 log genomic copies per liter, regardless of the concentration of virus. Relatively large differences in molecular results for viruses between replicate pairs were likely due to lack of precision for samples with small effective volumes. Concentrations of E. coli, fecal coliforms, enterococci, and somatic and F-specific coliphage in post-secondary and post-tertiary samples in conventional plants were higher than those in post-MBR samples. In post-MBR and post-secondary samples, concentrations of somatic coliphage were higher than F-specific coliphage. In post-disinfection samples from two MBR plants (the third MBR plant had operational issues) and the ultraviolet conventional plant, concentrations for all bacterial indicators and coliphage were near or below detection; from the chlorine conventional plant, concentrations in post-disinfection samples were in the single or double digits. All of the plants met the National Pollutant Discharge Elimination System required effluent limits established for fecal coliforms. Norovirus GII and hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Adenovirus was found in 100 percent, enterovirus in over one-half, and norovirus GI in about one-half of post-preliminary wastewater samples. Adenovirus and enterovirus were detected throughout the treatment processes, and norovirus GI was detected less often than the other two enteric viruses. Culturable viruses were detected in post-preliminary samples and in only two post-treatment samples from the plant with operational issues.
Field-based evaluation of a male-specific (F+) RNA coliphage concentration method
Fecal contamination of water poses a significant risk to public health due to the potential presence of pathogens, including enteric viruses. Thus, sensitive, reliable and easy to use methods for the detection of microorganisms are needed to evaluate water quality. In this stud...
Dillow, Jonathan J.A.; Banks, William S.L.; Smigaj, Michael J.
2002-01-01
The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the shallow aquifer in the Piedmont Physiographic Province in Baltimore and Harford Counties, Maryland. Two hundred sixty-three small public water-supply wells were in operation in these counties during the spring of 2000. Ninety-one of these sites were selected for sampling using a methodology that distributed the samples evenly over the population and the spatial extent of the study area. Each site, and its potential susceptibility to microbiological contamination, was evaluated with regard to hole depth, casing interval, and open interval. Each site was evaluated using characteristics such as on-site geology and on-site land use.Samples were collected by pumping between 200 and 400 gallons of untreated well water through an electropositive cartridge filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect viral ribonucleic acid; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, nitrite, organic nitrogen, total phosphate, ortho-phosphate, calcium, magnesium, sodium, potas-sium, chloride, sulfate, iron, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.One sample tested positive for the presence of the ribonucleic acid of rotavirus through poly-merase chain-reaction analysis. Twenty-nine per-cent of the samples (26 of 90) had bacterial con-tamination. About 7 percent of the samples (6 of 90) were contaminated with either male-specific coliphage, somatic coliphage, or bacteriophages of Bacteroides fragilis. About 3 percent of the sam-ples (3 of 87) had oxidized nitrogen concentra-tions that exceeded the U.S. Environmental Protection Agency?s Maximum Contaminant Level of 10.0 milligrams per liter. A statistical analysis showed that no significant relation exists between the presence of bacteria or coliphage and all variables, except the mean temperature of the water sample as measured in the field. Additionally, the concentration of total coliform bacteria had a statistically significant, moderately strong cor-relation with the concentration of sulfate and sample pH as measured at the U.S. Geological Survey National Water-Quality Laboratory in Denver, Colorado.
Banks, William S.L.; Battigelli, David A.
2002-01-01
The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the shallow aquifer in the Piedmont Physiographic Province in Baltimore and Harford Counties, Maryland. Two hundred sixty-three small public water-supply wells were in operation in these counties during the spring of 2000. Ninety-one of these sites were selected for sampling using a methodology that distributed the samples evenly over the population and the spatial extent of the study area. Each site, and its potential susceptibility to microbiological contamination, was evaluated with regard to hole depth, casing interval, and open interval. Each site was evaluated using characteristics such as on-site geology and on-site land use.Samples were collected by pumping between 200 and 400 gallons of untreated well water through an electropositive cartridge filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect viral ribonucleic acid; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, nitrite, organic nitrogen, total phosphate, ortho-phosphate, calcium, magnesium, sodium, potas-sium, chloride, sulfate, iron, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.One sample tested positive for the presence of the ribonucleic acid of rotavirus through poly-merase chain-reaction analysis. Twenty-nine per-cent of the samples (26 of 90) had bacterial con-tamination. About 7 percent of the samples (6 of 90) were contaminated with either male-specific coliphage, somatic coliphage, or bacteriophages of Bacteroides fragilis. About 3 percent of the sam-ples (3 of 87) had oxidized nitrogen concentra-tions that exceeded the U.S. Environmental Protection Agency?s Maximum Contaminant Level of 10.0 milligrams per liter. A statistical analysis showed that no significant relation exists between the presence of bacteria or coliphage and all variables, except the mean temperature of the water sample as measured in the field. Additionally, the concentration of total coliform bacteria had a statistically significant, moderately strong cor-relation with the concentration of sulfate and sample pH as measured at the U.S. Geological Survey National Water-Quality Laboratory in Denver, Colorado.
Bacteriophages are likely the most abundant entities in the aquatic environment, yet knowledge of their ecology is limited. During a fecal source-tracking study, two genetically novel Leviviridae strains were discovered. Although the novel strains were isolated from coastal wat...
Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy
This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research in...
Studies have demonstrated that fecal indicator bacteria (FIB) and pathogens may be present in beach sand and suggest an increased risk of enteric illness among beachgoers contacting sand. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR...
INACTIVATION KINETICS OF MONOCHLORAMINE ON MONODISPERSED HEPATITIS A VIRUS AND MS2
The purpose of this study was to further characterize the disinfecting capabilities of preformed monochloramine using hepatitis A virus and the model coliphage MS2. he EPA has identified the latter virus as a model organism in developing CT values and conducting pilot plant studi...
Francy, Donna S.; Bushon, Rebecca N.; Stopar, Julie; Luzano, Emma J.; Fout, G. Shay
2004-01-01
A study of small public ground-water-supply wells that produce water from discontinuous sand and gravel aquifers was done from July 1999 through July 2001 in southeastern Michigan. Samples were collected to determine the occurrence of viral pathogens and microbiological indicators of fecal contamination (indicators), determine whether indicators are adequate predictors of the presence of enteric viruses, and determine the factors that affect the presence of enteric viruses. Small systems are those that serve less than 3,300 people. Samples were analyzed for specific enteric viruses by reverse transcriptase-polymerase chain reaction (RT-PCR), for culturable viruses by cell culture, and for the indicators total coliforms, Escherichia coli (E. coli), enterococci, and F-specific and somatic coliphage. Ancillary environmental and water-quality data were collected or compiled. A total of 169 regular samples and 32 replicate pairs were collected from 38 wells. Replicate pairs were samples collected at the same well on the same date. One well was sampled 6 times, 30 wells were sampled five times, 6 wells were sampled twice, and 1 well was sampled once. By use of RT-PCR, enterovirus was found in four wells (10.5 percent) and hepatitis A virus (HAV) in five wells (13.2 percent). In two of these wells, investigators found both enterovirus and HAV, but on different sampling dates. Culturable viruses were found one time in two wells (5.9 percent), and neither of these wells was positive for viruses by use of RT-PCR on any sampling date. If results for all viruses are combined, 9 of the 38 small public-supply wells were positive for enteric viruses (23.7 percent) by either cell culture or RT-PCR. One or more indicators were found in 18 of 38 wells. Total coliforms, E. coli, enterococci, and F-specific and somatic coliphage were found in 34.2, 10.5, 15.8, 5.9, and 5.9 percent, respectively, of the wells tested. In only 3 out of 18 wells were samples positive for an indicator on more than one date at the same well. The co-occurrence of enteric viruses and any indicator was 55.6 percent; five out of the nine virus-positive wells were also found to be positive for an indicator. Two wells with detections of viruses had a detection of total coliforms, one well had a detection of E. coli, one of enterococci, and one of F-specific coliphage. On a per sample basis, of 11 samples that were positive for enteric viruses, indicator bacteria co-occurred in only 2 samples, and coliphage were not present in any. More virus-positive samples were found at sites served by septic systems than those served by sewerlines. Sampling condition (ground water or a mixture of tank and ground water), distance to septic system, type of and distance to nearest surface-water body, well characteristics, or land use were not related to the presence of viruses or indicators. Among continuous water-quality variables, statistically significant relations were found between total coliforms and dissolved organic carbon and between total coliforms and iron. There was a statistically significant relation between chloride concentrations >20 mg/L and detections of total coliforms. Presence of nitrate and nitrite was related to the presence of other indicators (E. coli, enterococci, and F-specific and somatic coliphage) or enteric viruses, but not to total coliforms. The data indicated that chloride-to-bromide (C1:Br) ratios may be useful as a screening tool for total coliforms and enteric viruses but not for E. coli, enterococci, and F-specific and somatic coliphage. This study provides evidence for fecal contamination of ground water from small public-supply wells, at least on an intermittent basis. Collecting data on multiple lines of evidence would be needed to reliably predict the presence of enteric viruses and protect public health. Future data collection toward this end could include repeat sampling several times a year for different indicators, measuring dissolv
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Detection of E. coli, enterococci, or coliphage in source water samples as specified in § 141.402(a) and... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.202 Tier 1 Public Notice—Form, manner, and frequency of notice. (a) Which...
Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.
Ottoson, J; Norström, A; Dalhammar, G
2005-01-01
To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.
Probing the structure of Nun transcription arrest factor bound to RNA polymerase
Mustaev, Arkady; Vitiello, Christal L.; Gottesman, Max E.
2016-01-01
The coliphage HK022 protein Nun transcription elongation arrest factor inhibits RNA polymerase translocation. In vivo, Nun acts specifically to block transcription of the coliphage λ chromosome. Using in vitro assays, we demonstrate that Nun cross-links RNA in an RNA:DNA hybrid within a ternary elongation complex (TEC). Both the 5′ and the 3′ ends of the RNA cross-link Nun, implying that Nun contacts RNA polymerase both at the upstream edge of the RNA:DNA hybrid and in the vicinity of the catalytic center. This finding suggests that Nun may inhibit translocation by more than one mechanism. Transcription elongation factor GreA efficiently blocked Nun cross-linking to the 3′ end of the transcript, whereas the highly homologous GreB factor did not. Surprisingly, both factors strongly suppressed Nun cross-linking to the 5′ end of the RNA, suggesting that GreA and GreB can enter the RNA exit channel as well as the secondary channel, where they are known to bind. These findings extend the known action mechanism for these ubiquitous cellular factors. PMID:27436904
Gaudin, O G; Meley, B; Chomel, J J; Viac, J
1976-01-01
A survey was carried out from March 1972 to February 1973 to identify viral flora found in the river Furan ater St. Etienne. The 54 samples examined revealed the following data: 1) more accurate results are obtained when viral concentration values are expressed in terms of m3/sec., taking into account the flow of the river and eliminating the seasonal dilution factor; 2) rates of enteroviruses remain constant throughout the year, in spite of a relatively rapid spontaneous inactivation of the viruses; 3) rates of coliphages vary considerably according to seasons, with a notable increase in summer; 4) the two previous data are unrelated; 5) 147 enterovirus strains were isolated, of which 44% were polioviruses; 6) virulent and attenuated types 2 and 3 polioviruses were found simultaneously at certain periods; 7) only virulent strains of type 1 poliovirus were isolated; 8) this type of survey may be useful in controlling the endemic residual poliomyelitis in the region of St. Etienne.
Bartz, Faith E.; Lickness, Jacquelyn Sunshine; Heredia, Norma; Fabiszewski de Aceituno, Anna; Newman, Kira L.; Hodge, Domonique Watson; Jaykus, Lee-Ann; García, Santos
2017-01-01
ABSTRACT To improve food safety on farms, it is critical to quantify the impact of environmental microbial contamination sources on fresh produce. However, studies are hampered by difficulties achieving study designs with powered sample sizes to elucidate relationships between environmental and produce contamination. Our goal was to quantify, in the agricultural production environment, the relationship between microbial contamination on hands, soil, and water and contamination on fresh produce. In 11 farms and packing facilities in northern Mexico, we applied a matched study design: composite samples (n = 636, equivalent to 11,046 units) of produce rinses were matched to water, soil, and worker hand rinses during two growing seasons. Microbial indicators (coliforms, Escherichia coli, Enterococcus spp., and somatic coliphage) were quantified from composite samples. Statistical measures of association and correlations were calculated through Spearman's correlation, linear regression, and logistic regression models. The concentrations of all microbial indicators were positively correlated between produce and hands (ρ range, 0.41 to 0.75; P < 0.01). When E. coli was present on hands, the handled produce was nine times more likely to contain E. coli (P < 0.05). Similarly, when coliphage was present on hands, the handled produce was eight times more likely to contain coliphage (P < 0.05). There were relatively low concentrations of indicators in soil and water samples, and a few sporadic significant associations were observed between contamination of soil and water and contamination of produce. This methodology provides a foundation for future field studies, and results highlight the need for interventions surrounding farmworker hygiene and sanitation to reduce microbial contamination of farmworkers' hands. IMPORTANCE This study of the relationships between microbes on produce and in the farm environment can be used to support the design of targeted interventions to prevent or reduce microbial contamination of fresh produce with associated reductions in foodborne illness. PMID:28363965
Bartz, Faith E; Lickness, Jacquelyn Sunshine; Heredia, Norma; Fabiszewski de Aceituno, Anna; Newman, Kira L; Hodge, Domonique Watson; Jaykus, Lee-Ann; García, Santos; Leon, Juan S
2017-06-01
To improve food safety on farms, it is critical to quantify the impact of environmental microbial contamination sources on fresh produce. However, studies are hampered by difficulties achieving study designs with powered sample sizes to elucidate relationships between environmental and produce contamination. Our goal was to quantify, in the agricultural production environment, the relationship between microbial contamination on hands, soil, and water and contamination on fresh produce. In 11 farms and packing facilities in northern Mexico, we applied a matched study design: composite samples ( n = 636, equivalent to 11,046 units) of produce rinses were matched to water, soil, and worker hand rinses during two growing seasons. Microbial indicators (coliforms, Escherichia coli , Enterococcus spp., and somatic coliphage) were quantified from composite samples. Statistical measures of association and correlations were calculated through Spearman's correlation, linear regression, and logistic regression models. The concentrations of all microbial indicators were positively correlated between produce and hands (ρ range, 0.41 to 0.75; P < 0.01). When E. coli was present on hands, the handled produce was nine times more likely to contain E. coli ( P < 0.05). Similarly, when coliphage was present on hands, the handled produce was eight times more likely to contain coliphage ( P < 0.05). There were relatively low concentrations of indicators in soil and water samples, and a few sporadic significant associations were observed between contamination of soil and water and contamination of produce. This methodology provides a foundation for future field studies, and results highlight the need for interventions surrounding farmworker hygiene and sanitation to reduce microbial contamination of farmworkers' hands. IMPORTANCE This study of the relationships between microbes on produce and in the farm environment can be used to support the design of targeted interventions to prevent or reduce microbial contamination of fresh produce with associated reductions in foodborne illness. Copyright © 2017 American Society for Microbiology.
Meschke, J S; Sobsey, M D
2003-01-01
Norwalk-like viruses (NLVs) are important agents of waterborne illness and have been linked to several groundwater-related outbreaks. The presence of human enteric viruses, in particular the presence of NLVs, is difficult to detect in the environment. Consequently, surrogate organisms are typically used as indicators of viruses from faecal contamination. Whether traditional bacterial indicators are reliable indicators for viral pathogens remains uncertain. Few studies have directly compared mobility and reduction of bacterial indicators (e.g. coliforms, Escherichia coli) and other surrogate indicators (coliphages) with pathogenic human viruses in soil systems. In this study the mobility and comparative reduction of the prototype NLV, Norwalk Virus (NV), was compared to poliovirus 1 (PV1), a bacterial indicator (E coli, EC) and a viral indicator (coliphage MS2) through miniature soil columns. Replicate, 10 cm deep, miniature columns were prepared using three soils representing a range of soil textures (sand, organic muck, and clay). Columns were initially conditioned, then incubated at 10-14 degrees C, dosed twice weekly for 8 weeks with one column pore volume of virus-seeded groundwater per dose, followed by 8 weeks of dosing with one column pore volume per dose of unseeded, simulated rainwater. Columns were allowed to drain after each dosing until an effluent volume equivalent to an applied dose was collected. Column effluents and doses were assayed for all viruses and EC. Rapid mobility with minimal reduction was observed for all organisms in the sand. Similar reductions were observed in organic muck for most organisms but NV showed a greater reduction. No organisms were shown to pass through the clay columns. Elution of viruses, in particular PV1, from the columns was gradual. After cessation of microbe dosing, E. coli was less detectable than viruses in column effluents and, therefore, unreliable as a virus indicator.
McLaughlin, M.R.; Rose, J.B.
2006-01-01
Traditional fecal coliform bacterial indicators have been found to be severely limited in determining the significance and sources of fecal contamination in ambient waters of tropical and subtropical regions. The bacteriophages that infect Bacteroides fragilis have been suggested as better fecal indicators and at least one type may be human specific. In this study, the phages that infect B. fragilis host RYC2056 (RYC), including phage B56-3, and host ATCC 51477-HSP40 (HSP), including the human specific phage B40-8, were evaluated in the drainage basins of Tampa Bay, 7 samples (n = 62), or 11%, tested positive for the presence of phages infecting the host HSP, whereas 28 samples, or 45%, tested positive using the host RYC. A survival study was also done to compare the persistence of phages B56-3 and B40-8 to MS2 coliphage in seawater at various temperatures. The decay rates for MS2 were 0.239 log 10 d-1 at 10??C, but increased to 0.896 at 20??C and 2.62 log10 d-1 at 30??C. The two B. fragilis phages persisted much longer in the seawater compared to the coliphage and showed little variation between the temperatures. All sewage influents sampled from area wastewater treatment plants contained phages that infected the two B. fragilis hosts at levels from 1.2 ?? 104 to 1.11 ?? 10 5 pfu 100 ml-1 for host RYC and 67 to 350 pfu 100 ml -1 for host HSP. Of the 7 chlorinated effluent samples tested, 3 were positive for the presence of the phage using the host RYC and the phage enrichment method, with levels estimated to be <10 pfu 100 ml-1. No phages were detected using the host HSP in the treated sewage effluent. Coliphages were found in 3 of the 7 effluent samples at a range of 30 to 1.2 ?? 103 pfu 100 ml-1. ?? 2006 Estuarine Research Federation.
Scoglio, M E; Grillo, O C; Munaò, F; Di Pietro, A; Squeri, L
1989-01-01
Most pollution of drinking water is caused by inadequacy of the uptake and distribution systems, by insufficient upkeep of the sewage system and by defects or breaks in the disinfection processes. This may be the cause of waterborne epidemic outbreaks and therefore it is necessary carry out routine controls by simple and rapid tests for the detection of intestinal organisms. In the light of minor hepatitis A epidemics occurred in the town of Messina, we have carried out a study to determine the drinking water quality. To this end, in addition to the traditional tests recommended by CEE and required by the 8/2/1985 DPCM (37 degrees C and 20 degrees C viable count, total and faecal coliforms and faecal streptococci), we have carried out P. aeruginosa, coliphages and gram-negative endotoxins tests, in 74 water samples drawn on way in and way out of the tanks and along the piping system. Only 12.5% of the sixteen water samples drawn on way in (before disinfection system) was in compliance with the law. 75% of these samples showed positivity for faecal streptococci. The water quality was lower in the fourteen water samples drawn on way out of the tanks (7.1% was in compliance with the law). The percent of positivity along the piping system for total and faecal coliforms and for faecal streptococci was 34.1, 15.9 and 59.1 respectively. Coliphages were always absent. P. aeruginosa was almost always present in way in water (93.7%). Moreover this microorganism was recovered in 85.7% of the samples drawn on the way out and in 77.3% along the piping system. In the same drawing places endotoxins were present at high percentage (100%, 85.7% and 90.9%). These values come from high test sensitivity and poor water quality. Finally we have pointed out the importance of all the parameters examined. The significance of coliform bacteria is known, but we consider very important, as organisms indicative of pollution, the enterococci, since they P. aeruginosa may survive long time in fresh water though it is not autoctone, but, in general, of faecal origin. Several soluble antigens of this microorganism as well as enterococci show positive LAL tests (1-5-6). The endotoxin content in fresh water reflects the degree of bacterial contamination. We believe, therefore, it is needed to fix an upper limit to endotoxins in drinking water. Coliphages concentrations could be correlated with enteric virus concentrations but the ratio of coliforms to coliphages is about 100:1. Therefore this indicator of viral pollution is helpful only for highly polluted surface waters.
A complete method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for determining interferences to phage recoveries from water sample concentrates and for detecting interferences to their analysis, was developed for the direct...
40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... approves the use of E. coli as a fecal indicator for source water monitoring under this paragraph (a). If the repeat sample collected from the ground water source is E.coli positive, the system must comply... listed in the in paragraph (c)(2) of this section for the presence of E. coli, enterococci, or coliphage...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or coliphage in source water samples as specified in § 141.402(a) and § 141.402(b); (9) Other... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.202 Tier 1 Public Notice—Form, manner, and frequency of notice. (a) Which...
A complete method, incorporating recently improved reverse transcriptase-PCR primer/probe assays and including controls for determining interferences to phage recoveries from water sample concentrates and for detecting interferences to their analysis, was developed for the direct...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or coliphage in source water samples as specified in § 141.402(a) and § 141.402(b); (9) Other... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Public Notification of Drinking Water Violations § 141.202 Tier 1 Public Notice—Form, manner, and frequency of notice. (a) Which...
The purpose of this verification was a cut fiber challenge study for the Dow Chemical Company SFD-2880 UF membrane module. MS2 coliphage virus was the surrogate challenge organism. The challenge tests followed the requirements of the Department of Health Victoria (Australia) Dr...
The Dow SFD-2880 UF module was tested for removal of microorganisms using live Cryptosporidium parvum oocysts, endospores of the bacteria Bacillus alrophaeus, and the MS2 coliphage virus according to the product-specific challenge testing requirements of the EPA Long-Term 2 Enhan...
USDA-ARS?s Scientific Manuscript database
F+ RNA coliphages (FRNA) are used to source-track fecal contamination and as surrogates for enteric pathogen persistence in the environment. However, the environmental persistence of FRNA is not clearly understood and thus we evaluated the survival of prototype and environmental isolates of FRNA rep...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fecal coliform or E. coli are present in the water distribution system (as specified in § 141.63(b)), or when the water system fails to test for fecal coliforms or E. coli when any repeat sample tests...) Detection of E. coli, enterococci, or coliphage in source water samples as specified in § 141.402(a) and...
40 CFR 141.202 - Tier 1 Public Notice-Form, manner, and frequency of notice.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fecal coliform or E. coli are present in the water distribution system (as specified in § 141.63(b)), or when the water system fails to test for fecal coliforms or E. coli when any repeat sample tests...) Detection of E. coli, enterococci, or coliphage in source water samples as specified in § 141.402(a) and...
1979-09-01
was funded under Civil Works Project CWIS 31280, Evaluation of Existing Facilities for Waste- water Land Treatment. Robert Emerson of the Atmospheric...20 Estimation of Coliphage .................................. 23 Fluorescein Dye Runs ..................................... 23 Chemicai and...California Water Pollletion Control Board 1957) in which data were obtained on the travel of coliform bacteria from spray operations using
Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste
Verstraeten, Ingrid M.; Fetterman, G.S.; Meyer, M.J.; Bullen, T.; Sebree, S.K.
2005-01-01
In Nebraska, a large number (>200) of shallow sand-point and cased wells completed in coarse alluvial sediments along rivers and lakes still are used to obtain drinking water for human consumption, even though construction of sand-point wells for consumptive uses has been banned since 1987. The quality of water from shallow domestic wells potentially vulnerable to seepage from septic systems was evaluated by analyzing for the presence of tracers and multiple isotopes. Samples were collected from 26 sand-point and perforated, cased domestic wells and were analyzed for bacteria, coliphages, nitrogen species, nitrogen and boron isotopes, dissolved organic carbon (DOC), prescription and nonprescription drugs, or organic waste water contaminants. At least 13 of the 26 domestic well samples showed some evidence of septic system effects based on the results of several tracers including DOC, coliphages, NH4+, NO3-, N2, ?? 15N[NO3-] and boron isotopes, and antibiotics and other drugs. Sand-point wells within 30 m of a septic system and <14 m deep in a shallow, thin aquifer had the most tracers detected and the highest values, indicating the greatest vulnerability to contamination from septic waste. Copyright ?? 2005 National Ground Water Association.
[Spring water quality assessment regarding the problem of endemic fluorosis].
Leshchenko, D V; Mialo, O A; Beliakova, M B; Beliaeva, E A; Samoukina, A M; Chervinets, Iu V; Ivanova, O V
2013-01-01
A possible variant for reducing the consumption of fluoride by population of Tver region is the use of water with low fluoride content, such as spring water. Assessment of drinking suitability of spring water (the content of physiologically important mineral elements and microbial purity) is relevant to our region. Water samples from 6 spring-water source of Tver region were studied during the year. The content of fluoride and calcium were measured by using an ion-selective electrodes. Microbiological purity tested by the presence of total coliform bacteria, thermotolerant coliform bacteria, coliphages and total microbial numbers. The analysis of some mineral components in spring water of Tver region showed that calcium content was in range 33-88 mg/l, that satisfied the recommended value; fluoride concentration is less then 0.5 mg/l. In all spring water samples total coliforms, thermotolerant coliforms and coliphages were absent. The total microbial number was in standard range, except of two spring-water source in the autumn and summer. The data suppose that spring water of Tver region can be used as a component of diet normalizing the fluoride consumption at risk of dental fluorosis in children.
Global occurrence of Torque teno virus in water systems.
Charest, A J; Plummer, J D; Long, S C; Carducci, A; Verani, M; Sidhu, J P S
2015-09-01
Bacterial indicator organisms are used globally to assess the microbiological safety of waters. However, waterborne viral outbreaks have occurred in drinking water systems despite negative bacterial results. Using viral markers may therefore provide more accurate health risk assessment data. In this study, fecal, wastewater, stormwater, surface water (fresh and salt), groundwater, and drinking water samples were analyzed for the presence or concentration of traditional indicators, innovative indicators and viral markers. Samples were obtained in the United States, Italy, and Australia and results compared to those reported for studies conducted in Asia and South America as well. Indicators included total coliforms, Escherichia coli, enterococci, male-specific coliphages, somatic coliphages and microviradae. Viral markers included adenovirus, polyomavirus, and a potential new surrogate, Torque teno virus (TTV). TTV was more frequently found in wastewaters (38-100%) and waters influenced by waste discharges (25%) than in surface waters used as drinking water sources (5%). TTV was also specific to human rather than animal feces. While TTV numbers were strongly correlated to other viral markers in wastewaters, suggesting its utility as a fecal contamination marker, data limitations and TTV presence in treated drinking waters demonstrates that additional research is needed on this potential viral indicator.
Santiago-Rodriguez, Tasha M; Toranzos, Gary A; Arce-Nazario, Javier A
2016-10-01
Urbanization affects the microbial loading into tropical streams, but its impact on water quality varies across watersheds. Rainfall in tropical environments also complicates microbial dynamics due to high seasonal and annual variations. Understanding the dynamics of fecal contamination in tropical surface waters may be further hindered by limitations from the utilization of traditional microbial indicators. We measured traditional (Enterococcus spp. and Escherichia coli), as well as alternate (enterophages and coliphages) indicators of fecal contamination in a tropical watershed in Puerto Rico during a 1-year period, and examined their relationship with rainfall events across an urbanization gradient. Enterococcus spp. and E. coli concentrations were 4 to 5 logs higher in non-urbanized or pristine sites when compared to enterophages and coliphages, suggesting that traditional fecal indicator bacteria may be natural inhabitants of pristine tropical waters. All of the tested indicators were positively correlated with rainfall and urbanization, except in the most urbanized sites, where rainfall may have had a dilution effect. The present study indicates that utilizing novel indicators of microbial water quality may improve the assessment of fecal contamination and pathogen risk for tropical watersheds.
Wu, Jinling; Li, Haitao; Huang, Xia
2010-03-01
The membrane bioreactor (MBR) features many advantages, such as its excellent effluent quality and compactness. Moreover, the MBR is well known for its disinfectant capacity. This paper investigates virus removal performance for municipal wastewater using a submerged MBR and the operational conditions affecting the virus removal using indigenous somatic coliphages (SC) as an indicator for viruses. The results revealed that the municipal wastewater acquired by the Qinghe Municipal Wastewater Treatment Plant, Beijing, contained an SC concentration of (2.81+/-1.51)x10(4)PFU ml(-1), which varies seasonally due to spontaneous decay. In the MBR system, the biomass process dominates SC removal. Membrane rejection is an essential supplement of biomass process for SC removal. In this paper, the relative contributions of biomass process and membrane rejection during the start-up and steady operational periods are discussed in detail. The major factors affecting SC removal are biodegradation, membrane pore size, and gel layer formation on the membrane. During long-term experiments, it was demonstrated that high inoculated sludge concentration, long hydraulic retention time, moderate fouling layer, and non-frequent chemical cleaning are favorable for high SC removal in MBR systems. Copyright 2009 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Determining the environmental sources for Shiga toxigenic Escherichia coli is of paramount importance. Since dairy or feedlot cattle are likely sources for this pathogen, determining the sources of fecal contamination may provide supplemental data to traditional trace-back studies from fork to farm....
Filtration in the Use of Individual Water Purification Devices
2006-03-01
natural water pH will increase virus retention (references 14-17). One study investigating coliphage reduction by a 0.2 µm microporous filter...Filtration in the Use of Individual Water Purification Devices Technical Information Paper #31-004-0306 PURPOSE This information paper...natural waters . This paper is intended to assist the reader in evaluating the capabilities of Individual Water Purification Devices (IWPDs) using
Chapter A7. Section 7.2. Fecal Indicator Viruses
Bushon, Rebecca N.
2003-01-01
More than 100 types of human pathogenic viruses may be present in fecal-contaminated waters. Coliphages are used as indicators of virus-related fecal contamination and of the microbiological quality of waters. This report provides information on the equipment, sampling protocols, and laboratory methods that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator viruses.
Overview of Models Used in Land Treatment of Wastewater
1982-03-01
The limitation of the ratio of fecal califorms to total coliphage as a water pollution index. Water Resources, vol. 10, p. 745-748. Bouma, J. (1981...predicting.Ar water and salt transport in soils, 2)-nitrogen transport and transformations, 3) phosphorus transport and transformations, 4r-virus...1 Models for planning, site selection and cost analysis .......... 2 Models for predicting water and salt transport in soils
Bacteriophage T4D Gene 42 Mutants Exhibit a Defective Genetic Exclusion Phenotype
1991-02-01
first noted by Delbruck and Luria (1942) as infection "interference" between various coliphages , was shown by Delbruck and Bailey (1946) to be the...prepare this solution the following were added per liter of distilled deionized water : 5.8 g Na HPO 2 4 3.0 g KH PO , 0.5 g NaCl, 1.0 g NH Cl, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Mitra, S.
The conversion of both parental- and progeny-nascent open circular M13 RF DNA into covalently closed RF I is drastically reduced in an E. coli mutant deficient in the 5' ..-->.. 3' exonuclease associated with DNA polymerase I. The nascent progeny RF DNA also contains a significant proportion of fragments of smaller than unit length.
INACTIVATION OF HEPATITIS A VIRUS AND MODEL VIRUSES IN WATER BY FREE CHLORINE AND MONOCHLORAMINE
The kinetics and extent of inactivation of hepatitis A virus (HAV) as well as three other viruses, coxsackievirus B5 (CB5) and coliphages MS2 and X174, by 0.5 mg/l free chlorine, pH 6-10, and 10 mg/1 monochloramine, pH8, in 0.01 M phosphate buffer were determined. These results i...
Assessment of the efficacy of the first water system for emergency hospital use.
Long, Sharon C; Olstadt, Jeremy
2011-03-01
The First Water Responder B package water treatment device was evaluated for its ability to reduce the levels of spiked indicators and pathogens (Escherichia coli, MS2 coliphage, murine adenovirus, and Cryptosporidium oocysts) in a surface water to partially evaluate its appropriateness to be used to provide safe drinking water to hospitals during emergency situations. Lake water was collected in 50-L carboys and spiked with selected indicators and pathogens (E coli, MS2 coliphage, murine adenovirus, and Cryptosporidium oocysts) at 2 different spike levels (low and high). This water was treated using the First Water Responder B, and the microorganisms were enumerated before and after treatment using US Environmental Protection Agency and Standard Methods. Microbial removal efficiencies were compared with Environmental Protection Agency guidelines. E coli spikes ranged from 2.9 to 1059 colony-forming units (CFU)/100 mL with removals to below detection limits (1 CFU/100 mL) to 2.8 CFU/100 mL or 0.98 to 3.5 log(10) reductions. MS2 coliphage spikes ranged from 3 plaque-forming units (PFU) to 837 PFU/100 mL with removals to below detection limits (1 PFU/100 mL) to 11.7 PFU/100 mL or 0.65 to 1.9 log(10) reductions. Murine adenovirus spikes ranged from 203 to 8410 most probable number (MPN) of infectious units/100 mL with removals to below detection limits (23 MPN infectious units/100 mL) to 1370 MPN infectious units/100 mL or 0.79 to >1.2 log(10) reductions. Cryptosporidium parvum oocyst spikes ranged from 52 to 853 oocysts per liter with removals to below detection limits (<1 oocyst per liter) to 0.3 oocysts per liter or >2.2 to 3.4 log(10) reductions. Although the First Water system could remove a significant portion of the spiked organisms, it is recommended that this point-of-use system be coupled with chemical disinfection in a multiple-barrier approach to provide water of the highest reasonably achievable quality for hospital use in emergency situations. ©2011 American Medical Association. All rights reserved.
McLennan, S. Devin; Peterson, Lauren A.; Rose, Joan B.
2009-01-01
Four point-of-use disinfection technologies for treating sewage-contaminated well water were compared. Three systems, based on flocculant-disinfectant packets and N-halamine chlorine and bromine contact disinfectants, provided a range of 4.0 to >6.6 log10 reductions (LR) of naturally occurring fecal indicator and heterotrophic bacteria and a range of 0.9 to >1.9 LR of coliphage. PMID:19767479
BIOLOGICAL SIGNIFICANCE OF HIGH MOLECULAR WEIGHT POLYPEPTIDES.
A tritium-labeled poly-L-lysine, has been synthesized. Experiments on the inactivation of coliphage T2 with an I131-labeled copolymer of lysine and...capable of injecting its DNA together with the labeled polypeptide into the host cells of Escherichia coli. New techniques for the preparation of water ...insoluble enzyme derivatives have been worked out. Water -insoluble urease and ribonuclease derivatives have been prepared. The mode of action of
Mechanisms for parasites removal in a waste stabilisation pond.
Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy
2011-04-01
A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.
Microbial safety of air-dried and rewetted biosolids.
Rouch, Duncan A; Mondal, Tania; Pai, Sneha; Glauche, Florian; Fleming, Vennessa A; Thurbon, Nerida; Blackbeard, Judy; Smith, Stephen R; Deighton, Margaret
2011-06-01
To assess microbial safety of treated sewage sludge (biosolids), we examined the inactivation of microbial indicators for potential bacterial, viral and protozoan pathogens. The levels of indicators were determined throughout the air-drying and storage phases of anaerobically digested sewage sludge. Samples were collected from two wastewater treatment plants (WWTPS) in Victoria, Australia. Established methods were applied for analysis of bacteria and coliphages, based on membrane filtration and layered plates, respectively. In the pan drying phase, the prevalence of Escherichia coli was reduced by >5 log10 compared with sludge entering the pan. Thus, after pan drying of 8-11 months at WWTP A and 15 months at WWTP B, the numbers of E. coli were reduced to below 10(2) cfu/g dry solids (DS). This level is acceptable for unrestricted use in agriculture in Australia (P1 treatment grade), the UK (enhanced treatment status) and the USA (Class A pathogen reduction). Coliphage numbers also decreased substantially during the air-drying phase, indicating that enteric viruses are also likely to be destroyed during this phase. Clostridium perfringens appeared to be an overly conservative indicator. Survival, but not regrowth, of E. coli or Salmonella was observed in rewetted biosolids (15-20% moisture content), after being seeded with these species, indicating a degree of safety of stored biosolids upon rewetting by rain.
Espinosa-García, A C; Díaz-Ávalos, C; Solano-Ortiz, R; Tapia-Palacios, M A; Vázquez-Salvador, N; Espinosa-García, S; Sarmiento-Silva, R E; Mazari-Hiriart, M
2014-03-01
Municipal water disinfection systems in some areas are not always able to meet water consumer needs, such as ensuring distributed water quality, because household water management can be a contributing factor in water re-contamination. This fact is related to the storage options that are common in places where water is scarce or is distributed over limited time periods. The aim of this study is to assess the removal capacity of a multiple-barrier water disinfection device for protozoa, bacteria, and viruses. Water samples were taken from households in Mexico City and spiked with a known amount of protozoa (Giardia cyst, Cryptosporidium oocyst), bacteria (Escherichia coli), and viruses (rotavirus, adenovirus, F-specific ribonucleic acid (FRNA) coliphage). Each inoculated sample was processed through a multiple-barrier device. The efficiency of the multiple-barrier device to remove E. coli was close to 100%, and more than 87% of Cryptosporidium oocysts and more than 98% of Giardia cysts were removed. Close to 100% of coliphages were removed, 99.6% of the adenovirus was removed, and the rotavirus was almost totally removed. An effect of site by zone was detected; this observation is important because the water characteristics could indicate the efficiency of the multiple-barrier disinfection device.
Fisher, Michael B; Iriarte, Mercedes; Nelson, Kara L
2012-04-15
The use of alternative container materials and added oxidants accelerated the inactivation of MS2 coliphage and Escherichia coli and Enterococcus spp. bacteria during solar water disinfection (SODIS) trials. Specifically, bottles made from polypropylene copolymer (PPCO), a partially UVB-transparent plastic, resulted in three-log inactivation of these organisms in approximately half the time required for disinfection in bottles made from PET, polycarbonate, or Tritan(®), which absorb most UVB light. Furthermore, the addition of 125 mg/L sodium percarbonate in combination with either citric acid or copper plus ascorbate tended to accelerate inactivation by factors of 1.4-19. Finally, it was observed that the inactivation of E. coli and enterococci derived from local wastewater was far slower than the inactivation of laboratory-cultured E. coli and Enterococcus spp., while the inactivation of MS2 was slowest of all. These results highlight the importance of UVB in SODIS under certain conditions, and also the greater sunlight resistance of some viruses and of bacteria of fecal origin, as compared to the laboratory-cultured bacteria commonly used to model their inactivation. Furthermore, this study illustrates promising new avenues for accelerating the inactivation of bacteria and viruses by solar disinfection. Copyright © 2011 Elsevier Ltd. All rights reserved.
Coliphage HK022 Nun protein inhibits RNA polymerase translocation
Vitiello, Christal L.; Kireeva, Maria L.; Lubkowska, Lucyna; Kashlev, Mikhail; Gottesman, Max
2014-01-01
The Nun protein of coliphage HK022 arrests RNA polymerase (RNAP) in vivo and in vitro at pause sites distal to phage λ N-Utilization (nut) site RNA sequences. We tested the activity of Nun on ternary elongation complexes (TECs) assembled with templates lacking the λ nut sequence. We report that Nun stabilizes both translocation states of RNAP by restricting lateral movement of TEC along the DNA register. When Nun stabilized TEC in a pretranslocated register, immediately after NMP incorporation, it prevented binding of the next NTP and stimulated pyrophosphorolysis of the nascent transcript. In contrast, stabilization of TEC by Nun in a posttranslocated register allowed NTP binding and nucleotidyl transfer but inhibited pyrophosphorolysis and the next round of forward translocation. Nun binding to and action on the TEC requires a 9-bp RNA–DNA hybrid. We observed a Nun-dependent toe print upstream to the TEC. In addition, mutations in the RNAP β′ subunit near the upstream end of the transcription bubble suppress Nun binding and arrest. These results suggest that Nun interacts with RNAP near the 5′ edge of the RNA–DNA hybrid. By stabilizing translocation states through restriction of TEC lateral mobility, Nun represents a novel class of transcription arrest factors. PMID:24853501
Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment.
Schmitz, Bradley W; Moriyama, Hitoha; Haramoto, Eiji; Kitajima, Masaaki; Sherchan, Samendra; Gerba, Charles P; Pepper, Ian L
2018-06-19
Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.
Femmer, Suzanne R.
2000-01-01
The protection of public health through quality public ground-water systems is the responsibility of the U. S. Environmental Protection Agency and the State of Missouri, through the Missouri Department of Natural Resources, Public Drinking Water Program. Approximately 95 percent of the public-water supplies in Missouri use ground water as their source of drinking water through more than 3,700 public wells. Karst terrain, intensive agricultural operations, extensive numbers of on-site sewage systems, and poor well construction can lead to chemical and microbiological contamination of the contributing aquifers. Sitespecific studies and routine regulatory monitoring have produced information on the overall quality and potability of the State's public-drinking-water supplies, but little is known about the presence of viruses. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, sampled 109 public-water supplies to characterize the physical, chemical, bacterial, and viral conditions in southern Missouri. During April to July 1998, these wells were sampled for nutrients, total organic carbon, optical brighteners, indicator bacteria, enteric viruses, and ribonucleic acid and somatic coli phages. These constituents indicate possible surface contamination of the sampled aquifer. Selection of the wells to be sampled depended on the age of the well (pre-1970), land use, geohydrology, and well construction. None of the physical or chemical constituents measured or analyzed exceeded Missouri's Drinking Water Standards set by the Public Drinking Water Program of the Missouri Department of Natural Resources. The majority of ammonia plus organic nitrogen, nitrite, and phosphorus concentrations were below the laboratory's minimum reporting levels. There were a greater number of detects above the minimum reporting level with respect to the nitrite plus nitrate, ammonia, orthophosphate, and total organic carbon concentrations. Analyses included comparing and contrasting the data by grouping according to well age and construction, karst type, geohydrology, soil type, and land use. There was little variation in well construction between selected wells. The results indicated several groupings of similar and dissimilar concentrations, most expected because of hydrological, physical, or land use differences. Dissolved oxygen values indicated distinct variation in the different groupings. There were significant differences in dissolved oxygen values between the secondary and non-karst areas, the Ozark confined and Ozark unconfined geohydrologic groups, and between agricultural and other land uses. In groupings by soil and geohydrology, the Missouri bootheel region differed with respect to ammonia, total organic carbon, and phosphorus when compared with the other groups. Less than 10 percent of the wells sampled tested positive for bacterial contamination. E. coli was the most frequently detected bacterium. The public wells at Monett and West Plains, Missouri, had plates with colonies too numerous to count for all three indicator bacteria. Further analyses by rRNA (ribosomal RiboNucleic Acid) hybridization techniques detennined that much of the bacteria present were from ruminant and human sources. No enteric viruses were detected in the 109 samples. Both ribonucleic acid and somatic coliphage were detected at two wells. One additional well had ribonucleic acid coliphage and another had somatic coliphage for a total of four wells with coliphage selects.
Corps of Engineers Land Treatment of Wastewater Research Program, An Annotated Bibliography.
1983-04-01
engineering) Waste treatment Waste water 4 20. ABST14ACT (Eacabsue an reverse oh It necwwey mad tdertlfy by block number) *This bibliography contains...1982) Distribution of phosphorus in soils irri ated with municipal waste- water effluent: A 5-year study. Journal of Environmental Quality, vol. 11...vol. 44, p. 383-394. The removal of seeded coliphage f2 and indigenous enteroviruses from primary and secondary wastewaters applied by spray
U.S. Army Medical Materiel Development Activity 1991 Annual Report
1991-01-31
coliphage detection technology. The RABTEK will significantly reduce the time required to determine the sanitary quality of potential water sources, and...dependence on medical grade oxygen resupply. o The e st I %Mt is a device which produces sterile Water for Injection from a potable water source, combines...that water with concentrated electrolytes to formulate parenteral solutions, and packages the solutions in sterile plastic IV bags. 1 1 e Laser
Microbiological Evaluation of Containment Isolators for the Care of Patients with Exotic Diseases.
1980-02-01
The microbiological integrity of containment isolators obtained from Vickers Limited Medical Engineering was evaluated using aerosols of Tl coliphage ...diluted in sterile distilled water (SDW). Aliquots for plate counts were mixed with log phase host cells and the mixture spread evenly on pre-dried...of water was diffi- cult to maintain and measure accurately even with sensitive meters, and finally visual observation of the curvature of the side
Genes and Structural Proteins of the Phage Syn5 of the Marine Cyanobacteria Synechococcus
2005-09-01
typhimurium phage P22, a podoviridae, was shown to possess extensive genomic similarity to coliphage lambda, a siphoviridae (Botstein and Herskowitz...are found among cyanobacteria in the surface waters during the winter. Temperature influences the number of infectious particles produced during lytic...grids and stained with 1% uranyl acetate for 15 minutes, washed three times in double-distilled water , stained in 1% lead citrate for 4 minutes, and
Comparative Analysis of Two Biological Warfare Air Samplers Using Live Surrogate Agents
2012-03-01
extensively for Phosphate Buffer Saline (PBS) solution and water , and, to a very limited degree in AF evaluations, for virus preserving media, specifically...or water . Furthermore, viral studies have been conducted comparing the effectiveness of utilizing the reduced secondary flow rate on the XMX/2L...with using bioagent aerosols rated BSL-2 or higher. Male Specific Coliphage 2 (MS2), American Type Culture Collection (ATCC) 15597-B1, was selected
THE PROTEIN COATS OR "GHOSTS" OF COLIPHAGE T2
Herriott, Roger M.; Barlow, James L.
1957-01-01
A method of preparing the protein coats or ghosts of phage T2 is described along with proof that the lytic action is a property of the ghost. An assay based on the lytic action toward host cells has been developed which permits a rapid evaluation of the number of ghosts with a reliability of ±15 per cent. The antigenic and certain physicochemical properties of the ghost have been determined. PMID:13428990
Performance and Health Risk Assessment of Commercial Off-the-Shelf Individual Water Purifiers
2006-05-26
Drinking Water Systems,” Journal of Environmental Health, 45(5), pp. 220-225 9. Farahbakhsh, K. and Smith, D.W., 2004. “Removal of Coliphages in...Commercial Off-the-Shelf Individual Water Purifiers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William Bettin...individual water purifiers (IWP) for use by individual warfighters to provide emergency treatment of field drinking water . This project had three
The ROWPU Prefiltration System: Removal of Microorganisms
1982-03-01
Pressman4 studied the performance of a prototype Rt(PTT filter rated at 360 gallons per hour. Raw river water was seeded with f2 coliphage virus prior to...block umaiber) Bacillus slobgii Water treatment Easheiebia foilr Cartridge filter Pouioviru Total aerobic bacteriaPalioirusTotal enteric bacteria 246...TTIACT ~ndo aEm. tom ebNi nmoveo -d hoioN 67 asoft aowl6) The Army has developed a Pleverse Osmosis Water Purification Unit (ROWPIT) to provide potable
Association of tellurium resistance and bacteriophage inhibition conferred by R plasmids.
Taylor, D E; Summers, A O
1979-01-01
Concomitant resistance to tellurium compounds (Ter) and inhibition of coli-phage development (Phi) are properties mediated by many H2 incompatibility group R plasmids which have been isolated from diverse bacterial and geographic sources. Ter plasmids from tellurium-resistant bacteria that were isolated from sewage and industrial wastes also mediated phage inhibition. Of these Ter plasmids, three from Citrobacter freundii belonged to the H incompatibility group, whereas three from Klebsiella pneumoniae did not. Images PMID:374351
Melnikov, Olga; Zaritsky, Arieh; Zarka, Aliza; Boussiba, Sammy; Malchin, Natalia; Yagil, Ezra; Kolot, Mikhail
2009-07-01
The integrase (Int) of the lambda-like coliphage HK022 catalyzes the site-specific integration and excision of the phage DNA into and from the chromosome of its host, Escherichia coli. Int recognizes two different pairs of recombining sites attP x attB and attL x attR for integration and excision, respectively. This system was adapted to the cyanobacterium Anabaena sp. strain PCC 7120 as a potential tool for site-specific gene manipulations in the cyanobacterium. Two plasmids were consecutively cointroduced by conjugation into Anabaena cells, one plasmid that expresses HK022 Int recombinase and the other plasmid that carries the excision substrate P(glnA)-attL-T1/T2-attR-lacZ, where T1/T2 are the strong transcription terminators of rrnB, to prevent expression of the lacZ reporter under the constitutive promoter P(glnA). The Int-catalyzed site-specific recombination reaction was monitored by the expression of lacZ emanating as a result of T1/T2 excision. Int catalyzed the site-specific excision reaction in Anabaena cells when its substrate was located either on the plasmid or on the chromosome with no need to supply an accessory protein, such as integration host factor and excisionase (Xis), which are indispensable for this reaction in its host, E. coli.
De Luca, Giovanna; Sacchetti, Rossella; Zanetti, Franca; Leoni, Erica
2008-01-01
A comparison was made between the efficiency of low doses of peracetic acid (PAA: 1.5 mg/l) and chlorine dioxide (ClO(2): 1.5 and 2.0 mg/l) in the disinfection of secondary effluents of a wastewater treatment plant. Peracetic acid was seen to be more active than chlorine dioxide and less influenced by the organic content of the waste. Both PAA and ClO(2) (2.0 mg/l) lead to a higher reduction in total and faecal coliforms and E. coli than in phages (somatic coliphages and F-specific RNA bacteriophages) and enterococci. Detection of faecal coliforms and E. coli should therefore be accompanied by a search for these more resistant microorganisms when assessing the conformity of wastewater for irrigation use, or for discharge into surface waters. Coliphages are also considered suitable indicators of the presence of enteric viruses. Although the application of low doses of both disinfectants offers advantages in terms of costs and produces not significant quantities of byproducts, it is not sufficient to obtain wastewater suitable for irrigation according to the Italian norms (E. coli < 10/100 ml in 80 % of samples and <100/100 ml in the remaining samples). Around 65 % of the samples, however, presented concentrations of E. coli lower than the limit of 5,000/100 ml established by Italian norms for discharge into surface waters.
[Problems of epidemic safety of drinking water use by the population of Russia].
Nedachin, A E; Artemova, T Z; Dmitrieva, R A; Doskina, T V; Talaeva, Iu G; Ivanova, L V; Butorina, N N; Lavrova, D V; Sanamian, A G; Zagaĭnova, A V; Aleshnia, V V; Zhuravlev, P V; Golovina, S V; Panasovets, O P; Savilov, E D; Mamontova, L M; Anganova, E V
2005-01-01
Quantitative relationships were studied between the indicators (common coliform bacteria (CCP), glucose-positive bacteria (GPB), thermoduric bacteria (TDB), coliform bacteria, enterococci, clostridia, coliphages) and the opportunistic (Pseudomonas aeruginosa, Proteus, Klebsiella) and pathogenetic (Salmonella and intestinal viruses) microorganisms at the stages of effluent purification and decontamination, in processes of self-purification in the water reservoirs and of water preparation at water-supplying stations, as well as in the association with the incidence of acute intestinal infections of bacterial and viral genesis in different climatic zones of the country. Salmonella and the opportunistic bacteria of the Enterobacteriaceae family and Pseudomonas aeruginosa were found to be highly resistant to detoxifying agents and environmental factors, adaptable, able to reproduce in pure water, to long survive in underground waters, and to accumulate when water is desalinated at the erections. The cases of intestinal infections were found in the population using the portable water of the standard quality in terms of E. coli, TDB, CCB, and enterococci. In this case only the wider integral index of GPB, which includes the indices of E. coli, TDB, CCB, as well as lactose-negative pathogenic and opportunistic species retains its sanitary significance in terms of all signs and is a reliable indicator of the potential epidemic hazard of drinking water use. Long-term studies have provided evidence for the sanitary value of coliphages as indicators of viral drinking water contamination.
Sunlight inactivation of somatic coliphage in the presence of natural organic matter.
Sun, Chen-Xi; Kitajima, Masaaki; Gin, Karina Yew-Hoong
2016-01-15
Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527). Copyright © 2015 Elsevier B.V. All rights reserved.
Nelson, K L
2003-01-01
During treatment in wastewater stabilization ponds (WSPs) many pathogens, in particular helminth eggs, are concentrated in the sludge layer. Because periodic removal of the sludge is often required, information is needed on the concentrations and inactivation of pathogens in the sludge layer to evaluate the public health risk they pose upon removal of the sludge. In this paper, previous reports on the sludge concentrations of various pathogen indicator organisms and helminth eggs are reviewed and results from our own recent experiments are reported. The advantages and disadvantages of several methods for studying inactivation in the sludge layer are discussed, as well as implications for the management of WSP sludge. In our recent experiments, which were conducted at three WSPs in central Mexico, sludge cores, dialysis chambers, and batch experiments were used to measure the inactivation rates of fecal coliform bacteria, fecal enterococci, F+ coliphage, somatic coliphage, and Ascaris eggs. The first-order inactivation rate constants were found to be approximately 0.1, 0.1, 0.01, 0.001, and 0.001 d(-1), respectively. The concentrations of all the organisms were found to vary both vertically and horizontally in the sludge layer; therefore, to determine the maximum and average concentration of organisms in the sludge layer of a WSP, complete sludge cores must be collected from representative locations throughout the pond.
Sánchez-Nazario, Elia E; Santiago-Rodriguez, Tasha M; Toranzos, Gary A
2014-06-01
A prospective cohort epidemiological pilot study was performed at three tropical beaches with point- and non-point-sources of fecal pollution to characterize the risk of illness among swimmers and non-swimmers. There was an increased risk of illness in swimmers as compared to non-swimmers, even when waters met current microbial standards for recreational water quality. Illnesses included gastrointestinal (GI), skin and respiratory symptoms, earache and fever. Odds ratios (ORs) ranged from 0.32 to 42.35 (GI illness), 0.69 to 3.12 (skin infections), 0.71 to 3.21 (respiratory symptoms), 0.52 to 15.32 (earache) and 0.80 to 1.68 (fever), depending on the beach sampled. The indicators that better predicted the risks of symptoms (respiratory) in tropical recreational waters were total (somatic and male-specific) coliphages (OR = 1.56, p < 0.10, R(2) = 3.79%) and Escherichia coli (OR = 1.38, p < 0.10, R(2) = 1.97%). The present study supports the potential of coliphages as good predictors of risks of respiratory illness in tropical recreational waters. This is the first study that has determined risks of illness after exposure to tropical recreational waters with point- and non-point sources of fecal contamination. The results give an opportunity to perform epidemiological studies in tropical recreational waters in Puerto Rico which can include more participants and other indicators and detection techniques.
Biological Detector Performance with a 402 nm Laser Diode
2001-07-01
distilled water . Serial 1:10 dilutions were repeated 3 times to obtain a final concentration of 10 jg/ml. A working volume of 25 ml was used to fill the...near UV excitation has been reported for a brackish water ciliate that feeds on cyanobacteria (Selbach and Kuhlmann, 1999). Also Van Schaik et al (1999...Ottawa, Ontario KIA 0K2, Canada. Brenner, K.P., P.V. Scarpino and C.S. Clark. 1988. Animal viruses, coliphages , and bacteria in aerosols and wastewater
2007-06-01
Love, G. Lovelace, J. Stewart, and B. Robinson. 2005. Methods to detect and genotype coliphages in water and shellfish. Methodology for a demonstra... Water fecal coliform counts (colony forming units (cfu) per 100 mL of water ) ranged from 100 to 490,000 (mean=21,381, standard deviation =74,541...100) in St. Bernard Parish and the Lower Ninth Ward polders. The LADEQ primary contact recreational water quality criterion for fecal coliforms is
Chloroform-Treated Filamentous Phage as a Bioreceptor for Piezoelectric Sensors
2005-01-01
Gels were rinsed in double-deionized water (DDH2O) then treated by immersion in 0.2 N NaOH for 1 h, 1 M Tris-HCl (pH 7.5) for 15 min, and 0.05 M...Filamentous bacteriophage contract into hollow spherical particles upon exposure to a chloroform- water interface. Cell 23, 747- 753. Manning, M...Chrysogelos, S., Griffith, J., 1981. Mechanism of coliphage M13 contraction: intermediate structures trapped at low temperatures. J. Virol. 40, 912-919. Naylor
2002-01-01
and water solubility, as well as low toxicity and the ability to be easily detected by analytical methods. It is the approved simulant used in CRDC... coliphage (ATCC 15597-B1), a bacterial virus known for its survival capacities in the environment, was used as a biological agent to challenge the...buffer (NDS) kept in a 35°C water bath until complete dissolution of the membranes. Dilutions of MS2 assays were made in sterile PBS. Serial dilutions of
In Vitro Evolution and Affinity-Maturation with Coliphage Qβ Display
Skamel, Claudia; Aller, Stephen G.; Bopda Waffo, Alain
2014-01-01
The Escherichia coli bacteriophage, Qβ (Coliphage Qβ), offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV). DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb) SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets. PMID:25393763
Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater.
Ferguson, Andrew S; Layton, Alice C; Mailloux, Brian J; Culligan, Patricia J; Williams, Daniel E; Smartt, Abby E; Sayler, Gary S; Feighery, John; McKay, Larry D; Knappett, Peter S K; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md Jahangir; Streatfield, P Kim; Yunus, Mohammad; van Geen, Alexander
2012-08-01
Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. Copyright © 2012 Elsevier B.V. All rights reserved.
Elmahdy, M E I; Fongaro, G; Magri, M E; Petruccio, M M; Barardi, C R M
2016-10-01
This study aimed to evaluate the contamination level of the Peri Lagoon, the main freshwater reservoir of Santa Catarina Island, Southern Brazil, for human adenovirus (HAdV), hepatitis A virus (HAV), rotavirus species A (RVA), and somatic coliphages (SOMCPH). Viruses were also investigated in sediments and their sensitivity against natural sunlight was analysed by studying their spatial distribution in different depths of the water column. A total of 84 water samples and 48 sediment samples were examined by qPCR or RT-qPCR. Infectivity of HAdV and SOMCPH was determined and quantified by plaque assay method. A sum of 64% and 48% of water and sediment samples were positive for HAdV, respectively. RVA was present in 33% and 18% of water and sediment samples, and 25% of water samples were positive for HAV. HAdV were infectious in 76% of water and 83% of sediment samples that were positive by qPCR. SOMCPH could be detected in 42% and 18% of water and sediment samples, respectively. The data pointed a variation of viruses' prevalence according to the different water column depths. These results demonstrated that water sources and sediments contaminated by human wastes could play an important role in the recontamination of water columns harvested for further treatment or used for recreational purposes. These data can be of great value for future risk assessment analysis. Copyright © 2016. Published by Elsevier GmbH.
Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater
Ferguson, Andrew S.; Layton, Alice C.; Mailloux, Brian J; Culligan, Patricia J.; Williams, Daniel E.; Smartt, Abby E.; Sayler, Gary S.; Feighery, John; McKay, Larry; Knappett, Peter S.K.; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md. Jahangir; Streatfield, P. Kim; Yunus, Mohammad; van Geen, Alexander
2012-01-01
Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. PMID:22705866
Ghanem, Nawras; Kiesel, Bärbel; Kallies, René; Harms, Hauke; Chatzinotas, Antonis; Wick, Lukas Y
2016-12-06
Although several studies examined the transport of viruses in terrestrial systems only few studies exist on the use of marine phages (i.e., nonterrestrial viruses infecting marine host bacteria) as sensitively detectable microbial tracers for subsurface colloid transport and water flow. Here, we systematically quantified and compared for the first time the effects of size, morphology and physicochemical surface properties of six marine phages and two coliphages (MS2, T4) on transport in sand-filled percolated columns. Phage-sand interactions were described by colloidal filtration theory and the extended Derjaguin-Landau-Verwey-Overbeek approach (XDLVO), respectively. The phages belonged to different families and comprised four phages never used in transport studies (i.e., PSA-HM1, PSA-HP1, PSA-HS2, and H3/49). Phage transport was influenced by size, morphology and hydrophobicity in an approximate order of size > hydrophobicity ≥ morphology. Two phages PSA-HP1, PSA-HS2 (Podoviridae and Siphoviridae) exhibited similar mass recovery as commonly used coliphage MS2 and were 7-fold better transported than known marine phage vB_PSPS-H40/1. Differing properties of the marine phages may be used to trace transport of indigenous viruses, natural colloids or anthropogenic nanomaterials and, hence, contribute to better risk analysis. Our results underpin the potential role of marine phages as microbial tracer for transport of colloidal particles and water flow.
Rounsefell, B D; O'Sullivan, C A; Chinivasagam, N; Batstone, D; Clarke, W P
2013-01-01
Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5±0.3) to 10(1.1±0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 µm membrane, to investigate membrane filtration as a possible sanitation technique.
Microbiological indicators of water quality in the Xochimilco canals, Mexico City.
Juárez-Figueroa, Luis Alfredo; Silva-Sánchez, Jesús; Uribe-Salas, Felipe Javier; Cifuentes-García, Enrique
2003-01-01
To quantify microbiology indicators of fecal contamination in the effluents of two waste water treatment plants and in samples collected in several canals in Xochimilco. A cross sectional study was performed. Ten sites, 5 from plant effluents and 5 from canals, were selected for sampling during November and December 2001. Fecal coliforms and enterococci were quantified by membrane filtration, male specific (F+) and somatic coliphages by double agar layer technique, and Cryptosporidium oocysts and Giardia cysts by concentration with Envirocheck filter followed by immunofluorescence microscopy quantification. The average of organisms counts from effluents and canal water were compared with t Student test. Treated water discharge in canals showed a low count of Fecal Coliforms (average 40.4/100 ml), enterococci (average 58.8/100 ml) and Cryptosporidium oocysts (average 13.2/100 l), while coliphages and Giardia cyst rendered higher counts (average 1467.5/100 ml and 1199.8/100 l, respectively) suggesting the water treatment methods could fail to remove these agents. A significant lower count of Giardia cysts (average 45/100 l) and no Cryptosporidium oocysts were found in irrigation canals, which suggests a natural clearance of these pathogens. Strains of Escherichia coli isolated in one of the canals contaminated with sewage had antimicrobial multi-resistance that was transferred by conjugation suggesting that resistance is encoded in a plasmid potentially transferable to other pathogenic bacteria. Cost effective and culturally acceptable waste treatment methods will require careful planning and consultation if they are to be adopted and mantained by local populations.
Bacteriophage Infecting the Myxobacterium Chondrococcus columnaris
Kingsbury, David T.; Ordal, Erling J.
1966-01-01
Kingsbury, David T. (University of Washington, Seattle), and Erling J. Ordal. Bacteriophage infecting the myxobacterium Chondrococcus columnaris. J. Bacteriol. 91:1327–1332. 1966.—During a series of screening experiments, seven bacteriophages which infect the pathogenic myxobacterium Chondrococcus columnaris were isolated. Of these, one was chosen for detailed study. This phage has a wide host range among strains of C. columnaris, but does not infect other myxobacterial species tested. Morphologically, this phage resembles coliphage T2, though it is smaller. It has a head diameter of 600 A, a tail length of 1,000 A, and a tail width of 200 A. The head is attached to the tail by a well-defined neck. The turbid plaques produced by this phage are similar in appearance to those produced by coliphage λ, and average 1 mm in diameter. The phage has a latent period of 100 min, a rise period of an additional 90 min, and a burst size of 23. Calcium ions at a concentration of 0.004 m are required for adsorption. This requirement cannot be met by substitution of magnesium ions. A purified preparation of 2 × 1012 phage particles was extracted with phenol, and the nucleic acid was identified as deoxyribonucleic acid (DNA). Base ratios of the phage DNA and the DNA of two propagating strains were similar. Streptomycin at a concentration of 70 μg/ml inhibits phage infection at an early stage, probably by inhibiting injection of the phage DNA. Images PMID:5929758
Hambly, Emma; Tétart, Francoise; Desplats, Carine; Wilson, William H.; Krisch, Henry M.; Mann, Nicholas H.
2001-01-01
Sequence analysis of a 10-kb region of the genome of the marine cyanomyovirus S-PM2 reveals a homology to coliphage T4 that extends as a contiguous block from gene (g)18 to g23. The order of the S-PM2 genes in this region is similar to that of T4, but there are insertions and deletions of small ORFs of unknown function. In T4, g18 codes for the tail sheath, g19, the tail tube, g20, the head portal protein, g21, the prohead core protein, g22, a scaffolding protein, and g23, the major capsid protein. Thus, the entire module that determines the structural components of the phage head and contractile tail is conserved between T4 and this cyanophage. The significant differences in the morphology of these phages must reflect the considerable divergence of the amino acid sequence of their homologous virion proteins, which uniformly exceeds 50%. We suggest that their enormous diversity in the sea could be a result of genetic shuffling between disparate phages mediated by such commonly shared modules. These conserved sequences could facilitate genetic exchange by providing partially homologous substrates for recombination between otherwise divergent phage genomes. Such a mechanism would thus expand the pool of phage genes accessible by recombination to all those phages that share common modules. PMID:11553768
The Shiga and Shiga-Like Cytotoxins: Gene Regulation and Functional Analysis of the Binding Subunits
1989-05-05
SLT-I and SLT-II operons, designated slt-I and slt-II respectively, have been cloned from toxin-converting coliphage (Newland et al. 1985; Willshaw...The plasmid bands were removed through the sides of the tubes with a 20-gauge needle, the EtBr was extracted with water -saturated butanol, and the...pBluescript vectors were spread on LB agar plates with 50 ~1 Bluo-gal (BRL; 2% in dimethyl formamide) and 25 ~1 IPTG (BRL; lOOmM in water ) on LB agar
Nevers, Meredith B.; Whitman, Richard L.
2005-01-01
Predictive modeling for Escherichia coli concentrations at effluent-dominated beaches may be a favorable alternative to current, routinely criticized monitoring standards. The ability to model numerous beaches simultaneously and provide real-time data decreases cost and effort associated with beach monitoring. In 2004, five Lake Michigan beaches and the nearby Little Calumet River outfall were monitored for E. coli 7 days a week; on nine occasions, samples were analyzed for coliphage to indicate a sewage source. Ambient lake, river, and weather conditions were measured or obtained from independent monitoring sources. Positive tests for coliphage analysis indicated sewage was present in the river and on bathing beaches following heavy rainfall. Models were developed separately for days with prevailing onshore and offshore winds due to the strong influence of wind direction in determining the river's impact on the beaches. Using regression modeling, it was determined that during onshore winds, E. coli could be adequately predicted using wave height, lake chlorophyll and turbidity, and river turbidity (R2=0.635, N=94); model performance decreased for offshore winds using wave height, wave period, and precipitation (R2=0.320, N=124). Variation was better explained at individual beaches. Overall, the models only failed to predict E. coli levels above the EPA closure limit (235 CFU/100 ml) on five of eleven occasions, indicating that the model is a more reliable alternative to the monitoring approach employed at most recreational beaches.
Ravva, Subbarao V; Sarreal, Chester Z
2016-01-01
F+ RNA coliphages (FRNA) are used to source-track fecal contamination and as surrogates for enteric pathogen persistence in the environment. However, the environmental persistence of FRNA is not clearly understood and necessitates the evaluation of the survival of prototype and environmental isolates of FRNA representing all four genogroups in surface waters from the central coast of California. Water temperature played a significant role in persistence-all prototype and environmental strains survived significantly longer at 10 °C compared to 25 °C. Similarly, the availability of host bacterium was found to be critical in FRNA survival. In the absence of E. coli F(amp), all prototypes of FRNA disappeared rapidly with a D-value (days for one log reduction) of <1.2 d from water samples incubated at 25 °C; the longest surviving prototype was SP. However, in the presence of the host, the order of persistence at 25 °C was QB>MS2>SP>GA and at 10 °C it was QB = MS2>GA>SP. Significant differences in survival were observed between prototypes and environmental isolates of FRNA. While most environmental isolates disappeared rapidly at 25 °C and in the absence of the host, members of genogroups GIII and GI persisted longer with the host compared to members of GII and GIV. Consequentially, FRNA based source tracking methods can be used to detect phages from recent fecal contamination along with those that persist longer in the environment as a result of cooler temperatures and increased host presence.
NASA Astrophysics Data System (ADS)
Krog, Jesper S.; Forslund, Anita; Larsen, Lars E.; Dalsgaard, Anders; Kjaer, Jeanne; Olsen, Preben; Schultz, Anna Charlotte
2017-06-01
The amount of animal manure used in modern agriculture is increasing due to the increase in global animal production. Pig slurry is known to contain zoonotic bacteria such as E. coli, Salmonella spp. and Campylobacter spp., and viruses such as hepatitis E virus and group A rotavirus. Coliform bacteria, present in manure, have previously been shown to leach into tile drains. This poses a potential threat to aquatic environments and may also influence the quality of drinking water. As knowledge is especially scarce about the fate of viruses when applied to fields in natural settings, this project sets out to investigate the leaching potential of six different microorganisms: E. coli and Enterococcus spp. (detected by colony assay), somatic coliphages (using plaque assays), and hepatitis E virus, porcine circovirus type 2, and group A rotavirus (by real-time polymerase chain reaction). All six microorganisms leached through the soil entering the tile drains situated at 1-m depth the first day following pig slurry application. The leaching pattern of group A rotavirus differed substantially from the pattern for somatic coliphages, which are otherwise used as indicators for virus contamination. Furthermore, group A rotavirus was detected in monitoring wells at 3.5-m depth up to 2 months after pig slurry application. The detection of viral genomic material in drainage water and shallow groundwater signifies a potential hazard to human health that needs to be investigated further, as water reservoirs used for recreational use and drinking water are potentially contaminated with zoonotic pathogens.
Ravva, Subbarao V.; Sarreal, Chester Z.
2016-01-01
F+ RNA coliphages (FRNA) are used to source-track fecal contamination and as surrogates for enteric pathogen persistence in the environment. However, the environmental persistence of FRNA is not clearly understood and necessitates the evaluation of the survival of prototype and environmental isolates of FRNA representing all four genogroups in surface waters from the central coast of California. Water temperature played a significant role in persistence–all prototype and environmental strains survived significantly longer at 10°C compared to 25°C. Similarly, the availability of host bacterium was found to be critical in FRNA survival. In the absence of E. coli Famp, all prototypes of FRNA disappeared rapidly with a D-value (days for one log reduction) of <1.2 d from water samples incubated at 25°C; the longest surviving prototype was SP. However, in the presence of the host, the order of persistence at 25°C was QB>MS2>SP>GA and at 10°C it was QB = MS2>GA>SP. Significant differences in survival were observed between prototypes and environmental isolates of FRNA. While most environmental isolates disappeared rapidly at 25°C and in the absence of the host, members of genogroups GIII and GI persisted longer with the host compared to members of GII and GIV. Consequentially, FRNA based source tracking methods can be used to detect phages from recent fecal contamination along with those that persist longer in the environment as a result of cooler temperatures and increased host presence. PMID:26784030
Muniesa, M; Jofre, J; Lucena, F
1999-12-01
Faeces from feral populations of yellow-legged seagulls from the northern coastal area of Catalonia (North-eastern Spain) contained variable amounts of faecal coliforms, faecal streptococci, somatic coliphages, F-specific bacteriophages and Bacteroides fragilis bacteriophages. Occurrence and numbers of bacterial indicators and bacteriophages in the faeces of yellow-legged seagulls are in the ranges described in the faeces of different animals. The ratios between numbers of bacterial indicators and numbers of bacteriophages are much higher in faeces of seagulls than in treated or raw sewage contributed by out-falls of the same area.
Genetic Exclusion in Bacteriophage T4.
1987-01-01
1942) as "interference" between various coliphages , was shown by Delbruck and Bailey (1946) to be the inability of superinfecting phage to contribute... water : 5.8 g Na IPO , 3.0 2 4 g KH PO , 0.5 g NaCl, 1.0 g NH Cl, and the pH adjusted to 2 4 4 o 6.8 to 7.0. All media were autoclaved, cooled to 55 C...0.5M Tris), once with a 1:1 mixture of phenol and chloroform (1/24 isoamyl alcohol) then thrice iith an equal volume of water saturated ether. After
Studies on possible propagation of microbial contamination in planetary atmospheres
NASA Technical Reports Server (NTRS)
Dimmick, R. L.; Wolochow, H.; Chatigny, M. A.
1975-01-01
Maintained aerosols were studied to demonstrate the metabolism and propagation of microbes in clouds which could occur in the course of a probe of a planetary atmosphere. Bacteriophage was used as a tool to test whether the mechanisms for DNA production remain intact and functional within the airborne bacterial cell. In one test method, bacteria were mixed with coliphage in an atomizer to allow attachment before aerosolization; in another, two suspensions were atomized saperately into a common air stream prior to aerosolization. Results show that biochemical and physiological mechanisms to allow aerobic microbes to propagate in the airborne state do exist.
NASA Astrophysics Data System (ADS)
Stimson, J.; Suhogusoff, A. V.; Blowes, D. W.; Hirata, R. A.; Ptacek, C. J.; Robertson, W. D.; Emelko, M. B.
2009-05-01
In densely-populated communities in developing countries, appropriate setback distances for pit latrines often cannot be met. An alternative latrine was designed that incorporates two permeable reactive media to treat pathogens and nitrate from effluent. Basic oxygen furnace (BOF) slag in contact with wastewater effluent elevates pH to levels (> 11) that inactivate pathogens. Saturated woodchip creates reducing conditions that encourage the growth of denitrifying bacteria which remove NO3-. The field application was constructed in Santo Antônio, a peri-urban community located 25 km south of the city of São Paulo, Brazil. A 2-m diameter pit was excavated to a depth of 4 m into the sandy-clay unsaturated zone. A geotextile liner was emplaced to create saturated conditions in the 0.5-m thick woodchip barrier. Above the woodchip barrier, a 1-m thick layer of BOF slag mixed with pea gravel and sand was emplaced. A series of filter layers, grading upward from coarse sand to fine gravel, where placed above the BOF layer, and gravel was also infilled around the outer perimeter of the excavation, to ensure O2 diffusion into the design, the formation of biofilm, and degradation of organic material. A control latrine, constructed with similar hydraulic characteristics and nonreactive materials, was constructed at a locality 100 m away, in the same geological materials. Total coliform, thermotolerant coliform, and E. coli are removed by approximately 4-5 log concentration units in less than one meter of vertical transport through the BOF slag media. In the control latrine, comparable reductions in these pathogenic indicators are observed over three meters of vertical transport. Removal of sulphur-reducing Clostridia, Clostridium perfrigens and somatic coliphage are also achieved in the alternative design, but initial concentrations in effluent are low. Some measurable concentrations of pathogen indicators are measured in lysimeters below the BOF layer, but are associated with low-TDS, neutral water that is infiltrating in from the sidewall of the excavation. Oxygen concentration is augmented (5 mg L-1) in the alternative latrine compared to the control design (1-2 mg L-1), suggesting that conditions for biofilm development are improved. The decline in pH between sampling events after 42 and 82 days of wastewater application suggest that the potential for base release is decreased over time. Somatic coliphage concentrations are 1-2 log concentration units lower in stainless steel lysimeters compared to concentrations measured in adjacent pan lysimeters, suggesting that the filtration of coliphage by the porous cup may negatively bias sampling.
Dumouchelle, Denise H.
2006-01-01
Many home sewage-treatment systems (HSTS) in Ohio use curtain or perimeter drains to depress the level of the subsurface water in and around the systems. These drains could possibly intercept partially untreated wastewater and release potential pathogens to ground-water and surface-water bodies. The quality of water in curtain drains from two different HSTS designs in Medina County, Ohio, was investigated using several methods. Six evaporation-transpiration-absorption (ETA) and five leach-line (LL) systems were investigated by determining nutrient concentrations, chloride/bromide ratios (Cl/Br), Escherichia coli (E. coli ) concentrations, coliphage genotyping, and genetic fingerprinting of E. coli. Water samples were collected at 11 sites and included samples from curtain drains, septic tanks, and residential water wells. Nitrate concentrations in the curtain drains ranged from 0.03 to 3.53 mg/L (milligrams per liter), as N. Concentrations of chloride in 10 of the 11 curtain drains ranged from 5.5 to 21 mg/L; the chloride concentration in the eleventh curtain drain was 340 mg/L. Bromide concentrations in 11 curtain drains ranged from 0.01 to 0.22 mg/L. Cl/Br ratios ranged from 86 to 2,000. F-specific coliphage were not found in any curtain-drain samples. Concentrations of E. coli in the curtain drains ranged from 1 to 760 colonies per 100 milliliters. The curtain-drain water-quality data were evaluated to determine whether HSTS-derived water was present in the curtain drains. Nutrient concentrations were too low to be of use in the determination. The Cl/Br ratios appear promising. Coliphage was not detected in the curtain drains, so genotyping could not be attempted. E. coli concentrations in the curtain drains were all less than those from the corresponding HSTS; only one sample exceeded the Ohio secondary-contact water-quality standard. The genetic fingerprinting data were inconclusive because multiple links between unrelated sites were found. Although the curtain-drain samples from the ETA systems showed somewhat more evidence of the presence of HSTS water than did the LL systems, most of the approaches were inconclusive by themselves. The best evidence of HSTS water, from the Cl/Br ratios, indicates that the water in 10 of the 11 curtain drains, at both HSTS types, was a mixture of dilute ground water and HSTS-derived water; the 11th drain also show some effects of the HSTS, although road salt-affected water may be present. Therefore, it appears that there is no difference between the ETA and LL systems with respect to the water quality in curtain drains.
Water quality and sources of fecal coliform bacteria in the Meduxnekeag River, Houlton, Maine
Culbertson, Charles W.; Huntington, Thomas G.; Stoeckel, Donald M.; Caldwell, James M.; O'Donnell, Cara
2014-01-01
In response to bacterial contamination in the Meduxnekeag River and the desire to manage the watershed to reduce contaminant sources, the Houlton Band of Maliseet Indians (HBMI) and the U.S. Geological Survey began a cooperative effort to establish a baseline of water-quality data that can be used in future studies and to indicate potential sources of nutrient and bacterial contamination. This study was conducted during the summer of 2005 in the Meduxnekeag River Basin near Houlton, Maine. Continuously recorded specific conductance can be a good indicator for water quality. Specific conductance increased downstream from the town of Houlton, between runoff events, and decreased sharply following major runoff events. Collections of discrete samples during the summer of 2005 indicated seasonal positive concentration-discharge relations for total phosphorus and total nitrogen; these results indicate that storm runoff may mobilize and transport these nutrients from the terrestrial environment to the river. Data collected by the HBMI on fecal coliform bacteria indicated that bacterial contamination enters the Meduxnekeag River from multiple paths including tributaries and surface drains (ditches) in developed areas in Houlton, Maine. The Houlton wastewater treatment discharge was not an important source of bacterial contamination. Bacteroidales-based tests for general fecal contamination (Bac32 marker) were predominantly positive in samples that had excessive fecal contamination as indicated by Enterococci density greater than 104 colony-forming units per 100 millilters. Of the 22 samples tested for Bacteroidales-based markers of human-associated fecal contamination (HF134 and HF183), 8 were positive. Of the 22 samples tested for Bacteroidales-based markers of ruminant-associated fecal contamination (CF128 and CF193), 7 were positive. Human fecal contamination was detected consistently at two sites (surface drains in urban areas in the town of Houlton) and occasionally detected at one site (Moose Brook) but was not detected at other sites. Fecal contamination (as indicated by fecal coliform density) apparently is localized under normal flow conditions with the highest levels restricted to drains in urban areas and to a lesser extent B Stream, Pearce Brook, and Big Brook, all tributaries to the main stem of the Meduxnekeag River. Coliphage were enumerated as an alternate indicator of fecal contamination with the intent of typing the virus into host-associated classes (human or ruminant), as was done for Enterococci; however, insufficient coliphage were isolated to provide more than preliminary indications. In spite of low coliphage enumeration, the preliminary results strengthen the conclusion that the Enterococci data correctly indicated the samples that contained human and ruminant fecal contamination. The finding that contamination was in many of the tributaries following storms in mid-July indicates that storm runoff likely carries fecal contaminants to more locations than runoff under lower flow conditions.
Liang, L.; Goh, S. G.; Vergara, G. G. R. V.; Fang, H. M.; Rezaeinejad, S.; Chang, S. Y.; Bayen, S.; Lee, W. A.; Sobsey, M. D.; Rose, J. B.
2014-01-01
The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. PMID:25416765
Fong, Theng-Theng; Mansfield, Linda S.; Wilson, David L.; Schwab, David J.; Molloy, Stephanie L.; Rose, Joan B.
2007-01-01
Background A groundwater-associated outbreak affected approximately 1,450 residents and visitors of South Bass Island, Ohio, between July and September 2004. Objectives To examine the microbiological quality of groundwater wells located on South Bass Island, we sampled 16 wells that provide potable water to public water systems 15–21 September 2004. Methods We tested groundwater wells for fecal indicators, enteric viruses and bacteria, and protozoa (Cryptosporidium and Giardia). The hydrodynamics of Lake Erie were examined to explore the possible surface water–groundwater interactions. Results All wells were positive for both total coliform and Escherichia coli. Seven wells tested positive for enterococci and Arcobacter (an emerging bacterial pathogen), and F+-specific coliphage was present in four wells. Three wells were positive for all three bacterial indicators, coliphages, and Arcobacter; adenovirus DNA was recovered from two of these wells. We found a cluster of the most contaminated wells at the southeast side of the island. Conclusions Massive groundwater contamination on the island was likely caused by transport of microbiological contaminants from wastewater treatment facilities and septic tanks to the lake and the subsurface, after extreme precipitation events in May–July 2004. This likely raised the water table, saturated the subsurface, and along with very strong Lake Erie currents on 24 July, forced a surge in water levels and rapid surface water–groundwater interchange throughout the island. Landsat images showed massive influx of organic material and turbidity surrounding the island before the peak of the outbreak. These combinations of factors and information can be used to examine vulnerabilities in other coastal systems. Both wastewater and drinking water issues are now being addressed by the Ohio Environmental Protection Agency and the Ohio Department of Health. PMID:17589591
Ruppelt, Jan P; Tondera, Katharina; Schreiber, Christiane; Kistemann, Thomas; Pinnekamp, Johannes
2018-05-01
Combined sewer overflows (CSOs) introduce numerous pathogens from fecal contamination, such as bacteria and viruses, into surface waters, thus endangering human health. In Germany, retention soil filters (RSFs) treat CSOs at sensitive discharge points and can contribute to reducing these hygienically relevant microorganisms. In this study, we evaluated the extent of how dry period, series connection and filter layer thickness influence the reduction efficiency of RSFs for Escherichia coli (E. coli), intestinal enterococci (I. E.) and somatic coliphages. To accomplish this, we had four pilot scale RSFs built on a test field at the wastewater treatment plant Aachen-Soers. While two filters were replicates, the other two filters were installed in a series connection. Moreover, one filter had a thinner filtration layer than the other three. Between April 2015 and December 2016, the RSFs were loaded in 37 trials with pre-conditioned CSO after dry periods ranging from 4 to 40 days. During 17 trials, samples for microbial analysis were taken and analyzed. The series connection of two filters showed that the removal increases when two systems with a filter layer of the same height are operated in series. Since the microorganisms are exposed twice to the environmental conditions on the filter surface and in the upper filter layers, there is a greater chance for abiotic adsorption increase. The same effect could be shown when filters with different depths were compared: the removal efficiency increases as filter thickness increases. This study provides new evidence that regardless of seasonal effects and dry period, RSFs can improve hygienic situation significantly. Copyright © 2018 Elsevier GmbH. All rights reserved.
Harwood, Valerie J.; Levine, Audrey D.; Scott, Troy M.; Chivukula, Vasanta; Lukasik, Jerzy; Farrah, Samuel R.; Rose, Joan B.
2005-01-01
The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, ∼40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study. PMID:15933017
Identifying fecal sources in a selected catchment reach using multiple source-tracking tools
Vogel, J.R.; Stoeckel, D.M.; Lamendella, R.; Zelt, R.B.; Santo, Domingo J.W.; Walker, S.R.; Oerther, D.B.
2007-01-01
Given known limitations of current microbial source-tracking (MST) tools, emphasis on small, simple study areas may enhance interpretations of fecal contamination sources in streams. In this study, three MST tools - Escherichia coli repetitive element polymerase chain reaction (rep-PCR), coliphage typing, and Bacteroidales 16S rDNA host-associated markers - were evaluated in a selected reach of Plum Creek in sooth-central Nebraska. Water-quality samples were collected from six sites. One reach was selected for MST evaluation based on observed patterns of E. coli contamination. Despite high E. coli concentrations, coliphages were detected only once among water samples, precluding their use as a MST tool in this setting. Rep-PCR classification of E. coli isolates from both water and sediment samples supported the hypothesis that cattle and wildlife were dominant sources of fecal contamination, with minor contributions by horses and humans. Conversely, neither ruminant nor human sources were detected by Bacteroidales markers in most water samples. In bed sediment, ruminant- and human-associated Bacteroidales markers were detected throughout the interval from 0 to 0.3 m, with detections independent of E. coli concentrations in the sediment. Although results by E. coli-based and Bacteroidales-based MST methods led to similar interpretations, detection of Bacteroidales markers in sediment more commonly than in water indicates that different tools to track fecal contamination (in this case, tools based on Bacteroidales DNA and E. coli isolates) may have varying relevance to the more specific goal of tracking the sources of E. coli in watersheds. This is the first report of simultaneous, toolbox approach application of a library-based and marker-based MST analyses to lowing surface water. ?? ASA, CSSA, SSSA.
Bacteriophages infecting Bacteroides as a marker for microbial source tracking.
Jofre, Joan; Blanch, Anicet R; Lucena, Francisco; Muniesa, Maite
2014-05-15
Bacteriophages infecting certain strains of Bacteroides are amid the numerous procedures proposed for tracking the source of faecal pollution. These bacteriophages fulfil reasonably well most of the requirements identified as appropriate for a suitable marker of faecal sources. Thus, different host strains are available that detect bacteriophages preferably in water contaminated with faecal wastes corresponding to different animal species. For phages found preferably in human faecal wastes, which are the ones that have been more extensively studied, the amounts of phages found in waters contaminated with human fecal samples is reasonably high; these amounts are invariable through the time; their resistance to natural and anthropogenic stressors is comparable to that of other relatively resistant indicator of faecal pollution such us coliphages; the abundance ratios of somatic coliphages and bacteriophages infecting Bacteroides thetaiotaomicron GA17 are unvarying in recent and aged contamination; and standardised detection methods exist. These methods are easy, cost effective and provide data susceptible of numerical analysis. In contrast, there are some uncertainties regarding their geographical stability, and consequently suitable hosts need to be isolated for different geographical areas. However, a feasible method has been described to isolate suitable hosts in a given geographical area. In summary, phages infecting Bacteroides are a marker of faecal sources that in our opinion merits being included in the "toolbox" for microbial source tracking. However, further research is still needed in order to make clear some uncertainties regarding some of their characteristics and behaviour, to compare their suitability to the one of emerging methods such us targeting Bacteroidetes by qPCR assays; or settling molecular methods for their determination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterization of a ViI-like Phage Specific to Escherichia coli O157:H7
2011-01-01
Phage vB_EcoM_CBA120 (CBA120), isolated against Escherichia coli O157:H7 from a cattle feedlot, is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and none targeting E. coli have been described in the literature. The genome of CBA120 has been fully sequenced and is highly similar to those of both ViI and the Shigella phage AG3. The core set of structural and replication-related proteins of CBA120 are homologous to those from T-even phages, but generally are more closely related to those from T4-like phages of Vibrio, Aeromonas and cyanobacteria than those of the Enterobacteriaceae. The baseplate and method of adhesion to the host are, however, very different from those of either T4 or the cyanophages. None of the outer baseplate proteins are conserved. Instead of T4's long and short tail fibers, CBA120, like ViI, encodes tail spikes related to those normally seen on podoviruses. The 158 kb genome, like that of T4, is circularly permuted and terminally redundant, but unlike T4 CBA120 does not substitute hmdCyt for cytosine in its DNA. However, in contrast to other coliphages, CBA120 and related coliphages we have isolated cannot incorporate 3H-thymidine (3H-dThd) into their DNA. Protein sequence comparisons cluster the putative "thymidylate synthase" of CBA120, ViI and AG3 much more closely with those of Delftia phage φW-14, Bacillus subtilis phage SPO1, and Pseudomonas phage YuA, all known to produce and incorporate hydroxymethyluracil (hmdUra). PMID:21899740
Transport of human adenoviruses in porous media
NASA Astrophysics Data System (ADS)
Kokkinos, Petros; Syngouna, Vasiliki I.; Tselepi, Maria A.; Bellou, Maria; Chrysikopoulos, Constantinos V.; Vantarakis, Apostolos
2015-04-01
Groundwater may be contaminated with infective human enteric viruses from various wastewater discharges, sanitary landfills, septic tanks, agricultural practices, and artificial groundwater recharge. Coliphages have been widely used as surrogates of enteric viruses, because they share many fundamental properties and features. Although a large number of studies focusing on various factors (i.e. pore water solution chemistry, fluid velocity, moisture content, temperature, and grain size) that affect biocolloid (bacteria, viruses) transport have been published over the past two decades, little attention has been given toward human adenoviruses (hAdVs). The main objective of this study was to evaluate the effect of pore water velocity on hAdV transport in water saturated laboratory-scale columns packed with glass beads. The effects of pore water velocity on virus transport and retention in porous media was examined at three pore water velocities (0.39, 0.75, and 1.22 cm/min). The results indicated that all estimated average mass recovery values for hAdV were lower than those of coliphages, which were previously reported in the literature by others for experiments conducted under similar experimental conditions. However, no obvious relationship between hAdV mass recovery and water velocity could be established from the experimental results. The collision efficiencies were quantified using the classical colloid filtration theory. Average collision efficiency, α, values decreased with decreasing flow rate, Q, and pore water velocity, U, but no significant effect of U on α was observed. Furthermore, the surface properties of viruses and glass beads were used to construct classical DLVO potential energy profiles. The results revealed that the experimental conditions of this study were unfavorable to deposition and that no aggregation between virus particles is expected to occur. A thorough understanding of the key processes governing virus transport is pivotal for public health protection.
Anfruns-Estrada, Eduard; Bruguera-Casamada, Carmina; Salvadó, Humbert; Brillas, Enric; Sirés, Ignasi; Araujo, Rosa M
2017-12-01
This work aims at comparing the ability of two kinds of electrochemical technologies, namely electrocoagulation (EC) and electro-Fenton (EF), to disinfect primary and secondary effluents from municipal wastewater treatment plants. Heterotrophic bacteria, Escherichia coli, enterococci, Clostridium perfringens spores, somatic coliphages and eukaryotes (amoebae, flagellates, ciliates and metazoa) were tested as indicator microorganisms. EC with an Fe/Fe cell at 200 A m -2 and natural pH allowed >5 log unit removal of E. coli and final concentration below 1 bacteria mL -1 of coliphages and eukaryotes from both effluents in ca. 60 min, whereas heterotrophic bacteria, enterococci and spores were more resistant. A larger removal was obtained for the primary effluent, probably because the flocs remove higher amount of total organic carbon (TOC), entrapping more easily the microbiota. EF with a boron-doped diamond (BDD) anode and an air-diffusion cathode that produces H 2 O 2 on site was first performed at pH 3.0, with large or even total inactivation of microorganisms within 30 min. A more effective microorganism removal was attained as compared to EC thanks to • OH formed from Fenton's reaction. A quicker disinfection was observed for the secondary effluent owing to its lower TOC content, allowing the attack of greater quantities of electrogenerated oxidants on microorganisms. Wastewater disinfection by EF was also feasible at natural pH (∼7), showing similar abatement of active microorganisms as a result of the synergistic action of generated oxidants like active chlorine and coagulation with iron hydroxides. A sequential EC/EF treatment (30 min each) was more effective for a combined decontamination and disinfection of urban wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liang, L; Goh, S G; Vergara, G G R V; Fang, H M; Rezaeinejad, S; Chang, S Y; Bayen, S; Lee, W A; Sobsey, M D; Rose, J B; Gin, K Y H
2015-02-01
The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rosiles-González, Gabriela; Ávila-Torres, Gerardo; Moreno-Valenzuela, Oscar A; Acosta-González, Gilberto; Leal-Bautista, Rosa María; Grimaldo-Hernández, Cinthya D; Brown, Judith K; Chaidez-Quiroz, Cristóbal; Betancourt, Walter Q; Gerba, Charles P; Hernández-Zepeda, Cecilia
2017-12-01
The Yucatan Peninsula of Mexico hosts a karst aquifer system that is the only source of freshwater for the area; however, it is vulnerable to human-mediated contamination. Pepper mild mottle virus (PMMoV) is one of the most abundant RNA viruses associated with human feces, making it a viable indicator for tracking fecal pollution in aquatic environments, including groundwater. In this study, groundwater samples collected from a karst aquifer from fresh and brackish water locations were analyzed for fecal indicator bacteria, somatic and male F+ specific coliphages, and PMMoV during the rainy and dry seasons. Total coliform bacteria were detected at all sites, whereas Escherichia coli were found at relatively low levels <40 MPN/100 ml. The highest average concentrations of somatic and male F+ specific coliphages were 920 and 330 plaque forming units per 100 ml, respectively, detected in freshwater during the rainy season. PMMoV RNA was detected in 85% of the samples with gene sequences sharing 99-100% of nucleotide identity with PMMoV sequences available in GenBank. Quantification of PMMoV genome copies (GC) by quantitative real-time PCR indicated concentrations ranging from 1.7 × 10 1 to 1.0 × 10 4 GC/L, with the highest number of GC detected during the rainy season. No significant correlation was observed between PMMoV occurrence by season or water type (p > 0.05). Physicochemical and indicator bacteria were not correlated with PMMoV concentrations. The abundance and prevalence of PMMoV in the karst aquifer may reflect its environmental persistence and its potential as a fecal indicator in this karst aquifer system.
Yamahara, Kevan M.; Sassoubre, Lauren M.; Goodwin, Kelly D.
2012-01-01
This report documents the presence of fecal indicators and bacterial pathogens in sand at 53 California marine beaches using both culture-dependent and -independent (PCR and quantitative PCR [QPCR]) methods. Fecal indicator bacteria were widespread in California beach sand, with Escherichia coli and enterococci detected at 68% and 94% of the beaches surveyed, respectively. Somatic coliphages and a Bacteroidales human-specific fecal marker were detected at 43% and 13% of the beaches, respectively. Dry sand samples from almost 30% of the beaches contained at least one of the following pathogens: Salmonella spp., Campylobacter spp., Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), which were detected at 15%, 13%, 14%, and 3% of tested beaches, respectively. Fecal indicators and pathogens were poorly correlated to one another and to land cover. Sands were dry at the time of collection, and those with relatively high moisture tended to have higher concentrations or a more frequent occurrence of both indicators and pathogens. Using culture-dependent assays, fecal indicators decayed faster than pathogens in microcosm experiments using unaltered beach sand seeded with sewage and assessed by culture-dependent assays. The following order of persistence was observed (listed from most to least persistent): Campylobacter > Salmonella > somatic coliphages > enterococci > E. coli > F+ phages. In contrast, pathogens decayed faster than fecal indicators in culture-independent assays: enterococci > Bacteroidales human-specific marker > Salmonella > Campylobacter. Microcosm experiments demonstrated that both indicators and pathogens were mobilized by wetting with seawater. Decay rates measured by QPCR were lower than those measured with culture-dependent methods. Enterococcal persistence and possible growth were observed for wetted microcosms relative to unwetted controls. PMID:22247142
Wilkes, Graham; Brassard, Julie; Edge, Thomas A.; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C.; Jones, Tineke H.; Khan, Izhar U. H.; Marti, Romain; Sunohara, Mark D.; Topp, Edward
2014-01-01
Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. PMID:24727274
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasifar, Reza; Griffiths, Mansel W.; Sabour, Parviz M.
Cronobacter sakazakii is a Gram-negative pathogen found in milk-based formulae that causes infant meningitis. Bacteriophages have been proposed to control bacterial pathogens; however, comprehensive knowledge about a phage is required to ensure its safety before clinical application. We have characterized C. sakazakii phage vB{sub C}saM{sub G}AP32 (GAP32), which possesses the second largest sequenced phage genome (358,663 bp). A total of 571 genes including 545 protein coding sequences and 26 tRNAs were identified, thus more genes than in the smallest bacterium, Mycoplasma genitalium G37. BLASTP and HHpred searches, together with proteomic analyses reveal that only 23.9% of the putative proteins havemore » defined functions. Some of the unique features of this phage include: a chromosome condensation protein, two copies of the large subunit terminase, a predicted signal-arrest-release lysin; and an RpoD-like protein, which is possibly involved in the switch from immediate early to delayed early transcription. Its closest relatives are all extremely large myoviruses, namely coliphage PBECO4 and Klebsiella phage vB{sub K}leM-RaK2, with whom it shares approximately 44% homologous proteins. Since the homologs are not evenly distributed, we propose that these three phages belong to a new subfamily. - Highlights: • Cronobacter sakazakii phage vB{sub C}saM{sub G}AP32 has a genome of 358,663 bp. • It encodes 545 proteins which is more than Mycoplasma genitalium G37. • It is a member of the Myoviridae. • It is peripherally related to coliphage PBECO4 and Klebsiella phage vB{sub K}leM-RaK2. • GAP32 encodes a chromosome condensation protein.« less
Chen, Mianmian; Xu, Juntian; Yao, Huochun; Lu, Chengping; Zhang, Wei
2016-05-10
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. Due to the drug residues and increased antibiotic resistance caused by antibiotic use, bacteriophages and other alternative therapeutic agents are expected to control APEC infection in poultry. Two APEC phages, named P483 and P694, were isolated from the feces from the farmers market in China. We then studied their biological properties, and carried out high-throughput genome sequencing and homology analyses of these phages. Assembly results of high-throughput sequencing showed that the structures of both P483 and P694 genomes consist of linear and double-stranded DNA. Results of the electron microscopy and homology analysis revealed that both P483 and P694 belong to T7-like virus which is a member of the Podoviridae family of the Caudovirales order. Comparative genomic analysis showed that most of the predicted proteins of these two phages showed strongest sequence similarity to the Enterobacteria phages BA14 and 285P, Erwinia phage FE44, and Kluyvera phage Kvp1; however, some proteins such as gp0.6a, gp1.7 and gp17 showed lower similarity (<85%) with the homologs of other phages in the T7 subgroup. We also found some unique characteristics of P483 and P694, such as the two types of the genes of P694 and no lytic activity of P694 against its host bacteria in liquid medium. Our results serve to further our understanding of phage evolution of T7-like coliphages and provide the potential application of the phages as therapeutic agents for the treatment of diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of Five Podoviridae Phages Infecting Citrobacter freundii
Hamdi, Sana; Rousseau, Geneviève M.; Labrie, Simon J.; Kourda, Rim S.; Tremblay, Denise M.; Moineau, Sylvain; Slama, Karim B.
2016-01-01
Citrobacter freundii causes opportunistic infections in humans and animals, which are becoming difficult to treat due to increased antibiotic resistance. The aim of this study was to explore phages as potential antimicrobial agents against this opportunistic pathogen. We isolated and characterized five new virulent phages, SH1, SH2, SH3, SH4, and SH5 from sewage samples in Tunisia. Morphological and genomic analyses revealed that the five C. freundii phages belong to the Caudovirales order, Podoviridae family, and Autographivirinae subfamily. Their linear double-stranded DNA genomes range from 39,158 to 39,832 bp and are terminally redundant with direct repeats between 183 and 242 bp. The five genomes share the same organization as coliphage T7. Based on genomic comparisons and on the phylogeny of the DNA polymerases, we assigned the five phages to the T7virus genus but separated them into two different groups. Phages SH1 and SH2 are very similar to previously characterized phages phiYeO3-12 and phiSG-JL2, infecting, respectively, Yersinia enterocolitica and Salmonella enterica, as well as sharing more than 80% identity with most genes of coliphage T7. Phages SH3, SH4, and SH5 are very similar to phages K1F and Dev2, infecting, respectively, Escherichia coli and Cronobacter turicensis. Several structural proteins of phages SH1, SH3, and SH4 were detected by mass spectrometry. The five phages were also stable from pH 5 to 10. No genes coding for known virulence factors or integrases were found, suggesting that the five isolated phages could be good candidates for therapeutic applications to prevent or treat C. freundii infections. In addition, this study increases our knowledge about the evolutionary relationships within the T7virus genus. PMID:27446058
Role of Escherichia coli dnaG function in coliphage M13 DNA synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, S.; Mitra, S.
Examination of the role of Escherichia coli dnaG function in different stages of M13 phage DNA synthesis by ultracentrifugal analysis of intracellular phage DNA in a thermosensitive dnaG mutant shows that: (a) the formation of parental double-strand replicative-form DNA (rfDNA) from the infecting virus is independent of dnaG function; (b) the synthesis of progeny rfDNA requires dnaG product; (c) after a pool of rfDNA is made up, dnaG function is not required for the progeny single-strand DNA (ssDNA) synthesis. The ssDNAs produced under nonpermissive condition are mostly circular and biologically functional.
Binding of transcription termination protein nun to nascent RNA and template DNA.
Watnick, R S; Gottesman, M E
1999-12-17
The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.
Monitoring of Low-Level Virus in Natural Waters
Sorber, Charles A.; Sagik, Bernard P.; Malina, Joseph F.
1971-01-01
The insoluble polyelectrolyte technique for concentrating virus is extended to extremely low virus levels. The effectiveness of this method employing a coliphage T2 model is a constant 20% over a range of virus levels from 103 to 10−4 plaque-forming units/ml. The efficiency of the method is dependent upon pH control during the concentration phase. Although the study was initiated to develop a method for quantitating the effectiveness of water and wastewater treatment methods for the removal of viruses from waters at low concentrations, the potential of the technique for efficient monitoring of natural waters is apparent. PMID:4940873
Comparison of bacteriophage and enteric virus removal in pilot scale activated sludge plants.
Arraj, A; Bohatier, J; Laveran, H; Traore, O
2005-01-01
The aim of this experimental study was to determine comparatively the removal of two types of bacteriophages, a somatic coliphage and an F-specific RNA phage and of three types of enteric viruses, hepatitis A virus (HAV), poliovirus and rotavirus during sewage treatment by activated sludge using laboratory pilot plants. The cultivable simian rotavirus SA11, the HAV HM 175/18f cytopathic strain and poliovirus were quantified by cell culture. The bacteriophages were quantified by plaque formation on the host bacterium in agar medium. In each experiment, two pilots simulating full-scale activated sludge plants were inoculated with viruses at known concentrations, and mixed liquor and effluent samples were analysed regularly. In the mixed liquor, liquid and solid fractions were analysed separately. The viral behaviour in both the liquid and solid phases was similar between pilots of each experiment. Viral concentrations decreased rapidly following viral injection in the pilots. Ten minutes after the injections, viral concentrations in the liquid phase had decreased from 1.0 +/- 0.4 log to 2.2 +/- 0.3 log. Poliovirus and HAV were predominantly adsorbed on the solid matters of the mixed liquor while rotavirus was not detectable in the solid phase. In our model, the estimated mean log viral reductions after 3-day experiment were 9.2 +/- 0.4 for rotavirus, 6.6 +/- 2.4 for poliovirus, 5.9 +/- 3.5 for HAV, 3.2 +/- 1.2 for MS2 and 2.3 +/- 0.5 for PhiX174. This study demonstrates that the pilots are useful models to assess the removal of infectious enteric viruses and bacteriophages by activated sludge treatment. Our results show the efficacy of the activated sludge treatment on the five viruses and suggest that coliphages could be an acceptable indicator of viral removal in this treatment system.
De Sanctis, Marco; Del Moro, Guido; Levantesi, Caterina; Luprano, Maria Laura; Di Iaconi, Claudio
2016-02-01
In the present paper, the effectiveness of a Sequencing Batch Biofilter Granular Reactor (SBBGR) and its integration with different disinfection strategies (UV irradiation, peracetic acid) for producing an effluent suitable for agricultural use was evaluated. The plant treated raw domestic sewage, and its performances were evaluated in terms of the removal efficiency of a wide group of physical, chemical and microbiological parameters. The SBBGR resulted really efficient in removing suspended solids, COD and nitrogen with an average effluent concentration of 5, 32 and 10 mg/L, respectively. Lower removal efficiency was observed for phosphorus with an average concentration in the effluent of 3 mg/L. Plant effluent was also characterized by an average electrical conductivity and sodium adsorption ratio of 680 μS/cm and 2.9, respectively. Therefore, according to these gross parameters, the SBBGR effluent was conformed to the national standards required in Italy for agricultural reuse. Moreover, disinfection performances of the SBBGR was higher than that of conventional municipal wastewater treatment plants and met the quality criteria suggested by WHO (Escherichia coli<1000 CFU/100 mL) for agricultural reuse. In particular, the biological treatment by SBBGR removed 3.8±0.4 log units of Giardia lamblia, 2.8±0.8 log units of E. coli, 2.5±0.7 log units of total coliforms, 2.0±0.3 log units of Clostridium perfringens, 2.0±0.4 log units of Cryptosporidium parvum and 1.7±0.7 log units of Somatic coliphages. The investigated disinfection processes (UV and peracetic acid) resulted very effective for total coliforms, E. coli and somatic coliphages. In particular, a UV radiation and peracetic acid doses of 40 mJ/cm(2) and 1 mg/L respectively reduced E. coli content in the effluent below the limit for agricultural reuse in Italy (10 CFU/100 mL). Conversely, they were both ineffective on C.perfringens spores. Copyright © 2015 Elsevier B.V. All rights reserved.
Inactivation of Viruses and Bacteriophages as Models for Swine Hepatitis E Virus in Food Matrices.
Emmoth, Eva; Rovira, Jordi; Rajkovic, Andreja; Corcuera, Elena; Wilches Pérez, Diego; Dergel, Irene; Ottoson, Jakob R; Widén, Frederik
2017-03-01
Hepatitis E virus has been recognised as a food-borne virus hazard in pork products, due to its zoonotic properties. This risk can be reduced by adequate treatment of the food to inactivate food-borne viruses. We used a spectrum of viruses and bacteriophages to evaluate the effect of three food treatments: high pressure processing (HPP), lactic acid (LA) and intense light pulse (ILP) treatments. On swine liver at 400 MPa for 10 min, HPP gave log 10 reductions of ≥4.2, ≥5.0 and 3.4 for feline calicivirus (FCV) 2280, FCV wildtype (wt) and murine norovirus 1 (MNV 1), respectively. Escherichia coli coliphage ϕX174 displayed a lower reduction of 1.1, while Escherichia coli coliphage MS2 was unaffected. For ham at 600 MPa, the corresponding reductions were 4.1, 4.4, 2.9, 1.7 and 1.3 log 10 . LA treatment at 2.2 M gave log 10 reductions in the viral spectrum of 0.29-2.1 for swine liver and 0.87-3.1 for ham, with ϕX174 and MNV 1, respectively, as the most stable microorganisms. The ILP treatment gave log 10 reductions of 1.6-2.8 for swine liver, 0.97-2.2 for ham and 1.3-2.3 for sausage, at 15-60 J cm -2 , with MS2 as the most stable microorganism. The HPP treatment gave significantly (p < 0.05) greater virus reduction on swine liver than ham for the viruses at equivalent pressure/time combinations. For ILP treatment, reductions on swine liver were significantly (p < 0.05) greater than on ham for all microorganisms. The results presented here could be used in assessments of different strategies to protect consumers against virus contamination and in advice to food producers. Conservative model indicators for the pathogenic viruses could be suggested.
Teklehaimanot, Giorgis Z; Coetzee, Martie A A; Momba, Maggy N B
2014-01-01
The discharge of untreated or inadequately treated effluents has been identified among the activities responsible for the spread of a wide range of potentially infectious agents. The aim of this study was to determine whether inadequate treatment of wastewater and the faecal pollution load of effluents and receiving water bodies in Sedibeng District and Soshanguve peri-urban area of the Tshwane Metropolitan Municipality could be a potential threat to the health of the surrounding communities. Variations in the counts of faecal indicator bacteria and pathogenic microorganisms and compliance of the effluents and receiving water bodies with South African and World Health Organization standards were assessed between August 2011 and May 2012 using culture-based methods and molecular techniques. The overall quality of effluents did not comply with the South African special standard of no risk for unrestricted irrigation (zero Escherichia coli/100 ml). The quality of the receiving water bodies did not comply with South African regulatory limits set for domestic purposes (zero E. coli/100 ml, <30 faecal enterococci/100 ml and <1 somatic coliphages/100 ml), for full contact recreation (<20 somatic coliphages/100 ml) and aquaculture (<10 E. coli/100 ml) and WHO standards for full and intermediate contact recreational use (<1 E. coli/100 ml and <40 faecal enterococci/100 ml, respectively). The PCR results revealed the prevalence of pathogenic microorganisms; between 0 and 60 % of samples tested positive for Salmonella Typhimurium and Shigella dysenteriae, and between 20 and 60% of samples tested positive for Vibrio cholerae. These findings demonstrated that potential health risks might be associated with the use of the target river waters for domestic, recreational and irrigation purposes. This study calls for a prompt intervention to improve wastewater management.
Wengert, Samantha L; Aw, Tiong Gim; Ryser, Elliot T; Rose, Joan B
2017-02-01
Viral foodborne outbreaks are a serious threat to public health, and fresh produce is becoming increasingly recognized as a transmission vehicle. To limit foodborne disease, ready-to-eat leafy greens are typically washed with a chlorine-based sanitizer during commercial production. This study assessed the efficacy of a chlorine-based sanitizer against coliphage MS2, as a potential surrogate for foodborne viruses, on fresh-cut romaine lettuce during simulated commercial production using a small-scale processing line. Before processing, romaine lettuce was inoculated to contain approximately 10 5 and 10 6 PFU/g of MS2 for experiments with and without sanitizer, respectively. Lettuce samples were collected following each stage of processing, which included mechanical shredding, 2 min of flume washing (with or without 25 ppm of free chlorine), shaker table dewatering, and centrifugal drying. In addition, the spent centrifuge water and flume wash water were collected, with the flume water concentrated using hollow-fiber ultrafiltration. MS2 was recovered from lettuce in Tris-glycine buffer and quantified as PFUs in a double-agar overlay assay. The greatest reduction in MS2 occurred between shredding and flume washing, with levels remaining relatively stable following flume washing with or without 25 ppm of free chlorine. Average total reductions of 0.8 and 1.0 log PFU/g were seen after processing with and without the sanitizer, respectively, with no statistical difference observed between the two treatments (P > 0.05). The average MS2 level in the spent centrifugation water started at 4.0 log PFU/ml for experiments with sanitizer and the average MS2 reduction in the flume wash water was 4 log (PFU) for experiments with sanitizer, demonstrating that removals could be achieved in the water itself. These findings suggest that the currently recommended commercial production practices are unable to effectively decrease viruses once they have attached to leafy greens during commercial processing.
Wilkes, Graham; Brassard, Julie; Edge, Thomas A; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C; Jones, Tineke H; Khan, Izhar U H; Marti, Romain; Sunohara, Mark D; Topp, Edward; Lapen, David R
2014-06-01
Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Pure human urine is a good fertiliser for cucumbers.
Heinonen-Tanski, Helvi; Sjöblom, Annalena; Fabritius, Helena; Karinen, Päivi
2007-01-01
Human urine obtained from separating toilets was tested as a fertiliser for cultivation of outdoor cucumber (Cucumis sativus L.) in a Nordic climate. The urine used contained high amounts of nitrogen with some phosphorus and potassium, but numbers of enteric microorganisms were low even though urine had not been preserved before sampling. The cucumber yield after urine fertilisation was similar or slightly better than the yield obtained from control rows fertilised with commercial mineral fertiliser. None of the cucumbers contained any enteric microorganisms (coliforms, enterococci, coliphages and clostridia). In the taste assessment, 11 out of 20 persons could recognise which cucumber of three cucumbers was different but they did not prefer one over the other cucumber samples, since all of them were assessed as equally good.
Skladnev, D A; Mulyukin, A L; Filippoval, S N; Kulikov, E E; Letaroval, M A; Yuzbasheva, E A; Karnysheva, E A; Brushkov, A V; Gal'chenko, V F
2016-09-01
A method is proposed for integral assessment of the propagation of microbial cells and viral parti- cles during seasonal thawing of relic ice wedge layers. The results of on-site and laboratory investigation car- ried out in the upper part of permafrost exposure at Mamontova Gora (Yakutiya, Russia) are presented. To increase reliability of the results, suspensions of two microbial species and two coliphage species were intro- duced as biomarkers directly on the surface of thaing ice and in the meltwater flow. Each of the four different model biological objects was shown to possess unique parameters of movement in the meltwater flow and is able to move 132 m in 25-35 min with the water flow.
Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage
NASA Technical Reports Server (NTRS)
Spizizen, J.; Isherwood, J. E.; Taylor, G. R.
1975-01-01
Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.
Virus elimination in activated sludge systems: from batch tests to mathematical modeling.
Haun, Emma; Ulbricht, Katharina; Nogueira, Regina; Rosenwinkel, Karl-Heinz
2014-01-01
A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.
Biohazards Assessment in Large-Scale Zonal Centrifugation
Baldwin, C. L.; Lemp, J. F.; Barbeito, M. S.
1975-01-01
A study was conducted to determine the biohazards associated with use of the large-scale zonal centrifuge for purification of moderate risk oncogenic viruses. To safely and conveniently assess the hazard, coliphage T3 was substituted for the virus in a typical processing procedure performed in a National Cancer Institute contract laboratory. Risk of personnel exposure was found to be minimal during optimal operation but definite potential for virus release from a number of centrifuge components during mechanical malfunction was shown by assay of surface, liquid, and air samples collected during the processing. High concentration of phage was detected in the turbine air exhaust and the seal coolant system when faulty seals were employed. The simulant virus was also found on both centrifuge chamber interior and rotor surfaces. Images PMID:1124921
DNA Nucleotide Sequence Restricted by the RI Endonuclease
Hedgpeth, Joe; Goodman, Howard M.; Boyer, Herbert W.
1972-01-01
The sequence of DNA base pairs adjacent to the phosphodiester bonds cleaved by the RI restriction endonuclease in unmodified DNA from coliphage λ has been determined. The 5′-terminal nucleotide labeled with 32P and oligonucleotides up to the heptamer were analyzed from a pancreatic DNase digest. The following sequence of nucleotides adjacent to the RI break made in λ DNA was deduced from these data and from the 3′-dinucleotide sequence and nearest-neighbor analysis obtained from repair synthesis with the DNA polymerase of Rous sarcoma virus [Formula: see text] The RI endonuclease cleavage of the phosphodiester bonds (indicated by arrows) generates 5′-phosphoryls and short cohesive termini of four nucleotides, pApApTpT. The most striking feature of the sequence is its symmetry. PMID:4343974
Bushon, Rebecca N.; Koltun, G.F.
2004-01-01
The microbiological water quality of a 23-mile segment of the Cuyahoga River within the Cuyahoga Valley National Park was examined in this study. This segment of the river receives discharges of contaminated water from stormwater, combined-sewer overflows, and incompletely disinfected wastewater. Frequent exceedances of Ohio microbiological water-quality standards result in a health risk to the public who use the river for water-contact recreation. Water samples were collected during the recreational season of May through October at four sites on the Cuyahoga River in 2000, at three sites on the river in 2002, and from the effluent of the Akron Water Pollution Control Station (WPCS) both years. The samples were collected over a similar range in streamflow in 2000 and 2002. Samples were analyzed for physical and chemical constituents, as well as the following microbiological indicators and pathogenic organisms: Escherichia coli (E. coli), Salmonella, F-specific and somatic coliphage, enterovirus, infectious enterovirus, hepatitis A virus, Clostridium perfringens (C. perfringens), Cryptosporidium, and Giardia. The relations of the microorganisms to each other and to selected water-quality measures were examined. All microorganisms analyzed for, except Cryptosporidium, were detected at least once at each sampling site. Concentrations of E. coli exceeded the Ohio primary-contact recreational standard (298 colonies per 100 milliliters) in approximately 87 percent of the river samples and generally were higher in the river samples than in the effluent samples. C. perfringens concentrations were positively and significantly correlated with E. coli concentrations in the river samples and generally were higher in the effluent samples than in the river samples. Several of the river samples that met the Ohio E. coli secondary-contact recreational standard (576 colonies per 100 milliliters) had detections of enterovirus, infectious enterovirus, hepatitis A virus, and Salmonella, indicating that there are still risks even when the E. coli standard is not exceeded. River samples in which the secondary-contact recreational standard for E. coli was exceeded showed a higher percentage of the co-occurrence of pathogenic organisms than samples that met the standard. This indicates that in this study area, E. coli is a useful indicator of human health risk. Detections of hepatitis A virus tended to be associated with higher median concentrations of somatic coliphage, F-specific coliphage, and infectious enterovirus. In addition, geometric mean C. perfringens concentrations tended to be higher in samples where hepatitis A virus was present than in samples where hepatitis A virus was absent. Hepatitis A virus was not detected in samples collected upstream from the Akron WPCS; all downstream detections had coincident detections in the Akron WPCS effluent, suggesting that Akron WPCS was a principal source of hepatitis A virus at the downstream sites. Geometric mean concentrations of E. coli were calculated on the basis of analytical results from at least five samples collected at each river site during May, July, and September of 2000. In each case, the Ohio geometric-mean primary-contact recreational standard of 126 col/100 mL was exceeded. E. coli concentrations were significantly correlated with streamflow and increased with streamflow at sites upstream and downstream from the Akron WPCS. This indicates that E. coli loads from sources upstream from the Akron WPCS have the potential to appreciably influence the frequency of attainment of recreational water-quality standards at downstream locations.
Use of modified diatomaceous earth for removal and recovery of viruses in water.
Farrah, S R; Preston, D R; Toranzos, G A; Girard, M; Erdos, G A; Vasuhdivan, V
1991-01-01
Diatomaceous earth was modified by in situ precipitation of metallic hydroxides. Modification decreased the negative charge on the diatomaceous earth and increased its ability to adsorb viruses in water. Electrostatic interactions were more important than hydrophobic interactions in virus adsorption to modified diatomaceous earth. Filters containing diatomaceous earth modified by in situ precipitation of a combination of ferric chloride and aluminum chloride adsorbed greater than 80% of enteroviruses (poliovirus 1, echovirus 5, and coxsackievirus B5) and coliphage MS2 present in tap water at ambient pH (7.8 to 8.3), even after filtration of 100 liters of tap water. Viruses adsorbed to the filters could be recovered by mixing the modified diatomaceous earth with 3% beef extract plus 1 M NaCl (pH 9). Images PMID:1768124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Mitra, S.
With precise conditions of digestion with single-strand-specific nucleases, namely, endonuclease S1 of Aspergillus oryzae and exonuclease I of Escherichia coli, nuclease-resistant DNA cores can be obtained reproducibly from single-stranded M13 DNA. The DNA cores are composed almost exclusively of two sizes (60 and 44 nucleotides long). These have high (G + C)-contents relative to that of intact M13 DNA, and arise from restricted regions of the M13 genome. The resistance of these fragments to single-strand-specific nucleases and their nondenaturability strongly suggest the presence of double-stranded segments in these core pieces. That the core pieces are only partially double-stranded is shownmore » by their lack of complete base complementarity and their pattern of elution from hydroxyapatite.« less
Over-expression of phage HK022 Nun protein is toxic for Escherichia coli
Uc-Mass, Augusto; Khodursky, Arkady; Brown, Lewis; Gottesman, Max E.
2008-01-01
The Nun protein of coliphage HK022 excludes superinfecting λ phage. Nun recognizes and binds to the N utilization (nut) sites on phage λ nascent RNA and induces transcription termination. Over-expression of Nun from a high-copy plasmid is toxic for E.coli, despite the fact that nut sites are not encoded in the E.coli genome. Cells expressing Nun cannot exit stationary phase. Toxicity is related to transcription termination, since host and nun mutations that block termination also suppress cell killing. Nun inhibits expression of wild-type lacZ, but not lacZ expressed from the Crp/cAMP–independent lacUV5 promoter. Microarray and proteomics analyses show Nun down-regulates crp and tnaA. Crp over-expression and high indole concentrations partially reverse Nun-mediated toxicity and restore lacZ expression. PMID:18571198
Overby, L. R.; Barlow, G. H.; Doi, R. H.; Jacob, Monique; Spiegelman, S.
1966-01-01
Overby, L. R. (University of Illinois, Urbana), G. H. Barlow, R. H. Doi, Monique Jacob, and S. Spiegelman. Comparison of two serologically distinct ribonucleic acid bacteriophages. I. Properties of the viral particle. J. Bacteriol. 91:442–448. 1966.—Two ribonucleic acid (RNA) coliphages, MS-2 and Qβ, have been characterized physically and serologically. MS-2 has an S20, w value of 79, a molecular weight of 3.6 × 106, a density of 1.422, and pH 3.9 as its isoelectric point. Qβ has an S20, w of 84, a molecular weight of 4.2 × 106, a density of 1.439, and an isoelectric point at pH 5.3. One host (Escherichia coli A-19) permits a distinction between the two on the basis of a marked difference in plaque size. They are distinct immunochemically, no serological cross-reaction being detectable. Images PMID:5903109
Yates, M V; Yates, S R; Warrick, A W; Gerba, C P
1986-01-01
Water samples were collected from 71 public drinking-water supply wells in the Tucson, Ariz., basin. Virus decay rates in the water samples were determined with MS-2 coliphage as a model virus. The correlations between the virus decay rates and the sample locations were shown by fitting a spherical model to the experimental semivariogram. Kriging, a geostatistical technique, was used to calculate virus decay rates at unsampled locations by using the known values at nearby wells. Based on the regional characteristics of groundwater flow and the kriged estimates of virus decay rates, a contour map of the area was constructed. The map shows the variation in separation distances that would have to be maintained between wells and sources of contamination to afford similar degrees of protection from viral contamination of the drinking water in wells throughout the basin. PMID:3532954
Chapter A7. Biological Indicators
Myers, Donna N.; Wilde, Franceska D.
2003-01-01
The National Field Manual for the Collection of Water-Quality Data (National Field Manual) provides guidelines and standard procedures for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter of the manual includes procedures for the (1) determination of biochemical oxygen demand using a 5-day bioassay test; (2) collection, identification, and enumeration of fecal indicator bacteria; (3) collection of samples and information on two laboratory methods for fecal indicator viruses (coliphages); and (4) collection of samples for protozoan pathogens. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters are posted on the World Wide Web on the USGS page 'National Field Manual for the Collection of Water-Quality Data.' The URL for this page is http://pubs.water.usgs.gov/twri9A/ (accessed November 25, 2003).
Méndez, Javier; Audicana, Ana; Isern, Ana; Llaneza, Julián; Moreno, Belén; Tarancón, María Luisa; Jofre, Juan; Lucena, Francisco
2004-04-01
The bacteriophage elution procedure described further after adsorption to acetate-nitrate cellulose membrane filters allows better recovery of phages concentrated from 1l of water than elution procedures used previously. The improvement is due to the combined effect of the eluent (3% (w/v) beef extract, 3% (v/v) Tween 80, 0.5M NaCl, pH 9.0) and the application of ultrasound instead of agitation or swirling. Average recovery of somatic coliphages, 82 +/- 7%, was the greatest, and that of phages infecting Bacteroides fragilis, 56 +/- 8%, the lowest, with intermediate values for F-specific and F-specific RNA bacteriophages. Thus, the method allowed recovery of over 56% for all the phages suggested as surrogate indicators. The method was then validated according to an International Standardisation Organisation validation standard procedure and implemented in routine laboratories, which obtained reproducible results.
Transport of viruses through saturated and unsaturated columns packed with sand
Anders, R.; Chrysikopoulos, C.V.
2009-01-01
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.
Removal of microbial indicators from municipal wastewater by a membrane bioreactor (MBR).
Marti, Elisabet; Monclús, Hector; Jofre, Juan; Rodriguez-Roda, Ignasi; Comas, Joaquim; Balcázar, José Luis
2011-04-01
The impact of removable and irremovable fouling on the retention of viral and bacterial indicators by the submerged microfiltration membrane in an MBR pilot plant was evaluated. Escherichia coli, sulphite-reducing Clostridium spores, somatic coliphages and F-specific RNA bacteriophages were used as indicators. The membrane demonstrated almost complete removal of E. coli and sulphite-reducing Clostridium spores. However, there was no correlation with membrane fouling. The phage removal varied in accordance with the irremovable fouling, rising from 2.6 to 5.6 log(10) units as the irremovable fouling increased (measured by the change in the transmembrane pressure). In contrast, removable fouling did not have any effect on the retention of viruses by the membrane. These results indicate that irremovable membrane fouling may affect the removal efficiency of MBRs and, therefore, their capacity to ensure the required microbiological standards for the permeate achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hirani, Zakir M; Decarolis, James F; Lehman, Geno; Adham, Samer S; Jacangelo, Joseph G
2012-01-01
Nine different membrane bioreactor (MBR) systems with different process configurations (submerged and external), membrane geometries (hollow-fiber, flat-sheet, and tubular), membrane materials (polyethersulfone (PES), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE)) and membrane nominal pore sizes (0.03-0.2 μm) were evaluated to assess the impact of influent microbial concentration, membrane pore size and membrane material and geometries on removal of microbial indicators by MBR technology. The log removal values (LRVs) for microbial indicators increased as the influent concentrations increased. Among the wide range of MBR systems evaluated, the total and fecal coliform bacteria and indigenous MS-2 coliphage were detected in 32, 9 and 15% of the samples, respectively; the 50th percentile LRVs were measured at 6.6, 5.9 and 4.5 logs, respectively. The nominal pore sizes of the membranes, membrane materials and geometries did not show a strong correlation with the LRVs.
Carvajal, Guido; Branch, Amos; Michel, Philipp; Sisson, Scott A; Roser, David J; Drewes, Jörg E; Khan, Stuart J
2017-11-01
Ozonation of wastewater has gained popularity because of its effectiveness in removing colour, UV absorbance, trace organic chemicals, and pathogens. Due to the rapid reaction of ozone with organic compounds, dissolved ozone is often not measurable and therefore, the common disinfection controlling parameter, concentration integrated over contact time (CT) cannot be obtained. In such cases, alternative parameters have been shown to be useful as surrogate measures for microbial removal including change in UV 254 absorbance (ΔUVA), change in total fluorescence (ΔTF), or O 3 :TOC (or O 3 :DOC). Although these measures have shown promise, a number of caveats remain. These include uncertainties in the associations between these measurements and microbial inactivation. Furthermore, previous use of seeded microorganisms with higher disinfection sensitivity compared to autochthonous microorganisms could lead to overestimation of appropriate log credits. In our study, secondary treated wastewater from a full-scale plant was ozonated in a bench-scale reactor using five increasing ozone doses. During the experiments, removal of four indigenous microbial indicators representing viruses, bacteria and protozoa were monitored concurrent with ΔUVA, ΔTF, O 3 :DOC and PARAFAC derived components. Bayesian methods were used to fit linear regression models, and the uncertainty in the posterior predictive distributions and slopes provided a comparison between previously reported results and those reported here. Combined results indicated that all surrogate parameters were useful in predicting the removal of microorganisms, with a better fit to the models using ΔUVA, ΔTF in most cases. Average adjusted determination coefficients for fitted models were high (R 2 adjusted >0.47). With ΔUVA, one unit decrease in LRV corresponded with a UVA mean reduction of 15-20% for coliforms, 59% for C. perfringens spores, and 11% for somatic coliphages. With ΔTF, a one unit decrease in LRV corresponded with a TF mean reduction of 18-23% for coliforms, 71% for C. perfringens spores, and 14% for somatic coliphages. Compared to previous studies also analysed, our results suggest that microbial reductions were more conservative for autochthonous than for seeded microorganisms. The findings of our study suggested that site-specific analyses should be conducted to generate models with lower uncertainty and that indigenous microorganisms are useful for the measurement of system performance even when censored observations are obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microbial source tracking: a forensic technique for microbial source identification?
Stapleton, Carl M; Wyer, Mark D; Kay, David; Crowther, John; McDonald, Adrian T; Walters, Martin; Gawler, Andrew; Hindle, Terry
2007-05-01
As the requirements of the Water Framework Directive (WFD) and the US Clean Water Act (USCWA) for the maintenance of microbiological water quality in 'protected areas' highlight, there is a growing recognition that integrated management of point and diffuse sources of microbial pollution is essential. New information on catchment microbial dynamics and, in particular, the sources of faecal indicator bacteria found in bathing and shellfish harvesting waters is a pre-requisite for the design of any 'programme of measures' at the drainage basin scale to secure and maintain compliance with existing and new health-based microbiological standards. This paper reports on a catchment-scale microbial source tracking (MST) study in the Leven Estuary drainage basin, northwest England, an area for which quantitative faecal indicator source apportionment empirical data and land use information were also collected. Since previous MST studies have been based on laboratory trials using 'manufactured' samples or analyses of spot environmental samples without the contextual microbial flux data (under high and low flow conditions) and source information, such background data are needed to evaluate the utility of MST in USCWA total maximum daily load (TMDL) assessments or WFD 'Programmes of Measures'. Thus, the operational utility of MST remains in some doubt. The results of this investigation, using genotyping of Bacteroidetes using polymerase chain reaction (PCR) and male-specific ribonucleic acid coliphage (F + RNA coliphage) using hybridisation, suggest some discrimination is possible between livestock- and human-derived faecal indicator concentrations but, in inter-grade areas, the degree to which the tracer picture reflected the land use pattern and probable faecal indicator loading were less distinct. Interestingly, the MST data was more reliable on high flow samples when much of the faecal indicator flux from catchment systems occurs. Whilst a useful supplementary tool, the MST information did not provide quantitative source apportionment for the study catchment. Thus, it could not replace detailed empirical measurement of microbial flux at key catchment outlets to underpin faecal indicator source apportionment. Therefore, the MST techniques reported herein currently may not meet the standards required to be a useful forensic tool, although continued development of the methods and further catchment scale studies could increase confidence in such methods for future application.
Pouillot, Régis; Van Doren, Jane M; Woods, Jacquelina; Plante, Daniel; Smith, Mark; Goblick, Gregory; Roberts, Christopher; Locas, Annie; Hajen, Walter; Stobo, Jeffrey; White, John; Holtzman, Jennifer; Buenaventura, Enrico; Burkhardt, William; Catford, Angela; Edwards, Robyn; DePaola, Angelo; Calci, Kevin R
2015-07-01
Human norovirus (NoV) is the leading cause of foodborne illness in the United States and Canada. Wastewater treatment plant (WWTP) effluents impacting bivalve mollusk-growing areas are potential sources of NoV contamination. We have developed a meta-analysis that evaluates WWTP influent concentrations and log10 reductions of NoV genotype I (NoV GI; in numbers of genome copies per liter [gc/liter]), NoV genotype II (NoV GII; in gc/liter), and male-specific coliphage (MSC; in number of PFU per liter), a proposed viral surrogate for NoV. The meta-analysis included relevant data (2,943 measurements) reported in the scientific literature through September 2013 and previously unpublished surveillance data from the United States and Canada. Model results indicated that the mean WWTP influent concentration of NoV GII (3.9 log10 gc/liter; 95% credible interval [CI], 3.5, 4.3 log10 gc/liter) is larger than the value for NoV GI (1.5 log10 gc/liter; 95% CI, 0.4, 2.4 log10 gc/liter), with large variations occurring from one WWTP to another. For WWTPs with mechanical systems and chlorine disinfection, mean log10 reductions were -2.4 log10 gc/liter (95% CI, -3.9, -1.1 log10 gc/liter) for NoV GI, -2.7 log10 gc/liter (95% CI, -3.6, -1.9 log10 gc/liter) for NoV GII, and -2.9 log10 PFU per liter (95% CI, -3.4, -2.4 log10 PFU per liter) for MSCs. Comparable values for WWTPs with lagoon systems and chlorine disinfection were -1.4 log10 gc/liter (95% CI, -3.3, 0.5 log10 gc/liter) for NoV GI, -1.7 log10 gc/liter (95% CI, -3.1, -0.3 log10 gc/liter) for NoV GII, and -3.6 log10 PFU per liter (95% CI, -4.8, -2.4 PFU per liter) for MSCs. Within WWTPs, correlations exist between mean NoV GI and NoV GII influent concentrations and between the mean log10 reduction in NoV GII and the mean log10 reduction in MSCs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Ortega, Cristina; Solo-Gabriele, Helena M.; Abdelzaher, Amir; Wright, Mary; Deng, Yang; Stark, Lillian M.
2009-01-01
The objective of this study was to evaluate whether indicator microbes and physical-chemical parameters were correlated with pathogens within a tidally influenced estuary. Measurements included the analysis of physical-chemical parameters (pH, salinity, temperature, and turbidity), measurements of bacterial indicators (enterococci, fecal coliform, E. coli, and total coliform), viral indicators (somatic and MS2 coliphage), viral pathogens (enterovirus by culture), and protozoan pathogens (Cryptosporidium and Giardia). All pathogen results were negative with the exception of one sample which tested positive for culturable reovirus (8.5 MPN/100 L).. Notable physical-chemical parameters for this sample included low salinity (<1 ppt) and high water temperature (31 °C). Indicator bacteria and indicator virus levels for this sample were within average values typically measured within the study site and were low in comparison with levels observed in other freshwater environments. Overall results suggest that high levels of bacterial and viral indicators were associated with low salinity sites. PMID:19464704
Epidemiology and estimated costs of a large waterborne outbreak of norovirus infection in Sweden.
Larsson, C; Andersson, Y; Allestam, G; Lindqvist, A; Nenonen, N; Bergstedt, O
2014-03-01
A large outbreak of norovirus (NoV) gastroenteritis caused by contaminated municipal drinking water occurred in Lilla Edet, Sweden, 2008. Epidemiological investigations performed using a questionnaire survey showed an association between consumption of municipal drinking water and illness (odds ratio 4·73, 95% confidence interval 3·53-6·32), and a strong correlation between the risk of being sick and the number of glasses of municipal water consumed. Diverse NoV strains were detected in stool samples from patients, NoV genotype I strains predominating. Although NoVs were not detected in water samples, coliphages were identified as a marker of viral contamination. About 2400 (18·5%) of the 13,000 inhabitants in Lilla Edet became ill. Costs associated with the outbreak were collected via a questionnaire survey given to organizations and municipalities involved in or affected by the outbreak. Total costs including sick leave, were estimated to be ∼8,700,000 Swedish kronor (∼€0·87 million).
Nine-analyte detection using an array-based biosensor
NASA Technical Reports Server (NTRS)
Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.
2002-01-01
A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.
Jebri, Sihem; Hmaied, Fatma; Yahya, Mariem; Ben Ammar, Aouatef; Hamdi, Moktar
This study was conducted to isolate phages in treated sewage collected from wastewater treatment plant, and explore their morphological diversity by transmission electron microscopy (TEM). Fates of total bacteriophages and their reduction by biological treatment were also assayed. Phages were isolated using the plaque assay then negatively stained and observed by electron microscope. Electron micrographs showed different types of phages with different shapes and sizes. The majority of viruses found in treated sewage ranged from 30 to 100 nm in capsid diameter. Many of them were tailed, belonging to Siphoviridae, Myoviridae and Podoviridae families. Non-tailed phage particles were also found at a low rate, presumably belonging to Leviviridae or Microviridae families. This study shows the diversity and the abundance of bacteriophages in wastewater after biological treatment. Their persistence in wastewater reused in agriculture should raise concerns about their potential role in controlling bacterial populations in the environment. They should be also included in water treatment quality controlling guidelines as fecal and viral indicators.
Tamimi, A H; Maxwell, S; Edmonds, S L; Gerba, C P
2015-11-01
The goal of this study was to determine the reduction in risk of infection by viruses with the use of an alcohol-based hand sanitizer, used in addition to routine hand washing, in family members in households. A quantitative microbial risk model was used to determine the probability of infection from the concentration of virus on the hands. The model incorporated variation in hand size, frequency of touching orifices (nose, mouth, eyes), and percent transfer to the site of infection, as well as, dose-response for each virus. Data on the occurrence of virus on household members' hands from an intervention study using MS-2 coliphage was used to determine the reduction of viruses on the hands pre- and post-intervention. It was found that the risk of rhinovirus, rotavirus or norovirus infection after the intervention was reduced by 47-98% depending upon the initial concentration of virus on the hands.
Bassel, B A; Curry, M E
1973-11-01
We have compared the amino acid incorporating activities of extracts of Escherichia coli and Salmonella typhimurium in in vitro protein-synthesizing systems directed by bacterial messenger ribonucleic acid (mRNA) of both species and by the genomes of coliphages Qbeta and f2. E. coli and S. typhimurium extracts translate both homologous and heterologous bacterial mRNAs at comparable rates. S. typhimurium extracts translate phage RNAs only 10 to 15% as fast as E. coli extracts do. The presence of glucose in the growth medium increases the activity of S. typhimurium extracts three- to fourfold in the phage RNA-directed systems. Glucose has a much more limited effect on the activities of E. coli extracts. We show that similar amounts of phage RNA-ribosome complexes are formed in both the E. coli and the S. typhimurium systems, indicating that the different activities observed may be attributed to different rates of peptide elongation or to the formation of complexes at different sites on the RNA strand.
Lalander, Cecilia; Dalahmeh, Sahar; Jönsson, Håkan; Vinnerås, Björn
2013-01-01
With a growing world population, the lack of reliable water sources is becoming an increasing problem. Reusing greywater could alleviate this problem. When reusing greywater for crop irrigation it is paramount to ensure the removal of pathogenic organisms. This study compared the pathogen removal efficiency of pine bark and activated charcoal filters with that of conventional sand filters at three organic loading rates. The removal efficiency of Escherichia coli O157:H7 decreased drastically when the organic loading rate increased fivefold in the charcoal and sand filters, but increased by 2 log10 in the bark filters. The reduction in the virus model organism coliphage phiX174 remained unchanged with increasing organic loading in the charcoal and sand filters, but increased by 2 log10 in the bark filters. Thus, bark was demonstrated to be the most promising material for greywater treatment in terms of pathogen removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, Shafiqul Alam, E-mail: sasarker@icddrb.org; McCallin, Shawna; Barretto, Caroline
The genomic diversity of 99 T4-like coliphages was investigated by sequencing an equimolar mixture with Illumina technology and screening them against different databases for horizontal gene transfer and undesired genes. A 9-phage cocktail was given to 15 healthy adults from Bangladesh at a dose of 3 Multiplication-Sign 10{sup 9} and 3 Multiplication-Sign 10{sup 7} plaque-forming units and placebo respectively. Phages were detected in 64% of the stool samples when subjects were treated with higher titer phage, compared to 30% and 28% with lower-titer phage and placebo, respectively. No Escherichia coli was present in initial stool samples, and no amplification ofmore » phage was observed. One percent of the administered oral phage was recovered from the feces. No adverse events were observed by self-report, clinical examination, or from laboratory tests for liver, kidney, and hematology function. No impact of oral phage was seen on the fecal microbiota composition with respect to bacterial 16S rRNA from stool.« less
Zhou, Yan; Bao, Hongduo; Zhang, Hui; Wang, Ran
2015-01-01
To characterize the lytic coliphage vB_EcoM_JS09 (phage JS09) isolated from sewage samples of a swine farm in Jiangsu Province, China, which infects antibiotic-resistant avian pathogenic Escherichia coli (APEC) and enterotoxigenic E. coli (ETEC). Transmission electron microscopy revealed that phage JS09 has an isometric icosahedral head (76 nm in diameter) and a long contractile tail (140 nm in length) and features a T-even morphology. Its latent period was 30 min and the average burst size was 79 phage particles per infected cell. It attached to the host cells within 9 min. JS09 could infect 16 clinically isolated APEC and ETEC strains and the laboratory-engineered E. coli K and B strains. Ten of the clinical isolates of E. coli were resistant to antibiotics. At a multiplicity of infection of 10, 3, 1, or 0.3, the phage caused rapid cell lysis within 2 h, resulting in 5- to 10-fold reductions in cell concentration. Sequencing of the JS09 genome revealed a 169.148-kb linear but circularly permuted and terminally redundant dsDNA with 37.98% G+C content. Two hundred seventy-three open reading frames were predicted to be coding sequences, 135 of which were functionally defined and organized in a modular format which includes modules for DNA replication, DNA packaging, structural proteins, and host cell lysis proteins. Phage JS09 is assigned to the Caudovirales order (Myoviridae phage family), and it is considered a T4-like phage based on its morphological, genomic, and growth characteristics. JS09 gp37, a receptor-binding protein (RBP) important for host cell infection, shares little homology with other RBP in the NCBI database, which suggests that the variable regions in gp37 determine the unique host range of phage JS09. Protein sequence comparisons cluster the putative 'RBP' of JS09 much more closely with those of Yersinia phage phiD1, phage TuIa, and phage TuIb. A novel lytic coliphage named JS09 was isolated from sewage samples of a swine farm in Jiangsu Province, China. It could infect antibiotic-resistant APEC and ETEC. The morphological, genomic, and growth characteristics of JS09 were studied, and this will be helpful for phage therapy in controlling diseases caused by APEC and ETEC. © 2015 S. Karger AG, Basel.
Family values in the age of genomics: comparative analyses of temperate bacteriophage HK022.
Weisberg, R A; Gottesmann, M E; Hendrix, R W; Little, J W
1999-01-01
HK022 is a temperate coliphage related to phage lambda. Its chromosome has been completely sequenced, and several aspects of its life cycle have been intensively studied. In the overall arrangement, expression, and function of most of its genes, HK022 broadly resembles lambda and other members of the lambda family. Upon closer view, significant differences emerge. The differences reveal alternative strategies used by related phages to cope with similar problems and illuminate previously unknown regulatory and structural motifs. HK022 prophages protect lysogens from superinfection by producing a sequence-specific RNA binding protein that prematurely terminates nascent transcripts of infecting phage. It uses a novel RNA-based mechanism to antiterminate its own early transcription. The HK022 protein shell is strengthened by a complex pattern of covalent subunit interlinking to form a unitary structure that resembles chain-mail armour. Its integrase and repressor proteins are similar to those of lambda, but the differences provide insights into the evolution of biological specificity and the elements needed for construction of a stable genetic switch.
Retention of pharmaceutical residues and microorganisms at the Altendorf retention soil filter.
Christoffels, E; Mertens, F M; Kistemann, T; Schreiber, C
2014-01-01
A study has been conducted on a retention soil filter (RSF) to test its effectiveness in removing pharmaceutical residues and microorganisms from combined sewer overflows (CSOs). Efficient removal of solids, nutrients and heavy metals has already been proven. The possibility that organic micropollutants and microorganisms are also retained by the use of RSFs has been identified, but data are lacking. Results obtained in this study, in which testing for removal by a RSF of numerous micro-pollutant substances was performed, are most promising. The pharmaceuticals diclofenac and ibuprofen are presented in detail as examples of such micropollutants. Both showed a reduction in positive samples of more than 55% as well as a significant reduction in median and maximum concentrations. For microorganisms such as Escherichia coli, coliphages and Giardia lamblia (cysts), an average reduction in concentrations by three logarithmic steps (99.9%) was achieved. These results add to the evidence that using a RSF in the advanced treatment of wastewater from CSOs reduces the exposure of water-courses to pharmaceutical residues and microbial contamination.
NASA Astrophysics Data System (ADS)
Husimi, Yuzuru; Nishigaki, Koichi; Kinoshita, Yasunori; Tanaka, Toyosuke
1982-04-01
A bacteriophage is continuously cultured in the flow of the host bacterial cell under the control of a minicomputer. In the culture, the population of the noninfected cell is kept constant by the endogeneous regulation mechanism, so it is called the ''cellstat'' culture. Due to the high dilution rate of the host cell, the mutant cell cannot be selected in the cellstat. Therefore, the cellstat is suitable for the study of the mutation rate and the selection process of a bacteriophage under well-defined environmental conditions (including physiological condition of the host cell) without being interfered by host-cell mutations. Applications to coliphage fd, a secretion type phage, are shown as a measurement example. A chimera between fd and a plasmid pBR322 is cultured more than 100 h. The process of population changeovers by deletion mutants indicates that the deletion hot spots exist in this cloning vector and that this apparatus can be used also for testing instability of a recombinant DNA.
Neumann, Patricio; Barriga, Felipe; Álvarez, Claudia; González, Zenón; Vidal, Gladys
2018-03-15
The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Membrane fusion during phage lysis.
Rajaure, Manoj; Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry
2015-04-28
In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG.
Levy, Karen; Nelson, Kara L; Hubbard, Alan; Eisenberg, Joseph N S
2012-03-01
To address the problem of the health impacts of unsafe drinking water, methods are needed to assess microbiologic contamination in water. However, indicators of water quality have provided mixed results. We evaluate five assays (three for Escherichia coli and one each for enterococci and somatic coliphage) of microbial contamination in villages in rural Ecuador that rely mostly on untreated drinking water. Only membrane filtration for E. coli using mI agar detected a significant association with household diarrheal disease outcome (odds ratio = 1.29, 95% confidence interval = 1.02-1.65 in household containers and odds ratio = 1.18, 95% confidence interval = 1.02-1.37) in source samples. Our analysis and other published research points to the need for further consideration of study design factors, such as sample size and variability in measurements, when using indicator organisms, especially when relating water quality exposure to health outcomes. Although indicator organisms are used extensively in health studies, we argue that their use requires a full understanding of their purposes and limitations.
Levy, Karen; Nelson, Kara L.; Hubbard, Alan; Eisenberg, Joseph N. S.
2012-01-01
To address the problem of the health impacts of unsafe drinking water, methods are needed to assess microbiologic contamination in water. However, indicators of water quality have provided mixed results. We evaluate five assays (three for Escherichia coli and one each for enterococci and somatic coliphage) of microbial contamination in villages in rural Ecuador that rely mostly on untreated drinking water. Only membrane filtration for E. coli using mI agar detected a significant association with household diarrheal disease outcome (odds ratio = 1.29, 95% confidence interval = 1.02–1.65 in household containers and odds ratio = 1.18, 95% confidence interval = 1.02–1.37) in source samples. Our analysis and other published research points to the need for further consideration of study design factors, such as sample size and variability in measurements, when using indicator organisms, especially when relating water quality exposure to health outcomes. Although indicator organisms are used extensively in health studies, we argue that their use requires a full understanding of their purposes and limitations. PMID:22403326
Bacteriophages as indicators of faecal pollution and enteric ...
Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport due to their closer morphological and biological properties compared to FIB. Based on a meta-analysis of published data, we summarize concentrations of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in human waste, non-human waste, fresh and marine waters as well as removal through wastewater treatment processes. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the environment and provide an overview of the methods available for detection and enumeration of bacteriophages. In summary, concentrations of FIB bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Our investigation supports use of bacteriophages as viral surrogates especially for wastewater treatment processes, while additional research is needed to clarify their utility as indicators of viral fate and transport in the ambient water. Describes concentrations and removal through environmental and engineered systems of bacteriophages, fecal indicator bacteria and viral pathogens.
Microorganisms as tracers in groundwater injection and recovery experiments: A review
Harvey, R.W.
1997-01-01
Modern day injection and recovery techniques designed to examine the transport behavior of microorganisms in groundwater have evolved from experiments conducted in the late 1800s, in which bacteria that form red or yellow pigments were used to trace flow paths through karst and fractured- rock aquifers. A number of subsequent groundwater hydrology studies employed bacteriophage that can be injected into aquifers at very high concentrations (e g., 1013 phage ml-1) and monitored through many log units of dilution to follow groundwater flow paths for great distances, particularly in karst terrain. Starting in the 1930s, microbial indicators of fecal contamination (particularly coliform bacteria and their coliphages) were employed as tracers to determine potential migration of pathogens in groundwater. Several injection and recovery experiments performed in the 1990s employed indigenous groundwater microorganisms (both cultured and uncultured) that are better able to survive under in situ conditions. Better methods for labeling native bacteria (e.g by stable isotope labeling or inserting genetic markers; such as the ability to cause ice nucleation) are being developed that will not compromise the organisms' viability during the experimental time course.
Occurrence and distribution of microbiological indicators in groundwater and stream water
Francy, D.S.; Helsel, D.R.; Nally, R.A.
2000-01-01
A total of 136 stream water and 143 groundwater samples collected in five important hydrologic systems of the United States were analyzed for microbiological indicators to test monitoring concepts in a nationally consistent program. Total coliforms were found in 99%, Escherichia coli in 97%, and Clostridium perfringens in 73% of stream water samples analyzed for each bacterium. Total coliforms were found in 20%, E. coli in less than 1%, and C. perfringens in none of the groundwater samples analyzed for each bacterium. Although coliphage analyses were performed on many of the samples, contamination in the laboratory and problems discerning discrete plaques precluded quantification. Land use was found to have the most significant effect on concentrations of bacterial indicators in stream water. Presence of septic systems on the property near the sampling site and well depth were found to be related to detection of coliforms in groundwater, although these relationships were not statistically significant. A greater diversity of sites, more detailed information about some factors, and a larger dataset may provide further insight to factors that affect microbiological indicators.
New methods for the detection of viruses: call for review of drinking water quality guidelines.
Grabow, W O; Taylor, M B; de Villiers, J C
2001-01-01
Drinking water supplies which meet international recommendations for source, treatment and disinfection were analysed. Viruses recovered from 100 L-1,000 L volumes by in-line glass wool filters were inoculated in parallel into four cell culture systems. Cell culture inoculation was used to isolate cytopathogenic viruses, amplify the nucleic acid of non-cytopathogenic viruses and confirm viability of viruses. Over a period of two years, viruses were detected in 23% of 413 drinking water samples and 73% of 224 raw water samples. Cytopathogenic viruses were detected in 6% raw water samples but not in any treated drinking water supplies. Enteroviruses were detected in 17% drinking water samples, adenoviruses in 4% and hepatitis A virus in 3%. In addition to these viruses, astro- and rotaviruses were detected in raw water. All drinking water supplies had heterotrophic plate counts of < 100/mL, total and faecal coliform counts of 0/100 mL and negative results in qualitative presence-absence tests for somatic and F-RNA coliphages (500 mL samples). These results call for a revision of water quality guidelines based on indicator organisms and vague reference to the absence of viruses.
Feasibility of the silver-UV process for drinking water disinfection.
Butkus, Michael A; Talbot, Mark; Labare, Michael P
2005-12-01
A synergistic effect between cationic silver and UV radiation (silver-UV disinfection) has been observed that can appreciably enhance inactivation of viruses. The purpose of this work was to assess the feasibility of this technique for drinking water disinfection and evaluate the effects of selected impurities, found in fresh water, and common parameters on inactivation of the coliphage MS-2 with the silver-UV process. Turbidity (kaolin), calcium hardness, carbonate alkalinity, and pH did not significantly degrade inactivation. Inactivation was reduced in the presence of chloride, at concentrations greater than 30 mg/L, and in water samples with UV-254 absorbance values greater than ca. 0.1 cm(-1). Inactivation of MS-2 with silver-UV disinfection was also reduced at high phosphate concentrations (above ca. 5 mM). Silver-UV inactivation of MS-2 increased with increases in temperature between 10 and 20 degrees C. Silver-UV inactivation of MS-2 was increased by greater than 1-log over UV alone, in two untreated fresh water sources, which indicates that silver-UV may be a viable treatment technology. An assessment of operation and management costs suggests that an increase in inactivation of MS-2 with silver-UV disinfection could be economically beneficial.
NASA Astrophysics Data System (ADS)
Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.
2012-03-01
The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms (Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.
NASA Astrophysics Data System (ADS)
Masciopinto, Costantino; Visino, Fabrizio; Luprano, Maria Laura; Levantesi, Caterina; Tandoi, Valter
2015-04-01
The spreading of microbial contamination into the environment, represents a very relevant problem, which leads to an increasing health concern. For this reason, it is important to identify and characterize the extent of natural depuration in water environmental particularly for reducing the presence of faecal contamination indicator bacteria, pathogens and antibiotic resistance genes (ARG). In this study, the presence of the above reported microbial parameters was analyzed in a surface water channel and in a coastal aquifer in southern Italy (Ostuni) southern Italy, both affected by Ostuni municipal treatment plant effluents and by local run-off. Several samples were collected from surface water, flowing in channels, and from wells in our study area. In particular, the water samples were analyzed to detect 7 fecal contamination indicators (E. coli, total coliforms, Clostridium p. spores, somatic coliphages, Enterococci and heterotrophic bacteria), Salmonella spp and the presence of ARGs. The water samples were also tested for chemical constituents. Finally a mathematical model has been developed in order to simulate pathogen migration pathways in the fractured groundwater and corresponding possible mitigation of pathogens in pumping wells.
NASA Astrophysics Data System (ADS)
Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.
2011-11-01
The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms ( Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.
Biocolloid transport in water saturated columns packed with sand
NASA Astrophysics Data System (ADS)
Syngouna, V. I.; Chrysikopoulos, C.
2010-12-01
Protection of groundwater supplies from microbial contamination necessitates a solid understanding of the factors controlling the migration and retention of pathogenic organisms (biocolloids) in the subsurface. The transport behavior of three waterborne pathogens (Escherichia coli, MS2, and ΦΧ174) was investigated using laboratory-scale columns packed with clean quartz sand. Various grain sizes and pore water velocities were examined. Though coliform bacteria and coliphages are used worldwide to indicate fecal pollution of groundwater, the various parameters controlling the transport of Escherichia coli MS2 and ΦΧ174 in the subsurface are not fully understood. In this study, the attachment behavior of Escherichia coli, MS2, and ΦΧ174 onto ultra-pure quartz sand were evaluated. The mass recoveries of the three biocolloids examined were found to be proportional to the sand size. The observed mass recoveries were in the order: Escherichia coli > ΦΧ174 > MS2. To assess the importance of biocolloid attachment, the single collector removal efficiency, and the collision efficiency were quantified using the classical colloid filtration theory. Our results indicate that the secondary energy minimum plays an important role in biocolloid deposition even for smaller biocolloid particles (e.g. viruses).
Yahya, M; Hmaied, F; Jebri, S; Jofre, J; Hamdi, M
2015-05-01
We aimed at quantifying bacteriophages in raw and treated wastewaters of human and animal origin in Tunisia to assess their usefulness for tracking the origin of faecal pollution and in the follow-up of effectiveness of water treatments process. The concentrations of bacteriophages in wastewater samples were determined by double layer agar technique. Somatic coliphages and F-specific RNA bacteriophages were present in all types of samples in high concentrations. The values of Escherichia coli were variable depending on geographical location. On the other hand, bacteriophages infecting strain GA17 were detected preferably when human faecal contamination was occurred. Bacteriophages appear as a feasible and widely applicable manner to detect faecal contamination in Tunisia. On the other hand, phages infecting GA17 could be good markers for tracking the origin of faecal pollution in the area studied. The reuse of treated wastewaters can be a solution to meet the needs of water in the geographical area of study. Bacteriophages seem to predict differently the presence of faecal contamination in water than bacterial indicators. Consequently, they can be a valuable additional tool to improve water resources management for minimizing health risks. © 2015 The Society for Applied Microbiology.
Lipp, E K; Farrah, S A; Rose, J B
2001-04-01
The goals of this study were to assess watersheds impacted by high densities of OSDS (onsite sewage disposal systems) for evidence of fecal contamination and evaluate the occurrence of human pathogens in coastal waters off west Florida. Eleven stations (representing six watersheds) were intensively sampled for microbial indicators of fecal pollution (fecal coliform bacteria, enterococci, Clostridium perfringens and coliphage) and the human enteric pathogens, Cryptosporidium, Giardia, and enteroviruses during the summer rainy season (May-September 1996). Levels of all indicators ranged between < 5 and > 4000 CFU/100 ml. Cryptosporidium and Giardia were detected infrequently (6.8% and 2.3% of samples tested positive, respectively). Conversely, infectious enteroviruses were detected at low levels in 5 of the 6 watersheds sampled. Using cluster analysis, sites were grouped into two categories, high and low risks, based on combined levels of indicators. These results suggest that stations of highest pollution risk were located within areas of high OSDS densities. Furthermore, data indicate a subsurface transport of contaminated water to surface waters. The high prevalence of enteroviruses throughout the study area suggests a chronic pollution problem and potential risk to recreational swimmers in and around Sarasota Bay.
Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Nevers, M.B.; Byappanahalli, M.N.
2008-01-01
Reducing fecal indicator bacteria, such as Escherichia coli (E. coli), in streams is important for many downstream areas. E. coli concentrations within streams may be reduced by intervening ponds or wetlands through a number of physical and biological means. A section of Dunes Creek, a small coastal stream of southern Lake Michigan, was impounded and studied for 30??months from pre-through post-construction of the experimental pond. E. coli reduction became more predictable and effective with pond age. E. coli followed the hydrograph and increased several-fold during both rainfall and snowmelt events. Seasonally, the pond was more effective at reducing E. coli during summer than winter. Late summer, non-solar reduction or inactivation of E. coli in the pond was estimated at 72% and solar inactivation at 26%. E. coli DNA fingerprinting demonstrated that the winter population was genetically more homogeneous than the summer population. Detection of FRNA coliphages suggests that there was fecal contamination during heavy rain events. An understanding of how environmental factors interact with E. coli populations is important for assessing anticipated contaminant loading and the reduction of indicator bacteria in downstream reaches. ?? 2007.
Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology.
Brownell, Sarah A; Chakrabarti, Alicia R; Kaser, Forest M; Connelly, Lloyd G; Peletz, Rachel L; Reygadas, Fermin; Lang, Micah J; Kammen, Daniel M; Nelson, Kara L
2008-03-01
We describe a point-of-use (POU) ultraviolet (UV) disinfection technology, the UV Tube, which can be made with locally available resources around the world for under $50 US. Laboratory and field studies were conducted to characterize the UV Tube's performance when treating a flowrate of 5 L/min. Based on biological assays with MS2 coliphage, the UV Tube delivered an average fluence of 900+/-80 J/m(2) (95% CI) in water with an absorption coefficient of 0.01 cm(-1). The residence time distribution in the UV Tube was characterized as plug flow with dispersion (Peclet Number = 19.7) and a mean hydraulic residence time of 36 s. Undesirable compounds were leached or produced from UV Tubes constructed with unlined ABS, PVC, or a galvanized steel liner. Lining the PVC pipe with stainless steel, however, prevented production of regulated halogenated organics. A small field study in two rural communities in Baja California Sur demonstrated that the UV Tube reduced E. coli concentrations to less than 1/100 ml in 65 out of 70 samples. Based on these results, we conclude that the UV Tube is a promising technology for treating household drinking water at the point of use.
Endogenous System Microbes as Treatment Process ...
Monitoring the efficacy of treatment strategies to remove pathogens in decentralized systems remains a challenge. Evaluating log reduction targets by measuring pathogen levels is hampered by their sporadic and low occurrence rates. Fecal indicator bacteria are used in centralized systems to indicate the presence of fecal pathogens, but are ineffective decentralized treatment process indicators as they generally occur at levels too low to assess log reduction targets. System challenge testing by spiking with high loads of fecal indicator organisms, like MS2 coliphage, has limitations, especially for large systems. Microbes that are endogenous to the decentralized system, occur in high abundances and mimic removal rates of bacterial, viral and/or parasitic protozoan pathogens during treatment could serve as alternative treatment process indicators to verify log reduction targets. To identify abundant microbes in wastewater, the bacterial and viral communities were examined using deep sequencing. Building infrastructure-associated bacteria, like Zoogloea, were observed as dominant members of the bacterial community in graywater. In blackwater, bacteriophage of the order Caudovirales constituted the majority of contiguous sequences from the viral community. This study identifies candidate treatment process indicators in decentralized systems that could be used to verify log removal during treatment. The association of the presence of treatment process indic
USEPA MANUAL OF METHODS FOR VIROLOGY | Science ...
This chapter describes procedures for the detection of coliphases in water matrices. These procedures are based on those presented in the Supplement to the 20th Edition of Standard Methods for the Examination of Water and Eastewater and EPA Methods 1601 and 1602. Two quantitative procedures and one qualitative, presence-absence procedures are presented. The procedures can be used, without supplementary methods, to assay small volumes of water (10 mL to 1L). For larger volumes (>100L), large-scale concentration methods such as described in Chapter 14 may be incorporated into the assay scheme. However, as some concentration procedures may result in appreciable loss or inactivation of coliphage, it is recommended that the suitability of any large volume concentration method be evaluated in measured recovery trials before implementation. Develop sensitive techniques to detect and identify emerging human waterborne pathogenic viruses and viruses on the CCL.Determine effectiveness of viral indicators to measure microbial quality in water matrices.Support activities: (a) culture and distribution of mammalian cells for Agency and scientific community research needs, (b) provide operator expertise for research requiring confocal and electron microscopy, (c) glassware cleaning, sterilization and biological waste disposal for the Cincinnati EPA facility, (d) operation of infectious pathogenic suite, (e) maintenance of walk-in constant temperature rooms and (f) provid
Sheludchenko, Maxim; Padovan, Anna; Katouli, Mohammad; Stratton, Helen
2016-01-01
Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP) with (n = 1) and without (n = 3) baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo) cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation. PMID:26729150
Sheludchenko, Maxim; Padovan, Anna; Katouli, Mohammad; Stratton, Helen
2016-01-02
Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP) with (n = 1) and without (n = 3) baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo) cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation.
Woods, Jacquelina W; Calci, Kevin R; Marchant-Tambone, Joey G; Burkhardt, William
2016-10-01
Human noroviruses are the leading cause of non-bacterial shellfish associated gastroenteritis. Here we report on the detection and characterization of norovirus (NoV) in shellfish associated outbreaks. Requests were received from state and federal officials for technical assistance in the analysis of shellfish for NoV and male specific coliphage (MSC; an enteric virus surrogate) during the years 2009 thru 2014. In outbreaks where NoV was detected, genogroup II (GII) levels ranged from 2.4 to 82.0 RT-qPCR U/g of digestive diverticula (DD) while NoV genogroup I (GI) levels ranged from 1.5 to 29.8 RT-qPCR U/g of DD. Murine norovirus extraction efficiencies ranged between 50 and 85%. MSC levels ranged from <6 to 80 PFU/100 g. Phylogenetic analysis of the outbreak sequences revealed strains clustering with GI.8, GI.4, GII.3, GII.4, GII.7, and GII.21. There was 100% homology between the shellfish and clinical strains occurring in 2 of 8 outbreaks. Known shellfish consumption data demonstrated probable infectious particles ingested as low as 12. These investigations demonstrate effective detection, quantification, and characterization of NoV in shellfish associated with illness. Published by Elsevier Ltd.
Differential Decomposition of Bacterial and Viral Fecal ...
Understanding the decomposition of microorganisms associated with different human fecal pollution types is necessary for proper implementation of many water qualitymanagement practices, as well as predicting associated public health risks. Here, thedecomposition of select cultivated and molecular indicators of fecal pollution originating from fresh human feces, septage, and primary effluent sewage in a subtropical marine environment was assessed over a six day period with an emphasis on the influence of ambient sunlight and indigenous microbiota. Ambient water mixed with each fecal pollution type was placed in dialysis bags and incubated in situ in a submersible aquatic mesocosm. Genetic and cultivated fecal indicators including fecal indicator bacteria (enterococci, E. coli, and Bacteroidales), coliphage (somatic and F+), Bacteroides fragilis phage (GB-124), and human-associated geneticindicators (HF183/BacR287 and HumM2) were measured in each sample. Simple linearregression assessing treatment trends in each pollution type over time showed significant decay (p ≤ 0.05) in most treatments for feces and sewage (27/28 and 32/40, respectively), compared to septage (6/26). A two-way analysis of variance of log10 reduction values for sewage and feces experiments indicated that treatments differentially impact survival of cultivated bacteria, cultivated phage, and genetic indicators. Findings suggest that sunlight is critical for phage decay, and indigenous microbio
Gavrieli, Benjamin; Potasman, Israel; Armon, Robert H
2010-06-01
Israel Defense Forces (IDF) guidelines for drinking water require the use of water only from sources that have been inspected and authorized by a medical expert. This study aimed to compare canteen water quality of two military units (infantry and armoured corps), to search for sources of possible microbial contamination and to look for any impact on gastrointestinal symptoms. Statistical analysis revealed that canteens of armoured corp soldiers were significantly more contaminated compared to those of infantry soldiers. Outdoor taps and water in trailers were found to harbour significantly higher numbers of microbial indicators compared to showers/lavatory sources; however, the numbers were much lower compared to canteens. Canteen water retention for more than one day revealed significantly increased numbers of examined microbial parameters, possibly due to secondary contamination or regrowth. Gastrointestinal symptoms were not significantly different between the two units despite the significant canteen water quality difference. An odds ratio evaluation was conducted on 45 exposure-illness combinations based on gastrointestinal symptoms, exposure and soldiers affiliation. Out of these 45 combinations only 14 resulted in odds ratio > 1, where 3 had high values (7.44, 7.46 and 11.2) suggesting a possible connection between diarrhoea and/or vomiting versus coliphages and faecal coliforms.
Aström, Johan; Pettersson, Thomas J R; Reischer, Georg H; Hermansson, Malte
2013-09-01
The protection of drinking water from pathogens such as Cryptosporidium and Giardia requires an understanding of the short-term microbial release from faecal contamination sources in the catchment. Flow-weighted samples were collected during two rainfall events in a stream draining an area with on-site sewers and during two rainfall events in surface runoff from a bovine cattle pasture. Samples were analysed for human (BacH) and ruminant (BacR) Bacteroidales genetic markers through quantitative polymerase chain reaction (qPCR) and for sorbitol-fermenting bifidobacteria through culturing as a complement to traditional faecal indicator bacteria, somatic coliphages and the parasitic protozoa Cryptosporidium spp. and Giardia spp. analysed by standard methods. Significant positive correlations were observed between BacH, Escherichia coli, intestinal enterococci, sulphite-reducing Clostridia, turbidity, conductivity and UV254 in the stream contaminated by on-site sewers. For the cattle pasture, no correlation was found between any of the genetic markers and the other parameters. Although parasitic protozoa were not detected, the analysis for genetic markers provided baseline data on the short-term faecal contamination due to these potential sources of parasites. Background levels of BacH and BacR makers in soil emphasise the need to including soil reference samples in qPCR-based analyses for Bacteroidales genetic markers.
Role of Escherichia coli dnaA gene and its integrative suppression in M13 Coliphage DNA synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, S.; Stallions, D.R.
An F/sup +/ derivative of Escherichia coli E508 thermosensitive in dnaA function (involved in DNA synthesis initiation), its revertant and an Hfr derivative of E508(ts) in which the temperature-sensitive phenotype is suppressed by integrative suppression have been compared for their ability to support M13 phage DNA synthesis at the nonpermissive temperature. Upon infection at the nonpermissive temperature, both the revertant and the Hfr strain support normal phage replication while the temperature-sensitive mutant does not. However, when infection is carried out at a permissive temperature and the temperature is shifted up after infection, phage synthesis occurs in the temperature-sensitive mutant also,more » but in lesser quantity than in the revertant strain. Analysis of intracellular labeled phage DNA indicates: (a) parental replicative form DNA synthesis is not dependent on dnaA function; (b) progeny replicative form DNA synthesis is strongly inhibited in the temperature-sensitive dnaA mutant at the nonpermissive temperature; (c) progeny single-strand DNA synthesis does not absolutely require dnaA function; (d) progeny single-strand DNA is present in the circular form. The implication of the host DNA replication in M13 DNA synthesis is discussed.« less
Glasset, Benjamin; Herbin, Sabine; Guillier, Laurent; Cadel-Six, Sabrina; Vignaud, Marie-Léone; Grout, Joel; Pairaud, Sylvie; Michel, Valérie; Hennekinne, Jacques-Antoine; Ramarao, Nalini; Brisabois, Anne
2016-01-01
The aim of this study was to identify and characterise Bacillus cereus from a unique national collection of 564 strains associated with 140 strong-evidence food-borne outbreaks (FBOs) occurring in France during 2007 to 2014. Starchy food and vegetables were the most frequent food vehicles identified; 747 of 911 human cases occurred in institutional catering contexts. Incubation period was significantly shorter for emetic strains compared with diarrhoeal strains A sub-panel of 149 strains strictly associated to 74 FBOs and selected on Coliphage M13-PCR pattern, was studied for detection of the genes encoding cereulide, diarrhoeic toxins (Nhe, Hbl, CytK1 and CytK2) and haemolysin (HlyII), as well as panC phylogenetic classification. This clustered the strains into 12 genetic signatures (GSs) highlighting the virulence potential of each strain. GS1 (nhe genes only) and GS2 (nhe, hbl and cytK2), were the most prevalent GS and may have a large impact on human health as they were present in 28% and 31% of FBOs, respectively. Our study provides a convenient molecular scheme for characterisation of B. cereus strains responsible for FBOs in order to improve the monitoring and investigation of B. cereus-induced FBOs, assess emerging clusters and diversity of strains. PMID:27934583
A Novel High-Resolving Method for Genomic PCR-Fingerprinting of Enterobacteria
Isaeva, A.S.; Kulikov, E.E.; Tarasyan, K.K.
2010-01-01
We developed a novel PCR–fingerprinting system for differentiation of enterobacterial strains using a single oligonucleotide primer IS1tr that matches the inverted terminal repeats of the IS1 insertion element. Compared to widely used BOX–PCR and ribotyping methods, our system features higher resolution allowing differentiation of closely related isolates that appear identical in BOX–PCR and ribotyping but differ in their phage sensitivity. The IS1–profiling system is less sensitive to the quality of the material and equipment used. At the same time, BOX–PCR is more universal and suitable for bacterial strain grouping and reconstruction of the low–distance phylogeny. Thus, our system represents an important supplement to the existing set of tools for bacterial strain differentiation; it is particularly valuable for a detailed investigation of highly divergent and rapidly evolving natural bacterial populations and for studies on coliphage ecology. However, some isolates could not be reliably differentiated by IS1–PCR, because of the low number of bands in their patterns. For improvement of IS1–fingerprinting characteristics, we offer to modify the system by introducing the second primer TR8834 hybridizing to the sequence of a transposase gene that is widely spread in enterobacterial genomes. PMID:22649631
Mineralizing urban net-zero water treatment: Phase II field ...
Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design and operating experience are extremely limited. The objective of this paper is to present the results of the second phase of operation of an advanced oxidation-based NZW pilot system designed, constructed, and operated for a period of two years, serving an occupied four-person apartment. System water was monitored, either continuously or thrice daily, for routine water quality parameters, minerals, and MicroTox® in-vitro toxicity, and intermittently for somatic and male-specific coliphage, adenovirus, Cryptosporidium, Giardia, emerging organic constituents (non-quantitative), and the Florida drinking water standards. All 115 drinking water standards with the exception of bromate were met in this phase. Neither virus nor protozoa were detected in the treated water, with the exception of measurement of adenovirus genome copies attributed to accumulation of inactive genetic material in hydraulic dead zones. Chemical oxygen demand was mineralized to 90% in treatment. Total dissolved solids were maintained at ∼500 mg/L at steady state, partially through aerated aluminum electrocoagulation. Bromate accumulation is projected to be controlled by aluminum electrocoagulation with separate dispo
NASA Astrophysics Data System (ADS)
Wang, Y.; Bradford, S. A.; Simunek, J.
2011-12-01
Laboratory and numerical studies were conducted to investigate the influence of physical and chemical factors on the transport of E.coli O157:H7 and coliphage φX174 through preferential flow systems. Preferential flow systems were created in 13.2 cm diameter and 20 cm length columns by embedding sand lens of various grain size, length, and vertical position into finer textured matrix sand. Tracer solutions containing bromide and microbes were prepared at different ionic strength (IS) and sprayed onto the surface of the columns at desired steady rates using a rain simulator to achieve saturated or unsaturated conditions. Effluents were collected at the column bottom continuously and analyzed for concentrations of bromide, φX174, and E.coli. Complementary numerical simulations were conducted using the HYDRUS 2D code over a wider range of physical and chemical conditions, and to analyze bromide and microbe transport in the columns. Results indicated that preferential transport of the microbes was dependent on the hydraulic contrasts between the matrix and lens, the length of the lens, the size of microorganism, and the water saturation. The IS also influenced the preferential transport of microbes. In particular, increasing retention with IS decreased the overall microbe transport but increased the relative importance of preferential flow.
Momba, Maggy N B; Kaleni, P
2002-07-01
The present study covered two rural communities of South Africa: Ncera and Ntselamanzi villages. Raw water from Ncera river is used by the community of Ncera village for drinking, while the community of Ntselamanzi receives their drinking water from Alice purification system. Treated water is supplied to the community by a public standpipe system. In rural communities of South Africa, many households use polyethylene (PE) and galvanized steel (GS) containers for the storage of their drinking water. To investigate the regrowth and survival of indicator microorganisms on the surface of household containers during the storage of drinking water, PE and GS slides were suspended in the appropriate household containers for a period of 48 h. This period of 48 h was chosen as the study period because results from the questionnaire indicated that the largest percentage (62%) of households store their water for that length of time. The experiment was performed to test drinking water as it is collected and stored by rural communities. No disinfection of household containers or slides was done during the study period. Attached coliphages (F-RNA (FP) and somatic phage (SP), coliform bacteria (total coliform (TC), presumptive Escherichia coli (EC), Salmonella (Sal) and Clostridium perfringens (CP) were measured during the study period. With the exception of CP, attached indicator microorganisms consisted of TC, presumptive E. coli and Salmonella, somatic and F-RNA coliphages, although the yield (average count) for the last four groups (EC: < 1-3 cfu cm(-2), Sal: < 1-15 cfu cm(-2), FP: < 1-7 pfu cm(-2), SP: < 1-7pfu cm(-2)) was lower than that of TC (3-183 cfu cm(-2)). However, the lowest yield of indicator microorganisms was noted for presumptive E. coli. Whereas the occurrence and survival of TC was noted on the surface of household containers during the entire period of the experimental study, other indicator microorganisms occurred from time to time. The regrowth of indicator microorganisms occurred 48 h after the exposure of slides to both types of test waters. This length of time mostly resulted in the regrowth of TC (with an increase in bacterial counts) while the persistence of other indicator organism groups on the surface of the slides was apparent. A comparison between PE and GS containers showed that more TC (average count) regrew on PE than on GS containers (for river water, PE: from 36 to 55 cfu cm(-2), GS: from 25 to 26 cfu cm(-2); for standpipe water, PE: from 147 to 183 cfu cm(-2), GS from 3 to 4 cfu cm(-2)). This study revealed that both types of household containers supported the growth and survival of indicator microorganisms due to the bad quality of the intake water before storage. The storage of drinking water for 48 h mainly resulted in the regrowth of TC. Nevertheless, the persistence of other indicator microorganisms was observed on the surface of household containers.
Reduction of Norwalk Virus, Poliovirus 1, and Bacteriophage MS2 by Ozone Disinfection of Water
Shin, Gwy-Am; Sobsey, Mark D.
2003-01-01
Norwalk virus and other human caliciviruses (noroviruses) are major agents of gastroenteritis, and water is a major route of their transmission. In an effort to control Norwalk virus in drinking water, Norwalk virus reduction by bench-scale ozone disinfection was determined using quantitative reverse transcription (RT)-PCR for virus assays. Two other enteric viruses, poliovirus 1 and coliphage MS2, were included for comparison, and their reductions were assayed by infectivity assays as well as by RT-PCR. Virus reductions by ozone were determined using a dose of 0.37 mg of ozone/liter at pH 7 and 5°C for up to 5 min. Based on two RT-PCR assays, the reductions of Norwalk virus were >3 log10 within a contact time of 10 s, and these were similar to the reductions of the other two viruses determined by the same assay methods. Also, the virus reductions detected by RT-PCR assays were similar to those detected by infectivity assays, indicating that the RT-PCR assay is a reliable surrogate assay for both culturable and nonculturable viruses disinfected with ozone. Overall, the results of this study indicate that Norwalk virus as well as other enteric viruses can be reduced rapidly and extensively by ozone disinfection and that RT-PCR is a useful surrogate assay for both culturable and nonculturable viruses disinfected with ozone. PMID:12839770
Datta, Ajit Bikram; Roy, Siddhartha; Parrack, Pradeep
2005-01-14
A crucial element in the lysis-lysogeny decision of the temperate coliphage lambda is the phage protein CII, which has several interesting properties. It promotes lysogeny through activation of three phage promoters p(E), p(I) and p(aQ), recognizing a direct repeat sequence TTGCN6TTGC at each. The three-dimensional structure of CII, a homo-tetramer of 97 residue subunits, is unknown. It is an unstable protein in vivo, being rapidly degraded by the host protease HflB (FtsH). This instability is essential for the function of CII in the lysis-lysogeny switch. From NMR and limited proteolysis we show that about 15 C-terminal residues of CII are highly flexible, and may act as a target for proteolysis in vivo. From in vitro transcription, isothermal calorimetry and gel chromatography of CII (1-97) and its truncated fragments CIIA (4-81/82) and CIIB (4-69), we find that residues 70-81/82 are essential for (a) tetramer formation, (b) operator binding and (c) transcription activation. Presumably, tetramerization is necessary for the latter functions. Based on these results, we propose a model for CII structure, in which protein-protein contacts for dimer and tetramer formation are different. The implications of tetrameric organization, essential for CII activity, on the recognition of the direct repeat sequence is discussed.
Intra-storm variability in microbial partitioning and microbial loading rates.
Krometis, Leigh-Anne H; Characklis, Gregory W; Simmons, Otto D; Dilts, Mackenzie J; Likirdopulos, Christina A; Sobsey, Mark D
2007-01-01
Association with particles in the water column can have a significant impact on microbial fate and transport. This study analyzed multiple stormwater samples taken throughout the duration of three separate storms (at two different sites) to evaluate the fraction of microbes partitioning to denser "settleable" particles and to examine how partitioning behavior varied over the course of a storm. Intra-storm sampling also allowed for estimates of microbial loading rates (both total and particle-associated) and cumulative storm-induced microbial load. Five different indicator organisms were examined, with the fraction of microbes associated with settleable particles assessed via a calibrated centrifugation method. Partitioning behavior varied across microorganism type, with an average of 40% of fecal coliforms, Escherichia coli, and enterococci associating with settleable particles, compared to approximately 65% of Clostridium perfringens spores and only 13% of total coliphage. Partitioning remained fairly constant for each type of organism throughout storm events. Nonetheless, higher concentrations of both settleable particles and microbes entering the water column soon after the onset of a storm led to higher loading rates of settleable microbes in the storm's earliest stages, a trend that could have important implications for the design of stormwater management structures (e.g., detention basins). Estimates of cumulative storm-induced microbial loading suggested that one day's worth of storm loading can be the equivalent of months, or even years, of dry-weather loading.
Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao
2015-12-15
The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water.
Shin, Gwy-Am; Sobsey, Mark D
2003-07-01
Norwalk virus and other human caliciviruses (noroviruses) are major agents of gastroenteritis, and water is a major route of their transmission. In an effort to control Norwalk virus in drinking water, Norwalk virus reduction by bench-scale ozone disinfection was determined using quantitative reverse transcription (RT)-PCR for virus assays. Two other enteric viruses, poliovirus 1 and coliphage MS2, were included for comparison, and their reductions were assayed by infectivity assays as well as by RT-PCR. Virus reductions by ozone were determined using a dose of 0.37 mg of ozone/liter at pH 7 and 5 degrees C for up to 5 min. Based on two RT-PCR assays, the reductions of Norwalk virus were >3 log(10) within a contact time of 10 s, and these were similar to the reductions of the other two viruses determined by the same assay methods. Also, the virus reductions detected by RT-PCR assays were similar to those detected by infectivity assays, indicating that the RT-PCR assay is a reliable surrogate assay for both culturable and nonculturable viruses disinfected with ozone. Overall, the results of this study indicate that Norwalk virus as well as other enteric viruses can be reduced rapidly and extensively by ozone disinfection and that RT-PCR is a useful surrogate assay for both culturable and nonculturable viruses disinfected with ozone.
Transport of microorganisms in the presence and absence of manure suspensions
NASA Astrophysics Data System (ADS)
Bradford, S. A.; Tadassa, Y.; Bettahar, M.
2004-12-01
Wash water and storm water runoff from Concentrated Animal Feeding Operations (CAFOs) frequently contain manure and a variety of viral, bacterial, and protozoan parasite pathogens. Column experiments were conducted to elucidate the transport behavior of representative microbes (coliphage, Escherichia coli O157:H7, and Giardia cysts) through several aquifer sands in the presence and absence of manure suspensions. Specific factors that were considered include the soil grain size distribution, the presence and absence of manure suspensions, and manure size distribution. Effluent concentration curves and the final spatial distributions of microorganisms and manure particles were measured. Increasing the microbe size and decreasing the median grain size of the sand resulted in low effluent concentrations and increased retention of the microbes, especially in the sand near the column inlet. Similar transport trends were observed for the manure suspensions in these sands. The spatial distributions of retained microbes and manure were generally not consistent with predictions from conventional attachment, detachment, and blocking models; but rather with straining. The transport potential of the microbes was sometimes enhanced in the presence of manure suspensions. This observation, as well transport and retention data for manure suspensions, suggest that manure components filled straining sites and inhibited microbe retention. Differences in the surface charge properties of clean and manure equilibrated microbes (presumably due to adsorption of organic components from the suspension) may also influence transport behavior.
Ivanova, L V; Artemova, T Z; Gipp, E K; Zagaĭnova, A V; Maksimkina, T N; Krasniak, A V; Korneĭchuk, S S; Shustova, S S
2013-01-01
For the purpose of harmonization of microbiological and parasitological indices and benchmarks there was performed the comparative analysis of the requirements for the quality of drinking water in respect of the epidemic safety on the basic regulations of Russia, the Directive Council of the European Union EU, WHO, the United States, Canada, Australia, Finland, Sweden, Brazil, France, Japan and China. As a result, there were revealed the priority bacteriological, virological and parasitological parameters: E. coli--indicator of recent fecal contamination, coliforms, heterotrophic bacteria colony count (Heterotrophic plate count), which is in the water legislation of the Russian Federation is characterized as total bacterial count (TBC), being an integral index of the quality of wastewater treatment technologies and hygienic condition of the water supply systems, coliphages as an indicator of viral contamination. In the Guidelines for drinking-water quality control, WHO and a set of countries there is recommended a more wide range of indicators: enterococci, Clostridium perfringens, Pseudomonas aeruginosa, enteroviruses, parasitological indices. With aim of harmonization of the requirements for the quality of drinking water in the Russian Federation with international approaches to the revision of the Sanitary Regulations and Norms (SanPin) 2.1.4.1074 into the project there are introduced priority indicator parameters of bacterial, viral and parasitic contamination of water, evidence-based guidelines.
Åström, Johan; Pettersson, Thomas J R; Reischer, Georg H; Norberg, Tommy; Hermansson, Malte
2015-02-03
Several assays for the detection of host-specific genetic markers of the order Bacteroidales have been developed and used for microbial source tracking (MST) in environmental waters. It is recognized that the source-sensitivity and source-specificity are unknown and variable when introducing these assays in new geographic regions, which reduces their reliability and use. A Bayesian approach was developed to incorporate expert judgments with regional assay sensitivity and specificity assessments in a utility evaluation of a human and a ruminant-specific qPCR assay for MST in a drinking water source. Water samples from Lake Rådasjön were analyzed for E. coli, intestinal enterococci and somatic coliphages through cultivation and for human (BacH) and ruminant-specific (BacR) markers through qPCR assays. Expert judgments were collected regarding the probability of human and ruminant fecal contamination based on fecal indicator organism data and subjective information. Using Bayes formula, the conditional probability of a true human or ruminant fecal contamination given the presence of BacH or BacR was determined stochastically from expert judgments and regional qPCR assay performance, using Beta distributions to represent uncertainties. A web-based computational tool was developed for the procedure, which provides a measure of confidence to findings of host-specific markers and demonstrates the information value from these assays.
Bauer, Rosalie; Dizer, Halim; Graeber, Ingeborg; Rosenwinkel, Karl-Heinz; López-Pila, Juan M
2011-01-01
The aim of the present study was to estimate the performance of slow sand filtration (SSF) facilities, including the time needed for reaching stabilization (maturation), operated with surface water bearing high fecal contamination, representing realistic conditions of rivers in many emerging countries. Surface water spiked with wastewater was infiltrated at different pore water velocities (PWV) and samples were collected at different migration distances. The samples were analyzed for phages and to a lesser extent for fecal bacteria and enteric adenoviruses. At the PWV of 50 cm/d, at which somatic phages showed highest removal, their mean log(10) removal after 90 cm migration was 3.2. No substantial differences of removal rates were observed at PWVs between 100 and 900 cm/d (2.3 log(10) mean removal). The log(10) mean removal of somatic phages was less than the observed for fecal bacteria and tended more towards that of enteric adenoviruses This makes somatic phages a potentially better process indicator than Escherichia coli for the removal of viruses in SSF. We conclude that SSF, and by inference in larger scale river bank filtration (RBF), is an excellent option as a component in multi-barrier systems for drinking water treatment also in areas where the sources of raw water are considerably fecally polluted, as often found in many emerging countries. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sturdevant-Rees, P. L.; Bourdeau, D.; Baker, R.; Long, S. C.; Barten, P. K.
2004-05-01
Microbial and water-quality measurements are collected during storm events under a variety of meteorological and land-use conditions in order to 1) identify risk of Cryptosporidium oocysts, Giardia cysts and other constituents, including microbial indicator organisms, entering surface waters from various land uses during periods of surface runoff; 2) optimize storm sampling procedures for these parameters; and 3) optimize strategies for accurate determination of constituent loads. The investigation is focused on four isolated land uses: forested with free ranging wildlife, beaver influenced forested with free ranging wildlife, residential/commercial, and dairy farm grazing/pastureland using an upstream and downstream sampling strategy. Traditional water-quality analyses include pH, temperature, turbidity, conductivity, total suspended solids, total phosphorus, total Kjeldahl-nitrogen, and ammonia nitrogen, Giardia cysts and Cryptosporidium oocysts. Total coliforms and fecal coliforms are measured as industry standard microbial analyses. Sorbitol-fermenting Bifidobacteria, Rhodococcus coprophilus, Clostridium perfringens spores, and Somatic and F-specific coliphages are measured at select sites as potential alternative source-specific indicator organisms. Upon completion of the project, the final database will consist of wet weather transport data for a set of parameters during twenty-four distinct storm-events in addition to monthly baseline data. A subset of the results to date will be presented, with focus placed on demonstrating the impact of beaver on constituent loadings over a variety of hydrologic and meteorological conditions.
Åström, Johan; Pettersson, Thomas J. R.; Reischer, Georg H.; Norberg, Tommy; Hermansson, Malte
2017-01-01
Several assays for the detection of host-specific genetic markers of the order Bacteroidales have been developed and used for microbial source tracking (MST) in environmental waters. It is recognized that the source-sensitivity and source-specificity are unknown and variable when introducing these assays in new geographic regions, which reduces their reliability and use. A Bayesian approach was developed to incorporate expert judgments with regional assay sensitivity and specificity assessments in a utility evaluation of a human and a ruminant-specific qPCR assay for MST in a drinking water source. Water samples from Lake Rådasjön were analyzed for E. coli, intestinal enterococci and somatic coliphages through cultivation and for human (BacH) and ruminant-specific (BacR) markers through qPCR assays. Expert judgments were collected regarding the probability of human and ruminant fecal contamination based on fecal indicator organism data and subjective information. Using Bayes formula, the conditional probability of a true human or ruminant fecal contamination given the presence of BacH or BacR was determined stochastically from expert judgments and regional qPCR assay performance, using Beta distributions to represent uncertainties. A web-based computational tool was developed for the procedure, which provides a measure of confidence to findings of host-specific markers and demonstrates the information value from these assays. PMID:25545113
Novel N4 Bacteriophages Prevail in the Cold Biosphere.
Zhan, Yuanchao; Buchan, Alison; Chen, Feng
2015-08-01
Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a "genetic orphan" until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hirotani, Hiroshi; Yu, Ma; Yamada, Takeshi
2013-01-01
Fluctuation of bacteriophage and Escherichia coli densities in naturally developed riverbed biofilms were investigated for a 1-year period. E. coli ranged from 1,500 to 15,500 most probable number (MPN)/100 mL and from 580 to 18,500 MPN/cm(2) in the main channel in the river water and biofilms, respectively. However, the fluctuations were much greater in the tributary, ranging from 0.8 to 100 MPN/100 mL and from 0.3 to 185 MPN/cm(2) in water and biofilms, respectively. The fluctuations of coliphages were also greater in the tributary than in the main channel. FRNA phage serotyping results indicated no significant differences in the source type of the fecal contamination in the main channel and tributary sampling stations. Significant correlations between phage groups in biofilms and water were found at both main channel and tributary. It was assumed that natural biofilms developed in the streambed captured and retained somatic phages in the biofilms for a certain period of time in the main channel site. At the location receiving constant and heavy contamination, the usage of phage indicators may provide additional information on the presence of viruses. In the small tributary it may be possible to estimate the virus concentration by monitoring the E. coli indicator.
Gerba, Charles P.; Tamimi, Akrum H.; Kitajima, Masaaki; Maxwell, Sheri L.; Rose, Joan B.
2013-01-01
Fomites can serve as routes of transmission for both enteric and respiratory pathogens. The present study examined the effect of low and high relative humidity on fomite-to-finger transfer efficiency of five model organisms from several common inanimate surfaces (fomites). Nine fomites representing porous and nonporous surfaces of different compositions were studied. Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, MS2 coliphage, and poliovirus 1 were placed on fomites in 10-μl drops and allowed to dry for 30 min under low (15% to 32%) or high (40% to 65%) relative humidity. Fomite-to-finger transfers were performed using 1.0 kg/cm2 of pressure for 10 s. Transfer efficiencies were greater under high relative humidity for both porous and nonporous surfaces. Most organisms on average had greater transfer efficiencies under high relative humidity than under low relative humidity. Nonporous surfaces had a greater transfer efficiency (up to 57%) than porous surfaces (<6.8%) under low relative humidity, as well as under high relative humidity (nonporous, up to 79.5%; porous, <13.4%). Transfer efficiency also varied with fomite material and organism type. The data generated can be used in quantitative microbial risk assessment models to assess the risk of infection from fomite-transmitted human pathogens and the relative levels of exposure to different types of fomites and microorganisms. PMID:23851098
Bacteriophages as indicators of faecal pollution and enteric virus removal.
McMinn, B R; Ashbolt, N J; Korajkic, A
2017-07-01
Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.
Mutations That Improve the pRE Promoter of Coliphage Lambda
Mahoney, Michael E.; Wulff, Daniel L.
1987-01-01
The dya5 mutation, a C→T change at position -43 of the λ pRE promoter, results in a twofold increase in pRE activity in vivo. Smaller increases in pRE activity are found for the dya2 mutation, a T→C change at position -1 of pRE, and the dya3 mutation, an A→G change at +5 of pRE. The mutant p RE promoters retain complete dependence on cII protein for activity. These observations argue, at least for pRE-like promoters, that promoter activities are influenced by nucleotide sequences at least eight nucleotides to the 5'-side of the conventional -35 region consensus sequence, and by nucleotide sequences near the start-site of transcription. Although Hawley and McClure (1983) found A·T pairs more frequently than G·TC pairs in the region of -40 to -45 of prokaryotic promoters, other mutations that change a G·TC pair to an A·T pair at positions -41, -44 and -45 of pRE do not result in increased promoter activity. We also found that a T→C change at position -42 results in a mild decrease in promoter activity. These observations argue that Ts at positions -42 and -43 of pRE are required for maximum promoter activity, but do not support the hypothesis that As and Ts in the -40 to -45 region generally lead to higher promoter activities. PMID:2953648
Bacteriophage Protein–Protein Interactions
Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian
2012-01-01
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage–host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812
Stachler, Elyse; Akyon, Benay; Aquino de Carvalho, Nathalia; Ference, Christian; Bibby, Kyle
2018-06-06
Environmental waters are monitored for fecal pollution to protect public health. Many previously developed human-specific fecal pollution indicators lack adequate sensitivity to be reliably detected in environmental waters or do not correlate well with viral pathogens. Recently, two novel human sewage-associated source tracking qPCR markers were developed based on the bacteriophage crAssphage, CPQ_056 and CPQ_064. These assays are highly human specific, abundant in sewage, and are viral-based, suggesting great promise for environmental application as human fecal pollution indicators. A 30-day sampling study was conducted in an urban stream impacted by combined sewer overflows to evaluate the crAssphage markers' performance in an environmental system. The crAssphage markers were present at concentrations of 4.02-6.04 log10 copies/100 mL throughout the study period, indicating their high abundance and ease of detection in polluted environmental waters. In addition, the crAssphage assays were correlated with rain events, molecular markers for human polyomavirus and HF183, as well as culturable E. coli, enterococci, and somatic coliphage. The CPQ_064 assay correlated strongly to a greater number of biological indicators than the CPQ_056 assay. This study is the first to evaluate both crAssphage qPCR assays in an extended environmental application of crAssphage markers for monitoring of environmental waters. It is also the first study to compare crAssphage marker concentration with other viral-based indicators.
Use of Bacteriophage MS2 as an Internal Control in Viral Reverse Transcription-PCR Assays
Dreier, Jens; Störmer, Melanie; Kleesiek, Knut
2005-01-01
Diagnostic systems based on reverse transcription (RT)-PCR are widely used for the detection of viral genomes in different human specimens. The application of internal controls (IC) to monitor each step of nucleic acid amplification is necessary to prevent false-negative results due to inhibition or human error. In this study, we designed various real-time RT-PCRs utilizing the coliphage MS2 replicase gene, which differ in detection format, amplicon size, and efficiency of amplification. These noncompetitive IC assays, using TaqMan, hybridization probe, or duplex scorpion probe techniques, were tested on the LightCycler and Rotorgene systems. In our approach, clinical specimens were spiked with the control virus to monitor the efficiency of extraction, reverse transcription, and amplification steps. The MS2 RT-PCR assays were applied for internal control when using a second target hepatitis C virus RNA in duplex PCR in blood donor screening. The 95% detection limit was calculated by probit analysis to 44.9 copies per PCR (range, 38.4 to 73.4). As demonstrated routinely, application of MS2 IC assays exhibits low variability and can be applied in various RT-PCR assays. MS2 phage lysates were obtained under standard laboratory conditions. The quantification of phage and template RNA was performed by plating assays to determine PFU or via real-time RT-PCR. High stability of the MS2 phage preparations stored at −20°C, 4°C, and room temperature was demonstrated. PMID:16145106
Giannakis, Stefanos; Liu, Siting; Carratalà, Anna; Rtimi, Sami; Talebi Amiri, Masoud; Bensimon, Michaël; Pulgarin, César
2017-10-05
The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H 2 O 2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL -1 ) and H 2 O 2 in the system (1, 5 and 10mgL -1 ) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized). Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of filters for concentrating microbial indicators and pathogens in lake-water samples
Francy, Donna S.; Stelzer, Erin A.; Brady, Amie M.G.; Huitger, Carrie; Bushon, Rebecca N.; Ip, Hon S.; Ware, Michael W.; Villegas, Eric N.; Gallardo, Vincent; Lindquist, H.D. Alan
2013-01-01
Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples.
A comparison of the survival of F+RNA and F+DNA coliphages in lake water microcosms.
Long, Sharon C; Sobsey, Mark D
2004-03-01
The survival of seven F+RNA phages (MS2 Group I ATCC type strain, two Group I environmental isolates, a Group II environmental isolate, a Group III environmental isolate, and two Group IV environmental isolates) and six F+DNA phages (M13, fd, f1, and ZJ/2 ATCC type strains, and two environmental isolates) were examined in microcosms using a surface drinking water source. Phages were spiked into replicate aliquots of a source water at about 20,000 pfu/ml. Replicate spikes were incubated at 4 and 20 degrees C and monitored for 110 days. At 4 degrees C, Groups I and II F+ RNA phages were detectable through 110 days, with reductions of about 1 and 3 log10, respectively. The Group III F+RNA phage demonstrated 5 log10 reduction after 3 weeks, and the Group IV F+RNA phages were reduced to detection limits (5 log10 reduction) within 10 days. Of the F+DNA phages, all four type strains were detectable with about 2.5 log10 reduction after 110 days at 4 degrees C. The F+DNA environmental isolates were detectable with about a 4 log10 reduction after 110 days at 4 degrees C. All phages demonstrated faster decay at 20 degrees C. These results suggest that differences in F+ phage survival may influence their prevalence in environmental waters and the ability to attribute their prevalence to specific human and animal sources of faecal contamination.
Helmi, K; Jacob, P; Charni-Ben-Tabassi, N; Delabre, K; Arnal, C
2011-09-01
To select a reliable method for bacteriophage concentration prior detection by culture from surface water, groundwater and drinking water to enhance the sensitivity of the standard methods ISO 10705-1 & 2. Artificially contaminated (groundwater and drinking water) and naturally contaminated (surface water) 1-litre samples were processed for bacteriophages detection. The spiked samples were inoculated with about 150 PFU of F-specific RNA bacteriophages and somatic coliphages using wastewater. Bacteriophage detection in the water samples was achieved using the standard method without and with a concentration step (electropositive Anodisc membrane or a pretreated electronegative Micro Filtration membrane, MF). For artificially contaminated matrices (drinking and ground waters), recovery rates using the concentration step were superior to 70% whilst analyses without concentration step mainly led to false negative results. Besides, the MF membrane presented higher performances compared with the Anodisc membrane. The concentration of a large volume of water (up to one litre) on a filter membrane avoids false negative results obtained by direct analysis as it allows detecting low number of bacteriophages in water samples. The addition of concentration step before applying the standard method could be useful to enhance the reliability of bacteriophages monitoring in water samples as bio-indicators to highlight faecal pollution. © No claim to French Government works. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Rubiano, María-Eugenia; Agulló-Barceló, Míriam; Casas-Mangas, Raquel; Jofre, Juan; Lucena, Francisco
2012-05-01
Need, coupled with advances in water treatment technology, is motivating a growing interest in augmenting drinking water supplies with reclaimed water. Using reclaimed water to increase the flow of the Llobregat River upstream the water catchment site of the complex multi-step drinking water treatment plant of Sant Joan Despí has been considered. The impact of reclaimed water discharges on the load of E. coli, spores of sulphite-reducing clostridia, somatic coliphages, cytopathogenic enteroviruses, and total and infectious Cryptosporidium oocysts in the Llobregat River water was assessed to gain information for funded decisions in potential future emergencies. Enterovirus and Cryptosporidium oocysts were concentrated from great water volumes prior to enumeration, whereas indicators were enumerated directly from the samples. Both indicators and pathogens were enumerated by cultural techniques that determine infectious microbes. Densities of both indicators and pathogens in reclaimed water, despite that it was disinfected by UV irradiation alone or by UV irradiation plus chlorination, were significantly lower than their densities in the river water, both upstream and downstream the reclaimed water release site in the river. Results gathered indicate that discharging reclaimed water into the river does not increment the load of indicators and pathogens of the river water. Then, in emergency situations due to severe water shortages after prolonged droughts, at least from the infectious diseases point of view, the risks of augmenting drinking water supplies with reclaimed water can be satisfactorily and safely managed.
Comparison of Filters for Concentrating Microbial Indicators and Pathogens in Lake Water Samples
Stelzer, Erin A.; Brady, Amie M. G.; Huitger, Carrie; Bushon, Rebecca N.; Ip, Hon S.; Ware, Michael W.; Villegas, Eric N.; Gallardo, Vicente; Lindquist, H. D. Alan
2013-01-01
Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples. PMID:23263948
Synthesis of Infectious Bacteriophages in an E. coli-based Cell-free Expression System.
Rustad, Mark; Eastlund, Allen; Marshall, Ryan; Jardine, Paul; Noireaux, Vincent
2017-08-17
A new generation of cell-free transcription-translation (TXTL) systems, engineered to have a greater versatility and modularity, provide novel capabilities to perform basic and applied sciences in test tube reactions. Over the past decade, cell-free TXTL has become a powerful technique for a broad range of novel multidisciplinary research areas related to quantitative and synthetic biology. The new TXTL platforms are particularly useful to construct and interrogate biochemical systems through the execution of synthetic or natural gene circuits. In vitro TXTL has proven convenient to rapidly prototype regulatory elements and biological networks as well as to recapitulate molecular self-assembly mechanisms found in living systems. In this article, we describe how infectious bacteriophages, such as MS2 (RNA), ΦΧ174 (ssDNA), and T7 (dsDNA), are entirely synthesized from their genome in one-pot reactions using an all Escherichia coli, cell-free TXTL system. Synthesis of the three coliphages is quantified using the plaque assay. We show how the yield of synthesized phage depends on the biochemical settings of the reactions. Molecular crowding, emulated through a controlled concentration of PEG 8000, affects the amount of synthesized phages by orders of magnitudes. We also describe how to amplify the phages and how to purify their genomes. The set of protocols and results presented in this work should be of interest to multidisciplinary researchers involved in cell-free synthetic biology and bioengineering.
García, Joan; Vivar, Joan; Aromir, Maria; Mujeriego, Rafael
2003-06-01
The main objective of this paper is to evaluate the role of hydraulic retention time (HRT) and granular medium in faecal coliform (FC) and somatic coliphage (SC) removal in tertiary reed beds. Experiments were carried out in a pilot plant with four parallel reed beds (horizontal subsurface flow constructed wetlands), each one containing a different type of granular medium. This pilot plant is located in a wastewater treatment plant in Montcada i Reixac, near Barcelona, in northeastern Spain. The microbial inactivation ratios obtained in the different beds are compared as a function of three selected HRTs. Secondary effluent from the wastewater treatment plant was used as the influent of the pilot system. The microbial inactivation ratio ranged between 0.1 and 2.7 log-units for FC and from 0.5 to 1.7 log-units for SC in beds with coarser granular material (5-25mm), while it ranged between 0.7 and 3.4 log-units for FC and from 0.9 to 2.6 log-units for SC in the bed with finer material (2-13mm). HRT and granular medium are both key factors in microbial removal in the tertiary reed beds. The microbial inactivation ratio rises as the HRT increases until it reaches a saturation value (in general at an HRT of 3 days). The value of the microbial inactivation ratio at the saturation level depends on the granular medium contained in the bed. The specific surface area necessary to reach 2-3 log-units of FC and SC is approximately 3m(2)/person-equivalent.
Kackar, Siddharth; Suman, Ethel; Kotian, M Shashidhar
2017-01-01
Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD). Statistical analysis was done by SPSS 11.5, Kruskal-Wallis test and Chi-square test. Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020) on biofilm formation on soft lenses and also lens cases (P < 0.001). Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001). There was no significant inhibitory effect by bacteriophages. This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhart, Dana; Williams, Steven R.; Scholl, Dean,
SP6 is a salmonella phage closely related to coliphage K1-5. K1-5 is notable in that it encodes two polysaccharide-degrading tailspike proteins, an endosialidase that allows it to infect E. coli K1, and a lyase that enables it to infect K5 strains. SP6 is similar to K1-5 except that it encodes a P22-like endorhamnosidase tailspike, gp46, allowing it to infect group B Salmonella. We show here that SP6 can also infect Salmonella serogroups C{sub 2} and C{sub 3} and that a mutation in a putative second tailspike, gp47, eliminates this specificity. Gene 47 was fused to the coding region of themore » N-terminal portion of the Pseudomonas aeruginosa R2 pyocin tail fiber and expressed in trans such that the fusion protein becomes incorporated into pyocin particles. These pyocins, termed AvR2-SP47, killed serogroups C{sub 2} and C{sub 3}Salmonella. We conclude that SP6 encodes two tail proteins providing it a broad host range among Salmonella enterica. - Highlights: • SP6 is a “dual specificity” bacteriophage that encodes two different receptor binding proteins giving it a broad host range. • These receptor binding proteins can be used to re-target the spectrum of R-type bacteriocins to Salmonella enterica. • Both SP6 and the engineered R-type bacteriocins can kill the Salmonella serovars most associated with human disease making them attractive for development as antimicrobial agents.« less
Nordin, A; Göttert, D; Vinnerås, B
2018-02-01
Partial heating of black water by auto-thermal aerobic digestion was combined with the addition of 1% w/w urea and monitoring of pathogens and indicator organisms over a 21-day period. After initial mixing, the 160 m 3 black water (60 m 3 heated and 100 m 3 non-heated) was left undisturbed. The urea was confirmed to be fully degraded into ammonia (5.1 g N L -1 ) first after 14 days, while the pH stabilised at around 9.2 after one week. The initial temperature of 17 °C fell by 6 °C during the study. E. coli and Salmonella spp., which are sensitive to ammonia, were inactivated during the first few days of the study, despite the urea only being partly hydrolysed. At day 14, f-RNA bacteriophages could also no longer be detected. The more persistent somatic coliphages, Enterococcus spp. and Ascaris eggs, showed significant but slow inactivation. The treatment proved to be efficient with regards to salmonella, which is a target pathogen in the Swedish context, but for parasite egg inactivation a higher temperature was required. The treatment would benefit from more frequent stirring to speed up the hydrolysis of urea and thus improve treatment efficiency. The alternative treatment scheme could increase capacity by 2.4 times, albeit with a 40% higher cost per volume due to the increased use of urea. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sturdevant-Rees, P. L.; Long, S. C.; Barten, P. K.
2002-05-01
A forty-month investigation to collect microbial and water-quality measurements during storm events under a variety of meteorological and land-use conditions is in its initial stages. Intense sampling during storm event periods will be used to optimize sampling and analysis strategies for accurate determination of constituent loads. Of particular interest is identification of meteorological and hydrologic conditions under which sampling and analysis of surface waters for traditional microbial organisms, emerging microbial organisms and non-bacterial pathogens are critical to ensure the integrity of surface-water drinking supplies. This work is particular to the Quabbin-Ware-Wachusett reservoir system in Massachusetts, which provides unfiltered drinking water to 2.5 million people in Boston and surrounding communities. Sampling and analysis strategies will be optimized in terms of number of samples over the hydrograph, timing of sample collection (including sample initiation), constituents measured, volumes analyzed, and monetary and personnel costs. Initial water-quality analyses include pH, temperature, turbidity, conductivity, total suspended solids, total phosphorus, total Kjeldahl-nitrogen, ammonia nitrogen, and total and fecal coliforms. Giardia cysts and Cryptosporidium oocysts will also be measured at all sample sites. Sorbitol-fermenting Bifidobacteria, Rhodococcus coprophilus, Clostridium perfringens spores, and Somatic and F-specific coliphages are measured at select sites as potential alternative source-specific indicator organisms. It is anticipated that the final database will consist of transport data for the above parameters during twenty-four distinct storm-events in addition to monthly baseline data. Results and analyses for the first monitored storm-event will be presented.
NASA Astrophysics Data System (ADS)
Henry, Rebekah; Schang, Christelle; Kolotelo, Peter; Coleman, Rhys; Rooney, Graham; Schmidt, Jonathan; Deletic, Ana; McCarthy, David T.
2016-06-01
Current World Health Organisation figures estimate that ∼2.5 million deaths per year result from recreational contact with contaminated water sources. Concerns about quantitative risk assessments of waterways using faecal indicator organisms (FIOs) as surrogates to infer pathogenic risk currently exist. In Melbourne, Australia, the Yarra River has come under public scrutiny due to perceived public health risks associated with aquatic recreation; a characteristic shared with urban estuaries worldwide. A 10-month study of the Yarra estuary investigated the processes that affect FIOs and pathogens within this system. A total of 74 samples were collected from three estuarine and two upstream, freshwater, locations under different climatic and hydrological conditions, and the levels of Escherichia coli, enterococci, Clostridium perfringens, fRNA coliphages, Campylobacter spp. Cryptosporidium oocysts, Giardia cysts, adenoviruses, and enteroviruses were monitored. Reference pathogenic bacteria, protozoa, and viruses were detected in 81%, 19%, and 8% of samples, respectively. Variations in FIO concentrations were found to be associated with changes in specific climatic and hydrological variables including: temperature, flow, humidity and rainfall. In contrast, pathogen levels remained unaffected by all variables investigated. Limitations of current national and international culture-based standard methods may have played a significant role in limiting the identification of correlative relationships The data demonstrate the differences between FIOs and microbial pathogens in terms of sources, sinks, and survival processes within an urban estuary and provide further evidence of the inadequacy of FIO inclusion in the development of worldwide regulatory water quality criteria and risk assessment models.
Ko, G.; Simmons, O. D.; Likirdopulos, C.A.; Worley-Davis, L.; Williams, M.; Sobsey, M.D.
2008-01-01
Microbial air pollution from concentrated animal feeding operations (CAFOs) has raised concerns about potential public health and environmental impacts. We investigated the levels of bioaerosols released from two swine farms using conventional lagoon-sprayfield technology and ten farms using alternative waste treatment and management technologies in the United States. In total, 424 microbial air samples taken at the 12 CAFOs were analyzed for several indicator and pathogenic microorganisms, including culturable bacteria and fungi, fecal coliform, Escherichia coli, Clostridium perfringens, bacteriophage, and Salmonella. At all of the investigated farms, bacterial concentrations at the downwind boundary were higher than those at the upwind boundary, suggesting that the farms are sources of microbial air contamination. In addition, fecal indicator microorganisms were found more frequently near barns and treatment technology sites than upwind or downwind of the farms. Approximately 4.5% (19/424), 1.2% (5/424), 22.2% (94/424), and 12.3% (53/424) of samples were positive for fecal coliform, E. coli, Clostridium, and total coliphage, respectively. Based on statistical comparison of airborne fecal indicator concentrations at alternative treatment technology farms compared to control farms with conventional technology, three alternative waste treatment technologies appear to perform better at reducing the airborne release of fecal indicator microorganisms during on-farm treatment and management processes. These results demonstrate that airborne microbial contaminants are released from swine farms and pose possible exposure risks to farm workers and nearby neighbors. However, the release of airborne microorganisms appears to decrease significantly through the use of certain alternative waste management and treatment technologies. ?? 2008 American Chemical Society.
Incidence of Enteric Viruses in Groundwater from Household Wells in Wisconsin
Borchardt, Mark A.; Bertz, Phil D.; Spencer, Susan K.; Battigelli, David A.
2003-01-01
Recent studies on the contamination of groundwater with human enteric viruses have focused on public water systems, whereas little is known about the occurrence of viruses in private household wells. The objective of the present study was to estimate the incidence of viruses in Wisconsin household wells located near septage land application sites or in rural subdivisions served by septic systems. Fifty wells in seven hydrogeologic districts were sampled four times over a year, once each season. Reverse transcriptase PCR (RT-PCR), followed by Southern hybridization, was used to detect enteroviruses, rotavirus, hepatitis A virus (HAV), and Norwalk-like viruses (NLVs). In addition, cell culture was used to detect culturable enteroviruses. Companion water samples were collected for total coliforms, Escherichia coli, fecal enterococci, F-specific RNA coliphages, nitrate, and chloride analyses. Among the 50 wells, four (8%) were positive for viruses by RT-PCR. Three wells were positive for HAV, and the fourth well was positive for both rotavirus and NLV in one sample and an enterovirus in another sample. Contamination was transient, since none of the wells was virus positive for two sequential samples. Culturable enteroviruses were not detected in any of the wells. Water quality indicators were not statistically associated with virus occurrence, although some concordance was noted for chloride. The present study is the first in the United States to systematically monitor private household wells for virus contamination and, combined with data for public wells, provides further insight on the extent of groundwater contamination with human enteric viruses. PMID:12571044
Haramoto, Eiji; Katayama, Hiroyuki; Asami, Mari; Akiba, Michihiro
2012-06-01
A novel method, electronegative membrane-vortex (EMV) method, was developed for simultaneous concentration of viruses and protozoa from a single water sample. Viruses and protozoa in a water sample were mixed with a cation solution and adsorbed on an electronegative membrane. Concentrated virus and protozoa samples were obtained as supernatant and pellet fractions, respectively, by vigorous vortex mixing of the membrane and centrifugation of the eluted material. The highest recovery efficiencies of model microbes from river water and tap water by this EMV method were obtained using a mixed cellulose ester membrane with a pore size of 0.45 μm (Millipore) as the electronegative membrane and MgCl(2) as the cation solution. The recovery was 27.7-86.5% for poliovirus, 25.7-68.3% for coliphage Qβ, 28.0-60.0% for Cryptosporidium oocysts, and 35.0-53.0% for Giardia cysts. The EMV method detected successfully indigenous viruses and protozoa in wastewater and river water samples from the Kofu basin, Japan, showing an overall positive rate of 100% (43/43) for human adenovirus, 79% (34/43) for norovirus GI, 65% (28/43) for norovirus GII, 23% (10/43) for Cryptosporidium oocysts, and 60% (26/43) for Giardia cysts. By direct DNA sequencing, a total of four genotypes (AI, AII, B, and G) of Giardia intestinalis were identified in the water samples, indicating that the river water was contaminated with feces from various mammals, including humans. Copyright © 2012 Elsevier B.V. All rights reserved.
Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers
Heaney, Christopher D.; Sams, Elizabeth; Dufour, Alfred P.; Brenner, Kristen P.; Haugland, Richard A.; Chern, Eunice; Wing, Steve; Marshall, Stephen; Love, David C.; Serre, Marc; Noble, Rachel; Wade, Timothy J.
2011-01-01
Background Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. Methods In 2007, visitors at two recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days later, participants answered questions about health symptoms since the visit. F+ coliphage, Enterococcus, Bacteroidales, fecal Bacteroides, and Clostridium spp. in wet sand were measured using culture and molecular methods. Results We analyzed 144 wet sand samples and completed 4,999 interviews. Adjusted odds ratios (aORs) were computed, comparing those in the highest tertile of fecal indicator exposure with those who reported no sand contact. Among those digging in sand compared with those not digging in sand, a molecular measure of Enterococcus spp. (calibrator cell equivalents/g) in sand was positively associated with gastrointestinal (GI) illness (aOR = 2.0 [95% confidence interval (CI) = 1.2–3.2]) and diarrhea (2.4 [1.4–4.2]). Among those buried in sand, point estimates were greater for GI illness (3.3 [1.3–7.9]) and diarrhea (4.9 [1.8–13]). Positive associations were also observed for culture-based Enterococcus (colony-forming units/g) with GI illness (aOR digging = 1.7 [1.1–2.7]) and diarrhea (2.1 [1.3–3.4]). Associations were not found among non-swimmers with sand exposure. Conclusions We observed a positive relationship between sand contact activities and enteric illness as a function of concentrations of fecal microbial pollution in beach sand. PMID:22157306
Putnam, Larry D.; Hoogestraat, Galen K.; Sawyer, J. Foster
2008-01-01
Onsite wastewater disposal systems (OWDS) are used extensively in the Black Hills of South Dakota where many of the watersheds and aquifers are characterized by fractured or solution-enhanced bedrock with thin soil cover. A study was conducted during 2006-08 to characterize water-quality effects and indicators of OWDS. Water samples were collected and analyzed for potential indicators of OWDS, including chloride, bromide, boron, nitrite plus nitrate (NO2+NO3), ammonia, major ions, nutrients, selected trace elements, isotopes of nitrate, microbiological indicators, and organic wastewater compounds (OWCs). The microbiological indicators were fecal coliforms, Escherichia coli (E. coli), enterococci, Clostridium perfringens (C. perfringens), and coliphages. Sixty ground-water sampling sites were located either downgradient from areas of dense OWDS or in background areas and included 25 monitoring wells, 34 private wells, and 1 spring. Nine surface-water sampling sites were located on selected streams and tributaries either downstream or upstream from residential development within the Precambrian setting. Sampling results were grouped by their hydrogeologic setting: alluvial, Spearfish, Minnekahta, and Precambrian. Mean downgradient dissolved NO2+NO3 concentrations in ground water for the alluvial, Spearfish, Minnekahta, and Precambrian settings were 0.734, 7.90, 8.62, and 2.25 milligrams per liter (mg/L), respectively. Mean downgradient dissolved chloride concentrations in ground water for these settings were 324, 89.6, 498, and 33.2 mg/L, respectively. Mean downgradient dissolved boron concentrations in ground water for these settings were 736, 53, 64, and 43 micrograms per liter (ug/L), respectively. Mean dissolved surface-water concentrations for NO2+NO3, chloride, and boron for downstream sites were 0.222 mg/L, 32.1 mg/L, and 28 ug/L, respectively. Mean values of delta-15N and delta-18O (isotope ratios of 14N to 15N and 18O to 16O relative to standard ratios) for nitrate in ground-water samples were 10.4 and -2.0 per mil (0/100), respectively, indicating a relatively small contribution from synthetic fertilizer and probably a substantial contribution from OWDS. The surface-water sample with the highest dissolved NO2+NO3 concentration of 1.6 mg/L had a delta-15N value of 12.36 0/100, which indicates warm-blooded animals (including humans) as the nitrate source. Fecal coliforms were detected in downgradient ground water most frequently in the Spearfish (19 percent) and Minnekahta (9.7 percent) settings. E. coli was detected most frequently in the Minnekahta (29 percent) and Spearfish (13 percent) settings. Enterococci were detected more frequently than other microbiological indicators in all four settings. Fecal coliforms and E. coli were detected in 73 percent and 95 percent of all surface-water samples, respectively. Enterococci, coliphages (somatic), and C. perfringens were detected in 50, 70, and 50 percent of surface-water samples, respectively. Of the 62 OWC analytes, 12 were detected only in environmental samples, 10 were detected in at least one environmental and one blank sample (not necessarily companion pairs), 2 were detected only in blank samples, and 38 were not detected in any blank, environmental, or replicate sample from either ground or surface water. Eleven different organic compounds were detected in ground-water samples at eight different sites. The most frequently occurring compound was DEET, which was found in 32 percent of the environmental samples, followed by tetrachloroethene, which was detected in 20 percent of the samples. For surface-water samples, 16 organic compounds were detected in 9 of the 10 total samples. The compound with the highest occurrence in surface-water samples was camphor, which was detected in 50 percent of samples. The alluvial setting was characterized by relatively low dissolved NO2+NO3 concentrations, detection of ammonia nitrogen, and relatively high concentr
Hansen, Jacqueline J.; Warden, Paul S.; Margolin, Aaron B.
2007-01-01
The use of lime to reduce or eliminate pathogen content is a cost-effective treatment currently employed in many Class B biosolids production plants in the United States. A bench scale model of lime stabilization was designed to evaluate the survival of adenovirus type 5, rotavirus Wa, and the male specific bacteriophage, MS2, in various matrices. Each virus was initially evaluated independently in a reverse osmosis treated water matrix limed with an aqueous solution of calcium hydroxide for 24-hr at 22 ± 5°C. In all R/O water trials, adenovirus type 5, rotavirus Wa and MS2 were below detectable levels (<100.5 TCID50/mL and <1 PFU/mL respectively) following 0.1-hr of liming. Adenovirus type 5, rotavirus Wa, and MS2, were inoculated into composted, raw and previously limed matrices, representative of sludge and biosolids, to achieve a final concentration of approximately 104 PFU or TCID50/mL. Each matrix was limed for 24-hr at 22 ± 5°C and 4 ± 2°C. In all trials virus was below detectable levels following a 24-hr incubation. The time required for viral inactivation varied depending on the temperature and sample matrix. This research demonstrates reduction of adenovirus type 5, rotavirus Wa, and male-specific bacteriophage, in water, sludge and biosolids matrices following addition of an 8% calcium hydroxide slurry to achieve a pH of 12 for 2-hr reduced to 11.5 for 22-hr by addition of 0.1 N HCl. In these trials, MS2 was a conservative indicator of the efficacy of lime stabilization of adenovirus Type 5 and rotavirus Wa and therefore is proposed as a useful indicator organism. PMID:17431317
Inactivation of norovirus surrogates on surfaces and raspberries by steam-ultrasound treatment.
Schultz, Anna Charlotte; Uhrbrand, Katrine; Nørrung, Birgit; Dalsgaard, Anders
2012-02-01
Human disease outbreaks caused by norovirus (NoV) following consumption of contaminated raspberries are an increasing problem. An efficient method to decontaminate the fragile raspberries and the equipment used for processing would be an important step in ensuring food safety. A potential surface treatment that combines pressurized steam and high-power ultrasound (steam-ultrasound) was assessed for its efficacy to inactivate human NoV surrogates: coliphage (MS2), feline calicivirus (FCV), and murine norovirus (MNV) inoculated on plastic surfaces and MS2 inoculated on fresh raspberries. The amounts of infectious virus and viral genomes were determined by plaque assay and reverse transcription-real time quantitative PCR (RT-qPCR), respectively. On plastic surfaces, an inactivation of >99.99% was obtained for both MS2 and FCV, corresponding to a 9.1-log and >4.8-log reduction after 1 or 3 s of treatment, respectively; while a 3.7-log (99.9%) reduction of MNV was reached after 3 s of treatment. However, on fresh raspberries only a 1-log reduction (∼89%) of MS2 could be achieved after 1 s of treatment, at which point damage to the texture of the fresh raspberries was evident. Increasing treatment time (0 to 3 s) resulted in negligible reductions of viral genome titers of MS2, FCV, and MNV on plastic surfaces as well as of MS2 inoculated on raspberries. Steam-ultrasound treatment in its current format does not appear to be an appropriate method to achieve sufficient decontamination of NoV-contaminated raspberries. However, steam-ultrasound may be used to decontaminate smooth surface areas and utensils in food production and processing environments.
Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.
Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G
2017-02-01
A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Verbyla, M E; Iriarte, M M; Mercado Guzmán, A; Coronado, O; Almanza, M; Mihelcic, J R
2016-05-01
Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. Copyright © 2016 Elsevier B.V. All rights reserved.
The survival of micro-organisms in space. Further rocket and balloon-borne exposure experiments.
Hotchin, J; Lorenz, P; Markusen, A; Hemenway, C
1967-01-01
This report describes the results of survival studies of terrestrial micro-organisms exposed directly to the space environment on two balloons and in two rocket flights. The work is part of a program to develop techniques for the collection of micro-organisms in the size range of micrometeorite particles in space or non-terrestrial atmospheres, and their return to earth in a viable state for further study. Previous survival studies were reported (J. Hotchin, P. Lorenz and C. Hemenway, Nature 206 (1965) 442) in which a few relatively large area samples of micro-organisms were exposed on millipore filter cemented to aluminum plates. In the present series of experiments, newly developed techniques have resulted in a 25-fold miniaturization resulting in a corresponding increase in the number of experiments performed. This has enabled a statistical evaluation of the results to be made. A total of 756 separate exposure units (each approximately 5 x 5 mm in size) were flown in four experiments, and organisms used were coliphage T1, penicillium roqueforti (THOM) mold spores, poliovirus type I (Pfizer attenuated Sabin vaccine strain), and bacillus subtilis spores. The organisms were deposited either by spraying directly upon the vinyl-coated metal units, or by droplet seeding into shallow depressions in the millipore filter membrane-coated units. Groups of units were prepared comprising fully exposed, inverted (screened by 2 mm of Al), and filter-protected organisms. All of these were included in the flight set, the back up set, and a laboratory control set. The altitude of the exposures varied from 35 km in the balloon experiments to 150 km in the rocket experiments. Times of exposures at altitude were approximately 6 hours for the balloon flights and about 3 minutes for the rocket experiments.
Harvey, Ronald W.; Metge, David W.; LeBlanc, Denis R.; Underwood, Jennifer C.; Aiken, George R.; Butler, Kenna D.; McCobb, Timothy D.; Jasperse, Jay
2015-01-01
This study focused on the importance of the colmation layer in the removal of cyanobacteria, viruses, and dissolved organic carbon (DOC) during natural bank filtration. Injection-and-recovery studies were performed at two shallow (0.5 m deep), sandy, near-shore sites at the southern end of Ashumet Pond, a waste-impacted, kettle pond on Cape Cod, MA, that is subject to periodic blooms of cyanobacteria and continuously recharges a sole-source drinking-water aquifer. The experiment involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophage, 110 nm long), MS2 (coliphage, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The injectate constituents were tracked as they were advected across the pond water–groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-point samplers placed at ∼30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ∼44% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d−1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by three orders of magnitude) at removing microspheres than was the underlying 20-cm-thick segment of sediment.
Current Status of Single Particle Imaging with X-ray Lasers
Sun, Zhibin; Fan, Jiadong; Li, Haoyuan; ...
2018-01-22
The advent of ultrafast X-ray free-electron lasers (XFELs) opens the tantalizing possibility of the atomic-resolution imaging of reproducible objects such as viruses, nanoparticles, single molecules, clusters, and perhaps biological cells, achieving a resolution for single particle imaging better than a few tens of nanometers. Improving upon this is a significant challenge which has been the focus of a global single particle imaging (SPI) initiative launched in December 2014 at the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, USA. A roadmap was outlined, and significant multi-disciplinary effort has since been devoted to work on the technical challenges of SPImore » such as radiation damage, beam characterization, beamline instrumentation and optics, sample preparation and delivery and algorithm development at multiple institutions involved in the SPI initiative. Currently, the SPI initiative has achieved 3D imaging of rice dwarf virus (RDV) and coliphage PR772 viruses at ~10 nm resolution by using soft X-ray FEL pulses at the Atomic Molecular and Optical (AMO) instrument of LCLS. Meanwhile, diffraction patterns with signal above noise up to the corner of the detector with a resolution of ~6 Ångström (Å) were also recorded with hard X-rays at the Coherent X-ray Imaging (CXI) instrument, also at LCLS. Achieving atomic resolution is truly a grand challenge and there is still a long way to go in light of recent developments in electron microscopy. However, the potential for studying dynamics at physiological conditions and capturing ultrafast biological, chemical and physical processes represents a tremendous potential application, attracting continued interest in pursuing further method development. In this paper, we give a brief introduction of SPI developments and look ahead to further method development.« less
Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters.
Koivunen, J; Heinonen-Tanski, H
2005-11-01
The efficiency of peracetic acid (PAA) disinfection against enteric bacteria and viruses in municipal wastewaters was studied in pilot-scale. Disinfection pilot-plant was fed with the primary or secondary effluent of Kuopio municipal wastewater treatment plant or tertiary effluent from the pilot-scale dissolved air flotation (DAF) unit. Disinfectant doses ranged from 2 to 7 mg/l PAA in the secondary and tertiary effluents, and from 5 to 15 mg/l PAA in the primary effluents. Disinfection contact times were 4-27 min. Disinfection of secondary and tertiary effluents with 2-7 mg/l PAA and 27 min contact time achieved around 3 log reductions of total coliforms (TC) and enterococci (EC). PAA disinfection also significantly improved the hygienic quality of the primary effluents: 10-15 mg/l PAA achieved 3-4 log reductions of TC and EC, 5 mg/l PAA resulting in below 2 log reductions. F-RNA coliphages were more resistant against the PAA disinfection and around 1 log reductions of these enteric viruses were typically achieved in the disinfection treatments of the primary, secondary and tertiary effluents. Most of the microbial reductions occurred during the first 4-18 min of contact time, depending on the PAA dose and microorganism. The PAA disinfection efficiency remained relatively constant in the secondary and tertiary effluents, despite of small changes of wastewater quality (COD, SS, turbidity, 253.7 nm transmittance) or temperature. The disinfection efficiency clearly decreased in the primary effluents with substantially higher microbial, organic matter and suspended solids concentrations. The results demonstrated that PAA could be a good alternative disinfection method for elimination of enteric microbes from different wastewaters.
Modelling the transport and decay processes of microbial tracers in a macro-tidal estuary.
Abu-Bakar, Amyrhul; Ahmadian, Reza; Falconer, Roger A
2017-10-15
The Loughor Estuary is a macro-tidal coastal basin, located along the Bristol Channel, in the South West of the U.K. The maximum spring tidal range in the estuary is up to 7.5 m, near Burry Port Harbour. This estuarine region can experience severe coastal flooding during high spring tides, including extreme flooding of the intertidal saltmarshes at Llanrhidian, as well as the lower industrial and residential areas at Llanelli and Gowerton. The water quality of this estuarine basin needs to comply with the designated standards for safe recreational bathing and shellfish harvesting industries. The waterbody however, potentially receives overloading of bacterial inputs that enter the estuarine system from both point and diffuse sources. Therefore, a microbial tracer study was carried out to get a better understanding of the faecal bacteria sources and to enable a hydro-environmental model to be refined and calibrated for both advection and dispersion transport. A two-dimensional hydro-environmental model has been refined and extended to predict the highest water level covering the intertidal floodplains of the Loughor Estuary. The validated hydrodynamic model for both water levels and currents, was included with the injected mass of microbial tracer, i.e. MS2 coliphage from upstream of the estuary, and modelled as a non-conservative tracer over several tidal cycles through the system. The calibration and validation of the transport and decay of microbial tracer was undertaken, by comparing the model results and the measured data at two different sampling locations. The refined model developed as a part of this study, was used to acquire a better understanding of the water quality processes and the potential sources of bacterial pollution in the estuary. Copyright © 2017 Elsevier Ltd. All rights reserved.
Snyder, A Peter; Dworzanski, Jacek P; Tripathi, Ashish; Maswadeh, Waleed M; Wick, Charles H
2004-11-01
A pyrolysis-gas chromatography-ion mobility spectrometry (Py-GC-IMS) briefcase system has been shown to detect and classify deliberately released bioaerosols in outdoor field scenarios. The bioaerosols included Gram-positive and Gram-negative bacteria, MS-2 coliphage virus, and ovalbumin protein species. However, the origin and structural identities of the pyrolysate peaks in the GC-IMS data space, their microbiological information content, and taxonomic importance with respect to biodetection have not been determined. The present work interrogates the identities of the peaks by inserting a time-of-flight mass spectrometry system in parallel with the IMS detector through a Tee connection in the GC module. Biological substances producing ion mobility peaks from the pyrolysis of microorganisms were identified by their GC retention time, matching of their electron ionization mass spectra with authentic standards, and the National Institutes for Standards and Technology mass spectral database. Strong signals from 2-pyridinecarboxamide were identified in Bacillus samples including Bacillus anthracis, and its origin was traced to the cell wall peptidoglycan macromolecule. 3-Hydroxymyristic acid is a component of lipopolysaccharides in the cell walls of Gram-negative organisms. The Gram-negative Escherichia coli organism showed significant amounts of 3-hydroxymyristic acid derivatives and degradation products in Py-GC-MS analyses. Some of the fatty acid derivatives were observed in very low abundance in the ion mobility spectra, and the higher boiling lipid species were absent. Evidence is presented that the Py-GC-ambient temperature and pressure-IMS system generates and detects bacterial biochemical information that can serve as components of a biological classification scheme directly correlated to the Gram stain reaction in microorganism taxonomy.
Lisle, J.T.; Smith, J.J.; Edwards, D.D.; McFeters, G.A.
2004-01-01
McMurdo Station, Antarctica, has discharged untreated sewage into McMurdo Sound for decades. Previous studies delineated the impacted area, which included the drinking water intake, by using total coliform and Clostridium perfringens concentrations. The estimation of risk to humans in contact with the impacted and potable waters may be greater than presumed, as these microbial indicators may not be the most appropriate for this environment. To address these concerns, concentrations of these and additional indicators (fecal coliforms, Escherichia coli, enterococci, coliphage, and enteroviruses) in the untreated wastewater, water column, and sediments of the impacted area and drinking water treatment facility and distribution system at McMurdo Station were determined. Fecal samples from Weddell seals in this area were also collected and analyzed for indicators. All drinking water samples were negative for indicators except for a single total coliform-positive sample. Total coliforms were present in water column samples at higher concentrations than other indicators. Fecal coliform and enterococcus concentrations were similar to each other and greater than those of other indicators in sediment samples closer to the discharge site. C. perfringens concentrations were higher in sediments at greater distances from the discharge site. Seal fecal samples contained concentrations of fecal coliforms, E. coli, enterococci, and C. perfringens similar to those found in untreated sewage. All samples were negative for enteroviruses. A wastewater treatment facility at McMurdo Station has started operation, and these data provide a baseline data set for monitoring the recovery of the impacted area. The contribution of seal feces to indicator concentrations in this area should be considered.
Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation
Bliskovsky, Valery V.; Malagon, Francisco; Baker, James D.; Prince, Jeffrey S.; Klaus, James S.; Adhya, Sankar L.
2017-01-01
ABSTRACT Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. PMID:28096488
Current Status of Single Particle Imaging with X-ray Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhibin; Fan, Jiadong; Li, Haoyuan
The advent of ultrafast X-ray free-electron lasers (XFELs) opens the tantalizing possibility of the atomic-resolution imaging of reproducible objects such as viruses, nanoparticles, single molecules, clusters, and perhaps biological cells, achieving a resolution for single particle imaging better than a few tens of nanometers. Improving upon this is a significant challenge which has been the focus of a global single particle imaging (SPI) initiative launched in December 2014 at the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, USA. A roadmap was outlined, and significant multi-disciplinary effort has since been devoted to work on the technical challenges of SPImore » such as radiation damage, beam characterization, beamline instrumentation and optics, sample preparation and delivery and algorithm development at multiple institutions involved in the SPI initiative. Currently, the SPI initiative has achieved 3D imaging of rice dwarf virus (RDV) and coliphage PR772 viruses at ~10 nm resolution by using soft X-ray FEL pulses at the Atomic Molecular and Optical (AMO) instrument of LCLS. Meanwhile, diffraction patterns with signal above noise up to the corner of the detector with a resolution of ~6 Ångström (Å) were also recorded with hard X-rays at the Coherent X-ray Imaging (CXI) instrument, also at LCLS. Achieving atomic resolution is truly a grand challenge and there is still a long way to go in light of recent developments in electron microscopy. However, the potential for studying dynamics at physiological conditions and capturing ultrafast biological, chemical and physical processes represents a tremendous potential application, attracting continued interest in pursuing further method development. In this paper, we give a brief introduction of SPI developments and look ahead to further method development.« less
Effect of oxygen on survival of faecal pollution indicators in drinking water.
Roslev, P; Bjergbaek, L A; Hesselsoe, M
2004-01-01
The aim of this study was to determine the effect of oxygen on the survival of faecal pollution indicators including Escherichia coli in nondisinfected drinking water. Aerobic and anaerobic drinking water microcosms were inoculated with E. coli ATCC 25922 or raw sewage. Survival of E. coli was monitored by membrane filtration combined with cultivation on standard media, and by in situ hybridization with 16S rRNA-targeted fluorescent oligonucleotide probes. Anaerobic conditions significantly increased the survival of E. coli in drinking water compared with aerobic conditions. Escherichia coli ATCC 25922 showed a biphasic decrease in survival under aerobic conditions with an initial first-order decay rate of -0.11 day(-1) followed by a more rapid rate of -0.35 day(-1). In contrast, the first-order decay rate under anaerobic conditions was only -0.02 day(-1). After 35 days, <0.01% of the initial E. coli ATCC 25922 population remained detectable in aerobic microcosms compared with 48% in anaerobic microcosms. A poor survival was observed under aerobic conditions regardless of whether E. coli ATCC 25922 or sewage-derived E. coli was examined, and regardless of the detection method used (CFU or fluorescent in situ hybridization). Aerobic conditions in drinking water also appeared to decrease the survival of faecal enterococci, somatic coliphages and coliforms other than E. coli. The results indicate that oxygen is a major regulator of the survival of E. coli in nondisinfected drinking water. The results also suggest that faecal pollution indicators other than E. coli may persist longer in drinking water under anaerobic conditions. The effect of oxygen should be considered when evaluating the survival potential of enteric pathogens in oligotrophic environments.
Borchardt, Mark A; Haas, Nathaniel L; Hunt, Randall J
2004-10-01
Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. (18)O/(16)O and (2)H/(1)H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.
Stine, Scott W; Song, Inhong; Choi, Christopher Y; Gerba, Charles P
2005-05-01
Microbial contamination of the surfaces of cantaloupe, iceberg lettuce, and bell peppers via contact with irrigation water was investigated to aid in the development of irrigation water quality standards for enteric bacteria and viruses. Furrow and subsurface drip irrigation methods were evaluated with the use of nonpathogenic surrogates, coliphage PRD1, and Escherichia coli ATCC 25922. The concentrations of hepatitis A virus (HAV) and Salmonella in irrigation water necessary to achieve a 1:10,000 annual risk of infection, the acceptable level of risk used for drinking water by the U.S. Environmental Protection Agency, were calculated with a quantitative microbial risk assessment approach. These calculations were based on the transfer of the selected nonpathogenic surrogates to fresh produce via irrigation water, as well as previously determined preharvest inactivation rates of pathogenic microorganisms on the surfaces of fresh produce. The risk of infection was found to be variable depending on type of crop, irrigation method, and days between last irrigation event and harvest. The worst-case scenario, in which produce is harvested and consumed the day after the last irrigation event and maximum exposure is assumed, indicated that concentrations of 2.5 CFU/100 ml of Salmonella and 2.5 x 10(-5) most probable number per 100 ml of HAV in irrigation water would result in an annual risk of 1:10,000 when the crop was consumed. If 14 days elapsed before harvest, allowing for die-off of the pathogens, the concentrations were increased to 5.7 x 10(3) Salmonella per 100 ml and 9.9 x 10(-3) HAV per 100 ml.
Kim, Do-Kyun; Kim, Soo-Ji; Kang, Dong-Hyun
2017-01-01
In order to assure the microbial safety of drinking water, UVC-LED treatment has emerged as a possible technology to replace the use of conventional low pressure (LP) mercury vapor UV lamps. In this investigation, inactivation of Human Enteric Virus (HuEV) surrogates with UVC-LEDs was investigated in a water disinfection system, and kinetic model equations were applied to depict the surviving infectivities of the viruses. MS2, Qβ, and ΦX 174 bacteriophages were inoculated into sterile distilled water (DW) and irradiated with UVC-LED printed circuit boards (PCBs) (266nm and 279nm) or conventional LP lamps. Infectivities of bacteriophages were effectively reduced by up to 7-log after 9mJ/cm 2 treatment for MS2 and Qβ, and 1mJ/cm 2 for ΦX 174. UVC-LEDs showed a superior viral inactivation effect compared to conventional LP lamps at the same dose (1mJ/cm 2 ). Non-log linear plot patterns were observed, so that Weibull, Biphasic, Log linear-tail, and Weibull-tail model equations were used to fit the virus survival curves. For MS2 and Qβ, Weibull and Biphasic models fit well with R 2 values approximately equal to 0.97-0.99, and the Weibull-tail equation accurately described survival of ΦX 174. The level of UV-susceptibility among coliphages measured by the inactivation rate constant, k, was statistically different (ΦX 174 (ssDNA)>MS2, Qβ (ssRNA)), and indicated that sensitivity to UV was attributed to viral genetic material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microbiological water quality in a large irrigation system: El Valle del Yaqui, Sonora México.
Gortáres-Moroyoqui, Pablo; Castro-Espinoza, L; Naranjo, Jaime E; Karpiscak, Martin M; Freitas, Robert J; Gerba, Charles P
2011-01-01
The primary objective of this study was to determine the microbial water quality of a large irrigation system and how this quality varies with respect to canal size, impact of near-by communities, and the travel distance from the source in the El Valle del Yaqui, Sonora, México. In this arid region, 220,000 hectares are irrigated with 80% of the irrigation water being supplied from an extensive irrigation system including three dams on the Yaqui River watershed. The stored water flows to the irrigated fields through two main canal systems (severing the upper and lower Yaqui Valley) and then through smaller lateral canals that deliver the water to the fields. A total of 146 irrigation water samples were collected from 52 sample sites during three sampling events. Not all sites could be accessed on each occasion. All of the samples contained coliform bacteria ranging from 1,140 to 68,670 MPN/100 mL with an arithmetic mean of 11,416. Ninety-eight percent of the samples contained less than 1,000 MPN/100 mL Escherichia coli, with an arithmetic mean of 291 MPN/100 mL. Coliphage were detected in less than 30% of the samples with an arithmetic average equal to 141 PFU/100 mL. Enteroviruses, Cryptosporidium oocysts, and Giardia cysts were also detected in the canal systems. No significant difference was found in the water quality due to canal system (upper or lower Yaqui Valley), canal-size (main vs. lateral), distance from source, and the vicinity of human habitation (presence of various villages and towns along the length of the canals). There was a significant decrease in coliforms (p < 0.011) and E. coli (< 0.022) concentrations as travel distance increased from the City of Obregón.
Fuller, Nicholas J.; Wilson, William H.; Joint, Ian R.; Mann, Nicholas H.
1998-01-01
Viruses are ubiquitous components of marine ecosystems and are known to infect unicellular phycoerythrin-containing cyanobacteria belonging to the genus Synechococcus. A conserved region from the cyanophage genome was identified in three genetically distinct cyanomyoviruses, and a sequence analysis revealed that this region exhibited significant similarity to a gene encoding a capsid assembly protein (gp20) from the enteric coliphage T4. The results of a comparison of gene 20 sequences from three cyanomyoviruses and T4 allowed us to design two degenerate PCR primers, CPS1 and CPS2, which specifically amplified a 165-bp region from the majority of cyanomyoviruses tested. A competitive PCR (cPCR) analysis revealed that cyanomyovirus strains could be accurately enumerated, and it was demonstrated that quantification was log-linear over ca. 3 orders of magnitude. Different calibration curves were obtained for each of the three cyanomyovirus strains tested; consequently, cPCR performed with primers CPS1 and CPS2 could lead to substantial inaccuracies in estimates of phage abundance in natural assemblages. Further sequence analysis of cyanomyovirus gene 20 homologs would be necessary in order to design primers which do not exhibit phage-to-phage variability in priming efficiency. It was demonstrated that PCR products of the correct size could be amplified from seawater samples following 100× concentration and even directly without any prior concentration. Hence, the use of degenerate primers in PCR analyses of cyanophage populations should provide valuable data on the diversity of cyanophages in natural assemblages. Further optimization of procedures may ultimately lead to a sensitive assay which can be used to analyze natural cyanophage populations both quantitatively (by cPCR) and qualitatively following phylogenetic analysis of amplified products. PMID:9603813
Byappanahalli, M.N.; Przybyla-Kelly, K.; Shively, D.A.; Whitman, R.L.
2008-01-01
The enterococcal surface protein (esp) gene found in Enterococcus faecalis and E. faecium has recently been explored as a marker of sewage pollution in recreational waters but its occurrence and distribution in environmental enterococci has not been well-documented. If the esp gene is found in environmental samples, there are potential implications for microbial source tracking applications. In the current study, a total of 452 samples (lake water, 100; stream water, 129; nearshore sand, 96; and backshore sand, 71; Cladophora sp. (Chlorophyta), 41; and periphyton (mostly Bacillariophyceae), 15) collected from the coastal watersheds of southern Lake Michigan were selectively cultured for enterococci and then analyzed for the esp gene by PCR, targeting E. faecalis/ E. faecium (espfs/fm) and E. faecium (espfm). Overall relative frequencies for espfs/fm and espfm were 27.4 and 5.1%. Respective percent frequency for the espfs/fm and espfm was 36 and 14% in lake water; 38.8 and 2.3% in stream water; 24 and 6.3% in nearshore sand; 0% in backshore sand; 24.4 and 0% in Cladophora sp.; and 33.3 and 0% in periphyton. The overall occurrence of both espfs/fm and espfm was significantly related (χ2 = 49, P espfs/fm increased in lake and stream water and nearshore sand. Further, E. coli and enterococci cell densities were significant predictors for espfs/fm occurrence in post-rain lake water, but espfm was not. F+ coliphage densities were not significant predictors for espfm or espfs/fm gene incidence. In summary, the differential occurrence of the esp gene in the environment suggests that it is not limited to human fecal sources and thus may weaken its use as a reliable tool in discriminating contaminant sources (i.e., human vs nonhuman).
Borchardt, Mark A.; Haas, Nathaniel L.; Hunt, Randall J.
2004-01-01
Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination. PMID:15466536
Tanner, Benjamin D
2009-02-01
Surface-mediated infectious disease transmission is a major concern in various settings, including schools, hospitals, and food-processing facilities. Chemical disinfectants are frequently used to reduce contamination, but many pose significant risks to humans, surfaces, and the environment, and all must be properly applied in strict accordance with label instructions to be effective. This study set out to determine the capability of a novel chemical-free, saturated steam vapor disinfection system to kill microorganisms, reduce surface-mediated infection risks, and serve as an alternative to chemical disinfectants. High concentrations of Escherichia coli, Shigella flexneri, vancomycin-resistant Enterococcus faecalis (VRE), methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enterica, methicillin-sensitive Staphylococcus aureus, MS2 coliphage (used as a surrogate for nonenveloped viruses including norovirus), Candida albicans, Aspergillus niger, and the endospores of Clostridium difficile were dried individually onto porous clay test surfaces. Surfaces were treated with the saturated steam vapor disinfection system for brief periods and then numbers of surviving microorganisms were determined. Infection risks were calculated from the kill-time data using microbial dose-response relationships published in the scientific literature, accounting for surface-to-hand and hand-to-mouth transfer efficiencies. A diverse assortment of pathogenic microorganisms was rapidly killed by the steam disinfection system; all of the pathogens tested were completely inactivated within 5 seconds. Risks of infection from the contaminated surfaces decreased rapidly with increasing periods of treatment by the saturated steam vapor disinfection system. The saturated steam vapor disinfection system tested for this study is chemical-free, broadly active, rapidly efficacious, and therefore represents a novel alternative to liquid chemical disinfectants.
Torkelson, A A; da Silva, A K; Love, D C; Kim, J Y; Alper, J P; Coox, B; Dahm, J; Kozodoy, P; Maboudian, R; Nelson, K L
2012-11-01
To develop an anti-microbial filter media using an attached quaternary ammonium compound (QAC) and evaluate its performance under conditions relevant to household drinking water treatment in developing countries. Silica sand was coated with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride via covalent silane chemistry. Filter columns packed with coated media were challenged with micro-organisms under different water quality conditions. The anti-bacterial properties were investigated by visualizing Escherichia coli (E. coli) attachment to coated media under fluorescence microscopy combined with a live/dead stain. A 9-cm columns with a filtration velocity of 18 m h(-1) achieved log(10) removals of 1·7 for E. coli, 1·8 for MS2 coliphage, 1·9 for Poliovirus type 3 and 0·36 for Adenovirus type 2, compared to 0·1-0·3 log(10) removals of E. coli and MS2 by uncoated sand. Removal scaled linearly with column length and decreased with increasing ionic strength, flow velocity, filtration time and humic acid presence. Escherichia coli attached to QAC-coated sand were observed to be membrane-permeable, providing evidence of inactivation. Filtration with QAC-coated sand provided higher removal of bacteria and viruses than filtration with uncoated sand. However, major limitations included rapid fouling by micro-organisms and natural organic matter and low removal of viruses PRD1 and Adenovirus 2. QAC-coated media may be promising for household water treatment. However, more research is needed on long-term performance, options to reduce fouling and inactivation mechanisms. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Borchardt, M. A.; Haas, N.L.; Hunt, R.J.
2004-01-01
Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/ 16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.
Evaluation of the ultrasound effect on treated municipal wastewater.
Vázquez-López, Monserrat; Amabilis-Sosa, Leonel Ernesto; Moeller-Chávez, Gabriela Eleonora; Roé-Sosa, Adriana; Neumann, Patricio; Vidal, Gladys
2018-06-18
In this research, ultrasound (US; 26 kHz) application was evaluated as tertiary treatment of treated municipal wastewater coming from conventional activated sludge (AS) and constructed wetland (CW) systems. The degree of disinfection was evaluated through the total (TC) and faecal (FC) coliforms and by somatic coliphages (SCs) determinations. The experiments were carried out without temperature control at times of 200, 400 and 600 s and with temperature control (298.1 K) at 600, 1200 and 1800 s. Changes in the concentrations of C, N and P were also studied. The results shown that treatment without temperature control allowed 100% inactivation for TC, FC and SC at 600 s, while maximum with temperature was achieved at 1800 s. Temperature was an important factor influencing pathogens inactivation. In both cases, microorganism concentrations complied with different international guidelines for the reuse of treated wastewater. At 1800 s sonication concentrations of biochemical oxygen demand, chemical oxygen demand and total phosphorus were reduced 39.5, 39.4, 50.0 and 37.3% TN in the AS-treated water and 24.0, 49.8, 20.2 and 7.7% in the CW-treated water, respectively. In both cases, the formation of [Formula: see text] and [Formula: see text] radicals is most likely related to the observed pollutants removal. While energy consumption of ultrasound was higher than other advanced treatments such as electrocoagulation, its implementation allows the simultaneous removal of pathogens and organic pollutants without the generation of toxic by-products. In conclusion, ultrasound can be implemented as tertiary treatment of municipal wastewater for the removal of biological and organic pollution, according to reuse guidelines in terms of pathogens presence.
Differential decomposition of bacterial and viral fecal indicators in common human pollution types.
Wanjugi, Pauline; Sivaganesan, Mano; Korajkic, Asja; Kelty, Catherine A; McMinn, Brian; Ulrich, Robert; Harwood, Valerie J; Shanks, Orin C
2016-11-15
Understanding the decomposition of microorganisms associated with different human fecal pollution types is necessary for proper implementation of many water quality management practices, as well as predicting associated public health risks. Here, the decomposition of select cultivated and molecular indicators of fecal pollution originating from fresh human feces, septage, and primary effluent sewage in a subtropical marine environment was assessed over a six day period with an emphasis on the influence of ambient sunlight and indigenous microbiota. Ambient water mixed with each fecal pollution type was placed in dialysis bags and incubated in situ in a submersible aquatic mesocosm. Genetic and cultivated fecal indicators including fecal indicator bacteria (enterococci, E. coli, and Bacteroidales), coliphage (somatic and F+), Bacteroides fragilis phage (GB-124), and human-associated genetic indicators (HF183/BacR287 and HumM2) were measured in each sample. Simple linear regression assessing treatment trends in each pollution type over time showed significant decay (p ≤ 0.05) in most treatments for feces and sewage (27/28 and 32/40, respectively), compared to septage (6/26). A two-way analysis of variance of log 10 reduction values for sewage and feces experiments indicated that treatments differentially impact survival of cultivated bacteria, cultivated phage, and genetic indicators. Findings suggest that sunlight is critical for phage decay, and indigenous microbiota play a lesser role. For bacterial cultivated and genetic indicators, the influence of indigenous microbiota varied by pollution type. This study offers new insights on the decomposition of common human fecal pollution types in a subtropical marine environment with important implications for water quality management applications. Published by Elsevier Ltd.
Mobberley, Jennifer M; Authement, R Nathan; Segall, Anca M; Paul, John H
2008-07-01
A myovirus-like temperate phage, PhiHAP-1, was induced with mitomycin C from a Halomonas aquamarina strain isolated from surface waters in the Gulf of Mexico. The induced cultures produced significantly more virus-like particles (VLPs) (3.73 x 10(10) VLP ml(-1)) than control cultures (3.83 x 10(7) VLP ml(-1)) when observed with epifluorescence microscopy. The induced phage was sequenced by using linker-amplified shotgun libraries and contained a genome 39,245 nucleotides in length with a G+C content of 59%. The PhiHAP-1 genome contained 46 putative open reading frames (ORFs), with 76% sharing significant similarity (E value of <10(-3)) at the protein level with other sequences in GenBank. Putative functional gene assignments included small and large terminase subunits, capsid and tail genes, an N6-DNA adenine methyltransferase, and lysogeny-related genes. Although no integrase was found, the PhiHAP-1 genome contained ORFs similar to protelomerase and parA genes found in linear plasmid-like phages with telomeric ends. Southern probing and PCR analysis of host genomic, plasmid, and PhiHAP-1 DNA indicated a lack of integration of the prophage with the host chromosome and a difference in genome arrangement between the prophage and virion forms. The linear plasmid prophage form of PhiHAP-1 begins with the protelomerase gene, presumably due to the activity of the protelomerase, while the induced phage particle has a circularly permuted genome that begins with the terminase genes. The PhiHAP-1 genome shares synteny and gene similarity with coliphage N15 and vibriophages VP882 and VHML, suggesting an evolutionary heritage from an N15-like linear plasmid prophage ancestor.
Ali, Sabrina S; Beckett, Emily; Bae, Sandy Jeehoon; Navarre, William Wiley
2011-09-01
The 5.5 protein (T7p32) of coliphage T7 (5.5(T7)) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5(T7) protein is insoluble when expressed in Escherichia coli, but we find that 5.5(T7) can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5(T7) binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5(T7) can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5(T7) protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5(T7) protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression. Copyright © 2011, American Society for Microbiology. All Rights Reserved.
Nguyen, Huong Minh
2014-01-01
ABSTRACT Bacteriophage T7 terminator Tφ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tφ was deleted from the genome, we discovered that deletion of Tφ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tφ deletion-caused upregulation of gene 17.5, coding for holin, among other Tφ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tφ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tφ-lacking mutant phage decreased expression of several Tφ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tφ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tφ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE E. coli PMID:24335287
Park, Geun Woo; Boston, Deyanna M.; Kase, Julie A.; Sampson, Mark N.; Sobsey, Mark D.
2007-01-01
Noroviruses (NVs) are the most frequent cause of outbreaks of gastroenteritis in common settings, with surface-mediated transfer via contact with fecally contaminated surfaces implicated in exposure. NVs are environmentally stable and persistent and have a low infectious dose. Several disinfectants have been evaluated for efficacy to control viruses on surfaces, but the toxicity and potential damage to treated materials limits their applicability. Sterilox hypochlorous acid (HOCl) solution (HAS) has shown broad-spectrum antimicrobial activity while being suitable for general use. The objectives of this study were to evaluate the efficacy of HAS to reduce NV both in aqueous suspensions and on inanimate carriers. HOCl was further tested as a fog to decontaminate large spaces. HOCl effectiveness was evaluated using nonculturable human NV measured by reverse transcriptase PCR (RT-PCR) and two surrogate viruses, coliphage MS2 and murine NV, that were detected by both infectivity and RT-PCR. Exposing virus-contaminated carriers of ceramic tile (porous) and stainless steel (nonporous) to 20 to 200 ppm of HOCl solution resulted in ≥99.9% (≥3 log10) reductions of both infectivity and RNA titers of tested viruses within 10 min of exposure time. HOCl fogged in a confined space reduced the infectivity and RNA titers of NV, murine NV, and MS2 on these carriers by at least 99.9% (3 log10), regardless of carrier location and orientation. We conclude that HOCl solution as a liquid or fog is likely to be effective in disinfecting common settings to reduce NV exposures and thereby control virus spread via fomites. PMID:17483283
Inactivation of bacteriophage MS2 with potassium ferrate(VI).
Hu, Lanhua; Page, Martin A; Sigstam, Therese; Kohn, Tamar; Mariñas, Benito J; Strathmann, Timothy J
2012-11-06
Ferrate [Fe(VI); FeO(4)(2-)] is an emerging oxidizing agent capable of controlling chemical and microbial water contaminants. Here, inactivation of MS2 coliphage by Fe(VI) was examined. The inactivation kinetics observed in individual batch experiments was well described by a Chick-Watson model with first-order dependences on disinfectant and infective phage concentrations. The inactivation rate constant k(i) at a Fe(VI) dose of 1.23 mgFe/L (pH 7.0, 25 °C) was 2.27(±0.05) L/(mgFe × min), corresponding to 99.99% inactivation at a Ct of ~4 (mgFe × min)/L. Measured k(i) values were found to increase with increasing applied Fe(VI) dose (0.56-2.24 mgFe/L), increasing temperature (5-30 °C), and decreasing pH conditions (pH 6-11). The Fe(VI) dose effect suggested that an unidentified Fe byproduct also contributed to inactivation. Temperature dependence was characterized by an activation energy of 39(±6) kJ mol(-1), and k(i) increased >50-fold when pH decreased from 11 to 6. The pH effect was quantitatively described by parallel reactions with HFeO(4)(-) and FeO(4)(2-). Mass spectrometry and qRT-PCR analyses demonstrated that both capsid protein and genome damage increased with the extent of inactivation, suggesting that both may contribute to phage inactivation. Capsid protein damage, localized in the two regions containing oxidant-sensitive cysteine residues, and protein cleavage in one of the two regions may facilitate genome damage by increasing Fe(VI) access to the interior of the virion.
Harwood, Valerie J; Boehm, Alexandria B; Sassoubre, Lauren M; Vijayavel, Kannappan; Stewart, Jill R; Fong, Theng-Theng; Caprais, Marie-Paule; Converse, Reagan R; Diston, David; Ebdon, James; Fuhrman, Jed A; Gourmelon, Michele; Gentry-Shields, Jennifer; Griffith, John F; Kashian, Donna R; Noble, Rachel T; Taylor, Huw; Wicki, Melanie
2013-11-15
An inter-laboratory study of the accuracy of microbial source tracking (MST) methods was conducted using challenge fecal and sewage samples that were spiked into artificial freshwater and provided as unknowns (blind test samples) to the laboratories. The results of the Source Identification Protocol Project (SIPP) are presented in a series of papers that cover 41 MST methods. This contribution details the results of the virus and bacteriophage methods targeting human fecal or sewage contamination. Human viruses used as source identifiers included adenoviruses (HAdV), enteroviruses (EV), norovirus Groups I and II (NoVI and NoVII), and polyomaviruses (HPyVs). Bacteriophages were also employed, including somatic coliphages and F-specific RNA bacteriophages (FRNAPH) as general indicators of fecal contamination. Bacteriophage methods targeting human fecal sources included genotyping of FRNAPH isolates and plaque formation on bacterial hosts Enterococcus faecium MB-55, Bacteroides HB-73 and Bacteroides GB-124. The use of small sample volumes (≤50 ml) resulted in relatively insensitive theoretical limits of detection (10-50 gene copies or plaques × 50 ml(-1)) which, coupled with low virus concentrations in samples, resulted in high false-negative rates, low sensitivity, and low negative predictive values. On the other hand, the specificity of the human virus methods was generally close to 100% and positive predictive values were ∼40-70% with the exception of NoVs, which were not detected. The bacteriophage methods were generally much less specific toward human sewage than virus methods, although FRNAPH II genotyping was relatively successful, with 18% sensitivity and 85% specificity. While the specificity of the human virus methods engenders great confidence in a positive result, better concentration methods and larger sample volumes must be utilized for greater accuracy of negative results, i.e. the prediction that a human contamination source is absent. Copyright © 2013 Elsevier Ltd. All rights reserved.
Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, R.L.; Stewart, M.H.; Liang, S.
PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages, four hydrogen peroxide/ozone weight ratios, and four contact times in two source waters--Coloradomore » River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E.« less
Xu, Yue; Yu, Xinyan; Gu, Yu; Huang, Xu; Liu, Genyan; Liu, Xiaoqiu
2018-01-01
The potential of bacteriophage as an alternative antibacterial agent has been reconsidered for control of pathogenic bacteria due to the widespread occurrence of multi-drug resistance bacteria. More and more lytic phages have been isolated recently. In the present study, we isolated a lytic phage named vB_EcoS-B2 from waste water. VB_EcoS-B2 has an icosahedral symmetry head and a long tail without a contractile sheath, indicating that it belongs to the family Siphoviridae. The complete genome of vB_EcoS-B2 is composed of a circular double stranded DNA of 44,283 bp in length, with 54.77% GC content. vB_EcoS-B2 is homologous to 14 relative phages (such as Escherichia phage SSL-2009a, Escherichia phage JL1, and Shigella phage EP23), but most of these phages exhibit different gene arrangement. Our results serve to extend our understanding toward phage evolution of family Siphoviridae of coliphages. Sixty-five putative open reading frames were predicted in the complete genome of vB_EcoS-B2. Twenty-one of proteins encoded by vB_EcoS-B2 were determined in phage particles by Mass Spectrometry. Bacteriophage genome and proteome analysis confirmed the lytic nature of vB_EcoS-B2, namely, the absence of toxin-coding genes, islands of pathogenicity, or genes through lysogeny or transduction. Furthermore, vB_EcoS-B2 significantly reduced the growth of E. coli MG1655 and also inhibited the growth of several multi-drug resistant clinical stains of E. coli. Phage vB_EcoS-B2 can kill some of the MRD E. coli entirely, strongly indicating us that it could be one of the components of phage cocktails to treat multi-drug resistant E. coli. This phage could be used to interrupt or reduce the spread of multi-drug resistant E. coli. PMID:29780362
Drosten, C.; Seifried, E.; Roth, W. K.
2001-01-01
Screening of blood donors for human immunodeficiency virus type 1 (HIV-1) infection by PCR permits the earlier diagnosis of HIV-1 infection compared with that by serologic assays. We have established a high-throughput reverse transcription (RT)-PCR assay based on 5′-nuclease PCR. By in-tube detection of HIV-1 RNA with a fluorogenic probe, the 5′-nuclease PCR technology (TaqMan PCR) eliminates the risk of carryover contamination, a major problem in PCR testing. We outline the development and evaluation of the PCR assay from a technical point of view. A one-step RT-PCR that targets the gag genes of all known HIV-1 group M isolates was developed. An internal control RNA detectable with a heterologous 5′-nuclease probe was derived from the viral target cDNA and was packaged into MS2 coliphages (Armored RNA). Because the RNA was protected against digestion with RNase, it could be spiked into patient plasma to control the complete sample preparation and amplification process. The assay detected 831 HIV-1 type B genome equivalents per ml of native plasma (95% confidence interval [CI], 759 to 936 HIV-1 B genome equivalents per ml) with a ≥95% probability of a positive result, as determined by probit regression analysis. A detection limit of 1,195 genome equivalents per ml of (individual) donor plasma (95% CI, 1,014 to 1,470 genome equivalents per ml of plasma pooled from individuals) was achieved when 96 samples were pooled and enriched by centrifugation. Up to 4,000 plasma samples per PCR run were tested in a 3-month trial period. Although data from the present pilot feasibility study will have to be complemented by a large clinical validation study, the assay is a promising approach to the high-throughput screening of blood donors and is the first noncommercial test for high-throughput screening for HIV-1. PMID:11724836
Gehr, Ronald; Wagner, Monika; Veerasubramanian, Priya; Payment, Pierre
2003-11-01
The City of Montreal Wastewater Treatment Plant uses enhanced physicochemical processes (ferric and/or alum coagulation) for suspended solids and phosphorus removal. The objective of this study was to assess the ability of peracetic acid (PAA), UV, or ozone to inactivate the indicator organisms fecal coliforms, Enterococci, MS-2 coliphage, or Clostridium perfringens in the effluent from this plant. PAA doses to reach the target fecal coliform level of 9000 CFU/100mL exceeded 6 mg/L; similar results were obtained for enterococci, and no inactivation of Clostridium perfringens was observed. However a 1-log reduction of MS-2 occurred at PAA doses of 1.5 mg/L and higher. It was expected that this effluent would have a high ozone demand, and would require relatively high UV fluences, because of relatively high effluent COD, iron and suspended solids concentrations, and low UV transmittance. This was confirmed herein. For UV, the inactivation curve for fecal coliforms showed the typical two-stage shape, with the target of 1000 CFU/100 mL (to account for photoreactivation) occurring in the asymptote zone at fluences >20 mJ/cm(2). In contrast, inactivation curves for MS-2 and Clostridium perfringens were linear. Clostridium perfringens was the most resistant organism. For ozone, inactivation was already observed before any residuals could be measured. The transferred ozone doses to reach target fecal coliform levels ( approximately 2-log reduction) were 30-50 mg/L. MS-2 was less resistant, but Clostridium perfringens was more resistant than fecal coliforms. The different behaviour of the four indicator organisms studied, depending on the disinfectant, suggests that a single indicator organism might not be appropriate. The required dose of any of the disinfectants is unlikely to be economically viable, and upstream changes to the plant will be needed.
Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D
2016-02-27
The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.
Harvey, Ronald W; Metge, David W; LeBlanc, Denis R; Underwood, Jen; Aiken, George R; Butler, Kenna; McCobb, Timothy D; Jasperse, Jay
2015-09-01
This study focused on the importance of the colmation layer in the removal of cyanobacteria, viruses, and dissolved organic carbon (DOC) during natural bank filtration. Injection-and-recovery studies were performed at two shallow (0.5 m deep), sandy, near-shore sites at the southern end of Ashumet Pond, a waste-impacted, kettle pond on Cape Cod, MA, that is subject to periodic blooms of cyanobacteria and continuously recharges a sole-source drinking-water aquifer. The experiment involved assessing the transport behaviors of bromide (conservative tracer), sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophage, 110 nm long), MS2 (coliphage, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The injectate constituents were tracked as they were advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-point samplers placed at ∼30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ∼44% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by three orders of magnitude) at removing microspheres than was the underlying 20-cm-thick segment of sediment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Purnell, Sarah; Ebdon, James; Buck, Austen; Tupper, Martyn; Taylor, Huw
2016-09-01
The aim of this study was to demonstrate how seasonal variability in the removal efficacy of enteric viral pathogens from an MBR-based water recycling system might affect risks to human health if the treated product were to be used for the augmentation of potable water supplies. Samples were taken over a twelve month period (March 2014-February 2015), from nine locations throughout a water recycling plant situated in East London and tested for faecal indicator bacteria (thermotolerant coliforms, intestinal enterococci n = 108), phages (somatic coliphage, F-specific RNA phage and Bacteroides phage (GB-124) n = 108), pathogenic viruses (adenovirus, hepatitis A, norovirus GI/GII n = 48) and a range of physico-chemical parameters (suspended solids, DO, BOD, COD). Thermotolerant coliforms and intestinal enterococci were removed effectively by the water recycling plant throughout the study period. Significant mean log reductions of 3.9-5.6 were also observed for all three phage groups monitored. Concentrations of bacteria and phages did not vary significantly according to season (P < 0.05; Kruskal-Wallis), though recorded levels of norovirus (GI) were significantly higher during autumn/winter months (P = 0.027; Kruskal-Wallis). Log reduction values for norovirus and adenovirus following MBR treatment were 2.3 and 4.4, respectively. However, both adenovirus and norovirus were detected at low levels (2000 and 3240 gene copies/L, respectively) post chlorination in single samples. Whilst phage concentrations did correlate with viral pathogens, the results of this study suggest that phages may not be suitable surrogates, as viral pathogen concentrations varied to a greater degree seasonally than did the phage indicators and were detected on a number of occasions on which phages were not detected (false negative sample results). Copyright © 2016 Elsevier Ltd. All rights reserved.
Raya, Raul R; Oot, Rebecca A; Moore-Maley, Ben; Wieland, Serena; Callaway, Todd R; Kutter, Elizabeth M
2011-01-01
In preparing sheep for an in vivo Escherichia coli O157:H7 eradication trial, we found that 20/39 members of a single flock were naturally colonized by O157:H7-infecting phages. Characterization showed these were all one phage type (subsequently named CEV2) infecting 15/16 O157:H7, 7/72 ECOR and common lab strains. Further characterization by PFGE (genome∼120 kb), restriction enzyme digest (DNA appears unmodified), receptor studies (FhuA but not TonB is required for infection) and sequencing (>95% nucleotide identity) showed it is a close relative of the classically studied coliphage T5. Unlike T5, CEV2 infects O157:H7 in vitro, both aerobically and anaerobically, rapidly adsorbing and killing, but resistant mutants regrew within 24 h. When used together with T4-like CEV1 (MOI ∼2 per phage), bacterial killing was longer lasting. CEV2 did not reproduce when co-infecting the same cell as CEV1, presumably succumbing to CEV1's ability to shut off transcription of cytosine-containing DNA. In vivo sheep trials to remove resident O157:H7 showed that a cocktail of CEV2 and CEV1 (∼1011 total PFU) applied once orally was more effective (>99.9% reduction) than CEV1 alone (∼99%) compared to the untreated phage-free control. Those sheep naturally carrying CEV2, receiving no additional phage treatment, had the lowest O157:H7 levels (∼99.99% reduction). These data suggest that phage cocktails are more effective than individual phage in removing O157:H7 that have taken residence if the phage work in concert with one another and that naturally resident O157:H7-infecting phages may prevent O157:H7 gut colonization and be one explanation for the transient O157:H7 colonization in ruminants. PMID:21687531
Vijayavel, Kannappan; Fujioka, Roger; Ebdon, James; Taylor, Huw
2010-06-01
Previous studies have shown that Escherichia coli and enterococci are unreliable indicators of fecal contamination in Hawaii because of their ability to multiply in environmental soils. In this study, the method of detecting Bacteroides phages as specific markers of sewage contamination in Hawaii's recreational waters was evaluated because these sewage specific phages cannot multiply under environmental conditions. Bacteroides hosts (GB-124, GA-17), were recovered from sewage samples in Europe and were reported to be effective in detecting phages from sewage samples obtained in certain geographical areas. However, GB-124 and GA-17 hosts were ineffective in detecting phages from sewage samples obtained in Hawaii. Bacteroides host HB-73 was isolated from a sewage sample in Hawaii, confirmed as a Bacteroides sp. and shown to recover phages from multiple sources of sewage produced in Hawaii at high concentrations (5.2-7.3 x 10(5) PFU/100 mL). These Bacteroides phages were considered as potential markers of sewage because they also survived for three days in fresh stream water and two days in marine water. Water samples from Hawaii's coastal swimming beaches and harbors, which were known to be contaminated with discharges from streams, were shown to contain moderate (20-187 CFU/100 mL) to elevated (173-816 CFU/100 mL) concentrations of enterococci. These same samples contained undetectable levels (<10 PFU/100 mL) of F+ coliphage and Bacteroides phages and provided evidence to suggest that these enterococci may not necessarily be associated with the presence of raw sewage. These results support previous conclusions that discharges from streams are the major sources of enterococci in coastal waters of Hawaii and the most likely source of these enterococci is from environmental soil rather than from sewage. 2010 Elsevier Ltd. All rights reserved.
Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W
2009-01-01
Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The ∼108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element ‘mobilome’. PMID:19840100
Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W
2009-11-01
Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The approximately 108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element 'mobilome'.
Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.
2016-01-01
The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152
Mutations That Affect the Efficiency of Translation of mRNA for the cII Gene of Coliphage Lambda
Dul, Ed; Mahoney, Michael E.; Wulff, Daniel L.
1987-01-01
Starting with the λ pRE- strain λctr1 cy3008, which forms clear plaques, we have isolated two mutant strains, λdya2 ctr1 cy3008 and λ dya3 ctr1 cy3008, that form plaques with very slightly turbid centers. The dya2 and dya3 mutations lie in the region of overlap between the PRE promoter and the ribosome recognition region of the cII gene, and have nucleotide alterations at positions -1 and +5 of pRE, and alterations of cII mRNA at -16 and -21 nucleotides before the initial AUG codon of the gene. Both mutations destabilize a stem structure that may be formed by cII mRNA, and dya2 also changes the sequence on cII mRNA that is complementary to the 3'-end of 16 S rRNA from 5'-UAAGGA-3' to 5'-UGAGGA-3'.—The dya2 and dya3 mutations, along with the ctr1 mutation, which destabilizes either of two alternate stem structures which may be formed by cII mRNA (these being more stable stem structures than the one affected by dya2 and dya3), were tested for their ability to reverse two cII- mutations that are characterized by inefficient translation of cII mRNA. These are cII3088, an A → G mutation four bases before the initial AUG codon, and cII3059 , a GUU → GAU (Val2 → Asp) second codon mutation. It was found that ctr1 completely reverses the translation defects of these two mutations, while dya2 partially reverses these translation defects. The dya3 mutation has no effect on translation efficiency under any condition tested. However neither the ctr1 mutation nor the dya2 mutation has much effect on translation efficiency in an otherwise cII+ background, indicating that other factors must limit the rate of translation of cII mRNA under these conditions. PMID:2953647
Kohn, Tamar; Mattle, Michael J; Minella, Marco; Vione, Davide
2016-01-01
Sunlight is known to be a pertinent factor governing the infectivity of waterborne viruses in the environment. Sunlight inactivates viruses via endogenous inactivation (promoted by absorption of solar light in the UVB range by the virus) and exogenous processes (promoted by adsorption of sunlight by external chromophores, which subsequently generate inactivating reactive species). The extent of inactivation is still difficult to predict, as it depends on multiple parameters including virus characteristics, solution composition, season and geographical location. In this work, we adapted a model typically used to estimate the photodegradation of organic pollutants, APEX, to explore the fate of two commonly used surrogates of human viruses (coliphages MS2 and ϕX174) in waste stabilization pond and natural surface water. Based on experimental data obtained in previous work, we modeled virus inactivation as a function of water depth and composition, as well as season and latitude, and we apportioned the contributions of the different inactivation processes to total inactivation. Model results showed that ϕX174 is inactivated more readily than MS2, except at latitudes >60°. ϕX174 inactivation varies greatly with both season (20-fold) and latitude (10-fold between 0 and 60°), and is dominated by endogenous inactivation under all solution conditions considered. In contrast, exogenous processes contribute significantly to MS2 inactivation. Because exogenous inactivation can be promoted by longer wavelengths, which are less affected by changes in season and latitude, MS2 exhibits smaller fluctuations in inactivation throughout the year (10-fold) and across the globe (3-fold between 0 and 60°) compared to ϕX174. While a full model validation is currently not possible due to the lack of sufficient field data, our estimated inactivation rates corresponded well to those reported in field studies. Overall, this study constitutes a step toward estimating microbial water quality as a function of spatio-temporal information and easy-to-determine solution parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, G.D.; Sykes, B.D.
The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous {sup 1}H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at leastmore » 10{sup 5}-fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use {sup 15}N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the {sup 15}N nucleus from a coupled proton; when {sup 15}N-labeled protonated protein is dissolved in {sup 2}H{sub 2}O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H{sup +} and OH{sup {minus}} ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k{sub ex}). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations.« less
Heaney, Christopher D; Exum, Natalie G; Dufour, Alfred P; Brenner, Kristen P; Haugland, Richard A; Chern, Eunice; Schwab, Kellogg J; Love, David C; Serre, Marc L; Noble, Rachel; Wade, Timothy J
2014-11-01
Recent studies showing an association between fecal indicator organisms (FIOs) in sand and gastrointestinal (GI) illness among beachgoers with sand contact have important public health implications because of the large numbers of people who recreate at beaches and engage in sand contact activities. Yet, factors that influence fecal pollution in beach sand remain unclear. During the 2007 National Epidemiological and Environmental Assessment of Recreational (NEEAR) Water Study, sand samples were collected at three locations (60 m apart) on weekend days (Sat, Sun) and holidays between June and September at two marine beaches - Fairhope Beach, AL and Goddard Beach, RI - with nearby publicly-owned treatment works (POTWs) outfalls. F(+) coliphage, enterococci, Bacteroidales, fecal Bacteroides spp., and Clostridium spp. were measured in sand using culture and qPCR-based calibrator-cell equivalent methods. Water samples were also collected on the same days, times and transects as the 144 sand samples and were assayed using the same FIO measurements. Weather and environmental data were collected at the time of sample collection. Mean FIO concentrations in sand varied over time, but not space. Enterococci CFU and CCE densities in sand were not correlated, although other FIOs in sand were. The strongest correlation between FIO density in sand and water was fecal Bacteroides CCE, followed by enterococci CFU, Clostridium spp. CCE, and Bacteroidales CCE. Overall, the factors associated with FIO concentrations in sand were related to the sand-water interface (i.e., sand-wetting) and included daily average densities of FIOs in water, rainfall, and wave height. Targeted monitoring that focuses on daily trends of sand FIO variability, combined with information about specific water quality, weather, and environmental factors may inform beach monitoring and management decisions to reduce microbial burdens in beach sand. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Copyright © 2014 Elsevier B.V. All rights reserved.
A review of virus removal in wastewater treatment pond systems.
Verbyla, Matthew E; Mihelcic, James R
2015-03-15
Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on the interactions of viruses with particles and with other organisms, as well as the development of a model for virus removal in pond systems that can be used for design purposes, and to inform future editions of the WHO Guidelines for Wastewater Use in Agriculture. Copyright © 2014 Elsevier Ltd. All rights reserved.
Banks, William S.L.; Klohe, Cheryl A.; Battigelli, David A.
2001-01-01
The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the water-table aquifer in the Coastal Plain in Worcester and Wicomico Counties, Maryland.Two hundred seventy-eight well sites were evaluated with regard to simulated ground-water flow paths, land use, natural soils groups, and well characteristics, such as well depth and well age. Flow and transport simulations of the water-table aquifer indicated that wells screened less than about 50 feet below land surface (shallow wells) were most vulnerable to surface contamination, which in some cases could originate from as far as 2,000 feet upgradient of the well. Animal-feeding and agricultural-storage operations were considered among the most likely sources for viral contamination; therefore, sites close to these activities were considered most vulnerable. Soil groups were evaluated with regard to depth to water and moisture-holding capacity. Wells with shallow depths to water or in very sandy soils were considered more vulnerable to contamination than deep wells (greater than 50 feet) and those completed in finer-grained soils. Older wells and wells where coliform bacteria had been detected in the past were classified as highly vulnerable. On the basis of this evaluation, 27 sites considered to be susceptible were sampled.Samples were collected by pumping up to 400 gallons of untreated well water through an electropositive filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect nonculturable viruses; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, dissolved organic carbon, organic nitrogen, total phosphate, orthophosphate, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.Eleven percent of the samples analyzed (3 of 27) tested positive for either culturable viruses or the presence of viral ribonucleic acid. Approximately 15 percent of the samples (4 of 27) tested positive for one or more bacterial contaminants.
Kreißel, Katja; Bösl, Monika; Hügler, Michael; Lipp, Pia; Franzreb, Matthias; Hambsch, Beate
2014-03-15
Bacteriophages are often used as surrogates for enteric viruses in spiking experiments to determine the efficiencies of virus removal of certain water treatment measures, like e.g. flocculation or filtration steps. Such spiking experiments with bacteriophages are indispensable if the natural virus concentrations in the raw water of water treatment plants are too low to allow the determination of elimination levels over several orders of magnitude. In order to obtain reliable results from such spiking tests, it is essential that bacteriophages behave comparable to viruses and remain stable during the experiments. To test this, the influence of flocculation parameters on the bacteriophages MS2, Qβ and phiX174 was examined. Notably, the F-specific phages MS2 and Qβ were found to be inactivated in flocculation processes with polyaluminum chloride (PACl). In contrast, other aluminum coagulants like AlCl3 or Al2(SO4)3 did not show a comparable effect on MS2 in this study. In experiments testing the influence of different PACl species on MS2 and Qβ inactivation during flocculation, it could be shown that cationic dissolved PACl species (Al13) interacted with the MS2 surface and hereby reduced the surviving phage fraction to c/c0 values below 1*10(-4) even at very low PACl concentrations of 7 μmol Al/L. Other inactivation mechanisms like the irreversible adsorption of phages to the floc structure or the damage of phage surfaces due to entrapment into the floc during coagulation and floc formation do not seem to contribute to the low surviving fraction found for both F-specific bacteriophages. Furthermore, no influence of phage agglomeration or pH drops during the flocculation process on phage inactivation could be observed. The somatic coliphage phiX174 in contrast did not show sensitivity to chemical stress and in accordance only slight interaction between Al13 and the phage surface was observed. Consequently, F-specific phages like MS2 should not be used as surrogate for viruses in flocculation experiments with PACl to determine the removal rates of viruses, as the results are influenced by a strong inactivation of the bacteriophages due to the experimental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Groundwater microbiological quality in Canadian drinking water municipal wells.
Locas, Annie; Barthe, Christine; Margolin, Aaron B; Payment, Pierre
2008-06-01
To verify previous conclusions on the use of bacterial indicators suggested in regulations and to investigate virological quality of groundwater, a 1-year study was undertaken on groundwater used as a source of drinking water in 3 provinces in Canada. Raw water from 25 municipal wells was sampled during a 1-year period for a total of 167 samples. Twenty-three sites were selected on the basis of their excellent historical bacteriological water quality data, and 2 sites with known bacteriological contamination were selected as positive controls. Water samples were analyzed for general water quality indicators (aerobic endospores, total coliforms), fecal indicators (Escherichia coli, enterococci, somatic and male-specific coliphages), total culturable human enteric viruses (determined by cell culture and immunoperoxidase), noroviruses (analyzed by reverse-transcriptase -- polymerase chain reaction (RT-PCR)), adenovirus types 40 and 41 (analyzed by integrated cell culture (ICC) - PCR), and enteroviruses and reoviruses types 1, 2, and 3 (analyzed by ICC-RT-PCR). General water quality indicators were found very occasionally at the clean sites but were frequently present at the 2 contaminated sites. Only one of 129 samples from the 23 clean sites was positive for enterococci. These results confirm the value of raw water quality historical data to detect source water contamination affecting wells that are vulnerable. Samples from the 2 contaminated sites confirmed the frequent presence of fecal indicators: E. coli was found in 20/38 samples and enterococci in 12/38 samples. Human enteric viruses were not detected by cell culture on MA-104 cells nor by immunoperoxidase detection in any sample from the clean sites but were found at one contaminated site. By ICC-RT-PCR and ICC-PCR, viruses were found by cytopathic effect in one sample from a clean site and they were found in 3 samples from contaminated sites. The viruses were not detected by the molecular methods but were confirmed as picornaviruses by electron microscopy. Noroviruses were not detected in any samples. The results obtained reinforce the value of frequent sampling of raw water using simple parameters: sampling for total coliforms and E. coli remains the best approach to detect contamination of source water by fecal pollutants and accompanying pathogens. The absence of total coliforms at a site appears to be a good indication of the absence of human enteric viruses.
Bresler, S E; Kalinin, V L; Kopylova, Y U; Krivisky, A S; Rybchin, V N; Shelegedin, V N
1975-07-01
The inactivating and mutagenic action of high-energy radiations with different ionizing capacities (gamma-rays, protons, alpha-particles and accelerated ions of 12C and 20Ne) was studied by using coliphages lambda11 and SD as subjects. In particular the role of irradiation conditions (broth suspension, pure buffer, dry samples) and of the host functions recA, exrA and polA was investigated. The dose-response curve of induced mutagenesis was studied by measuring the yield of vir mutants in lambda11 and plaque mutants in SD. The following results were obtained. (1) The inactivation kinetics of phages under the action of gamma-rays and protons was first order to a survival of 10(-7). Heavy ions also showed exponential inactivation kinetics to a survival of 10(-4). At higher doses of 20Ne ion bombardment some deviation from one-hit kinetics was observed. For dry samples of phages the dimensions of targets for all types of radiation were approximately proportional to the molecular weights of phage DNA's. For densely ionizing radiation (heavy ions) the inactivating action was 3-5 times weaker than for gamma-rays and protons. (2) Mutagenesis was observed for all types of radiation, but heavy ions were 1-5-2 times less efficient than gamma-rays. For both phages studied the dose-response curve of mutagenesis was non-linear. The dependence on the dose was near to parabolic for lambda11. For SD a plateau or maximum of mutagenesis was observed for the relative number of mutants at a survival of about 10(-4). (3) Host-cell functions recA and exrA were practically indifferent for survival of gamma-irradiated phage lambda11, but indispensable for mutagenesis. Mutation recAI3 abolished induced vir mutations totally and exrA- reduced them significantly. The absence of the function polA had a considerable influence on phage survival, but no effect on vir mutation yield (if compared at the same survival level). (4) In conditions of indirect action of gamma-rays no vir mutations were induced. This is regarded as evidence that the single-strand breaks formed under indirect action conditions cannot serve as pre-mutational damage in DNA.
Dudarev, Alexey A; Dushkina, Eugenia V; Sladkova, Yuliya N; Alloyarov, Pavel R; Chupakhin, Valery S; Dorofeyev, Vitaliy M; Kolesnikova, Tatjana A; Fridman, Kirill B; Evengard, Birgitta; Nilsson, Lena M
2013-01-01
Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Uniform water security indicators collected from Russian official statistical sources for the period 2000-2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized--underground and surface, and non-centralized) and of drinking water. Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40-80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32-90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5-12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages--0.2-2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus--up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized--underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions.
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Metge, D. W.; LeBlanc, D. R.; Underwood, J. C.; Aiken, G.; McCobb, T. D.; Jasperse, J.
2015-12-01
Bank filtration has proven to be a sustainable, cost-effective method of removing cyanobacteria and their harmful toxins from surface water during filtration through bottom and aquifer sediments. The biologically active layer of sediments immediately beneath the sediment-water interface (colmation layer) is believed to be particularly important in this process. An in situ experiment was conducted that involved assessing the transport behaviors of bromide (conservative tracer), Synechococcus sp. IU625 (cyanobacterium, 2.6 ± 0.2 µm), AS-1 (tailed cyanophages, 110 nm long), MS2 (coliphages, 26 nm diameter), and carboxylate-modified microspheres (1.7 µm diameter) introduced to the colmation layer using a bag-and-barrel (Lee-type) seepage meter. The constituents were monitored as they advected through the colmation layer and underlying aquifer sediments at Ashumet Pond in Cape Cod, MA, a mesotrophic kettle pond that recharges a portion of a sole-source, drinking water aquifer. Because the pond DOC includes the various cyanotoxins produced during harmful algal bloom senescence, the DOC and aforementioned colloids were tracked concomitantly. The tracer test constituents were monitored as they advected across the pond water-groundwater interface and through the underlying aquifer sediments under natural-gradient conditions past push-points samplers placed at ~30-cm intervals along a 1.2-m-long, diagonally downward flow path. More than 99% of the microspheres, IU625, MS2, AS-1, and ~42% of the pond DOC were removed in the colmation layer (upper 25 cm of poorly sorted bottom sediments) at two test locations characterized by dissimilar seepage rates (1.7 vs. 0.26 m d-1). Retention profiles in recovered core material indicated that >82% of the attached IU625 were in the top 3 cm of bottom sediments. The colmation layer was also responsible for rapid changes in the character of the DOC and was more effective (by 3 orders of magnitude) at removing microspheres than was the underlying 30-cm-long segment of sediment. A follow-up study conducted the following year at the same location demonstrated that removal of the top 5 cm of sediment resulted in a six-fold decrease in the efficiency of the near-surface bottom sediments for filtering out Synechococcus, cyanophage, and well-characterized microspheres.
Shim, J; Stewart, D S; Nikolov, A D; Wasan, D T; Wang, R; Yan, R; Shieh, Y C
2017-12-15
Enteric viruses are recognized as major etiologies of U.S. foodborne infections. These viruses are easily transmitted via food contact surfaces. Understanding virus interactions with surfaces may facilitate the development of improved means for their removal, thus reducing transmission. Using MS2 coliphage as a virus surrogate, the strength of virus adhesion to common food processing and preparation surfaces of polyvinyl chloride (PVC) and glass was assessed by atomic force microscopy (AFM) and virus recovery assays. The interaction forces of MS2 with various surfaces were measured from adhesion peaks in force-distance curves registered using a spherical bead probe preconjugated with MS2 particles. MS2 in phosphate-buffered saline (PBS) demonstrated approximately 5 times less adhesion force to glass (0.54 nN) than to PVC (2.87 nN) ( P < 0.0001). This was consistent with the virus recovery data, which showed 1.4-fold fewer virus PFU recovered from PVC than from glass after identical inoculations and 24 h of cold storage. The difference in adhesion was ascribed to both intrinsic chemical characteristics and the substrate surface porosity (smooth glass versus porous PVC). Incorporating a surfactant micellar solution of sodium dodecyl sulfate (SDS) into the PBS reduced the adhesion force for PVC (∼0 nN) and consistently increased virus recovery by 19%. With direct and indirect evidence of virus adhesion, this study illustrated a two-way assessment of virus adhesion for the initial evaluation of potential means to mitigate virus adhesion to food contact surfaces. IMPORTANCE The spread of foodborne viruses is likely associated with their adhesive nature. Virus attachment on food contact surfaces has been evaluated by quantitating virus recoveries from inoculated surfaces. This study aimed to evaluate the microenvironment in which nanometer-sized viruses interact with food contact surfaces and to compare the virus adhesion differences using AFM. The virus surrogate MS2 demonstrated less adhesion force to glass than to PVC via AFM, with the force-contributing factors including the intrinsic nature and the topography of the contact surfaces. This adhesion finding is consistent with the virus recoveries, which were determined indirectly. Greater numbers of viruses were recovered from glass than from PVC, after application at the same levels. The stronger MS2 adhesion onto PVC could be interrupted by incorporating a surfactant during the interaction between the virus and the contact surface. This study increases our understanding of the virus adhesion microenvironment and indicates ways to mitigate virus adhesion onto contact surfaces. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Kaikabo, A A; AbdulKarim, S M; Abas, F
2017-02-01
Disease inflicted by avian pathogenic Escherichia coli (APEC) causes economic losses and burden to the poultry industry worldwide. In this study, the efficacy of chitosan nanoparticles loaded ΦKAZ14 (C-ΦKAZ14 NPs) as an oral biological therapy for Colibacillosis was evaluated. C-ΦKAZ14 NPs containing 10 7 PFU/ml of ΦKAZ14 (Myoviridae; T4-like coliphage) bacteriophage were used to treat experimentally APEC-infected COBB 500 broiler chicks. C-ΦKAZ14 NPs and ΦKAZ14 bacteriophage were administered orally in a single dose. The clinical symptoms, mortality, and pathology in the infected birds were recorded and compared with those of control birds that did not receive C-ΦKAZ14 NPs or naked ΦKAZ14 bacteriophage. The results showed that C-ΦKAZ14 NP intervention decreased mortality from 58.33 to 16.7% with an increase in the protection rate from 42.00 to 83.33%. The bacterial colonization of the intestines of infected birds was significantly higher in the untreated control than in the C-ΦKAZ14 NP-treated group (2.30×10 9 ± 0.02 and 0.79×10 3 ± 0.10 CFU/mL, respectively) (P ≤ 0.05). Similarly, a significant difference in the fecal shedding of Escherichia coli was observed on d 7 post challenge between the untreated control and the C-ΦKAZ14 NP-treated group (2.35×10 9 ± 0.05 and 1.58×10 3 ± 0.06 CFU/mL, respectively) (P ≤ 0.05). Similar trends were observed from d 14 until d 21 when the experiment was terminated. Treatment with C-ΦKAZ14 NPs improved the body weights of the infected chicks. A difference in body weight on d 7 post challenge was observed between the untreated control and the C-ΦKAZ14 NP-treated group (140 ± 20 g and 160 ± 20 g, respectively). The increase was significant (P ≤ 0.05) on d 21 between the 2 groups (240 ± 30 g and 600 ± 80 g, respectively). Consequently, the clinical signs and symptoms were ameliorated upon treatment with C-ΦKAZ14 NPs compared with infected untreated birds. In all, based on the results, it can be concluded that the encapsulation of bacteriophage could enhance bacteriophage therapy and is a valuable approach for controlling APEC infections in poultry. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.
Dudarev, Alexey A.; Dushkina, Eugenia V.; Sladkova, Yuliya N.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Dorofeyev, Vitaliy M.; Kolesnikova, Tatjana A.; Fridman, Kirill B.; Evengard, Birgitta; Nilsson, Lena M.
2013-01-01
Background Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Study design and methods Uniform water security indicators collected from Russian official statistical sources for the period 2000–2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized – underground and surface, and non-centralized) and of drinking water. Results Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40–80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32–90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5–12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages – 0.2–2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus – up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). Conclusion In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized – underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions. PMID:24350065
Nguyen, Huong Minh; Kang, Changwon
2014-02-01
Bacteriophage T7 terminator Tϕ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tϕ was deleted from the genome, we discovered that deletion of Tϕ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tϕ deletion-caused upregulation of gene 17.5, coding for holin, among other Tϕ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tϕ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tϕ-lacking mutant phage decreased expression of several Tϕ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tϕ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tϕ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE Bacteriophages are bacterium-infecting viruses. After producing numerous progenies inside bacteria, phages lyse bacteria using their lysis protein(s) to get out and start a new infection cycle. Normally, lysis is tightly controlled to ensure phage progenies are maximally produced and released at an optimal time. Here, we have discovered that phage T7, besides employing its known lysis proteins, additionally uses its transcription terminator Tϕ to guarantee the optimal lysis of the E. coli host. Tϕ, positioned in the middle of the T7 genome, must be inactivated at least partially to allow for transcription-driven translocation of T7 DNA into hosts and expression of Tϕ downstream but promoter-lacking genes. What role is played by Tϕ before inactivation? Without Tϕ, not only was lysis time delayed but also the number of progenies was reduced in this study. Furthermore, T7 can overcome Tϕ deletion by further deleting some genes, highlighting that a phage has multiple strategies for optimizing lysis.
NASA Astrophysics Data System (ADS)
Langford, R. P.; Pillai, S.; Schulze-Makuch, D.; Widmer, K.; Abdel-Fattah, A.; Lerhner, T.
2003-12-01
This study tracks the transport of bromide and microspheres mimicking pathogens in an arid environment. The study site uses the Rio Grande that experiences significant annual fluctuations in both water quantity and quality. The pumping well is 17 m from the stream bank and the water table was 2 m below the stream surface. The aquifer is medium and fine-grained sand comprising two flow units. Observation wells are screened over 1 or 1.5 m intervals. The average hydraulic conductivity was about 2 x 10-3 m/s based on a test analysis, however, the responses indicated that sediment heterogeneities affected the hydraulic behavior. A 427 hour tracer test using bromide and fluorescent microspheres provides initial results that are relevant to the transport of pathogens through the subsurface under riverbank filtration conditions. Bromide was injected into an observation well at the channel margin. Differently colored fluorescent microspheres (0.25nm, 1?m, 6?m and 10?m) were injected into the stream bottom and into two observation wells. Conclusions from the tracer test are: 1) Both bromide and microspheres continued to be observed throughout the 18 days of the experiment. 2) The bromide recovery in the pumping well and in the deeper observation wells showed early and late peaks with a long tails indicating that the geological medium at the field site behaves like a double-porosity medium allowing the tracer to move relatively quickly through the higher conductivity units while being significantly retarded in the low hydraulic conductivity units. 3) Some wells showed consistently higher concentrations of bromide. 4) The 1? micospheres were abundant in the observation wells and allowed tracing of flowpaths. These showed multiple peaks similar to the bromide results. This indicates highly preferential transport paths in the sediment. 5) Microspheres from the three injection sites had distinctly different transport paths and rates. 6) Both bromide and microspheres appeared in the stream soon after injection, moving apparently against an 2-m head difference. 7) The 6 ? and 10 ? microspheres were observed in low concentrations and were episodically detected in the stream and in two widely spaced observation wells. The significance of these results is that: 1) Inorganic microspheres may mimic the episodic occurrence of microorganisms in wells. 2) Even in this relatively homogeneous aquifer, preferential transport within the aquifer results in highly divergent transport paths and rates. Microspheres from one of the injection sites traveled essentially perpendicular to the expected transport direction. 3) Even small variations in the sand grain size can effectively compartmentalize the aquifer. The next steps of this project will include field studies to observe the migration and persistence of selected organisms (E.coli, enterococci, coliphages, cysts, oocysts and enteroviruses) in the pumping well and observation wells under different pumping rates. Continued combined chemical sampling along with the microbial sampling will document the whether changes in water chemistry alter the behavior of the organisms.
Kirs, Marek; Kisand, Veljo; Wong, Mayee; Caffaro-Filho, Roberto A; Moravcik, Philip; Harwood, Valerie J; Yoneyama, Bunnie; Fujioka, Roger S
2017-06-01
Indicator bacteria, which are conventionally used to evaluate recreational water quality, can originate from various non-human enteric and extra-enteric sources, hence they may not be indicative of human health risk nor do they provide information on the sources of contamination. In this study we utilized traditional (enterococci and Escherichia coli) and alternative (Clostridium perfringens) indicator bacteria, F + -specific coliphage, molecular markers for microorganisms associated with human sewage (human-associated Bacteroides and polyomaviruses), and microbial community analysis tools (16S rRNA gene fragment amplicon sequencing), to identify and evaluate human sewage-related impact in the Manoa watershed in Honolulu, Hawaii. Elevated concentrations of enterococci (geometric mean ranging from 1604 to 2575 CFU 100 mL -1 ) and C. perfringens (45-77 CFU 100 mL -1 ) indicated impairment of the urbanized section of the stream, while indicator bacteria concentrations decreased downstream in the tidally influenced Ala Wai Canal. The threshold values triggering water quality violation notifications in Hawaii were exceeded in 33.3-75.0% of samples collected at sites in the urbanized section of Manoa Stream, but were not exceeded in any of the samples collected at an upstream site located in a forested area. Correlation between indicator bacteria concentrations and rainfall amounts was weak to moderate but significant (E. coli R = 0.251, P = 0.009; enterococci R = 0.369, P < 0.001; C. perfringens R = 0.343, P < 0.001), while concentrations of human fecal-associated molecular markers were not significantly correlated with rainfall (human-associated Bacteroides, R = 0.131, P = 0.256; human-associated polyomaviruses, R = 0.213, P = 0.464). Presence of human sewage was confirmed by detection of human-associated Bacteroides and human polyomavirus in the urbanized section of Manoa Stream (83.3-100% and 41.7-66.7% positive samples respectively). It was further confirmed by microbial community analyses which suggested that an average 2.4-3.4% of the total bacterial population in this section was associated with sewage. Microbial community profiles were significantly influenced by rainfall (R 2 = 0.4390, P < 0.001), pH (R 2 = 0.3077, P = 0.006), salinity (R 2 = 0.2614, P = 0.038), and conductivity (R 2 = 0.2676, P = 0.031). Although microbial diversity fluctuated throughout the watershed, it was lower in the impaired section. Leaking sewer systems and illegal cross-connections are implicated in the impairment of the watershed, hence both the sewer and the storm water lines should be routinely inspected. Collectively, our data suggest that information derived from the analysis of microbial communities complements current marker-based microbial source tracking techniques and environmental monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ward, Ray; Purnell, Sarah; Ebdon, James; Nnane, Daniel; Taylor, Huw
2013-04-01
The Water Framework Directive (WFD) regulates surface water quality standards in the European Union (EU). The Directive call for the identification and management of point and diffuse sources of pollution and requires the establishment of a 'programme of measures' for identified river basin districts, in order to achieve a "good status" by 2015. The hygienic quality of water is normally monitored using faecal indicator organisms (FIO), such as Escherichia coli, which indicate a potential risk to public health from human waterborne pathogens. Environmental factors influence the transmission of these pathogens and indicator organisms, and statistically significant relationships have been found between rainfall and outbreaks of waterborne disease. Climate change has been predicted to lead to an increase in severe weather events in many parts of Europe, including an increase in the frequency of extreme rainfall events. This in turn is likely to lead to an increase in incidents of human waterborne disease in Europe, unless measures are taken to predict and mitigate for such events. This study investigates a variety of environmental factors that influence the concentration of FIO in surface waters receiving faecal contamination from a variety of sources. Levels of FIO, including Escherichia coli, intestinal enterococci, somatic coliphage and GB124 (a human-specific microbial source tracking marker), were monitored in the Sussex Ouse catchment in Southeast England over a period of 26 months. These data were combined with geoinformatic environmental data within a GIS to map faecal contamination within the river. Previously, precipitation and soil erosion have been identified as major factors that can influence the concentration of these faecal markers, and studies have shown that slope, soil type and vegetation influence both the mechanisms and the rate by which erosion occurs in river catchments. Of the environmental variables studied, extreme precipitation was found to be a major factor contributing to increased levels of FIO. This study identifies areas within the catchment that are likely to demonstrate elevated erosion rates during extreme precipitation events, which are likely to result in raised levels of FIO. The results also demonstrate that increases in the human faecal marker were associated with the discharge points of wastewater treatment works, and that levels of the marker increased whenever the works discharged untreated wastewaters during extreme precipitation. Spatial analysis also highlighted locations where human faecal pollution was present in areas away from wastewater treatment plants, highlighting the potential significance of inputs from septic tanks and other un-sewered domestic wastewater systems. Increases in the frequency of extreme precipitation events in many parts of Europe are likely to result in increased levels of water pollution from both point- and diffuse-sources, increasing the input of pathogens into surface waters, and elevating the health risks to downstream consumers of abstracted drinking water. This study suggests an approach that integrates water microbiology and geoinformatic data to support a 'prediction and prevention' approach, in place of the traditional focus on water quality monitoring. This work may therefore make a significant contribution to future European water resource management and health protection.
NASA Astrophysics Data System (ADS)
Antonelli, Marta; Narayanan Balasubramanian, Mukundh; Ogorzaly, Leslie; Pfister, Laurent
2016-04-01
Albeit recent technological developments (e.g. field deployable instruments operating at high temporal frequencies), experimental hydrology is a discipline that remains measurement limited. From this perspective, trans-disciplinary approaches may create valuable opportunities to enlarge the amount of tools available for investigating hydrological processes. Bacteriophages have been widely used in hydrology as biological tracer for investigating colloid transport and contamination of ground water systems. However, there are only a few studies focusing on the employability of bacteriophages as surface water tracers (i.e. phage transport, system functioning). Here, we present a proof-of-concept study carried out in the Huewelerbach catchment in Luxembourg in December 2015. The aim of this study was to investigate how viral particles can be used to detect hydrological connectivity between the riparian zone/river bank and the stream during rainfall events. Moreover, this study is one of the first attempts for applying the qPCR (quantitative polymerase chain reaction) technique for the quantification of bacteriophages in stream water samples to investigate hydrological processes. This technique is very sensitive and has a large dynamic range - enhancing ease and speed of phage detection. We used two different male-specific coliphages (GA phage, genogroup II and SP phage, genogroup IV). Two litres of GA phage were injected directly in the stream as a slug injection and two litres of SP phage were poured next to the river bank (alluvial deposition) close to the injection point. We also added NaCl (200 g) to both phage suspensions. We collected stream water samples 100 m and 500 m downstream (i.e. catchment outlet) of the injection point for one week. Phages were concentrated through ultracentrifugation of 100 ml of water sample followed by quantification via qPCR. Conductivity in stream water was monitored for the entire duration of the experiment. Discharge was monitored both immediately upstream of the injection point and at the catchment outlet. Preliminary results show that at the catchment outlet, the GA-phage injected in stream displayed almost complete mass recovery (~93 %), in contrast to the partial recovery (~12%) of the SP phage that was introduced on the river bank. Additionally, the amount of GA phages detected 100 m downstream of the injection point evolved back to its background level after six days. We could not observe a similar evolution for the SP phage. At the outlet, the amount of both phages did not return to background levels after six days. This can be due to a combined action of the occurrence of preferential flowpaths and the behaviour of colloids. During the monitored rain event we observed a dilution effect on both phages and a slight increase of the quantity of SP phage right after the peak of discharge. This finding suggests a release of viral particles from the river bank. Overall, we have demonstrated with this proof-of-concept study the value of phages as eco-hydrological tracer.
STUDIES ON THE PURIFICATION OF BACTERIOPHAGE
Kalmanson, G.; Bronfenbrenner, J.
1939-01-01
A simple method of concentrating and purifying bacteriophage has been described. The procedure consisted essentially in collecting the active agent on a reinforced collodion membrane of a porosity that would just retain all the active agent and permit extraneous material to pass through. Advantage was taken of the fact that B. coli will proliferate and regenerate bacteriophage in a completely diffusible synthetic medium with ammonia as the only source of nitrogen, which permitted the purification of the bacteriophage by copious washing. The material thus obtained was concentrated by suction and after thorough washing possessed all the activity of the original filtrate. It was labile, losing its activity in a few days on standing, and was quickly and completely inactivated upon drying. This material contained approximately 15 per cent of nitrogen and with 2 or 3 mg. samples of inactive dry residue it was possible to obtain positive protein color tests. The concentrated and purified bacteriophage has about 10–14 mg. of nitrogen, or 6 x 10–17 gm. of protein per unit of lytic activity. Assuming that each unit of activity represents a molecule, the calculated maximum average molecular weight would be approximately 36,000,000, and on the assumption of a spherical shape of particles and a density of 1.3, the calculated radius would be about 22 millimicra. By measurement of the diffusion rate, the average radius of particle of the fraction of the purified bacteriophage which diffuses most readily through a porous plate was found to be of the order of magnitude of 9 millimicra, or of a calculated molecular weight of 2,250,000. Furthermore, when this purified bacteriophage was fractionated by forcing it through a thin collodion membrane, which permits the passage of only the smaller particles, it was possible to demonstrate in the ultrafiltrate active particles of about 2 millimicra in radius, and of a calculated molecular weight of 25,000. It was of interest to apply this method of purification to a staphylococcus bacteriophage. Since this organism does not readily grow in synthetic medium, a diffusate of yeast extract medium was employed. The better of two preparations contained about 10–12 mg. of nitrogen per unit of lytic activity. Although this is about one hundred times the amount of nitrogen found in an active unit of B. coli bacteriophage, nevertheless, the diffusion rate experiments gave results which paralleled those obtained with the coliphage. The diffusible particles of the crude staphylococcus bacteriophage had a radius of about 7 millimicra, and a calculated molecular weight of about 1,000,000, while the particles of the same phage which appeared in the ultrafiltrate through a thin collodion membrane had a radius of about 2.4 millimicra and a calculated molecular weight of about 45,000. It appears, therefore, that the active principle is distributed as particles of widely different sizes. However, since the smaller particles have all the properties of bacteriophage, the larger particles probably do not represent free molecules, but either are aggregates, or more likely, inactive colloids to which the active agent is adsorbed. The protein isolated, which bears the phage activity, is capable of stimulating the production of antilytic antibodies on parenteral injection into rabbits or guinea pigs. It retains its specific antigenicity when inactivated by formalin, but not when inactivated by drying. PMID:19873149