Sample records for colistin

  1. Colistin Methanesulfonate Is an Inactive Prodrug of Colistin against Pseudomonas aeruginosa

    PubMed Central

    Bergen, Phillip J.; Li, Jian; Rayner, Craig R.; Nation, Roger L.

    2006-01-01

    There is a dearth of information on the pharmacodynamics of “colistin,” despite its increasing use as a last line of defense for treatment of infections caused by multidrug-resistant gram-negative organisms. The antimicrobial activities of colistin and colistin methanesulfonate (CMS) were investigated by studying the time-kill kinetics of each against a type culture of Pseudomonas aeruginosa in cation-adjusted Mueller-Hinton broth. The appearance of colistin from CMS spiked at 8.0 and 32 mg/liter was measured by high-performance liquid chromatography, which generated colistin concentration-time profiles. These concentration-time profiles were subsequently mimicked in other incubations, independent of CMS, by incrementally spiking colistin. When the cultures were spiked with CMS at either concentration, there was a substantial delay in the onset of the killing effect which was not evident until the concentrations of colistin generated from the hydrolysis of CMS had reached approximately 0.5 to 1 mg/liter (i.e., ∼0.5 to 1 times the MIC for colistin). The time course of the killing effect was similar when colistin was added incrementally to achieve the same colistin concentration-time course observed from the hydrolysis of CMS. Given that the killing kinetics of CMS can be accounted for by the appearance of colistin, CMS is an inactive prodrug of colistin with activity against P. aeruginosa. This is the first study to demonstrate the formation of colistin in microbiological media containing CMS and to demonstrate that CMS is an inactive prodrug of colistin. These findings have important implications for susceptibility testing involving “colistin,” in particular, for MIC measurement and for microbiological assays and pharmacokinetic and pharmacodynamic studies. PMID:16723551

  2. Interaction of colistin and colistin methanesulfonate with liposomes: colloidal aspects and implications for formulation.

    PubMed

    Wallace, Stephanie J; Li, Jian; Nation, Roger L; Prankerd, Richard J; Boyd, Ben J

    2012-09-01

    Interaction of colistin and colistin methanesulfonate (CMS) with liposomes has been studied with the view to understanding the limitations to the use of liposomes as a more effective delivery system for pulmonary inhalation of this important class of antibiotic. Thus, in this study, liposomes containing colistin or CMS were prepared and characterized with respect to colloidal behavior and drug encapsulation and release. Association of anionic CMS with liposomes induced negative charge on the particles. However, degradation of the CMS to form cationic colistin over time was directly correlated with charge reversal and particle aggregation. The rate of degradation of CMS was significantly more rapid when associated with the liposome bilayer than when compared with the same concentration in aqueous solution. Colistin liposomes carried positive charge and were stable. Encapsulation efficiency for colistin was approximately 50%, decreasing with increasing concentration of colistin. Colistin was rapidly released from liposomes on dilution. Although the studies indicate limited utility of colistin or CMS liposomes for long duration controlled-release applications, colistin liposomes were highly stable and may present a potential opportunity for coformulation of colistin with a second antibiotic to colocalize the two drugs after pulmonary delivery. Copyright © 2012 Wiley Periodicals, Inc.

  3. Interaction of Colistin and Colistin Methanesulfonate with Liposomes: Colloidal Aspects and Implications for Formulation

    PubMed Central

    WALLACE, STEPHANIE J.; LI, JIAN; NATION, ROGER L.; PRANKERD, RICHARD J.; BOYD, BEN J.

    2012-01-01

    Interaction of colistin and colistin methanesulfonate (CMS) with liposomes has been studied with the view to understanding the limitations to the use of liposomes as a more effective delivery system for pulmonary inhalation of this important class of antibiotic. Thus, in this study, liposomes containing colistin or CMS were prepared and characterized with respect to colloidal behavior and drug encapsulation and release. Association of anionic CMS with liposomes induced negative charge on the particles. However, degradation of the CMS to form cationic colistin over time was directly correlated with charge reversal and particle aggregation. The rate of degradation of CMS was significantly more rapid when associated with the liposome bilayer than when compared with the same concentration in aqueous solution. Colistin liposomes carried positive charge and were stable. Encapsulation efficiency for colistin was approximately 50%, decreasing with increasing concentration of colistin. Colistin was rapidly released from liposomes on dilution. Although the studies indicate limited utility of colistin or CMS liposomes for long duration controlled-release applications, colistin liposomes were highly stable and may present a potential opportunity for coformulation of colistin with a second antibiotic to colocalize the two drugs after pulmonary delivery. PMID:22623044

  4. Dose-ranging pharmacokinetics of colistin methanesulphonate (CMS) and colistin in rats following single intravenous CMS doses.

    PubMed

    Marchand, Sandrine; Lamarche, Isabelle; Gobin, Patrice; Couet, William

    2010-08-01

    The aim of this study was to evaluate the effect of colistin methanesulphonate (CMS) dose on CMS and colistin pharmacokinetics in rats. Three rats per group received an intravenous bolus of CMS at a dose of 5, 15, 30, 60 or 120 mg/kg. Arterial blood samples were drawn at 0, 5, 15, 30, 60, 90, 120, 150 and 180 min. CMS and colistin plasma concentrations were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pharmacokinetic parameters of CMS and colistin were calculated by non-compartmental analysis. Linear relationships were observed between CMS and colistin AUCs to infinity and CMS doses, as well as between CMS and colistin C(max) and CMS doses. CMS and colistin pharmacokinetics were linear for a range of colistin concentrations covering the range of values encountered and recommended in patients even during treatment with higher doses.

  5. Self-assembly behaviour of colistin and its prodrug colistin methanesulfonate: implications for solution stability and solubilization

    PubMed Central

    Wallace, Stephanie J.; Li, Jian; Nation, Roger L.; Prankerd, Richard J.; Velkov, Tony; Boyd, Ben J.

    2010-01-01

    Colistin is an amphiphilic antibiotic that has re-emerged into clinical use due to the increasing prevalence of difficult-to-treat Gram-negative infections. The existence of self-assembling colloids in solutions of colistin and its derivative prodrug, colistin methanesulfonate (CMS) was investigated. Colistin and CMS reduced the air-water interfacial tension, and dynamic light scattering (DLS) studies showed the existence of 2.07 ± 0.3 nm aggregates above 1.5 mM for colistin, and of 1.98 ± 0.36 nm aggregates for CMS above 3.5 mM (mean ± SD). Above the respective critical micelle concentrations (CMC) the solubility of azithromycin, a hydrophobic antibiotic, increased approximately linearly with increasing surfactant concentration (5:1 mol ratio colistin:azithromycin), suggestive of hydrophobic domains within the micellar cores. Rapid conversion of CMS to colistin occurred below the CMC (60 % over 48 hr), while conversion above the CMC was less than 1 %. The formation of colistin and CMS micelles demonstrated in this study is the proposed mechanism for solubilization of azithromycin and the concentration-dependent stability of CMS. PMID:20302384

  6. A Whole-Body Physiologically Based Pharmacokinetic Model for Colistin and Colistin methanesulfonate (CMS) in Rat.

    PubMed

    Bouchene, Salim; Marchand, Sandrine; Couet, William; Friberg, Lena E; Gobin, Patrice; Lamarche, Isabelle; Grégoire, Nicolas; Björkman, Sven; Karlsson, Mats O

    2018-04-17

    Colistin is a polymyxin antibiotic used to treat patients infected with multidrug-resistant Gram negative bacteria (MDR-GNB). The objective of this work was to develop a whole-body physiologically based pharmacokinetic (WB-PBPK) model to predict tissue distribution of colistin in rat. The distribution of a drug in a tissue is commonly characterized by its tissue-to-plasma partition coefficient, K p . Colistin and its prodrug, colistin methanesulfonate (CMS) K p priors were measured experimentally from rat tissue homogenates or predicted in silico. The PK parameters of both compounds were estimated fitting in vivo their plasma concentration-time profiles from six rats receiving an i.v. bolus of CMS. The variability in the data was quantified by applying a non-linear mixed effect (NLME) modelling approach. A WB-PBPK model was developed assuming a well-stirred and perfusion-limited distribution in tissue compartments. Prior information on tissue distribution of colistin and CMS was investigated following three scenarios: K p were estimated using in silico K p priors (I) or K p were estimated using experimental K p priors (II) or K p were fixed to the experimental values (III). The WB-PBPK model best described colistun and CMS plasma concentration-time profiles in scenario II. Colistin predicted concentrations in kidneys in scenario II were higher than in other tissues, which was consistent with its large experimental K p prior. This might be explained by a high affinity of colistin for renal parenchyma and active reabsorption into the proximal tubular cells. In contrast, renal accumulation of colistin was not predicted in scenario I. Colistin and CMS clearance estimates were in agreement with published values. The developed model suggests using experimental priors over in silico K p priors for kidneys to provide a better prediction of colistin renal distribution. Such models might serve in drug development for interspecies scaling and investigating the impact of

  7. Pharmacokinetics of Colistin Methansulphonate (CMS) and Colistin after CMS Nebulisation in Baboon Monkeys.

    PubMed

    Marchand, Sandrine; Bouchene, Salim; de Monte, Michèle; Guilleminault, Laurent; Montharu, Jérôme; Cabrera, Maria; Grégoire, Nicolas; Gobin, Patrice; Diot, Patrice; Couet, William; Vecellio, Laurent

    2015-10-01

    The objective of this study was to compare two different nebulizers: Eflow rapid® and Pari LC star® by scintigraphy and PK modeling to simulate epithelial lining fluid concentrations from measured plasma concentrations, after nebulization of CMS in baboons. Three baboons received CMS by IV infusion and by 2 types of aerosols generators and colistin by subcutaneous infusion. Gamma imaging was performed after nebulisation to determine colistin distribution in lungs. Blood samples were collected during 9 h and colistin and CMS plasma concentrations were measured by LC-MS/MS. A population pharmacokinetic analysis was conducted and simulations were performed to predict lung concentrations after nebulization. Higher aerosol distribution into lungs was observed by scintigraphy, when CMS was nebulized with Pari LC® star than with Eflow Rapid® nebulizer. This observation was confirmed by the fraction of CMS deposited into the lung (respectively 3.5% versus 1.3%).CMS and colistin simulated concentrations in epithelial lining fluid were higher after using the Pari LC star® than the Eflow rapid® system. A limited fraction of CMS reaches lungs after nebulization, but higher colistin plasma concentrations were measured and higher intrapulmonary colistin concentrations were simulated with the Pari LC Star® than with the Eflow Rapid® system.

  8. Population Pharmacokinetics of Colistin Methanesulfonate in Rats: Achieving Sustained Lung Concentrations of Colistin for Targeting Respiratory Infections

    PubMed Central

    W. S. Yapa, Shalini; Li, Jian; Porter, Christopher J. H.; Nation, Roger L.

    2013-01-01

    Colistin methanesulfonate (CMS), the inactive prodrug of colistin, is administered by inhalation for the management of respiratory infections. However, limited pharmacokinetic data are available for CMS and colistin following pulmonary delivery. This study investigates the pharmacokinetics of CMS and colistin following intravenous (i.v.) and intratracheal (i.t.) administration in rats and determines the targeting advantage after direct delivery into the lungs. In addition to plasma, bronchoalveolar lavage (BAL) fluid was collected to quantify drug concentrations in lung epithelial lining fluid (ELF). The resulting data were analyzed using a population modeling approach in S-ADAPT. A three-compartment model described the disposition of both compounds in plasma following i.v. administration. The estimated mean clearance from the central compartment was 0.122 liters/h for CMS and 0.0657 liters/h for colistin. Conversion of CMS to colistin from all three compartments was required to fit the plasma data. The fraction of the i.v. dose converted to colistin in the systemic circulation was 0.0255. Two BAL fluid compartments were required to reflect drug kinetics in the ELF after i.t. dosing. A slow conversion of CMS (mean conversion time [MCTCMS] = 3.48 h) in the lungs contributed to high and sustained concentrations of colistin in ELF. The fraction of the CMS dose converted to colistin in ELF (fm,ELF = 0.226) was higher than the corresponding fractional conversion in plasma after i.v. administration. In conclusion, pulmonary administration of CMS achieves high and sustained exposures of colistin in lungs for targeting respiratory infections. PMID:23917323

  9. Stability of Colistin and Colistin Methanesulfonate in Aqueous Media and Plasma as Determined by High-Performance Liquid Chromatography

    PubMed Central

    Li, Jian; Milne, Robert W.; Nation, Roger L.; Turnidge, John D.; Coulthard, Kingsley

    2003-01-01

    The stabilities of colistin and colistin methanesulfonate (CMS) in different aqueous media were studied by specific high-performance liquid chromatography (HPLC) methods. Colistin was stable in water at 4 and 37°C for up to 60 days and 120 h, respectively. However, degradation was observed when colistin was stored in isotonic phosphate buffer (0.067 M, pH 7.4) and human plasma at 37°C. The stability of CMS from three different sources in water was explored by strong-anion-exchange (SAX) HPLC for CMS and by measuring the concentrations of colistin formed from the hydrolysis of CMS. The peaks of CMS in SAX HPLC disappeared almost completely after 12 h at 37°C, but appeared to remain intact for up to 2 days at 4°C. Over the same period, there was no formation of colistin at 4°C. In water, phosphate buffer, and plasma, there was rapid formation of colistin within 24 to 48 h at 37°C from the three sources of CMS. The hydrolysis products were assumed to be a complex mixture of many different sulfomethyl derivatives, including colistin. The stability of a fourth source of CMS in Mueller-Hinton broth examined during 30 min at 37°C revealed no formation of colistin. Along with previous microbiological studies, this suggested that different sulfomethyl CMSs possess intrinsic antibacterial activity. These results will be helpful for understanding the pharmacokinetics and pharmacodynamics of colistin and CMS in humans and animals. PMID:12654671

  10. Loss of LPS is involved in the virulence and resistance to colistin of colistin-resistant Acinetobacter nosocomialis mutants selected in vitro.

    PubMed

    Vila-Farrés, Xavier; Ferrer-Navarro, Mario; Callarisa, Anna Elena; Martí, Sara; Espinal, Paula; Gupta, Sushim; Rolain, Jean-Marc; Giralt, Ernest; Vila, Jordi

    2015-11-01

    Acinetobacter nosocomialis has increasingly been reported as an opportunistic pathogen causing nosocomial infections. Although it is more susceptible to all antimicrobial agents than Acinetobacter baumannii, MDR clinical isolates have also been described. In addition, several studies have shown a high percentage of resistance to colistin. Therefore, in the present study we investigated the mechanism of resistance to colistin in this microorganism. Colistin-resistant strains were selected from the original colistin-susceptible A. nosocomialis strain following multi-step mutant selection. Comparative genomic and proteomic analyses of both colistin-susceptible and colistin-resistant A. nosocomialis strains were performed. In addition, virulence was investigated using the Caenorhabditis elegans assay. The colistin-resistant mutants selected showed a lower resistance profile for other types of antibacterial agents together with a significant decrease in virulence. The LT50 (i.e. time required to kill 50% of the nematodes) for the colistin-susceptible strain (WT) was 7 days compared with 9 days for the colistin-resistant strain (256) (P < 0.0001). In the genomic studies, several mutations were observed in the lpxD genes, leading to the loss of LPS in the colistin-resistant strains. The proteomic studies showed several up- and down-regulated proteins that may be involved in colistin resistance or in a decrease in the resistance profile for several antibiotics. This study shows that the mechanism of resistance to colistin by A. nosocomialis is mainly associated with the loss of LPS due to mutations in the lpxD gene, although changes in the expression of some proteins cannot be ruled out. In addition, the acquisition of colistin resistance is related to a decrease in virulence. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The pharmacokinetics of colistin in patients with cystic fibrosis.

    PubMed

    Reed, M D; Stern, R C; O'Riordan, M A; Blumer, J L

    2001-06-01

    The safety and pharmacokinetics of colistin were determined after first dose (n = 30) and again under steady-state conditions (n = 27) in 31 patients with cystic fibrosis receiving the drug as a component of their treatment for an acute pulmonary exacerbation of their disease. Patients ranged in age from 14 to 53 years and received colistin for 6 to 35 days. Each patient was started on colistin 5 to 7 mg/kg/day administered intravenously in three equally divided doses. Elimination half-life (t1/2), mean residence time (MRT), steady-state volume of distribution (Vdss), total body clearance (Cl), and renal clearance (Clr) after first-dose administration averaged 3.4 hours, 4.4 hours, 0.09 l/kg, and 0.35 and 0.24 ml/min/kg, respectively. No differences in colistin disposition characteristics between first-dose and steady-state evaluations were observed. Sputum sampling was incomplete and confounded by previous aerosol administration but revealed colistin concentrations that markedly exceeded observed plasma concentrations. Twenty-one patients experienced one or more side effects attributed to colistin administration. The most common reactions involved reversible neurologic manifestations, including oral and perioral paresthesias (n = 16), headache (n = 5), and lower limb weakness (n = 5). All of these apparent colistin-induced neurologic adverse effects, though bothersome, were benign and reversible. Intermittent proteinuria was observed on urinalysis in 14 patients, and 1 patient developed reversible, colistin-induced nephrotoxicity. No relationship between the occurrence of any colistin-associated adverse effect and plasma colistin concentration or colistin pharmacokinetic parameter estimate was observed. These data provide no basis for routine monitoring of colistin plasma concentrations to guide dosing for patient safety and suggest slow upward dose titration to minimize the incidence and severity of associated side effects.

  12. Colistin Pharmacokinetics in Burn Patients during Continuous Venovenous Hemofiltration

    PubMed Central

    Rowan, Matthew P.; Niece, Krista L.; Stewart, Ian J.; Mende, Katrin; Cota, Jason M.; Murray, Clinton K.; Chung, Kevin K.

    2014-01-01

    While colistin is considered a last resort for the treatment of multidrug-resistant Gram-negative bacterial infections, there has been an increase in its use due to the increasing prevalence of drug-resistant infections worldwide. The pharmacology of colistin is complex, and pharmacokinetic data are limited, especially in patients requiring renal replacement therapy. As a result, dosing for patients who require renal replacement remains a challenge. Here, we present pharmacokinetic data for colistin from two burn patients (37 and 68 years old) infected with colistin-susceptible isoclonal Acinetobacter baumannii and receiving continuous venovenous hemofiltration (CVVH). To our knowledge, we are the first to examine data from before and during CVVH (for one patient), allowing analysis of the effect of CVVH on colistin pharmacokinetics. Pharmacokinetic/pharmacodynamic analysis indicated that a dose increase from 1.5 to 2.2 mg/kg of body weight colistin base activity on CVVH was insufficient to satisfy the target parameter of an AUC24/MIC (area under the concentration-time curve over 24 h in the steady state divided by the MIC) of ≥60 at an MIC of ≥1 μg/ml in one patient with residual endogenous renal function. Plasma concentrations of colistin ranged from 0 to 15 μg/ml, with free colistin levels ranging from 0.4 to 2.2 μg/ml. While both patients resolved their clinical infections and survived to discharge, colistin-resistant colonizing isolates resulted from therapy in one patient. The variabilities observed in colistin concentrations and pharmacokinetic characteristics highlight the importance of pharmacokinetic monitoring of antibiotics in patients undergoing renal replacement therapy. PMID:25313211

  13. Colistin Population Pharmacokinetics after Application of a Loading Dose of 9 MU Colistin Methanesulfonate in Critically Ill Patients

    PubMed Central

    Friberg, Lena E.; Pontikis, Konstantinos; Ioannidis, Konstantinos; Tsagkari, Vasiliki; Galani, Lamprini; Kostakou, Eirini; Baziaka, Fotini; Paskalis, Charalambos; Koutsoukou, Antonia; Giamarellou, Helen

    2015-01-01

    Colistin has been revived, in the era of extensively drug-resistant (XDR) Gram-negative infections, as the last-resort treatment in critically ill patients. Recent studies focusing on the optimal dosing strategy of colistin have demonstrated the necessity of a loading dose at treatment initiation (D. Plachouras, M. Karvanen, L. E. Friberg, E. Papadomichelakis, A. Antoniadou, I. Tsangaris, I. Karaiskos, G. Poulakou, F. Kontopidou, A. Armaganidis, O. Cars, and H. Giamarellou, Antimicrob Agents Chemother 53:3430–3436, 2009, http://dx.doi.org/10.1128/AAC.01361-08; A. F. Mohamed, I. Karaiskos, D. Plachouras, M. Karvanen, K. Pontikis, B. Jansson, E. Papadomichelakis, A. Antoniadou, H. Giamarellou, A. Armaganidis, O. Cars, and L. E. Friberg, Antimicrob Agents Chemother 56:4241– 4249, 2012, http://dx.doi.org/10.1128/AAC.06426-11; S. M. Garonzik, J. Li, V. Thamlikitkul, D. L. Paterson, S. Shoham, J. Jacob, F. P. Silveira, A. Forrest, and R. L. Nation, Antimicrob Agents Chemother 55:3284–3294, 2011, http://dx.doi.org/10.1128/AAC.01733-10). In 19 critically ill patients with suspected or microbiologically documented infections caused by XDR Gram-negative strains, a loading dose of 9 MU colistin methanesulfonate (CMS) (∼270 mg colistin base activity) was administered with a maintenance dose of 4.5 MU every 12 h, commenced after 24 h. Patients on renal replacement were excluded. CMS infusion was given over 30 min or 1 h. Repeated blood sampling was performed after the loading dose and after the 5th or 6th dose. Colistin concentrations and measured CMS, determined after hydrolization to colistin and including the partially sulfomethylated derivatives, were determined with a liquid chromatography-tandem mass spectrometry assay. Population pharmacokinetic analysis was conducted in NONMEM with the new data combined with data from previous studies. Measured colistimethate concentrations were described by 4 compartments for distribution and removal of sulfomethyl groups

  14. Colistin Population Pharmacokinetics after Application of a Loading Dose of 9 MU Colistin Methanesulfonate in Critically Ill Patients.

    PubMed

    Karaiskos, Ilias; Friberg, Lena E; Pontikis, Konstantinos; Ioannidis, Konstantinos; Tsagkari, Vasiliki; Galani, Lamprini; Kostakou, Eirini; Baziaka, Fotini; Paskalis, Charalambos; Koutsoukou, Antonia; Giamarellou, Helen

    2015-12-01

    Colistin has been revived, in the era of extensively drug-resistant (XDR) Gram-negative infections, as the last-resort treatment in critically ill patients. Recent studies focusing on the optimal dosing strategy of colistin have demonstrated the necessity of a loading dose at treatment initiation (D. Plachouras, M. Karvanen, L. E. Friberg, E. Papadomichelakis, A. Antoniadou, I. Tsangaris, I. Karaiskos, G. Poulakou, F. Kontopidou, A. Armaganidis, O. Cars, and H. Giamarellou, Antimicrob Agents Chemother 53:3430-3436, 2009, http://dx.doi.org/10.1128/AAC.01361-08; A. F. Mohamed, I. Karaiskos, D. Plachouras, M. Karvanen, K. Pontikis, B. Jansson, E. Papadomichelakis, A. Antoniadou, H. Giamarellou, A. Armaganidis, O. Cars, and L. E. Friberg, Antimicrob Agents Chemother 56:4241- 4249, 2012, http://dx.doi.org/10.1128/AAC.06426-11; S. M. Garonzik, J. Li, V. Thamlikitkul, D. L. Paterson, S. Shoham, J. Jacob, F. P. Silveira, A. Forrest, and R. L. Nation, Antimicrob Agents Chemother 55:3284-3294, 2011, http://dx.doi.org/10.1128/AAC.01733-10). In 19 critically ill patients with suspected or microbiologically documented infections caused by XDR Gram-negative strains, a loading dose of 9 MU colistin methanesulfonate (CMS) (∼ 270 mg colistin base activity) was administered with a maintenance dose of 4.5 MU every 12 h, commenced after 24 h. Patients on renal replacement were excluded. CMS infusion was given over 30 min or 1 h. Repeated blood sampling was performed after the loading dose and after the 5th or 6th dose. Colistin concentrations and measured CMS, determined after hydrolization to colistin and including the partially sulfomethylated derivatives, were determined with a liquid chromatography-tandem mass spectrometry assay. Population pharmacokinetic analysis was conducted in NONMEM with the new data combined with data from previous studies. Measured colistimethate concentrations were described by 4 compartments for distribution and removal of sulfomethyl groups, while

  15. In vitro activity of colistin mono- and combination therapy against colistin-resistant Acinetobacter baumannii, mechanism of resistance, and clinical outcomes of patients infected with colistin-resistant A. baumannii at a Thai university hospital.

    PubMed

    Lertsrisatit, Yongyut; Santimaleeworagun, Wichai; Thunyaharn, Sudaluck; Traipattanakul, Jantima

    2017-01-01

    Colistin is a drug of last resort for treating multidrug-resistant Acinetobacter baumannii infections. Unfortunately, colistin-resistant A. baumannii (CoR-AB) has been reported. Here, we examined the in vitro effect of mono- and combined antimicrobials against CoR-AB strains and their resistance mechanism, and evaluated the clinical outcomes of CoR-AB-infected patients. Seventeen clinical CoR-AB strains were isolated from patients at Phramongkutklao hospital, 2011-2015. The mono- and synergistic activities of colistin, tigecycline, sulbactam, imipenem, meropenem, amikacin, fosfomycin, and cotrimoxazole were examined by minimum inhibitory concentration (MIC) and fractional inhibitory concentration index. Clonal relationship and resistance genes were determined by repetitive extragenic palindromic polymerase chain reaction with specific primers. The effect of carbonyl cyanide 3-chlorophenylhydrazone combined with colistin was used to test efflux pump involvement. Patient treatment outcomes were also reported. The most prevalent infection in CoR-AB patients was pneumonia (35.3%), and all patients were administered colistin combined with another agent. The 30-day mortality was 70.6%, and the colistin MIC range and MIC50 was 16-512 μg/mL and 64 μg/mL, respectively. All CoR-AB strains were sensitive to tigecycline. Sporadic isolates were susceptible to sulbactam, imipenem, meropenem, and cotrimoxazole. A synergistic or additive effect was observed for colistin plus imipenem or meropenem (16.7%), sulbactam (66.7%), or tigecycline (66.7%). The CoR-AB isolates could be divided into four different clones (A-D) with a high prevalence of group B (47.1%). Eight isolates harbored blaOXA23, blaIMP , blaKPC , and blaNDM , and one contained blaOXA23 , blaIMP , and blaKPC , while the eight remaining isolates carried only blaOXA23 . The MIC values of all strains were greatly reduced for colistin plus carbonyl cyanide 3-chlorophenylhydrazone. CoR-AB clinical isolates exhibited very

  16. Mucin Binding Reduces Colistin Antimicrobial Activity.

    PubMed

    Huang, Johnny X; Blaskovich, Mark A T; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G; Butler, Mark S; Montgomery, A Bruce; Cooper, Matthew A

    2015-10-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Deciphering MCR-2 Colistin Resistance

    PubMed Central

    Sun, Jian; Xu, Yongchang; Gao, Rongsui; Lin, Jingxia; Wei, Wenhui; Srinivas, Swaminath; Li, Defeng; Yang, Run-Shi; Li, Xing-Ping; Liao, Xiao-Ping

    2017-01-01

    ABSTRACT Antibiotic resistance is a prevalent problem in public health worldwide. In general, the carbapenem β-lactam antibiotics are considered a final resort against lethal infections by multidrug-resistant bacteria. Colistin is a cationic polypeptide antibiotic and acts as the last line of defense for treatment of carbapenem-resistant bacteria. Very recently, a new plasmid-borne colistin resistance gene, mcr-2, was revealed soon after the discovery of the paradigm gene mcr-1, which has disseminated globally. However, the molecular mechanisms for MCR-2 colistin resistance are poorly understood. Here we show a unique transposon unit that facilitates the acquisition and transfer of mcr-2. Evolutionary analyses suggested that both MCR-2 and MCR-1 might be traced to their cousin phosphoethanolamine (PEA) lipid A transferase from a known polymyxin producer, Paenibacillus. Transcriptional analyses showed that the level of mcr-2 transcripts is relatively higher than that of mcr-1. Genetic deletions revealed that the transmembrane regions (TM1 and TM2) of both MCR-1 and MCR-2 are critical for their location and function in bacterial periplasm, and domain swapping indicated that the TM2 is more efficient than TM1. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) confirmed that all four MCR proteins (MCR-1, MCR-2, and two chimeric versions [TM1-MCR-2 and TM2-MCR-1]) can catalyze chemical modification of lipid A moiety anchored on lipopolysaccharide (LPS) with the addition of phosphoethanolamine to the phosphate group at the 4′ position of the sugar. Structure-guided site-directed mutagenesis defined an essential 6-residue-requiring zinc-binding/catalytic motif for MCR-2 colistin resistance. The results further our mechanistic understanding of transferable colistin resistance, providing clues to improve clinical therapeutics targeting severe infections by MCR-2-containing pathogens. PMID:28487432

  18. Emergence of colistin resistance in Enterobacter aerogenes from Croatia.

    PubMed

    Bedenić, Branka; Vranić-Ladavac, Mirna; Venditti, Carolina; Tambić-Andrašević, Arjana; Barišić, Nada; Gužvinec, Marija; Karčić, Natalie; Petrosillo, Nicola; Ladavac, Ranko; di Caro, Antonino

    2018-04-01

    A colistin-resistant Enterobacter aerogenes [study code 12264] was isolated from the tracheal aspirate of a 71-year-old male patient in the General Hospital [GH] in Pula, Croatia. The patient was previously treated in University Hospital Centre in Rijeka with colistin in order to eradicate Acinetobacter baumannii isolate, susceptible only to colistin and tigecycline. Genes encoding ESBLs [bla TEM , bla SHV , bla CTX-M , bla PER-1 ] were screened by PCR. The strain was shown to possess bla CTX-M-15 and bla TEM-1 genes. To asses genes possibly involved in resistance to colistin the chromosomal enconding mgrB gene and the plasmid-mediated mcr-1 and mcr-2 genes were screened as described previously. Mcr-1 and mcr-2 genes were not detected and mgrB gene presented a wild-type sequence. PCR-based Replicon typing method [PBRT] conducted on an E. aerogenes isolate, showed that the strain carried an IncN plasmid. Adaptive mechanisms such as changes of the bacterial cell outer membrane that cause porin decrease or presence of an efflux pump, due to selection pressure exerted by the therapeutic administration of colistin, could be responsible for the development of colistin resistance in our strain, as recently reported in E. aerogenes from France. Due to effective infection control measures, the colistin-resistant strain did not spread to other patients or hospital wards. This is the first report of an ESBL-producing, colistin-resistant E. aerogenes in clinically relevant samples such as endotracheal aspirate and blood culture, showing the presence of this rare resistance profile among Gram-negative bacteria.

  19. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria.

    PubMed

    Plachouras, D; Karvanen, M; Friberg, L E; Papadomichelakis, E; Antoniadou, A; Tsangaris, I; Karaiskos, I; Poulakou, G; Kontopidou, F; Armaganidis, A; Cars, O; Giamarellou, H

    2009-08-01

    Colistin is used to treat infections caused by multidrug-resistant gram-negative bacteria (MDR-GNB). It is administered intravenously in the form of colistin methanesulfonate (CMS), which is hydrolyzed in vivo to the active drug. However, pharmacokinetic data are limited. The aim of the present study was to characterize the pharmacokinetics of CMS and colistin in a population of critically ill patients. Patients receiving colistin for the treatment of infections caused by MDR-GNB were enrolled in the study; however, patients receiving a renal replacement therapy were excluded. CMS was administered at a dose of 3 million units (240 mg) every 8 h. Venous blood was collected immediately before and at multiple occasions after the first and the fourth infusions. Plasma CMS and colistin concentrations were determined by a novel liquid chromatography-tandem mass spectrometry method after a rapid precipitation step that avoids the significant degradation of CMS and colistin. Population pharmacokinetic analysis was performed with the NONMEM program. Eighteen patients (6 females; mean age, 63.6 years; mean creatinine clearance, 82.3 ml/min) were included in the study. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.046 h and 2.3 h, respectively. The clearance of CMS was 13.7 liters/h. For colistin, a one-compartment model was sufficient to describe the data, and the estimated half-life was 14.4 h. The predicted maximum concentrations of drug in plasma were 0.60 mg/liter and 2.3 mg/liter for the first dose and at steady state, respectively. Colistin displayed a half-life that was significantly long in relation to the dosing interval. The implications of these findings are that the plasma colistin concentrations are insufficient before steady state and raise the question of whether the administration of a loading dose would benefit critically ill patients.

  20. Colistin Use in Patients With Reduced Kidney Function.

    PubMed

    Fiaccadori, Enrico; Antonucci, Elio; Morabito, Santo; d'Avolio, Antonio; Maggiore, Umberto; Regolisti, Giuseppe

    2016-08-01

    Colistin (polymyxin E) is a mainly concentration-dependent bactericidal antimicrobial active against multidrug-resistant Gram-negative bacteria. After being abandoned over the past 30 years due to its neuro- and nephrotoxicity, colistin has been reintroduced recently as a last-resort drug for the treatment of multidrug-resistant Gram-negative bacteria infections in combination with other antimicrobials. Unfortunately, although renal toxicity is a well-known dose-related adverse effect of colistin, relatively few studies are currently available on its peculiar pharmacodynamic/pharmacokinetic properties in clinical settings at high risk for drug accumulation, such as acute or chronic kidney disease. In these specific contexts, the risk for underdosing is also substantial because colistin can be easily removed by dialysis/hemofiltration, especially when the most efficient modalities of renal replacement therapy (RRT) are used in critically ill patients. For this reason, recent recommendations in patients undergoing RRT have shifted toward higher dosing regimens, and therapeutic drug monitoring is advised. This review aims to summarize the main issues related to chemical structure, pharmacodynamics/pharmacokinetics, and renal toxicity of colistin. Moreover, recent data and current recommendations concerning colistin dosing in patients with reduced kidney function, with special regard to those receiving RRT such as dialysis or hemofiltration, are also discussed. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. A simple phenotypic method for screening of MCR-1-mediated colistin resistance.

    PubMed

    Coppi, M; Cannatelli, A; Antonelli, A; Baccani, I; Di Pilato, V; Sennati, S; Giani, T; Rossolini, G M

    2018-02-01

    To evaluate a novel method, the colistin-MAC test, for phenotypic screening of acquired colistin resistance mediated by transferable mcr-1 resistance determinants, based on colistin MIC reduction in the presence of dipicolinic acid (DPA). The colistin-MAC test consists in a broth microdilution method, in which colistin MIC is tested in the absence or presence of DPA (900 μg/mL). Overall, 74 colistin-resistant strains of Enterobacteriaceae (65 Escherichia coli and nine other species), including 61 strains carrying mcr-1-like genes and 13 strains negative for mcr genes, were evaluated with the colistin-MAC test. The presence of mcr-1-like and mcr-2-like genes was assessed by real-time PCR and end-point PCR. For 20 strains, whole-genome sequencing data were also available. A ≥8-fold reduction of colistin MIC in the presence of DPA was observed with 59 mcr-1-positive strains, including 53 E. coli of clinical origin, three E. coli transconjugants carrying MCR-1-encoding plasmids, one Enterobacter cloacae complex and two Citrobacter spp. Colistin MICs were unchanged, increased or at most reduced by twofold with the 13 mcr-negative colistin-resistant strains (nine E. coli and four Klebsiella pneumoniae), but also with two mcr-1-like-positive K. pneumoniae strains. The colistin-MAC test could be a simple phenotypic test for presumptive identification of mcr-1-positive strains among isolates of colistin-resistant E. coli, based on a ≥8-fold reduction of colistin MIC in the presence of DPA. Evaluation of the test with a larger number of strains, species and mcr-type resistance determinants would be of interest. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Colistin use in critically ill neonates: A case-control study.

    PubMed

    İpek, Mehmet Sah; Aktar, Fesih; Okur, Nilufer; Celik, Muhittin; Ozbek, Erdal

    2017-12-01

    The aim of this study was to assess the safety and efficacy of colistin use in critically ill neonates. This was a case-control study that included newborn infants with proven or suspected nosocomial infections between January 2012 and October 2015, at two centers in Diyarbakir, Turkey. The clinical and laboratory characteristics and outcomes of patients who received colistin therapy were reviewed and compared to patients who were treated with antimicrobial agents other than colistin during the same period. Forty-seven cases who received intravenous colistin (colistin group) and 59 control patients (control group) were included. There were no significant differences between the groups regarding outcomes and nephrotoxicity, including acute renal failure. Colistin therapy was associated with significantly reduced serum magnesium (1.38 ± 0.39 mg/dL vs. 1.96 ± 0.39 mg/dL, p < 0.001) and hypokalemia (46.8% vs. 25.4%, p = 0.026). The patients who received colistin also had longer hospital stays (43 (32-70) days vs. 39 (28-55) days, p = 0.047), a higher rate of previous carbapenem exposure (40.4% vs. 11.9%, p = 0.001), and a higher age at the onset of infection (13 (10-21) days vs. 11 (9-15) days, p = 0.03). This study showed that colistin was both effective and safe for treating neonatal infections caused by multidrug-resistant gram-negative bacteria. However, intravenous colistin use was significantly associated with hypomagnesemia and hypokalemia. Copyright © 2017. Published by Elsevier B.V.

  3. The international standard for colistin*

    PubMed Central

    Lightbown, J. W.; Bond, J. M.; Grab, B.

    1973-01-01

    An International Standard for Colistin has been established and the International Unit defined as the activity contained in 0.00004878 mg of this preparation. The unit was defined on the basis of a collaborative assay in which nine laboratories from six different countries participated. The material used to prepare the international standard had been manufactured in Japan; it was shown to have a composition similar to that of material produced in Europe and to be suitable for the assay of colistin from the existing sources of manufacture. PMID:4541149

  4. Resurgence of Colistin: A Review of Resistance, Toxicity, Pharmacodynamics, and Dosing

    PubMed Central

    Lim, Lauren M.; Ly, Neang; Anderson, Dana; Yang, Jenny C.; Macander, Laurie; Jarkowski, Anthony; Forrest, Alan; Bulitta, Jurgen B.; Tsuji, Brian T.

    2011-01-01

    Colistin is a polymyxin antibiotic that was discovered in the late 1940s for the treatment of gram-negative infections. After several years of clinical use, its popularity diminished because of reports of significant nephrotoxicity and neurotoxicity. Recently, the antibiotic has resurfaced as a last-line treatment option for multidrug-resistant organisms such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. The need for antibiotics with coverage of these gram-negative pathogens is critical because of their high morbidity and mortality, making colistin a very important treatment option. Unfortunately, however, resistance to colistin has been documented among all three of these organisms in case reports. Although the exact mechanism causing colistin resistance has not been defined, it is hypothesized that the PmrA-PmrB and PhoP-PhoQ genetic regulatory systems may play a role. Colistin dosages must be optimized, as colistin is a last-line treatment option; in addition, suboptimal doses have been linked to the development of resistance. The lack of pharmacokinetic and pharmacodynamic studies and no universal harmonization of dose units, however, have made it difficult to derive optimal dosing regimens and specific dosing guidelines for colistin. In critically ill patients who may have multiorgan failure, renal insufficiency may alter colistin pharmacokinetics. Therefore, dosage alterations in this patient population are imperative to achieve maximal efficacy and minimal toxicity. With regard to colistin toxicity, most studies show that nephrotoxicity is reversible and less frequent than once thought, and neurotoxicity is rare. Further research is needed to fully understand the impact that the two regulatory systems have on resistance, as well as the dosages of colistin needed to inhibit and overcome these developing patterns. PMID:21114395

  5. Effects of colistin on biofilm matrices of Escherichia coli and Staphylococcus aureus.

    PubMed

    Klinger-Strobel, Mareike; Stein, Claudia; Forstner, Christina; Makarewicz, Oliwia; Pletz, Mathias W

    2017-04-01

    Biofilms are the preferred environment of micro-organisms on various surfaces such as catheters and heart valves, are associated with numerous difficult-to-treat and recurrent infections, and confer an extreme increase in antibiotic tolerance to most compounds. The aim of this study was to evaluate how colistin affects both the extracellular biofilm matrix and the embedded bacteria in biofilms of methicillin-resistant Staphylococcus aureus (MRSA), a species with intrinsic resistance to colistin, and colistin-susceptible Escherichia coli. Biofilms of MRSA and E. coli were treated with different concentrations of colistin. The minimum biofilm eradication concentration (MBEC) and the effectiveness of colistin at reducing the planktonic fraction were defined as the remaining viable bacteria measured as CFU/mL. In addition, biofilm-embedded cells were LIVE/DEAD-stained and were analysed by confocal laser scanning microscopy (CLSM). Quantification of the biofilm CLSM images was conducted using an open-access in-house algorithm (qBA). In contrast to MRSA, E. coli biofilms and planktonic cells were significantly reduced by colistin in a concentration-dependent manner. Nevertheless, colistin has been shown to exert a matrix-reducing effect following treatment both in laboratory strains and clinical isolates of MRSA and E. coli. Because exposure to colistin rapidly triggered the emergence of highly resistant clones, monotherapy with colistin should be applied with caution. These results suggest that colistin destabilises the biofilm matrix structure even in species with intrinsic colistin resistance, such as S. aureus, leading to the release of planktonic cells that are more susceptible to antibiotics. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Induced tolerance to nebulized colistin after severe reaction to the drug.

    PubMed

    Domínguez-Ortega, J; Manteiga, E; Abad-Schilling, C; Juretzcke, M A; Sánchez-Rubio, J; Kindelan, C

    2007-01-01

    Daily nebulized colistin therapy has been used as maintenance therapy for patients with chronic Pseudomonas aeruginosa infection and in treatment protocols aimed at eradicating early P aeruginosa infection. Colistin-induced nephrotoxicity and mild neurotoxic effects have been described but hypersensitivity reactions are rare. However, bronchial constriction has been reported associated with the inhalation of the antibiotic. We report the case of a 63-year-old man who had been diagnosed with bronchiectasis and bronchopleural fistula and who developed severe bronchospasm when using nebulized colistin. A skin prick test (80 mg/mL) with colistin was performed and was negative. An intradermal test was not performed due to its possible irritant effect. As our patient suffered from a tobramycin-resistant P aeruginosa infection, we started a procedure to induce tolerance to 80 mg colistin (8 mg, 16 mg, 24 mg, 32 mg, 40 mg, 80 mg) nebulized in 30-minutes-intervals. No changes in forced expiratory volume in 1 second values were observed and the patient continues on treatment twice daily after the tolerance induction with no new episodes of bronchospasm. We report the first successful procedure to induce tolerance to colistin after escalating doses of inhaled colistin.

  7. Could Frequent Carbapenem Use Be a Risk Factor for Colistin Resistance?

    PubMed

    Gundogdu, Aycan; Ulu-Kilic, Aysegul; Kilic, Huseyin; Ozhan, Esra; Altun, Dilek; Cakir, Ozlem; Alp, Emine

    2017-10-13

    The antibiotic colistin, which had been previously abandoned, is being brought back as a last line of defense against bacterial infection. However, colistin resistance was reported shortly after its reintroduction. This study evaluated the risk factors for colonization/infections due to colistin-resistant Acinetobacter baumannii (ColR-Ab) and Klebsiella pneumoniae (ColR-Kp) strains and characterized the molecular epidemiology of these two strains. Age, previous hospitalization duration, and previous use of carbapenem and colistin were risk factors for ColR-Kp, whereas previous use of carbapenem and colistin was a risk factor for ColR-Ab. According to pulsed-field gel electrophoresis analysis, most ColR-Kp strains could be grouped into two major pulsotypes. This appears to be an indicator of cross contamination of ColR-Kp strain, since different isolates appeared to be belonging to the same clones. The existence of colistin-susceptible (ColS) and colistin-resistant (ColR) strains in the same pulsotypes might also be an indicator of the recent emergence of resistance mechanisms. The results highlight the emergence of ColR pathogens in Turkey, which is considered to be developing country, and that carbapenem use coupled with insufficient infection control measures might increase the risk of ColR outbreaks.

  8. Chromosomally Encoded mcr-5 in Colistin non-susceptible Pseudomonas aeruginosa.

    PubMed

    Snesrud, Erik; Maybank, Rosslyn; Kwak, Yoon I; Jones, Anthony R; Hinkle, Mary K; Mc Gann, Patrick

    2018-05-29

    Whole genome sequencing (WGS) of historical Pseudomonas aeruginosa clinical isolates identified a chromosomal copy of mcr-5 within a Tn 3 -like transposon in P. aeruginosa MRSN 12280. The isolate was non-susceptible to colistin by broth microdilution and genome analysis revealed no mutations known to confer colistin resistance. To the best of our knowledge, this is the first report of mcr in colistin non-susceptible P. aeruginosa .

  9. Dissemination and Mechanism for the MCR-1 Colistin Resistance

    PubMed Central

    Wang, Qingjing; Lin, Jingxia; Ye, Huiyan; Liu, Fei; Srinivas, Swaminath; Li, Defeng; Zhu, Baoli; Liu, Ya-Hong; Tian, Guo-Bao; Feng, Youjun

    2016-01-01

    Polymyxins are the last line of defense against lethal infections caused by multidrug resistant Gram-negative pathogens. Very recently, the use of polymyxins has been greatly challenged by the emergence of the plasmid-borne mobile colistin resistance gene (mcr-1). However, the mechanistic aspects of the MCR-1 colistin resistance are still poorly understood. Here we report the comparative genomics of two new mcr-1-harbouring plasmids isolated from the human gut microbiota, highlighting the diversity in plasmid transfer of the mcr-1 gene. Further genetic dissection delineated that both the trans-membrane region and a substrate-binding motif are required for the MCR-1-mediated colistin resistance. The soluble form of the membrane protein MCR-1 was successfully prepared and verified. Phylogenetic analyses revealed that MCR-1 is highly homologous to its counterpart PEA lipid A transferase in Paenibacili, a known producer of polymyxins. The fact that the plasmid-borne MCR-1 is placed in a subclade neighboring the chromosome-encoded colistin-resistant Neisseria LptA (EptA) potentially implies parallel evolutionary paths for the two genes. In conclusion, our finding provids a first glimpse of mechanism for the MCR-1-mediated colistin resistance. PMID:27893854

  10. Contribution of efflux to colistin heteroresistance in a multidrug resistant Acinetobacter baumannii clinical isolate.

    PubMed

    Machado, Diana; Antunes, Jéssica; Simões, Ana; Perdigão, João; Couto, Isabel; McCusker, Matthew; Martins, Marta; Portugal, Isabel; Pacheco, Teresa; Batista, Judite; Toscano, Cristina; Viveiros, Miguel

    2018-06-01

    The mechanisms underlying colistin heteroresistance in Acinetobacter baumannii are not fully understood. Here, we investigated the role of efflux in colistin-heteroresistant populations of a multidrug-resistant (MDR) A. baumannii clinical isolate. Three colistin-resistant A. baumannii strain variants isolated from the same clinical sample were studied for the presence of heteroresistance to colistin by drug susceptibility testing, genotyping and drug resistance target mutation analysis. The existence of active efflux was studied by synergism assays with efflux inhibitors, real-time efflux activity measurements and analysis of the mRNA transcriptional levels of selected efflux pump genes in response to colistin. All of the strain variants belong to the ST218, clonal complex 92, international clonal lineage II. Different colistin susceptibility levels were observed among the three strain variants, indicating that colistin-heteroresistant subpopulations were being selected upon exposure to colistin. No mutations were found in the genes lpxACD and pmrAB, which are associated with colistin resistance. The results showed the existence of synergistic interactions between efflux inhibitors and colistin and ethidium bromide. Real-time efflux assays demonstrated that the three strain variants had increased efflux activity that could be inhibited in the presence of the inhibitors. The efflux pump genes adeB, adeJ, adeG, craA, amvA, abeS and abeM were found to be overexpressed in the strain variants in response to colistin exposure. This study shows that efflux activity contributes to colistin heteroresistance in an MDR A. baumannii clinical isolate. The use of efflux inhibitors as adjuvants of the therapy can resensitize A. baumannii to colistin and prevent the emergence of drug resistance.

  11. Colistin resistance associated with outer membrane protein change in Klebsiella pneumoniae and Enterobacter asburiae.

    PubMed

    Kádár, Béla; Kocsis, Béla; Tóth, Ákos; Kristóf, Katalin; Felső, Péter; Kocsis, Béla; Böddi, Katalin; Szabó, Dóra

    2017-06-01

    In this study, outer membrane proteins (OMPs) of colistin-resistant Klebsiella pneumoniae and Enterobacter asburiae were analyzed. One colistin-susceptible and three colistin-resistant K. pneumoniae sequence type 258 strains as well as one colistin-susceptible E. asburiae and its colistin-heteroresistant counterpart strain were involved in the study. OMP analysis of each strain was performed by microchip method. Matrix-assisted laser desorption ionization time of flight/mass spectrometry (MALDI-TOF/MS) investigation was carried out after separation of OMPs by two-dimensional gel electrophoresis and in-gel digestion. The MALDI-TOF/MS analysis of OMPs in the colistin-susceptible K. pneumoniae found 16 kDa proteins belonging to the LysM domain/BON superfamily, as well as DNA starvation proteins, whereas OmpX and OmpW were detected in the colistin-resistant counterpart strains. OmpC and OmpW were detected in the colistin-susceptible E. asburiae, whereas OmpA and OmpX were identified in the colistin-resistant counterpart. This study demonstrated that OMP differences were between colistin-susceptible and -resistant counterpart strains. The altered Gram-negative cell wall may contribute to acquired colistin resistance in Enterobacteriaceae.

  12. Colistin and polymyxin B: peas in a pod, or chalk and cheese?

    PubMed

    Nation, Roger L; Velkov, Tony; Li, Jian

    2014-07-01

    Colistin and polymyxin B have indistinguishable microbiological activity in vitro, but they differ in the form administered parenterally to patients. Polymyxin B is administered directly as the active antibiotic, whereas colistin is administered as the inactive prodrug, colistin methanesulfonate (CMS). CMS must be converted to colistin in vivo, but this occurs slowly and incompletely. Here we summarize the key differences between parenteral CMS/colistin and polymyxin B, and highlight the clinical implications. We put forth the view that overall polymyxin B has superior clinical pharmacological properties compared with CMS/colistin. We propose that in countries such as the United States where parenteral products of both colistin and polymyxin B are available, prospective studies should be conducted to formally examine their relative efficacy and safety in various types of infections and patients. In the meantime, where clinicians have access to both polymyxins, they should carefully consider the relative merits of each in a given circumstance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Comparison of Intrapulmonary and Systemic Pharmacokinetics of Colistin Methanesulfonate (CMS) and Colistin after Aerosol Delivery and Intravenous Administration of CMS in Critically Ill Patients

    PubMed Central

    Boisson, Matthieu; Jacobs, Matthieu; Grégoire, Nicolas; Gobin, Patrice; Marchand, Sandrine; Mimoz, Olivier

    2014-01-01

    Colistin is an old antibiotic that has recently gained a considerable renewal of interest for the treatment of pulmonary infections due to multidrug-resistant Gram-negative bacteria. Nebulization seems to be a promising form of administration, but colistin is administered as an inactive prodrug, colistin methanesulfonate (CMS); however, differences between the intrapulmonary concentrations of the active moiety as a function of the route of administration in critically ill patients have not been precisely documented. In this study, CMS and colistin concentrations were measured on two separate occasions within the plasma and epithelial lining fluid (ELF) of critically ill patients (n = 12) who had received 2 million international units (MIU) of CMS by aerosol delivery and then intravenous administration. The pharmacokinetic analysis was conducted using a population approach and completed by pharmacokinetic-pharmacodynamic (PK-PD) modeling and simulations. The ELF colistin concentrations varied considerably (9.53 to 1,137 mg/liter), but they were much higher than those in plasma (0.15 to 0.73 mg/liter) after aerosol delivery but not after intravenous administration of CMS. Following CMS aerosol delivery, typically, 9% of the CMS dose reached the ELF, and only 1.4% was presystemically converted into colistin. PK-PD analysis concluded that there was much higher antimicrobial efficacy after CMS aerosol delivery than after intravenous administration. These new data seem to support the use of aerosol delivery of CMS for the treatment of pulmonary infections in critical care patients. PMID:25267660

  14. Genetic Determinants of Intrinsic Colistin Tolerance in Acinetobacter baumannii

    PubMed Central

    Hood, M. Indriati; Becker, Kyle W.; Roux, Christelle M.; Dunman, Paul M.

    2013-01-01

    Acinetobacter baumannii is a leading cause of multidrug-resistant infections worldwide. This organism poses a particular challenge due to its ability to acquire resistance to new antibiotics through adaptation or mutation. This study was undertaken to determine the mechanisms governing the adaptability of A. baumannii to the antibiotic colistin. Screening of a transposon mutant library identified over 30 genes involved in inducible colistin resistance in A. baumannii. One of the genes identified was lpsB, which encodes a glycosyltransferase involved in lipopolysaccharide (LPS) synthesis. We demonstrate that loss of LpsB function results in increased sensitivity to both colistin and cationic antimicrobial peptides of the innate immune system. Moreover, LpsB is critical for pathogenesis in a pulmonary model of infection. Taken together, these data define bacterial processes required for intrinsic colistin tolerance in A. baumannii and underscore the importance of outer membrane structure in both antibiotic resistance and the pathogenesis of A. baumannii. PMID:23230287

  15. Substantial Targeting Advantage Achieved by Pulmonary Administration of Colistin Methanesulfonate in a Large-Animal Model

    PubMed Central

    Nguyen, Tri-Hung; Lieu, Linh Thuy; Nguyen, Gary; Bischof, Robert J.; Meeusen, Els N.; Li, Jian; Nation, Roger L.

    2016-01-01

    ABSTRACT Colistin, administered as its inactive prodrug colistin methanesulfonate (CMS), is often used in multidrug-resistant Gram-negative pulmonary infections. The CMS and colistin pharmacokinetics in plasma and epithelial lining fluid (ELF) following intravenous and pulmonary dosing have not been evaluated in a large-animal model with pulmonary architecture similar to that of humans. Six merino sheep (34 to 43 kg body weight) received an intravenous or pulmonary dose of 4 to 8 mg/kg CMS (sodium) or 2 to 3 mg/kg colistin (sulfate) in a 4-way crossover study. Pulmonary dosing was achieved via jet nebulization through an endotracheal tube cuff. CMS and colistin were quantified in plasma and bronchoalveolar lavage fluid (BALF) samples by high-performance liquid chromatography (HPLC). ELF concentrations were calculated via the urea method. CMS and colistin were comodeled in S-ADAPT. Following intravenous CMS or colistin administration, no concentrations were quantifiable in BALF samples. Elimination clearance was 1.97 liters/h (4% interindividual variability) for CMS (other than conversion to colistin) and 1.08 liters/h (25%) for colistin. On average, 18% of a CMS dose was converted to colistin. Following pulmonary delivery, colistin was not quantifiable in plasma and CMS was detected in only one sheep. Average ELF concentrations (standard deviations [SD]) of formed colistin were 400 (243), 384 (187), and 184 (190) mg/liter at 1, 4, and 24 h after pulmonary CMS administration. The population pharmacokinetic model described well CMS and colistin in plasma and ELF following intravenous and pulmonary administration. Pulmonary dosing provided high ELF and low plasma colistin concentrations, representing a substantial targeting advantage over intravenous administration. Predictions from the pharmacokinetic model indicate that sheep are an advantageous model for translational research. PMID:27821445

  16. Stability of colistin methanesulfonate in pharmaceutical products and solutions for administration to patients.

    PubMed

    Wallace, Stephanie J; Li, Jian; Rayner, Craig R; Coulthard, Kingsley; Nation, Roger L

    2008-09-01

    Colistin methanesulfonate (CMS) has the potential to hydrolyze in aqueous solution to liberate colistin, its microbiologically active and more toxic parent compound. While conversion of CMS to colistin in vivo is important for bactericidal activity, liberation of colistin during storage and/or use of pharmaceutical formulations may potentiate the toxicity of CMS. To date, there has been no information available regarding the stability of CMS in pharmaceutical preparations. Two commercial CMS formulations were investigated for stability with respect to colistin content, which was measured by a specific high-performance liquid chromatography method. Coly-Mycin M Parenteral (colistimethate lyophilized powder) was stable (<0.1% of CMS present as colistin) for at least 20 weeks at 4 degrees C and 25 degrees C at 60% relative humidity. When Coly-Mycin M was reconstituted with 2 ml of water to a CMS concentration of 200 mg/ml for injection, Coly-Mycin M was stable (<0.1% colistin formed) for at least 7 days at both 4 degrees C and 25 degrees C. When further diluted to 4 mg/ml in a glucose (5%) or saline (0.9%) infusion solution as directed, CMS hydrolyzed faster at 25 degrees C (<4% colistin formed after 48 h) than at 4 degrees C (0.3% colistin formed). The second formulation, CMS Solution for Inhalation (77.5 mg/ml), was stable at 4 degrees C and 25 degrees C for at least 12 months, as determined based on colistin content (<0.1%). This study demonstrated the concentration- and temperature-dependent hydrolysis of CMS. The information provided by this study has important implications for the formulation and clinical use of CMS products.

  17. Stability of Colistin Methanesulfonate in Pharmaceutical Products and Solutions for Administration to Patients▿

    PubMed Central

    Wallace, Stephanie J.; Li, Jian; Rayner, Craig. R.; Coulthard, Kingsley; Nation, Roger L.

    2008-01-01

    Colistin methanesulfonate (CMS) has the potential to hydrolyze in aqueous solution to liberate colistin, its microbiologically active and more toxic parent compound. While conversion of CMS to colistin in vivo is important for bactericidal activity, liberation of colistin during storage and/or use of pharmaceutical formulations may potentiate the toxicity of CMS. To date, there has been no information available regarding the stability of CMS in pharmaceutical preparations. Two commercial CMS formulations were investigated for stability with respect to colistin content, which was measured by a specific high-performance liquid chromatography method. Coly-Mycin M Parenteral (colistimethate lyophilized powder) was stable (<0.1% of CMS present as colistin) for at least 20 weeks at 4°C and 25°C at 60% relative humidity. When Coly-Mycin M was reconstituted with 2 ml of water to a CMS concentration of 200 mg/ml for injection, Coly-Mycin M was stable (<0.1% colistin formed) for at least 7 days at both 4°C and 25°C. When further diluted to 4 mg/ml in a glucose (5%) or saline (0.9%) infusion solution as directed, CMS hydrolyzed faster at 25°C (<4% colistin formed after 48 h) than at 4°C (0.3% colistin formed). The second formulation, CMS Solution for Inhalation (77.5 mg/ml), was stable at 4°C and 25°C for at least 12 months, as determined based on colistin content (<0.1%). This study demonstrated the concentration- and temperature-dependent hydrolysis of CMS. The information provided by this study has important implications for the formulation and clinical use of CMS products. PMID:18606838

  18. Dextrin-colistin conjugates as a model bioresponsive treatment for multidrug resistant bacterial infections.

    PubMed

    Ferguson, Elaine L; Azzopardi, Ernest; Roberts, Jessica L; Walsh, Timothy R; Thomas, David W

    2014-12-01

    Polymer therapeutics offer potential benefits in the treatment of multidrug resistant (MDR) infections; affording targeted delivery of biologically active agents to the site of inflammation, potential decreases in systemic toxicity, and the retention of antimicrobial activity at the target site. As a prototype model, these studies developed and characterized a library of dextrin-colistin conjugates (dextrin molecular weight: 7500-48,000 g/mol) as a means of targeting the delivery of colistin. Optimum colistin release kinetics (following dextrin degradation by physiological concentrations of amylase (100 IU/L)) were observed in conjugates containing low molecular weight (∼7500 g/mol) dextrin with ∼1 mol % succinoylation (∼80% drug release within 48 h, compared to ∼33% from sodium colistin methanesulfonate (CMS, Colomycin)). These conjugates exhibited comparable antimicrobial activity to CMS in conventional MIC assays against a range of Gram-negative pathogens, but with significantly reduced in vitro toxicity toward kidney (IC₅₀ = CMS, 15.4 μg/mL; dextrin-colistin, 63.9 μg/mL) and macrophage (IC₅₀ = CMS, 111.3 μg/mL; dextrin-colistin, 303.9 μg/mL) cells. In vivo dose-escalation studies in rats demonstrated improved pharmacokinetics of the conjugates, with prolonged plasma levels of colistin (t₁/₂ 135-1271 min vs 53 min) and decreased toxicity, compared to colistin sulfate. These studies highlight the potential utility of "nanoantibiotic" polymer therapeutics to aid the safe, effective, and targeted delivery of colistin in the management of MDR infections.

  19. Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients.

    PubMed

    Boisson, Matthieu; Jacobs, Matthieu; Grégoire, Nicolas; Gobin, Patrice; Marchand, Sandrine; Couet, William; Mimoz, Olivier

    2014-12-01

    Colistin is an old antibiotic that has recently gained a considerable renewal of interest for the treatment of pulmonary infections due to multidrug-resistant Gram-negative bacteria. Nebulization seems to be a promising form of administration, but colistin is administered as an inactive prodrug, colistin methanesulfonate (CMS); however, differences between the intrapulmonary concentrations of the active moiety as a function of the route of administration in critically ill patients have not been precisely documented. In this study, CMS and colistin concentrations were measured on two separate occasions within the plasma and epithelial lining fluid (ELF) of critically ill patients (n = 12) who had received 2 million international units (MIU) of CMS by aerosol delivery and then intravenous administration. The pharmacokinetic analysis was conducted using a population approach and completed by pharmacokinetic-pharmacodynamic (PK-PD) modeling and simulations. The ELF colistin concentrations varied considerably (9.53 to 1,137 mg/liter), but they were much higher than those in plasma (0.15 to 0.73 mg/liter) after aerosol delivery but not after intravenous administration of CMS. Following CMS aerosol delivery, typically, 9% of the CMS dose reached the ELF, and only 1.4% was presystemically converted into colistin. PK-PD analysis concluded that there was much higher antimicrobial efficacy after CMS aerosol delivery than after intravenous administration. These new data seem to support the use of aerosol delivery of CMS for the treatment of pulmonary infections in critical care patients. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Longitudinal study on the occurrence in pigs of colistin-resistant Escherichia coli carrying mcr-1 following the cessation of use of colistin.

    PubMed

    Randall, L P; Horton, R A; Lemma, F; Martelli, F; Duggett, N A D; Smith, R P; Kirchner, M J; Ellis, R J; Rogers, J P; Williamson, S M; Simons, R R L; Brena, C M; Evans, S J; Anjum, M F; Teale, C J

    2018-05-09

    In 2015, colistin-resistant Escherichia coli and Salmonella with the mcr-1 gene were isolated from a pig farm in Great Britain. Pigs were subsequently monitored over a ~20-month period for the occurrence of mcr-1-mediated colistin resistance and the risk of mcr-1 E. coli entering the food chain was assessed. Pig faeces and slurry were cultured for colistin-resistant E. coli and Salmonella, tested for the mcr-1 gene by PCR and selected isolates were further analysed. Seventy-eight per cent of faecal samples (n = 275) from pigs yielded mcr-1 E. coli after selective culture, but in positive samples only 0·2-1·3% of the total E. coli carried mcr-1. Twenty months after the initial sampling, faecal samples (n = 59) were negative for E. coli carrying mcr-1. The risk to public health from porcine E. coli carrying mcr-1 was assessed as very low. Twenty months after cessation of colistin use, E. coli carrying mcr-1 was not detected in pig faeces on a farm where it was previously present. The results suggest that cessation of colistin use may help over time to reduce or possibly eliminate mcr-1 E. coli on pig farms where it occurs. © 2018 Crown copyright. Journal of Applied Microbiology © 2018 The Society for Applied Microbiology.

  1. [Colistin: a review].

    PubMed

    Antonucci, Elio; Taccone, Fabio Silvio; Regolisti, Giuseppe; Cabassi, Aderville; Morabito, Santo; Pistolesi, Valentina; Di Motta, Tommaso; Fiaccadori, Enrico

    2014-01-01

    Colistin (CS) is a polymyxin with bactericidal activity, which is increasingly used in nosocomial infections associated with multidrug-resistant Gram-negative bacteria (MDR-GNB). Intravenous CS is usually administered as a less toxic pro-drug, i.e. colistin sodium methanesulfonate (CMS). In water-containing solutions, CMS undergoes a spontaneous hydrolysis to form a complex mixture of partially sulfomethylated derivatives and CS. Pharmacokinetic of CS is dependent on the route of administration, i.e. parenteral, intramuscular, nebulized, intrathecal/intraventricular. Renal toxicity is the most common adverse effect of CS treatment, as the drug is excreted primarily by the kidney and elevated levels of CS may further impair renal function, with a dose-dependent effect. Clinical manifestations of CS associated nephrotoxicity include acute kidney injury, proteinuria and tubular damage. Only few data are currently available on the effects of different renal replacement therapy modalities on CS pharmacokinetics. In patients undergoing the most efficient forms of renal replacement therapies, the extracorporeal clearance of CMS may result in a substantial removal of the antibiotic. Thus, in this setting, the recommended daily doses should be increased. Future studies should better explore CS pharmacokinetics in patients undergoing different modalities of renal replacement therapy.

  2. Colistin Nephrotoxicity in Adults: Single Centre Large Series from India.

    PubMed

    Ghafur, Abdul; Gohel, Swati; Devarajan, Vidyalakshmi; Raja, T; Easow, Jose; Raja, M A; Sreenivas, Sankar; Ramakrishnan, Balasubramaniam; Ramakrishnan, T; Raman, S G; Devaprasad, Dedeepiya; Venkatachalam, Balaji; Nimmagadda, Ramesh

    2017-06-01

    Limited Indian data are available on the rate of colistin nephrotoxicity and other risk factors contributing to the development of this important side effect. This study aims to generate data on colistin nephrotoxicity from a large cohort of Indian patients. Retrospective cohort study. Case record analysis of patients who received colistin, in an oncology center in India, between January 2011 and December 2015. Nephrotoxicity was assessed using risk, injury, failure, loss, and end-stage (RIFLE) criteria. P < 0.05 was considered as statistically significant. Out of the 229 patients, 13.1% (30/229) developed abnormal RIFLE. Abnormal RIFLE group ( n = 30), in comparison to the normal renal function group ( n = 199), had higher number of patients in intensive care unit (ICU) (96% vs. 79%, P = 0.02), higher Acute Physiology and Chronic Health Evaluation (APACHE II) score (23 vs. 19 P = 0.0001), Charlson score (5.9 vs. 4.3, P = 0.001), mechanical ventilation (90% vs. 67%, P = 0.016), 28 days mortality (63% vs. 25%, P = 0.0001), and abnormal baseline creatinine (36% vs. 8%, P = 0.001). Coadministration of vancomycin had higher rates of nephrotoxicity ( P = 0.039). There was no significant difference in nephrotoxicity between 6 and 9 MU/day dosing pattern (8.8% vs. 13.8%, P = 0.058). Nephrotoxicity rate in our retrospective single center large series of patients receiving colistin was 13.1%. Patients with abnormal baseline creatinine, ICU stay, and higher disease severity are at higher risk of nephrotoxicity while on colistin. A daily dose of 9 million does not significantly increase nephrotoxicity compared to the 6 million. Concomitant administration of vancomycin with colistin increases the risk of nephrotoxicity.

  3. Preliminary Method for Direct Quantification of Colistin Methanesulfonate by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    PubMed Central

    Niece, Krista L.

    2015-01-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160

  4. Nonclonal emergence of colistin-resistant Klebsiella pneumoniae isolates from blood samples in South Korea.

    PubMed

    Suh, Ji-Yoeun; Son, Jun Seong; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Song, Jae-Hoon

    2010-01-01

    In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading.

  5. mcr-1 Colistin Resistance in ESBL-Producing Klebsiella pneumoniae, France

    PubMed Central

    Maillet, Mylène; Pavese, Patricia; Francony, Gilles; Brion, Jean-Paul; Mallaret, Marie-Reine; Bonnet, Richard; Robin, Frédéric; Beyrouthy, Racha; Maurin, Max

    2017-01-01

    We report intestinal carriage of an extended-spectrum β-lactamase−producing Klebsiella pneumoniae strain with high-level resistance to colistin (MIC 24 mg/L) in a patient in France who had been hospitalized for fungal meningitis. The strain had the mcr-1 plasmid gene and an inactivated mgrB gene, which are associated with colistin resistance. PMID:28418313

  6. Development and validation of a UHPLC-MS/MS assay for colistin methanesulphonate (CMS) and colistin in human plasma and urine using weak-cation exchange solid-phase extraction.

    PubMed

    Zhao, Miao; Wu, Xiao-Jie; Fan, Ya-Xin; Guo, Bei-Ning; Zhang, Jing

    2016-05-30

    A rapid ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay method was developed for determination of CMS and formed colistin in human plasma and urine. After extraction on a 96-well SPE Supra-Clean Weak Cation Exchange (WCX) plate, the eluents were mixed and injected into the UHPLC-MS/MS system directly. A Phonomenex Kinetex XB-C18 analytical column was employed with a mobile phase consisting of solution "A" (acetonitrile:methanol, 1:1, v/v) and solution "B" (0.1% formic acid in water, v/v). The flow rate was 0.4 mL/min with gradient elution over 3.5 min. Ions were detected in ESI positive ion mode and the precursor-product ion pairs were m/z 390.7/101.3 for colistin A, m/z 386.0/101.2 for colistin B, and m/z 402.3/101.2 for polymyxin B1 (IS), respectively. The lower limit of quantification (LLOQ) was 0.0130 and 0.0251 mg/L for colistin A and colistin B in both plasma and urine with accuracy (relative error, %) <± 12.6% and precision (relative standard deviation, %) <± 10.8%. Stability of CMS was demonstrated in biological samples before and during sample treatment, and in the extract. This new analytical method provides high-throughput treatment and optimized quantification of CMS and colistin, which offers a highly efficient tool for the analysis of a large number of clinical samples as well as routine therapeutic drug monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Pharmacokinetics of colistin methanesulfonate (CMS) in healthy Chinese subjects after single and multiple intravenous doses.

    PubMed

    Zhao, Miao; Wu, Xiao-Jie; Fan, Ya-Xin; Zhang, Ying-Yuan; Guo, Bei-Ning; Yu, Ji-Cheng; Cao, Guo-Ying; Chen, Yuan-Cheng; Wu, Ju-Fang; Shi, Yao-Guo; Li, Jian; Zhang, Jing

    2018-05-01

    The high prevalence of extensively drug-resistant Gram-negative pathogens has forced clinicians to use colistin as a last-line therapy. Knowledge on the pharmacokinetics of colistin methanesulfonate (CMS), an inactive prodrug, and colistin has increased substantially; however, the pharmacokinetics in the Chinese population is still unknown due to lack of a CMS product in China. This study aimed to evaluate the pharmacokinetics of a new CMS product developed in China in order to optimise dosing regimens. A total of 24 healthy subjects (12 female, 12 male) were enrolled in single- and multiple-dose pharmacokinetic (PK) studies. Concentrations of CMS and formed colistin in plasma and urine were measured, and PK analysis was conducted using a non-compartmental approach. Following a single CMS dose [2.36 mg colistin base activity (CBA) per kg, 1 h infusion], peak concentrations (C max ) of CMS and formed colistin were 18.0 mg/L and 0.661 mg/L, respectively. The estimated half-life (t 1/2 ) of CMS and colistin were 1.38 h and 4.49 h, respectively. Approximately 62.5% of the CMS dose was excreted via urine within 24 h after dosing, whilst only 1.28% was present in the form of colistin. Following multiple CMS doses, colistin reached steady-state within 24 h; there was no accumulation of CMS, but colistin accumulated slightly (R AUC  = 1.33). This study provides the first PK data in the Chinese population and is essential for designing CMS dosing regimens for use in Chinese hospitals. The urinary PK data strongly support the use of intravenous CMS for serious urinary tract infections. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  8. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress

    PubMed Central

    Dai, Chongshan; Ciccotosto, Giuseppe D.; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony

    2017-01-01

    Background: Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. Methods: The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Results: Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. Conclusions: To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. PMID:28204513

  9. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives.

    PubMed

    Rhouma, Mohamed; Beaudry, Francis; Thériault, William; Letellier, Ann

    2016-01-01

    Colistin (Polymyxin E) is one of the few cationic antimicrobial peptides commercialized in both human and veterinary medicine. For several years now, colistin has been considered the last line of defense against infections caused by multidrug-resistant Gram-negative such as Acinetobacter baumannii, Pseudomonas aeruginosa , and Klebsiella pneumoniae . Colistin has been extensively used orally since the 1960s in food animals and particularly in swine for the control of Enterobacteriaceae infections. However, with the recent discovery of plasmid-mediated colistin resistance encoded by the mcr-1 gene and the higher prevalence of samples harboring this gene in animal isolates compared to other origins, livestock has been singled out as the principal reservoir for colistin resistance amplification and spread. Co-localization of the mcr-1 gene and Extended-Spectrum-β-Lactamase genes on a unique plasmid has been also identified in many isolates from animal origin. The use of colistin in pigs as a growth promoter and for prophylaxis purposes should be banned, and the implantation of sustainable measures in pig farms for microbial infection prevention should be actively encouraged and financed. The scientific research should be encouraged in swine medicine to generate data helping to reduce the exacerbation of colistin resistance in pigs and in manure. The establishment of guidelines ensuring a judicious therapeutic use of colistin in pigs, in countries where this drug is approved, is of crucial importance. The implementation of a microbiological withdrawal period that could reduce the potential contamination of consumers with colistin resistant bacteria of porcine origin should be encouraged. Moreover, the management of colistin resistance at the human-pig-environment interface requires the urgent use of the One Health approach for effective control and prevention. This approach needs the collaborative effort of multiple disciplines and close cooperation between physicians

  10. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives

    PubMed Central

    Rhouma, Mohamed; Beaudry, Francis; Thériault, William; Letellier, Ann

    2016-01-01

    Colistin (Polymyxin E) is one of the few cationic antimicrobial peptides commercialized in both human and veterinary medicine. For several years now, colistin has been considered the last line of defense against infections caused by multidrug-resistant Gram-negative such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Colistin has been extensively used orally since the 1960s in food animals and particularly in swine for the control of Enterobacteriaceae infections. However, with the recent discovery of plasmid-mediated colistin resistance encoded by the mcr-1 gene and the higher prevalence of samples harboring this gene in animal isolates compared to other origins, livestock has been singled out as the principal reservoir for colistin resistance amplification and spread. Co-localization of the mcr-1 gene and Extended-Spectrum-β-Lactamase genes on a unique plasmid has been also identified in many isolates from animal origin. The use of colistin in pigs as a growth promoter and for prophylaxis purposes should be banned, and the implantation of sustainable measures in pig farms for microbial infection prevention should be actively encouraged and financed. The scientific research should be encouraged in swine medicine to generate data helping to reduce the exacerbation of colistin resistance in pigs and in manure. The establishment of guidelines ensuring a judicious therapeutic use of colistin in pigs, in countries where this drug is approved, is of crucial importance. The implementation of a microbiological withdrawal period that could reduce the potential contamination of consumers with colistin resistant bacteria of porcine origin should be encouraged. Moreover, the management of colistin resistance at the human-pig-environment interface requires the urgent use of the One Health approach for effective control and prevention. This approach needs the collaborative effort of multiple disciplines and close cooperation between physicians

  11. Nonclonal Emergence of Colistin-Resistant Klebsiella pneumoniae Isolates from Blood Samples in South Korea ▿

    PubMed Central

    Suh, Ji-Yoeun; Son, Jun Seong; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Song, Jae-Hoon

    2010-01-01

    In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading. PMID:19752282

  12. Efficacy of Colistin Impregnated Beads to Prevent Multi-drug Resistant A. baumannii Implant-Associated Osteomyelitis

    PubMed Central

    Crane, Daniel P.; Gromov, Kirill; Li, Dan; Søballe, Kjeld; Wahnes, Christian; Büchner, Hubert; Hilton, Matthew J.; O’Keefe, Regis J.; Murray, Clinton K.; Schwarz, Edward M.

    2010-01-01

    Summary Osteomyelitis (OM) from multidrug-resistant (MDR) Acinetobacter has emerged in >30% of combat-related injuries in Iraq and Afghanistan. While most of these strains are sensitive to colistin, the drug is not availible in bone void fillers for local high-dose delivery. To address this we developed a mouse model with MDR strains isolated from wounded military personnel. In contrast to S. aureus OM, which is osteolytic and characterized by biofilm in necrotic bone, A. baumannii OM results in blastic lesions that do not contain apparent biofilm. We also found that mice mount a specific IgG response against 3 proteins (40, 47 & 56KDa) regardless of the strain used, suggesting that these may be immunuo-dominant antigens. PCR for the A. baumannii specific parC gene confirmed a 100% infection rate with 75% of the MDR strains, and in vitro testing confirmed that all strains were sensitive to colistin. We also developed a real-time quantitative PCR (RTQ-PCR) assay that could detect as few as 10 copies of parC in a sample. To demonstrate the efficacy of colistin prophylaxis in this model, mice were treated with either parenteral colistin (0.2mg colistinmethate i.m. for 7 days), local colistin (PMMA bead impregnated with 1.0mg colistin sulfate), or an unloaded PMMA bead control. While the parenteral colistin failed to demonstrate any significant effects vs. the placebo, the colistin PMMA bead significantly reduced the infection rate such that only 29.2% of the mice had detectable levels of parC at 19 days (p<0.05 vs. i.m. colistin and placebo). PMID:19173261

  13. Inhaled Colistin in Patients with Bronchiectasis and Chronic Pseudomonas aeruginosa Infection

    PubMed Central

    Foweraker, Juliet E.; Wilkinson, Peter; Kenyon, Robert F.; Bilton, Diana

    2014-01-01

    Rationale: Chronic infection with Pseudomonas aeruginosa is associated with an increased exacerbation frequency, a more rapid decline in lung function, and increased mortality in patients with bronchiectasis. Objectives: To perform a randomized placebo-controlled study assessing the efficacy and safety of inhaled colistin in patients with bronchiectasis and chronic P. aeruginosa infection. Methods: Patients with bronchiectasis and chronic P. aeruginosa infection were enrolled within 21 days of completing a course of antipseudomonal antibiotics for an exacerbation. Participants were randomized to receive colistin (1 million IU; n = 73) or placebo (0.45% saline; n = 71) via the I-neb twice a day, for up to 6 months. Measurements and Main Results: The primary endpoint was time to exacerbation. Secondary endpoints included time to exacerbation based on adherence recorded by the I-neb, P. aeruginosa bacterial density, quality of life, and safety parameters. All analyses were on the intention-to-treat population. Median time (25% quartile) to exacerbation was 165 (42) versus 111 (52) days in the colistin and placebo groups, respectively (P = 0.11). In adherent patients (adherence quartiles 2–4), the median time to exacerbation was 168 (65) versus 103 (37) days in the colistin and placebo groups, respectively (P = 0.038). P. aeruginosa density was reduced after 4 (P = 0.001) and 12 weeks (P = 0.008) and the St. George’s Respiratory Questionnaire total score was improved after 26 weeks (P = 0.006) in the colistin versus placebo patients, respectively. There were no safety concerns. Conclusions: Although the primary endpoint was not reached, this study shows that inhaled colistin is a safe and effective treatment in adherent patients with bronchiectasis and chronic P. aeruginosa infection. Clinical trial registered with http://www.isrctn.org/ (ISRCTN49790596) PMID:24625200

  14. Colistin-resistant Enterobacteriaceae infections: clinical and molecular characterization and analysis of in vitro synergy.

    PubMed

    de Maio Carrillho, Claudia M D; Gaudereto, Juliana J; Martins, Roberta Cristina Ruedas; de Castro Lima, Victor Augusto Camarinha; de Oliveira, Larissa M; Urbano, Mariana R; Perozin, Jamile S; Levin, Anna Sara; Costa, Silvia F

    2017-03-01

    We described 27 polyclonal colistin-resistant Enterobacteriaceae (MIC 4-16 μg/mL) infections (12 pneumonia, 12 urinary tract infection (UTI), two Bacteremia, and one skin/soft tissue infection) in which 74% harbored KPC. The isolates were polyclonal, 6 STs were identified and the colistin resistance was due to chromosome mutations. Eight patients with UTI received monotherapy, and combination therapy was given to 19 patients. Overall mortality was 37%. In vitro synergy using time-kill assay was observed in 14 of 19 (74%) isolates tested; the synergistic effect was observed for almost all isolates for the combination of three drugs: colistin, amikacin, and tigecycline. The Kaplan-Meier survival curve showed no significant difference comparing combination therapy with 2, 3, or more drugs and risk factors associated with death were dialysis and shock. These findings reinforce the fact that colistin in combination with other classes of drugs can be useful in treating infections caused by colistin-resistant CRE. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress.

    PubMed

    Dai, Chongshan; Ciccotosto, Giuseppe D; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony

    2017-06-01

    Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions

  16. An on-spot internal standard addition approach for accurately determining colistin A and colistin B in dried blood spots using ultra high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Tsai, I-Lin; Kuo, Ching-Hua; Sun, Hsin-Yun; Chuang, Yu-Chung; Chepyala, Divyabharathi; Lin, Shu-Wen; Tsai, Yun-Jung

    2017-10-25

    Outbreaks of multidrug-resistant Gram-negative bacterial infections have been reported worldwide. Colistin, an antibiotic with known nephrotoxicity and neurotoxicity, is now being used to treat multidrug-resistant Gram-negative strains. In this study, we applied an on-spot internal standard addition approach coupled with an ultra high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify colistin A and B from dried blood spots (DBSs). Only 15μL of whole blood was required for each sample. An internal standard with the same yield of extraction recoveries as colistin was added to the spot before sample extraction for accurate quantification. Formic acid in water (0.15%) with an equal volume of acetonitrile (50:50v/v) was used as the extraction solution. With the optimized extraction process and LC-MS/MS conditions, colistin A and B could be quantified from a DBS with respective limits of quantification of 0.13 and 0.27μgmL -1 , and the retention times were < 2min. The relative standard deviations of within-run and between-run precisions for peak area ratios were all < 17.3%. Accuracies were 91.5-111.2% for lower limit of quantification, low, medium, and high QC samples. The stability of the easily hydrolyzed prodrug, colistin methanesulfonate, was investigated in DBSs. Less than 4% of the prodrug was found to be hydrolyzed in DBSs at room temperature after 48h. The developed method applied an on-spot internal standard addition approach which benefited the precision and accuracy. Results showed that DBS sampling coupled with the sensitive LC-MS/MS method has the potential to be an alternative approach for colistin quantification, where the bias of prodrug hydrolysis in liquid samples is decreased. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Emergence of colistin resistance in the largest university hospital complex of São Paulo, Brazil, over five years.

    PubMed

    Rossi, Flávia; Girardello, Raquel; Cury, Ana Paula; Di Gioia, Thais Sabato Romano; Almeida, João Nóbrega de; Duarte, Alberto José da Silva

    Colistin resistance involving Gram-negative bacilli infections is a challenge for health institutions around of the world. Carbapenem-resistance among these isolates makes colistin the last therapeutic option for this treatment. Colistin resistance among Enterobacteriaceae, Acinetobacter spp., and Pseudomonas spp. was evaluated between 2010 and 2014 years, at Hospital das Clínicas, São Paulo, Brazil. Over five years 1346 (4.0%) colistin resistant Gram-negative bacilli were evaluated. Enterobacteriaceae was the most frequent (86.1%) pathogen isolated, followed by Acinetobacter spp. (7.6%), and Pseudomonas spp. (6.3%). By temporal analysis there was a trend for an increase of colistin resistance among Enterobacteriaceae, but not among non-fermentative isolates. Among 1346 colistin resistant isolates, carbapenem susceptibility was observed in 21.5%. Colistin resistance in our hospital has been alarmingly increased among Klebsiella pneumoniae isolates in both KPC positive and negative, thus becoming a therapeutic problem. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Plasmid mediated colistin resistance in food animal intestinal contents detected by selective enrichment

    USDA-ARS?s Scientific Manuscript database

    Colistin (polymyxin E) is a cationic polypeptide antibiotic that has broad-spectrum activity against Gram-negative bacteria. It is classified as critically important in human medicine for treating hard-to-treat multi-drug resistant infections. Recently a plasmid-mediated colistin resistance gene (mc...

  19. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    PubMed

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Phenotypic characterization and colistin susceptibilities of carbapenem-resistant of Pseudomonas aeruginosa and Acinetobacter spp.

    PubMed

    Mohanty, Srujana; Maurya, Vijeta; Gaind, Rajni; Deb, Monorama

    2013-11-15

    Pseudomonas aeruginosa and Acinetobcter spp. are important nosocomial pathogens and carbapenem resistance is an emerging threat. Therapeutic options for infections with these isolates include colistin. This study was conducted to determine the prevalence of carbapenem resistance in P. aeruginosa and Acinetobacter spp. bloodstream isolates, phenotypically characterize the resistance mechanisms and evaluate the in vitro activity of colistin. Consecutive 145 (95 P.aeruginosa and 50 Acinetobacter spp.) non-repeat isolates were included. Antibiotic susceptibility testing was performed per CLSI guidelines. MIC for carbapenems and colistin was performed using Etest. Isolates showing reduced susceptibility or resistance to the carbapenems were tested for metallo-β-lactamase (MBL) production using imipenem-EDTA combined disk and MBL Etest. Carbapenem resistance was observed in 40% P. aeruginosa and 66.0% Acinetobacter spp. Carbapenem-resistant (CA-R) isolates were significantly (p <0.05) more frequently resistant to the other antibiotics than carbapenem-susceptible isolates. Approximately half of the CA-R strains were multidrug-resistant, and 3.1-5.5% were resistant to all antibiotics tested. MBL was found in 76.3% and 69.7% of the P. aeruginosa and Acinetobacter spp., respectively. Colistin resistance was observed in three (6.0%) Acinetobacter isolates and eight (8.4%) P. aeruginosa. MIC50 for carbapenems were two to four times higher for MBL-positive compared to MBL-negative isolates, but no difference was seen in MIC for colistin. Carbapenem resistance was observed to be mediated by MBL in a considerable number of isolates. Colistin is an alternative for infections caused by CA-R isolates; however, MIC testing should be performed whenever clinical use of colistin is considered.

  1. Effect of colistin exposure and growth phase on the surface properties of live Acinetobacter baumannii cells examined by atomic force microscopy.

    PubMed

    Soon, Rachel L; Nation, Roger L; Harper, Marina; Adler, Ben; Boyce, John D; Tan, Chun-Hong; Li, Jian; Larson, Ian

    2011-12-01

    The diminishing antimicrobial development pipeline has forced the revival of colistin as a last line of defence against infections caused by multidrug-resistant Gram-negative 'superbugs' such as Acinetobacter baumannii. The complete loss of lipopolysaccharide (LPS) mediates colistin resistance in some A. baumannii strains. Atomic force microscopy was used to examine the surface properties of colistin-susceptible and -resistant A. baumannii strains at mid-logarithmic and stationary growth phases in liquid and in response to colistin treatment. The contribution of LPS to surface properties was investigated using A. baumannii strains constructed with and without the lpxA gene. Bacterial spring constant measurements revealed that colistin-susceptible cells were significantly stiffer than colistin-resistant cells at both growth phases (P<0.01), whilst colistin treatment at high concentrations (32 mg/L) resulted in more rigid surfaces for both phenotypes. Multiple, large adhesive peaks frequently noted in force curves captured on colistin-susceptible cells were not evident for colistin-resistant cells. Adhesion events were markedly reduced following colistin exposure. The cell membranes of strains of both phenotypes remained intact following colistin treatment, although fine topographical details were illustrated. These studies, conducted for the first time on live A. baumannii cells in liquid, have contributed to our understanding of the action of colistin in this problematic pathogen. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  2. Structure of the catalytic domain of the colistin resistance enzyme MCR-1

    DOE PAGES

    Stojanoski, Vlatko; Sankaran, Banumathi; Prasad, B. V. Venkataram; ...

    2016-09-21

    Due to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity. The structure of the catalytic domain of MCR-1 at 1.32 Å reveals the active site is similar to that of relatedmore » phosphoethanolamine transferases. The putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain.« less

  3. Development and validation of UHPLC-MS/MS methods for the quantification of colistin in plasma and dried plasma spots.

    PubMed

    Cangemi, Giuliana; Barco, Sebastiano; Castagnola, Elio; Tripodi, Gino; Favata, Fabio; D'Avolio, Antonio

    2016-09-10

    Quantification of colistin in plasma samples may be very useful in optimizing therapy especially in special patients' population. Nevertheless, therapeutic drug monitoring of colistin is still limited probably for the low number of laboratories which perform this analysis and for high shipment costs. We developed and validated new UHPLC-MS/MS methods to quantify colistin in plasma and in dried plasma spots (DPS) collected on dried sample spots devices (DSSD). Colistin A, Colistin B and polimixin B, used as internal standard, were detected using multiple reaction monitoring (MRM) of the following specific transitions: 585.5→534.9; 576, 578.5→527.9; 568.9 and 602.5→100.9, 551.9, 592.8, respectively. Colistin A and B were extracted from plasma using protein precipitation and from DSSD using an extraction basic solution. Both methods were validated, and the mean intra and inter-day accuracies and precisions were in accordance with FDA and EMA guidelines. Colistin in DPS was found to be stable for at least one week at room temperature (20-25°C). A statistically significant linear correlation was found between colistin extracted from plasma and from DPS [r(2) 0.9864 (P<0.0001, 95% CI 0.9699-0.9939) for colistin A and 0.9695 (P<0.0001, 95% CI 0.9310-0.9866) for colistin B, respectively]. DPS on DSSD represents a safe and cheap strategy to store and ship at room temperature plasma samples. Thus, it is suited for pharmacokinetic studies and therapeutic drug monitoring of colistin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synergistic Activity of Colistin and Ceftazidime against Multiantibiotic-Resistant Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model

    PubMed Central

    Gunderson, Brent W.; Ibrahim, Khalid H.; Hovde, Laurie B.; Fromm, Timothy L.; Reed, Michael D.; Rotschafer, John C.

    2003-01-01

    Despite the marketing of a series of new antibiotics for antibiotic-resistant gram-positive bacteria, no new agents for multiple-antibiotic-resistant gram-negative infections will be available for quite some time. Clinicians will need to find more effective ways to utilize available agents. Colistin is an older but novel antibiotic that fell into disfavor with clinicians some time ago yet still retains a very favorable antibacterial spectrum, especially for Pseudomonas and Acinetobacter spp. Time-kill curves for two strains of multiantibiotic-resistant Pseudomonas aeruginosa were generated after exposure to colistin alone or in combination with ceftazidime or ciprofloxacin in an in vitro pharmacodynamic model. MICs of colistin, ceftazidime, ciprofloxacin, piperacillin-tazobactam, imipenem, and tobramycin were 0.125, ≥32, >4, >128/4, 16, and >16 mg/liter, respectively. Colistin showed rapid, apparently concentration-dependent bactericidal activity at concentrations between 3 and 200 mg/liter. We were unable to detect increased colistin activity at concentrations above 18 mg/liter due to extremely rapid killing. The combination of colistin and ceftazidime was synergistic (defined as at least a 2-log10 drop in CFU per milliliter from the count obtained with the more active agent) at 24 h. Adding ciprofloxacin to colistin did not enhance antibiotic activity. These data suggest that the antibacterial effect of colistin combined with ceftazidime can be maximized at a peak concentration of ≤18 mg/liter. PMID:12604520

  5. Colistin Heteroresistance in Enterobacter cloacae Is Associated with Cross-Resistance to the Host Antimicrobial Lysozyme

    PubMed Central

    Napier, Brooke A.; Band, Victor

    2014-01-01

    Here, we describe the first identification of colistin-heteroresistant Enterobacter cloacae in the United States. Treatment of this isolate with colistin increased the frequency of the resistant subpopulation and induced cross-resistance to the host antimicrobial lysozyme. This is the first description of heteroresistance conferring cross-resistance to a host antimicrobial and suggests that clinical treatment with colistin may inadvertently select for bacteria that are resistant to components of the host innate immune system. PMID:24982068

  6. Determination of Colistin and Colistimethate Levels in Human Plasma and Urine by High-Performance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Bihan, Kevin; Lu, Qin; Enjalbert, Manon; Apparuit, Maxime; Langeron, Olivier; Rouby, Jean-Jacques; Funck-Brentano, Christian; Zahr, Noël

    2016-12-01

    Colistin is a polypeptide antibiotic from the polymyxin E group used for the treatment of infections caused by multidrug-resistant gram-negative bacteria. The main constituents, accounting for approximately 85% of this mixture, are colistin A (polymyxin E1) and colistin B (polymyxin E2). The aim of this study was to develop and validate new and fast methods of quantification of colistin A and B and its precursors [colistin methanesulfonate sodium (CMS) A and B] by ultraperformance liquid chromatography-tandem mass spectrometry in plasma and urine with short pretreatment and run times. Chromatography was performed on an Acquity UPLC-MS/MS system (WATERS) with a WATERS Acquity UPLC C18 column (4.6 × 150 mm, 3.5 μm particle size). The pretreatment of samples consists of precipitation and extraction into microcolumns plate and HLB 96-well plate 30 μm-30 mg (OASIS) with a Positive Pressure-96 (WATERS). Quantification was performed using a multiple reaction monitoring of the following transitions: m/z 390.9 → 385.1 for colistin A, m/z 386.2 → 101.0 for colistin B, and m/z 602.4 → 241.1 for polymyxin B1 sulfate. In plasma and urine, calibration curves were linear from 30 to 6000 ng/mL for colistin A and from 15 to 3000 ng/mL for colistin B. With an acceptable accuracy and precision, the lower limit of quantification were set at 24.0 ng/mL and 12.0 ng/mL for colistin A and B in plasma, and at 18.0 ng/mL and 9.0 ng/mL for colistin A and B in urine. These LC-MS/MS methods of quantification for colistin A and B and its precursors (CMS A and B) in plasma and urine are fast, simple, specific, sensitive, accurate, precise, and reliable. Furthermore, they are linear and repeatable. These procedures were successfully applied to a pharmacokinetic study of a critically ill patient suffering from ventilator-associated pneumonia, who was treated with nebulized CMS.

  7. Hydrolyzable Poly[Poly(Ethylene Glycol) Methyl Ether Acrylate]-Colistin Prodrugs through Copper-Mediated Photoinduced Living Radical Polymerization.

    PubMed

    Zhu, Chongyu; Schneider, Elena K; Nikolaou, Vasiliki; Klein, Tobias; Li, Jian; Davis, Thomas P; Whittaker, Michael R; Wilson, Paul; Kempe, Kristian; Velkov, Tony; Haddleton, David M

    2017-07-19

    Through the recently developed copper-mediated photoinduced living radical polymerization (CP-LRP), a novel and well-defined polymeric prodrug of the antimicrobial lipopeptide colistin has been developed. A colistin initiator (Boc 5 -col-Br 2 ) was synthesized through the modification of colistin on both of its threonine residues using a cleavable initiator linker, 2-(2-bromo-2-methylpropanoyloxy) acetic acid (BMPAA), and used for the polymerization of acrylates via CP-LRP. Polymerization proceeds from both sites of the colistin initiator, and through the polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA 480 ), three water-soluble polymer-colistin conjugates (col-PPEGA, having degrees of polymerization of 5, 10, and 20) were achieved with high yield (conversion of ≥93%) and narrow dispersities (Đ < 1.3) in 2-4 h. Little or no effect on the structure and activity of the colistin was observed during the synthesis, and most of the active colistin can be recovered from the conjugates in vitro within 2 days. Furthermore, in vitro biological analyses including disk diffusion, broth microdilution, and time-kill studies suggested that all of the conjugates have the ability to inhibit the growth of multidrug-resistant (MDR) Gram-negative bacteria, of which col-PPEGA DP5 and DP10 showed similar or better antibacterial performance compared to the clinically relevant colistin prodrug CMS, indicating their potential as an alternative antimicrobial therapy. Moreover, considering the control over the polymerization, the CP-LRP technique has the potential to provide an alternative platform for the development of polymer bioconjugates.

  8. Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers.

    PubMed

    Couet, W; Grégoire, N; Gobin, P; Saulnier, P J; Frasca, D; Marchand, S; Mimoz, O

    2011-06-01

    Colistin pharmacokinetics (PK) was investigated in young healthy volunteers after a 1-h infusion of 80 mg (1 million international units (MIU)) of the prodrug colistin methanesulfonate (CMS). Concentration levels of CMS and colistin were determined in plasma and urine using a new chromatographic assay and analyzed simultaneously with a population approach after correcting the urine-related data for postexcretion hydrolysis of CMS into colistin. CMS and colistin have low volumes of distribution (14.0 and 12.4 liters, respectively), consistent with distribution being restricted to extracellular fluid. CMS is mainly excreted unchanged in urine (70% on average), with a typical renal clearance estimated at 103 ml/min-close to the glomerular filtration rate. Colistin elimination is essentially extrarenal, given that its renal clearance is 1.9 ml/min, consistent with extensive reabsorption. Colistin elimination is not limited by the formation rate because its half-life (3 h) is longer than that of CMS. The values of these pharmacokinetic parameters will serve as reference points for future comparisons with patients' data.

  9. Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis.

    PubMed

    Wei, Wenhui; Srinivas, Swaminath; Lin, Jingxia; Tang, Zichen; Wang, Shihua; Ullah, Saif; Kota, Vishnu Goutham; Feng, Youjun

    2018-05-14

    Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance.

  10. Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation

    PubMed Central

    Dafopoulou, Konstantina; Xavier, Basil Britto; Hotterbeekx, An; Janssens, Lore; Lammens, Christine; Dé, Emmanuelle; Goossens, Herman; Tsakris, Athanasios; Malhotra-Kumar, Surbhi

    2015-01-01

    In two pairs of clinical colistin-susceptible/colistin-resistant (Csts/Cstr) Acinetobacter baumannii strains, the Cstr strains showed significantly decreased biofilm formation in static and dynamic assays (P < 0.001) and lower relative fitness (P < 0.05) compared with those of the Csts counterparts. The whole-genome sequencing comparison of strain pairs identified a mutation converting a stop codon to lysine (*241K) in LpsB (involved in lipopolysaccharide [LPS] synthesis) in one Cstr strain and a frameshift mutation in CarO and the loss of a 47,969-bp element containing multiple genes associated with biofilm production in the other. PMID:26666921

  11. Frequency of colistin and fosfomycin resistance in carbapenem-resistant Enterobacteriaceae from a tertiary care hospital in Karachi.

    PubMed

    Qamar, Salima; Shaheen, Najma; Shakoor, Sadia; Farooqi, Joveria; Jabeen, Kauser; Hasan, Rumina

    2017-01-01

    Management of infections with carbapenem-resistant Enterobacteriaceae (CRE) is challenging. In recent times, agents such as colistin and fosfomycin have been used in combination with other antibiotics to treat such infections. In this study, we aim to seek frequency of colistin and fosfomycin resistance in CRE from Pakistan. This study was conducted at clinical laboratories, Aga Khan University Hospital. In total, 251 CRE were included in the study. Colistin minimum inhibitory concentrations (MICs) were performed using broth microdilution (BMD) method and VITEK ® 2 system, whereas fosfomycin susceptibility was performed using Kirby-Bauer method. MIC 50 and MIC 90 were calculated for colistin and agreement between VITEK and BMD was also calculated. Out of 251 strains colistin MIC of ≥4 µg/mL was seen in 40 (15.9%). Of these strains 20 (50%) were Klebsiella pneumoniae . Colistin MIC 50 and MIC 90 were found to be 0.5 and 16 µg/mL, respectively. BMD and VITEK 2 showed 100% categorical agreement. Essential agreement was 88.5% with kappa score 0.733 indicating strong agreement between VITEK and BMD. 31 out of 251 (12.3%) CREs were resistant to fosfomycin. Study shows frequency of colistin and fosfomycin resistance to be 15.9% and 12.3%, respectively. In countries where rate of CREs is high, emerging resistance against these last resort antibiotics is alarming as it leaves clinicians with almost no options to manage such multidrug resistant and extensively drug resistant infections.

  12. A Population WB-PBPK Model of Colistin and its Prodrug CMS in Pigs: Focus on the Renal Distribution and Excretion.

    PubMed

    Viel, Alexis; Henri, Jérôme; Bouchène, Salim; Laroche, Julian; Rolland, Jean-Guy; Manceau, Jacqueline; Laurentie, Michel; Couet, William; Grégoire, Nicolas

    2018-03-12

    The objective was the development of a whole-body physiologically-based pharmacokinetic (WB-PBPK) model for colistin, and its prodrug colistimethate sodium (CMS), in pigs to explore their tissue distribution, especially in kidneys. Plasma and tissue concentrations of CMS and colistin were measured after systemic administrations of different dosing regimens of CMS in pigs. The WB-PBPK model was developed based on these data according to a non-linear mixed effect approach and using NONMEM software. A detailed sub-model was implemented for kidneys to handle the complex disposition of CMS and colistin within this organ. The WB-PBPK model well captured the kinetic profiles of CMS and colistin in plasma. In kidneys, an accumulation and slow elimination of colistin were observed and well described by the model. Kidneys seemed to have a major role in the elimination processes, through tubular secretion of CMS and intracellular degradation of colistin. Lastly, to illustrate the usefulness of the PBPK model, an estimation of the withdrawal periods after veterinary use of CMS in pigs was made. The WB-PBPK model gives an insight into the renal distribution and elimination of CMS and colistin in pigs; it may be further developed to explore the colistin induced-nephrotoxicity in humans.

  13. Disruption of Membrane by Colistin Kills Uropathogenic Escherichia coli Persisters and Enhances Killing of Other Antibiotics.

    PubMed

    Cui, Peng; Niu, Hongxia; Shi, Wanliang; Zhang, Shuo; Zhang, Hao; Margolick, Joseph; Zhang, Wenhong; Zhang, Ying

    2016-11-01

    Persisters are small populations of quiescent bacterial cells that survive exposure to bactericidal antibiotics and are responsible for many persistent infections and posttreatment relapses. However, little is known about how to effectively kill persister bacteria. In the work presented here, we found that colistin, a membrane-active antibiotic, was highly active against Escherichia coli persisters at high concentrations (25 or 50 μg/ml). At a clinically relevant lower concentration (10 μg/ml), colistin alone had no apparent effect on E. coli persisters. In combination with other drugs, this concentration of colistin enhanced the antipersister activity of gentamicin and ofloxacin but not that of ampicillin, nitrofurans, and sulfa drugs in vitro The colistin enhancement effect was most likely due to increased uptake of the other antibiotics, as demonstrated by increased accumulation of fluorescence-labeled gentamicin. Interestingly, colistin significantly enhanced the activity of ofloxacin and nitrofurantoin but not that of gentamicin or sulfa drugs in the murine model of urinary tract infection. Our findings suggest that targeting bacterial membranes is a valuable approach to eradicating persisters and should have implications for more effective treatment of persistent bacterial infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Antifungal activity of colistin against mucorales species in vitro and in a murine model of Rhizopus oryzae pulmonary infection.

    PubMed

    Ben-Ami, Ronen; Lewis, Russell E; Tarrand, Jeffrey; Leventakos, Konstantinos; Kontoyiannis, Dimitrios P

    2010-01-01

    In immunosuppressed hosts, mucormycosis is a life-threatening infection with few treatment options. We studied the activity of colistin (polymyxin E) against Mucorales species in vitro and in a murine model of pulmonary Rhizopus oryzae infection. Colistin exhibited fungicidal activity in vitro against Mucorales spores and mycelia. At the colistin MIC, initial R. oryzae hyphal damage was followed by rapid regrowth; however, regrowth was prevented by combining colistin with a subinhibitory concentration of amphotericin B. Using electron microscopy and FM4-64 staining, we demonstrated that colistin disrupts R. oryzae cytoplasmic and vacuolar membranes, resulting in the leakage of intracellular contents. The prophylactic intranasal treatment of immunosuppressed mice with colistimethate significantly reduced the mortality rate and pulmonary fungal burden resulting from inhalational challenge with R. oryzae spores, whereas intraperitoneal colistimethate treatment had no effect. We conclude that colistin has modest in vitro and in vivo fungicidal activity against Mucorales spp. Further studies are warranted to assess the use of this drug in the prevention and treatment of mucormycosis.

  15. Antifungal Activity of Colistin against Mucorales Species In Vitro and in a Murine Model of Rhizopus oryzae Pulmonary Infection▿

    PubMed Central

    Ben-Ami, Ronen; Lewis, Russell E.; Tarrand, Jeffrey; Leventakos, Konstantinos; Kontoyiannis, Dimitrios P.

    2010-01-01

    In immunosuppressed hosts, mucormycosis is a life-threatening infection with few treatment options. We studied the activity of colistin (polymyxin E) against Mucorales species in vitro and in a murine model of pulmonary Rhizopus oryzae infection. Colistin exhibited fungicidal activity in vitro against Mucorales spores and mycelia. At the colistin MIC, initial R. oryzae hyphal damage was followed by rapid regrowth; however, regrowth was prevented by combining colistin with a subinhibitory concentration of amphotericin B. Using electron microscopy and FM4-64 staining, we demonstrated that colistin disrupts R. oryzae cytoplasmic and vacuolar membranes, resulting in the leakage of intracellular contents. The prophylactic intranasal treatment of immunosuppressed mice with colistimethate significantly reduced the mortality rate and pulmonary fungal burden resulting from inhalational challenge with R. oryzae spores, whereas intraperitoneal colistimethate treatment had no effect. We conclude that colistin has modest in vitro and in vivo fungicidal activity against Mucorales spp. Further studies are warranted to assess the use of this drug in the prevention and treatment of mucormycosis. PMID:19858263

  16. Genome Sequences of Multidrug-Resistant, Colistin-Susceptible and -Resistant Klebsiella pneumoniae Clinical Isolates from Pakistan

    PubMed Central

    Crawford, Matthew A.; Timme, Ruth; Lomonaco, Sara; Lascols, Christine; Fisher, Debra J.; Sharma, Shashi K.; Strain, Errol; Allard, Marc W.; Brown, Eric W.; McFarland, Melinda A.; Croley, Tim; Hammack, Thomas S.; Weigel, Linda M.; Anderson, Kevin; Hodge, David R.; Pillai, Segaran P.; Morse, Stephen A.; Khan, Erum

    2016-01-01

    The emergence and spread of colistin resistance among multidrug-resistant (MDR) Klebsiella pneumoniae represent a critical threat to global health. Here, we report the complete genome sequences of 10 MDR, colistin-susceptible and -resistant K. pneumoniae clinical isolates obtained in Pakistan between 2010 and 2013. PMID:27979956

  17. Emergence of colistin-resistant Escherichia coli clinical isolates harboring mcr-1 in Vietnam.

    PubMed

    Tada, Tatsuya; Nhung, Pham Hong; Shimada, Kayo; Tsuchiya, Mitsuhiro; Phuong, Doan Mai; Anh, Nguyen Quoc; Ohmagari, Norio; Kirikae, Teruo

    2017-10-01

    The mcr-1 was first detected on a plasmid in colistin-resistant Escherichia coli from livestock and patients in China. We described here the emergence of colistin-resistant E. coli clinical isolates harboring mcr-1 on the chromosomes in Vietnam. To our knowledge, this is the first report of hospital-acquired E. coli isolates harboring mcr-1 in a medical setting in Vietnam. Copyright © 2017. Published by Elsevier Ltd.

  18. Molecular Mechanisms of Colistin Resistance in Klebsiella pneumoniae Causing Bacteremia from India—A First Report

    PubMed Central

    Pragasam, Agila K.; Shankar, Chaitra; Veeraraghavan, Balaji; Biswas, Indranil; Nabarro, Laura E. B.; Inbanathan, Francis Y.; George, Biju; Verghese, Santhosh

    2017-01-01

    Colistin has long been a reserve drug used for the treatment of carbapenem resistant Klebsiella pneumoniae. Carbapenem resistance in K. pneumoniae has been increasing and is as high as 44% in India. Although a reserve agent, with rise in rates of resistance to carbapenems, the usage of colistin has increased over the years leading to slow emergence of resistance. Colistin resistance is mainly mediated by the alteration in the LPS of bacterial outer membrane with the addition of L-Ara4-N and PEtN molecules. These alterations are mediated by mutations in several genes involved in lipidA modifications and most commonly mutations in mgrB gene has been reported. Recently there is emergence of plasmid mediated resistance due to mcr-1 and mcr-2 genes which poses a threat for the rapid global spread. This study aims at characterizing eight colistin resistant K. pneumoniae from bacteremia by whole genome sequencing. Eight K. pneumoniae were isolated from blood culture during 2013 and 2014 at the Department of Clinical Microbiology, Christian Medical College, India. Antimicrobial susceptibility testing was performed and minimum inhibitory concentration (MIC) was determined for colistin and polymyxin B by broth-micro dilution method. Whole genome sequencing was performed using Ion Torrent and the genome of all eight isolates was analyzed. The eight isolates were resistant to all the antimicrobials expect tigecycline. MIC of colistin and polymyxin B were ranged from 4 to 1024 μg/ml and 0.5 to 2048 μg/ml respectively. Multiple mutations were observed in the chromosomal genes involved in lipid A modifications. mcr-1 and mcr-2 gene was absent in all the isolates. The most significant were mutations in mgrB gene. Among the eight isolates, four, three and one were belonged to sequence types ST 231, ST14 and ST147 respectively. Seven isolates had blaOXA−48 like, one co-expressed blaNDM−1 and blaOXA−48 like genes leading to carbapenem resistance. Overall, multiple numbers of

  19. Molecular Mechanisms of Colistin Resistance in Klebsiella pneumoniae Causing Bacteremia from India-A First Report.

    PubMed

    Pragasam, Agila K; Shankar, Chaitra; Veeraraghavan, Balaji; Biswas, Indranil; Nabarro, Laura E B; Inbanathan, Francis Y; George, Biju; Verghese, Santhosh

    2016-01-01

    Colistin has long been a reserve drug used for the treatment of carbapenem resistant Klebsiella pneumoniae . Carbapenem resistance in K. pneumoniae has been increasing and is as high as 44% in India. Although a reserve agent, with rise in rates of resistance to carbapenems, the usage of colistin has increased over the years leading to slow emergence of resistance. Colistin resistance is mainly mediated by the alteration in the LPS of bacterial outer membrane with the addition of L-Ara4-N and PEtN molecules. These alterations are mediated by mutations in several genes involved in lipidA modifications and most commonly mutations in mgrB gene has been reported. Recently there is emergence of plasmid mediated resistance due to mcr-1 and mcr-2 genes which poses a threat for the rapid global spread. This study aims at characterizing eight colistin resistant K. pneumoniae from bacteremia by whole genome sequencing. Eight K. pneumoniae were isolated from blood culture during 2013 and 2014 at the Department of Clinical Microbiology, Christian Medical College, India. Antimicrobial susceptibility testing was performed and minimum inhibitory concentration (MIC) was determined for colistin and polymyxin B by broth-micro dilution method. Whole genome sequencing was performed using Ion Torrent and the genome of all eight isolates was analyzed. The eight isolates were resistant to all the antimicrobials expect tigecycline. MIC of colistin and polymyxin B were ranged from 4 to 1024 μg/ml and 0.5 to 2048 μg/ml respectively. Multiple mutations were observed in the chromosomal genes involved in lipid A modifications. mcr-1 and mcr-2 gene was absent in all the isolates. The most significant were mutations in mgrB gene. Among the eight isolates, four, three and one were belonged to sequence types ST 231, ST14 and ST147 respectively. Seven isolates had bla OXA-48 like , one co-expressed bla NDM-1 and bla OXA-48 like genes leading to carbapenem resistance. Overall, multiple numbers of

  20. Lipopolysaccharide loss produces partial colistin dependence and collateral sensitivity to azithromycin, rifampicin and vancomycin in Acinetobacter baumannii.

    PubMed

    García-Quintanilla, Meritxell; Carretero-Ledesma, Marta; Moreno-Martínez, Patricia; Martín-Peña, Reyes; Pachón, Jerónimo; McConnell, Michael J

    2015-12-01

    Treatment options for multidrug-resistant (MDR) strains of Acinetobacter baumannii that acquire resistance to colistin are limited. Acinetobacter baumannii can become highly resistant to colistin through complete loss of lipopolysaccharide (LPS) owing to mutations in the genes encoding the first three enzymes involved in lipid A biosynthesis (lpxA, lpxC and lpxD). The objective of this study was to characterise the susceptibility to 15 clinically relevant antibiotics and 6 antimicrobial peptides (AMPs) of MDR A. baumannii clinical isolates that acquired colistin resistance due to mutations in lpxA, lpxC and lpxD as well as their colistin-susceptible counterparts. A dramatic increase in antibiotic susceptibility (≥16-fold increase) was observed upon LPS loss for azithromycin, rifampicin and vancomycin, whereas a moderate increase in susceptibility was seen for amikacin, ceftazidime, imipenem, cefepime and meropenem. Importantly, concentrations ranging from 8 mg/L to 32 mg/L of the six AMPs were able to reduce bacterial viability by ≥3 log10 in growth curve assays. We also demonstrate that colistin resistance results in partial colistin dependence for growth in LPS-deficient strains containing mutations in lpxA, lpxC and lpxD, but not when colistin resistance occurs via LPS modification due to mutations in the PmrA/B two-component system. The results of this study indicate that loss of LPS expression results in collateral sensitivity to azithromycin, rifampicin and vancomycin, and that the six AMPs tested retain activity against LPS-deficient strains, indicating that these antibiotics may be viable treatment options for infections caused by these strains. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Synergy of the antibiotic colistin with echinocandin antifungals in Candida species.

    PubMed

    Zeidler, Ute; Bougnoux, Marie-Elisabeth; Lupan, Alexandru; Helynck, Olivier; Doyen, Antonia; Garcia, Zacarias; Sertour, Natacha; Clavaud, Cécile; Munier-Lehmann, Hélène; Saveanu, Cosmin; d'Enfert, Christophe

    2013-06-01

    Candida albicans is the most prevalent fungal pathogen of humans, causing a wide range of infections from harmless superficial to severe systemic infections. Improvement of the antifungal arsenal is needed since existing antifungals can be associated with limited efficacy, toxicity and antifungal resistance. Here we aimed to identify compounds that act synergistically with echinocandin antifungals and that could contribute to a faster reduction of the fungal burden. A total of 38 758 compounds were tested for their ability to act synergistically with aminocandin, a β-1,3-glucan synthase inhibitor of the echinocandin family of antifungals. The synergy between echinocandins and an identified hit was studied with chemogenomic screens and testing of individual Saccharomyces cerevisiae and C. albicans mutant strains. We found that colistin, an antibiotic that targets membranes in Gram-negative bacteria, is synergistic with drugs of the echinocandin family against all Candida species tested. The combination of colistin and aminocandin led to faster and increased permeabilization of C. albicans cells than either colistin or aminocandin alone. Echinocandin susceptibility was a prerequisite to be able to observe the synergy. A large-scale screen for genes involved in natural resistance of yeast cells to low doses of the drugs, alone or in combination, identified efficient sphingolipid and chitin biosynthesis as necessary to protect S. cerevisiae and C. albicans cells against the antifungal combination. These results suggest that echinocandin-mediated weakening of the cell wall facilitates colistin targeting of fungal membranes, which in turn reinforces the antifungal activity of echinocandins.

  2. Clinically Relevant Plasma Concentrations of Colistin in Combination with Imipenem Enhance Pharmacodynamic Activity against Multidrug-Resistant Pseudomonas aeruginosa at Multiple Inocula▿†

    PubMed Central

    Bergen, Phillip J.; Forrest, Alan; Bulitta, Jürgen B.; Tsuji, Brian T.; Sidjabat, Hanna E.; Paterson, David L.; Li, Jian; Nation, Roger L.

    2011-01-01

    The use of combination antibiotic therapy may be beneficial against rapidly emerging resistance in Pseudomonas aeruginosa. The aim of this study was to systematically investigate in vitro bacterial killing and resistance emergence with colistin alone and in combination with imipenem against multidrug-resistant (MDR) P. aeruginosa. Time-kill studies were conducted over 48 h using 5 clinical isolates and ATCC 27853 at two inocula (∼106 and ∼108 CFU/ml); MDR, non-MDR, and colistin-heteroresistant and -resistant strains were included. Nine colistin-imipenem combinations were investigated. Microbiological response was examined by log changes at 6, 24, and 48 h. Colistin combined with imipenem at clinically relevant concentrations increased the levels of killing of MDR and colistin-heteroresistant isolates at both inocula. Substantial improvements in activity with combinations were observed across 48 h with all colistin concentrations at the low inoculum and with colistin at 4× and 16× MIC (or 4 and 32 mg/liter) at the high inoculum. Combinations were additive or synergistic against imipenem-resistant isolates (MICs, 16 and 32 mg/liter) at the 106-CFU inoculum in 9, 11, and 12 of 18 cases (i.e., 9 combinations across 2 isolates) at 6, 24, and 48 h, respectively, and against the same isolates at the 108-CFU inoculum in 11, 7, and 8 cases, respectively. Against a colistin-resistant strain (MIC, 128 mg/liter), combinations were additive or synergistic in 9 and 8 of 9 cases at 24 h at the 106- and 108-CFU inocula, respectively, and in 5 and 7 cases at 48 h. This systematic study provides important information for optimization of colistin-imipenem combinations targeting both colistin-susceptible and colistin-resistant subpopulations. PMID:21876058

  3. Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates.

    PubMed

    Lomonaco, Sara; Crawford, Matthew A; Lascols, Christine; Timme, Ruth E; Anderson, Kevin; Hodge, David R; Fisher, Debra J; Pillai, Segaran P; Morse, Stephen A; Khan, Erum; Hughes, Molly A; Allard, Marc W; Sharma, Shashi K

    2018-01-01

    The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health.

  4. Resistome of carbapenem- and colistin-resistant Klebsiella pneumoniae clinical isolates

    PubMed Central

    Crawford, Matthew A.; Lascols, Christine; Timme, Ruth E.; Anderson, Kevin; Hodge, David R.; Fisher, Debra J.; Pillai, Segaran P.; Morse, Stephen A.; Khan, Erum; Hughes, Molly A.; Allard, Marc W.; Sharma, Shashi K.

    2018-01-01

    The emergence and dissemination of carbapenemases, bacterial enzymes able to inactivate most β-lactam antibiotics, in Enterobacteriaceae is of increasing concern. The concurrent spread of resistance against colistin, an antibiotic of last resort, further compounds this challenge further. Whole-genome sequencing (WGS) can play a significant role in the rapid and accurate detection/characterization of existing and emergent resistance determinants, an essential aspect of public health surveillance and response activities to combat the spread of antimicrobial resistant bacteria. In the current study, WGS data was used to characterize the genomic content of antimicrobial resistance genes, including those encoding carbapenemases, in 10 multidrug-resistant Klebsiella pneumoniae isolates from Pakistan. These clinical isolates represented five sequence types: ST11 (n = 3 isolates), ST14 (n = 3), ST15 (n = 1), ST101 (n = 2), and ST307 (n = 1). Resistance profiles against 25 clinically-relevant antimicrobials were determined by broth microdilution; resistant phenotypes were observed for at least 15 of the 25 antibiotics tested in all isolates except one. Specifically, 8/10 isolates were carbapenem-resistant and 7/10 isolates were colistin-resistant. The blaNDM-1 and blaOXA-48 carbapenemase genes were present in 7/10 and 5/10 isolates, respectively; including 2 isolates carrying both genes. No plasmid-mediated determinants for colistin resistance (e.g. mcr) were detected, but disruptions and mutations in chromosomal loci (i.e. mgrB and pmrB) previously reported to confer colistin resistance were observed. A blaOXA-48-carrying IncL/M-type plasmid was found in all blaOXA-48-positive isolates. The application of WGS to molecular epidemiology and surveillance studies, as exemplified here, will provide both a more complete understanding of the global distribution of MDR isolates and a robust surveillance tool useful for detecting emerging threats to public health. PMID:29883490

  5. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals?

    PubMed

    Al-Tawfiq, Jaffar A; Laxminarayan, Ramanan; Mendelson, Marc

    2017-01-01

    The widespread use of antibiotics in humans and animals has contributed to growing rates of antibiotic resistance. Previously treatable bacterial infections now require the last line of antibiotics or are untreatable. The current antibiotic of last resort for carbapenem-resistant Gram-negative bacterial infections is often colistin. Evidence for the shifting pattern of colistin resistance and how the international community should respond are discussed in this review. The literature on colistin resistance was reviewed. Plasmid-mediated colistin resistance encoded by mcr-1 was first documented in China during the routine surveillance of food animals. This has been followed by similar reports across a wide geographic area, in humans, animals, and the environment. The mcr-1 gene has been reported among human isolates in 29 countries, related to environmental samples in four countries, and in food animals and other animals in 28 countries. More recently, a second gene encoding resistance, mcr-2, has been isolated from porcine and bovine Escherichia coli. The emergence and horizontal transmission of colistin resistance highlights the need for heightened stewardship efforts across the One Health platform for this antibiotic of last resort, and indeed for all antibiotics used in animals and humans. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea.

    PubMed

    Wi, Yu Mi; Choi, Ji-Young; Lee, Ji-Young; Kang, Cheol-In; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon; Ko, Kwan Soo

    2017-06-01

    In this study, the prevalence and characteristics of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa isolates in South Korea were investigated. Among 215 P. aeruginosa isolates collected from eight hospitals, 77 (35.8%) and 72 (33.5%) were resistant to imipenem and meropenem, respectively. Of the 77 imipenem-resistant isolates, MBL genes were identified in 34 isolates (bla IMP-6 in 33 isolates and bla VIM-2 in 1 isolate). All of the MBL-producing isolates belonged to a globally prevailing genotype, sequence type 235 (ST235), and all of the IMP-6-producing isolates showed a deletion of nucleotide 209 of the porin gene oprD. Of the 33 IMP-6-producing ST235 isolates, 9 were resistant to colistin and exhibited resistance to all antimicrobial agents included in this study. PhoPQ and PmrAB amino acid alterations were not identical in the colistin-resistant isolates, indicating independent emergence of colistin resistance in this high-risk clone. Carbapenem resistance in P. aeruginosa has increased in South Korea owing to the dissemination of IMP-6-producing ST235 isolates, which showed high-level resistance to meropenem. Emergence of colistin resistance in the disseminated resistant clone would be a significant threat because few alternatives are left for the treatment of systemic infections. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. Germicidal Activity against Carbapenem/Colistin-Resistant Enterobacteriaceae Using a Quantitative Carrier Test Method.

    PubMed

    Kanamori, Hajime; Rutala, William A; Gergen, Maria F; Sickbert-Bennett, Emily E; Weber, David J

    2018-05-07

    Susceptibility to germicides for carbapenem/colistin-resistant Enterobacteriaceae is poorly described. We investigated the efficacy of multiple germicides against these emerging antibiotic-resistant pathogens using the disc-based quantitative carrier test method that can produce results more similar to those encountered in healthcare settings than a suspension test. Our study results demonstrated that germicides commonly used in healthcare facilities likely will be effective against carbapenem/colistin-resistant Enterobacteriaceae when used appropriately in healthcare facilities. Copyright © 2018 American Society for Microbiology.

  8. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill.

    PubMed

    Mohamed, Ami F; Karaiskos, Ilias; Plachouras, Diamantis; Karvanen, Matti; Pontikis, Konstantinos; Jansson, Britt; Papadomichelakis, Evangelos; Antoniadou, Anastasia; Giamarellou, Helen; Armaganidis, Apostolos; Cars, Otto; Friberg, Lena E

    2012-08-01

    A previous pharmacokinetic study on dosing of colistin methanesulfonate (CMS) at 240 mg (3 million units [MU]) every 8 h indicated that colistin has a long half-life, resulting in insufficient concentrations for the first 12 to 48 h after initiation of treatment. A loading dose would therefore be beneficial. The aim of this study was to evaluate CMS and colistin pharmacokinetics following a 480-mg (6-MU) loading dose in critically ill patients and to explore the bacterial kill following the use of different dosing regimens obtained by predictions from a pharmacokinetic-pharmacodynamic model developed from an in vitro study on Pseudomonas aeruginosa. The unbound fractions of colistin A and colistin B were determined using equilibrium dialysis and considered in the predictions. Ten critically ill patients (6 males; mean age, 54 years; mean creatinine clearance, 82 ml/min) with infections caused by multidrug-resistant Gram-negative bacteria were enrolled in the study. The pharmacokinetic data collected after the first and eighth doses were analyzed simultaneously with the data from the previous study (total, 28 patients) in the NONMEM program. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.026 and 2.2 h, respectively. For colistin, a one-compartment model was sufficient and the estimated half-life was 18.5 h. The unbound fractions of colistin in the patients were 26 to 41% at clinical concentrations. Colistin A, but not colistin B, had a concentration-dependent binding. The predictions suggested that the time to 3-log-unit bacterial kill for a 480-mg loading dose was reduced to half of that for the dose of 240 mg.

  9. Application of a Loading Dose of Colistin Methanesulfonate in Critically Ill Patients: Population Pharmacokinetics, Protein Binding, and Prediction of Bacterial Kill

    PubMed Central

    Karaiskos, Ilias; Plachouras, Diamantis; Karvanen, Matti; Pontikis, Konstantinos; Jansson, Britt; Papadomichelakis, Evangelos; Antoniadou, Anastasia; Giamarellou, Helen; Armaganidis, Apostolos; Cars, Otto; Friberg, Lena E.

    2012-01-01

    A previous pharmacokinetic study on dosing of colistin methanesulfonate (CMS) at 240 mg (3 million units [MU]) every 8 h indicated that colistin has a long half-life, resulting in insufficient concentrations for the first 12 to 48 h after initiation of treatment. A loading dose would therefore be beneficial. The aim of this study was to evaluate CMS and colistin pharmacokinetics following a 480-mg (6-MU) loading dose in critically ill patients and to explore the bacterial kill following the use of different dosing regimens obtained by predictions from a pharmacokinetic-pharmacodynamic model developed from an in vitro study on Pseudomonas aeruginosa. The unbound fractions of colistin A and colistin B were determined using equilibrium dialysis and considered in the predictions. Ten critically ill patients (6 males; mean age, 54 years; mean creatinine clearance, 82 ml/min) with infections caused by multidrug-resistant Gram-negative bacteria were enrolled in the study. The pharmacokinetic data collected after the first and eighth doses were analyzed simultaneously with the data from the previous study (total, 28 patients) in the NONMEM program. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.026 and 2.2 h, respectively. For colistin, a one-compartment model was sufficient and the estimated half-life was 18.5 h. The unbound fractions of colistin in the patients were 26 to 41% at clinical concentrations. Colistin A, but not colistin B, had a concentration-dependent binding. The predictions suggested that the time to 3-log-unit bacterial kill for a 480-mg loading dose was reduced to half of that for the dose of 240 mg. PMID:22615285

  10. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-β-lactamase-producing Escherichia coli in a foreign-body infection model.

    PubMed

    Corvec, Stéphane; Furustrand Tafin, Ulrika; Betrisey, Bertrand; Borens, Olivier; Trampuz, Andrej

    2013-03-01

    Limited antimicrobial agents are available for the treatment of implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli. We compared the activities of fosfomycin, tigecycline, colistin, and gentamicin (alone and in combination) against a CTX-M15-producing strain of Escherichia coli (Bj HDE-1) in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration in logarithmic phase (MBC(log)) and stationary phase (MBC(stat)) were 0.12, 0.12, and 8 μg/ml for fosfomycin, 0.25, 32, and 32 μg/ml for tigecycline, 0.25, 0.5, and 2 μg/ml for colistin, and 2, 8, and 16 μg/ml for gentamicin, respectively. In time-kill studies, colistin showed concentration-dependent activity, but regrowth occurred after 24 h. Fosfomycin demonstrated rapid bactericidal activity at the MIC, and no regrowth occurred. Synergistic activity between fosfomycin and colistin in vitro was observed, with no detectable bacterial counts after 6 h. In animal studies, fosfomycin reduced planktonic counts by 4 log(10) CFU/ml, whereas in combination with colistin, tigecycline, or gentamicin, it reduced counts by >6 log(10) CFU/ml. Fosfomycin was the only single agent which was able to eradicate E. coli biofilms (cure rate, 17% of implanted, infected cages). In combination, colistin plus tigecycline (50%) and fosfomycin plus gentamicin (42%) cured significantly more infected cages than colistin plus gentamicin (33%) or fosfomycin plus tigecycline (25%) (P < 0.05). The combination of fosfomycin plus colistin showed the highest cure rate (67%), which was significantly better than that of fosfomycin alone (P < 0.05). In conclusion, the combination of fosfomycin plus colistin is a promising treatment option for implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli.

  11. The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India.

    PubMed

    Manohar, Prasanth; Shanthini, Thamaraiselvan; Ayyanar, Ramankannan; Bozdogan, Bulent; Wilson, Aruni; Tamhankar, Ashok J; Nachimuthu, Ramesh; Lopes, Bruno S

    2017-07-01

    The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India.

  12. In Vivo Fitness Adaptations of Colistin-Resistant Acinetobacter baumannii Isolates to Oxidative Stress.

    PubMed

    Jones, Crystal L; Singh, Shweta S; Alamneh, Yonas; Casella, Leila G; Ernst, Robert K; Lesho, Emil P; Waterman, Paige E; Zurawski, Daniel V

    2017-03-01

    The loss of fitness in colistin-resistant (CR) Acinetobacter baumannii was investigated using longitudinal isolates from the same patient. Early CR isolates were outcompeted by late CR isolates for growth in broth and survival in the lungs of mice. Fitness loss was associated with an increased susceptibility to oxidative stress since early CR strains had reduced in vitro survival in the presence of hydrogen peroxide and decreased catalase activity compared to that of late CR and colistin-susceptible (CS) strains. Copyright © 2017 Jones et al.

  13. Determination of colistin in animal tissues, egg, milk, and feed by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Fu, Qin; Li, Xiaowei; Zheng, Kangni; Ke, Yuebin; Wang, Yingyu; Wang, Lina; Yu, Fugen; Xia, Xi

    2018-05-15

    A confirmatory method for the determination of colistin in animal tissues, egg, milk, and feed was developed and validated. Colistin A and colistin B were extracted from samples with the mixture of 10% trichloroacetic acid-acetonitrile and isolated with mixed-mode weak cation exchange cartridge. Analytes were separated from matrix components using ultra-high performance liquid chromatography, and detected with electrospray ionization on a triple quadrupole mass spectrometer. Mean recoveries ranged from 78.0% to 115.6% with intra-day and inter-day relative standard deviation lower than 8.4% and 12.4%, respectively. The quantitation limits for different matrices were between 5 and 30 μg/kg, which was satisfactory for surveillance monitoring. The developed method was applied to the analysis of real samples collected from different provinces of China, and 19 out of 348 samples were found to be contaminated, with the highest concentration of approximately 12,000 μg/kg colistin A and 10,000 μg/kg colistin B in feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Colistin-associated Acute Kidney Injury in Severely Ill Patients: A Step Toward a Better Renal Care? A Prospective Cohort Study.

    PubMed

    Dalfino, Lidia; Puntillo, Filomena; Ondok, Maria Josephine Mura; Mosca, Adriana; Monno, Rosa; Coppolecchia, Sara; Spada, Maria Luigia; Bruno, Francesco; Brienza, Nicola

    2015-12-15

    Critically ill patients with severe sepsis or septic shock may need relatively high colistin daily doses for efficacy against multidrug-resistant and extensively drug-resistant gram-negative rods. However, acute kidney injury (AKI) may represent a major dose-limiting adverse effect of colistin. We sought to determine AKI occurrence and to identify factors influencing AKI risk in severely ill patients receiving colistin according to a recently proposed dosing strategy. A prospective, observational, cohort study involving patients with severe sepsis or septic shock who received colistin was performed. AKI was defined according to Acute Kidney Injury Network criteria. Colistin administration was driven by a modified pharmacokinetics-pharmacodynamics (PK/PD)-based dosing approach. Of 70 patients who received colistin at a median daily dose of 9 million IU (MIU; interquartile range, 5.87-11.1 MIU), 31 (44%) developed AKI. In univariate analysis, age, Acute Physiology and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA), score and baseline renal impairment were significantly associated with AKI. Moreover, patients with AKI were less frequently treated with adjuvant ascorbic acid (P = .003). In multivariate analysis, independent predictors of AKI were baseline renal impairment (adjusted hazard ratio, 4.15; 95% confidence interval, 1.9-9.2; P < .001) and age (1.03; 1.0-1.05; P = .028), whereas a strong independent renal-protective role emerged for ascorbic acid (0.27; .12-.57; P < .001). In severely ill patients receiving colistin according to a PK/PD-driven dosing approach, baseline renal impairment and older age strongly predict AKI occurrence, but concomitant administration of ascorbic acid markedly reduces AKI risk, allowing safer use of colistin. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. The first human report of mobile colistin resistance gene, mcr-1, in Finland.

    PubMed

    Gröndahl-Yli-Hannuksela, Kirsi; Lönnqvist, Emilia; Kallonen, Teemu; Lindholm, Laura; Jalava, Jari; Rantakokko-Jalava, Kaisu; Vuopio, Jaana

    2018-05-01

    Colistin resistance mediated by mobile mcr-1 gene has raised concern during the last years. After steep increase in mcr-1 reports, other mcr-gene variants (mcr-2 to mcr-5) have been revealed as well. In 2016, a clinical study was conducted on asymptomatic stool carriage of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae among Finnish adults. All suspected ESBL producing bacterial isolates were first tested by phenotypic ESBL-confirmation methods, and then further analyzed with whole genome sequencing to identify the resistance genes. We found one study subject carrying a colistin resistant E. coli with a transferrable mcr-1 gene. This multi-drug resistant isolate, although initially suspected to be an ESBL producer, did not carry any ESBL genes, but was proven to carry several other resistance genes by using whole genome sequencing. Sequence type was ST93. The mcr-1 gene was connected to IncX4 plasmid which suggests that the colistin resistance gene locates in the respective plasmid. Here, we report the finding of a mcr-1 harboring human E. coli isolate from Finland. Clinical antimicrobial resistance (AMR) rates are low in Finland, and mobile colistin resistance has not been reported previously. This highlights the importance of AMR surveillance also in populations with low levels of resistance. © 2018 The Authors. APMIS published by John Wiley & Sons Ltd on behalf of Scandinavian Societies for Medical Microbiology and Pathology.

  16. Increasing burden of urinary tract infections due to intrinsic colistin-resistant bacteria in hospitals in Marseille, France.

    PubMed

    Abat, Cédric; Desboves, Guillaume; Olaitan, Abiola Olumuyiwa; Chaudet, Hervé; Roattino, Nicole; Fournier, Pierre-Edouard; Colson, Philippe; Raoult, Didier; Rolain, Jean-Marc

    2015-02-01

    The emergence of multidrug-resistant (MDR) Gram-negative bacteria has become a major public health problem, eliciting renewed interest in colistin, an old antibiotic that is now routinely used to treat MDR bacterial infections. Here we investigated whether colistin use has affected the prevalence of infections due to intrinsic colistin-resistant bacteria (CRB) in university hospitals in Marseille (France) over a 5-year period. All data from patients infected by intrinsic CRB were compiled from January 2009 to December 2013. Escherichia coli infections were used for comparison. Colistin consumption data were also collected from pharmacy records from 2008 to 2013. A total of 4847 intrinsic CRB infections, including 3150 Proteus spp., 847 Morganella spp., 704 Serratia spp. and 146 Providencia spp., were collected between 2009 and 2013. During this period, the annual incidence rate of hospital-acquired CRB infections increased from 220 per 1000 patients to 230 per 1000 patients and that of community-acquired CRB infections increased from 100 per 1000 patients to 140 per 1000 patients. In parallel, colistin consumption increased 2.2-fold from 2008 to 2013, mainly because of an increase in the use of colistin aerosol forms (from 50 unitary doses to 2926 unitary doses; P<10(-5)) that was significantly correlated with an increase in the number of patients positive for CRB admitted to ICUs and units of long-term care between 2009 and 2013 (r=0.91; P=0.03). The global rise in infections due to intrinsic CRB is worrying and surveillance is warranted to better characterise this intriguing epidemiological change. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies.

    PubMed

    Freudenthal, Oona; Quilès, Fabienne; Francius, Grégory; Wojszko, Kamila; Gorczyca, Marcelina; Korchowiec, Beata; Rogalska, Ewa

    2016-11-01

    Colistin (Polymyxin E), an antimicrobial peptide, is increasingly put forward as salvage for severe multidrug-resistant infections. Unfortunately, colistin is potentially toxic to mammalian cells. A better understanding of the interaction with specific components of the cell membranes may be helpful in controlling the factors that may enhance toxicity. Here, we report a physico-chemical study of model phospholipid (PL) mono- and bilayers exposed to colistin at different concentrations by Langmuir technique, atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The effect of colistin on chosen PL monolayers was examined. Insights into the topographical and elastic changes in the PL bilayers within time after peptide injection are presented via AFM imaging and force spectra. Finally, changes in the PL bilayers' ATR-FTIR spectra as a function of time within three bilayer compositions, and the influence of colistin on their spectral fingerprint are examined together with the time-evolution of the Amide II and νCO band integrated intensity ratios. Our study reveals a great importance in the role of the PL composition as well as the peptide concentration on the action of colistin on PL model membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Comparative evaluation of the sensitivity of Acinetobacter to colistin, using the prediffusion and minimum inhibitory concentration methods: detection of heteroresistant isolates].

    PubMed

    Herrera, Melina E; Mobilia, Liliana N; Posse, Graciela R

    2011-01-01

    The objective of this study is to perform a comparative evaluation of the prediffusion and minimum inhibitory concentration (MIC) methods for the detection of sensitivity to colistin, and to detect Acinetobacter baumanii-calcoaceticus complex (ABC) heteroresistant isolates to colistin. We studied 75 isolates of ABC recovered from clinically significant samples obtained from various centers. Sensitivity to colistin was determined by prediffusion as well as by MIC. All the isolates were sensitive to colistin, with MIC = 2µg/ml. The results were analyzed by dispersion graph and linear regression analysis, revealing that the prediffusion method did not correlate with the MIC values for isolates sensitive to colistin (r² = 0.2017). Detection of heteroresistance to colistin was determined by plaque efficiency of all the isolates with the same initial MICs of 2, 1, and 0.5 µg/ml, which resulted in 14 of them with a greater than 8-fold increase in the MIC in some cases. When the sensitivity of these resistant colonies was determined by prediffusion, the resulting dispersion graph and linear regression analysis yielded an r² = 0.604, which revealed a correlation between the methodologies used.

  19. Synergistic Killing of Multidrug-Resistant Pseudomonas aeruginosa at Multiple Inocula by Colistin Combined with Doripenem in an In Vitro Pharmacokinetic/Pharmacodynamic Model ▿

    PubMed Central

    Bergen, Phillip J.; Tsuji, Brian T.; Bulitta, Jurgen B.; Forrest, Alan; Jacob, Jovan; Sidjabat, Hanna E.; Paterson, David L.; Nation, Roger L.; Li, Jian

    2011-01-01

    Combination therapy may be required for multidrug-resistant (MDR) Pseudomonas aeruginosa. The aim of this study was to systematically investigate bacterial killing and emergence of colistin resistance with colistin and doripenem combinations against MDR P. aeruginosa. Studies were conducted in a one-compartment in vitro pharmacokinetic/pharmacodynamic model for 96 h at two inocula (∼106 and ∼108 CFU/ml) against a colistin-heteroresistant reference strain (ATCC 27853) and a colistin-resistant MDR clinical isolate (19147 n/m). Four combinations utilizing clinically achievable concentrations were investigated. Microbiological response was examined by log changes and population analysis profiles. Colistin (constant concentrations of 0.5 or 2 mg/liter) plus doripenem (peaks of 2.5 or 25 mg/liter every 8 h; half-life, 1.5 h) substantially increased bacterial killing against both strains at the low inoculum, while combinations containing colistin at 2 mg/liter increased activity against ATCC 27853 at the high inoculum; only colistin at 0.5 mg/liter plus doripenem at 2.5 mg/liter failed to improve activity against 19147 n/m at the high inoculum. Combinations were additive or synergistic against ATCC 27853 in 16 and 11 of 20 cases (4 combinations across 5 sample points) at the 106- and 108-CFU/ml inocula, respectively; the corresponding values for 19147 n/m were 16 and 9. Combinations containing doripenem at 25 mg/liter resulted in eradication of 19147 n/m at the low inoculum and substantial reductions in regrowth (including to below the limit of detection at ∼50 h) at the high inoculum. Emergence of colistin-resistant subpopulations of ATCC 27853 was substantially reduced and delayed with combination therapy. This investigation provides important information for optimization of colistin-doripenem combinations. PMID:21911563

  20. Functional genomics to discover antibiotic resistance genes: The paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in Shewanella algae MARS 14.

    PubMed

    Telke, Amar A; Rolain, Jean-Marc

    2015-12-01

    Shewanella algae MARS 14 is a colistin-resistant clinical isolate retrieved from bronchoalveolar lavage of a hospitalised patient. A functional genomics strategy was employed to discover the molecular support for colistin resistance in S. algae MARS 14. A pZE21 MCS-1 plasmid-based genomic expression library was constructed in Escherichia coli TOP10. The estimated library size was 1.30×10(8) bp. Functional screening of colistin-resistant clones was carried out on Luria-Bertani agar containing 8 mg/L colistin. Five colistin-resistant clones were obtained after complete screening of the genomic expression library. Analysis of DNA sequencing results found a unique gene in all selected clones. Amino acid sequence analysis of this unique gene using the Integrated Microbial Genomes (IMG) and KEGG databases revealed that this gene encodes ethanolamine phosphotransferase (EptA, or so-called PmrC). Reverse transcription PCR analysis indicated that resistance to colistin in S. algae MARS 14 was associated with overexpression of EptA (27-fold increase), which plays a crucial role in the arrangement of outer membrane lipopolysaccharide. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Efficacy and Safety of a Colistin Loading Dose, High-Dose Maintenance Regimen in Critically Ill Patients With Multidrug-Resistant Gram-Negative Pneumonia.

    PubMed

    Elefritz, Jessica L; Bauer, Karri A; Jones, Christian; Mangino, Julie E; Porter, Kyle; Murphy, Claire V

    2017-09-01

    Emergence of multidrug-resistant (MDR) gram-negative (GN) pathogens and lack of novel antibiotics have increased the use of colistin, despite unknown optimal dosing. This study aimed to evaluate the safety and efficacy of a colistin loading dose, high-dose (LDHD) maintenance regimen in patients with MDR-GN pneumonia. A retrospective cohort analysis was performed comparing critically ill patients with MDR-GN pneumonia pre- and postimplementation of a colistin LDHD guideline with a primary outcome of clinical cure. Safety was assessed using incidence of acute kidney injury (AKI) based on RIFLE (risk, injury, failure, loss, end-stage renal disease) criteria. Seventy-two patients met the inclusion criteria (42 preimplementation and 30 postimplementation). Clinical cure was achieved in 23 (55%) patients in the preimplementation group and 20 (67%) patients in the postimplementation group ( P = .31). AKI occurred in 50% of the patients during the preimplementation period and 58% during the postimplementation period ( P = .59) with no difference in initiation rates of renal replacement therapy. The increased clinical cure rate after implementation of the colistin LDHD guideline did not reach statistical significance. The LDHD guideline, however, was not associated with an increased incidence of AKI, despite higher intravenous colistin doses. Opportunity exists to optimize colistin dosage while balancing toxicity, but larger studies are warranted.

  2. Outcome of ventilator-associated pneumonia due to multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa treated with aerosolized colistin in neonates: a retrospective chart review.

    PubMed

    Celik, Istemi Han; Oguz, Serife Suna; Demirel, Gamze; Erdeve, Omer; Dilmen, Ugur

    2012-02-01

    Multidrug-resistant (MDR) gram-negative bacteria-related nosocomial infections and ventilator-associated pneumonia (VAP) presents an emerging challenge to clinicians. Older antimicrobial agents such as colistin have become life-saving drugs because of the susceptibility of these pathogens. We report our experience with aerosolized colistin in two preterm and one term neonate with Acinetobacter baumannii and Pseudomonas aeruginosa-related VAP who were unresponsiveness to previous antimicrobial treatment. All pathogens were isolated from tracheal aspirate. We used 5 mg/kg (base activity) aerosolized colistin methanesulfonate sodium in every 12 h as an adjunctive therapy for VAP. VAP was treated by 14, 14, and 16-day courses of aerosolized colistin in these patients, respectively. No adverse effect such as nephrotoxicity or neurotoxicity was observed. We found that aerosolized colistin was tolerable and safe, and it may be an adjunctive treatment option for MDR gram-negative bacterial VAP in neonates. Further studies are needed to determine appropriate doses for aerosolized colistin and its eligibility as an alternative treatment choice in newborns.

  3. Frequent use of colistin-based drug treatment to eliminate extended-spectrum beta-lactamase-producing Escherichia coli in backyard chicken farms in Thai Binh Province, Vietnam.

    PubMed

    Nakayama, Tatsuya; Jinnai, Michio; Kawahara, Ryuji; Diep, Khong Thi; Thang, Nguyen Nam; Hoa, Tran Thi; Hanh, Le Kieu; Khai, Pham Ngoc; Sumimura, Yoshinori; Yamamoto, Yoshimasa

    2017-01-01

    Reports of livestock infections with extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E) are increasing. Based on interviews conducted over a 6-month period, we found that veterinarians in the Vietnamese province of Thai Binh prefer to prescribe colistin-based drugs (CBD) in chicken farms. We aimed to clarify whether CBD use selects for strains of colistin-resistant ESBL-E. With the cooperation of seven local households, we detected ESBL-E in chickens' feces after treating chickens with CBD. Phylogenetic groupings and the presence of CTX-M/AmpC genes were determined, and the multi-antibiotic susceptibility of isolates was analyzed. Our results showed that ESBL-E presented in seven chickens' feces from two households. Seventy-two percent of ESBL-E isolates harbored CTX-M9 and the phylogenetic group A; the colistin minimum inhibitory concentration (MIC) of all isolated ESBL-E ranged from 0.064 to 1 μg mL -1 . Moreover, ESBL-E isolates were used to experimentally select for colistin resistance, and the effect of commercial CBD on ESBL-E was investigated. The results showed that an ESBL-E strain with a colistin MIC of 4 μg mL -1 was able to grow in media with CBD. Although CBD treatment was effective, in vitro experiments demonstrated that ESBL-E can easily acquire colistin resistance. Therefore, restrictions on colistin use are necessary to prevent the emergence of colistin-resistant bacteria.

  4. Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure.

    PubMed

    Le Devendec, Laetitia; Mourand, Gwenaelle; Bougeard, Stéphanie; Léaustic, Julien; Jouy, Eric; Keita, Alassane; Couet, William; Rousset, Nathalie; Kempf, Isabelle

    2016-10-15

    The application of manure may result in contamination of the environment with antimicrobials, antimicrobial-resistant bacteria, resistance genes and plasmids. The aim of this study was to investigate the impact of the administration of colistin and of manure management on (i) the presence of colistin-resistant Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa and (ii) the prevalence of various antimicrobial resistance genes in feces and in composted or stored manure. One flock of chickens was treated with colistin at the recommended dosage and a second flock was kept as an untreated control. Samples of feces, litter and stored or composted manure from both flocks were collected for isolation and determination of the colistin-susceptibility of E. coli, K. pneumoniae and P. aeruginosa and quantification of genes coding for resistance to different antimicrobials. The persistence of plasmids in stored or composted manure from colistin-treated broilers was also evaluated by plasmid capturing experiments. Results revealed that colistin administration to chickens had no apparent impact on the antimicrobial resistance of the dominant Enterobacteriaceae and P. aeruginosa populations in the chicken gut. Composting stimulated an apparently limited decrease in genes coding for resistance to different antimicrobial families. Importantly, it was shown that even after six weeks of composting or storage, plasmids carrying antimicrobial resistance genes could still be transferred to a recipient E. coli. In conclusion, composting is insufficient to completely eliminate the risk of spreading antimicrobial resistance through chicken manure. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health.

    PubMed

    Catry, Boudewijn; Cavaleri, Marco; Baptiste, Keith; Grave, Kari; Grein, Kornelia; Holm, Anja; Jukes, Helen; Liebana, Ernesto; Lopez Navas, Antonio; Mackay, David; Magiorakos, Anna-Pelagia; Moreno Romo, Miguel Angel; Moulin, Gérard; Muñoz Madero, Cristina; Matias Ferreira Pomba, Maria Constança; Powell, Mair; Pyörälä, Satu; Rantala, Merja; Ružauskas, Modestas; Sanders, Pascal; Teale, Christopher; Threlfall, Eric John; Törneke, Karolina; van Duijkeren, Engeline; Torren Edo, Jordi

    2015-09-01

    Since its introduction in the 1950s, colistin has been used mainly as a topical treatment in human medicine owing to its toxicity when given systemically. Sixty years later, colistin is being used as a last-resort drug to treat infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacteriaceae (e.g., Escherichia coli, Klebsiella pneumoniae), for which mortality can be high. In veterinary medicine, colistin has been used for decades for the treatment and prevention of infectious diseases. Colistin has been administered frequently as a group treatment for animal gastrointestinal infections caused by Gram-negative bacteria within intensive husbandry systems. Given the ever-growing need to retain the efficacy of antimicrobials used to treat MDR infections in humans, the use of colistin in veterinary medicine is being re-evaluated. Despite extensive use in veterinary medicine, there is limited evidence for the development of resistance to colistin and no evidence has been found for the transmission of resistance in bacteria that have been spread from animals to humans. Since surveillance for colistin resistance in animals is limited and the potential for such transmission exists, there is a clear need to reinforce systematic monitoring of bacteria from food-producing animals for resistance to colistin (polymyxins). Furthermore, colistin should only be used for treatment of clinically affected animals and no longer for prophylaxis of diseases, in line with current principles of responsible use of antibiotics. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  6. Colistin and Polymyxin B Susceptibility Testing for Carbapenem-Resistant and mcr-Positive Enterobacteriaceae: Comparison of Sensititre, MicroScan, Vitek 2, and Etest with Broth Microdilution

    PubMed Central

    La, My-Van; Lin, Raymond T. P.

    2017-01-01

    ABSTRACT Colistin and polymyxin B remain part of the last line of antibiotics for multidrug-resistant Gram-negative bacteria, such as carbapenem-resistant Enterobacteriaceae. Current joint EUCAST-CLSI recommendations are for broth microdilution (BMD) to be performed for MIC testing of colistin. Commercial susceptibility testing methods were evaluated and compared against the reference BMD, using a susceptibility breakpoint of ≤2 mg/liter for both colistin and polymyxin B. Seventy-six Enterobacteriaceae were included, of which 21 were mcr-1 positive (18 Escherichia coli isolates, 2 Klebsiella pneumoniae isolates, and 1 Enterobacter aerogenes isolate). Rates of essential agreement (EA) of colistin test results between BMD and Vitek 2, Sensititre, and Etest were 93.4%, 89.5%, and 75.0%, respectively. Rates of EA of polymyxin B test results between BMD and Vitek 2, Sensititre, and Etest were 96.1%, 96.1%, and 48.7%, respectively. A positive MIC correlation with a categorical agreement of >90% was achieved for Sensititre (colistin Spearman's ρ = 0.863, and polymyxin B Spearman's ρ = 0.877) and Vitek 2 (polymyxin B [only] Spearman's ρ = 0.8917). Although a positive MIC correlation (Spearman's ρ = 0.873) with the reference method was achieved for colistin testing with Vitek 2, categorical agreement was <90%, with very major error rates of 36%. Correlation with the Etest MIC was lower, with very major error rates of 12% (colistin) and 26.1% (polymyxin B). MicroScan (colistin) categorical agreement was 88.2%, with a very major error rate of 4%. Colistin MICs for 15 of the 21 mcr-1-positive isolates were >2 mg/liter, and polymyxin MICs for 17 of them were >2 mg/liter by broth microdilution. The use of a lower breakpoint of ≤1 mg/liter further improves detection of mcr-1 for all testing methods. However, further data on the correlation between MICs and clinical outcome are required to determine the most suitable breakpoint to guide clinical management. PMID:28592552

  7. Outbreak of a Cluster with Epidemic Behavior Due to Serratia marcescens after Colistin Administration in a Hospital Setting

    PubMed Central

    Merkier, Andrea Karina; Rodríguez, María Cecilia; Togneri, Ana; Brengi, Silvina; Osuna, Carolina; Pichel, Mariana; Cassini, Marcelo H.

    2013-01-01

    Serratia marcescens causes health care-associated infections with important morbidity and mortality. Particularly, outbreaks produced by multidrug-resistant isolates of this species, which is already naturally resistant to several antibiotics, including colistin, are usually described with high rates of fatal outcomes throughout the world. Thus, it is important to survey factors associated with increasing frequency and/or emergence of multidrug-resistant S. marcescens nosocomial infections. We report the investigation and control of an outbreak with 40% mortality due to multidrug-resistant S. marcescens infections that happened from November 2007 to April 2008 after treatment with colistin for Acinetobacter baumannii meningitis was started at hospital H1 in 2005. Since that year, the epidemiological pattern of frequently recovered species has changed, with an increase of S. marcescens and Proteus mirabilis infections in 2006 in concordance with a significant decrease of the numbers of P. aeruginosa and A. baumannii isolates. A single pulsed-field gel electrophoresis (PFGE) cluster of S. marcescens isolates was identified during the outbreak. When this cluster was compared with S. marcescens strains (n = 21) from 10 other hospitals (1997 to 2010), it was also identified in both sporadic and outbreak isolates circulating in 4 hospitals in Argentina. In132::ISCR1::blaCTX-M-2 was associated with the multidrug-resistant cluster with epidemic behavior when isolated from outbreaks. Standard infection control interventions interrupted transmission of this cluster even when treatment with colistin continued in several wards of hospital H1 until now. Optimizing use of colistin should be achieved simultaneously with improved infection control to prevent the emergence of species naturally resistant to colistin, such as S. marcescens and P. mirabilis. PMID:23698525

  8. Outbreak of a cluster with epidemic behavior due to Serratia marcescens after colistin administration in a hospital setting.

    PubMed

    Merkier, Andrea Karina; Rodríguez, María Cecilia; Togneri, Ana; Brengi, Silvina; Osuna, Carolina; Pichel, Mariana; Cassini, Marcelo H; Centrón, Daniela

    2013-07-01

    Serratia marcescens causes health care-associated infections with important morbidity and mortality. Particularly, outbreaks produced by multidrug-resistant isolates of this species, which is already naturally resistant to several antibiotics, including colistin, are usually described with high rates of fatal outcomes throughout the world. Thus, it is important to survey factors associated with increasing frequency and/or emergence of multidrug-resistant S. marcescens nosocomial infections. We report the investigation and control of an outbreak with 40% mortality due to multidrug-resistant S. marcescens infections that happened from November 2007 to April 2008 after treatment with colistin for Acinetobacter baumannii meningitis was started at hospital H1 in 2005. Since that year, the epidemiological pattern of frequently recovered species has changed, with an increase of S. marcescens and Proteus mirabilis infections in 2006 in concordance with a significant decrease of the numbers of P. aeruginosa and A. baumannii isolates. A single pulsed-field gel electrophoresis (PFGE) cluster of S. marcescens isolates was identified during the outbreak. When this cluster was compared with S. marcescens strains (n = 21) from 10 other hospitals (1997 to 2010), it was also identified in both sporadic and outbreak isolates circulating in 4 hospitals in Argentina. In132::ISCR1::blaCTX-M-2 was associated with the multidrug-resistant cluster with epidemic behavior when isolated from outbreaks. Standard infection control interventions interrupted transmission of this cluster even when treatment with colistin continued in several wards of hospital H1 until now. Optimizing use of colistin should be achieved simultaneously with improved infection control to prevent the emergence of species naturally resistant to colistin, such as S. marcescens and P. mirabilis.

  9. Outbreak of Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae: Are We at the End of the Road?

    PubMed Central

    van Duin, David

    2015-01-01

    Carbapenem-resistant Klebsiella pneumoniae strains that produce K. pneumoniae carbapenemase (KPC) have spread globally in the last decade. Colistin is a key agent in treating infections caused by this pathogen. In this issue of the Journal of Clinical Microbiology, Giani et al. (T. Giani, F. Arena, G. Vaggelli, V. Conte, A Chiarell, L. H. De Angelis, R. Fornaini, M. Grazzini, F. Niccolini, P. Pecile, and G. M. Rossolini, J Clin Microbiol 53:3341–3344, 2015, http://dx.doi.org/10.1128/JCM.01017-15) describe a sustained outbreak of colistin-resistant KPC-producing K. pneumoniae. PMID:26202122

  10. Whole-genome sequencing enabling the detection of a colistin-resistant hypermutating Citrobacter werkmanii strain harbouring a novel metallo-β-lactamase VIM-48.

    PubMed

    Peter, S; Bezdan, D; Oberhettinger, P; Vogel, W; Dörfel, D; Dick, J; Marschal, M; Liese, J; Weidenmaier, C; Autenrieth, I; Ossowski, S; Willmann, M

    2018-06-01

    Citrobacter spp. harbouring metallo-β-lactamases (MBLs) have been reported from various countries and different sources, but their isolation from clinical specimens remains a rare event in Europe. MBL-harbouring Enterobacteriaceae are considered a major threat in infection control as therapeutic options are often limited to colistin. In this study, whole-genome sequencing was applied to characterise five clinical isolates of multidrug-resistant Citrobacter werkmanii obtained from rectal swabs. Four strains possessed a class 1 integron with a novel bla VIM-48 MBL resistance gene and the aminoglycoside acetyltransferase gene aacA4, whilst one isolate harboured a bla IMP-8 MBL. Resistance to colistin evolved in one strain isolated from a patient who had received colistin orally for 8 days. Genomic comparison of this strain with a colistin-susceptible pre-treatment isolate from the same patient revealed 66 single nucleotide polymorphisms (SNPs) and 26 indels, indicating the presence of a mutator phenotype. This was confirmed by the finding of a SNP in the mutL gene that led to a significantly truncated protein. Additionally, an amino acid change from glycine to serine at position 53 was observed in PmrA. Mutations in the pmrA gene have been previously described as mediating colistin resistance in different bacterial species and are the most likely reason for the susceptibility change observed. To the best of our knowledge, this is the first description of a colistin-resistant Citrobacter spp. isolated from a human sample. This study demonstrates the power of applying next-generation sequencing in a hospital setting to trace and understand evolving resistance at the level of individual patients. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  11. Transposons and integrons in colistin-resistant clones of Klebsiella pneumoniae and Acinetobacter baumannii with epidemic or sporadic behaviour.

    PubMed

    Arduino, Sonia M; Quiroga, María Paula; Ramírez, María Soledad; Merkier, Andrea Karina; Errecalde, Laura; Di Martino, Ana; Smayevsky, Jorgelina; Kaufman, Sara; Centrón, Daniela

    2012-10-01

    Multiple transposons, integrons and carbapenemases were found in Klebsiella pneumoniae colistin-resistant isolates as well as a genomic resistance island of the AbaR type in Acinetobacter baumannii colistin-resistant isolates from different hospitals from Buenos Aires City. PFGE analysis showed a polyclonal dissemination of antimicrobial resistance mechanisms among K. pneumoniae isolates, while in A. baumannii isolates the epidemic clone 1 from South America was found. Resistance determinants associated with horizontal gene transfer are contributing to the evolution to pandrug resistance in both epidemic and sporadic clones.

  12. Outbreak of Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae: Are We at the End of the Road?

    PubMed

    van Duin, David; Doi, Yohei

    2015-10-01

    Carbapenem-resistant Klebsiella pneumoniae strains that produce K. pneumoniae carbapenemase (KPC) have spread globally in the last decade. Colistin is a key agent in treating infections caused by this pathogen. In this issue of the Journal of Clinical Microbiology, Giani et al. (T. Giani, F. Arena, G. Vaggelli, V. Conte, A Chiarell, L. H. De Angelis, R. Fornaini, M. Grazzini, F. Niccolini, P. Pecile, and G. M. Rossolini, J Clin Microbiol 53:3341-3344, 2015, http://dx.doi.org/10.1128/JCM.01017-15) describe a sustained outbreak of colistin-resistant KPC-producing K. pneumoniae. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Characterization of Colistin-Resistant Escherichia coli Isolated from Diseased Pigs in France

    PubMed Central

    Delannoy, Sabine; Le Devendec, Laetitia; Jouy, Eric; Fach, Patrick; Drider, Djamel; Kempf, Isabelle

    2017-01-01

    We studied a collection of 79 colistin-resistant Escherichia coli isolates isolated from diseased pigs in France between 2009 and 2013. We determined a number of phenotypic and genetic characters using broth microdilution to characterize their antimicrobial susceptibility. We performed pulse field gel electrophoresis (PFGE) to assess their genetic diversity and assign them to phylogroups. High-throughput real-time PCR micro-array was used to screen for a selection of genetic markers of virulence, and PCR and sequencing of the main recognized resistance genes allowed us to investigate the mechanisms of colistin resistance. Results showed that isolates belonged to several phylogroups and most had a unique PFGE profile. More than 50% of the isolates were also resistant to sulfonamides, trimethoprim, tetracycline, ampicillin or chloramphenicol. The mcr-1 gene was detected in 70 out of 79 isolates and was transferred by conjugation in 33 of them, sometimes together with resistance to sulfonamides, trimethoprim, tetracycline, ampicillin, chloramphenicol, cefotaxime, or gentamicin. Mutations in the amino-acid sequences of proteins MgrB, PhoP, PhoQ, PmrB, but not PmrA, were detected in isolates with or without the mcr-1 gene. More than one-third of the isolates harbored the F18, F4, astA, hlyA, estI, estII, elt, stx2e, iha, orfA, orfB, paa, terE, ecs1763, or ureD virulence markers. In conclusion, although most isolates had a unique PFGE profile, a few particular combinations of phylogenetic groups, virulence genes and mutations in the sequenced genes involved in colistin resistance were identified on a number of occasions, suggesting the persistence of certain isolates over several years. PMID:29209292

  14. Identification and characterization of mcr mediated colistin resistance in extraintestinal Escherichia coli from poultry and livestock in China.

    PubMed

    Yassin, Afrah Kamal; Zhang, Jilei; Wang, Jiawei; Chen, Li; Kelly, Patrick; Butaye, Patrick; Lu, Guangwu; Gong, Jiansen; Li, Min; Wei, Lanjing; Wang, Yaoyao; Qi, Kezong; Han, Xiangan; Price, Stuart; Hathcock, Terri; Wang, Chengming

    2017-12-29

    Antimicrobial resistance to colistin has emerged worldwide threatening the efficacy of one of the last-resort antimicrobials used for the treatment of multidrug-resistant Enterobacteriaceae infection in humans. In this study, we investigated the presence of colistin resistance genes (mcr-1, mcr-2, mcr-3) in Escherichia coli strains isolated from poultry and livestock collected between 2004 and 2012 in China. Furthermore, we studied the maintenance and transfer of the mcr-1 gene in E. coli after serial passages. Overall, 2.7% (17/624) of the E. coli isolates were positive for the mcr-1 gene while none were positive for the mcr-2 and mcr-3 genes. The prevalences of mcr-1 were similar in E. coli isolates from chickens (3.2%; 13/404), pigs (0.9%; 1/113) and ducks (6.8%; 3/44) but were absent in isolates from cattle (0/63). The mcr-1 gene was maintained in the E. coli after six passages (equivalent to 60 generations). In vitro transfer of mcr-1 was evident even without colistin selection. Our data indicate the presence of mcr-1 in extraintestinal E. coli from food-producing animals in China, and suggest that high numbers of the mcr-1-positive bacteria in poultry and livestock do not appear to be readily lost after withdrawal of colistin as a food additive. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Colistin-resistant Escherichia coli clinical isolate harbouring the mcr-1 gene in Ecuador.

    PubMed

    Ortega-Paredes, D; Barba, P; Zurita, J

    2016-10-01

    Colistin resistance mediated by the mcr-1 gene has been reported worldwide, but to date not from the Andean region, South America. We report the first clinical isolate of Escherichia coli harbouring the mcr-1 gene in Ecuador. The strain was isolated from peritoneal fluid from a 14-year-old male with acute appendicitis, and subjected to molecular analysis. The minimum inhibitory concentration of colistin for the strain was 8 mg/ml and it was susceptible to carbapenems but resistant to tigecycline. The strain harboured mcr-1 and bla CTX-M-55 genes and was of sequence type 609. The recognition of an apparently commensal strain of E. coli harbouring mcr-1 serves as an alert to the presence in the region of this recently described resistance mechanism to one of the last line of drugs available for the treatment of multi-resistant Gram-negative infections.

  16. Colistin resistance mcr-1 gene bearing Escherichia coli from the United States

    USDA-ARS?s Scientific Manuscript database

    Transmissible colistin resistance in the form of an mcr-1 gene bearing plasmid has been recently reported in Enterobacteriaceae in several parts of the world. We report the completed genome sequence of an Escherichia coli isolated from swine in the US that carried the mcr-1 gene on an IncI2 type pl...

  17. High-throughput hydrophilic interaction chromatography coupled to tandem mass spectrometry for the optimized quantification of the anti-Gram-negatives antibiotic colistin A/B and its pro-drug colistimethate.

    PubMed

    Mercier, Thomas; Tissot, Fréderic; Gardiol, Céline; Corti, Natascia; Wehrli, Stéphane; Guidi, Monia; Csajka, Chantal; Buclin, Thierry; Couet, William; Marchetti, Oscar; Decosterd, Laurent A

    2014-11-21

    Colistin is a last resort's antibacterial treatment in critically ill patients with multi-drug resistant Gram-negative infections. As appropriate colistin exposure is the key for maximizing efficacy while minimizing toxicity, individualized dosing optimization guided by therapeutic drug monitoring is a top clinical priority. Objective of the present work was to develop a rapid and robust HPLC-MS/MS assay for quantification of colistin plasma concentrations. This novel methodology validated according to international standards simultaneously quantifies the microbiologically active compounds colistin A and B, plus the pro-drug colistin methanesulfonate (colistimethate, CMS). 96-well micro-Elution SPE on Oasis Hydrophilic-Lipophilic-Balanced (HLB) followed by direct analysis by Hydrophilic Interaction Liquid Chromatography (HILIC) with Ethylene Bridged Hybrid--BEH--Amide phase column coupled to tandem mass spectrometry allows a high-throughput with no significant matrix effect. The technique is highly sensitive (limit of quantification 0.014 and 0.006 μg/mL for colistin A and B), precise (intra-/inter-assay CV 0.6-8.4%) and accurate (intra-/inter-assay deviation from nominal concentrations -4.4 to +6.3%) over the clinically relevant analytical range 0.05-20 μg/mL. Colistin A and B in plasma and whole blood samples are reliably quantified over 48 h at room temperature and at +4°C (<6% deviation from nominal values) and after three freeze-thaw cycles. Colistimethate acidic hydrolysis (1M H2SO4) to colistin A and B in plasma was completed in vitro after 15 min of sonication while the pro-drug hydrolyzed spontaneously in plasma ex vivo after 4 h at room temperature: this information is of utmost importance for interpretation of analytical results. Quantification is precise and accurate when using serum, citrated or EDTA plasma as biological matrix, while use of heparin plasma is not appropriate. This new analytical technique providing optimized quantification in real

  18. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  19. In vitro antibacterial effect of fosfomycin combination therapy against colistin-resistant Klebsiella pneumoniae.

    PubMed

    Yu, Wei; Luo, Qixia; Shi, Qingyi; Huang, Chen; Yu, Xiao; Niu, Tianshui; Zhou, Kai; Zhang, Jiajie; Xiao, Yonghong

    2018-01-01

    Colistin is still a "last-resort" antibiotic used to manage human infections due to multidrug-resistant (MDR) Klebsiella pneumoniae . However, colistin-resistant K. pneumoniae (CR-Kp) isolates emerged a decade ago and had a worldwide distribution. The purpose of this study was to evaluate the genetic data of CR-Kp and identify the antibacterial activity of fosfomycin (FM) alone and in combination with amikacin (AMK) or colistin (COL) against CR-Kp in vitro. Three clinical CR-Kp isolates from three patients were collected. Whole-genome sequencing and bioinformatics analysis were performed. The Pharmacokinetics Auto Simulation System 400, by simulating human pharmacokinetics in vitro, was employed to simulate FM, AMK, and COL alone and in combination. Different pharmacodynamic parameters were calculated for determining the antimicrobial effect. Whole-genome sequencing revealed that none of the three isolates contain mcr gene and that no insertion was found in pmrAB , phoPQ , or mgrB genes. We found the antibacterial activity of AMK alone was more efficient than FM or COL against CR-Kp. The area between the control growth and antibacterial killing curves of FM (8 g every 8 hours) combined with AMK (15 mg/kg once daily) was higher than 170 LogCFU/mL·h -1 . In addition, the area between the control growth and antibacterial killing curves of FM (8 g every 8 hours) combined with COL (75,000 IU/kg every12 hours) was higher than that of monotherapies (>100 LogCFU/mL·h -1 vs <80 LogCFU/mL·h -1 ). FM (8 g every 8 hours) combined with AMK (15 mg/kg once daily) was effective at maximizing bacterial killing against CR-Kp.

  20. Efficacy of Colistin and Its Combination With Rifampin in Vitro and in Experimental Models of Infection Caused by Carbapenemase-Producing Clinical Isolates of Klebsiella pneumoniae.

    PubMed

    Pachón-Ibáñez, María E; Labrador-Herrera, Gema; Cebrero-Cangueiro, Tania; Díaz, Caridad; Smani, Younes; Del Palacio, José P; Rodríguez-Baño, Jesús; Pascual, Alvaro; Pachón, Jerónimo; Conejo, M Carmen

    2018-01-01

    Despite the relevance of carbapenemase-producing Klebsiella pneumoniae (CP-Kp) infections there are a scarce number of studies to evaluate in vivo the efficacy of combinations therapies. The bactericidal activity of colistin, rifampin, and its combination was studied (time-kill curves) against four clonally unrelated clinical isolates of CP-Kp, producing VIM-1, VIM-1 plus DHA-1(acquired AmpC β-lactamase), OXA-48 plus CTX-M-15 (extended spectrum β-lactamase) and KPC-3, respectively, with colistin MICs of 0.5, 64, 0.5, and 32 mg/L, respectively. The efficacies of antimicrobials in monotherapy and in combination were tested in a murine peritoneal sepsis model, against all the CP-Kp. Their efficacies were tested in the pneumonia model against the OXA-48 plus CTX-M-15 producers. The development of colistin-resistance was analyzed for the colistin-susceptible strains in vitro and in vivo . In vitro , colistin plus rifampin was synergistic against all the strains at 24 h. In vivo , compared to the controls, rifampin alone reduced tissue bacterial concentrations against VIM-1 and OXA-48 plus CTX-M-15 strains; CMS plus rifampin reduced tissue bacterial concentrations of these two CP-Kp and of the KPC-3 strain. Rifampin and the combination increased the survival against the KPC-3 strain; in the pneumonia model, the combination also improved the survival. No resistant mutants appeared with the combination. In conclusion, CMS plus rifampin had a low and heterogeneous efficacy in the treatment of severe peritoneal sepsis model due to CP-Kp producing different carbapenemases, increasing survival only against the KPC-3 strain. The combination showed efficacy in the less severe pneumonia model. The combination prevented in vitro and in vivo the development of colistin resistant mutants.

  1. Efficacy of Colistin and Its Combination With Rifampin in Vitro and in Experimental Models of Infection Caused by Carbapenemase-Producing Clinical Isolates of Klebsiella pneumoniae

    PubMed Central

    Pachón-Ibáñez, María E.; Labrador-Herrera, Gema; Cebrero-Cangueiro, Tania; Díaz, Caridad; Smani, Younes; del Palacio, José P.; Rodríguez-Baño, Jesús; Pascual, Alvaro; Pachón, Jerónimo; Conejo, M. Carmen

    2018-01-01

    Despite the relevance of carbapenemase-producing Klebsiella pneumoniae (CP-Kp) infections there are a scarce number of studies to evaluate in vivo the efficacy of combinations therapies. The bactericidal activity of colistin, rifampin, and its combination was studied (time–kill curves) against four clonally unrelated clinical isolates of CP-Kp, producing VIM-1, VIM-1 plus DHA-1(acquired AmpC β-lactamase), OXA-48 plus CTX-M-15 (extended spectrum β-lactamase) and KPC-3, respectively, with colistin MICs of 0.5, 64, 0.5, and 32 mg/L, respectively. The efficacies of antimicrobials in monotherapy and in combination were tested in a murine peritoneal sepsis model, against all the CP-Kp. Their efficacies were tested in the pneumonia model against the OXA-48 plus CTX-M-15 producers. The development of colistin-resistance was analyzed for the colistin-susceptible strains in vitro and in vivo. In vitro, colistin plus rifampin was synergistic against all the strains at 24 h. In vivo, compared to the controls, rifampin alone reduced tissue bacterial concentrations against VIM-1 and OXA-48 plus CTX-M-15 strains; CMS plus rifampin reduced tissue bacterial concentrations of these two CP-Kp and of the KPC-3 strain. Rifampin and the combination increased the survival against the KPC-3 strain; in the pneumonia model, the combination also improved the survival. No resistant mutants appeared with the combination. In conclusion, CMS plus rifampin had a low and heterogeneous efficacy in the treatment of severe peritoneal sepsis model due to CP-Kp producing different carbapenemases, increasing survival only against the KPC-3 strain. The combination showed efficacy in the less severe pneumonia model. The combination prevented in vitro and in vivo the development of colistin resistant mutants.

  2. In Vivo Pharmacokinetics/Pharmacodynamics of Colistin and Imipenem in Pseudomonas aeruginosa Biofilm Infection

    PubMed Central

    Wu, Hong; Ciofu, Oana; Song, Zhijun; Høiby, Niels

    2012-01-01

    Many Pseudomonas aeruginosa isolates from the airways of patients with cystic fibrosis (CF) are sensitive to antibiotics in susceptibility testing, but eradication of the infection is difficult. The main reason is the biofilm formation in the airways of patients with CF. The pharmacokinetics (PKs) and pharmacodynamics (PDs) of antimicrobials can reliably be used to predict whether antimicrobial regimens will achieve the maximum bactericidal effect against infections. Unfortunately, however, most PK/PD studies of antimicrobials have been done on planktonic cells and very few PK/PD studies have been done on biofilms, partly due to the lack of suitable models in vivo. In the present study, a biofilm lung infection model was developed to provide an objective and quantitative evaluation of the PK/PD profile of antimicrobials. Killing curves were set up to detect the antimicrobial kinetics on planktonic and biofilm P. aeruginosa cells in vivo. Colistin showed concentration-dependent killing, while imipenem showed time-dependent killing on both planktonic and biofilm P. aeruginosa cells in vivo. The parameter best correlated to the elimination of bacteria in lung by colistin was the area under the curve (AUC) versus MIC (AUC/MIC) for planktonic cells or the AUC versus minimal biofilm inhibitory concentration (MBIC; AUC/MBIC) for biofilm cells. The best-correlated parameter for imipenem was the time that the drug concentration was above the MIC for planktonic cells (TMIC) or time that the drug concentration was above the MBIC (TMBIC) for biofilm cells. However, the AUC/MIC of imipenem showed a better correlation with the efficacy of imipenem for biofilm infections (R2 = 0.89) than planktonic cell infections (R2 = 0.38). The postantibiotic effect (PAE) of colistin and imipenem was shorter in biofilm infections than planktonic cell infections in this model. PMID:22354300

  3. Prevalence of the mcr-1 colistin resistance gene in extended-spectrum β-lactamase-producing Escherichia coli from human faecal samples collected in 2012 in rural villages in Shandong Province, China.

    PubMed

    Bi, Zhenwang; Berglund, Björn; Sun, Qiang; Nilsson, Maud; Chen, Baoli; Tärnberg, Maria; Ding, Lilu; Stålsby Lundborg, Cecilia; Bi, Zhenqiang; Tomson, Göran; Yao, Jingjing; Gu, Zhanying; Yin, Xiao; Kou, Zengqiang; Nilsson, Lennart E

    2017-04-01

    Since its initial discovery in China in 2015, the plasmid-mediated colistin resistance gene mcr-1 has been reported in Escherichia coli isolated from clinical samples, animals and meat worldwide. In this study, 706 extended-spectrum β-lactamase (ESBL)-producing E. coli from 411 persons were detected in a collection of faecal samples from 1000 rural residents in three counties in Shandong Province, China. These isolates were screened for mcr-1 and phenotypic colistin resistance. The gene was found in 3.5% of the isolates (from 4.9% of persons) from all three counties. All isolates with phenotypic colistin resistance carried mcr-1. These data indicate that commensal carriage of ESBL-producing E. coli with mcr-1 among persons in rural China was already present in 2012 and that mcr-1 was the most important colistin resistance mechanism. Interventions are necessary to minimise further dissemination of mcr-1, which would limit the future usefulness of colistin as a last-resort antibiotic. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. Once Versus Thrice Daily Colistin in Critically Ill Ptients with Multi-Drug Resistant Infections

    PubMed Central

    Ghazaeian, Monireh; Mokhtari, Majid; Kouchek, Mehran; Miri, MirMohammad; Goharani, Reza; Ghodssi-Ghassemabadi, Robabeh; Sistanizad, Mohammad

    2017-01-01

    The aim of this study was to evaluate the procalcitonin (PCT) changes in two different high-dose colistin regimens in the treatment of multi-drug resistant MDR gram negative infections in ICU patients. This is a prospective study of adult ICU patients with bacteremia and ventilator associated pneumonia (VAP) caused by MDR gram negative pathogens. Patients were assigned to two colistin administration groups. Group A received 9 and group B received 3 million international units every 24 and 8 h respectively. Baseline characteristics and measurements of PCT concentrations at the start, the 3rd and the 5th day of the antibiotic therapy and their trends between the two groups were recorded and compared. of 40 patients enrolled, 34 completed the study protocol, of whom 30 (88.2%) had (VAP) and 4 (11.8%) had bacteremia. There were no statistically significant differences in the baseline characteristics between the two groups. The mean PCT levels in two study groups were; 2.34, 1.24, and 0.95 in group A and 5.89, 1.24 and 0.8 in group B at the baseline, 3rd and 5th day of colistin administration respectively (P=0.47). The ICU length of stay (LOS) in days and ICU mortality were; 31.31, 35.3% and 32.06, 22.2% in groups A and B (P=0.39, 0.87), respectively. Conclusion: We did not find any statistically significant differences in the serum PCT levels, ICU LOS or ICU mortality, between the two groups, who received maximum recommended dose of CMS with 2 different intervals of every 8 or 24 h. PMID:29201114

  5. In vitro activity and in vivo animal model efficacy of IB-367 alone and in combination with imipenem and colistin against Gram-negative bacteria.

    PubMed

    Simonetti, Oriana; Cirioni, Oscar; Ghiselli, Roberto; Orlando, Fiorenza; Silvestri, Carmela; Mazzocato, Susanna; Kamysz, Wojciech; Kamysz, Elzbieta; Provinciali, Mauro; Giacometti, Andrea; Guerrieri, Mario; Offidani, Annamaria

    2014-05-01

    The aim of our study was to evaluate the in vitro activity of IB-367 and its bactericidal effect for Pseudomonas aeruginosa and Escherichia coli, associated to a synergic study to test the antibiotic combinations between the peptide and colistin or imipenem. Minimum inhibitory concentrations (MICs), the minimum bactericidal concentrations (MBCs), the synergy test and killing study were carried out to evaluate the IB-367 activity. In the in vivo model, a wound was incised through the panniculus carnosus of BALB/c mice, and then inoculated with 5 × 107 colony-forming units of P. aeruginosa and E. coli. For each strain, the study included an infected or not infected group that did not receive any treatment, and five contaminated groups treated with local IB- 367, intraperitoneal imipenem, intraperitoneal colistin, topical IB-367 local plus intraperitoneal imipenem or intraperitoneal colistin. All isolates were inhibited by IB-367 at concentrations of 4-64 mg/l. Killing by IB-367 was shown to be very rapid: its activity on all Gram-negative bacteria was completed within a 40 min exposure period at a concentration of 2 × MIC/l. Synergy was demonstrated when IB-367 was combined with colistin or imipenem. In in vivo studies, the groups treated with topical IB-367 and intraperitoneal colistin showed the best results in terms of bacterial load inhibition either for Pseudomonas or for E. coli. The good in vitro activity and in vivo efficacy, as well as, the synergic interactions with antibiotics suggest that IB-367 is a promising candidate for potential application in the treatment of wound Gram-negative infections. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015

    PubMed Central

    Hernández, Marta; Iglesias, M Rocío; Rodríguez-Lázaro, David; Gallardo, Alejandro; Quijada, Narciso M; Miguela-Villoldo, Pedro; Campos, Maria Jorge; Píriz, Segundo; López-Orozco, Gema; de Frutos, Cristina; Sáez, José Luis; Ugarte-Ruiz, María; Domínguez, Lucas; Quesada, Alberto

    2017-01-01

    Colistin resistance genes mcr-3 and mcr-1 have been detected in an Escherichia coli isolate from cattle faeces in a Spanish slaughterhouse in 2015. The sequences of both genes hybridised to same plasmid band of ca 250 kb, although colistin resistance was non-mobilisable. The isolate was producing extended-spectrum beta-lactamases and belonged to serotype O9:H10 and sequence type ST533. Here we report an mcr-3 gene detected in Europe following earlier reports from Asia and the United States. PMID:28797328

  7. Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015.

    PubMed

    Hernández, Marta; Iglesias, M Rocío; Rodríguez-Lázaro, David; Gallardo, Alejandro; Quijada, Narciso; Miguela-Villoldo, Pedro; Campos, Maria Jorge; Píriz, Segundo; López-Orozco, Gema; de Frutos, Cristina; Sáez, José Luis; Ugarte-Ruiz, María; Domínguez, Lucas; Quesada, Alberto

    2017-08-03

    Colistin resistance genes mcr-3 and mcr-1 have been detected in an Escherichia coli isolate from cattle faeces in a Spanish slaughterhouse in 2015. The sequences of both genes hybridised to same plasmid band of ca 250 kb, although colistin resistance was non-mobilisable. The isolate was producing extended-spectrum beta-lactamases and belonged to serotype O9:H10 and sequence type ST533. Here we report an mcr-3 gene detected in Europe following earlier reports from Asia and the United States. This article is copyright of The Authors, 2017.

  8. Differences in pharmacokinetics and pharmacodynamics of colistimethate sodium (CMS) and colistin between three different CMS dosage regimens in a critically ill patient infected by a multidrug-resistant Acinetobacter baumannii.

    PubMed

    Luque, Sònia; Grau, Santiago; Valle, Marta; Sorlí, Luisa; Horcajada, Juan Pablo; Segura, Concha; Alvarez-Lerma, Francisco

    2013-08-01

    Use of colistin has re-emerged for the treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria, but information on its pharmacokinetics and pharmacodynamics is limited, especially in critically ill patients. Recent data from pharmacokinetic/pharmacodynamic (PK/PD) population studies have suggested that this population could benefit from administration of higher than standard doses of colistimethate sodium (CMS), but the relationship between administration of incremental doses of CMS and corresponding PK/PD parameters as well as its efficacy and toxicity have not yet been investigated in a clinical setting. The objective was to study the PK/PD differences of CMS and colistin between three different CMS dosage regimens in the same critically ill patient. A critically ill patient with nosocomial pneumonia caused by a MDR Acinetobacter baumannii received incremental doses of CMS. During administration of the different CMS dosage regimens, CMS and colistin plasma concentrations were determined and PK/PD indexes were calculated. With administration of the highest CMS dose once daily (720 mg every 24h), the peak plasma concentration of CMS and colistin increased to 40.51 mg/L and 1.81 mg/L, respectively, and the AUC0-24/MIC of colistin was 184.41. This dosage regimen was efficacious, and no nephrotoxicity or neurotoxicity was observed. In conclusion, a higher and extended-interval CMS dosage made it possible to increase the exposure of CMS and colistin in a critically ill patient infected by a MDR A. baumannii and allowed a clinical and microbiological optimal response to be achieved without evidence of toxicity. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  9. Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine

    PubMed Central

    Bock, Lucy J.; Bonney, Laura C.

    2016-01-01

    ABSTRACT Klebsiella pneumoniae is an opportunistic pathogen that is often difficult to treat due to its multidrug resistance (MDR). We have previously shown that K. pneumoniae strains are able to “adapt” (become more resistant) to the widely used bisbiguanide antiseptic chlorhexidine. Here, we investigated the mechanisms responsible for and the phenotypic consequences of chlorhexidine adaptation, with particular reference to antibiotic cross-resistance. In five of six strains, adaptation to chlorhexidine also led to resistance to the last-resort antibiotic colistin. Here, we show that chlorhexidine adaptation is associated with mutations in the two-component regulator phoPQ and a putative Tet repressor gene (smvR) adjacent to the major facilitator superfamily (MFS) efflux pump gene, smvA. Upregulation of smvA (10- to 27-fold) was confirmed in smvR mutant strains, and this effect and the associated phenotype were suppressed when a wild-type copy of smvR was introduced on plasmid pACYC. Upregulation of phoPQ (5- to 15-fold) and phoPQ-regulated genes, pmrD (6- to 19-fold) and pmrK (18- to 64-fold), was confirmed in phoPQ mutant strains. In contrast, adaptation of K. pneumoniae to colistin did not result in increased chlorhexidine resistance despite the presence of mutations in phoQ and elevated phoPQ, pmrD, and pmrK transcript levels. Insertion of a plasmid containing phoPQ from chlorhexidine-adapted strains into wild-type K. pneumoniae resulted in elevated expression levels of phoPQ, pmrD, and pmrK and increased resistance to colistin, but not chlorhexidine. The potential risk of colistin resistance emerging in K. pneumoniae as a consequence of exposure to chlorhexidine has important clinical implications for infection prevention procedures. PMID:27799211

  10. Clonal emergence of Klebsiella pneumoniae ST14 co-producing OXA-48-type and NDM carbapenemases with high rate of colistin resistance in Dubai, United Arab Emirates.

    PubMed

    Moubareck, Carole Ayoub; Mouftah, Shaimaa F; Pál, Tibor; Ghazawi, Akela; Halat, Dalal H; Nabi, Anju; AlSharhan, Mouza A; AlDeesi, Zulfa O; Peters, Christabel C; Celiloglu, Handan; Sannegowda, Manjunath; Sarkis, Dolla K; Sonnevend, Ágnes

    2018-03-09

    Few studies have addressed the molecular epidemiology of carbapenem resistant Enterobacteriaceae (CRE) isolates in the Arabian Peninsula, and such investigations have been missing from Dubai, a major economical, tourism and medical centre of the region. The antibiotic susceptibility, the carbapenemase type produced, and the clonality of 89 CRE strains isolated in five major Dubai hospitals in June 2015 - June 2016 were determined. Thirty three percent of the collection of 70 K. pneumoniae, 13 E. coli and 6 other Enterobacteriaceae were extremely drug resistant, 27% were resistant to colistin, and 4.5% (four K. pneumoniae isolates) were resistant to all antibiotics tested. The colistin resistance rate in K. pneumoniae was 31.4%. None of the isolates carried mobile colistin resistance genes. Seventy-seven isolates produced carbapenemase: 53.3% OXA-48-like, 24.7% NDM, and 22.1% both OXA-48-like and NDM, respectively. PFGE clustered 50% of K. pneumoniae into a 35-membered group, which showed significant association with double carbapenemase production, with extreme drug resistance, and with being isolated from Emirati patients. Members of the cluster belonged to sequence type ST14. The rate of colistin resistance in K. pneumoniae ST14 was 37.1% vs. 27.1% of K. pneumoniae isolates outside of the cluster. Two of the panresistant K. pneumoniae isolates also belonged to ST14, whereas the other two were ST15 and ST231, respectively. In conclusion, beyond the overall high colistin resistance rate in CRE, the emergence of a highly resistant clone of K. pneumoniae ST14 in all Dubai hospitals investigated is a serious problem requiring immediate attention. Copyright © 2018. Published by Elsevier B.V.

  11. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes

    PubMed Central

    Rebelo, Ana Rita; Bortolaia, Valeria; Kjeldgaard, Jette S; Pedersen, Susanne K; Leekitcharoenphon, Pimlapas; Hansen, Inge M; Guerra, Beatriz; Malorny, Burkhard; Borowiak, Maria; Hammerl, Jens Andre; Battisti, Antonio; Franco, Alessia; Alba, Patricia; Perrin-Guyomard, Agnes; Granier, Sophie A; De Frutos Escobar, Cristina; Malhotra-Kumar, Surbhi; Villa, Laura; Carattoli, Alessandra; Hendriksen, Rene S

    2018-01-01

    Background and aim Plasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing. PMID:29439754

  12. Impact of the ST101 clone on fatality among patients with colistin-resistant Klebsiella pneumoniae infection.

    PubMed

    Can, Fusun; Menekse, Sirin; Ispir, Pelin; Atac, Nazli; Albayrak, Ozgur; Demir, Tuana; Karaaslan, Doruk Can; Karahan, Salih Nafiz; Kapmaz, Mahir; Kurt Azap, Ozlem; Timurkaynak, Funda; Simsek Yavuz, Serap; Basaran, Seniha; Yoruk, Fugen; Azap, Alpay; Koculu, Safiye; Benzonana, Nur; Lack, Nathan A; Gönen, Mehmet; Ergonul, Onder

    2018-05-01

    We describe the molecular characteristics of colistin resistance and its impact on patient mortality. A prospective cohort study was performed in seven different Turkish hospitals. The genotype of each isolate was determined by MLST and repetitive extragenic palindromic PCR (rep-PCR). Alterations in mgrB were detected by sequencing. Upregulation of pmrCAB, phoQ and pmrK was quantified by RT-PCR. mcr-1 and the genes encoding OXA-48, NDM-1 and KPC were amplified by PCR. A total of 115 patients diagnosed with colistin-resistant K. pneumoniae (ColR-Kp) infection were included. Patients were predominantly males (55%) with a median age of 63 (IQR 46-74) and the 30 day mortality rate was 61%. ST101 was the most common ST and accounted for 68 (59%) of the ColR-Kp. The 30 day mortality rate in patients with these isolates was 72%. In ST101, 94% (64/68) of the isolates had an altered mgrB gene, whereas the alteration occurred in 40% (19/47) of non-ST101 isolates. The OXA-48 and NDM-1 carbapenemases were found in 93 (81%) and 22 (19%) of the total 115 isolates, respectively. In multivariate analysis for the prediction of 30 day mortality, ST101 (OR 3.4, CI 1.46-8.15, P = 0.005) and ICU stay (OR 7.4, CI 2.23-29.61, P = 0.002) were found to be significantly associated covariates. Besides ICU stay, ST101 was found to be a significant independent predictor of patient mortality among those infected with ColR-Kp. A significant association was detected between ST101 and OXA-48. ST101 may become a global threat in the dissemination of colistin resistance and the increased morbidity and mortality of K. pneumoniae infection.

  13. [Results of a multicenter study investigating plasmid mediated colistin resistance genes (mcr-1 and mcr-2) in clinical Enterobacteriaceae ısolates from Turkey].

    PubMed

    Sarı, Ayşe Nur; Süzük, Serap; Karatuna, Onur; Öğünç, Dilara; Karakoç, Ayşe Esra; Çizmeci, Zeynep; Alışkan, Hikmet Eda; Cömert, Füsun; Bakıcı, Mustafa Zahir; Akpolat, Nezahat; Çilli, Fatma Feriha; Zer, Yasemin; Karataş, Aysel; Akgün Karapınar, Bahar; Bayramoğlu, Gülçin; Özdamar, Melda; Kalem, Fatma; Delialioğlu, Nuran; Aktaş, Elif; Yılmaz, Nisel; Gürcan, Şaban; Gülay, Zeynep

    2017-07-01

    Colistin is a polymyxin antibiotic which is considered as one of the last line agents against infections due to multidrug resistant or carbapenem resistant gram-negative pathogens. Colistin resistance is associated with chromosomal alterations which can usually cause mutations in genes coding specific two component regulator systems. The first plasmid-mediated colistin resistance gene, mcr-1 was described in Escherichia coli and Klebsiella pneumoniae isolates in December 2015 and followed by another plasmid-mediated colistin resistance gene mcr-2 in 2016. The rapid and interspecies dissemination of plasmid-mediated resistance mechanisms through horizontal gene transfer, have made these genes considerably threatening. After the first reports, although mcr-1/mcr-2 producing Enterobacteriaceae isolates have been reported from many countries, there have been no reports from Turkey. Thus, the aim of this study was to investigate the presence of mcr-1/mcr-2 in clinical Enterobacteriaceae isolates from different parts of our country. A total of 329 Enterobacteriaceae isolates from 22 laboratories were collected which were isolated between March, 2015 and February, 2016. mcr-1/mcr-2 were investigated by polymerase chain reaction during February-March, 2016. Two hundred and seventeen of Klebsiella pneumoniae (66%), 75 of Salmonella spp. (22.8%), 31 of Esherichia coli (9.4%), 3 of Enterobacter cloacae (0.9%), 2 of Klebsiella oxytoca (0.6%) and 1 of Enterobacter aerogenes (0.3%) isolates were included to the study. Agarose gel electrophoresis results of PCR studies have shown expected band sizes for positive control isolates as 309 bp for mcr-1 and 567 bp for mcr-2. However, the presence of mcr-1/mcr-2 genes was not detected among the tested study isolates of Enterobacteriaceae. Although mcr-1/mcr-2 were not detected in our study isolates, it is highly important to understand the mechanism of resistance dissemination and determine the resistant isolates by considering that

  14. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B.

    PubMed

    Borowiak, Maria; Fischer, Jennie; Hammerl, Jens A; Hendriksen, Rene S; Szabo, Istvan; Malorny, Burkhard

    2017-12-01

    Plasmid-mediated mobilized colistin resistance is currently known to be caused by phosphoethanolamine transferases termed MCR-1, MCR-2, MCR-3 and MCR-4. However, this study focuses on the dissection of a novel resistance mechanism in mcr-1-, mcr-2- and mcr-3-negative d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B (Salmonella Paratyphi B dTa+) isolates with colistin MIC values >2 mg/L. A selected isolate from the strain collection of the German National Reference Laboratory for Salmonella was investigated by WGS and bioinformatical analysis to identify novel phosphoethanolamine transferase genes involved in colistin resistance. Subsequently PCR screening, S1-PFGE and DNA-DNA hybridization were performed to analyse the prevalence and location of the identified mcr-5 gene. Cloning and transformation experiments in Escherichia coli DH5α and Salmonella Paratyphi B dTa+ control strains were carried out and the activity of MCR-5 was determined in vitro by MIC testing. In this study, we identified a novel phosphoethanolamine transferase in 14 mcr-1-, mcr-2- and mcr-3-negative Salmonella Paratyphi B dTa+ isolates with colistin MIC values >2 mg/L that were received during 2011-13. The respective gene, further termed as mcr-5 (1644 bp), is part of a 7337 bp transposon of the Tn3 family and usually located on related multi-copy ColE-type plasmids. Interestingly, in one isolate an additional subclone with a chromosomal location of the mcr-5 transposon was observed. Our findings suggest that the transfer of colistin-resistance-mediating phosphoethanolamine transferase genes from bacterial chromosomes to mobile genetic elements has occurred in multiple independent events raising concern regarding their variety, prevalence and impact on public health. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria.

    PubMed

    Nguyen, Nhung T; Nguyen, Hoa M; Nguyen, Cuong V; Nguyen, Trung V; Nguyen, Men T; Thai, Hieu Q; Ho, Mai H; Thwaites, Guy; Ngo, Hoa T; Baker, Stephen; Carrique-Mas, Juan

    2016-07-01

    Antimicrobial resistance (AMR) is a global health problem, and emerging semi-intensive farming systems in Southeast Asia are major contributors to the AMR burden. We accessed 12 pig and chicken farms at key stages of production in Tien Giang Province, Vietnam, to measure antimicrobial usage and to investigate the prevalence of AMR to five critical antimicrobials (β-lactams, third-generation cephalosporins, quinolones, aminoglycosides, and polymyxins) and their corresponding molecular mechanisms among 180 Escherichia coli isolates. Overall, 94.7 mg (interquartile range [IQR], 65.3 to 151.1) and 563.6 mg (IQR, 398.9 to 943.6) of antimicrobials was used to produce 1 kg (live weight) of chicken and pig, respectively. A median of 3 (out of 8) critical antimicrobials were used on pig farms. E. coli isolates exhibited a high prevalence of resistance to ampicillin (97.8% and 94.4% for chickens and pigs, respectively), ciprofloxacin (73.3% and 21.1%), gentamicin (42.2% and 35.6%), and colistin (22.2% and 24.4%). The prevalence of a recently discovered colistin resistance gene, mcr-1, was 19 to 22% and had strong agreement with phenotypic colistin resistance. We conducted plasmid conjugation experiments with 37 mcr-1 gene-positive E. coli isolates and successfully observed transfer of the gene in 54.0% of isolates through a plasmid of approximately 63 kb, consistent with one recently identified in China. We found no significant correlation between total use of antimicrobials at the farm level and AMR. These data provide additional insight into the role of mcr-1 in colistin resistance on farms and outline the dynamics of phenotypic and genotypic AMR in semi-intensive farming systems in Vietnam. Our study provides accurate baseline information on levels of antimicrobial use, as well as on the dynamics of phenotypic and genotypic resistance for antimicrobials of critical importance among E. coli over the different stages of production in emerging pig and poultry production

  16. Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)]Br versus multidrug-resistant isolates of Avian Pathogenic Escherichia coli and its synergy with colistin.

    PubMed

    Betts, Jonathan; Nagel, Christopher; Schatzschneider, Ulrich; Poole, Robert; La Ragione, Robert M

    2017-01-01

    Antimicrobial resistance is a growing global concern in human and veterinary medicine, with an ever-increasing void in the arsenal of clinicians. Novel classes of compounds including carbon monoxoide-releasing molecules (CORMs), for example the light-activated metal complex [Mn(CO)3(tpa-κ3N)]Br, could be used as alternatives/to supplement traditional antibacterials. Avian pathogenic Escherichia coli (APEC) represent a large reservoir of antibiotic resistance and can cause serious clinical disease in poultry, with potential as zoonotic pathogens, due to shared serotypes and virulence factors with human pathogenic E. coli. The in vitro activity of [Mn(CO)3(tpa-κ3N)]Br against multidrug-resistant APECs was assessed via broth microtitre dilution assays and synergy testing with colistin performed using checkerboard and time-kill assays. In vivo antibacterial activity of [Mn(CO)3(tpa-κ3N)]Br alone and in combination with colistin was determined using the Galleria mellonella wax moth larvae model. Animals were monitored for life/death, melanisation and bacterial numbers enumerated from larval haemolymph. In vitro testing produced relatively high [Mn(CO)3(tpa-κ3N)]Br minimum inhibitory concentrations (MICs) of 1024 mg/L. However, its activity was significantly increased with the addition of colistin, bringing MICs down to ≤32 mg/L. This synergy was confirmed in time-kill assays. In vivo assays showed that the combination of [Mn(CO)3(tpa-κ3N)]Br with colistin produced superior bacterial killing and significantly increased larval survival. In both in vitro and in vivo assays light activation was not required for antibacterial activity. This data supports further evaluation of [Mn(CO)3(tpa-κ3N)]Br as a potential agent for treatment of systemic infections in humans and animals, when used with permeabilising agents such as colistin.

  17. Complete sequence of a colistin resistance gene (mcr-1) bearing isolate of Escherichia coli from the United States

    USDA-ARS?s Scientific Manuscript database

    Transmissible colistin resistance conferred by mcr-1 gene bearing IncI2 plasmid has been recently reported in Esherichia coli in the US. We report the completed genome sequence of a second E. coli isolated from swine in the US that carried the mcr-1 gene on an IncI2 type plasmid....

  18. Whole-Genome Sequence of Chryseobacterium oranimense, a Colistin-Resistant Bacterium Isolated from a Cystic Fibrosis Patient in France

    PubMed Central

    Sharma, Poonam; Gupta, Sushim Kumar; Diene, Seydina M.

    2015-01-01

    For the first time, we report the whole-genome sequence analysis of Chryseobacterium oranimense G311, a multidrug-resistant bacterium, from a cystic fibrosis patient in France, including resistance to colistin. Whole-genome sequencing of C. oranimense G311 was performed using Ion Torrent PGM, and RAST, the EMBL-EBI server, and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database were used for annotation of all genes, including antibiotic resistance (AR) genes. General features of the C. oranimense G311 draft genome were compared to the other available genomes of Chryseobacterium gleum and Chryseobacterium sp. strain CF314. C. oranimense G311 was found to be resistant to all β-lactams, including imipenem, and to colistin. The genome size of C. oranimense G311 is 4,457,049 bp in length, with 37.70% GC content. We found 27 AR genes in the genome, including β-lactamase genes which showed little similarity to the known β-lactamase genes and could likely be novel. We found the type I polyketide synthase operon followed by a zeaxanthin glycosyltransferase gene in the genome, which could impart the yellow pigmentation of the isolate. We located the O-antigen biosynthesis cluster, and we also discovered a novel capsular polysaccharide biosynthesis cluster. We also found known mutations in the orthologs of the pmrA (E8D), pmrB (L208F and P360Q), and lpxA (G68D) genes. We speculate that the presence of the capsular cluster and mutations in these genes could explain the resistance of this bacterium to colistin. We demonstrate that whole-genome sequencing was successfully applied to decipher the resistome of a multidrug resistance bacterium associated with cystic fibrosis patients. PMID:25583710

  19. Whole-genome sequence of Chryseobacterium oranimense, a colistin-resistant bacterium isolated from a cystic fibrosis patient in France.

    PubMed

    Sharma, Poonam; Gupta, Sushim Kumar; Diene, Seydina M; Rolain, Jean-Marc

    2015-03-01

    For the first time, we report the whole-genome sequence analysis of Chryseobacterium oranimense G311, a multidrug-resistant bacterium, from a cystic fibrosis patient in France, including resistance to colistin. Whole-genome sequencing of C. oranimense G311 was performed using Ion Torrent PGM, and RAST, the EMBL-EBI server, and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) database were used for annotation of all genes, including antibiotic resistance (AR) genes. General features of the C. oranimense G311 draft genome were compared to the other available genomes of Chryseobacterium gleum and Chryseobacterium sp. strain CF314. C. oranimense G311 was found to be resistant to all β-lactams, including imipenem, and to colistin. The genome size of C. oranimense G311 is 4,457,049 bp in length, with 37.70% GC content. We found 27 AR genes in the genome, including β-lactamase genes which showed little similarity to the known β-lactamase genes and could likely be novel. We found the type I polyketide synthase operon followed by a zeaxanthin glycosyltransferase gene in the genome, which could impart the yellow pigmentation of the isolate. We located the O-antigen biosynthesis cluster, and we also discovered a novel capsular polysaccharide biosynthesis cluster. We also found known mutations in the orthologs of the pmrA (E8D), pmrB (L208F and P360Q), and lpxA (G68D) genes. We speculate that the presence of the capsular cluster and mutations in these genes could explain the resistance of this bacterium to colistin. We demonstrate that whole-genome sequencing was successfully applied to decipher the resistome of a multidrug resistance bacterium associated with cystic fibrosis patients. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. How much surface coating of hydrophobic azithromycin is sufficient to prevent moisture-induced decrease in aerosolisation of hygroscopic colistin powder?

    PubMed Central

    Zhou, Qi (Tony); Loh, Zhi Hui; Yu, Jiaqi; Sun, Si-ping; Gengenbach, Thomas; Denman, John A.; Li, Jian; Chan, Hak-Kim

    2017-01-01

    Aerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles. Four combination formulations with varying drug ratios were prepared by co-spray drying drug solutions. Both of the drugs in each combination formulation had similar in vitro deposition profiles, suggesting that each composite particle comprise two drugs in the designed mass ratio, which is supported by XPS and ToF-SIMS data. XPS and ToF-SIMS measurements also revealed that 50 % by weight (or 35 % by molecular fraction) of azithromycin in the formulation provided a near-complete coating of 96.5 % (molar fraction) on the composite particle surface, which is sufficient to prevent moisture-induced reduction in FPFrecovered and FPFemitted. Higher azithromycin content did not increase coating coverage, while contents of azithromycin lower than 20 %w/w did not totally prevent the negative effects of humidity on aerosolisation performance. This study has highlighted that a critical amount of azithromycin is required to sufficiently coat the colistin particles for short-term protection against moisture. PMID:27255350

  1. How Much Surface Coating of Hydrophobic Azithromycin Is Sufficient to Prevent Moisture-Induced Decrease in Aerosolisation of Hygroscopic Amorphous Colistin Powder?

    PubMed

    Zhou, Qi Tony; Loh, Zhi Hui; Yu, Jiaqi; Sun, Si-Ping; Gengenbach, Thomas; Denman, John A; Li, Jian; Chan, Hak-Kim

    2016-09-01

    Aerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles. Four combination formulations with varying drug ratios were prepared by co-spray drying drug solutions. Both of the drugs in each combination formulation had similar in vitro deposition profiles, suggesting that each composite particle comprises two drugs in the designed mass ratio, which is supported by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. XPS and ToF-SIMS measurements also revealed that 50% by weight (or 35% by molecular fraction) of azithromycin in the formulation provided a near complete coating of 96.5% (molar fraction) on the composite particle surface, which is sufficient to prevent moisture-induced reduction in fine particle fraction (FPF)recovered and FPFemitted. Higher azithromycin content did not increase coating coverage, while contents of azithromycin lower than 20% w/w did not totally prevent the negative effects of humidity on aerosolisation performance. This study has highlighted that a critical amount of azithromycin is required to sufficiently coat the colistin particles for short-term protection against moisture.

  2. Assessment of early combination effects of colistin and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii in dynamic time-kill experiments.

    PubMed

    Tängdén, Thomas; Karvanen, Matti; Friberg, Lena E; Odenholt, Inga; Cars, Otto

    2017-07-01

    In view of the paucity of clinical evidence, in vitro studies are needed to find antibiotic combinations effective against multidrug-resistant Gram-negative bacteria. Interpretation of in vitro effects is usually based on bacterial growth after 24 h in time-kill and checkerboard experiments. However, the clinical relevance of the effects observed in vitro is not established. In this study we explored alternative output parameters to assess the activities of colistin and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Four strains each of P. aeruginosa and A. baumannii were exposed to colistin and meropenem, alone and in combination, in 8 h dynamic time-kill experiments. Initial (1 h), maximum and 8 h bacterial reductions and the area under the bacterial time-kill curve were evaluated. Checkerboards, interpreted based on fractional inhibitory concentration indices after 24 h, were performed for comparison. In the time-kill experiments, the combination resulted in enhanced 1 h, maximum and 8 h bacterial reductions against 2, 3 and 5 of 8 strains, respectively, as compared to the single drugs. A statistically significant reduction in the area under the time-kill curve was observed for three strains. In contrast, the checkerboards did not identify synergy for any of the strains. Combination effects were frequently found with colistin and meropenem against P. aeruginosa and A. baumannii in time-kill experiments but were not detected with the checkerboard method. We propose that the early dynamics of bacterial killing and growth, which may be of great clinical importance, should be considered in future in vitro combination studies.

  3. mcr-1 and blaKPC-3 in Escherichia coli Sequence Type 744 after Meropenem and Colistin Therapy, Portugal.

    PubMed

    Tacão, Marta; Tavares, Rafael Dos Santos; Teixeira, Pedro; Roxo, Inês; Ramalheira, Elmano; Ferreira, Sónia; Henriques, Isabel

    2017-08-01

    Escherichia coli Ec36 was recovered from a patient in Portugal after treatment with meropenem and colistin. Besides an IncF plasmid with Tn1441d-bla KPC-3 , already reported in clinical strains in this country, E. coli Ec36 co-harbored an IncX4::mcr-1 gene. Results highlight emerging co-resistance to carbapenems and polymyxins after therapy with drugs from both classes.

  4. An enzyme-free homogenous electrochemical assay for sensitive detection of the plasmid-mediated colistin resistance gene mcr-1.

    PubMed

    Li, Bo; Chai, Zhixin; Yan, Xiaohui; Liu, Chunchen; Situ, Bo; Zhang, Ye; Pan, Weilun; Luo, Shihua; Liu, Jianhua; Zheng, Lei

    2018-05-22

    Antibiotic resistance associated with the mcr-1 gene of Gram-negative bacteria, which confers resistance to drugs of last resort and has the potential to spread via plasmids, is one of the most pressing issues facing global health today. Point-of-care testing for the mcr-1 gene is needed to aid in the identification of colistin resistance in the field and to control its horizontal transmission. Here, we report the successful development of an enzyme-free homogenous electrochemical strategy for sensitive detection of the antibiotic resistance gene mcr-1 using the hybridization chain reaction and mcr-1-specific toehold probe. The long double-stranded DNA polymer produced using this strategy could be detected by assessing the diffusion of methylene blue towards the surface of a screen-printed gold electrode. Under optimized conditions, a linear relationship was observed between the variation of peak current and the natural logarithm of the mcr-1 gene concentration in the range of 1 nM to 1 μM with a detection limit of 0.78 nM (S/N = 3). This enzyme-free, isothermal platform is a rapid, portable, disposable, and sensitive method for detection of plasmid-mediated colistin resistance.

  5. Impact of food animal trade on the spread of mcr-1-mediated colistin resistance, Tunisia, July 2015.

    PubMed

    Grami, Raoudha; Mansour, Wejdene; Mehri, Wahib; Bouallègue, Olfa; Boujaâfar, Noureddine; Madec, Jean-Yves; Haenni, Marisa

    2016-01-01

    We report a high prevalence of MCR-1 and CTX-M-1-producing Escherichia coli in three Tunisian chicken farms. Chickens were imported from France or derived from French imported chicks. The same IncHI2-type plasmid reported to carry those genes in cattle in France and in a food sample in Portugal was found in Tunisian chickens of French origin. This suggests a significant impact of food animal trade on the spread of mcr-1-mediated colistin resistance in Europe.

  6. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam - epidemiology, laboratory detection and treatment implications.

    PubMed

    Sherry, Norelle; Howden, Benjamin

    2018-04-01

    Multidrug-resistant (MDR) and extensively-drug-resistant (XDR) Gram-negative bacteria have emerged as a major threat to human health globally. This has resulted in the 're-discovery' of some older antimicrobials and development of new agents, however resistance has also rapidly emerged to these agents. Areas covered: Here we describe recent developments in resistance to three of the most important last-line antimicrobials for treatment of MDR and XDR Gram negatives: fosfomycin, colistin and ceftazidime-avibactam. Expert commentary: A key challenge for microbiologists and clinicians using these agents for treating patients with MDR and XDR Gram negative infections is the need to ensure appropriate reference methods are being used to test susceptibility to these agents, especially colistin and fosfomycin. These methods are not available in all laboratories meaning accurate results are either delayed, or potentially inaccurate as non-reference methods are employed. Combination therapy for MDR and XDR Gram negatives is likely to become more common, and future studies should focus on the clinical effects of monotherapy vs combination therapy, as well as validation of synergy testing methods. Effective national and international surveillance systems to detect and respond to resistance to these last line agents are also critical.

  7. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets

    PubMed Central

    Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets. PMID:28704517

  8. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets.

    PubMed

    Wang, Chao; Zhang, Ligen; Su, Weipeng; Ying, Zhixiong; He, Jintian; Zhang, Lili; Zhong, Xiang; Wang, Tian

    2017-01-01

    The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.

  9. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms

    PubMed Central

    Grzywacz, Daria; Kamysz, Wojciech; Lourenço, Anália; Pereira, Maria Olívia

    2017-01-01

    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated. PMID:28355248

  10. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms.

    PubMed

    Jorge, Paula; Grzywacz, Daria; Kamysz, Wojciech; Lourenço, Anália; Pereira, Maria Olívia

    2017-01-01

    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.

  11. MCR-1 and OXA-48 In Vivo Acquisition in KPC-Producing Escherichia coli after Colistin Treatment.

    PubMed

    Beyrouthy, Racha; Robin, Frederic; Lessene, Aude; Lacombat, Igor; Dortet, Laurent; Naas, Thierry; Ponties, Valérie; Bonnet, Richard

    2017-08-01

    The spread of mcr-1 -encoding plasmids into carbapenem-resistant Enterobacteriaceae raises concerns about the emergence of untreatable bacteria. We report the acquisition of mcr-1 in a carbapenem-resistant Escherichia coli strain after a 3-week course of colistin in a patient repatriated to France from Portugal. Whole-genome sequencing revealed that the Klebsiella pneumoniae carbapenemase-producing E. coli strain acquired two plasmids, an IncL OXA-48-encoding plasmid and an IncX4 mcr-1 -encoding plasmid. This is the first report of mcr-1 in carbapenemase-encoding bacteria in France. Copyright © 2017 American Society for Microbiology.

  12. Draft Genome Sequence of a Multidrug- and Colistin-Resistant mcr-1-Producing Escherichia coli Isolate from a Swine Farm in Mexico

    PubMed Central

    Garza-Ramos, Ulises; Tamayo-Legorreta, Elsa; Arellano-Quintanilla, Doris María; Rodriguez-Medina, Nadia; Silva-Sanchez, Jesús; Catalan-Najera, Juan; Rocha-Martínez, Marisol Karina; Bravo-Díaz, María Asunción

    2018-01-01

    ABSTRACT A colistin-resistant mcr-1-carrying Escherichia coli strain, RC2-007, was isolated from a swine farm in Mexico. This extraintestinal and uropathogenic strain of E. coli belongs to serotype O89:H9 and sequence type 744. Assembly and annotation resulted in a 4.9-Mb draft genome that revealed the presence of plasmid-mediated mcr-1-ISApI1 genes as part of a prophage. PMID:29519827

  13. Molecular Epidemiology of Colistin-Resistant, Carbapenemase-Producing Klebsiella pneumoniae in Serbia from 2013 to 2016

    PubMed Central

    Novović, Katarina; Trudić, Anika; Brkić, Snežana; Vasiljević, Zorica; Kojić, Milan; Medić, Deana; Ćirković, Ivana

    2017-01-01

    ABSTRACT Twenty-seven colistin-resistant, carbapenemase-producing Klebsiella pneumoniae isolates were identified from hospitals in Serbia. All isolates were blaCTX-M-15 positive; ST101, ST888, ST437, ST336, and ST307 were blaOXA-48 positive; and ST340 was blaNDM-1 positive. ST307 had an insertion, and ST336 had a premature stop codon in the mgrB gene. Amino acid substitutions were detected in PmrAB of isolates ST101, ST888, ST336, and ST307. The mcr-1 and mcr-2 were not detected. An increase in phoP, phoQ, and pmrK gene transcription was detected for all sequence types. PMID:28242665

  14. Detection of the plasmid-mediated colistin-resistance gene mcr-1 in faecal metagenomes of Dutch travellers.

    PubMed

    von Wintersdorff, Christian J H; Wolffs, Petra F G; van Niekerk, Julius M; Beuken, Erik; van Alphen, Lieke B; Stobberingh, Ellen E; Oude Lashof, Astrid M L; Hoebe, Christian J P A; Savelkoul, Paul H M; Penders, John

    2016-12-01

    Recently, the first plasmid-mediated colistin-resistance gene, mcr-1, was reported. Colistin is increasingly used as an antibiotic of last resort for the treatment of infections caused by carbapenem-resistant bacteria, which have been rapidly disseminating worldwide in recent years. The reported carriage rate of mcr-1 in humans remains sporadic thus far, except for those reported in Chinese populations. We aimed to determine its presence in the faecal metagenomes of healthy Dutch travellers between 2010 and 2012. Faecal metagenomic DNA of pre- and post-travel samples from 122 healthy Dutch long-distance travellers was screened for the presence of mcr-1 using a TaqMan quantitative PCR assay, which was designed in this study. All positive samples were confirmed by sequencing of the amplicons. The mcr-1 gene was detected in 6 (4.9%, 95% CI = 2.1%-10.5%) of 122 healthy Dutch long-distance travellers after they had visited destinations in South(-east) Asia or southern Africa between 2011 and 2012. One of these participants was already found to be positive before travel. Our study highlights the potential of PCR-based targeted metagenomics as an unbiased and sensitive method to screen for the carriage of the mcr-1 gene and suggests that mcr-1 is widespread in various parts of the world. The observation that one participant was found to be positive before travel suggests that mcr-1 may already have disseminated to the microbiomes of Dutch residents at a low prevalence, warranting a more extensive investigation of its prevalence in the general population and possible sources. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Draft Genome Sequence of a Multidrug- and Colistin-Resistant mcr-1-Producing Escherichia coli Isolate from a Swine Farm in Mexico.

    PubMed

    Garza-Ramos, Ulises; Tamayo-Legorreta, Elsa; Arellano-Quintanilla, Doris María; Rodriguez-Medina, Nadia; Silva-Sanchez, Jesús; Catalan-Najera, Juan; Rocha-Martínez, Marisol Karina; Bravo-Díaz, María Asunción; Alpuche-Aranda, Celia

    2018-03-08

    A colistin-resistant mcr-1 -carrying Escherichia coli strain, RC2-007, was isolated from a swine farm in Mexico. This extraintestinal and uropathogenic strain of E. coli belongs to serotype O89:H9 and sequence type 744. Assembly and annotation resulted in a 4.9-Mb draft genome that revealed the presence of plasmid-mediated mcr-1 -IS ApI1 genes as part of a prophage. Copyright © 2018 Garza-Ramos et al.

  16. In vitro synergistic activity of tigecycline and colistin against XDR-Acinetobacter baumannii.

    PubMed

    Dizbay, Murat; Tozlu, Derya Keten; Cirak, Meltem Yalinay; Isik, Yasemin; Ozdemir, Kevser; Arman, Dilek

    2010-02-01

    The emergence of extensive drug-resistant (XDR) Acinetobacter baumannii limits the therapeutic options and leads to high mortality in intensive care units. Combined antibiotic therapy is frequently recommended for the treatment of these infections. Colistin (CO) and tigecycline (TIG), alone or in combination with other antimicrobials, are the most commonly used antibiotics in the treatment of these resistant infections. In this study, the in vitro synergistic activity of TIG and CO were tested for 25 XDR-A. baumannii strains isolated from ventilator-associated pneumonia by the Etest method. Resistance to CO was not detected, whereas 8% of the strains were resistant to TIG. The TIG-CO combination was more synergistic than TIG-rifampin and CO-rifampin according to the fractional inhibitory concentration index. No antagonism was detected between the drugs in the study. There was no strong correlation between the activity of the combinations with reference to strains or genotypes. Our results suggest that the combined use of TIG and CO may be useful for the treatment of XDR-A. baumannii infections.

  17. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms.

    PubMed

    Guenther, Sebastian; Falgenhauer, Linda; Semmler, Torsten; Imirzalioglu, Can; Chakraborty, Trinad; Roesler, Uwe; Roschanski, Nicole

    2017-05-01

    Pigs have been the focus of the worldwide spread of colistin resistance. However, there is little information on the transmission of mcr-1 -containing bacteria into the environment of pig farms. We therefore rescreened environmental Escherichia coli isolates from the surrounding farm areas of three previously mcr-1 -positive swine herds in Germany. Thirty-five mixed bacterial cultures obtained from boot swabs, flies, dog faeces and manure from three pig farms in Germany in 2011-12 were non-selectively recultivated and the presence of the mcr-1 gene was checked by real-time PCR. After separation, single E. coli colonies were subsequently isolated and the presence of mcr-1 was confirmed by PCR and sequencing. In addition, phenotypic antimicrobial resistance screening and WGS followed by phylogenetic analysis and resistance genotyping as well as plasmid typing were performed. Seven mcr-1 -positive E. coli strains originating from environmental boot swabs, dog faeces, stable flies and manure were found. The isolates belonged to five different STs (ST10, ST1011, ST1140, ST5281 and ST342) and harboured extensive additional resistance genes. Comparative plasmid analysis predominantly located mcr-1 on IncX4 plasmids, which are strongly related to a recently described plasmid of human clinical origin (pICBEC72Hmcr). WGS-based analysis of the environmental E. coli isolates of farm surroundings showed clear links to mcr-1 -harbouring E. coli recovered from pig production in Europe as well as from human clinical isolates worldwide, presenting another piece of the puzzle, which further complicates the rapidly evolving epidemiology of plasmid-mediated colistin-resistant E. coli strains. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Outbreak of IMI-1 Carbapenemase-producing colistin-resistant Enterobacter cloacae on the French island of Mayotte (Indian Ocean).

    PubMed

    Miltgen, Guillaume; Bonnin, Rémy A; Avril, Catherine; Benoit-Cattin, Thierry; Martak, Daniel; Leclaire, Alexandre; Traversier, Nicolas; Roquebert, Bénédicte; Jaffar-Bandjee, Marie-Christine; Lugagne, Nathalie; Filleul, Laurent; Subiros, Marion; de Montera, Anne-Marie; Cholley, Pascal; Thouverez, Michelle; Dortet, Laurent; Bertrand, Xavier; Naas, Thierry; Hocquet, Didier; Belmonte, Olivier

    2018-05-25

    The spread of carbapenemase-producing Enterobacteriaceae (CPE) in the Southwest Indian Ocean islands is poorly known. We describe here an outbreak of colistin-resistant Enterobacter cloacae harboring bla IMI-1 in the French overseas department of Mayotte. Between October 2015 and January 2017, all isolates of imipenem-non-susceptible E. cloacae at the Mayotte Medical Center and University Hospital of Reunion Island were screened for carbapenemase production. Positive isolates were typed by pulsed-field gel electrophoresis and WGS-based MLST and all β-lactamase genes identified by PCR and sequencing. The resistance profiles were determined by agar diffusion and E-tests. Genetic support of the bla IMI-1 gene was determined by WGS. We detected 18 isolates of E.cloacae harboring the bla IMI-1 gene in 17 patients from Mayotte. PFGE analysis showed 16 of the 18 strains to be clonally-related and belonging to sequence type ST820. Based on clinical data, this outbreak most likely had a community origin. The bla IMI-1 gene in the 18 isolates was carried by a new variant of an integrative mobile element involving the Xer recombinases, called EcloIMEX-8. The mcr-1 to mcr-5 genes were absent from the collection. These isolates belong to E. cloacae cluster XI, known to be colistin heteroresistant. We report here the first outbreak of IMI-1-producing Enterobacteriaceae. IMI-1 producers may be under-detected in microbiology laboratories because of their unusual antibiotic resistance profile (resistant to imipenem, but with intermediate resistance to ertapenem and susceptible to extended-spectrum cephalosporins) and the absence of bla IMI-1 in the panel of genes targeted by molecular diagnostic kits. Copyright © 2018. Published by Elsevier B.V.

  19. High-dose tigecycline and colistin for successful treatment of disseminated carbapenem-resistant Klebsiella pneumoniae infection in a liver transplant recipient

    PubMed Central

    Dan, Jennifer Marie; Mendler, Michel Henry; Hemming, Alan W; Aslam, Saima

    2014-01-01

    Solid organ transplantation (SOT) is a risk factor for the acquisition of carbapenem-resistant Klebsiella pneumoniae. This infection is associated with a high mortality rate given the limited armamentarium of antibiotics for multidrug-resistant organisms along with continued immunosuppression to prevent graft rejection. We report a case of carbapenem-resistant K. pneumoniae pneumonia, bacteraemia and intra-abdominal infection in a newly transplanted liver recipient. The patient was successfully treated with a long course of high-dose tigecycline and colistin, along with surgical drainage. We discuss SOT-relevant epidemiology, therapeutic options and the rationale for our treatment choice. PMID:25378111

  20. In vivo therapeutic efficacy and pharmacokinetics of colistin sulfate in an experimental model of enterotoxigenic Escherichia coli infection in weaned pigs.

    PubMed

    Rhouma, Mohamed; Beaudry, Francis; Thériault, William; Bergeron, Nadia; Beauchamp, Guy; Laurent-Lewandowski, Sylvette; Fairbrother, John Morris; Letellier, Ann

    2016-05-27

    Enterotoxigenic Escherichia coli (ETEC: F4) associated with post-weaning diarrhea (PWD) in pigs has developed resistance against several antimicrobial families, leading to increased use of colistin sulfate (CS) for the treatment of this disease. The objective of this study was to determine the efficacy of oral CS treatment in experimental PWD due to ETEC: F4 challenge and determine the effect of this challenge on CS intestinal absorption. In this study, 96 pigs were divided into two trials based on CS dose (100 000 or 50 000 IU/kg). Fecal shedding of ETEC: F4, total E. coli, and CS-resistant E. coli, diarrhea scores, and weight changes were evaluated. Colistin sulfate plasma concentrations were determined by HPLC-MS/MS. Regardless of the dose, CS treatment resulted in a reduction of fecal ETEC: F4 and total E. coli shedding, and in diarrhea scores but only during the treatment period. However, CS treatment resulted in a slight increase in fecal shedding of CS resistant E. coli and did not prevent weight loss in challenged pigs. In addition, challenge with ETEC: F4 resulted in an increase of CS intestinal absorption. Our study is among the first to demonstrate that under controlled conditions, CS was effective in reducing fecal shedding of ETEC: F4 and total E. coli in experimental PWD. However, CS treatment was associated with a slight selection pressure on E. coli and did not prevent pig weight loss. Further studies are needed in field conditions, to better characterize CS therapeutic regimen efficacy and bacterial resistance dissemination.

  1. Osteoarticular infection caused by MDR Pseudomonas aeruginosa: the benefits of combination therapy with colistin plus β-lactams.

    PubMed

    Ribera, Alba; Benavent, Eva; Lora-Tamayo, Jaime; Tubau, Fe; Pedrero, Salvador; Cabo, Xavier; Ariza, Javier; Murillo, Oscar

    2015-12-01

    In the era of emergence of MDR Pseudomonas aeruginosa, osteoarticular infections (OIs) add more difficulties to its treatment. The role of β-lactams (BLs) is questioned and older drugs need to be reconsidered. The objective of this study was to describe our experience in the management of OIs caused by MDR P. aeruginosa and evaluate different therapeutic options. This was a retrospective analysis of a prospectively collected cohort (2004-13) of patients with OI caused by MDR P. aeruginosa. We created two groups: (i) Group A (more difficult to treat), prosthetic joint infections (PJIs) and osteoarthritis (OA) managed with device retention; and (ii) Group B (less difficult to treat), OA managed without device retention. Antibiotic treatment was administered according to clinician criteria: monotherapy/combined therapy; and BL used by intermittent bolus (IB)/continuous infusion. Of 34 patients, 15 (44.1%) had PJI and 19 (55.9%) had OA (8 related to an orthopaedic device). Twenty-three cases (68%) were caused by XDR P. aeruginosa. The initial management included removal of an orthopaedic device in 14 cases, together with antibiotic [alone, 19 (55.9%; 4 colistin, 14 BL-IB and 1 BL continuous infusion); and in combination, 15 (44.1%; 5 BL-IB and 10 BL continuous infusion)]. The overall cure rate was 50% (39% and 63% in Groups A and B, respectively), ranging from 31.6% with monotherapy to 73.3% with combined therapy (P = 0.016), with special interest within Group A (cure rate with combined therapy 71.4%, P = 0.049). After rescue therapy, which included removal of remaining devices, the cure rate reached 85.3%. We suggest that the BL/colistin combination is an optimized therapy for OI caused by MDR P. aeruginosa, together with an appropriate surgical treatment. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Illustrative examples of probable transfer of resistance determinants from food animals to humans: Streptothricins, glycopeptides, and colistin

    PubMed Central

    Webb, Hattie E.; Angulo, Frederick J.; Granier, Sophie A.; Scott, H. Morgan; Loneragan, Guy H.

    2017-01-01

    Use, overuse, and misuse of antimicrobials contributes to selection and dissemination of bacterial resistance determinants that may be transferred to humans and constitute a global public health concern. Because of the continued emergence and expansion of antimicrobial resistance, combined with the lack of novel antimicrobial agents, efforts are underway to preserve the efficacy of current available life-saving antimicrobials in humans. As a result, uses of medically important antimicrobials in food animal production have generated debate and led to calls to reduce both antimicrobial use and the need for use. This manuscript, commissioned by the World Health Organization (WHO) to help inform the development of the WHO guidelines on the use of medically important antimicrobials in food animals, includes three illustrations of antimicrobial use in food animal production that has contributed to the selection—and subsequent transfer—of resistance determinants from food animals to humans. Herein, antimicrobial use and the epidemiology of bacterial resistance are described for streptothricins, glycopeptides, and colistin. Taken together, these historical and current narratives reinforce the need for actions that will preserve the efficacy of antimicrobials. PMID:29188021

  3. New dosing strategies for an old antibiotic: pharmacodynamics of front-loaded regimens of colistin at simulated pharmacokinetics in patients with kidney or liver disease.

    PubMed

    Rao, Gauri G; Ly, Neang S; Haas, Curtis E; Garonzik, Samira; Forrest, Alan; Bulitta, Jurgen B; Kelchlin, Pamela A; Holden, Patricia N; Nation, Roger L; Li, Jian; Tsuji, Brian T

    2014-01-01

    Increasing evidence suggests that colistin monotherapy is suboptimal at currently recommended doses. We hypothesized that front-loading provides an improved dosing strategy for polymyxin antibiotics to maximize killing and minimize total exposure. Here, we utilized an in vitro pharmacodynamic model to examine the impact of front-loaded colistin regimens against a high bacterial density (10(8) CFU/ml) of Pseudomonas aeruginosa. The pharmacokinetics were simulated for patients with hepatic (half-life [t1/2] of 3.2 h) or renal (t1/2 of 14.8 h) disease. Front-loaded regimens (n=5) demonstrated improvement in bacterial killing, with reduced overall free drug areas under the concentration-time curve (fAUC) compared to those with traditional dosing regimens (n=14) with various dosing frequencies (every 12 h [q12h] and q24h). In the renal failure simulations, front-loaded regimens at lower exposures (fAUC of 143 mg · h/liter) obtained killing activity similar to that of traditional regimens (fAUC of 268 mg · h/liter), with an ∼97% reduction in the area under the viable count curve over 48 h. In hepatic failure simulations, front-loaded regimens yielded rapid initial killing by up to 7 log10 within 2 h, but considerable regrowth occurred for both front-loaded and traditional regimens. No regimen eradicated the high bacterial inoculum of P. aeruginosa. The current study, which utilizes an in vitro pharmacodynamic infection model, demonstrates the potential benefits of front-loading strategies for polymyxins simulating differential pharmacokinetics in patients with hepatic and renal failure at a range of doses. Our findings may have important clinical implications, as front-loading polymyxins as a part of a combination regimen may be a viable strategy for aggressive treatment of high-bacterial-burden infections.

  4. Administration of colistin sulfate in endotoxic model at slow and sustained fashion may reverse shock without causing nephrotoxicity in its optimal concentration.

    PubMed

    Haque, Anwarul; Ishii, Yoshikazu; Akasaka, Yoshikiyo; Matsumoto, Tetsuya; Tateda, Kazuhiro

    2017-12-01

    Despite of proven LPS neutralizing activity, intravenous polymyxin use was waned due to experience of associated nephrotoxicity. But, increasing resistance to all available antibiotics has necessitated their resurgence and the prodrug of colistin sulfate (CS), known as colistin-methanesulfonate (CMS), is increasingly used as the only therapeutic option in many infections. Currently available CMS employ very different dose definitions and thus because of complex pharmacokinetics/pharmacodynamics information and short half-life, this drug use remains confusing. We aimed to expose CS in endotoxic shock models by micro-osmotic pump and evaluated its effectiveness. We used micro-osmotic pumps to deliver either sterile saline or CS at different dosages ranging from 0.25mg/day to 7mg/day for consecutive 3days in LPS (8mg/kg body weight) induced endotoxic mice and observed their outcome twice daily for a week to determine the survival rate. Serum pro-inflammatory cytokine levels and apoptosis in renal tissues in these models were evaluated. We showed endotoxic shock was reversed and all mice survived with a CS administration at a dosage of 2mg/day for 3 days, in comparison to survival rate with saline administration (p≤0.0001) in endotoxic models. CS infusion in shock models using micro-osmotic pump ameliorated rising of serum TNF-α, IL-12p70 and IL-6 levels. Nephrotoxicity was evident only with a higher dosage, but not with a lower dosage which was optimum to control endotoxic shock in models. These results highlighted that an optimal dosage of CS effectively improved outcome in endotoxic shock models without causing nephrotoxicity when administered at a slow and sustained manner. And a higher CS dosage administration was nephrotoxic and fatal. Thus this study bought an opportunity to consider future investigations with CS administration in murine Gram-negative bacterial infections in a novel way. Copyright © 2017 International Society for Chemotherapy of Infection

  5. Evaluation of efficacy of natural astaxanthin and vitamin E in prevention of colistin-induced nephrotoxicity in the rat model.

    PubMed

    Ghlissi, Zohra; Hakim, Ahmed; Sila, Assaad; Mnif, Hela; Zeghal, Khaled; Rebai, Tarek; Bougatef, Ali; Sahnoun, Zouheir

    2014-05-01

    We evaluated the effect of astaxanthin (ASX) and vitamin E (vit E) on colistin methanesulfonate (CMS) induced-nephrotoxicity in rats. Animals were treated with sterile saline, 300000 or 450 000 IU/kg/day of CMS, CMS + ASX (20 mg/kg), CMS + vit E (100 mg/kg), or CMS + 1 ml/kg olive oil (OO) for 7 days. The plasma/urine creatinine (Cr) level, urine γ-glutamyl-transferase (GGT) level, and renal tissue activities in malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reductase (GSH), as well as renal histology were performed. CMS induced a tubular damage, increased the GGT and MDA levels, and decreased the activities of SOD, CAT, GPx and GSH. Co-treatment with ASX or vit E restored all biochemical parameters cited above and improved the histopathological damage. Nephrotoxicity induced by CMS might be due to oxidative damage. The improvement by ASX or vit E seems to be related to their antioxidant properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Safety and efficacy of colistin versus meropenem in the empirical treatment of ventilator-associated pneumonia as part of a macro-project funded by the Seventh Framework Program of the European Commission studying off-patent antibiotics: study protocol for a randomized controlled trial.

    PubMed

    Rosso-Fernández, Clara; Garnacho-Montero, José; Antonelli, Massimo; Dimopoulos, George; Cisneros, José Miguel

    2015-03-20

    Ventilator-associated pneumonia (VAP) is one of the most common and severe hospital-adquired infections, and multidrugresistant gram-negative bacilli (MDR-GNB) constitute the main etiology in many countries. Inappropriate empiric antimicrobial treatment is associated with increased mortality. In this context, the empirical treatment of choice for VAP is unknown. Colistin, is now the antimicrobial with greatest in vitro activity against MDR-GNB. The MagicBullet clinical trial is an investigator-driven clinical study, funded by the Seventh Framework Program of the European Commission. This is designed as a phase IV, randomized, controlled, open label, non-inferiority and international trial to assess the safety and efficacy of colistin versus meropenem in late onset VAP. The study is conducted in a total of 32 centers in three European countries (Spain, Italy and Greece) with specific high incidences of infections caused by MDR-GNB. Patients older than 18 years who develop VAP with both clinical and radiological signs, and are on mechanical ventilation for more than 96 hours, or less than 96 hours but with previous antibiotic treatment plus one week of hospitalization, are candidates for inclusion in the study. A total sample size of 496 patients will be randomized according to a severity clinical score (at the time of VAP diagnosis in a 1:1 ratio to receive either colistin 4.5 MU as a loading dose, followed by 3 MU every eight hours (experimental arm), or meropenem 2 g every eight hours (control arm), both combined with levofloxacin. Mortality from any cause at 28 days will be considered as the main outcome. Clinical and microbiological cure will be evaluated at 72 hours, eight days, the finalization of antibiotic treatment, and 28 days of follow-up. The efficacy evaluation will be performed in every patient who receives at least one study treatment drug, and with etiologic diagnosis of VAP, intention-to-treat population and per protocol analysis will be performed

  7. Meropenem/colistin synergy testing for multidrug-resistant Acinetobacter baumannii strains by a two-dimensional gradient technique applicable in routine microbiology.

    PubMed

    van Belkum, Alex; Halimi, Diane; Bonetti, Eve-Julie; Renzi, Gesuele; Cherkaoui, Abdessalam; Sauvonnet, Véronique; Martelin, Roland; Durand, Géraldine; Chatellier, Sonia; Zambardi, Gilles; Engelhardt, Anette; Karlsson, Åsa; Schrenzel, Jacques

    2015-01-01

    Precise assessment of potential therapeutic synergy, antagonism or indifference between antimicrobial agents currently depends on time-consuming and hard-to-standardize in vitro chequerboard titration methods. We here present a method based on a novel two-dimensional antibiotic gradient technique named Xact™. We used a test comprising a combination of perpendicular gradients of meropenem and colistin in a single quadrant. We compared test outcomes with those obtained with classical chequerboard microbroth dilution testing in a study involving 27 unique strains of multidrug-resistant Acinetobacter baumannii from diverse origins. We were able to demonstrate 92% concordance between the new technology and classical chequerboard titration using the A. baumannii collection. Two strains could not be analysed by Xact™ due to their out-of-range MIC of meropenem (>128 mg/L). The new test was shown to be diagnostically useful, easy to implement and less labour intensive than the classical method. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Synergy of imipenem/colistin methanesulfonate combinations against imipenem-nonsusceptible multidrug-resistant Acinetobacter baumannii.

    PubMed

    Leu, Hsieh-Shong; Ye, Jung-Jr; Lee, Ming-Hsun; Su, Lin-Hui; Huang, Po-Yen; Wu, Tsu-Lan; Huang, Ching-Tai

    2014-10-01

    The optimal combination ratio of imipenem to colistin methanesulfonate (CMS) against imipenem-nonsusceptible multidrug-resistant Acinetobacter baumannii (INS-MDRAB) has not been determined in previous studies. To provide an alternative therapeutic option for clinical INS-MDRAB isolates, we investigated whether clinically achievable serum concentrations of CMS in combination with imipenem enhance the in vitro activity of imipenem against the INS-MDRAB isolates. Fifty-nine INS-MDRAB isolates with imipenem minimal inhibitory concentration (MIC) values of ≥8 mg/L were selected randomly from the Clinical Microbiology Laboratory at a university-affiliated medical center between July 1998 and May 2005. The in vitro activity of imipenem among these 59 clinical isolates was explored via serial two-fold dilutions containing a range of imipenem concentration from 0.125 mg/L to 256 mg/L, in combination with two fixed CMS concentrations at 0.5 mg/L and 1 mg/L. Genotype classification was performed using the pulsed-field gel electrophoresis method and infrequent-restriction-site polymerase chain reaction. A significant reversal of imipenem resistance (i.e., MICs ≤ 4 mg/L) was observed in 34 (57.6%) isolates and 44 (74.6%) isolates with the tests of CMS concentrations at 0.5 mg/L and 1 mg/L, respectively (p = 0.041). Genotype 1 was predominant (43 isolates, 72.9%) with imipenem resistance reversal rates of 51.2% and 79.1% (p = 0.004) in the tests of CMS at 0.5 mg/L and 1 mg/L, respectively. The synergy of imipenem/CMS against INS-MDRAB was significantly better for the CMS concentration at 1 mg/L than that at 0.5 mg/L, especially in our predominant clone. Our results provided insightful information for treating INS-MDRAB infections in clinical practice. Copyright © 2013. Published by Elsevier B.V.

  9. Risk factors for acute kidney injury in critically ill patients receiving high intravenous doses of colistin methanesulfonate and/or other nephrotoxic antibiotics: a retrospective cohort study

    PubMed Central

    2013-01-01

    Introduction Use of colistin methanesulfonate (CMS) was abandoned in the 1970s because of excessive nephrotoxicity, but it has been reintroduced as a last-resort treatment for extensively drug-resistant infections caused by gram-negative bacteria (Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumonia). We conducted a retrospective cohort study to evaluate risk factors for new-onset acute kidney injury (AKI) in critically ill patients receiving high intravenous doses of colistin methanesulfonate and/or other nephrotoxic antibiotics. Methods The cohort consisted of 279 adults admitted to two general ICUs in teaching hospitals between 1 April 2009 and 30 June 2011 with 1) no evidence on admission of acute or chronic kidney disease; and 2) treatment for more than seven days with CMS and/or other nephrotoxic antimicrobials (NAs, that is, aminoglycosides, glycopeptides). Logistic regression analysis was used to identify risk factors associated with this outcome. Results The 279 cases that met the inclusion criteria included 147 patients treated with CMS, alone (n = 90) or with NAs (n = 57), and 132 treated with NAs alone. The 111 (40%) who developed AKI were significantly older and had significantly higher Simplified Acute Physiology Score II (SAPS II) scores than those who did not develop AKI, but rates of hypertension, diabetes mellitus and congestive heart failure were similar in the two groups. The final logistic regression model showed that in the 147 patients who received CMS alone or with NAs, onset of AKI during the ICU stay was associated with septic shock and with SAPS II scores ≥43. Similar results were obtained in the 222 patients treated with CMS alone or NAs alone. Conclusions In severely ill ICU patients without pre-existing renal disease who receive CMS high-dose for more than seven days, CMS therapy does not appear to be a risk factor for this outcome. Instead, the development of AKI was strongly correlated with the presence of septic

  10. Sub-minimum inhibitory concentrations of colistin and polymyxin B promote Acinetobacter baumannii biofilm formation

    PubMed Central

    Unno, Yuka; Ubagai, Tsuneyuki; Ono, Yasuo

    2018-01-01

    We investigated the numbers of planktonic and biofilm cells and the expression levels of genes encoding efflux pumps and biofilm-related proteins in 10 clinical isolates of multi-drug resistant Acinetobacter baumannii (MDRA) as well as in its standard strain ATCC 19606 in the presence of colistin (CST), polymyxin B (PMB), minomycin (MIN), and tigecycline (TGC) at their respective sub-MICs. The number of planktonic and biofilm cells of ATCC 19606 decreased in the presence of all aforementioned antibiotics in a dose-dependent manner. Cell number also decreased in two representative MDRA strains, R2 and R3, in the presence of MIN and TGC in a dose-dependent manner. In contrast, the number of biofilm cells in these two strains increased in the presence of CST, while they increased significantly in the presence of PMB in R2 only. Pearson correlation analysis revealed that the number of biofilm cells was positively and significantly correlated with the mRNA levels of genes encoding efflux pumps (adeB and adeG) and autoinducer synthase (abaI) in strain R2 and adeB, adeG, adeJ, poly-acetyl-glucosamine-porin (pgaA), and abaI in strain R3 in the presence of CST. It was positively and significantly correlated with the mRNA levels of genes encoding adeB in strain R2 and an outer membrane protein A (ompA) and biofilm-associated protein (bap) in strain R3 in the presence of PMB. These results provide valuable insights into the biofilm formation potency of clinical isolates of MDRA that depends on efflux pumps and biofilm-related genes and its regulation by antibiotics. PMID:29554105

  11. Effect of vitamin E on reversibility of renal function following discontinuation of colistin in rats: Histological and biochemical investigations.

    PubMed

    Ghlissi, Zohra; Hakim, Ahmed; Mnif, Hela; Kallel, Rim; Zeghal, Khaled; Boudawara, Tahiya; Sahnoun, Zouheir

    2018-01-01

    This study was carried out to evaluate spontaneous renal regeneration after stopping colistin methanesulfonate (CMS), which induces tubular damage, and the curative effect of Vitamin E (vit E) in rats. Animals were given the following: sterile saline (n = 6), 300,000 IU/kg/ day of CMS (n = 24), or 450,000 IU/kg/day of CMS (n = 24) for seven days. Each CMS group was subdivided into four subgroups (n = 6) and sacrificed as follows: (i) 12 h after stopping CMS, (ii) two weeks after stopping CMS, (iii) two weeks after stopping treatment with vit E, and (iv) two weeks after stopping treatment with olive oil. Subsequently, plasma creatinine (pCr), urine N-acetyl-b-D-glucosaminidase (NAG), renal tissue level of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione reductase (GSH), and renal histology were tested. CMS-induced tubular damage increased the NAG and MDA levels and decreased the SOD and GSH activities. After two weeks of stopping CMS, there was no significant renal recovery. However, treatment with vit E improved tubular regeneration and reduced the biochemical impairments. Two weeks might not be long enough for significant spontaneous renal regeneration. Improvement of renal parameters by vit E could be explained by the reduction of oxidative stress damage.

  12. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    PubMed Central

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S.; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-01-01

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a ‘last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections. PMID:26892159

  13. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms.

    PubMed

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang; Adav, Sunil S; Salido, May Margarette; Liu, Yang; Givskov, Michael; Sze, Siu Kwan; Tolker-Nielsen, Tim; Yang, Liang

    2016-02-19

    Drug resistance and tolerance greatly diminish the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. Here we use a proteomics approach, pulsed stable isotope labelling with amino acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates research avenues for designing more efficient treatments against biofilm-associated infections.

  14. Development and validation of an in vitro pharmacokinetic/pharmacodynamic model to test the antibacterial efficacy of antibiotic polymer conjugates.

    PubMed

    Azzopardi, Ernest A; Ferguson, Elaine L; Thomas, David W

    2015-04-01

    This study describes the use of a novel, two-compartment, static dialysis bag model to study the release, diffusion, and antibacterial activity of a novel, bioresponsive dextrin-colistin polymer conjugate against multidrug resistant (MDR) wild-type Acinetobacter baumannii. In this model, colistin sulfate, at its MIC, produced a rapid and extensive drop in viable bacterial counts (<2 log10 CFU/ml at 4 h); however, a marked recovery was observed thereafter, with regrowth equivalent to that of control by 48 h. In contrast, dextrin-colistin conjugate, at its MIC, suppressed bacterial growth for up to 48 h, with 3 log10 CFU/ml lower bacterial counts after 48 h than those of controls. Doubling the concentration of dextrin-colistin conjugate (to 2× MIC) led to an initial bacterial killing of 3 log10 CFU/ml at 8 h, with a similar regrowth profile to 1× MIC treatment thereafter. The addition of colistin sulfate (1× MIC) to dextrin-colistin conjugate (1× MIC) resulted in undetectable bacterial counts after 4 h, followed by suppressed bacterial growth (3.5 log10 CFU/ml lower than that of control at 48 h). Incubation of dextrin-colistin conjugates with infected wound exudate from a series of burn patients (n = 6) revealed an increasing concentration of unmasked colistin in the outer compartment (OC) over time (up to 86.3% of the initial dose at 48 h), confirming that colistin would be liberated from the conjugate by endogenous α-amylase within the wound environment. These studies confirm the utility of this model system to simulate the pharmacokinetics of colistin formation in humans administered dextrin-colistin conjugates and further supports the development of antibiotic polymer conjugates in the treatment of MDR infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae

    PubMed Central

    Band, Victor I.; Crispell, Emily K.; Napier, Brooke A.; Herrera, Carmen M.; Tharp, Greg K.; Vavikolanu, Kranthi; Pohl, Jan; Read, Timothy D.; Bosinger, Steven E.; Trent, M. Stephen; Burd, Eileen M.; Weiss, David S.

    2016-01-01

    Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics. PMID:27572838

  16. Comparison of antibiotic prophylaxis with cotrimoxazole/colistin (COT/COL) versus ciprofloxacin (CIP) in patients with acute myeloid leukemia.

    PubMed

    Mayer, Karin; Hahn-Ast, Corinna; Mückter, Sara; Schmitz, Andrea; Krause, Simon; Felder, Linda; Bekeredjian-Ding, Isabelle; Molitor, Ernst; Brossart, Peter; von Lilienfeld-Toal, Marie

    2015-05-01

    Recent meta-analyses showed that antibiotic prophylaxis in patients with neutropenia after chemotherapy reduced the incidence of fever and mortality rate. Fluoroquinolones appear to be most effective and well tolerated. Thus, in April 2008, we changed our antibiotic prophylaxis regimen from cotrimoxazole/colistin (COT/COL) to the fluoroquinolone ciprofloxacin (CIP) in patients with acute myeloid leukemia (AML). The aim of this retrospective study was to compare efficacy and development of bacterial resistance with two different prophylaxis regimens over a time period of more than 4 years. Induction chemotherapy courses given for AML during the antibiotic prophylaxis period with COT/COL (01/2006-04/2008) and CIP (04/2008-06/2010) were retrospectively analyzed with a standard questionnaire. Eighty-five courses in the COT/COL group and 105 in the CIP group were analyzed. The incidence of fever was not significantly different (COT/COL 80 % vs CIP 77 %; p = 0.724). Also, the rate of microbiologically documented infections was nearly the same (29 vs 26 %; p = 0.625). In addition, there was no significant difference in the incidence of clinically documented infections (11 vs 19 %; p = 0.155) or in the rates of detected gram-positive and gram-negative bacteria. Of note, there was no increase in resistance rates or cases with Clostridium difficile-associated diarrhea in the CIP group. The antibiotic prophylaxis with CIP compared to COT/COL in AML was similarly effective with no increase in bacterial resistance. COT/COL may have the advantages of providing additional prophylaxis against Pneumocystis jirovecii pneumonia and leaving fluoroquinolones as an additional option for treatment of febrile neutropenia.

  17. Medium-chain triglyceride as an alternative of in-feed colistin sulfate to improve growth performance and intestinal microbial environment in newly weaned pigs.

    PubMed

    Yen, Hung-Che; Lai, Wei-Kang; Lin, Chuan-Shun; Chiang, Shu-Hsing

    2015-01-01

    Five hundred and twenty-eight newly weaned pigs were given four treatments, with eight replicates per treatment. Sixteen to 18 pigs were assigned per replicate and were fed diets supplemented with 0 or 3% medium-chain triglyceride (MCT) and 0 or 40 ppm colistin sulfate (CS) in a 2 × 2 factorial arrangement for 2 weeks. The results showed that dietary supplementation with MCT improved the gain-to-feed ratio during days 3-7 and in the overall period (P < 0.05). Dietary supplementation with MCT decreased coliforms counts (C) in colon and rectum content (P < 0.05). Dietary supplementation with CS decreased C and lactic acid bacteria plus C counts (L + C) in cecum (P < 0.05), and C, L + C (P < 0.01) and ratio of L and C (P < 0.05) in colon and rectum contents. The lack of interactions between MCT and CS indicates different modes of action and additive effects between the two supplementations. In conclusion, supplementation with MCT in diet with or without CS could improve the intestinal microbial environment and the feed utilization efficiency of newly weaned pigs. © 2014 Japanese Society of Animal Science.

  18. Epidemiology of infections caused by polymyxin-resistant pathogens.

    PubMed

    Giamarellou, Helen

    2016-12-01

    Confronting the storm of carbapenemase-producing Gram-negative pathogens and thus facing the threat of untreatable infections, the medical community revived colistin. Not long since its re-introduction and despite the fact that resistance to colistin at least in Escherichia coli is rare, chromosomally-mediated colistin resistance in metallo-β-lactamase-producing Klebsiella pneumoniae strains was reported in 2004 from Greece. Subsequent studies revealed the highest predominance in Italy (38%) and Greece (26%), with colistin-resistant (Col-R) strains frequently carrying a carbapenemase. On the other hand, the international prevalence of Col-R Acinetobacter baumannii varied, predominantly in Southern Europe and Southeast Asia, with rates exceeding 80% in Italy and Greece. Risk factors have mainly incriminated the selective pressure of excess consumption of colistin both in animals and humans. In November 2015, emergence of plasmid-mediated colistin resistance due to the mcr-1 gene was reported from China, mostly in community-derived E. coli strains. As of 1 September 2016, the mcr-1 gene was detected in 35 countries worldwide in livestock/retail meat and in human sources from 29 and 22 countries, respectively. Heavy usage of polymyxins in animals has been incriminated as the reservoir of the mcr-1 gene. Therefore, it is imperative that: (i) polymyxins are banned as growth promoters and for prophylaxis in animals; (ii) targeted surveillance plus molecular epidemiology is performed in hospitals; (iii) carriers or patients infected with isolates harbouring both mcr-1 and carbapenemase genes are strictly isolated; (iv) susceptibilities are based on exact colistin minimum inhibitory concentration (MIC) determination; and (v) rational use of colistin is audited in hospitals. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  19. An update on the arsenal for multidrug-resistant Acinetobacter infections: polymyxin antibiotics.

    PubMed

    Kassamali, Zahra; Jain, Rupali; Danziger, Larry H

    2015-01-01

    To review recent clinical pharmacokinetic and pharmacodynamic data to optimize dosing regimens for polymyxin B and colistin for treatment of infections due to A. baumannii. A literature search was performed using the search terms Acinetobacter, polymyxin, colistin, polymyxin B on MEDLINE. Additional references were identified from the resulting citations. Increasing the dose of polymyxin B or colistin and using either in combination with other antibiotic agents demonstrates improved antimicrobial activity against Acinetobacter spp. Polymyxin B, unlike colistin, is available as an active drug and appears to be relatively unaffected by renal function. This is advantageous both for patients with renal impairment and for those with intact renal function. Achieving therapeutic serum concentrations of colistin may be difficult for those with intact renal function due to rapid clearance of the prodrug, colistimethate sodium (CMS). Clinical data are still lacking for polymyxin B, and it remains to be seen whether advantages demonstrated in PK/PD analyses will persist in the larger scale of patient care and safety. The use of higher doses of either colistin or polymyxin B, as well as combination with other antibiotics, may prevent emerging resistance and preserve the activity of polymyxins against A. baumannii. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Structural Modification of Lipopolysaccharide Conferred by mcr-1 in Gram-Negative ESKAPE Pathogens.

    PubMed

    Liu, Yi-Yun; Chandler, Courtney E; Leung, Lisa M; McElheny, Christi L; Mettus, Roberta T; Shanks, Robert M Q; Liu, Jian-Hua; Goodlett, David R; Ernst, Robert K; Doi, Yohei

    2017-06-01

    mcr-1 was initially reported as the first plasmid-mediated colistin resistance gene in clinical isolates of Escherichia coli and Klebsiella pneumoniae in China and has subsequently been identified worldwide in various species of the family Enterobacteriaceae mcr-1 encodes a phosphoethanolamine transferase, and its expression has been shown to generate phosphoethanolamine-modified bis-phosphorylated hexa-acylated lipid A in E. coli Here, we investigated the effects of mcr-1 on colistin susceptibility and on lipopolysaccharide structures in laboratory and clinical strains of the Gram-negative ESKAPE ( Enterococcus faecium , Staphylococcus aureus , K. pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens, which are often treated clinically by colistin. The effects of mcr-1 on colistin resistance were determined using MIC assays of laboratory and clinical strains of E. coli , K. pneumoniae , A. baumannii , and P. aeruginosa Lipid A structural changes resulting from MCR-1 were analyzed by mass spectrometry. The introduction of mcr-1 led to colistin resistance in E. coli , K. pneumoniae , and A. baumannii but only moderately reduced susceptibility in P. aeruginosa Phosphoethanolamine modification of lipid A was observed consistently for all four species. These findings highlight the risk of colistin resistance as a consequence of mcr-1 expression among ESKAPE pathogens, especially in K. pneumoniae and A. baumannii Furthermore, the observation that lipid A structures were modified despite only modest increases in colistin MICs in some instances suggests more sophisticated surveillance methods may need to be developed to track the dissemination of mcr-1 or plasmid-mediated phosphoethanolamine transferases in general. Copyright © 2017 American Society for Microbiology.

  1. Structural Modification of Lipopolysaccharide Conferred by mcr-1 in Gram-Negative ESKAPE Pathogens

    PubMed Central

    Liu, Yi-Yun; Chandler, Courtney E.; Leung, Lisa M.; McElheny, Christi L.; Mettus, Roberta T.; Liu, Jian-Hua; Goodlett, David R.

    2017-01-01

    ABSTRACT mcr-1 was initially reported as the first plasmid-mediated colistin resistance gene in clinical isolates of Escherichia coli and Klebsiella pneumoniae in China and has subsequently been identified worldwide in various species of the family Enterobacteriaceae. mcr-1 encodes a phosphoethanolamine transferase, and its expression has been shown to generate phosphoethanolamine-modified bis-phosphorylated hexa-acylated lipid A in E. coli. Here, we investigated the effects of mcr-1 on colistin susceptibility and on lipopolysaccharide structures in laboratory and clinical strains of the Gram-negative ESKAPE (Enterococcus faecium, Staphylococcus aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, which are often treated clinically by colistin. The effects of mcr-1 on colistin resistance were determined using MIC assays of laboratory and clinical strains of E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa. Lipid A structural changes resulting from MCR-1 were analyzed by mass spectrometry. The introduction of mcr-1 led to colistin resistance in E. coli, K. pneumoniae, and A. baumannii but only moderately reduced susceptibility in P. aeruginosa. Phosphoethanolamine modification of lipid A was observed consistently for all four species. These findings highlight the risk of colistin resistance as a consequence of mcr-1 expression among ESKAPE pathogens, especially in K. pneumoniae and A. baumannii. Furthermore, the observation that lipid A structures were modified despite only modest increases in colistin MICs in some instances suggests more sophisticated surveillance methods may need to be developed to track the dissemination of mcr-1 or plasmid-mediated phosphoethanolamine transferases in general. PMID:28373195

  2. In Vivo and In Vitro Efficacy of Minocycline-Based Combination Therapy for Minocycline-Resistant Acinetobacter baumannii.

    PubMed

    Yang, Ya-Sung; Lee, Yi; Tseng, Kuo-Chuan; Huang, Wei-Cheng; Chuang, Ming-Fen; Kuo, Shu-Chen; Lauderdale, Tsai-Ling Yang; Chen, Te-Li

    2016-07-01

    Minocycline-based combination therapy has been suggested to be a possible choice for the treatment of infections caused by minocycline-susceptible Acinetobacter baumannii, but its use for the treatment of infections caused by minocycline-resistant A. baumannii is not well established. In this study, we compared the efficacy of minocycline-based combination therapy (with colistin, cefoperazone-sulbactam, or meropenem) to that of colistin in combination with meropenem for the treatment of minocycline-resistant A. baumannii infection. From 2006 to 2010, 191 (17.6%) of 1,083 A. baumannii complex isolates not susceptible to minocycline from the Taiwan Surveillance of Antimicrobial Resistance program were collected. Four representative A. baumannii isolates resistant to minocycline, amikacin, ampicillin-sulbactam, ceftazidime, ciprofloxacin, cefepime, gentamicin, imipenem, levofloxacin, meropenem, and piperacillin-tazobactam were selected on the basis of the diversity of their pulsotypes, collection years, health care setting origins, and geographic areas of origination. All four isolates had tetB and overexpressed adeABC, as revealed by quantitative reverse transcription-PCR. Among all minocycline-based regimens, only the combination with colistin produced a fractional inhibitory concentration index comparable to that achieved with meropenem combined with colistin. Minocycline (4 or 16 μg/ml) in combination with colistin (0.5 μg/ml) also synergistically killed minocycline-resistant isolates in time-kill studies. Minocycline (50 mg/kg of body weight) in combination with colistin (10 mg/kg) significantly improved the survival of mice and reduced the number of bacteria present in the lungs of mice compared to the results of monotherapy. However, minocycline (16 μg/ml)-based therapy was not effective at reducing biofilm-associated bacteria at 24 or 48 h when its effectiveness was compared to that of colistin (0.5 μg/ml) and meropenem (8 μg/ml). The clinical use of

  3. Acinetobacter Species Infections Among Navy and Marine Corps Beneficiaries: 2013 Annual Report

    DTIC Science & Technology

    2014-11-19

    cases in 2013, DON providers most commonly prescribed colistin, minocycline , piperacillin/tazobactam, and trimethoprim/sulfamethoxazole. DOD...administration route, the following antibiotics were all equally common in the DON for resistant Acinetobacter cases: colistin, minocycline , piperacillin

  4. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli.

    PubMed

    Phan, Minh-Duy; Nhu, Nguyen Thi Khanh; Achard, Maud E S; Forde, Brian M; Hong, Kar Wai; Chong, Teik Min; Yin, Wai-Fong; Chan, Kok-Gan; West, Nicholas P; Walker, Mark J; Paterson, David L; Beatson, Scott A; Schembri, Mark A

    2017-10-01

    Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958. Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost. A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B. This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Prospective Multicenter Study of Carbapenemase-Producing Enterobacteriaceae from 83 Hospitals in Spain Reveals High In Vitro Susceptibility to Colistin and Meropenem

    PubMed Central

    Ortega, Adriana; Bartolomé, Rosa; Bou, Germán; Conejo, Carmen; Fernández-Martínez, Marta; González-López, Juan José; Martínez-García, Laura; Martínez-Martínez, Luis; Merino, María; Miró, Elisenda; Mora, Marta; Oliver, Antonio; Pascual, Álvaro; Rodríguez-Baño, Jesús; Ruiz-Carrascoso, Guillermo; Ruiz-Garbajosa, Patricia; Zamorano, Laura; Bautista, Verónica; Pérez-Vázquez, María; Campos, José

    2015-01-01

    The aim of this study was to determine the impact of carbapenemase-producing Enterobacteriaceae (CPE) in Spain in 2013 by describing the prevalence, dissemination, and geographic distribution of CPE clones, and their population structure and antibiotic susceptibility. From February 2013 to May 2013, 83 hospitals (about 40,000 hospital beds) prospectively collected nonduplicate Enterobacteriaceae using the screening cutoff recommended by EUCAST. Carbapenemase characterization was performed by phenotypic methods and confirmed by PCR and sequencing. Multilocus sequencing types (MLST) were determined for Klebsiella pneumoniae and Escherichia coli. A total of 702 Enterobacteriaceae isolates met the inclusion criteria; 379 (54%) were CPE. OXA-48 (71.5%) and VIM-1 (25.3%) were the most frequent carbapenemases, and K. pneumoniae (74.4%), Enterobacter cloacae (10.3%), and E. coli (8.4%) were the species most affected. Susceptibility to colistin, amikacin, and meropenem was 95.5%, 81.3%, and 74.7%, respectively. The most prevalent sequence types (STs) were ST11 and ST405 for K. pneumoniae and ST131 for E. coli. Forty-five (54.1%) of the hospitals had at least one CPE case. For K. pneumoniae, ST11/OXA-48, ST15/OXA-48, ST405/OXA-48, and ST11/VIM-1 were detected in two or more Spanish provinces. ST11 isolates carried four carbapenemases (VIM-1, OXA-48, KPC-2, and OXA-245), but ST405 isolates carried OXA-48 only. A wide interregional spread of CPE in Spain was observed, mainly due to a few successful clones of OXA-48-producing K. pneumoniae (e.g., ST11 and ST405). The dissemination of OXA-48-producing E. coli is a new finding of public health concern. According to the susceptibilities determined in vitro, most of the CPE (94.5%) had three or more options for antibiotic treatment. PMID:25824224

  6. Structure–activity relationships for the binding of polymyxins with human α-1-acid glycoprotein

    PubMed Central

    Azad, Mohammad A.K.; Huang, Johnny X.; Cooper, Matthew A.; Roberts, Kade D.; Thompson, Philip E.; Nation, Roger L.; Li, Jian; Velkov, Tony

    2012-01-01

    Here, for the first time, we have characterized binding properties of the polymyxin class of antibiotics for human α-1-acid glycoprotein (AGP) using a combination of biophysical techniques. The binding affinity of colistin, polymyxin B, polymyxin B3, colistin methansulfonate, and colistin nona-peptide was determined by isothermal titration calorimetry (ITC), surface plasma resonance (SPR) and fluorometric assay methods. All assay techniques indicated colistin, polymyxin B and polymyxin B3 display a moderate binding affinity for AGP. ITC and SPR showed there was no detectable binding affinity for colistin methansulfonate and colistin nona-peptide, suggesting both the positive charges of the diaminobutyric acid (Dab) side chains and the N-terminal fatty acyl chain of the polymyxin molecule are required to drive binding to AGP. In addition, the ITC and fluorometric data suggested that endogenous lipidic substances bound to AGP provide part of the polymyxin binding surface. A molecular model of the polymyxin B3–AGP F1*S complex was presented that illustrates the pivotal role of the N-terminal fatty acyl chain and the D-Phe6-L-Leu7 hydrophobic motif of polymyxin B3 for binding to the cleft-like ligand binding cavity of AGP F1*S variant. The model conforms with the entropy driven binding interaction characterized by ITC which suggests hydrophobic interactions coupled to desolvation events and conformational changes are the primary driving force for polymyxins binding to AGP. Collectively, the data are consistent with a role of this acute-phase reactant protein in the transport of polymyxins in plasma. PMID:22587817

  7. Management of ventilator associated pneumonia with a new antibiotic adjuvant entity (ceftriaxone+sulbactam+disodium edetate) - A novel approach to spare carbapenems.

    PubMed

    Sathe, Prachee; Maddani, Sagar; Kulkarni, Shilpa; Munshi, Nita

    2017-10-01

    Ventilator associated pneumonia (VAP) is one of the most serious nosocomial infections in Intensive Care Unit (ICU). The aim of this study was to evaluate a new approach to spare the carbapenems for the management of patients diagnosed with VAP due to Acinetobacter baumannii (A. baumannii). This retrospective study was conducted on VAP patients presenting for treatment at tertiary care centre between May 2014 and March 2016. The case sheets of patients who have been treated for VAP with meropenem, antibiotic adjuvant entity (AAE) and colistin were analysed. Out of 113 patients analysed, 24 (21.3%) patients were having VAP due to MDR A. baumannii. Microbial sensitivity has shown that 87.5% of patients were sensitive to AAE and colistin whereas all of them were resistant to meropenem, imipenem and gentamycin. The mean treatment durations were 12.4±2.1, 13.2±2.4 and 14.3±2.1days for AAE, meropenem+colistin and AAE+colistin treatment groups. In AAE susceptible patients, the mean treatment duration and cost could be reduced by 23-24% and 43-53% if AAE is used empirically. In AAE-resistant patients, the mean treatment duration and cost could be reduced by 21% and 26% if AAE+colistin regime is used empirically instead of meropenem followed by AAE+colistin. Clinical assessment with microbial eradication and pharmaco-economic evaluation clearly shows benefits in using AAE empirically in the management of A. baumannii infected VAP cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Transferability of MCR-1/2 Polymyxin Resistance: Complex Dissemination and Genetic Mechanism.

    PubMed

    Feng, Youjun

    2018-03-09

    Polymyxins, a group of cationic antimicrobial polypeptides, act as a last-resort defense against lethal infections by carbapenem-resistant Gram-negative pathogens. Recent emergence and fast spread of mobilized colistin resistance determinant mcr-1 argue the renewed interest of colistin in clinical therapies, threatening global public health and agriculture production. This mini-review aims to present an updated overview of mcr-1, covering its global dissemination, the diversity of its hosts/plasmid reservoirs, the complexity in the genetic environment adjacent to mcr-1, the appearance of new mcr-like genes, and the molecular mechanisms for mobilized colistin resistance determinant 1/2 (MCR-1/2).

  9. Presence of mcr-1-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009.

    PubMed

    Kluytmans-van den Bergh, Marjolein F; Huizinga, Pepijn; Bonten, Marc J; Bos, Martine; De Bruyne, Katrien; Friedrich, Alexander W; Rossen, John W; Savelkoul, Paul H; Kluytmans, Jan A

    2016-01-01

    Recently, the plasmid-mediated colistin resistance gene mcr-1 was found in Enterobacteriaceae from humans, pigs and retail meat in China. Several reports have documented global presence of the gene in Enterobacteriaceae from humans, food animals and food since. We screened several well-characterised strain collections of Enterobacteriaceae, obtained from retail chicken meat and hospitalised patients in the Netherlands between 2009 and 2015, for presence of colistin resistance and the mcr-1 gene. A total of 2,471 Enterobacteriaceae isolates, from surveys in retail chicken meat (196 isolates), prevalence surveys in hospitalised patients (1,247 isolates), clinical cultures (813 isolates) and outbreaks in healthcare settings (215 isolates), were analysed. The mcr-1 gene was identified in three (1.5%) of 196 extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates from retail chicken meat samples in 2009 and 2014. Two isolates were obtained from the same batch of meat samples, most likely representing contamination from a common source. No mcr-1-positive isolates were identified among 2,275 human isolates tested. All mcr-1-positive isolates were colistin-resistant (minimum inhibitory concentration (MIC) > 2 mg/L). Our findings indicate that mcr-1-based colistin-resistance currently poses no threat to healthcare in the Netherlands. They indicate however that continued monitoring of colistin resistance and its underlying mechanisms in humans, livestock and food is needed.

  10. Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: a systematic review and network meta-analysis.

    PubMed

    Kengkla, Kirati; Kongpakwattana, Khachen; Saokaew, Surasak; Apisarnthanarak, Anucha; Chaiyakunapruk, Nathorn

    2018-01-01

    To comprehensively compare and rank the efficacy and safety of available treatment options for patients with MDR and XDR Acinetobacter baumannii (AB) infection. We searched PubMed, Embase and the Cochrane register of trials systematically for studies that examined treatment options for patients with MDR- and XDR-AB infections until April 2016. Network meta-analysis (NMA) was performed to estimate the risk ratio (RR) and 95% CI from both direct and indirect evidence. Primary outcomes were clinical cure and microbiological cure. Secondary outcomes were all-cause mortality and nephrotoxic and non-nephrotoxic adverse events. A total of 29 studies with 2529 patients (median age 60 years; 65% male; median APACHE II score 19.0) were included. Although there were no statistically significant differences between treatment options, triple therapy with colistin, sulbactam and tigecycline had the highest clinical cure rate. Colistin in combination with sulbactam was associated with a significantly higher microbiological cure rate compared with colistin in combination with tigecycline (RR 1.23; 95% CI 1.03-1.47) and colistin monotherapy (RR 1.21; 95% CI 1.06-1.38). No significant differences in all-cause mortality were noted between treatment options. Tigecycline-based therapy also appeared less effective for achieving a microbiological cure and is not appropriate for treating bloodstream MDR- and XDR-AB infections. Combination therapy of colistin with sulbactam demonstrates superiority in terms of microbiological cure with a safety profile similar to that of colistin monotherapy. Thus, our findings support the use of this combination as a treatment for MDR- and XDR-AB infections. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Current State of Resistance to Antibiotics of Last-Resort in South Africa: A Review from a Public Health Perspective

    PubMed Central

    Osei Sekyere, John

    2016-01-01

    A review of the literature was undertaken to delineate the current level and mechanisms of resistance to carbapenems, colistin, and tigecycline in South Africa. Thirty-two English publications and 32 National Institute of Communicable Diseases communiqués identified between early January 2000 and 20 May, 2016 showed substantial reports of NDM (n = 860), OXA-48 (n = 584), VIM (n = 131), and IMP (n = 45) carbapenemases within this period, mainly in Klebsiella pneumoniae (n = 1138), Acinetobacter baumannii (n = 332), Enterobacter cloacae (n = 201), and Serratia marcescens (n = 108). Colistin and tigecycline resistance was prevalent among K. pneumoniae, A. baumannii, S. marcescens, and E. cloacae. The first mcr-1 colistin resistance gene to be detected in South Africa was reported in Escherichia coli from livestock as well as from hospitalized and outpatients. There are increasing reports of NDM and OXA-48 carbapenemases among Enterobacteriaceae and A. baumannii in South Africa. Mcr-1 is now present in South African patients and livestock. Resistance to carbapenems, colistin, and tigecycline restricts infection management options for clinicians. PMID:27747206

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojanoski, Vlatko; Sankaran, Banumathi; Prasad, B. V. Venkataram

    Due to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity. The structure of the catalytic domain of MCR-1 at 1.32 Å reveals the active site is similar to that of relatedmore » phosphoethanolamine transferases. The putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain.« less

  13. Enhanced efficacy of synergistic combinations of antimicrobial peptides with caspofungin versus Candida albicans in insect and murine models of systemic infection.

    PubMed

    MacCallum, D M; Desbois, A P; Coote, P J

    2013-08-01

    The objective of this study was to determine whether combinations of antimicrobial peptides (AMPs) with caspofungin display enhanced antifungal activity versus Candida albicans in vitro and in vivo. Three conventional AMPs that satisfied criteria favouring their potential development as novel antifungals were selected for investigation. Colistin sulphate was also included as a cyclic peptide antibiotic used in the clinic. Minimum inhibitory concentrations (MICs) were determined for each antifungal agent and checkerboard assays were used to determine fractional inhibitory concentration index (FICI) values for dual combinations of AMPs or colistin with caspofungin. Viability assays were performed for the same combinations in order to investigate fungicidal interactions. Synergistic antifungal combinations were then tested for efficacy in vivo and compared to monotherapies in wax moth larva and murine models of systemic C. albicans infection. In combination with caspofungin, each of the AMPs [hMUC7-12, DsS3(1-16), hLF(1-11)] and colistin were synergistic and candidacidal in vitro. The treatment of infected wax moth larvae with combinations of caspofungin with hMUC7-12, DsS3(1-16) or colistin resulted in significant enhancements in survival compared to treatment with monotherapies. Notably, the treatment of C. albicans-infected mice with a combination of caspofungin and DsS3(1-16) resulted in the enhancement of survival compared to groups treated with just the individual agents. This study demonstrates that combination therapies containing caspofungin and AMPs or colistin merit further development as potential novel treatments for C. albicans infections.

  14. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains.

    PubMed

    Morici, P; Florio, W; Rizzato, C; Ghelardi, E; Tavanti, A; Rossolini, G M; Lupetti, A

    2017-10-01

    The spread of multi-drug resistant (MDR) Klebsiella pneumoniae strains producing carbapenemases points to a pressing need for new antibacterial agents. To this end, the in-vitro antibacterial activity of a synthetic N-terminal peptide of human lactoferrin, further referred to as hLF1-11, was evaluated against K. pneumoniae strains harboring different carbapenemase genes (i.e. OXA-48, KPC-2, KPC-3, VIM-1), with different susceptibility to colistin and other antibiotics, alone or in combination with conventional antibiotics (gentamicin, tigecycline, rifampicin, clindamycin, and clarithromycin). An antimicrobial peptide susceptibility assay was used to assess the bactericidal activity of hLF1-11 against the different K. pneumoniae strains tested. The synergistic activity was evaluated by a checkerboard titration method, and the fractional inhibitory concentration (FIC) index was calculated for the various combinations. hLF1-11 was more efficient in killing a K. pneumoniae strain susceptible to most antimicrobials (including colistin) than a colistin-susceptible strain and a colistin-resistant MDR K. pneumoniae strain. In addition, hLF1-11 exhibited a synergistic effect with the tested antibiotics against MDR K. pneumoniae strains. The results of this study indicate that resistance to hLF1-11 and colistin are not strictly associated, and suggest an hLF1-11-induced sensitizing effect of K. pneumoniae to antibiotics, especially to hydrophobic antibiotics, which are normally not effective on Gram-negative bacteria. Altogether, these data indicate that hLF1-11 in combination with antibiotics is a promising candidate to treat infections caused by MDR-K. pneumoniae strains.

  15. The fecal presence of enterotoxin and F4 genes as an indicator of efficacy of treatment with colistin sulfate in pigs.

    PubMed

    Rhouma, Mohamed; Fairbrother, John Morris; Thériault, William; Beaudry, Francis; Bergeron, Nadia; Laurent-Lewandowski, Sylvette; Letellier, Ann

    2017-01-05

    Enterotoxigenic Escherichia coli (ETEC) strains producing multiple enterotoxins are important causes of post-weaning diarrhea (PWD) in pigs. The aim of the present study was to investigate the fecal presence of ETEC enterotoxin as well as F4 and F18 genes as an indicator of colistin sulfate (CS) efficacy for treatment of PWD in pigs. Forty-eight piglets were weaned at the age of 21 days, and were divided into four groups: challenged treated, challenged untreated, unchallenged treated, and unchallenged untreated. Challenge was performed using 10 9  CFU of an ETEC: F4 strain, and treatment was conducted using oral CS at the dose of 50,000 IU/kg. The fecal presence of genes encoding for STa, STb, LT, F4 and F18 was detected using PCR. The PCR amplification of ETEC virulence genes showed that nearly 100% of pigs excreted genes encoding for STa and STb toxins in the feces before the challenge. These genes, in the absence of the gene encoding F4, were considered as a marker for F4-negative ETEC. One day after ETEC: F4 oral challenge pigs in the two challenged groups excreted the genes encoding LT and F4 in the feces. These genes were considered as a marker for F4-positive ETEC. However, the gene encoding F18 was not detected in any fecal samples of the 4 groups throughout the experiment. After only 3 days of successive oral treatment with CS, a significant reduction in both the F4-positive and negative ETEC populations was observed in the challenged treated group compared to the challenged untreated group (p < 0.0001). Our study is among the first to report that under controlled farming conditions, oral CS treatment had a significant effect on both fecal F4-positive and F4-negative ETEC in pigs. However, CS clinical efficiency was correlated with non-detection of F4-positive ETEC in the feces. Furthermore the fecal presence of F4-negative ETEC was not associated with clinical symptoms of post-weaning diarrhea in pigs.

  16. Decolonization of intestinal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Huttner, Benedikt; Haustein, Thomas; Uçkay, Ilker; Renzi, Gesuele; Stewardson, Andrew; Schaerrer, Danièle; Agostinho, Americo; Andremont, Antoine; Schrenzel, Jacques; Pittet, Didier; Harbarth, Stephan

    2013-10-01

    Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) are an increasingly frequent cause of infections in the community and the healthcare setting. In this study, we aimed to investigate whether intestinal carriage of ESBL-E can be eradicated. We conducted a double-blind, randomized, placebo-controlled, single-centre trial to assess the efficacy of an oral decolonization regimen on intestinal ESBL-E carriage in adult patients with an ESBL-E-positive rectal swab. Fifty-eight patients were allocated 1 : 1 to either placebo or colistin sulphate (50 mg 4×/day) and neomycin sulphate (250 mg 4×/day) for 10 days plus nitrofurantoin (100 mg 3×/day) for 5 days in the presence of ESBL-E bacteriuria. The primary outcome was detection of ESBL-E by rectal swab 28 ± 7 days after the end of treatment. Missing primary outcome data were imputed based on the last available observation. Additional cultures (rectal, inguinal and urine) were taken on day 6 of treatment and on days 1 and 7 post-treatment. The study protocol has been registered with ClinicalTrials.gov (NCT00826670). Among 54 patients (27 in each group) included in the primary analysis, there was no statistically significant difference between the groups with regard to the primary outcome [14/27 (52%) versus 10/27 (37%), P = 0.27]. During treatment and shortly afterwards, there was significantly lower rectal ESBL-E carriage in the treatment group: 9/26 versus 19/22 on day 6 of treatment (P < 0.001) and 8/25 versus 20/26 on day 1 post-treatment (P = 0.001). This effect had disappeared by day 7 post-treatment (18/27 versus 17/25, P = 0.92). Liquid stools were more common in the treatment group (7/27 versus 2/29, P = 0.05). The regimen used in this study temporarily suppressed ESBL-E carriage, but had no long-term effect.

  17. Multi-Drug-Resistant Klebsiella pneumoniae Pancreatitis: A New Challenge in a Serious Surgical Infection

    PubMed Central

    Tugal, Derin; Lynch, Melanie; Hujer, Andrea M.; Rudin, Susan; Perez, Federico

    2015-01-01

    Abstract Background: Klebsiella pneumoniae is an important cause of nosocomial infections, but its role in severe acute pancreatitis (SAP) is not well defined. Few cases of K. pneumoniae associated SAP have been reported. Due to the emergence of extended-spectrum beta-lactamases (ESBLs) and carbapenemases, treatment of multidrug-resistant (MDR) K. pneumoniae presents a challenge. Tigecycline and colistin have gained recent attention for their broad-spectrum antimicrobial activity. Methods: We describe a case of SAP due to K. pneumoniae bearing K. pneumoniae carbapenemase (KPC) treated successfully with colistin plus tigecycline and offer a review of similar experiences published in the literature. Results: The case reported herein required surgical drainage of multiple pancreatic abscesses and treatment with tigecycline and colistin. Our comparative analysis revealed a number of unique features associated with SAP due to K. pneumoniae: 1) underlying pancreatic injury, 2) multiple drug resistance determinants and virulence factors that complicate treatment, and 3) surgical debridement as a requirement for cure. Conclusion: As the prevalence of K. pneumoniae bearing KPC continues to increase in the healthcare setting, SAP caused by this MDR pathogen will become more common. Tigecycline plus colistin was a successful antibiotic regimen for the treatment of SAP due to K. pneumoniae bearing KPC. PMID:24850293

  18. The secondary resistome of multidrug-resistant Klebsiella pneumoniae.

    PubMed

    Jana, Bimal; Cain, Amy K; Doerrler, William T; Boinett, Christine J; Fookes, Maria C; Parkhill, Julian; Guardabassi, Luca

    2017-02-15

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.

  19. First Detection of an Escherichia coli Strain Harboring the mcr-1 Gene in Retail Domestic Chicken Meat in Japan.

    PubMed

    Ohsaki, Yusuke; Hayashi, Wataru; Saito, Satomi; Osaka, Shunsuke; Taniguchi, Yui; Koide, Shota; Kawamura, Kumiko; Nagano, Yukiko; Arakawa, Yoshichika; Nagano, Noriyuki

    2017-09-25

    Global spread of the plasmid-mediated colistin resistance gene, mcr-1 poses a challenge to public health because colistin is the last-line-of-defense against severe infections of multidrug-resistant Gram-negative bacteria. In Japan, a few studies have reported the prevalence of mcr-1 among food animal-derived Escherichia coli isolates, but the prevalence of mcr-1 in retail meats is not well known. We report here the first detection of mcr-1 in retail chicken meat. A total of 70 extended-spectrum beta-lactamase-producing E. coli isolates, recovered from retail chicken meats between August 2015 and June 2016, were screened for mcr-1. We found 1 CTX-M-1 beta-lactamase-producing E. coli isolate belonging to ST1684, phylogroup A. The mcr-1 gene was not located on an IncI1 plasmid encoding the bla CTX-M-1 gene. However, whole plasmid sequencing revealed that mcr-1 was located on an IncI2 plasmid. The sequences of the nikB-mcr-1-pap2-ydfA-topB region of the IncI2 plasmid in this study was almost identical to that of the previously described IncI2 plasmid, pECJS-61-63 present in E. coli isolated from pig feces in China, except for containing a synonymous mutation in the mcr-1 gene. Plasmid carrying the mcr-1 gene have not yet been identified in human isolates in Japan. Thus, strict monitoring or surveillance of colistin resistance among Gram-negative bacteria recovered from retail meat of food animals under colistin pressure, and humans, is crucial.

  20. Prevalence and Diversity of Salmonella Serotypes in Ecuadorian Broilers at Slaughter Age

    PubMed Central

    Cevallos, María; Ron-Garrido, Lenin; Bertrand, Sophie; De Zutter, Lieven

    2016-01-01

    Salmonella is frequently found in poultry and represent an important source for human gastrointestinal infections worldwide. The aim of this study was to investigate the prevalence, genotypes and antimicrobial resistance of Salmonella serotypes in broilers from Ecuador. Caeca content from 388 at random selected broiler batches were collected in 6 slaughterhouses during 1 year and analyzed by the ISO 6579/Amd1 protocol for the isolation for Salmonella. Isolates were serotyped and genotypic variation was acceded by pulsed field gel electrophoresis. MIC values for sulfamethoxazole, gentamicin, ciprofloxacin, ampicillin, cefotaxime, ceftazidime, tetracycline, streptomycin, trimethropim, chloramphenicol, colistin, florfenicol, kanamycin and nalidixic acid were obtained. Presence of blaCTX-M, blaTEM, blaSHV and blaCMY; and mcr-1 plasmid genes was investigated in resistant strains to cefotaxime and colistin respectively. Prevalence at batch level was 16.0%. The most common serotype was S. Infantis (83.9%) followed by S. Enteritidis (14.5%) and S. Corvallis (1.6%). The pulsed field gel electrophoresis analysis showed that S. Corvallis, S. Enteritidis and S. Infantis isolates belonged to 1, 2 and 12 genotypes respectively. S. Infantis isolates showed high resistance rates to 12 antibiotics ranging from 57.7% (kanamycin) up to 98.1% (nalidixic acid and sulfamethoxazole). All S. Enteritidis isolates showed resistance to colistin. High multiresistant patterns were found for all the serotypes. The blaCTX-M gene was present in 33 S. Infantis isolates while mcr-1 was negative in 10 colistin resistant isolates. This study provides the first set of scientific data on prevalence and multidrug-resistant Salmonella coming from commercial poultry in Ecuador. PMID:27414038

  1. Polymyxin susceptibility testing, interpretative breakpoints and resistance mechanisms: An update.

    PubMed

    Bakthavatchalam, Yamuna Devi; Pragasam, Agila Kumari; Biswas, Indranil; Veeraraghavan, Balaji

    2018-03-01

    Emerging multidrug-resistant (MDR) nosocomial pathogens are a great threat. Polymyxins, an old class of cationic polypeptide antibiotic, are considered as last-resort drugs in treating infections caused by MDR Gram-negative bacteria. Increased use of polymyxins in treating critically ill patients necessitates routine polymyxin susceptibility testing. However, susceptibility testing both of colistin and polymyxin B (PMB) is challenging. In this review, currently available susceptibility testing methods are briefly discussed. The multicomponent composition of colistin and PMB significantly influences susceptibility testing. In addition, poor diffusion in the agar medium, adsorption to microtitre plates and the synergistic effect of the surfactant polysorbate 80 with polymyxins have a great impact on the performance of susceptibility testing methods This review also describes recently identified chromosomal resistance mechanisms, including modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-l-arabinose (L-Ara4-N) and phosphoethanolamine (pEtN) resulting in alteration of the negative charge, as well as the plasmid-mediated colistin resistance determinants mcr-1, mcr-1.2, mcr-2 and mcr-3. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  2. Coexistence of mcr-1 and blaNDM-1 in Escherichia coli from Venezuela.

    PubMed

    Delgado-Blas, Jose F; Ovejero, Cristina M; Abadia-Patiño, Lorena; Gonzalez-Zorn, Bruno

    2016-10-01

    We studied the presence of the mobile colistin resistance gene mcr-1 in human, animal, and environmental Enterobacteriaceae samples from Cumana, Venezuela, that were collected in 2015. The mcr-1 gene was detected in 2/93 Escherichia coli isolates from swine (novel ST452) and human (ST19) samples that were resistant to colistin. Whole-genome sequencing and transformation experiments identified mcr-1 on an IncI2 plasmid. One of the isolates also bore the widely spread carbapenemase NDM-1. A One Health approach is necessary to further elucidate the flux of these high-risk genes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. New Amphiphilic Neamine Derivatives Active against Resistant Pseudomonas aeruginosa and Their Interactions with Lipopolysaccharides

    PubMed Central

    Sautrey, Guillaume; Zimmermann, Louis; Deleu, Magali; Delbar, Alicia; Souza Machado, Luiza; Jeannot, Katy; Van Bambeke, Françoise; Buyck, Julien M.; Decout, Jean-Luc

    2014-01-01

    The development of novel antimicrobial agents is urgently required to curb the widespread emergence of multidrug-resistant bacteria like colistin-resistant Pseudomonas aeruginosa. We previously synthesized a series of amphiphilic neamine derivatives active against bacterial membranes, among which 3′,6-di-O-[(2″-naphthyl)propyl]neamine (3′,6-di2NP), 3′,6-di-O-[(2″-naphthyl)butyl]neamine (3′,6-di2NB), and 3′,6-di-O-nonylneamine (3′,6-diNn) showed high levels of activity and low levels of cytotoxicity (L. Zimmermann et al., J. Med. Chem. 56:7691–7705, 2013). We have now further characterized the activity of these derivatives against colistin-resistant P. aeruginosa and studied their mode of action; specifically, we characterized their ability to interact with lipopolysaccharide (LPS) and to alter the bacterial outer membrane (OM). The three amphiphilic neamine derivatives were active against clinical colistin-resistant strains (MICs, about 2 to 8 μg/ml), The most active one (3′,6-diNn) was bactericidal at its MIC and inhibited biofilm formation at 2-fold its MIC. They cooperatively bound to LPSs, increasing the outer membrane permeability. Grafting long and linear alkyl chains (nonyl) optimized binding to LPS and outer membrane permeabilization. The effects of amphiphilic neamine derivatives on LPS micelles suggest changes in the cross-bridging of lipopolysaccharides and disordering in the hydrophobic core of the micelles. The molecular shape of the 3′,6-dialkyl neamine derivatives induced by the nature of the grafted hydrophobic moieties (naphthylalkyl instead of alkyl) and the flexibility of the hydrophobic moiety are critical for their fluidifying effect and their ability to displace cations bridging LPS. Results from this work could be exploited for the development of new amphiphilic neamine derivatives active against colistin-resistant P. aeruginosa. PMID:24867965

  4. A prospective study of treatment of carbapenem-resistant Enterobacteriaceae infections and risk factors associated with outcome.

    PubMed

    de Maio Carrilho, Claudia M D; de Oliveira, Larissa Marques; Gaudereto, Juliana; Perozin, Jamile S; Urbano, Mariana Ragassi; Camargo, Carlos H; Grion, Cintia M C; Levin, Anna Sara S; Costa, Silvia F

    2016-11-03

    To describe the clinical and microbiological data of carbapenem-resistant Enterobacteriaceae (CRE) infections, the treatment used, hospital- and infection-related mortality, and risk factors for death. A prospective cohort conducted from March 2011 to December 2012. Clinical, demographic, and microbiological data such as in vitro sensitivity, clonality, carbapenemase gene mortality related to infection, and overall mortality were evaluated. Data were analyzed using Epi Info version 7.0 (CDC, Atlanta, GA, USA) and SPSS (Chicago, IL, USA). One hundred and twenty-seven patients were evaluated. Pneumonia, 52 (42 %), and urinary tract infections (UTI), 51 (40.2 %), were the most frequent sites of infection. The isolates were polyclonal; the Bla KPC gene was found in 75.6 % of isolates, and 27 % of isolates were resistant to colistin. Mortality related to infection was 34.6 %, and was higher among patients with pneumonia (61.4 %). Combination therapy was used in 98 (77.2 %), and monotherapy in 22.8 %; 96.5 % of them were UTI patients. Shock, age, and dialysis were independent risk factors for death. There was no difference in infection-related death comparing colistin-susceptible and colistin-resistant infections (p = 0.46); neither in survival rate comparing the use of combination therapy with two drugs or more than two drugs (p = 0.32). CRE infection mortality was higher among patients with pneumonia. Infections caused by colistin-resistant isolates did not increase mortality. The use of more than two drugs on combination therapy did not show a protective effect on outcome. The isolates were polyclonal, and the bla KPC gene was the only carbapenemase found. Shock, dialysis, and age over 60 years were independent risk factors for death.

  5. Antibiotic-Releasing Porous Polymethylmethacrylate/Gelatin/Antibiotic Constructs for Craniofacial Tissue Engineering

    PubMed Central

    Shi, Meng; Kretlow, James D.; Spicer, Patrick P.; Tabata, Yasuhiko; Demian, Nagi; Wong, Mark E.; Kasper, F. Kurtis; Mikos, Antonios G.

    2011-01-01

    An antibiotic-releasing porous polymethylmethacrylate (PMMA) construct was developed to maintain the bony space and prime the wound site in the initial step of a two-stage regenerative medicine approach toward reconstructing significant bony or composite craniofacial tissue defects. Porous polymethylmethacrylate (PMMA) constructs incorporating gelatin microparticles (GMPs) were fabricated by the sequential assembly of GMPs, the antibiotic colistin, and a clinically used bone cement formulation of PMMA powder and methylmethacrylate liquid. PMMA/gelatin/antibiotic constructs with varying gelatin incorporation and drug content were investigated to elucidate the relationship between material composition and construct properties (porosity and drug release kinetics). The porosity of PMMA/gelatin/antibiotic constructs ranged between 7.6±1.8–38.4±1.4% depending on the amount of gelatin incorporated and the drug solution added for gelatin swelling. The constructs released colistin over 10 or 14 days with an average release rate per day above 10 µg/ml. The porosity and in vitro colistin release kinetics of PMMA/gelatin/antibiotic constructs were tuned by varying the material composition and fabrication parameters. This study demonstrates the potential of gelatin-incorporating PMMA constructs as a functional space maintainer for both promoting tissue healing/coverage and addressing local infections, enabling better long-term success of the definitive regenerated tissue construct. PMID:21295086

  6. Investigation of First Identified mcr-1 Gene in an Isolate from a U.S. Patient - Pennsylvania, 2016.

    PubMed

    Kline, Kelly E; Shover, Jordan; Kallen, Alexander J; Lonsway, David R; Watkins, Sharon; Miller, Jeffrey R

    2016-09-16

    In 2015, scientists reported the emergence of the plasmid-encoded mcr-1 gene conferring bacterial resistance to the antibiotic colistin (1), signaling potential emergence of a pandrug-resistant bacterium. In May 2016, mcr-1-positive Escherichia coli was first isolated from a specimen from a U.S. patient (2) when a Pennsylvania woman was evaluated for a urinary tract infection. The urine culture and subsequent testing identified the gene in an extended-spectrum beta-lactamase (ESBL)-producing E. coli with reduced susceptibility to colistin. The patient had no international travel for approximately 1 year, no livestock exposure, and a limited role in meal preparation with store-bought groceries; however, she had multiple and repeated admissions to four medical facilities during 2016.

  7. [Potentially toxic antibiotics concentrations after administration using impregnated dressing in a severe burned patient: A case report].

    PubMed

    Dupouey, Julien; Wiramus, Sandrine; Albanese, Jacques; Guilhaumou, Romain; Blin, Olivier

    2016-10-01

    Severe burned patients present high risk of skins infections, frequently due to Pseudomonas aeruginosa. Impregnated dressings with amikacin or colistin could be a good alternative to obtain effective concentration directly at the infected site. Therapeutic drug monitoring for these antibiotics is currently recommended after an intravenous administration to obtain effective and non-toxic plasmatic concentrations. However, data are lacking about systemic exposition and risk of toxicity after an administration with impregnated dressings. We report the case of a severe burned patient with cutaneous infection treated with amikacin and colistin impregnated dressings, for which plasmatic pharmacokinetic profiles were performed. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  8. Preclinical advantages of intramuscularly administered peptide A3-APO over existing therapies in Acinetobacter baumannii wound infections.

    PubMed

    Ostorhazi, Eszter; Rozgonyi, Ferenc; Sztodola, Andras; Harmos, Ferenc; Kovalszky, Ilona; Szabo, Dora; Knappe, Daniel; Hoffmann, Ralf; Cassone, Marco; Wade, John D; Bonomo, Robert A; Otvos, Laszlo

    2010-11-01

    The designer antibacterial peptide A3-APO is efficacious in mouse models of Escherichia coli and Acinetobacter baumannii systemic infections. Here we compare the efficacy of the peptide with that of imipenem and colistin in A. baumannii wound infections after burn injury. CD-1 mice were inflicted with burn wounds and different inocula of A. baumannii, isolated from an injured soldier, were placed into the wound sites. The antibiotics were given intramuscularly (im) one to five times. Available free peptide in the blood and the systemic toxicity of colistin and A3-APO were studied in healthy mice. While toxicity of colistin was observed at 25 mg/kg bolus drug administration, the lowest toxic dose of A3-APO was 75 mg/kg. In the A. baumannii blast injury models, 5 mg/kg A3-APO improved survival and reduced bacterial counts in the blood as well as in the wounds and improved wound appearance significantly better than any other antibiotic treatment. The free peptide concentration in the blood did not reach 1 µg/mL. Peptide A3-APO, with an intramuscular therapeutic index of 15, is more efficacious and less toxic than any existing burn injury infection therapy modality against multidrug-resistant Gram-negative pathogens. A3-APO administered by the im route probably binds to a biopolymer that promotes the peptide's biodistribution.

  9. Sub-inhibitory concentrations of some antibiotics can drive diversification of Pseudomonas aeruginosa populations in artificial sputum medium

    PubMed Central

    2013-01-01

    Background Pseudomonas aeruginosa populations within the cystic fibrosis lung exhibit extensive phenotypic and genetic diversification. The resultant population diversity is thought to be crucial to the persistence of infection and may underpin the progression of disease. However, because cystic fibrosis lungs represent ecologically complex and hostile environments, the selective forces driving this diversification in vivo remain unclear. We took an experimental evolution approach to test the hypothesis that sub-inhibitory antibiotics can drive diversification of P. aeruginosa populations. Replicate populations of P. aeruginosa LESB58 were cultured for seven days in artificial sputum medium with and without sub-inhibitory concentrations of various clinically relevant antibiotics. We then characterised diversification with respect to 13 phenotypic and genotypic characteristics. Results We observed that higher population diversity evolved in the presence of azithromycin, ceftazidime or colistin relative to antibiotic-free controls. Divergence occurred due to alterations in antimicrobial susceptibility profiles following exposure to azithromycin, ceftazidime and colistin. Alterations in colony morphology and pyocyanin production were observed following exposure to ceftazidime and colistin only. Diversification was not observed in the presence of meropenem. Conclusions Our study indicates that certain antibiotics can promote population diversification when present in sub-inhibitory concentrations. Hence, the choice of antibiotic may have previously unforeseen implications for the development of P. aeruginosa infections in the lungs of cystic fibrosis patients. PMID:23879797

  10. A novel series of enoyl reductase inhibitors targeting the ESKAPE pathogens, Staphylococcus aureus and Acinetobacter baumannii.

    PubMed

    Kwon, Jieun; Mistry, Tina; Ren, Jinhong; Johnson, Michael E; Mehboob, Shahila

    2018-01-01

    S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... 0.2 milligram colistin activity per chicken. (ii) Indications for use. Control of early mortality... consumption. Do not use in turkeys. Federal law restricts this drug to use by or on the order of a licensed...

  12. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... 0.2 milligram colistin activity per chicken. (ii) Indications for use. Control of early mortality... consumption. Do not use in turkeys. Federal law restricts this drug to use by or on the order of a licensed...

  13. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... 0.2 milligram colistin activity per chicken. (ii) Indications for use. Control of early mortality... consumption. Do not use in turkeys. Federal law restricts this drug to use by or on the order of a licensed...

  14. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... 0.2 milligram colistin activity per chicken. (ii) Indications for use. Control of early mortality... consumption. Do not use in turkeys. Federal law restricts this drug to use by or on the order of a licensed...

  15. Novel Therapies for Acinetobacter Osteomyelitis

    DTIC Science & Technology

    2009-01-01

    deployed soldiers. An additional problem is that while there are some effective antibiotics against Acinetobacter (i.e. Colistin and Imipenem ), they are...of Acinetobacter baumannii with confirmed resistance to amikacin, ampicillin, aztraeonam, ceftriaxone, ciprofloxacin, gentamicin, imipenem

  16. In vitro antibacterial activity of rifampicin in combination with imipenem, meropenem and doripenem against multidrug-resistant clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Hu, Yi-Fan; Liu, Chang-Pan; Wang, Nai-Yu; Shih, Shou-Chuan

    2016-08-24

    Multidrug-resistant Pseudomonas aeruginosa has emerged as one of the most important healthcare-associated pathogens. Colistin is regarded as the last-resort antibiotic for multidrug-resistant Gram-negative bacteria, but is associated with high rates of acute kidney injury. The aim of this in vitro study is to search for an alternative treatment to colistin for multidrug-resistant P. aeruginosa infections. Multidrug and carbapenem-resistant P. aeruginosa isolates were collected between January 2009 and December 2012 at MacKay Memorial Hospital. Minimal inhibitory concentrations (MICs) were determined for various antibiotic combinations. Carbapenemase-producing genes including bla VIM, other β-lactamase genes and porin mutations were screened by PCR and sequencing. The efficacy of carbapenems (imipenem, meropenem, doripenem) with or without rifampicin was correlated with the type of porin mutation (frameshift mutation, premature stop codon mutation) in multidrug-resistant P. aeruginosa isolates without carbapenemase-producing genes. Of the 71 multidrug-resistant clinical P. aeruginosa isolates, only six harboured the bla VIM gene. Imipenem, meropenem and doripenem were significantly more effective (reduced fold-change of MICs) when combined with rifampicin in bla VIM-negative isolates, especially in isolates with porin frameshift mutation. Imipenem + rifampicin combination has a low MIC against multidrug-resistant P. aeruginosa, especially in isolates with porin frameshift mutation. The imipenem + rifampicin combination may provide an alternative treatment to colistin for multidrug -resistant P. aeruginosa infections, especially for patients with renal insufficiency.

  17. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases

    PubMed Central

    Munoz-Price, L Silvia; Poirel, Laurent; Bonomo, Robert A; Schwaber, Mitchell J; Daikos, George L; Cormican, Martin; Cornaglia, Giuseppe; Garau, Javier; Gniadkowski, Marek; Hayden, Mary K; Kumarasamy, Karthikeyan; Livermore, David M; Maya, Juan J; Nordmann, Patrice; Patel, Jean B; Paterson, David L; Pitout, Johann; Villegas, Maria Virginia; Wang, Hui; Woodford, Neil; Quinn, John P

    2015-01-01

    Klebsiella pneumoniae carbapenemases (KPCs) were originally identified in the USA in 1996. Since then, these versatile β-lactamases have spread internationally among Gram-negative bacteria, especially K pneumoniae, although their precise epidemiology is diverse across countries and regions. The mortality described among patients infected with organisms positive for KPC is high, perhaps as a result of the limited antibiotic options remaining (often colistin, tigecycline, or aminoglycosides). Triple drug combinations using colistin, tigecycline, and imipenem have recently been associated with improved survival among patients with bacteraemia. In this Review, we summarise the epidemiology of KPCs across continents, and discuss issues around detection, present antibiotic options and those in development, treatment outcome and mortality, and infection control. In view of the limitations of present treatments and the paucity of new drugs in the pipeline, infection control must be our primary defence for now. PMID:23969216

  18. [Inhaled treatments in cystic fibrosis: what's new in 2013?].

    PubMed

    Dubus, J-C; Bassinet, L; Chedevergne, F; Delaisi, B; Desmazes-Dufeu, N; Reychler, G; Vecellio, L

    2014-04-01

    In the past few years some new inhaled drugs and inhalation devices have been proposed for the treatment of cystic fibrosis. Breath-controlled nebulizers allow increased pulmonary deposition, with a lower variability and a shorter delivery time. The new dry powder formulations of tobramycin, colistine and mannitol require a change in the inhalation technique which must be slow and deep. In the field of the inhaled mucolytic drugs, hypertonic saline and mannitol have an indication in some patients. With regard to antibiotics, dry-powder tobramycin and colistine can be substituted for the same drug delivered by nebulization. Nebulized aztreonam needs more studies to determine its place. These new treatments represent a definite advance for cystic fibrosis patients and need to be known by all practitioners. Their position in our therapeutic arsenal remains to be accurately defined. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  19. Effect of citral and carvacrol on the susceptibility of Listeria monocytogenes and Listeria innocua to antibiotics.

    PubMed

    Zanini, S F; Silva-Angulo, A B; Rosenthal, A; Rodrigo, D; Martínez, A

    2014-05-01

    The aim of this study was to evaluate the antibiotic susceptibility of Listeria innocua (L. innocua) and Listeria monocytogenes (L. monocytogenes) cells in the presence of citral and carvacrol at sublethal concentrations in an agar medium. The presence of terpenes in the L. monocytogenes and L. innocua culture medium provided a reduction in the minimal inhibitory concentration (MIC) of all the antibiotics tested. These effects were dependent on the concentration of terpenes present in the culture medium. The combination of citral and carvacrol potentiated antibiotic activity by reducing the MIC values of bacitracin and colistin from 32.0 and 128.0 μg ml⁻¹ to 1.0 and 2.0 μg ml⁻¹, respectively. Thus, both Listeria species became more susceptible to these drugs. In this way, the colistin and bacitracin resistance of L. monocytogenes and L. innocua was reversed in the presence of terpenes. Results obtained in this study show that the phytochemicals citral and carvacrol potentiate antibiotic activity, reducing the MIC values of cultured L. monocytogenes and L. innocua. Phytochemicals citral and carvacrol potentiate antibiotic activity of erythromycin, bacitracin and colistin by reducing the MIC values of cultured Listeria monocytogenes and Listeria innocua. This effect in reducing the MIC values of the antibiotics tested in both micro-organisms was increased when natural antimicrobials were combined. This finding indicated that the combination among terpenes and antibiotic may contribute in reducing the required dosage of antibiotics due to the possible effect of terpenes on permeation barrier of the micro-organism cell membrane. © 2014 The Society for Applied Microbiology.

  20. Interaction of antibiotics on pipecuronium-induced neuromuscular blockade.

    PubMed

    de Gouw, N E; Crul, J F; Vandermeersch, E; Mulier, J P; van Egmond, J; Van Aken, H

    1993-01-01

    To measure the interaction of two antibiotics (clindamycin and colistin) on neuromuscular blockade induced by pipecuronium bromide (a new long-acting, steroidal, nondepolarizing neuromuscular blocking drug). Prospective, randomized, placebo-controlled study. Inpatient gynecologic and gastroenterologic service at a university medical center. Three groups of 20 ASA physical status I and II patients with normal kidney and liver function, taking no medication, and undergoing elective surgery under general anesthesia. Anesthesia was induced with propofol and alfentanil intravenously (IV) and maintained with a propofol infusion and 60% nitrous oxide in oxygen. Pipecuronium bromide 50 micrograms/kg was administered after reaching a stable baseline of single-twitch response. At 25% recovery of pipecuronium-induced neuromuscular blockade, patients received one of two antibiotics, clindamycin 300 mg or colistin 1 million IU, or a placebo. The recovery index (RI, defined as time from 25% to 75% recovery of neuromuscular blockade) was measured using the single-twitch response of the adductor pollicis muscle with supramaximal stimulation of the ulnar nerve at the wrist. RI after administration of an antibiotic (given at 25% recovery) was measured and compared with RI of the control group using Student's unpaired t-test. Statistical analyses of the results showed a significant prolongation of the recovery time (from 25% to 75% recovery) of 40 minutes for colistin. When this type of antibiotic is used during anesthesia with pipercuronium as a muscle relaxant, one must be aware of a significant prolongation of an already long-acting neuromuscular blockade and (although not observed in this study) possible problems in antagonism.

  1. Susceptibility of Acinetobacter Strains Isolated from Deployed U.S. Military Personnel▿

    PubMed Central

    Hawley, Joshua S.; Murray, Clinton K.; Griffith, Matthew E.; McElmeel, M. Leticia; Fulcher, Letitia C.; Hospenthal, Duane R.; Jorgensen, James H.

    2007-01-01

    The susceptibilities of 142 Acinetobacter baumannii-calcoaceticus complex isolates (95 from wounded U.S. soldiers deployed overseas) to 13 antimicrobial agents were determined by broth microdilution. The most active antimicrobial agents (≥95% of isolates susceptible) were colistin, polymyxin B, and minocycline. PMID:17043112

  2. Antibiotic susceptibility-resistance profiles of super-shed Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Introduction: Escherichia coli O157:H7 (O157) can cause diarrhea and serious secondary sequelae including kidney failure and death in humans. With antibiotics like fosfomycin, colistin and azithromycin, that do not stimulate toxin expression by O157, being considered for treatment of early gastroint...

  3. Screening for the presence of mcr-1/mcr-2 genes in Shiga toxin-producing Escherichia coli recovered from a major produce-production region in California

    USDA-ARS?s Scientific Manuscript database

    The rapid spreading of polymyxin E (colistin) resistance among bacterial strains through the horizontally transmissible mcr-1 and mcr-2 plasmids has become a serious concern. The emergence of these genes in Shiga toxin-producing Escherichia coli (STEC), a group of human pathogenic bacteria was even ...

  4. Prevalence of mcr-1 in U.S. food-animal cecal contents

    USDA-ARS?s Scientific Manuscript database

    A survey of 2003 cecal content samples from chickens, turkeys, cattle and swine at slaughter facilities in the United States was conducted to estimate the prevalence of mcr-1 gene conferring resistance to colistin in Enterobacteriaceae. Two samples from swine had Escherichia coli with IncI2 plasmids...

  5. Activities of Antibiotic Combinations against Resistant Strains of Pseudomonas aeruginosa in a Model of Infected THP-1 Monocytes

    PubMed Central

    Buyck, Julien M.

    2014-01-01

    Antibiotic combinations are often used for treating Pseudomonas aeruginosa infections but their efficacy toward intracellular bacteria has not been investigated so far. We have studied combinations of representatives of the main antipseudomonal classes (ciprofloxacin, meropenem, tobramycin, and colistin) against intracellular P. aeruginosa in a model of THP-1 monocytes in comparison with bacteria growing in broth, using the reference strain PAO1 and two clinical isolates (resistant to ciprofloxacin and meropenem, respectively). Interaction between drugs was assessed by checkerboard titration (extracellular model only), by kill curves, and by using the fractional maximal effect (FME) method, which allows studying the effects of combinations when dose-effect relationships are not linear. For drugs used alone, simple sigmoidal functions could be fitted to all concentration-effect relationships (extracellular and intracellular bacteria), with static concentrations close to (ciprofloxacin, colistin, and meropenem) or slightly higher than (tobramycin) the MIC and with maximal efficacy reaching the limit of detection in broth but only a 1 to 1.5 (colistin, meropenem, and tobramycin) to 2 to 3 (ciprofloxacin) log10 CFU decrease intracellularly. Extracellularly, all combinations proved additive by checkerboard titration but synergistic using the FME method and more bactericidal in kill curve assays. Intracellularly, all combinations proved additive only based on both FME and kill curve assays. Thus, although combinations appeared to modestly improve antibiotic activity against intracellular P. aeruginosa, they do not allow eradication of these persistent forms of infections. Combinations including ciprofloxacin were the most active (even against the ciprofloxacin-resistant strain), which is probably related to the fact this drug was the most effective alone intracellularly. PMID:25348528

  6. Five-Year Antimicrobial Susceptibility Trends Among Bacterial Isolates from a Tertiary Health-Care Facility in Kigali, Rwanda.

    PubMed

    Carroll, Makeda; Rangaiahagari, Ashok; Musabeyezu, Emmanuel; Singer, Donald; Ogbuagu, Onyema

    2016-12-07

    Antimicrobial resistance (AMR) is a global public health threat. There is limited information from Rwanda on AMR trends. This longitudinal study aimed to describe temporal trends of antibiotic susceptibility among common bacteria. We collated the antimicrobial susceptibility results of bacteria cultured from clinical specimens collected from inpatients and outpatients and submitted to the microbiology laboratory at King Faisal Hospital, Kigali, Rwanda, from January 1, 2009, to December 31, 2013. Differences in antimicrobial susceptibility between the first and fifth year of the study for each bacterial species was assessed using χ 2 test. Of 5,296 isolates collected, 46.7% were Escherichia coli, 18.4% were Klebsiella spp., 5.9% were Acinetobacter spp., 7.1% were Pseudomonas spp., 11.7% were Staphylococcus aureus, and 10.3% were Enterococcus spp. Colistin and imipenem had greatest activity against gram-negative bacteria. Acinetobacter spp. showed the greatest resistance profile to antimicrobials tested, relative to other gram-negative bacteria. Vancomycin retained excellent activity against S. aureus and Enterococcus species (average susceptibility was 100% and 99.4%, respectively). Trend analysis determined that resistance to imipenem increased significantly among Klebsiella, E. coli, Pseudomonas, and Acinetobacter isolates; there was also rising resistance to colistin among E. coli and Pseudomonas species. Only E. coli demonstrated increased resistance to gentamicin. For gram-positive pathogens, vancomycin susceptibility increased over time for Enterococcus species, but was unchanged for S. aureus Our data suggest that resistance to imipenem and colistin are rising among gram-negative bacteria in Rwanda. Proper infection control practices and antimicrobial stewardship will be important to address this emerging threat. © The American Society of Tropical Medicine and Hygiene.

  7. Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010-2015.

    PubMed

    Irrgang, Alexandra; Roschanski, Nicole; Tenhagen, Bernd-Alois; Grobbel, Mirjam; Skladnikiewicz-Ziemer, Tanja; Thomas, Katharina; Roesler, Uwe; Käsbohrer, Annemarie

    2016-01-01

    Since the first description of a plasmid-mediated colistin resistance gene (mcr-1) in November 2015 multiple reports of mcr-1 positive isolates indicate a worldwide spread of this newly discovered resistance gene in Enterobacteriaceae. Although the occurrence of mcr-1 positive isolates of livestock, food, environment and human origin is well documented only few systematic studies on the prevalence of mcr-1 are available yet. Here, comprehensive data on the prevalence of mcr-1 in German livestock and food isolates are presented. Over 10.600 E. coli isolates from the national monitoring on zoonotic agents from the years 2010-2015 were screened for phenotypic colistin resistance (MIC value >2 mg/l). Of those, 505 resistant isolates were screened with a newly developed TaqMan-based real-time PCR for the presence of the mcr-1 gene. In total 402 isolates (79.8% of colistin resistant isolates) harboured the mcr-1 gene. The prevalence was depending on the food production chain. The highest prevalence was detected in the turkey food chain (10.7%), followed by broilers (5.6%). A low prevalence was determined in pigs, veal calves and laying hens. The mcr-1 was not detected in beef cattle, beef and dairy products in all years investigated. In conclusion, TaqMan based real-time PCR provides a fast and accurate tool for detection of mcr-1 gene. The overall detection rate of 3.8% for mcr-1 among all E. coli isolates tested is due to high prevalence of mcr-1 in poultry production chains. More epidemiological studies of other European countries are urgently needed to assess German prevalence data.

  8. Locally Acquired mcr-1 in Escherichia coli, Australia, 2011 and 2013.

    PubMed

    Ellem, Justin A; Ginn, Andrew N; Chen, Sharon C-A; Ferguson, John; Partridge, Sally R; Iredell, Jonathan R

    2017-07-01

    We identified discrete importation events of the mcr-1 gene on incompatibility group IncI2 plasmids in Escherichia coli isolated from patients in New South Wales, Australia, in 2011 and 2013. mcr-1 is present in a small minority of colistin-resistant Enterobacteriaceae and appears not to be established locally.

  9. Detection of Biological Warfare Agents in Municipal Tap Water via Standardized Culture Methods

    DTIC Science & Technology

    2010-06-01

    biochemical tests were performed: Gram stain, motility, catalase, oxidase, indole, antibiotic susceptibility, and urease . Gram staining was performed...resistance to polymyxin B or colistin, while presence of a clear zone indicated susceptibility to the antimicrobial agents. Urease test was performed per...Micro- Gram Motility Catalase Oxidase Indole Antibiotic Urease Organism Reactivity Susceptibility Bacillus

  10. Sputum Active Polymyxin Lipopeptides: Activity against Cystic Fibrosis Pseudomonas aeruginosa Isolates and Their Interactions with Sputum Biomolecules.

    PubMed

    Schneider-Futschik, Elena K; Paulin, Olivia K A; Hoyer, Daniel; Roberts, Kade D; Ziogas, James; Baker, Mark A; Karas, John; Li, Jian; Velkov, Tony

    2018-05-11

    The mucoid biofilm mode of growth of Pseudomonas aeruginosa ( P. aeruginosa) in the lungs of cystic fibrosis patients makes eradication of infections with antibiotic therapy very difficult. The lipopeptide antibiotics polymyxin B and colistin are currently the last-resort therapies for infections caused by multidrug-resistant P. aeruginosa. In the present study, we investigated the antibacterial activity of a series of polymyxin lipopeptides (polymyxin B, colistin, FADDI-003, octapeptin A 3 , and polymyxin A 2 ) against a panel of polymyxin-susceptible and polymyxin-resistant P. aeruginosa cystic fibrosis isolates grown under planktonic or biofilm conditions in artificial sputum and their interactions with sputum component biomolecules. In sputum media under planktonic conditions, the lipopeptides FADDI-003 and octapeptin A 3 displayed very promising activity against the polymyxin-resistant isolate FADDI-PA066 (polymyxin B minimum inhibitory concentration (MIC) = 32 mg/L), while retaining their activity against the polymyxin-sensitive strains FADDI-PA021 (polymyxin B MIC = 1 mg/L) and FADDI-PA020 (polymyxin B MIC = 2 mg/L). Polymyxin A 2 was only effective against the polymyxin-sensitive isolates. However, under biofilm growth conditions, the hydrophobic lipopeptide FADDI-003 was inactive compared to the more hydrophilic lipopeptides, octapeptin A 3 , polymyxin A 2 , polymyxin B, and colistin. Transmission electron micrographs revealed octapeptin A 3 caused reduction in the cell numbers in biofilm as well as biofilm disruption/"antibiofilm" activity. We therefore assessed the interactions of the lipopeptides with the component sputum biomolecules, mucin, deoxyribonucleic acid (DNA), surfactant, F-actin, lipopolysaccharide, and phospholipids. We observed the general trend that sputum biomolecules reduce lipopeptide antibacterial activity. Collectively, our data suggests that, in the airways, lipopeptide binding to component sputum biomolecules may reduce

  11. Genomic Characterization of Nonclonal mcr-1-Positive Multidrug-Resistant Klebsiella pneumoniae from Clinical Samples in Thailand

    PubMed Central

    Srijan, Apichai; Ruekit, Sirigade; Snesrud, Erik; Maybank, Rosslyn; Serichantalergs, Oralak; Kormanee, Rosarin; Sukhchat, Prawet; Sriyabhaya, Jossin; Hinkle, Mary; Crawford, John M.; McGann, Patrick; Swierczewski, Brett E.

    2018-01-01

    Multidrug-resistant Klebsiella pneumoniae strains are one of the most prevalent causes of nosocomial infections and pose an increasingly dangerous public health threat. The lack of remaining treatment options has resulted in the utilization of older drug classes, including colistin. As a drug of last resort, the discovery of plasmid-mediated colistin resistance by mcr-1 denotes the potential development of pandrug-resistant bacterial pathogens. To address the emergence of the mcr-1 gene, 118 gram-negative Enterobacteriaceae isolated from clinical samples collected at Queen Sirikit Naval Hospital in Chonburi, Thailand were screened for colistin resistance using automated antimicrobial susceptibility testing and conventional PCR screening. Two K. pneumoniae strains, QS17-0029 and QS17-0161, were positive for mcr-1, and both isolates were sequenced to closure using short- and long-read whole-genome sequencing. QS17-0029 carried 16 antibiotic resistance genes in addition to mcr-1, including 2 carbapenemases, blaNDM-1 and blaOXA-232. QS17-0161 carried 13 antibiotic resistance genes in addition to mcr-1, including the extended-spectrum β-lactamase blaCTX-M-55. Both isolates carried multiple plasmids, but mcr-1 was located alone on highly similar 33.9 Kb IncX4 plasmids in both isolates. The IncX4 plasmid shared considerable homology to other mcr-1-containing IncX4 plasmids. This is the first report of a clinical K. pneumoniae strain from Thailand carrying mcr-1 as well as the first strain to simultaneously carry mcr-1 and multiple carbapenemase genes (QS17-0029). The identification and characterization of these isolates serves to highlight the urgent need for continued surveillance and intervention in Southeast Asia, where extensively drug-resistant pathogens are being increasingly identified in hospital-associated infections. PMID:29688801

  12. Genomic Characterization of Nonclonal mcr-1-Positive Multidrug-Resistant Klebsiella pneumoniae from Clinical Samples in Thailand.

    PubMed

    Srijan, Apichai; Margulieux, Katie R; Ruekit, Sirigade; Snesrud, Erik; Maybank, Rosslyn; Serichantalergs, Oralak; Kormanee, Rosarin; Sukhchat, Prawet; Sriyabhaya, Jossin; Hinkle, Mary; Crawford, John M; McGann, Patrick; Swierczewski, Brett E

    2018-05-01

    Multidrug-resistant Klebsiella pneumoniae strains are one of the most prevalent causes of nosocomial infections and pose an increasingly dangerous public health threat. The lack of remaining treatment options has resulted in the utilization of older drug classes, including colistin. As a drug of last resort, the discovery of plasmid-mediated colistin resistance by mcr-1 denotes the potential development of pandrug-resistant bacterial pathogens. To address the emergence of the mcr-1 gene, 118 gram-negative Enterobacteriaceae isolated from clinical samples collected at Queen Sirikit Naval Hospital in Chonburi, Thailand were screened for colistin resistance using automated antimicrobial susceptibility testing and conventional PCR screening. Two K. pneumoniae strains, QS17-0029 and QS17-0161, were positive for mcr-1, and both isolates were sequenced to closure using short- and long-read whole-genome sequencing. QS17-0029 carried 16 antibiotic resistance genes in addition to mcr-1, including 2 carbapenemases, bla NDM-1 and bla OXA-232 . QS17-0161 carried 13 antibiotic resistance genes in addition to mcr-1, including the extended-spectrum β-lactamase bla CTX-M-55 . Both isolates carried multiple plasmids, but mcr-1 was located alone on highly similar 33.9 Kb IncX4 plasmids in both isolates. The IncX4 plasmid shared considerable homology to other mcr-1-containing IncX4 plasmids. This is the first report of a clinical K. pneumoniae strain from Thailand carrying mcr-1 as well as the first strain to simultaneously carry mcr-1 and multiple carbapenemase genes (QS17-0029). The identification and characterization of these isolates serves to highlight the urgent need for continued surveillance and intervention in Southeast Asia, where extensively drug-resistant pathogens are being increasingly identified in hospital-associated infections.

  13. Genomic and Molecular Characterization of Clinical Isolates of Enterobacteriaceae Harboring mcr-1 in Colombia, 2002 to 2016.

    PubMed

    Saavedra, Sandra Yamile; Diaz, Lorena; Wiesner, Magdalena; Correa, Adriana; Arévalo, Stefany Alejandra; Reyes, Jinnethe; Hidalgo, Andrea Melissa; de la Cadena, Elsa; Perenguez, Marcela; Montaño, Lucy Angeline; Ardila, Javier; Ríos, Rafael; Ovalle, María Victoria; Díaz, Paula; Porras, Paola; Villegas, Maria V; Arias, Cesar A; Beltrán, Mauricio; Duarte, Carolina

    2017-12-01

    Polymyxins are last-resort antimicrobial agents used to treat infections caused by carbapenem-resistant Enterobacteriaceae Due to the worldwide dissemination of polymyxin resistance in animal and human isolates, we aimed to characterize polymyxin resistance associated with the presence of mcr-1 in Enterobacteriaceae and nonfermenter Gram-negative bacilli, using isolates collected retrospectively in Colombia from 2002 to 2016. A total of 5,887 Gram-negative clinical isolates were studied, and 513 were found to be resistant to the polymyxins. Susceptibility to colistin was confirmed by broth microdilution for all mcr-1 -positive isolates, and these were further subjected to whole-genome sequencing (WGS). The localization of mcr-1 was confirmed by S1 pulsed-field gel electrophoresis (S1-PFGE) and CeuI-PFGE hybridization. Transferability was evaluated by mating assays. A total of 12 colistin-resistant isolates recovered after 2013 harbored mcr-1 , including 8 Escherichia coli , 3 Salmonella enterica serovar Typhimurium, and 1 Klebsiella pneumoniae isolate . E. coli isolates were unrelated by PFGE and belonged to 7 different sequence types (STs) and phylogroups. S Typhimurium and K. pneumoniae isolates belonged to ST34 and ST307, respectively. The mcr-1 gene was plasmid borne in all isolates but two E. coli isolates which harbored it on the chromosome. Conjugation of mcr-1 was successful in 8 of 10 isolates (8.2 × 10 -5 to 2.07 × 10 -1 cell per recipient). Plasmid sequences showed that the mcr-1 plasmids belonged to four different Inc groups (a new IncP-1 variant and the IncFII, IncHI1, and IncH families). Our results indicate that mcr-1 is circulating in clinical isolates of colistin-resistant Enterobacteriaceae in Colombia and is mainly harbored in transferable plasmids. Copyright © 2017 American Society for Microbiology.

  14. Genomic and Molecular Characterization of Clinical Isolates of Enterobacteriaceae Harboring mcr-1 in Colombia, 2002 to 2016

    PubMed Central

    Diaz, Lorena; Wiesner, Magdalena; Correa, Adriana; Arévalo, Stefany Alejandra; Reyes, Jinnethe; Hidalgo, Andrea Melissa; de la Cadena, Elsa; Perenguez, Marcela; Montaño, Lucy Angeline; Ardila, Javier; Ríos, Rafael; Ovalle, María Victoria; Díaz, Paula; Porras, Paola; Villegas, Maria V.; Arias, Cesar A.; Beltrán, Mauricio

    2017-01-01

    ABSTRACT Polymyxins are last-resort antimicrobial agents used to treat infections caused by carbapenem-resistant Enterobacteriaceae. Due to the worldwide dissemination of polymyxin resistance in animal and human isolates, we aimed to characterize polymyxin resistance associated with the presence of mcr-1 in Enterobacteriaceae and nonfermenter Gram-negative bacilli, using isolates collected retrospectively in Colombia from 2002 to 2016. A total of 5,887 Gram-negative clinical isolates were studied, and 513 were found to be resistant to the polymyxins. Susceptibility to colistin was confirmed by broth microdilution for all mcr-1-positive isolates, and these were further subjected to whole-genome sequencing (WGS). The localization of mcr-1 was confirmed by S1 pulsed-field gel electrophoresis (S1-PFGE) and CeuI-PFGE hybridization. Transferability was evaluated by mating assays. A total of 12 colistin-resistant isolates recovered after 2013 harbored mcr-1, including 8 Escherichia coli, 3 Salmonella enterica serovar Typhimurium, and 1 Klebsiella pneumoniae isolate. E. coli isolates were unrelated by PFGE and belonged to 7 different sequence types (STs) and phylogroups. S. Typhimurium and K. pneumoniae isolates belonged to ST34 and ST307, respectively. The mcr-1 gene was plasmid borne in all isolates but two E. coli isolates which harbored it on the chromosome. Conjugation of mcr-1 was successful in 8 of 10 isolates (8.2 × 10−5 to 2.07 × 10−1 cell per recipient). Plasmid sequences showed that the mcr-1 plasmids belonged to four different Inc groups (a new IncP-1 variant and the IncFII, IncHI1, and IncH families). Our results indicate that mcr-1 is circulating in clinical isolates of colistin-resistant Enterobacteriaceae in Colombia and is mainly harbored in transferable plasmids. PMID:28893788

  15. Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain.

    PubMed

    Ovejero, C M; Delgado-Blas, J F; Calero-Caceres, W; Muniesa, M; Gonzalez-Zorn, B

    2017-04-01

    The mobile colistin resistance gene mcr-1 has been identified worldwide in human and animal sources, while its occurrence in the environment is still largely unknown. The aim of this study was to investigate the presence of mcr-1 -harbouring Enterobacteriaceae in water samples obtained from rivers and waste water treatment plants in the area of Barcelona, Spain. The presence of mcr-1 was detected by PCR. Bacterial identification was performed via MALDI-TOF MS. Resistance to colistin was determined by a broth dilution method. The epidemiological relationship between the positive isolates was assessed with PFGE and ST was determined by MLST. Plasmid characterization was performed by transformation experiments, antimicrobial susceptibility testing and incompatibility group PCR. Thirty MDR isolates bearing mcr-1 , 29 Escherichia coli (ST632 and ST479) and 1 Klebsiella pneumoniae (ST526), were identified in sewage from two different waste water treatment plants, whereas the gene was not found in river water. All isolates, including the K. pneumoniae , harboured bla CTX-M-55 and bla TEM-1 . mcr-1 was in all cases associated with an IncI2 plasmid, which only conferred resistance to colistin. mcr-1 was harboured by two predominant E. coli clones that were found in both waste water treatment plants. This study showed a high occurrence of mcr-1 in the sewage of Barcelona, mainly due to the dissemination of two E. coli pulsotypes that are circulating in the population. The presence of mcr-1 in the environment is a cause for concern, and suggests high prevalence of mcr-1 in the community. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Whole genome sequencing of ESBL-producing Escherichia coli isolated from patients, farm waste and canals in Thailand.

    PubMed

    Runcharoen, Chakkaphan; Raven, Kathy E; Reuter, Sandra; Kallonen, Teemu; Paksanont, Suporn; Thammachote, Jeeranan; Anun, Suthatip; Blane, Beth; Parkhill, Julian; Peacock, Sharon J; Chantratita, Narisara

    2017-09-06

    Tackling multidrug-resistant Escherichia coli requires evidence from One Health studies that capture numerous potential reservoirs in circumscribed geographic areas. We conducted a survey of extended β-lactamase (ESBL)-producing E. coli isolated from patients, canals and livestock wastewater in eastern Thailand between 2014 and 2015, and analyzed isolates using whole genome sequencing. The bacterial collection of 149 isolates consisted of 84 isolates from a single hospital and 65 from the hospital sewer, canals and farm wastewater within a 20 km radius. E. coli ST131 predominated the clinical collection (28.6%), but was uncommon in the environment. Genome-based comparison of E. coli from infected patients and their immediate environment indicated low genetic similarity overall between the two, although three clinical-environmental isolate pairs differed by ≤ 5 single nucleotide polymorphisms. Thai E. coli isolates were dispersed throughout a phylogenetic tree containing a global E. coli collection. All Thai ESBL-positive E. coli isolates were multidrug resistant, including high rates of resistance to tobramycin (77.2%), gentamicin (77.2%), ciprofloxacin (67.8%) and trimethoprim (68.5%). ESBL was encoded by six different CTX-M elements and SHV-12. Three isolates from clinical samples (n = 2) or a hospital sewer (n = 1) were resistant to the carbapenem drugs (encoded by NDM-1, NDM-5 or GES-5), and three isolates (clinical (n = 1) and canal water (n = 2)) were resistant to colistin (encoded by mcr-1); no isolates were resistant to both carbapenems and colistin. Tackling ESBL-producing E. coli in this setting will be challenging based on widespread distribution, but the low prevalence of resistance to carbapenems and colistin suggests that efforts are now required to prevent these from becoming ubiquitous.

  17. A distinct alleles and genetic recombination of pmrCAB operon in species of Acinetobacter baumannii complex isolates.

    PubMed

    Kim, Dae Hun; Ko, Kwan Soo

    2015-07-01

    To investigate pmrCAB sequence divergence in 5 species of Acinetobacter baumannii complex, a total of 80 isolates from a Korean hospital were explored. We evaluated nucleotide and amino acid polymorphisms of pmrCAB operon, and phylogenetic trees were constructed for each gene of prmCAB operon. Colistin and polymyxin B susceptibility was determined for all isolates, and multilocus sequence typing was also performed for A. baumannii isolates. Our results showed that each species of A. baumannii complex has divergent pmrCAB operon sequences. We identified a distinct pmrCAB allele allied with Acinetobacter nosocomialis in gene trees. Different grouping in each gene tree suggests sporadic recombination or emergence of pmrCAB genes among Acinetobacter species. Sequence polymorphisms among Acinetobacter species might not be associated with colistin resistance. We revealed that a distinct pmrCAB allele may be widespread across the continents such as North America and Asia and that sporadic genetic recombination or emergence of pmrCAB genes might occur. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....600(c) of this chapter. (c) [Reserved] (d) Conditions of use. (1) 1- to 3-day-old chickens. (i) Dosage. 0.2 milligram colistin activity per chicken. (ii) Indications for use. Control of early mortality... injection in the neck of 1- to 3-day-old chickens. Not for use in laying hens producing eggs for human...

  19. Annual Progress Report (SEATO Medical Research Laboratory)

    DTIC Science & Technology

    1975-03-01

    Vibrio porahemolyticus Infection in Thailand . 105 Cholera Study at Samutsongkram . . . . .. 110 Detection of Specific Bacterial Antigen by...clinical picture of the mild form of the disease needs to be described. Dehydration was not as severe as that seen in infection with Vibrio cholera ...co-trimoxazole, neomycin, erythromycin and streptomycin. Only 6 , and 62 % of the vibrios tested were sensitive to ampicillin and colistin

  20. mcr-1−Harboring Salmonella enterica Serovar Typhimurium Sequence Type 34 in Pigs, China

    PubMed Central

    Yi, Linxian; Wang, Jing; Gao, Yanling; Liu, Yiyun; Doi, Yohei; Wu, Renjie; Zeng, Zhenling; Liang, Zisen

    2017-01-01

    We detected the mcr-1 gene in 21 (14.8%) Salmonella isolates from pigs at slaughter; 19 were serovar Typhimurium sequence type 34. The gene was located on IncHI2-like plasmids that also harbored IncF replicons and lacked a conjugative transfer region. These findings highlight the need to prevent further spread of colistin resistance in animals and humans. PMID:28098547

  1. Survey of resistance of Pseudomonas aeruginosa from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents

    PubMed Central

    Pitt, T; Sparrow, M; Warner, M; Stefanidou, M

    2003-01-01

    Methods: The susceptibility of 417 CF patient isolates of P aeruginosa from 17 hospitals to six commonly prescribed antibiotics were examined. Isolates were tested by an agar break point dilution method and E-tests according to British Society of Antimicrobial Chemotherapy guidelines. Genotyping of isolates was performed by XbaI DNA macrorestriction and pulsed field gel electrophoresis. Results: 38% of isolates were susceptible to all of the agents tested; almost half were resistant to gentamicin compared with ceftazidime (39%), piperacillin (32%), ciprofloxacin (30%), tobramycin (10%), and colistin (3%). Approximately 40% were resistant to two or more compounds with ceftazidime in combination with gentamicin, piperacillin or ciprofloxacin being the most common cross resistances. Resistance rates were generally similar to those reported recently from the USA and Germany. A selection of resistant isolates proved to be predominantly genotypically distinct by XbaI DNA macrorestriction but six pairs from three centres had similar genotypes. Conclusions: The level of resistance to front line antipseudomonal agents, with the exception of colistin, is disturbingly high. The prudent use of antimicrobial drugs and closer monitoring of accumulation of resistant strain populations should be actively considered. PMID:12947141

  2. Spanish consensus on the prevention and treatment of Pseudomonas aeruginosa bronchial infections in cystic fibrosis patients.

    PubMed

    Cantón, Rafael; Máiz, Luis; Escribano, Amparo; Olveira, Casilda; Oliver, Antonio; Asensio, Oscar; Gartner, Silvia; Roma, Eva; Quintana-Gallego, Esther; Salcedo, Antonio; Girón, Rosa; Barrio, María Isabel; Pastor, María Dolores; Prados, Concepción; Martínez-Martínez, María Teresa; Barberán, José; Castón, Juan José; Martínez-Martínez, Luis; Poveda, José Luis; Vázquez, Carlos; de Gracia, Javier; Solé, Amparo

    2015-03-01

    Pseudomonas aeruginosa is the main pathogen in bronchopulmonary infections in cystic fibrosis (CF) patients. It can only be eradicated at early infection stages while reduction of its bacterial load is the therapeutic goal during chronic infection or exacerbations. Neonatal screening and pharmacokinetic/pharmacodynamic knowledge has modified the management of CF-patients. A culture based microbiological follow-up should be performed in patients with no infection with P.aeruginosa. At initial infection, inhaled colistin (0,5-2MU/tid), tobramycin (300mg/bid) or aztreonam (75mg/tid) with or without oral ciprofloxacin (15-20mg/kg/bid, 2-3weeks) are recommended. In chronic infections, treatment is based on continuous administration of colistin or with a 28-day on-off regimen with tobramycin or aztreonam. During mild-moderate exacerbations oral ciprofloxacin (2-3weeks) can be administered while serious exacerbations must be treated with intravenous combination therapy (beta-lactam with an aminoglycoside or a fluoroquinolone). Future studies will support antibiotic rotation and/or new combination therapies. Epidemiological measures are also recommended to avoid new P.aeruginosa infections and "patient-to-patient transmission" of this pathogen. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  3. Genomic Analysis of a Pan-Resistant Isolate of Klebsiella pneumoniae, United States 2016

    PubMed Central

    Lutgring, Joseph D.; Lonsway, David R.; Anderson, Karen F.; Kiehlbauch, Julia A.; Chen, Lei; Walters, Maroya Spalding; Sjölund-Karlsson, Maria; Rasheed, J. Kamile; Kallen, Alexander; Halpin, Alison Laufer

    2018-01-01

    ABSTRACT Antimicrobial resistance is a threat to public health globally and leads to an estimated 23,000 deaths annually in the United States alone. Here, we report the genomic characterization of an unusual Klebsiella pneumoniae, nonsusceptible to all 26 antibiotics tested, that was isolated from a U.S. patient. The isolate harbored four known beta-lactamase genes, including plasmid-mediated blaNDM-1 and blaCMY-6, as well as chromosomal blaCTX-M-15 and blaSHV-28, which accounted for resistance to all beta-lactams tested. In addition, sequence analysis identified mechanisms that could explain all other reported nonsusceptibility results, including nonsusceptibility to colistin, tigecycline, and chloramphenicol. Two plasmids, IncA/C2 and IncFIB, were closely related to mobile elements described previously and isolated from Gram-negative bacteria from China, Nepal, India, the United States, and Kenya, suggesting possible origins of the isolate and plasmids. This is one of the first K. pneumoniae isolates in the United States to have been reported to the Centers for Disease Control and Prevention (CDC) as nonsusceptible to all drugs tested, including all beta-lactams, colistin, and tigecycline. PMID:29615503

  4. [Preliminary investigation of the in vitro inhibitory effect of antibiotics on algae of the genus Prototheca].

    PubMed

    Casal, M; Gutierrez, J

    1981-07-10

    We investigated the possible inhibitory action 'in vitro' by antibiotic containing discs against microscopic alga that are potential human pathogens of the genus Prototheca especially P. wickerhamii. The results indicated that inhibitors in vitro included amikacin, colistin, dibecacin, framicetin, gentamycin, kanamycin, lividomycin, neomycin, polymyxin, paromomycin, ribostamycin, sisomycin and tobramycin. We emphasize the interest in the effectiveness at these drugs in a case of human protothecosis.

  5. Incorporation of antibiotics effective against multidrug resistant pathogens into PMMA for cranio maxillofacial implants

    DTIC Science & Technology

    2018-04-12

    duties. Title 17 USC §105 provides that ‘copyright protection under this title is not available for any work of the US Government.’ Title 17 USC §101...chromatography HPLC High performance liquid chromatography ISO International standardization organization M Minocycline MDR Multidrug resistant...used for the past few decades as topical otic and ophthalmic treatments. Literature available for the individual colistin-, polymyxin B-, and

  6. Emergence of blaNDM-7-Producing Enterobacteriaceae in Gabon, 2016.

    PubMed

    Moussounda, Mesmin; Diene, Seydina M; Dos Santos, Sandra; Goudeau, Alain; François, Patrice; van der Mee-Marquet, Nathalie

    2017-02-01

    Reports of carbapenemase-producing Enterobacteriaceae in Africa remain rare and assess mostly bla OXA-48 -producing isolates from Mediterranean countries and South Africa. We identified bla NDM-7 -producing Enterobacteriaceae in Gabon in 2016. The isolates contained bla NDM-7 IncX3 plasmids that were unusual and similar to the one described in a colistin-resistant Klebsiella pneumoniae SZ04 isolate from China.

  7. Implementation of a vaccine against Shigatoxin 2e in a piglet producing farm with problems of Oedema disease: case study.

    PubMed

    Fricke, Regine; Bastert, Olaf; Gotter, Verena; Brons, Nico; Kamp, Johan; Selbitz, Hans-Joachim

    2015-01-01

    Oedema disease is one of the major diseases in pigs during the nursery period. It is caused by Shigatoxin 2e producing strains of Escherichia coli . In order to combat the disease, the metaphylactic use of colistin sulphate and zinc oxide is widely spread. Additionally, special feeding regimens such as the reduction of the amount of crude protein and the increase of the amount of crude fibre are applied. The goal of this study was to test the efficacy of a vaccine against Oedema disease caused by Shigatoxin 2e in a field trial on a farm with a history of Oedema disease in nursery pigs. The study was carried out on a Dutch farm with 600 sows and a one-week farrowing rhythm and lasted for the time of one year. During this time all piglets were vaccinated with 1 ml ECOPORC SHIGA at the average age of 4 days. The parameters Overall mortality, use of antimicrobials in general, calculated as defined daily dose per animal, use of colistin sulphate and the weight gain were evaluated for all nursery pigs and compared to historical data of animals from the same period of time directly prior to the study serving as a historical control group. The previous mortality in the nursery of 7.7% was significantly reduced to 1.3% after vaccination. The metaphylactic use of colistin sulphate during the nursery period was stopped during the study because no deaths due to Oedema disease had occurred anymore after beginning of vaccination. The defined daily dose per animal per month was significantly reduced from a mean of 1.050 in the year 2012 to a mean of 0.215 in the year 2013. The defined daily dose per animal per year was therefore relevantly reduced from 12.6 in 2012 to 2.6 in 2013. These results show that on this farm Oedema disease can not only be controlled successfully by vaccination but also that vaccination can significantly reduce the use of antimicrobials in the nursery period.

  8. Genomic Analysis of a Pan-Resistant Isolate of Klebsiella pneumoniae, United States 2016.

    PubMed

    de Man, Tom J B; Lutgring, Joseph D; Lonsway, David R; Anderson, Karen F; Kiehlbauch, Julia A; Chen, Lei; Walters, Maroya Spalding; Sjölund-Karlsson, Maria; Rasheed, J Kamile; Kallen, Alexander; Halpin, Alison Laufer

    2018-04-03

    Antimicrobial resistance is a threat to public health globally and leads to an estimated 23,000 deaths annually in the United States alone. Here, we report the genomic characterization of an unusual Klebsiella pneumoniae , nonsusceptible to all 26 antibiotics tested, that was isolated from a U.S. The isolate harbored four known beta-lactamase genes, including plasmid-mediated bla NDM-1 and bla CMY-6 , as well as chromosomal bla CTX-M-15 and bla SHV-28 , which accounted for resistance to all beta-lactams tested. In addition, sequence analysis identified mechanisms that could explain all other reported nonsusceptibility results, including nonsusceptibility to colistin, tigecycline, and chloramphenicol. Two plasmids, IncA/C2 and IncFIB, were closely related to mobile elements described previously and isolated from Gram-negative bacteria from China, Nepal, India, the United States, and Kenya, suggesting possible origins of the isolate and plasmids. This is one of the first K. pneumoniae isolates in the United States to have been reported to the Centers for Disease Control and Prevention (CDC) as nonsusceptible to all drugs tested, including all beta-lactams, colistin, and tigecycline. IMPORTANCE Antimicrobial resistance is a major public health threat worldwide. Bacteria that are nonsusceptible or resistant to all antimicrobials available are of major concern to patients and the public because of lack of treatment options and potential for spread. A Klebsiella pneumoniae strain that was nonsusceptible to all tested antibiotics was isolated from a U.S. Mechanisms that could explain all observed phenotypic antimicrobial resistance phenotypes, including resistance to colistin and beta-lactams, were identified through whole-genome sequencing. The large variety of resistance determinants identified demonstrates the usefulness of whole-genome sequencing for detecting these genes in an outbreak response. Sequencing of isolates with rare and unusual phenotypes can provide

  9. In vitro activity of the siderophore monosulfactam BAL30072 against contemporary Gram-negative pathogens from New York City, including multidrug-resistant isolates.

    PubMed

    Landman, David; Singh, Manisha; El-Imad, Badiaa; Miller, Ezra; Win, Thida; Quale, John

    2014-06-01

    The in vitro activity of BAL30072 was assessed against clinical isolates from NYC hospitals, including isolates from a citywide surveillance study and a collection of isolates with well-characterised resistance mechanisms. BAL30072 was the most active β-lactam against Pseudomonas aeruginosa (MIC50/90, 0.25/1 μg/mL), Acinetobacter baumannii (MIC50/90, 4/>64 μg/mL) and KPC-possessing Klebsiella pneumoniae (MIC50/90, 4/>64 μg/mL). Combining BAL30072 with meropenem resulted in a ≥ 4-fold decrease in the BAL30072 MIC90 both for A. baumannii and K. pneumoniae. For isolates with a BAL30072 MIC>4 μg/mL, addition of a sub-MIC concentration of colistin resulted in a four-fold decrease in the BAL30072 MIC in 44% of P. aeruginosa, 82% of A. baumannii and 23% of K. pneumoniae. Using sub-MIC concentrations, BAL30072 plus colistin was bactericidal against 4 of 11 isolates in time-kill studies. BAL30072 MICs were frequently lower for P. aeruginosa and K. pneumoniae when tested using Mueller-Hinton agar versus Iso-Sensitest agar or Mueller-Hinton broth. Against the well-characterised isolates, reduced susceptibility to BAL30072 correlated with mexA and mexX expression (P. aeruginosa), adeB expression (A. baumannii) and presence of SHV-type ESBLs (A. baumannii and K. pneumoniae). BAL30072 shows promising activity against contemporary Gram-negatives, including MDR P. aeruginosa, A. baumannii and K. pneumoniae. Enhanced activity was often present when BAL30072 was combined with meropenem or colistin. BAL30072 MICs were influenced by the testing method, particularly for P. aeruginosa and K. pneumoniae. Further in vivo studies are warranted to determine the potential clinical utility of BAL30072 alone and combined with other agents. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Molecular characteristic of mcr-1 producing Escherichia coli in a Chinese university hospital.

    PubMed

    He, Qing-Wen; Xu, Xiao-Hong; Lan, Fang-Jun; Zhao, Zhi-Chang; Wu, Zhi-Yun; Cao, Ying-Ping; Li, Bin

    2017-04-19

    Colistin has been considered as a last-line treatment option in severe infections caused by multidrug-resistant (MDR) gram-negative pathogens. However, the emergence of the mobile colistin resistance gene (mcr-1) has challenged this viewpoint. The aim of this study is to explore the prevalence of mcr-1 in Escherichia coli (E. coli) in a Chinese teaching hospital, and investigate their molecular characteristics. A total of 700 E. coli isolates were used to screen mcr-1 by PCR and sequencing in a Chinese university hospital from August 2014 to August 2015. Susceptibility test of mcr-1-producing isolates was determined by Vitek -2 Compact system. 26 virulence factors (VFs), phylogenetic groups, Multi-locus sequence typing (MLST), and DNA Fingerprinting (ERIC-PCR) of strains were investigated by PCR. Four (0.6%) mcr-1 producing E. coli isolates were found in this study. The results of antibiotic susceptibility test showed that all four isolates were resistant to colistin, ciprofloxacin, levofloxacin, cefazolin, and trimethoprim/sulfamethoxazole, and were susceptible to amikacin, ertapenem and imipenem. In addition, all 4 isolates exhibited high-level resistance to aztreonam, cefotaxime and gentamicin. The numbers of VFs contained in mcr-1 positive isolates were no more than 4 in our study. MLST result demonstrated that these isolates were assigned to two sequence types: ST156 and ST167. The result of phylogenetic analysis showed that four mcr-1-positive isolates belong to two phylogenetic groups: A and B1 group. ERIC-PCR showed that four mcr-1 positive strains were categorized into three different genotypes. Our study demonstrated a low prevalence of mcr-1 in E. coli clinical isolates in a Chinese teaching hospital, and we have gained insights into the molecular characteristics of these mcr-1-positive strains. Increasing the surveillance of these infections, as well as taking effective infection control measures are urgently needed to take to control the transmission

  11. Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure.

    PubMed

    Van den Meersche, Tina; Van Pamel, Els; Van Poucke, Christof; Herman, Lieve; Heyndrickx, Marc; Rasschaert, Geertrui; Daeseleire, Els

    2016-01-15

    In this study, a fast, simple and selective ultra high performance liquid chromatographic-tandem mass spectrometric (UHPLC-MS/MS) method for the simultaneous detection and quantification of colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline and ceftiofur and for the detection of tylosin A in swine manure was developed and validated. First, a simple extraction procedure with acetonitrile and 6% trichloroacetic acid was carried out. Second, the supernatant was evaporated and the pellet was reconstituted in 1 ml of water/acetonitrile (80/20) and 0.1% formic acid. Extracts were filtered and analyzed by UHPLC-MS/MS on a Kinetex C18 column using gradient elution. The method developed was validated according to the criteria of Commission Decision 2002/657/EC. Recovery percentages varied between 94% and 106%, repeatability percentages were within the range of 1.7-9.2% and the intralaboratory reproducibility varied between 2.8% and 9.3% for all compounds, except for tylosin A for which more variation was observed resulting in a higher measurement uncertainty. The limit of detection and limit of quantification varied between 1.1 and 20.2 and between 3.5 and 67.3 μg/kg, respectively. This method was used to determine the presence and concentration of the seven antibiotic residues in swine manure sampled from ten different manure pits on farms where the selected antibiotics were used. A link was found between the antibiotics used and detected, except for ceftiofur which is injected at low doses and degraded readily in swine manure and was therefore not recovered in any of the samples. To the best of our knowledge, this is the first method available for the simultaneous extraction and quantification of colistin with other antibiotic classes. Additionally, colistin was never extracted from swine manure before. Another innovative aspect of this method is the simultaneous detection and quantification of five different classes of antibiotic residues in swine manure

  12. Emergence of blaNDM-7–Producing Enterobacteriaceae in Gabon, 2016

    PubMed Central

    Moussounda, Mesmin; Diene, Seydina M.; Dos Santos, Sandra; Goudeau, Alain; van der Mee-Marquet, Nathalie

    2017-01-01

    Reports of carbapenemase-producing Enterobacteriaceae in Africa remain rare and assess mostly blaOXA-48–producing isolates from Mediterranean countries and South Africa. We identified blaNDM-7–producing Enterobacteriaceae in Gabon in 2016. The isolates contained blaNDM-7 IncX3 plasmids that were unusual and similar to the one described in a colistin-resistant Klebsiella pneumoniae SZ04 isolate from China. PMID:28098536

  13. Colistin Pharmacokinetics in Burn Patients During Continuous Venovenous Hemofiltration

    DTIC Science & Technology

    2015-01-01

    NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION...Materials. All drugs and chemicals were reagent grade and were obtained from Sigma (St. Louis, MO) unless otherwise noted. Pharmacokinetic sampling...Chemother 50: 1953 –1958. http://dx.doi.org/10.1128/AAC .00035-06. 4. Zavascki AP. 2014. Polymyxins for the treatment of extensively-drug- resistant Gram

  14. Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae.

    PubMed

    Velkov, Tony; Deris, Zakuan Z; Huang, Johnny X; Azad, Mohammad A K; Butler, Mark; Sivanesan, Sivashangarie; Kaminskas, Lisa M; Dong, Yao-Da; Boyd, Ben; Baker, Mark A; Cooper, Matthew A; Nation, Roger L; Li, Jian

    2014-05-01

    This study examines the interaction of polymyxin B and colistin with the surface and outer membrane components of a susceptible and resistant strain of Klebsiella pneumoniae. The interaction between polymyxins and bacterial membrane and isolated LPS from paired wild type and polymyxin-resistant strains of K. pneumoniae were examined with N-phenyl-1-naphthylamine (NPN) uptake, fluorometric binding and thermal shift assays, lysozyme and deoxycholate sensitivity assays, and by (1)H NMR. LPS from the polymyxin-resistant strain displayed a reduced binding affinity for polymyxins B and colistin in comparison with the wild type LPS. The outer membrane NPN permeability of the resistant strain was greater compared with the susceptible strain. Polymyxin exposure enhanced the permeability of the outer membrane of the wild type strain to lysozyme and deoxycholate, whereas polymyxin concentrations up to 32 mg/ml failed to permeabilize the outer membrane of the resistant strain. Zeta potential measurements revealed that mid-logarithmic phase wild type cells exhibited a greater negative charge than the mid-logarithmic phase-resistant cells. Taken together, our findings suggest that the resistant derivative of K. pneumoniae can block the electrostatically driven first stage of polymyxin action, which thereby renders the hydrophobically driven second tier of polymyxin action on the outer membrane inconsequential.

  15. [Analysis of antibiotic diffusion from agarose gel by spectrophotometry and laser interferometry methods].

    PubMed

    Arabski, Michał; Wasik, Sławomir; Piskulak, Patrycja; Góźdź, Natalia; Slezak, Andrzej; Kaca, Wiesław

    2011-01-01

    The aim of this study was to analysis of antibiotics (ampicilin, streptomycin, ciprofloxacin or colistin) release from agarose gel by spectrophotmetry and laser interferometry methods. The interferometric system consisted of a Mach-Zehnder interferometer with a He-Ne laser, TV-CCD camera, computerised data acquisition system and a gel system. The gel system under study consists of two cuvettes. We filled the lower cuvette with an aqueous 1% agarose solution with the antibiotics at initial concentration of antibiotics in the range of 0.12-2 mg/ml for spectrophotmetry analysis or 0.05-0.5 mg/ml for laser interferometry methods, while in the upper cuvette there was pure water. The diffusion was analysed from 120 to 2400 s with a time interval of deltat = 120 s by both methods. We observed that 0.25-1 mg/ml and 0,05 mg/ml are minimal initial concentrations detected by spectrophotometric and laser interferometry methods, respectively. Additionally, we observed differences in kinetic of antibiotic diffusion from gel measured by both methods. In conclusion, the laser interferometric method is a useful tool for studies of antibiotic release from agarose gel, especially for substances are not fully soluble in water, for example: colistin.

  16. Monotherapy versus combination therapy against carbapenem-resistant Gram-negative bacteria: A retrospective observational study.

    PubMed

    Ghafur, A; Devarajan, V; Raja, T; Easow, J; Raja, M A; Sreenivas, S; Ramakrishnan, B; Raman, S G; Devaprasad, D; Venkatachalam, B; Nimmagadda, R

    2016-01-01

    Colistin-based combination therapy (CCT) is extensively used to treat infections due to carbapenem-resistant Gram-negative bacteria (CRGNB). There are no data available from India on the usefulness of combination therapy, especially in the oncology setup. The aim of this study was to analyze the clinical effectiveness of CCT over monotherapy in patients with CRGNB. We conducted a retrospective, observational study of patients with CRGNB bloodstream infections in our oncology and bone marrow transplant center. Over a 3-year study period (2011-2014), we could identify 91 patients satisfying study criteria. There was no statistically significant difference in the 28-day mortality between monotherapy and combination therapy arms (mono n = 26, mortality 10 (38.5%); combination n = 65, mortality 28 (40%); P = 0.886). Neutropenic patients with Enterobacteriaceae bloodstream infections performed better with combination therapy (mono n = 7, mortality 6 (85.7%); combination therapy n = 22, mortality 8 (36.4%); P = 0.035). There was no significant difference in the 28-day mortality between the two treatment arms in other subgroups. Our study did not find CCT superior to colistin monotherapy in patients with CRGNB blood stream infections; except in the subgroup of neutropenic patients with Enterobacteriaceae bloodstream infections, where combination therapy performed better.

  17. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production.

    PubMed

    Wang, Yang; Zhang, Rongmin; Li, Jiyun; Wu, Zuowei; Yin, Wenjuan; Schwarz, Stefan; Tyrrell, Jonathan M; Zheng, Yongjun; Wang, Shaolin; Shen, Zhangqi; Liu, Zhihai; Liu, Jianye; Lei, Lei; Li, Mei; Zhang, Qidi; Wu, Congming; Zhang, Qijing; Wu, Yongning; Walsh, Timothy R; Shen, Jianzhong

    2017-02-06

    By 2030, the global population will be 8.5 billion, placing pressure on international poultry production, of which China is a key producer 1 . From April 2017, China will implement the withdrawal of colistin as a growth promoter, removing over 8,000 tonnes per year from the Chinese farming sector 2 . To understand the impact of banning colistin and the epidemiology of multi-drug-resistant (MDR) Escherichia coli (using bla NDM and mcr-1 as marker genes), we sampled poultry, dogs, sewage, wild birds and flies. Here, we show that mcr-1, but not bla NDM , is prevalent in hatcheries, but bla NDM quickly contaminates flocks through dogs, flies and wild birds. We also screened samples directly for resistance genes to understand the true breadth and depth of the environmental and animal resistome. Direct sample testing for bla NDM and mcr-1 in hatcheries, commercial farms, a slaughterhouse and supermarkets revealed considerably higher levels of positive samples than the bla NDM - and mcr-1-positive E. coli, indicating a substantial segment of unseen resistome-a phenomenon we have termed the 'phantom resistome'. Whole-genome sequencing identified common bla NDM -positive E. coli shared among farms, flies, dogs and farmers, providing direct evidence of carbapenem-resistant E. coli transmission and environmental contamination.

  18. Prospective study on human fecal carriage of Enterobacteriaceae possessing mcr-1 and mcr-2 genes in a regional hospital in Hong Kong.

    PubMed

    Chan, Wai-Sing; Au, Chun-Hang; Ho, Dona N; Chan, Tsun-Leung; Ma, Edmond Shiu-Kwan; Tang, Bone Siu-Fai

    2018-02-13

    Human fecal carriage of Enterobacteriaceae possessing mobilized colistin resistance genes (mcr-1 and mcr-2) remains obscure in Hong Kong. As part of routine surveillance on emerging antibiotic resistance, we conducted a prospective study on this topic in a regional hospital in Hong Kong. From October 31 to November 25, 2016, all fecal specimens submitted for routine analysis were included in this surveillance study. These comprised 672 consecutive routine fecal specimens collected from 616 individuals. Fecal specimens were screened for colistin-resistant Enterobacteriaceae by culture-based method, and the presence of mcr-1 and mcr-2 genes in resistant isolates was identified by polymerase chain reaction and Sanger sequencing. Whole genome sequencing (WGS) of mcr-1-possessing Escherichia coli strains was facilitated using Illumina® MiSeq® followed by sequence analysis with appropriate bioinformatics tools. Fourteen mcr-1-positive E. coli strains were isolated from 14 separate individuals (2.08% of total fecal specimens), with 9 of them being asymptomatic, healthy clients coming for health assessment. No mcr-2-possessing Enterobacteriaceae was identified. Colistin minimum inhibitory concentrations of these mcr-1-positive isolates ranged from 2 to 4 μg/mL. All these isolates were susceptible to carbapenems with 2 being extended spectrum β-lactamase producers. WGS data revealed that these isolates belonged to at least 12 different sequence types (STs) and possessed diversified plasmid replicons, virulence and acquired antibiotic resistance genes. Further study on an E. coli ST201 strain (Pasteur scheme) revealed coexistence of 47,818-bp IncP-1 and 33,309-bp IncX4 types of mcr-1 plasmids, which was a combination of stability and high transmissibility. To the best of our knowledge, this is the first study on human fecal carriage of Enterobacteriaceae possessing mcr-1 and mcr-2 genes in Hong Kong. Our data further revealed asymptomatic carriage of mcr-1-possessing

  19. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study.

    PubMed

    Edelstein, Mikhail V; Skleenova, Elena N; Shevchenko, Oksana V; D'souza, Jimson W; Tapalski, Dmitry V; Azizov, Ilya S; Sukhorukova, Marina V; Pavlukov, Roman A; Kozlov, Roman S; Toleman, Mark A; Walsh, Timothy R

    2013-10-01

    Multidrug-resistant and extensively-drug-resistant Pseudomonas aeruginosa are increasing therapeutic challenges worldwide. We did a longitudinal epidemiological and clinical study of extensively-drug-resistant P aeruginosa in Belarus, Kazakhstan, and Russia. The study was done in three prospectively defined phases: Jan 1, 2002-Dec 31, 2004; Jan 1, 2006-Dec 31, 2007; and Jan 1, 2008-Dec 31, 2010. The first two phases were in Russia only. All consecutive, non-duplicate, nosocomial isolates and case report forms were sent to the coordinating centre (Institute of Antimicrobial Chemotherapy, Smolensk, Russia), where species reidentification, susceptibility testing, and molecular typing of isolates were done. We did susceptibility testing by agar dilution. The presence of metallo-β-lactamase (MBL) genes was established by PCR and sequencing, and class 1 integrons containing MBL gene cassettes were analysed by the PCR restriction fragment length polymorphism approach. Strain relatedness was analysed by multiple loci variable-number tandem-repeat (VNTR) analysis (at six VNTR loci) and multilocus sequence typing. In 2002-04, 628 of 1053 P aeruginosa isolates were insusceptible to carbapenems and 47 (4.5%) possessed MBLs. In 2006-07, 584 of 787 isolates were insusceptible to carbapenems and 160 (20.3%) possessed MBLs. In 2008-10, 1238 of 1643 Russian P aeruginosa isolates were insusceptible to carbapenems and 471 (28.7%) possessed MBLs. Additionally, the 32 P aeruginosa isolates from Belarus and Kazakhstan were all carbapenem insusceptible and all possessed MBLs. More than 96% of MBL-positive P aeruginosa isolates were resistant to all antibiotics except colistin (ie, extensively drug resistant), and, in 2010, 5·9% were resistant to colistin. 685 (96.5%) of 710 MBL-positive P aeruginosa belonged to ST235. bla(VIM-2) genes were detected in 707 (99.6%) of 710 MBL-positive isolates. Extensively-drug-resistant ST235 P aeruginosa has rapidly spread throughout Russia and into

  20. Genotypic Analysis of Escherichia coli Strains from Poultry Carcasses and Their Susceptibilities to Antimicrobial Agents

    PubMed Central

    Geornaras, Ifigenia; Hastings, John W.; von Holy, Alexander

    2001-01-01

    Plasmid profiling and amplified fragment length polymorphism (AFLP) analysis were used to genotype 50 Escherichia coli strains from poultry carcasses. Thirty different plasmid profiles were evident, and clustering of the AFLP data showed that they were a distinctly heterogeneous group of strains. Susceptibility testing against five antimicrobial agents used in the South African poultry industry showed all strains to be susceptible to danofloxacin and colistin, while the majority (96%) were resistant to two tetracyclines. PMID:11282652

  1. Ceftolozane/tazobactam for febrile UTI due to multidrug-resistant Pseudomonas aeruginosa in a patient with neurogenic bladder.

    PubMed

    Dinh, Aurélien; Davido, Benjamin; Calin, Ruxandra; Paquereau, Julie; Duran, Clara; Bouchand, Frédérique; Phé, Véronique; Chartier-Kastler, Emmanuel; Rottman, Martin; Salomon, Jérôme; Plésiat, Patrick; Potron, Anaïs

    2017-01-01

    Urinary tract infections (UTI) are a major public health problem among spinal cord injury (SCI) patients. They frequently involve multidrug-resistant (MDR) bacteria. Ceftolozane/tazobactam (C/T) is a novel antibiotic combination approved for complicated intra-abdominal and UTI caused by Gram-positive and Gram-negative organisms, including some MDR strains. Little is known about the use of this agent for complicated febrile UTI occurring among SCI patients with neurogenic bladder due to MDR Pseudomonas aeruginosa (PSA). We describe the case of a 35-year-old man with SCI due to multiple sclerosis, with a neurogenic bladder necessitating a bilateral nephrostomy and double J catheter, who developed a febrile UTI due to a MDR PSA, which was susceptible only to amikacin and colistin. Because of this MDR phenotype and the underlying kidney disease, a 1000 mg (1000 mg per 500 mg) dose of C/T was given as monotherapy every 8 h for 7 days, after 3 days of colistin and amikacin. Thanks to this treatment, the patient had a favorable outcome with no clinical signs of UTI or positive urine culture up to 1 month after diagnosis. C/T seems to be an effective and safe therapeutic option for febrile UTI due to MDR PSA in SCI patients with neurogenic bladder, even when administered in monotherapy for 10 days.

  2. Photoinactivation of mcr-1 positive Escherichia coli

    NASA Astrophysics Data System (ADS)

    Caires, C. S. A.; Leal, C. R. B.; Rodrigues, A. C. S.; Lima, A. R.; Silva, C. M.; Ramos, C. A. N.; Chang, M. R.; Arruda, E. J.; Oliveira, S. L.; Nascimento, V. A.; Caires, A. R. L.

    2018-01-01

    The emergence of plasmid-mediated colistin resistance in Enterobacteriaceae, mostly in Escherichia coli due to the mcr-1 gene, has revealed the need to develop alternative approaches in treating mcr-1 positive bacterial infections. This is because colistin is a broad-spectrum antibiotic and one of the ‘last-resort’ antibiotics for multidrug resistant bacteria. The present study evaluated for the first time, to the best of our knowledge, the efficacy of photoinactivation processes to kill a known mcr-1 positive E. coli strain. Eosin methylene-blue (EMB) was investigated as a photoantimicrobial agent for inhibiting the growth of a mcr-1 positive E. coli strain obtained from a patient with a diabetic foot infection. The photoantimicrobial activity of EMB was also tested in a non-multidrug resistant E. coli strain. The photoinactivation process was tested using light doses in the 30-45 J cm-2 range provided by a LED device emitting at 625 nm. Our findings demonstrate that a mcr-1 positive E. coli strain is susceptible to photoinactivation. The results show that the EMB was successfully photoactivated, regardless of the bacterial multidrug resistance; inactivating the bacterial growth by oxidizing the cells in accordance with the generation of the oxygen reactive species. Our results suggest that bacterial photoinactivation is an alternative and effective approach to kill mcr-1 positive bacteria.

  3. In vitro effect of subminimal inhibitory concentrations of antibiotics on the biofilm formation ability of Acinetobacter baumannii clinical isolates.

    PubMed

    Bogdan, Maja; Drenjancevic, Domagoj; Harsanji Drenjancevic, Ivana; Bedenic, Branka; Zujic Atalic, Vlasta; Talapko, Jasminka; Vukovic, Dubravka

    2018-02-01

    The ability of A cinetobacter baumannii strains to form biofilm is one of the most important virulence factor which enables bacterial survival in a harsh environment and decreases antibiotic concentration as well. Subminimal inhibitory concentrations (subMICs) of antibiotics may change bacterial ultrastructure or have an influence on some different molecular mechanisms resulting in morphological or physiological changes in bacteria itself. The aim of this study was to determine effects of 1/2, 1/4, 1/8 and 1/16 minimal inhibitory concentrationsof imipenem, ampicillin-sulbactam, azithromycin, rifampicin and colistin on biofilm formation ability of 22 biofilm non-producing and 46 biofilm producing A. baumannii strains (30 weak producing strains and 16 moderate producing strains). Results of this study indicate that 1/2-1/16 MICs of imipenem, azithromycin, and rifampicin can reduce bacterial biofilm formation ability in moderate producing strains (p < 0.05), whereas 1/16 MIC of imipenem and 1/4-1/8 MICs of rifampicin reduce the biofilm formation in weak producing strains (p < 0.05). Statisticaly significant effect was detected among biofilm non-producing strains after their exposure to 1/16 MIC of azithromycin (p = 0.039). SubMICs of ampicillin-sulbactam and colistin did not have any significant effect on biofilm formation among tested A. baumannii strains.

  4. Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37.

    PubMed

    Lin, Qiao; Deslouches, Berthony; Montelaro, Ronald C; Di, Y Peter

    2018-05-09

    Bacterial biofilm-dependent infections (e.g., cystic fibrosis, surgical sites, and medical implants) are associated with enhanced drug-resistance and thus difficult to eradicate. The goal of this study was to systematically compare three distinct classes of antimicrobial peptides (AMPs) that include the clinically used antibiotic colistin, the natural AMP LL37, the engineered cationic-AMP WLBU2, and four commonly used antibiotics with different bactericidal mechanisms (tobramycin, ciprofloxacin, ceftazidime and vancomycin) for biofilm prevention properties. Using biofilm-prevention assays, we detected bacterial biomass post-attachment in subinhibitory concentrations (1/3 of the MIC) for each AMP, by the crystal violet method, to distinguish the commonly known bactericidal from potentially distinct mechanisms of biofilm prevention. Biofilm regulatory gene expression was assessed using RT-qPCR for correlation with biofilm growth inhibition. Commonly used antibiotics at 1x MIC showed modest ESKAPE biofilm prevention while 1/3 MIC of AMPs demonstrated up to 90% of biofilm prevention. WLBU2 was generally more effective in preventing bacterial attachment than colistin and LL37. Changes in expression of bacterial genes known to affect biofilm regulation were consistent with biofilm prevention. The data warrant further exploration of AMPs with optimized structures to fill a knowledge gap on the potential application of AMPs to difficult-to-cure bacterial biofilm-related infections. Copyright © 2018. Published by Elsevier B.V.

  5. Bacteriological Assessment of Pneumonia Caused by Gram-Negative Bacteria in Patients Hospitalized in Intensive Care Unit.

    PubMed

    Guzek, A; Korzeniewski, K; Tomaszewski, D; Rybicki, Z; Zwolińska, E

    2017-01-01

    The article presents the results of 11-year study (2005-2015) of Gram-negative bacteria responsible for pneumonia in 2033 mechanically ventilated patients hospitalized in Intensive Care Unit. Of 8796 biological samples, consisting mainly of bronchial aspirate (97.9 %), 2056 bacterial strains were isolated and subjected to identification. VITEK 2 was used to determine drug susceptibility (classified according to the EUCAST criteria). ESBL, MBL and KPC-producing strains were identified by means of phenotypic methods using appropriate discs. The findings were that the predominant bacteria responsible for infections consisted of Enterobacteriaceae (42.0 %), Acinetobacter baumannii (37.2 %), Pseudomonas aeruginosa (16.1 %), and Stenotrophomonas maltophila (4.7 %). We observed a rise in the number of bacteria causing pneumonia throughout the study period, especially in S. maltophila and Enterobacteriaceae ESBL (+). Gram-negative bacilli were 100 % susceptible to colistin, apart from naturally resistant strains such as Proteus mirabilis, Serratia marcescens, whereas Enterobacteriaceae ESBL (+) were susceptible to imipenem and meropenem. Acinetobacter baumannii strains exhibited the lowest drug susceptibility. In conclusion, we report an increase in the prevalence of pneumonia associated with Gram-negative bacteria in mechanically ventilated intensive care patients. Colistin remains the most effective drug against the majority of Gram-negative bacteria. Therapeutic problems are common in the course of treatment of Acinetobacter baumannii infections.

  6. Occurrence of Carbapenem-Resistant Acinetobacter baumannii Clones at Multiple Hospitals in London and Southeast England

    PubMed Central

    Coelho, Juliana M.; Turton, Jane F.; Kaufmann, Mary E.; Glover, Judith; Woodford, Neil; Warner, Marina; Palepou, Marie-France; Pike, Rachel; Pitt, Tyrone L.; Patel, Bharat C.; Livermore, David M.

    2006-01-01

    From late 2003 to the end of 2005, the Health Protection Agency's national reference laboratories received approximately 1,600 referrals of Acinetobacter spp., including 419 and 58 examples, respectively, of two carbapenem-resistant Acinetobacter baumannii lineages, designated OXA-23 clones 1 and 2. Representatives of these clones were obtained from 40 and 8 hospitals, respectively, in London or elsewhere in Southeast England. Both clones had blaOXA-23-like genes, as well as the intrinsic (but downregulated) blaOXA-51-like carbapenemase genes typical of A. baumannii. Both were highly multiresistant: only colistin and tigecycline remained active versus OXA-23 clone 1 isolates; OXA-23 clone 2 isolates were also susceptible to amikacin and minocycline. These lineages increase the burden created by the southeast (SE) clone, a previously reported A. baumannii lineage with variable carbapenem resistance contingent on upregulation of the blaOXA-51-like gene. Known since 2000, the SE clone had been referred from over 40 hospitals by the end of 2005, with 627 representatives received by the reference laboratories. The OXA-23 clone 2 is now in decline, but OXA-23 clone 1 continues to be referred from new sites, as does the SE clone. Their spread is forcing the use of unorthodox therapies, principally colistin and tigecycline, although the optimal regimens remain uncertain. PMID:17021090

  7. Carbapenem resistance confers to Klebsiella pneumoniae strains an enhanced ability to induce infection and cell death in epithelial tissue-specific in vitro models.

    PubMed

    Leone, Laura; Raffa, Salvatore; Martinelli, Daniela; Torrisi, Maria Rosaria; Santino, Iolanda

    2015-01-01

    Carbapenem-resistant Klebsiella pneumoniae strains (KPC-Kp) are emerging worldwide causing different nosocomial infections including those of the urinary tract, lung or skin wounds. For these strains, the antibiotic treatment is limited to only few choices including colistin, whose continuous use led to the emergence of carbapenem-resistant KPC-Kp strains resistant also to this treatment (KPC-Kp Col-R). Very little is known about the capacity of the different strains of KPC-Kp to invade the epithelial cells in vitro. To verify if the acquisition of carbapenem-resistant and the colistin-resistant phenotypes are correlated with a different ability to infect a series of epithelial cell lines of various tissutal origin and with a different capacity to induce cellular death. We used Klebsiella pneumoniae (KP), KPC-Kp and KPC-Kp Col-R strains, isolated from different patients carrying various tissue-specific infections, to infect a series of epithelial cell lines of different tissutal origin. The invasive capacity of the strains and the extent and characteristics of the cell damage and death induced by the bacteria were evaluated and compared. Our results show that both KPC-Kp and KPC-Kp Col-R display a greater ability to infect the epithelial cells, with respect to KP, and that the bacterial cell invasion results in a nonprogrammed cell death.

  8. Engineered Cationic Antimicrobial Peptides To Overcome Multidrug Resistance by ESKAPE Pathogens

    PubMed Central

    Deslouches, Berthony; Steckbeck, Jonathan D.; Craigo, Jodi K.; Doi, Yohei; Burns, Jane L.

    2014-01-01

    Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings. PMID:25421473

  9. Simultaneous determination of eight cyclopolypeptide antibiotics in feed by high performance liquid chromatography coupled with evaporation light scattering detection.

    PubMed

    Song, Xuqin; Xie, Jingmeng; Zhang, Meiyu; Zhang, Yingxia; Li, Jiufeng; Huang, Qiwen; He, Limin

    2018-02-15

    A high throughput, reliable and reproducible analysis strategy based on high performance liquid chromatography combined to evaporative light scattering detector (HPLC-ELSD) was developed for simultaneous determination of eight cyclopolypeptide antibiotics including vancomycin, polymyxin B (polymyxin B1 and polymyxin B2), polymyxin E (colistin A and colistin B), teicoplanin, bacitracin A, daptomycin and virginiamycin M1 in animal Feed. Feed samples were extracted with methanol-2% formic acid aqueous solution, followed by a solid-phase extraction step using a HLB cartridge. Under the optimum chromatographic conditions and ELSD parameters, target compounds were separated well on a short column filled with biphenyl stationary phase. The method was developed in accordance with pig complete feed and then extended to detect polypeptide antibiotics in piglet premix, pig feed additive, poultry complete feed and fattening pig premix. The results showed that logarithmic calibration curves of eight analytes were linear (r 2  > 0.99) within the concentration range of 5-200 mg mL -1 . The developed method provided good accuracy and precision for quantification of eight polypeptides in five kinds of feeds with recoveries ranging from 72.0% to 105.4% with relative standard deviations <9.5%. The limits of detection ranged from 2 to 5 mg kg -1 . Finally, the method was successfully applied to analyze polypeptide antibiotics in commercial feed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Urinary tract infection by Acinetobacter baumannii and Pseudomonas aeruginosa: evolution of antimicrobial resistance and therapeutic alternatives.

    PubMed

    Jiménez-Guerra, Gemma; Heras-Cañas, Victor; Gutiérrez-Soto, Miguel; Del Pilar Aznarte-Padial, María; Expósito-Ruiz, Manuela; Navarro-Marí, José María; Gutiérrez-Fernández, José

    2018-04-25

    Acinetobacter baumannii and Pseudomonas aeruginosa are responsible for numerous nosocomial infections. The objective of this study was to determine the development of their susceptibility to ten antibiotics and the antibiotic consumption of patients with suspicion of urinary tract infection (UTI). A retrospective study was conducted on the susceptibility profiles of A. baumannii and P. aeruginosa isolates from 749 urine samples gathered between January 2013 and December 2016, and on the consumption of imipenem, meropenem and piperacillin-tazobactam between 2014 and 2016. Hospital patients were the source of 82 (91.1 %) of the 90 A. baumannii isolates detected and 555 (84.2 %) of the 659 P. aeruginosa isolates. Globally, the lowest percentage susceptibility values were found for fosfomycin, aztreonam and ciprofloxacin, while colistin continued to be the most active antibiotic in vitro. In 2016, the susceptibility of A. baumannii to carbapenem and piperacillin-tazobactam decreased to very low values, while the susceptibility of P. aeruginosa to carbapenem remained stable but its susceptibility to piperacillin-tazobactam decreased. There was a marked increase in the consumption of piperacillin-tazobactam. In our setting, it is no longer possible to use carbapenems and piperacillin-tazobactam for empirical treatment of UTI due to A. baumannii or to use piperacillin-tazobactam for empirical treatment of UTI due to P. aeruginosa. Colistin was found to be the most active antibiotic in vitro. There was a marked increase in the consumption of piperacillin-tazobactam.

  11. Evaluation of the Bactericidal Activity of Plazomicin and Comparators against Multidrug-resistant Enterobacteriaceae.

    PubMed

    Thwaites, M; Hall, D; Shinabarger, D; Serio, A W; Krause, K M; Marra, A; Pillar, C

    2018-06-04

    The next-generation aminoglycoside plazomicin, in development for infections due to multi-drug resistant (MDR) Enterobacteriaceae, was evaluated alongside comparators for bactericidal activity in minimum bactericidal concentration (MBC) and time-kill (TK) assays against MDR Enterobacteriaceae isolates with characterized aminoglycoside and β-lactam resistance mechanisms. Overall, plazomicin and colistin were the most potent, with plazomicin demonstrating an MBC 50/90 of 0.5/4 μg/mL and sustained 3-log 10 kill against MDR Escherichia coli , Klebsiella pneumoniae and Enterobacter spp. Copyright © 2018 Thwaites et al.

  12. Current therapies for pseudomonas aeruginosa.

    PubMed

    Giamarellou, Helen; Kanellakopoulou, Kyriaki

    2008-04-01

    Based on the worldwide prevalence of multidrug-resistant strains of Pseudomas aeruginosa and the fact that no newer antipseudomonal agents are available, this article aims to investigate therapeutic solutions for combating infections caused by P aeruginosa, including multidrug-resistant strains. The article focuses mainly on colistin, the re-emerging old antibiotic that possesses prominent antipseudomonal activity in vitro and on doripenem, a newer carbapenem that seems to be close to its global marketing. Regarding older antipseudomonal antibiotics that have been reviewed extensively, only newer aspects on their use are considered in this article.

  13. Laser Interferometry Method as a Novel Tool in Endotoxins Research.

    PubMed

    Arabski, Michał; Wąsik, Sławomir

    2017-01-01

    Optical properties of chemical substances are widely used at present for assays thereof in a variety of scientific disciplines. One of the measurement techniques applied in physical sciences, with a potential for novel applications in biology, is laser interferometry. This method enables to record the diffusion properties of chemical substances. Here we describe the novel application of laser interferometry in chitosan interactions with lipopolysaccharide by detection of colistin diffusion. The proposed model could be used in simple measurements of polymer interactions with endotoxins and/or biological active compounds, like antibiotics.

  14. Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens.

    PubMed

    Deslouches, Berthony; Steckbeck, Jonathan D; Craigo, Jodi K; Doi, Yohei; Burns, Jane L; Montelaro, Ronald C

    2015-02-01

    Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Consumption of antibacterial molecules in broiler production in Morocco.

    PubMed

    Rahmatallah, Naoufal; El Rhaffouli, Hicham; Lahlou Amine, Idriss; Sekhsokh, Yassine; Fassi Fihri, Ouafaa; El Houadfi, Mohammed

    2018-05-01

    Monitoring the use of antibacterial agents in food-producing animals is crucial in order to reduce antimicrobial resistance, selection and dissemination of resistant bacterial strains, and drug residues in the animal food products. The broiler production sector is considered a great consumer of antibacterials and incriminated in the rise of antimicrobial resistance level in zoonotic bacterial pathogens such as Escherichia coli, Salmonella and Campylobacter. Following recommendations from the OIE and WHO, a survey was conducted about the use and consumption of several antibacterial agents in Moroccan broiler flocks. More than 5 million broilers were randomly surveyed at the prescriber level, that is, via the veterinary clinics involved in their health management. The results showed that 93% of the flocks received at least one antibacterial treatment of minimum 3 days duration. Enrofloxacin, colistin and trimethoprim/sulphonamides were the most used antibacterials followed by oxytetracycline, florfenicol and amoxicillin. Oxytetracycline, enrofloxacin and colistin were overdosed in most of the administration, while amoxicillin and the combination of trimethoprim/sulphonamides were under-dosed. The total amount of antibacterial consumed in the survey was 63.48 mg/kg and the Animal Level of Exposure to Antimicrobials (ALEA) was 94.45%. The reasons for this frequent use were related mainly to the poor quality of broiler production management. Chicks and animal feed provided to producers were of variable quality. Management of rearing stock density was often poor and biosecurity inadequate, and broilers were challenged by a high prevalence of infectious diseases. © 2018 The Authors. Veterinary Medicine and Science Published by John Wiley & Sons Ltd.

  16. The management of multidrug-resistant Enterobacteriaceae.

    PubMed

    Bassetti, Matteo; Peghin, Maddalena; Pecori, Davide

    2016-12-01

    Multidrug-resistant (MDR) Enterobacteriaceae are often related to the production of extended-spectrum b-lactamases (ESBLs) and carbapenemase-producing Enterobacteriaceae (CRE), and represent an increasing global threat. Recommendations for the therapeutic management of MDR-related infections, however, are mainly derived from retrospective and nonrandomized prospective studies. The aim of this review is to discuss the challenges in the treatment of patients with infections because of MDR Enterobacteriaceae and provide an expert opinion while awaiting for more definitive data. To avoid the selection of carbapenemase-producing Enterobacteriaceae, carbapenem-sparing strategies should be considered. B-lactams/b-lactamase inhibitors, mainly piperacillin-tazobactam, minimum inhibitory concentration (MIC) 16/4mg/ml or less represents the best alternative to carbapenems for the treatment of ESBL-producing strains. Overall, combination therapy may be preferred over monotherapy for CRE. The combination of a carbapenem-containing regimen with colistin or high-dose tigecycline or aminoglycoside can be administered at high-dose prolonged infusion with therapeutic drug monitoring for the treatment of CRE with MIC for meropenem 8-16 mg/l or less. For MIC higher than 8-16 mg/l, the use of meropenem should be avoided and various combination therapies based on the in-vitro susceptibility of antimicrobials (e.g., colistin, high-dose tigecycline, fosfomycin, and aminoglycosides) should be selected. Carbapenem-sparing strategies should be used, when feasible, for ESBL infections. The majority of available nonrandomized studies highlight that combination for CRE seem to offer some therapeutic advantage over monotherapy. Strict infection control measures toward MDR Gram-negative pathogens remain necessary while awaiting for new treatment options.

  17. Increasing proportion of carbapenemase-producing Enterobacteriaceae and emergence of a MCR-1 producer through a multicentric study among hospital-based and private laboratories in Belgium from September to November 2015.

    PubMed

    Huang, Te Din; Bogaerts, Pierre; Berhin, Catherine; Hoebeke, Martin; Bauraing, Caroline; Glupczynski, Youri

    2017-05-11

    Carbapenemase-producing Enterobacteriaceae (CPE) strains have been increasingly reported in Belgium. We aimed to determine the proportion of CPE among Enterobacteriaceae isolated from hospitalised patients and community outpatients in Belgium in 2015. For the hospitalised patients, the results were compared to a previous similar survey performed in the same hospitals in 2012. Twenty-four hospital-based and 10 private laboratories collected prospectively 200 non-duplicated Enterobacteriaceae isolates from clinical specimens. All isolates were screened locally by carbapenem disk diffusion using European Committee on Antimicrobial Susceptibility Testing methodology. Putative CPE strains with inhibition zone diameters below the screening breakpoints were referred centrally for confirmation of carbapenemase production. From September to November 2015, we found a proportion of clinical CPE of 0.55% (26/4,705) and of 0.60% (12/1,991) among hospitalised patients and among ambulatory outpatients respectively. Klebsiella pneumoniae (26/38) and OXA-48-like carbapenemase (28/38) were the predominant species and enzyme among CPE. One OXA-48-producing Escherichia coli isolated from a hospital was found carrying plasmid-mediated MCR-1 colistin resistance. Compared with the 2012 survey, we found a significant increased proportion of clinical CPE (0.55% in 2015 vs 0.25% in 2012; p = 0.02) and an increased proportion of hospitals (13/24 in 2015 vs 8/24 in 2012) with at least one CPE detected. The study results confirmed the concerning spread of CPE including a colistin-resistant MCR-1 producer in hospitals and the establishment of CPE in the community in Belgium. This article is copyright of The Authors, 2017.

  18. Clonality and Resistome analysis of KPC-producing Klebsiella pneumoniae strain isolated in Korea using whole genome sequencing.

    PubMed

    Lee, Yangsoon; Kim, Bong-Soo; Chun, Jongsik; Yong, Ji Hyun; Lee, Yeong Seon; Yoo, Jung Sik; Yong, Dongeun; Hong, Seong Geun; D'Souza, Roshan; Thomson, Kenneth S; Lee, Kyungwon; Chong, Yunsop

    2014-01-01

    We analyzed the whole genome sequence and resistome of the outbreak Klebsiella pneumoniae strain MP14 and compared it with those of K. pneumoniae carbapenemase- (KPC-) producing isolates that showed high similarity in the NCBI genome database. A KPC-2-producing multidrug-resistant (MDR) K. pneumoniae clinical isolate was obtained from a patient admitted to a Korean hospital in 2011. The strain MP14 was resistant to all tested β-lactams including monobactam, amikacin, levofloxacin, and cotrimoxazole, but susceptible to tigecycline and colistin. Resistome analysis showed the presence of β-lactamase genes including bla KPC-2, bla SHV-11, bla TEM-169, and bla OXA-9. MP14 also possessed aac(6'-)Ib, aadA2, and aph(3'-)Ia as aminoglycoside resistance-encoding genes, mph(A) for macrolides, oqxA and oqxB for quinolone, catA1 for phenicol, sul1 for sulfonamide, and dfrA12 for trimethoprim. Both SNP tree and cgMLST analysis showed the close relatedness with the KPC producers (KPNIH strains) isolated from an outbreak in the USA and colistin-resistant strains isolated in Italy. The plasmid-scaffold genes in plasmids pKpQil, pKpQil-IT, pKPN3, or pKPN-IT were identified in MP14, KPNIH, and Italian strains. The KPC-2-producing MDR K. pneumoniae ST258 stain isolated in Korea was highly clonally related with MDR K. pneumoniae strains from the USA and Italy. Global spread of KPC-producing K. pneumoniae is a worrying phenomenon.

  19. Novel Polymyxin Derivatives Carrying Only Three Positive Charges Are Effective Antibacterial Agents ▿

    PubMed Central

    Vaara, Martti; Fox, John; Loidl, Günther; Siikanen, Osmo; Apajalahti, Juha; Hansen, Frank; Frimodt-Møller, Niels; Nagai, Junya; Takano, Mikihisa; Vaara, Timo

    2008-01-01

    The lack of novel antibiotics against gram-negative bacteria has reinstated polymyxins as the drugs of last resort to treat serious infections caused by extremely multiresistant gram-negative organisms. However, polymyxins are nephrotoxic, and this feature may complicate therapy or even require its discontinuation. Like that of aminoglycosides, the nephrotoxicity of polymyxins might be related to the highly cationic nature of the molecule. Colistin and polymyxin B carry five positive charges. Here we show that novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. NAB739 has a cyclic peptide portion identical to that of polymyxin B, but in the linear portion of the peptide, it carries the threonyl-d-serinyl residue (no cationic charges) instead of the diaminobutyryl-threonyl-diaminobutyryl residue (two cationic charges). The MICs of NAB739 for 17 strains of Escherichia coli were identical, or very close, to those of polymyxin B. Furthermore, NAB739 was effective against other polymyxin-susceptible strains of Enterobacteriaceae and against Acinetobacter baumannii. At subinhibitory concentrations, it dramatically sensitized A. baumannii to low concentrations of antibiotics such as rifampin, clarithromycin, vancomycin, fusidic acid, and meropenem. NAB739 methanesulfonate was a prodrug analogous to colistin methanesulfonate. NAB740 was the most active derivative against Pseudomonas aeruginosa. NAB7061 (linear portion of the peptide, threonyl-aminobutyryl) lacked direct antibacterial activity but sensitized the targets to hydrophobic antibiotics by factors up to 2,000. The affinities of the NAB compounds for isolated rat kidney brush border membrane were significantly lower than that of polymyxin B. PMID:18591267

  20. Characterization of Tn6238 with a New Allele of aac(6′)-Ib-cr

    PubMed Central

    Quiroga, María P.; Orman, Betina; Errecalde, Laura; Kaufman, Sara

    2015-01-01

    Here, we report that the genetic structure of Tn1331 remained conserved in Argentina from 1989 to 2013 (72 of 73 isolates), with the exception being the plasmid-borne Tn1331-like transposon Tn6238 containing a new aac(6′)-Ib-cr allele recovered from a colistin-resistant Klebsiella pneumoniae clinical isolate. A bioinformatic analysis of aac(6′)-Ib-like gene cassettes suggests that this new aac(6′)-Ib-cr allele emerged through mutation or homologous recombination in the Tn1331 genetic platform. Tn6238 is a novel platform for the dissemination of aminoglycoside and fluoroquinolone resistance determinants. PMID:25691640

  1. Serotyping, Genotyping, and Antimicrobial Susceptibility of Ornithobacterium rhinotracheale Isolates from Mexico.

    PubMed

    Peña-Vargas, Edgar Rafael; Vega-Sánchez, Vicente; Morales-Erasto, Vladimir; Trujillo-Ruíz, Héctor Hugo; Talavera-Rojas, Martín; Soriano-Vargas, Edgardo

    2016-09-01

    The bacterium Ornithobacterium rhinotracheale is associated with respiratory disease and septicemia in poultry. In this study, 9 reference strains and a total of 23 isolates of O. rhinotracheale from respiratory diseased poultry from Mexico were serotyped and genotyped. Furthermore, the antimicrobial susceptibility of isolates and reference strains of O. rhinotracheale were determined. All isolates belong to serotype A and showed a clonal relationship. All reference strains and isolates were resistant to colistin, fosfomycin, gentamicin, kanamycin, streptomycin, and trimethoprim-sulfamethoxazole. These results should eventually be helpful in planning strategies for the control of O. rhinotracheale infections in poultry in Mexico.

  2. In vitro evaluation of the potential for resistance development to ceragenin CSA-13

    PubMed Central

    Pollard, Jake E.; Snarr, Jason; Chaudhary, Vinod; Jennings, Jacob D.; Shaw, Hannah; Christiansen, Bobbie; Wright, Jonathan; Jia, Wenyi; Bishop, Russell E.; Savage, Paul B.

    2012-01-01

    Objectives Though most bacteria remain susceptible to endogenous antimicrobial peptides, specific resistance mechanisms are known. As mimics of antimicrobial peptides, ceragenins were expected to retain antibacterial activity against Gram-positive and -negative bacteria, even after prolonged exposure. Serial passaging of bacteria to a lead ceragenin, CSA-13, was performed with representative pathogenic bacteria. Ciprofloxacin, vancomycin and colistin were used as comparators. The mechanisms of resistance in Gram-negative bacteria were elucidated. Methods Susceptible strains of Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii were serially exposed to CSA-13 and comparators for 30 passages. MIC values were monitored. Alterations in the Gram-negative bacterial membrane composition were characterized via mass spectrometry and the susceptibility of antimicrobial-peptide-resistant mutants to CSA-13 was evaluated. Results S. aureus became highly resistant to ciprofloxacin after <20 passages. After 30 passages, the MIC values of vancomycin and CSA-13 for S. aureus increased 9- and 3-fold, respectively. The Gram-negative organisms became highly resistant to ciprofloxacin after <20 passages. MIC values of colistin for P. aeruginosa and A. baumannii increased to ≥100 mg/L after 20 passages. MIC values of CSA-13 increased to ∼20–30 mg/L and plateaued over the course of the experiment. Bacteria resistant to CSA-13 displayed lipid A modifications that are found in organisms resistant to antimicrobial peptides. Conclusions CSA-13 retained potent antibacterial activity against S. aureus over the course of 30 serial passages. Resistance generated in Gram-negative bacteria correlates with modifications to the outer membranes of these organisms and was not stable outside of the presence of the antimicrobial. PMID:22899801

  3. Ecological study on antimicrobial-resistant zoonotic bacteria transmitted by flies in cattle farms.

    PubMed

    Mohammed, Asmaa N; Abdel-Latef, Gihan K; Abdel-Azeem, Naglaa M; El-Dakhly, Khaled Mohamed

    2016-10-01

    Flies were qualitatively and quantitatively monitored on both livestock animals and the surrounding environment to investigate their role as a potential carrier for antimicrobial-resistant bacteria of zoonotic importance in cattle farms. This was done by the use of visual observations and animal photography; meanwhile, in the surrounding environment, flies were collected using sticky cards and then microscopically identified. Representative fly samples were cultured for bacterial isolation, biochemical identification, and then tested against common 12 antibiotics. The total average of dipterous flies in examined farms was 400.42 ± 6.2. Culicoides biting midges were the most common existing species (70.01 %) followed by house flies, stable flies, and mosquitoes (18.31, 7.74, and 3.91 %, respectively) at X (2) = 9.0, P < 0.05. The most predominant bacterial isolates were Escherichia coli (22.6 %), Staphylococcus aureus and Enterobacter (17.3 % each), coagulase-negative Staphylococci (CNS) (14.7 %), Klebsiella sp. (8 %), Salmonella spp. (6.7 %), and Shigella spp. and Proteus spp. (6.7 % each). The tested bacterial isolates were resistant to variant antibiotics used. S. aureus exhibited 100 % resistance to colistine. However, E. coli revealed 92.9 and 78.6 % resistance against tetracycline and colistine, respectively. Both Salmonella spp. and Shigella spp. were 100 % resistant to penicillin, and Klebsiella sp. had 100 % resistance to tetracycline. In conclusion, Culicoides biting midges and house flies could be considered as a potential carrier for multi-drug-resistant bacteria of zoonotic importance. Furthermore, cows' environment has an essential role in propagation and wide spread of antimicrobial-resistant bacterial pathogens.

  4. Nebulization of antimicrobial agents in mechanically ventilated adults in 2017: an international cross-sectional survey.

    PubMed

    Alves, Joana; Alp, Emine; Koulenti, Despoina; Zhang, Zhongheng; Ehrmann, Stephan; Blot, Stijn; Bassetti, Matteo; Conway-Morris, Andrew; Reina, Rosa; Teran, Enrique; Sole-Lleonart, Candela; Ruiz-Rodríguez, Maria; Rello, Jordi

    2018-04-01

    2017 ESCMID practice guidelines reported safety concerns and weak evidence of benefit supporting use of aerosolized antibiotics in mechanically ventilated patients. Our primary goal was to assess current patterns of aerosolized antibiotic prescription in mechanically ventilated patients. A sequential global survey was performed prior to the release of the ESCMID guidelines, from the 1st of February to the 30th of April 2017, using an electronic platform. Responses were analyzed comparing geographical regions. A total of 410 units responded, with 261 (177 from Europe) being eligible for the full survey. 26.8% of units reported not using aerosolized antibiotics. The two major indications amongst prescribing units were ventilator-associated pneumonia and ventilator-associated tracheobronchitis (74.3% and 49.4%, respectively). 63.6% of units indicated prescription solely in response to multi-drug resistant organisms. In comparison with a survey undertaken in 2014, there was a significant reduction in use of aerosolized antibiotics for prophylaxis (50.6% vs 7.7%, p < 0.05) and colonization (52.9% vs 25.3%, p < 0.05). The large majority of units (91.7%) reported only prescribing in patients with positive pulmonary cultures. Asia appeared to be an outlier, with 53.3% of units reporting empirical use. The most commonly used device was the jet nebulizer. The most commonly prescribed drugs were colistin methanesulfonate (57.6%), colistin base (41.9%) and amikacin (31.4%), although there was considerable heterogeneity across geographical areas. A significant gap exists between ESCMID clinical practice recommendations and the use of aerosolized antibiotics in clinical practice. Our findings indicate an urgent need for high-quality education to bring practice into line with evidence-based guidelines.

  5. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Antunes, Luísa C S; Imperi, Francesco; Minandri, Fabrizia; Visca, Paolo

    2012-11-01

    Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO(3))(3), the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO(3))(3) delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO(3))(3) activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO(3))(3) also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO(3))(3) inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO(3))(3) also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii.

  6. In Vitro and In Vivo Antimicrobial Activities of Gallium Nitrate against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Antunes, Luísa C. S.; Imperi, Francesco; Minandri, Fabrizia

    2012-01-01

    Multidrug-resistant Acinetobacter baumannii poses a tremendous challenge to traditional antibiotic therapy. Due to the crucial role of iron in bacterial physiology and pathogenicity, we investigated iron metabolism as a possible target for anti-A. baumannii chemotherapy using gallium as an iron mimetic. Due to chemical similarity, gallium competes with iron for binding to several redox enzymes, thereby interfering with a number of essential biological reactions. We found that Ga(NO3)3, the active component of an FDA-approved drug (Ganite), inhibits the growth of a collection of 58 A. baumannii strains in both chemically defined medium and human serum, at concentrations ranging from 2 to 80 μM and from 4 to 64 μM, respectively. Ga(NO3)3 delayed the entry of A. baumannii into the exponential phase and drastically reduced bacterial growth rates. Ga(NO3)3 activity was strongly dependent on iron availability in the culture medium, though the mechanism of growth inhibition was independent of dysregulation of gene expression controlled by the ferric uptake regulator Fur. Ga(NO3)3 also protected Galleria mellonella larvae from lethal A. baumannii infection, with survival rates of ≥75%. At therapeutic concentrations for humans (28 μM plasma levels), Ga(NO3)3 inhibited the growth in human serum of 76% of the multidrug-resistant A. baumannii isolates tested by ≥90%, raising expectations on the therapeutic potential of gallium for the treatment of A. baumannii bloodstream infections. Ga(NO3)3 also showed strong synergism with colistin, suggesting that a colistin-gallium combination holds promise as a last-resort therapy for infections caused by pan-resistant A. baumannii. PMID:22964249

  7. Monotherapy versus Combination Therapy against Nonbacteremic Carbapenem-resistant Gram-negative Infections: A Retrospective Observational Study.

    PubMed

    Ghafur, Abdul; Devarajan, Vidyalakshmi; Raja, T; Easow, Jose; Raja, M A; Sreenivas, Sankar; Ramakrishnan, Balasubramaniam; Raman, S G; Devaprasad, Dedeepiya; Venkatachalam, Balaji; Nimmagadda, Ramesh

    2017-12-01

    Superiority of colistin-carbapenem combination therapy (CCCT) over colistin monotherapy (CMT) against carbapenem-resistant Gram-negative bacterial (CRGNB) infections is not conclusively proven. The aim of the current study was to analyze the effectiveness of both strategies against CRGNB nonbacteremic infections. This was a retrospective observational cohort study. Case record analysis of patients who had CRGNB nonbacteremic infections identified over a period of 4 years (January 2012-December 2015) was done by medical record review at a tertiary care center in India. P < 0.05 was considered as significant. Multivariate analysis was performed using Cox regression. Out of 153 patients (pneumonia 115, urinary tract infection 17, complicated skin and soft-tissue infection 18, intra-abdominal infection 1, and meningitis 2), 92 patients received CCCT and 61 received CMT. Univariate analysis revealed higher Acute Physiology and Chronic Health Evaluation II (APACHE II) score, pneumonia as the diagnosis, and Klebsiella as the causative organism to be the risk factors for higher 28-day mortality ( P = 0.036, 0.006, 0.016, respectively). Combination therapy had no significant impact on mortality (odds ratio [OR] = 0.91, 95% confidence interval [CI] = 0.327-2.535, P = 0.857). Multivariate analysis revealed that higher APACHE II score and infection due to Klebsiella were found to be independent risk factors for higher mortality (OR = 3.16 and 4.9, 95% CI = 1.34-7.4 and 2.19-11.2, P = 0.008 and 0.0001, respectively). In our retrospective single-center series of CRGNB nonbacteremic infections, CCCT was not superior to CMT. Multicenter large observational studies or prospective randomized clinical trials are the need of the hour.

  8. Pharmacodynamic Evaluation of the Intracellular Activity of Antibiotics towards Pseudomonas aeruginosa PAO1 in a Model of THP-1 Human Monocytes

    PubMed Central

    Buyck, Julien M.; Tulkens, Paul M.

    2013-01-01

    Pseudomonas aeruginosa invades epithelial and phagocytic cells, which may play an important role in the persistence of infection. We have developed a 24-h model of THP-1 monocyte infection with P. aeruginosa PAO1 in which bacteria are seen multiplying in vacuoles by electron microscopy. The model has been used to quantitatively assess antibiotic activity against intracellular and extracellular bacteria by using a pharmacodynamic approach (concentration-dependent experiments over a wide range of extracellular concentrations to calculate bacteriostatic concentrations [Cs] and maximal relative efficacies [Emax]; Hill-Langmuir equation). Using 16 antipseudomonal antibiotics (three aminoglycosides, nine β-lactams, three fluoroquinolones, and colistin), dose-response curves were found to be undistinguishable for antibiotics of the same pharmacological class if data were expressed as a function of the corresponding MICs. Extracellularly, all of the antibiotics reached a bacteriostatic effect at their MIC, and their Emax exceeded the limit of detection (−4.5 log10 CFU compared to the initial inoculum). Intracellularly, Cs values remained unchanged for β-lactams, fluoroquinolones, and colistin but were approximately 10 times higher for aminoglycosides, whereas Emax values were markedly reduced (less negative), reaching −3 log10 CFU for fluoroquinolones and only −1 to −1.5 log10 CFU for all other antibiotics. The decrease in intracellular aminoglycoside potency (higher Cs) can be ascribed to the acid pH to which bacteria are exposed in vacuoles. The decrease in the Emax may reflect a reversible alteration of bacterial responsiveness to antibiotics in the intracellular milieu. The model may prove useful for comparison of antipseudomonal antibiotics to reduce the risk of persistence or relapse of pseudomonal infections. PMID:23478951

  9. Prevalence and Molecular Characteristics of Carbapenemase-Producing Enterobacteriaceae From Five Hospitals in Korea.

    PubMed

    Jeong, Seok Hoon; Kim, Han Sung; Kim, Jae Seok; Shin, Dong Hoon; Kim, Hyun Soo; Park, Min Jeong; Shin, Saeam; Hong, Jun Sung; Lee, Seung Soon; Song, Wonkeun

    2016-11-01

    The emergence of carbapenemase-producing Enterobacteriaceae (CPE) represents a major clinical problem because these bacteria are resistant to most antibiotics. CPE remain relatively uncommon in Korea. We report the prevalence, clinical characteristics, and molecular epidemiology of CPE isolates collected from five university hospitals in Korea. Between January and December 2015, 393 non-duplicated isolates that were nonsusceptible to ertapenem were analyzed. Production of carbapenemase, extended-spectrum β-lactamase, and AmpC β-lactamase was determined by genotypic tests. Antimicrobial susceptibility profiles were determined by using an Etest. Clonality of Klebsiella pneumoniae carbapenemase (KPC)-2-producing and oxacillinase (OXA)-232-producing Klebsiella pneumoniae isolates was determined by pulsed-field gel electrophoresis (PFGE). Of the 393 isolates tested, 79 (20.1%) were CPE. Of these 79 isolates, 47 (59.5%) harbored the bla(OXA-232) gene while the remaining isolates carried genes bla(KPC-2) (n=27), bla(IMP-1) (n=4), and bla(NDM-1) (n=1). Among the 24 KPC-2 K. pneumoniae isolates from hospital B, 100% were resistant to carbapenems, 8% to colistin, and 0% to tigecycline. Among the 45 OXA-232 K. pneumoniae at hospital C, 95% were resistant to ertapenem, 68% to imipenem, 95% to meropenem, 10% to colistin, and 24% to tigecycline. PFGE analysis revealed a unique pattern for KPC-2 K. pneumoniae and identified 30 isolates belonging to the dominant pulsotypes (PT)1 and PT2 among 41 OXA-232 K. pneumoniae isolates. CPE strains are present in Korea, with the majority of K. pneumoniae isolates producing OXA-232 and KPC-2. The prevalence and predominant genotypes of CPE show hospital-specific differences.

  10. Combination of antibiotics suppressed the increase of a part of ARGs in fecal microorganism of weaned pigs.

    PubMed

    Li, Huizhi; Chu, Qingpo; Xu, Feilong; Fu, Lingling; Liang, Tingting; Li, Yuan; Zhou, Bo

    2016-09-01

    The presence of antibiotic resistance genes (ARGs) is one of the most important public health concerns. Six tetracycline resistance genes (TRGs-tetA, tetC, tetL, tetO, tetW, and tetX) were quantified using real-time quantitative polymerase chain reaction (qPCR) in the fecal microorganisms of weaned pigs. Two hundred 35-day-old weaned pigs were fed different dietary antibiotics for 28 days: (1) no antibiotic as the control treatment (CT); (2) chlortetracycline, bacitracin zinc and colistin sulfate (CBC); (3) bacitracin zinc and colistin sulfate (BC); and (4) chlortetracycline (CTC). The detection frequencies (DFs) of tetC, tetL, and tetW were 100 %; and the DFs of tetA, tetD, tetM, tetO, and tetX were 65 %. The relative abundances (tet/16S rRNA gene copy numbers) of six tet genes (tetA, tetC, tetL, tetO, tetW and tetX) were between 1.5 × 10(-4) and 2.0 × 10(-1). In the group CTC, the relative abundances of tetC (P < 0.01), tetL (P < 0.01), tetO (P < 0.05), tetW (P < 0.01), and tetX (P < 0.01) were greater than those of the group CT. Compared with the group CTC, the relative abundances of tetC (P < 0.01), tetL (P < 0.01), and tetW (P < 0.01) were decreased in the CBC and BC groups. These results indicate that a combination of different antibiotics suppressed the abundance increase of a part of tet genes, which suggests that a combination of antibiotics produces multiple selection pressures on fecal microorganism of pigs.

  11. Multidrug and co-resistance patterns of non-fermenting Gram-negative bacilli involved in ventilator-associated pneumonia carrying class 1 integron in the North of Iran.

    PubMed

    Bagheri-Nesami, Masoumeh; Rezai, Mohammad Sadegh; Ahangarkani, Fatemeh; Rafiei, Alireza; Nikkhah, Attieh; Eslami, Gohar; Shafahi, Kheironesa; Hajalibeig, Azin; Khajavi, Rezvan

    2017-09-01

    Ventilator-associated pneumonia (VAP) due to non-fermenting Gram-negative bacilli (NFGNB), especially Pseudomonas aeruginosa and Acinetobacter spp., is one of the main hospital-acquired infections leading to mortality and morbidity, especially in intensive care units (ICUs). This study seeks to determine the multidrug and co-resistance (MDR) patterns of NFGNB that are agents of VAP, and assess the presence of class 1 integron in these bacteria. This cross-sectional study involved VAP patients admitted in the ICUs of 18 hospitals in the Mazandaran province, located in the North of Iran. The antibiotic susceptibility pattern was determined by the minimum inhibitory concentration (MIC) test by using broth microdilution method. Presence of class 1 integron was evaluated by the polymerase chain reaction (PCR) assay. Out of a total of 83 patients who were microbiologically diagnosed as VAP, 52 non-duplicated NFGNBs (24 P. aeruginosa and 28 A. baumannii ) were causative of VAP, out of which MDR NFGNBs were responsible for 48 (57.83%) cases. The frequencies of MDR NFGNBs were as follows: 27 (56.25%) A. baumannii and 21 (43.75%) P. aeruginosa . P. aeruginosa isolates were resistant to all aminoglycoside antibiotics (50%), ciprofloxacin (45.8%), ceftazidime (70.8%), cefepime (87.5%), colistin (62.5%), and imipenem (29.2%). A. baumannii isolates were resistant to aminoglycosides (53.6%), ciprofloxacin (85.7%), ceftazidime (92. 9%), cefepime (92.9%), colistin (35.7%), and imipenem (57.1%). Twelve isolates were resistant to all 10 tested antibiotics. The number of rates of class 1 integron, positive for MDR P. aeruginosa and MDR A. baumannii , were 20 (95.23%) and 21 (77.78%), respectively. The high prevalence of multidrug resistance and incidence of class 1 integron is a therapeutic concern. Employing antibiotic stewardship in hospitals could prevent the dissemination of MDR bacteria.

  12. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii Complex in a Belgian Burn Wound Center

    PubMed Central

    Bilocq, Florence; Jennes, Serge; Verbeken, Gilbert; Rose, Thomas; Keersebilck, Elkana; Bosmans, Petra; Pieters, Thierry; Hing, Mony; Heuninckx, Walter; De Pauw, Frank; Soentjens, Patrick; Merabishvili, Maia; Deschaght, Pieter; Vaneechoutte, Mario; Bogaerts, Pierre; Glupczynski, Youri; Pot, Bruno; van der Reijden, Tanny J.; Dijkshoorn, Lenie

    2016-01-01

    Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality. PMID:27223476

  13. In vivo challenging of polymyxins and levofloxacin eye drop against multidrug-resistant Pseudomonas aeruginosa keratitis.

    PubMed

    Tajima, Kazuki; Miyake, Taku; Koike, Naohito; Hattori, Takaaki; Kumakura, Shigeto; Yamaguchi, Tetsuo; Matsumoto, Tetsuya; Fujita, Koji; Kuroda, Masahiko; Ito, Norihiko; Goto, Hiroshi

    2014-06-01

    The purposes of this study were to establish a rabbit multidrug-resistant Pseudomonas aeruginosa (MDRP) keratitis model, and test the efficacy of levofloxacin, colistin methanesulfate (CL-M), colistin sulfate (CL-S) and polymyxin B (PL-B) against MDRP infection. In a rabbit eye, making a 2-mm circular corneal excision, and MDRP strain #601 or representative P. aeruginosa strain IID1210 were instilled into the corneal concavity. IID1210 was used to confirm this model developed P. aeruginosa keratitis. After MDRP keratitis developed, we treated the eyes with levofloxacin, CL-M, CL-S or PL-B eye drops. The infected eyes were evaluated by clinical score, histopathological examination and viable bacterial count (CFU). Rabbits developed MDRP keratitis reproducibly after instilled the bacteria into the corneal lesion. MDRP produced severe keratitis similarly with IID1210, as shown by slit lamp examination and clinical score. In MDRP keratitis models, clinical scores and viable bacterial counts were significantly lower in levofloxacin- and CL-M-treated groups compared with PBS-treated group, but the magnitudes of reduction were not remarkable. However, clinical scores were dramatically lowered in CL-S- and PL-B-treated groups compared with PBS-treated group. CL-S- and PL-B-treated group were kept corneal translucency and little influx of polymorphonuclear neutrophils in histopathological examination. In addition, both CL-S- and PL-B-treated groups were not detected viable bacteria in infected cornea. Using our MDRP keratitis model, we showed that topical levofloxacin and CL-M are not adequately effective, while CL-S and PL-B are efficacious in controlling MDRP keratitis. Especially, PL-B, which is commercially available eye drop, might be most effective against MDRP. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Multihospital Occurrence of Pan-Resistant Klebsiella pneumoniae Sequence Type 147 with an ISEcp1-Directed blaOXA-181 Insertion in the mgrB Gene in the United Arab Emirates

    PubMed Central

    Sonnevend, Ágnes; Ghazawi, Akela; Hashmey, Rayhan; Haidermota, Aliasgher; Girgis, Safinaz; Alfaresi, Mubarak; Omar, Mohammed; Paterson, David L.; Zowawi, Hosam M.

    2017-01-01

    ABSTRACT The emergence of pan-resistant Klebsiella pneumoniae strains is an increasing concern. In the present study, we describe a cluster of 9 pan-resistant K. pneumoniae sequence type 147 (ST147) isolates encountered in 4 patients over nearly 1 year in 3 hospitals of the United Arab Emirates (UAE). The isolates exhibited highly similar genotypes. All produced chromosomally encoded OXA-181, and the majority also produced the NDM-5 carbapenemase. As with the previously described single isolate from the UAE, MS6671, the mgrB was disrupted by a functional, ISEcp1-driven blaOXA-181 insertion causing resistance to carbapenems. The mutation was successfully complemented with an intact mgrB gene, indicating that it was responsible for colistin resistance. blaNDM-5 was located within a resistance island of an approximately 100-kb IncFII plasmid carrying ermB, mph(A), blaTEM-1B, rmtB, blaNDM-5, sul1, aadA2, and dfrA12 resistance genes. Sequencing this plasmid (pABC143-NDM) revealed that its backbone was nearly identical to that of plasmid pMS6671E from which several resistance genes, including blaNDM-5, had been deleted. More extensive similarities of the backbone and the resistance island were found between pABC143C-NDM and the blaNDM-5-carrying IncFII plasmids of two K. pneumoniae ST147 isolates from South Korea, one of which was colistin resistant, and both also produced OXA-181. Notably, one of these strains was isolated from a patient transferred from the UAE. Our data show that this pan-resistant clone has an alarming capacity to maintain itself over an extended period of time and is even likely to be transmitted internationally. PMID:28438945

  15. Multihospital Occurrence of Pan-Resistant Klebsiella pneumoniae Sequence Type 147 with an ISEcp1-Directed blaOXA-181 Insertion in the mgrB Gene in the United Arab Emirates.

    PubMed

    Sonnevend, Ágnes; Ghazawi, Akela; Hashmey, Rayhan; Haidermota, Aliasgher; Girgis, Safinaz; Alfaresi, Mubarak; Omar, Mohammed; Paterson, David L; Zowawi, Hosam M; Pál, Tibor

    2017-07-01

    The emergence of pan-resistant Klebsiella pneumoniae strains is an increasing concern. In the present study, we describe a cluster of 9 pan-resistant K. pneumoniae sequence type 147 (ST147) isolates encountered in 4 patients over nearly 1 year in 3 hospitals of the United Arab Emirates (UAE). The isolates exhibited highly similar genotypes. All produced chromosomally encoded OXA-181, and the majority also produced the NDM-5 carbapenemase. As with the previously described single isolate from the UAE, MS6671, the mgrB was disrupted by a functional, IS Ecp1 -driven bla OXA-181 insertion causing resistance to carbapenems. The mutation was successfully complemented with an intact mgrB gene, indicating that it was responsible for colistin resistance. bla NDM-5 was located within a resistance island of an approximately 100-kb IncFII plasmid carrying ermB , mph (A), bla TEM-1B , rmtB , bla NDM-5 , sul1 , aadA2 , and dfrA12 resistance genes. Sequencing this plasmid (pABC143-NDM) revealed that its backbone was nearly identical to that of plasmid pMS6671E from which several resistance genes, including bla NDM-5 , had been deleted. More extensive similarities of the backbone and the resistance island were found between pABC143C-NDM and the bla NDM-5 -carrying IncFII plasmids of two K. pneumoniae ST147 isolates from South Korea, one of which was colistin resistant, and both also produced OXA-181. Notably, one of these strains was isolated from a patient transferred from the UAE. Our data show that this pan-resistant clone has an alarming capacity to maintain itself over an extended period of time and is even likely to be transmitted internationally. Copyright © 2017 American Society for Microbiology.

  16. Using the Chinese herb Scutellaria barbata against extensively drug-resistant Acinetobacter baumannii infections: in vitro and in vivo studies.

    PubMed

    Tsai, Chin-Chuan; Lin, Chi-Shiuan; Hsu, Chun-Ru; Chang, Chiu-Ming; Chang, I-Wei; Lin, Li-Wei; Hung, Chih-Hsin; Wang, Jiun-Ling

    2018-03-20

    No animal model studies have been conducted in which the efficacy of herbal compounds has been tested against multidrug-resistant Acinetobacter baumannii infections. Very few antibiotics are available for the treatment of pulmonary infections caused by extensively drug-resistant Acinetobacter baumannii (XDRAB). To find alternative treatments, traditional Chinese herbs were screened for their antimicrobial potential. The present study screened 30 herbs that are traditionally used in Taiwan and that are commonly prescribed for heat clearing and detoxification. The herbs with antibacterial activities were analysed by disc diffusion assays, time-kill assays and a murine lung infection model. Of the 30 herbs tested, only Scutellaria barbata demonstrated 100% in vitro activity against XDRAB. Furthermore, we compared the antibacterial effect of the S. barbata extract with that of colistin, and the S. barbata extract showed better antibacterial effect. In the XDRAB pneumonia murine model, we compared the antimicrobial effects of the orally administered S. barbata extract (200 mg/kg, every 24 h), the intratracheally administered colistin (75,000 U/kg, every 12 h), and the control group. The bacterial load in the lungs of the treatment group that received the oral S. barbata extract showed a significant decrease in comparison to that in the lungs of the control group. In addition, histopathological examinations also revealed better resolution of perivascular, peribronchial, and alveolar inflammation in the oral S. barbata extract-treated group. Our in vitro and in vivo data from the animal model support the use of S. barbata as an alternate drug to treat XDRAB pulmonary infections. However, detailed animal studies and clinical trials are necessary to establish the clinical utility of S. barbata in treating XDRAB pulmonary infections.

  17. Studies on penetration of antibiotic in bacterial cells in space conditions (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Tixador, R.

    1992-01-01

    The Cytos 2 experiment was performed aboard Salyut 7 in order to test the antibiotic sensitivity of bacteria cultivated in vitro in space. An increase of the Minimal Inhibitory Concentration (MIC) in the inflight cultures (i.e., an increase of the antibiotic resistance) was observed. Complementary studies of the ultrastructure showed a thickening of the cell envelope. In order to confirm the results of the Cytos 2 experiment, we performed the ANTIBIO experiment during the D1 mission to try to differentiate, by means of the 1 g centrifuge in the Biorack, between the biological effects of cosmic rays and those caused by microgravity conditions. The originality of this experiment was in the fact that it was designed to test the antibiotic sensitivity of bacteria cultivated in vitro during the orbital phase of the flight. The results show an increase in resistance to Colistin in in-flight bacteria. The MIC is practically double in the in-flight cultures. A cell count of living bacteria in the cultures containing the different Colistin concentrations showed a significant difference between the cultures developed during space flight and the ground based cultures. The comparison between the 1 g and 0 g in-flight cultures show similar behavior for the two sets. Nevertheless, a small difference between the two sets of ground based control cultures was noted. The cultures developed on the ground centrifuge (1.4 g) present a slight decrease in comparison with the cultures developed in the static rack (1 g). In order to approach the mechanisms of the increase of antibiotic resistance on bacteria cultivated in vitro in space, we have proposed the study on penetration of antibiotics in bacterial cells in space conditions. This experiment was selected for the International Microgravity Laboratory 1 (IML-1) mission.

  18. The rhizome of the multidrug-resistant Enterobacter aerogenes genome reveals how new "killer bugs" are created because of a sympatric lifestyle.

    PubMed

    Diene, Seydina M; Merhej, Vicky; Henry, Mireille; El Filali, Adil; Roux, Véronique; Robert, Catherine; Azza, Saïd; Gavory, Frederick; Barbe, Valérie; La Scola, Bernard; Raoult, Didier; Rolain, Jean-Marc

    2013-02-01

    Here, we sequenced the 5,419,609 bp circular genome of an Enterobacter aerogenes clinical isolate that killed a patient and was resistant to almost all current antibiotics (except gentamicin) commonly used to treat Enterobacterial infections, including colistin. Genomic and phylogenetic analyses explain the discrepancies of this bacterium and show that its core genome originates from another genus, Klebsiella. Atypical characteristics of this bacterium (i.e., motility, presence of ornithine decarboxylase, and lack of urease activity) are attributed to genomic mosaicism, by acquisition of additional genes, such as the complete 60,582 bp flagellar assembly operon acquired "en bloc" from the genus Serratia. The genealogic tree of the 162,202 bp multidrug-resistant conjugative plasmid shows that it is a chimera of transposons and integrative conjugative elements from various bacterial origins, resembling a rhizome. Moreover, we demonstrate biologically that a G53S mutation in the pmrA gene results in colistin resistance. E. aerogenes has a large RNA population comprising 8 rRNA operons and 87 cognate tRNAs that have the ability to translate transferred genes that use different codons, as exemplified by the significantly different codon usage between genes from the core genome and the "mobilome." On the basis of our findings, the evolution of this bacterium to become a "killer bug" with new genomic repertoires was from three criteria that are "opportunity, power, and usage" to indicate a sympatric lifestyle: "opportunity" to meet other bacteria and exchange foreign sequences since this bacteria was similar to sympatric bacteria; "power" to integrate these foreign sequences such as the acquisition of several mobile genetic elements (plasmids, integrative conjugative element, prophages, transposons, flagellar assembly system, etc.) found in his genome; and "usage" to have the ability to translate these sequences including those from rare codons to serve as a translator of

  19. Can Pharmacokinetic and Pharmacodynamic Principles Be Applied to the Treatment of Multidrug-Resistant Acinetobacter?

    PubMed

    Cooper, Travis W; Pass, Steven E; Brouse, Sara D; Hall, Ronald G

    2011-02-01

    To discuss treatment options that can be used for treatment of Acinetobac/erinfections. A MEDLINE search (1966-November 2010) was conducted to identify English-language literature on pharmacotherapy of Acinetobacter and the bibliographies of pertinent articles. Programs and abstracts from infectious diseases meetings were also searched. Search terms included Acinetobacter, multidrug resistance, pharmacokinetics, pharmacodynamics, Monte Carlo simulation, nosocomial pneumonia, carbapenems, polymyxins, sulbactam, aminoglycosides, tetracyclines, tigecycline, rifampin, and fluoroquinolones. All articles were critically evaluated and all pertinent information was included in this review. Multidrug resistant (MDR) Acinetobacter, defined as resistance to 3 or more antimicrobial classes, has increased over the past decade. The incidence of carbapenem-resistant Acinetobacter is also increasing, leading to an increased use of dose optimization techniques and/or alternative antimicrobials, which is driven by local susceptibility patterns. However, Acinetobacter infections that are resistant to all commercially available antibiotics have been reported. General principles are available to guide dose optimization of aminoglycosides, β-lactams, fluoroquinolones, and tigecycline for infections due to gram-negative pathogens. Unfortunately, data specific to patients with Acinetobacter infections are limited. Recent pharmacokinetic-pharmacodynamic information has shed light on colistin dosing. The dilemma with colistin is its concentration-dependent killing, which makes once-daily dosing seem like an attractive option, but its short postantibiotic effect limits a clinician's ability to extend the dosing interval. Localized delivery of antimicrobials is also an attractive option due to the ability to increase drug concentration at the infection site while minimizing systemic adverse events, but more data are needed regarding this approach. Increased reliance on dosage optimization

  20. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii Complex in a Belgian Burn Wound Center.

    PubMed

    De Vos, Daniel; Pirnay, Jean-Paul; Bilocq, Florence; Jennes, Serge; Verbeken, Gilbert; Rose, Thomas; Keersebilck, Elkana; Bosmans, Petra; Pieters, Thierry; Hing, Mony; Heuninckx, Walter; De Pauw, Frank; Soentjens, Patrick; Merabishvili, Maia; Deschaght, Pieter; Vaneechoutte, Mario; Bogaerts, Pierre; Glupczynski, Youri; Pot, Bruno; van der Reijden, Tanny J; Dijkshoorn, Lenie

    2016-01-01

    Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality.

  1. Evidence for Environmental Dissemination of Antibiotic Resistance Mediated by Wild Birds.

    PubMed

    Wu, Jiao; Huang, Ye; Rao, Dawei; Zhang, Yongkui; Yang, Kun

    2018-01-01

    The aquatic bird, egret, could carry antibiotic resistance (AR) from a contaminated waterway (Jin River, Chengdu, China) into the surrounding environment (Wangjianglou Park). A systematic study was carried out on the unique environmental dissemination mode of AR mediated by birds. The minimum inhibitory concentrations of various antibiotics against the environmental Escherichia coli isolates were used to evaluate the bacterial AR at the environmental locations where these isolates were recovered, i.e., the Jin River water, the egret feces, the park soil, and the campus soil. The level of AR in the park soil was significantly higher than that in the campus soil that was seldom affected by the egrets, which suggested that the egrets mediated the transportation of AR from the polluted waterway to the park. Genotyping of the resistant E. coli isolates via repetitive-element PCR gave no strong correlation between the genotypes and the AR patterns of the bacteria. So, the transfer of resistant strains should not be the main mode of AR transportation in this process. The results of real-time PCR revealed that the abundance of antibiotic resistance genes (ARGs) and mobile genetic element (MGE) sequences (transposase and integrase genes) declined along the putative transportation route. The transportation of ARGs could be due to their linkage with MGE sequences, and horizontal gene transfer should have contributed to the process. The movable colistin-resistance gene mcr-1 was detected among the colistin-resistant E. coli strains isolated from the river water and the egret feces, which indicated the possibility of the environmental dissemination of this gene. Birds, especially the migratory birds, for the role they played on the dissemination of environmental AR, should be considered when studying the ecology of AR.

  2. Emergence of drug resistant bacteria at the Hajj: A systematic review.

    PubMed

    Leangapichart, Thongpan; Rolain, Jean-Marc; Memish, Ziad A; Al-Tawfiq, Jaffar A; Gautret, Philippe

    Hajj is the annual mass gathering of Muslims, and is a reservoir and potential source of bacterial transmission. The emergence of bacterial transmission, including multi-drug resistance (MDR) bacteria, during Hajj has not been systematically assessed. Articles in Pubmed, Scopus, and Google scholar were identified using controlled words relating to antibiotic resistance (AR) at the Hajj from January 2002 to January 2017. Eligible studies were identified by two researchers. AR patterns of bacteria were obtained for each study. We included 31 publications involving pilgrims, Hajj workers or local patients attending hospitals in Mecca, Mina, and the Medina area. Most of these publications provided antibiotic susceptibility results. Ten of them used the PCR approach to identify AR genes. MRSA carriage was reported in pilgrims and food handlers at a rate of 20%. Low rates of vancomycin-resistant gram-positive bacteria were reported in pilgrims and patients. The prevalence of third-generation cephalosporin-resistant bacteria was common in the Hajj region. Across all studies, carbapenem-resistant bacteria were detected in fewer than 10% of E.coli isolates tested but up to 100% in K. pneumoniae and A. baumannii. Colistin-resistant Salmonella enterica, including mcr-1 colistin-resistant E.coli and K.pneumoniae were only detected in the pilgrim cohorts. This study provides an overview of the prevalence of MDR bacteria at the Hajj. Pilgrims are at high risk of AR bacterial transmission and may carry and transfer these bacteria when returning to their home countries. Thus, pilgrims should be instructed by health care practitioners about hygiene practices aiming at reducing traveler's diarrhea and limited use of antibiotics during travel in order to reduce the risk of MDR bacterial transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii From Patients With Hospital-acquired or Ventilator-associated Pneumonia in Vietnam.

    PubMed

    Biedenbach, Douglas J; Giao, Phan Trong; Hung Van, Pham; Su Minh Tuyet, Nguyen; Thi Thanh Nga, Tran; Phuong, Doan Mai; Vu Trung, Nguyen; Badal, Robert E

    2016-09-01

    Multidrug-resistant bacterial pathogens are becoming a significant problem worldwide. Acinetobacter baumannii and Pseudomonas aeruginosa are problematic multidrug-resistant pathogens. This multicenter study in Vietnam determined the level of resistance to antimicrobial agents used to treat A baumannii and P aeruginosa infections in this country. Five medical centers in Vietnam provided 529 P aeruginosa and 971 Acinetobacter species (904 A baumannii) isolates from patients with hospital-acquired or ventilator-associated pneumonia from 2012 to 2014. A central laboratory verified identification of the isolates and performed susceptibility testing using Clinical and Laboratory Standards Institute methods. Resistance to cephalosporins, β-lactam/β-lactamase inhibitors, carbapenems, and fluoroquinolones was >90% against A baumannii. Aminoglycosides had only slightly better activity, with amikacin resistance >80%. Only colistin (MIC90, ≤0.25 mg/L) and tigecycline (MIC90, 4 mg/L) had appreciable activity against A baumannii. Similar activity was observed among the β-lactams tested against P aeruginosa. Cefepime demonstrated the highest activity (60.1% susceptible), which was similar to doripenem (58.6% susceptible), the most active carbapenem tested. Amikacin was the most active aminoglycoside tested against P aeruginosa, with susceptibility of 81.7% compared with tobramycin (58.0%) and gentamicin (56.5%). Fluoroquinolones had limited activity against P aeruginosa with susceptibility to ciprofloxacin (55.0%). All P aeruginosa isolates had colistin MIC values ≤2 mg/L. The data from this 3-year longitudinal study in Vietnam demonstrate that 2 of the most common nonfermentative gram-negative pathogens associated with hospital-acquired and ventilator-associated pneumonia are significantly resistant to most of the available treatment options and require combination therapies unless new antimicrobial agents become available. Copyright © 2016. Published by Elsevier Inc.

  4. A single clone of Acinetobacter baumannii, ST22, is responsible for high antimicrobial resistance rates of Acinetobacter spp. isolates that cause bacteremia and urinary tract infections in Korea.

    PubMed

    Park, Young Kyoung; Lee, Gyu Hong; Baek, Jin Yang; Chung, Doo Ryeon; Peck, Kyong Ran; Song, Jae-Hoon; Ko, Kwan Soo

    2010-06-01

    We investigated the characteristics of a total of 96 Acinetobacter spp. isolates that were shown to cause bacteremia and urinary tract infections (UTIs) from 10 university hospitals located in various regions of Korea from November 2006 to August 2007. The antimicrobial susceptibilities of these isolates were determined using a broth microdilution method, and the species were identified using molecular identification. In addition, we performed multilocus sequence typing for Acinetobacter baumannii subgroup A isolates. A. baumannii subgroup A was the most prevalent in patients with both bacteremia (32 isolates, 53.3%) and UTIs (20 isolates, 55.6%), followed by Acinetobacter genomic species 13TU (15.0% and 27.8% in bacteremia and UTIs, respectively). A. baumannii subgroup B and Acinetobacter junii were found exclusively in isolates causing bacteremia (seven and five isolates, respectively). Among 96 Acinetobacter spp. isolates, 19.8% were resistant to imipenem and 25.0% were resistant to meropenem. Most carbapenem-resistant A. baumannii isolates contained PER or oxacillinase-23-like enzymes (65.2% and 78.3%, respectively). In addition, 13.5% were resistant to polymyxin B and 17.7% were resistant to colistin. A. baumannii subgroup A isolates (52 isolates, 54.2%) showed higher resistance rates to most antimicrobial agents than other species, but not to colistin. Among A. baumannii subgroup A isolates, ST22 was the most prevalent genotype (33 isolates, 63.5%) and showed higher resistance rates to all antimicrobial agents than the other genotypes. In addition, four out of five polymyxin-resistant A. baumannii group A isolates belonged to ST22. Thus, dissemination of the main clone of A. baumannii, ST22, may contribute to the high resistance rates of Acinetobacter isolates to antimicrobials, including carbapenems, in Korea.

  5. Remarkable Diversity of Escherichia coli Carrying mcr-1 from Hospital Sewage with the Identification of Two New mcr-1 Variants.

    PubMed

    Zhao, Feifei; Feng, Yu; Lü, Xiaoju; McNally, Alan; Zong, Zhiyong

    2017-01-01

    The plasmid-borne colistin-resistant gene mcr-1 has rapidly become a worldwide public health concern. This study aims to determine the host bacterial strains, plasmids, and genetic contexts of mcr-1 in hospital sewage. A 1-ml hospital sewage sample was cultured. Colistin-resistant bacterial colonies were selected on agar plates and were subjected to whole genome sequencing and subsequent analysis. The transfer of mcr-1 between bacterial strains was tested using conjugation. New variants of mcr-1 were cloned to test the impact of variations on the function of mcr-1 . Plasmids carrying mcr-1 were retrieved from GenBank for comparison based on concatenated backbone genes. In the sewage sample, we observed that mcr-1 was located in various genetic contexts on the chromosome, or plasmids of four different replicon types (IncHI2, IncI2, IncP, and IncX4), in Klebsiella pneumoniae, Kluyvera spp. and seven Escherichia coli strains of six different sequence types (ST10, ST34, ST48, ST1196, ST7086, and ST7087). We also identified two new variants of mcr-1, mcr-1.4 and mcr-1.7 , both of which encode an amino acid variation from mcr-1 . mcr-1 -carrying IncX4 plasmids, which have a global distribution across the Enterobacteriaceae , are the result of global dissemination of a single common plasmid, while IncI2 mcr-1 plasmids appear to acquire mcr-1 in multiple events. In conclusion, the unprecedented remarkable diversity of species, strains, plasmids, and genetic contexts carrying mcr-1 present in a single sewage sample from a single healthcare site highlights the continued evolution and dynamic transmission of mcr-1 in healthcare-associated environments.

  6. Selective medium for the isolation of Bacteroides gingivalis.

    PubMed

    Hunt, D E; Jones, J V; Dowell, V R

    1986-03-01

    Bacteroides gingivalis has been implicated in various forms of periodontal disease and may be responsible for other diseases in humans. The role of B. gingivalis in disease has been difficult to assess, because it is inhibited by most selective media commonly used by clinical laboratories to aid in isolating gram-negative, nonsporeforming anaerobes. We have developed a new medium, Bacteroides gingivalis agar, which contains bacitracin, colistin, and nalidixic acid as selective agents. This medium allowed B. gingivalis to be isolated from oral specimens with little difficulty and also allowed B. gingivalis to be isolated from phenotypically similar Bacteroides species, such as B. asaccharolyticus and B. endodontalis, with which it can easily be confused.

  7. Antimicrobial resistance prevalence of Aeromonas hydrophila isolates from motile Aeromonas septicemia disease

    NASA Astrophysics Data System (ADS)

    Kusdarwati, R.; Rozi; Dinda, N. D.; Nurjanah, I.

    2018-04-01

    Fish suffer, from bacteria, fungi, virus and parasites or by physical ailments. Gurami (Osphronemus gouramy), nila (Oreochromis niloticus), carp (Cyprinus carpio), catfish (Clarias sp.) were the most reported infections caused by Aeromonas are bacterial hemorrhagic septicemia or Motile Aeromonas Septicemia (MAS). Antibiotics are drugs of natural or synthetic origin that have the capacity to kill or to inhibit the growth of micro-organisms included MAS. However, the use of antibiotics in the long term can cause negative impacts, among others, feared the occurrence of bacterial resistance in certain antibiotics. The results showed five of isolates were sensitive to antibiotics of chloramphenicol, gentamycin, oxytetracycline, cefradoxil and nalidixic acid but resistant to vancomycin colistin sulphate, rifampisin, cephalosporin and novobiocin.

  8. The Antibio experiment. [Spacelab D1 mission

    NASA Technical Reports Server (NTRS)

    Lapchine, L.; Moatti, N.; Richoilley, G.; Templier, J.; Gasset, G.; Tixador, R.

    1988-01-01

    An experiment was flown on Spacelab to confirm the results of the Cytos 2 experiment on Salyut 7, which found an increase in minimal inhibitory concentration in in-flight cultures, i.e., an increase of antibiotic resistance. The 1 g centrifuge on Biorack was also used to differentiate the effects of cosmic rays and microgravity. The antibiotic sensitivity of bacteria cultivated in vitro during orbital flight was studied. The bacteria was E. coli, the antibiotic was Colistin. An increase of antibiotic resistance is observed. Three explanations are offered: stimulation of bacterial proliferation in space; a relationship between the transport of antibiotics into cells and modifications of cellular envelope permeability; and a combined effect of both phenomena.

  9. Interference of the antimicrobial peptide lactoferricin B with the action of various antibiotics against Escherichia coli and Staphylococcus aureus.

    PubMed

    Vorland, L H; Osbakk, S A; Perstølen, T; Ulvatne, H; Rekdal, O; Svendsen, J S; Gutteberg, T J

    1999-01-01

    The antimicrobial peptide, lactoferricin, can be generated upon gastric pepsin cleavage of lactoferrin. We have examined the interaction of lactoferricin of bovine origin, Lf-cin B, with the antibiotics penicillin G, vancomycin, gentamicin, colistin, D-cycloserine and erythromycin against E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923. We demonstrated synergism between Lf-cin B and erythromycin against E. coli, and partial synergism between Lf-cin B and penicillin G, vancomycin and gentamicin against E. coli. Only penicillin G acted in partial synergism with Lf-cin B against S. aureus. Lf-cin B antagonized vancomycin and gentamicin against S. aureus in low concentration. We conclude that Lf-cin B may facilitate the uptake of antibiotics across the cell envelope.

  10. The prevention and management of infections due to multidrug resistant organisms in haematology patients

    PubMed Central

    Trubiano, Jason A; Worth, Leon J; Thursky, Karin A; Slavin, Monica A

    2015-01-01

    Infections due to resistant and multidrug resistant (MDR) organisms in haematology patients and haematopoietic stem cell transplant recipients are an increasingly complex problem of global concern. We outline the burden of illness and epidemiology of resistant organisms such as gram-negative pathogens, vancomycin-resistant Enterococcus faecium (VRE), and Clostridium difficile in haematology cohorts. Intervention strategies aimed at reducing the impact of these organisms are reviewed: infection prevention programmes, screening and fluoroquinolone prophylaxis. The role of newer therapies (e.g. linezolid, daptomycin and tigecycline) for treatment of resistant and MDR organisms in haematology populations is evaluated, in addition to the mobilization of older agents (e.g. colistin, pristinamycin and fosfomycin) and the potential benefit of combination regimens. PMID:24341410

  11. Hypofibrinogenemia induced by tigecycline: a potentially life-threatening coagulation disorder.

    PubMed

    Sabanis, Nikolaos; Paschou, Eleni; Gavriilaki, Eleni; Kalaitzoglou, Asterios; Vasileiou, Sotirios

    2015-01-01

    A 74-year-old female patient with end-stage renal disease, undergoing periodic hemodialysis, was hospitalized due to infection by multidrug-resistant Acinetobacter baumannii after hip replacement surgery. She was treated with tigecycline, a glycylcycline agent. Subsequently she developed coagulation disorders as substantiated by increased international normalized ratio (INR), prolonged partial thromboplastin time (aPTT), and severe hypofibrinogenemia, followed by transaminasemia, cholestasis, and anemia. Ultrasonography and computed tomography revealed no underlying pathological entities. Tigecycline was discontinued and the patient underwent daily hemodialysis and received multiple fresh frozen plasma transfusions. Additionally, she was treated with colistin. Her clinical and laboratory status improved. We suggest that patients treated with tigecycline should be monitored for changes in INR, aPTT, and fibrinogen levels to avoid severe, life-threatening coagulation disturbances.

  12. Antimicrobial resistance among Salmonella isolates from hospitals in Rome.

    PubMed Central

    Falbo, V.; Caprioli, A.; Mondello, F.; Cacace, M. L.; Luzi, S.; Greco, D.

    1982-01-01

    The susceptibility to antimicrobial agents of 569 salmonella isolated collected in 1977-8 from patients in hospitals in Rome was tested. Fifty-nine per cent of all isolates were resistant to one or more antimicrobials. Resistance was most common to sulphathiazole, tetracycline, streptomycin, whereas colistin, gentamicin, tobramycin, trimethoprim-sulphamethoxazole and nalidixic acid were the most active in vitro. Multiple resistance was most frequently found in strains of Salmonella wien and S. typhimurium (94% and 38% respectively). A significant change in the resistance pattern of S. wien was observed between 1977 and 1978, with a significant increase of susceptibility to some antimicrobials in 1978. Twenty-one R-plasmids transmissible to E. coli K12 were derived from 46 resistant strains of S. typhimurum. PMID:7061839

  13. A rapid method for the determination of microbial susceptibility using the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Vellend, H.; Tuttle, S. A.; Barza, M.; Weinstein, L.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was optimized for pure bacteria in broth in order to evaluate if changes in bacterial ATP content could be used as a rapid measure of antibiotic effect on microorganisms. Broth cultures of log phase bacteria were incubated at 310 K (37 C) for 2.5 hours at antimicrobial concentrations which resulted in the best discrimination between sensitive and resistant strains. Eighty-seven strains of 11 bacterial species were studied for their susceptibility to 12 commonly used antimicrobial agents: ampicillin, Penicillin G, nafcillin, carbenicillin, cephalothin, tetracycline, erythromycin, clindamycin, gentamicin, nitrofurantoin, colistin, and chloramplenicol. The major advantage of the ATP system over existing methods of rapid microbial susceptibility testing is that the assay can be made specific for bacterial ATP.

  14. [Acinetobacter baumannii: an important pathogen with multidrug resistance in newborns].

    PubMed

    Celik, Istemi Han; Demirel, Gamze; Tatar Aksoy, Hatice; Saygan, Sibel; Canpolat, Fuat Emre; Uras, Nurdan; Oğuz, Serife Suna; Erdeve, Omer; Dilmen, Uğur

    2011-10-01

    Nosocomial sepsis agents with multidrug resistance have led to higher morbidity and mortality in premature infants in the recent years. Acinetobacter baumannii has become a leading cause of nosocomial sepsis in several neonatal intensive care units. In this study, the demographic, clinic, microbiologic characteristics and risk factors of 21 premature infants hospitalized in newborn intensive care unit between January 2010-February 2011 and developed A.baumannii infection, have been evaluated retrospectively. The isolates were identified by conventional methods and antibiotic susceptibility tests were performed by Vitek 2 GN and AST-N090 using Vitek 2 Compact system (BioMerieux, France). A.baumannii was isolated from the blood samples of 10 patients, central venous catheter samples of three patients, CSF samples of two, tracheal aspirate of two and urine sample of one patient. In two patients both blood and central venous catheter samples and in one patient both blood and CSF samples revealed A.baumannii. Gestational age was between 22-30 weeks and birth weight was between 500-1320 grams (17 were < 1000 g) in 19 patients. A.baumannii caused early onset (≤ 3 days) sepsis in four, and late onset (≥ 4 days) sepsis in 17 patients. The main risk factors were detected as mechanical ventilation (n= 20, 95%), prematurity (n= 19, 91%), total parenteral nutrition (n= 17, 81%) and central catheter use (n= 14, 67%). Antibiotics with highest rates of susceptibility were gentamicin (18/21), amikacin (14/21), and colistin (10/21). Twenty (95%) isolates had multiple drug resistance. Amikacin, gentamicin, colistin and imipenem were used for treatment, however 12 infants, 8 of which due to sepsis, died. In conclusion, A.baumannii which is an important nosocomial sepsis agent with multidrug resistance, is increasing in incidence. To control Acinetobacter infections especially in low-birth weight infants, the use of invasive procedures, total parenteral nutrition and broad spectrum

  15. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014-2016: Study for monitoring antimicrobial resistance trend report.

    PubMed

    Veeraraghavan, Balaji; Jesudason, Mark Ranjan; Prakasah, John Antony Jude; Anandan, Shalini; Sahni, Rani Diana; Pragasam, Agila Kumari; Bakthavatchalam, Yamuna Devi; Selvakumar, Rajesh Joseph; Dhole, T N; Rodrigues, Camilla; Roy, Indranil; Joshi, Sangeetha; Chaudhuri, Bhaskar Narayan; Chitnis, D S

    2018-01-01

    The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR) in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014-2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205) followed by 25% of Klebsiella pneumoniae (n = 676) and 11% of Pseudomonas aeruginosa (n = 308). Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL)-positive isolates were ranged from 66%-77% in E. coli to 61%-72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that carbapenems, amikacin and colistin continue to be the best agents available to

  16. Antibiotic content of selective culture media for isolation of Capnocytophaga species from oral polymicrobial samples.

    PubMed

    Ehrmann, E; Jolivet-Gougeon, A; Bonnaure-Mallet, M; Fosse, T

    2013-10-01

    In oral microbiome, because of the abundance of commensal competitive flora, selective media with antibiotics are necessary for the recovery of fastidious Capnocytophaga species. The performances of six culture media (blood agar, chocolate blood agar, VCAT medium, CAPE medium, bacitracin chocolate blood agar and VK medium) were compared with literature data concerning five other media (FAA, LB, TSBV, CapR and TBBP media). To understand variable growth on selective media, the MICs of each antimicrobial agent contained in this different media (colistin, kanamycin, trimethoprim, trimethoprim-sulfamethoxazole, vancomycin, aztreonam and bacitracin) were determined for all Capnocytophaga species. Overall, VCAT medium (Columbia, 10% cooked horse blood, polyvitaminic supplement, 3·75 mg l(-1) of colistin, 1·5 mg l(-1) of trimethoprim, 1 mg l(-1) of vancomycin and 0·5 mg l(-1) of amphotericin B, Oxoid, France) was the more efficient selective medium, with regard to the detection of Capnocytophaga species from oral samples (P < 0·001) and the elimination of commensal clinical species (P < 0·001). The demonstrated superiority of VCAT medium, related to its antibiotic content, made its use indispensable for the optimal isolation of Capnocytophaga species from polymicrobial samples. Isolation of Capnocytophaga species is important for the proper diagnosis and treatment of the systemic infections they cause and for epidemiological studies of periodontal flora. We showed that in pure culture, a simple blood agar allowed the growth of all Capnocytophaga species. Nonetheless, in oral samples, because of the abundance of commensal competitive flora, selective media with antibiotics are necessary for the recovery of Capnocytophaga species. The demonstrated superiority of VCAT medium made its use essential for the optimal detection of this bacterial genus. This work showed that extreme caution should be exercised when reporting the isolation of Capnocytophaga

  17. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015.

    PubMed

    AbuOun, Manal; Stubberfield, Emma J; Duggett, Nick A; Kirchner, Miranda; Dormer, Luisa; Nunez-Garcia, Javier; Randall, Luke P; Lemma, Fabrizio; Crook, Derrick W; Teale, Christopher; Smith, Richard P; Anjum, Muna F

    2017-10-01

    To determine the occurrence of mcr-1 and mcr-2 genes in Gram-negative bacteria isolated from healthy pigs in Great Britain. Gram-negative bacteria (n = 657) isolated from pigs between 2014 and 2015 were examined by WGS. Variants of mcr-1 and mcr-2 were identified in Moraxella spp. isolated from pooled caecal contents of healthy pigs at slaughter collected from six farms in Great Britain. Other bacteria, including Escherichia coli from the same farms, were not detected harbouring mcr-1 or mcr-2. A Moraxella porci-like isolate, MSG13-C03, harboured MCR-1.10 with 98.7% identity to MCR-1, and a Moraxella pluranimalium-like isolate, MSG47-C17, harboured an MCR-2.2 variant with 87.9% identity to MCR-2, from E. coli; the isolates had colistin MICs of 1-2 mg/L. No intact insertion elements were identified in either MSG13-C03 or MSG47-C17, although MSG13-C03 harboured the conserved nucleotides abutting the ISApl1 composite transposon found in E. coli plasmids and the intervening ∼2.6 kb fragment showed 97% identity. Six Moraxella osloensis isolates were positive for phosphoethanolamine transferase (EptA). They shared 62%-64.5% identity to MCR-1 and MCR-2, with colistin MICs from 2 to 4 mg/L. Phylogenetic analysis indicated that MCR and EptA have evolved from a common ancestor. In addition to mcr, the β-lactamase gene, blaBRO-1, was found in both isolates, whilst the tetracycline resistance gene, tetL, was found in MSG47-C17. Our results add further evidence for the mobilization of the mcr-pap2 unit from Moraxella via composite transposons leading to its global dissemination. The presence of mcr-pap2 from recent Moraxella isolates indicates they may comprise a reservoir for mcr. © Crown Copyright 2017.

  18. Precautionary Practices of Respiratory Therapists and Other Health-Care Practitioners Who Administer Aerosolized Medications

    PubMed Central

    Tsai, Rebecca J; Boiano, James M; Steege, Andrea L; Sweeney, Marie H

    2015-01-01

    BACKGROUND: Respiratory therapists (RTs) and other health-care workers are potentially exposed to a variety of aerosolized medications. The National Institute for Occupational Safety and Health (NIOSH) Health and Safety Practices Survey of Healthcare Workers describes current exposure control practices and barriers to using personal protective equipment during administration of selected aerosolized medications. METHODS: An anonymous, multi-module, web-based survey was conducted among members of health-care professional practice organizations representing RTs, nurses, and other health-care practitioners. A module on aerosolized medications included submodules for antibiotics (amikacin, colistin, and tobramycin), pentamidine, and ribavirin. RESULTS: The submodules on antibiotics, pentamidine, and ribavirin were completed by 321, 227, and 50 respondents, respectively, most of whom were RTs. The relatively low number of ribavirin respondents precluded meaningful interpretation of these data and may reflect the rare use of this drug. Consequently, analysis focused on pentamidine, classified by NIOSH as a hazardous drug, and the antibiotics amikacin, colistin, and tobramycin, which currently lack authoritative safe handling guidelines. Respondents who administered pentamidine were more likely to adhere to good work practices compared with those who administered the antibiotics. Examples included training received on safe handling procedures (75% vs 52%), availability of employer standard procedures (82% vs 55%), use of aerosol delivery devices equipped with an expiratory filter (96% vs 53%) or negative-pressure rooms (61% vs 20%), and always using respiratory protection (51% vs 13%). CONCLUSIONS: Despite the availability of safe handling guidelines for pentamidine, implementation was not universal, placing workers, co-workers, and even family members at risk of exposure. Although the antibiotics included in this study lack authoritative safe handling guidelines, prudence

  19. Precautionary Practices of Respiratory Therapists and Other Health-Care Practitioners Who Administer Aerosolized Medications.

    PubMed

    Tsai, Rebecca J; Boiano, James M; Steege, Andrea L; Sweeney, Marie H

    2015-10-01

    Respiratory therapists (RTs) and other health-care workers are potentially exposed to a variety of aerosolized medications. The National Institute for Occupational Safety and Health (NIOSH) Health and Safety Practices Survey of Healthcare Workers describes current exposure control practices and barriers to using personal protective equipment during administration of selected aerosolized medications. An anonymous, multi-module, web-based survey was conducted among members of health-care professional practice organizations representing RTs, nurses, and other health-care practitioners. A module on aerosolized medications included submodules for antibiotics (amikacin, colistin, and tobramycin), pentamidine, and ribavirin. The submodules on antibiotics, pentamidine, and ribavirin were completed by 321, 227, and 50 respondents, respectively, most of whom were RTs. The relatively low number of ribavirin respondents precluded meaningful interpretation of these data and may reflect the rare use of this drug. Consequently, analysis focused on pentamidine, classified by NIOSH as a hazardous drug, and the antibiotics amikacin, colistin, and tobramycin, which currently lack authoritative safe handling guidelines. Respondents who administered pentamidine were more likely to adhere to good work practices compared with those who administered the antibiotics. Examples included training received on safe handling procedures (75% vs 52%), availability of employer standard procedures (82% vs 55%), use of aerosol delivery devices equipped with an expiratory filter (96% vs 53%) or negative-pressure rooms (61% vs 20%), and always using respiratory protection (51% vs 13%). Despite the availability of safe handling guidelines for pentamidine, implementation was not universal, placing workers, co-workers, and even family members at risk of exposure. Although the antibiotics included in this study lack authoritative safe handling guidelines, prudence dictates that appropriate exposure

  20. Low Frequency of Ceftazidime-Avibactam Resistance among Enterobacteriaceae Isolates Carrying blaKPC Collected in U.S. Hospitals from 2012 to 2015.

    PubMed

    Castanheira, Mariana; Mendes, Rodrigo E; Sader, Helio S

    2017-03-01

    Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae isolates have been increasingly reported worldwide, and therapeutic options to treat infections caused by these organisms are limited. We evaluated the activity of ceftazidime-avibactam and comparators against 456 Enterobacteriaceae isolates carrying bla KPC collected from 79 U.S. hospitals during 2012 to 2015. Overall, ceftazidime-avibactam (MIC 50/90 , 0.5/2 μg/ml; 99.3% susceptible) and tigecycline (MIC 50/90 , 0.5/1 μg/ml; 98.9% susceptible at ≤2 μg/ml) were the most active agents. Only 80.5% and 59.0% of isolates were susceptible to colistin and amikacin, respectively. All three isolates (0.7%) displaying resistance to ceftazidime-avibactam ( K. pneumoniae ; MICs, ≥16 μg/ml) were evaluated using whole-genome sequencing analysis and relative quantification of expression levels of porins and efflux pump. Two isolates carried metallo-β-lactamase genes, bla NDM-1 or bla VIM-4 , among other β-lactam resistance mechanisms, and one displayed a premature stop codon in ompK35 and decreased expression of ompK36 Ceftazidime-avibactam was active against 100.0 and 99.3% of isolates carrying bla KPC-3 ( n = 221) and bla KPC-2 ( n = 145), respectively. Isolates carrying bla KPC were more commonly recovered from pneumonia ( n = 155), urinary tract ( n = 93), and skin/soft tissue ( n = 74) infections. Ceftazidime-avibactam (97.8 to 100.0% susceptible) was consistently active against isolates from all infection sites. K. pneumoniae (83.3% of the collection) susceptibility rates were 99.2% for ceftazidime-avibactam, 98.9% for tigecycline, and 80.1% for colistin. Ceftazidime-avibactam susceptibility did not vary substantially when comparing isolates from intensive care unit (ICU) patients to those from non-ICU patients. Ceftazidime-avibactam was active against this large collection of isolates carrying bla KPC and represents a valuable addition to the armamentarium currently available for the

  1. Feeding of waste milk to Holstein calves affects antimicrobial resistance of Escherichia coli and Pasteurella multocida isolated from fecal and nasal swabs.

    PubMed

    Maynou, G; Bach, A; Terré, M

    2017-04-01

    The use of milk containing antimicrobial residues in calf feeding programs has been shown to select for resistant fecal Escherichia coli in dairy calves. However, information is scarce about the effects of feeding calves waste milk (WM) on the prevalence of multidrug-resistant bacteria. The objective of this study was to determine the antimicrobial resistance patterns of fecal E. coli and nasal Pasteurella multocida isolates from calves fed either milk replacer (MR) or WM in 8 commercial dairy farms (4 farms per feeding program). Fecal and nasal swabs were collected from 20 ± 5 dairy calves at 42 ± 3.2 d of age, and from 10 of these at approximately 1 yr of age in each study farm to isolate the targeted bacteria. Furthermore, resistance of E. coli isolates from calf-environment and from 5 calves at birth and their dams was also evaluated in each study farm. Resistances were tested against the following antimicrobial agents: amoxicillin-clavulanic acid, ceftiofur, colistin, doxycycline (DO), enrofloxacin (ENR), erythromycin, florfenicol, imipenem, and streptomycin. A greater number of fecal E. coli resistant to ENR, florfenicol, and streptomycin and more multidrug-resistant E. coli phenotypes were isolated in feces of calves fed WM than in those fed MR. However, the prevalence of fecal-resistant E. coli was also influenced by calf age, as it increased from birth to 6 wk of age for ENR and DO and decreased from 6 wk to 1 yr of age for DO regardless of the feeding program. From nasal samples, an increase in the prevalence of colistin-resistant P. multocida was observed in calves fed WM compared with those fed MR. The resistance patterns of E. coli isolates from calves and their dams tended to differ, whereas similar resistance profiles among E. coli isolates from farm environment and calves were observed. The findings of this study suggest that feeding calves WM fosters the presence of resistant bacteria in the lower gut and respiratory tracts of dairy calves

  2. In vitro susceptibility and resistance phenotypes in contemporary Enterobacter isolates in a university hospital in Crete, Greece.

    PubMed

    Maraki, Sofia; Vardakas, Konstantinos Z; Samonis, George; Perdikis, Dimitrios; Mavromanolaki, Viktoria Eirini; Kofteridis, Diamantis P; Falagas, Matthew E

    2017-06-01

    To study the evolution in the susceptibility of Enterobacter spp. in Crete, Greece from 2010 to 2015. Non-duplicate isolates were studied using automated systems. Phenotypic confirmatory tests were applied. A total of 939 Enterobacter isolates were included. Colistin was the most active antibiotic (97.9%) followed by imipenem (96.1%), gentamicin (95.7%), tigecycline (91.8%), cefepime (89.4%), chloramphenicol (85.8%), fosfomycin (85.5%), trimethoprim/sulfamethoxazole (83.3%) and piperacillin/tazobactam (73.3%). Antibiotic resistance did not increase during the study period for most antibiotics. Lower susceptibility was observed among multidrug-resistant strains and carbapenem-nonsusceptible isolates. AmpC was the most common resistant mechanism (21%); carbapenemases (3.7%) and aminoglycoside-modifying enzymes (6.5%) were also detected. A significant proportion of Enterobacter spp. was resistant to several antibiotics, most notably β-lactams.

  3. Pseudo-Outbreak of Actinomyces graevenitzii Associated with Bronchoscopy

    PubMed Central

    Peaper, David R.; Havill, Nancy L.; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana

    2014-01-01

    Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices. PMID:25355767

  4. Antimicrobial Susceptibility of Haemophilus parainfluenzae

    PubMed Central

    Mayo, Joan B.; McCarthy, Laurence R.

    1977-01-01

    Fifty random clinical isolates of Haemophilus parainfluenzae were tested for their susceptibility to 10 antibiotics by a microtiter broth dilution method. Three of the strains tested were resistant to ampicillin, whereas eight were resistant to tetracycline. All strains tested were susceptible to chloramphenicol, kanamycin, gentamicin, cephalothin, and colistin. The ranges of minimal inhibitory concentrations for the three remaining antibiotics were: 0.5 to ≥128 μg of penicillin G per ml, 0.03 to 4 μg of carbenicillin per ml, and 1 to 16 μg of erythromycin per ml. Elevated minimal inhibitory concentrations for penicillin and carbenicillin were noted for the three ampicillin-resistant strains. Tests for beta-lactamase production demonstrated the presence of this enzyme in each of the three ampicillin-resistant strains. PMID:587028

  5. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes

    PubMed Central

    Wang, Jing; Ma, Zhen-Bao; Zeng, Zhen-Ling; Yang, Xue-Wen; Huang, Ying; Liu, Jian-Hua

    2017-01-01

    Antimicrobial resistance is an urgent global health challenge in human and veterinary medicine. Wild animals are not directly exposed to clinically relevant antibiotics; however, antibacterial resistance in wild animals has been increasingly reported worldwide in parallel to the situation in human and veterinary medicine. This underlies the complexity of bacterial resistance in wild animals and the possible interspecies transmission between humans, domestic animals, the environment, and wildlife. This review summarizes the current data on expanded-spectrum β-lactamase (ESBL), AmpC β-lactamase, carbapenemase, and colistin resistance genes in Enterobacteriaceae isolates of wildlife origin. The aim of this review is to better understand the important role of wild animals as reservoirs and vectors in the global dissemination of crucial clinical antibacterial resistance. In this regard, continued surveillance is urgently needed worldwide.

  6. Pseudo-outbreak of Actinomyces graevenitzii associated with bronchoscopy.

    PubMed

    Peaper, David R; Havill, Nancy L; Aniskiewicz, Michael; Callan, Deborah; Pop, Olivia; Towle, Dana; Boyce, John M

    2015-01-01

    Outbreaks and pseudo-outbreaks of infection related to bronchoscopy typically involve Gram-negative bacteria, Mycobacterium species or Legionella species. We report an unusual bronchoscopy-related pseudo-outbreak due to Actinomyces graevenitzii. Extensive epidemiological and microbiological investigation failed to identify a common source. Strain typing revealed that the cluster was comprised of heterogeneous strains of A. graevenitzii. A change in laboratory procedures for Actinomyces cultures was coincident with the emergence of the pseudo-outbreak, and we determined that A. graevenitzii isolates more readily adopted a white, dry, molar tooth appearance on anaerobic colistin nalidixic acid (CNA) agar which likely facilitated its detection and identification in bronchoscopic specimens. This unusual pseudo-outbreak was related to frequent requests of bronchoscopists for Actinomyces cultures combined with a change in microbiology laboratory practices. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. IncX2 and IncX1-X2 Hybrid Plasmids Coexisting in a FosA6-Producing Escherichia coli Strain

    PubMed Central

    Su, Jiachun; McElheny, Christi Lee; Wang, Minggui

    2017-01-01

    ABSTRACT IncX plasmids are receiving much attention as vehicles of carbapenem and colistin resistance genes, such as blaNDM, blaKPC, and mcr-1. Among them, IncX2 subgroup plasmids remain rare. Here, we characterized IncX2 and IncX1-X2 hybrid plasmids coexisting in a FosA6-producing Escherichia coli strain that were possibly generated as a consequence of recombination events between an R6K-like IncX2 plasmid and a pLN126_33-like IncX1 plasmid. Variable multidrug resistance mosaic regions were observed in these plasmids, indicating their potential to serve as flexible carriers of resistance genes. The diversity of IncX group plasmid backbones and accessory genes and the evolution of hybrid IncX plasmids pose a challenge in detecting and classifying them. PMID:28438937

  8. Unique Structural Modifications Are Present in the Lipopolysaccharide from Colistin-Resistant Strains of Acinetobacter baumannii

    DTIC Science & Technology

    2013-10-01

    13). Freeze-dried bacteria were resuspended in endotoxin -free water at a concentration of 10 mg/ml. A 12.5-ml volume of 90% phenol was added, and the...temperature for 30 min. The aqueous phase was collected, and an equal volume of endotoxin -free water was added to the organic phase. The sample was...The resultant pel- let was resuspended at a concentration of 10 mg/ml in endotoxin -free water, treated with DNase (Sigma, St. Louis, MO) at 100 g/ml

  9. Simple Method for Assaying Colistin Methanesulfonate in Plasma and Urine Using High-Performance Liquid Chromatography

    PubMed Central

    Li, Jian; Milne, Robert W.; Nation, Roger L.; Turnidge, John D.; Coulthard, Kingsley; Valentine, Jason

    2002-01-01

    A simple and sensitive high-performance liquid chromatographic method is described for the determination of colistimethate sodium in plasma and urine. The accuracy and reproducibility was within 10.1 and 11.2% with rat plasma and urine, respectively. Several commonly coadministered antibacterial agents do not interfere with the assay. PMID:12234867

  10. [Profile and susceptibility to antibiotics in urinary tract infections in children and newborns from 2012 to 2013: Data from 1879 urine cultures].

    PubMed

    Marzouk, M; Ferjani, A; Haj Ali, M; Boukadida, J

    2015-05-01

    We present recent data on the bacteriological profile and antibiotic susceptibility of uropathogenic bacteria isolated in children and newborns in our region over the past 2 years. A retrospective study on the positive urine cultures from pediatric and neonatal populations during 2012-2013. Bacteria were identified using conventional methods. Susceptibility testing was performed and interpreted as recommended by the committee of the susceptibility of the French Society of Microbiology (CA-SFM). We collected 1879 non-redundant bacteria with more than 73% Escherichia coli. Children and infants (mean age, 32 months [range, 1 month to 14 years]) accounted for 84% of the bacteria collected and newborns (mean age, 12 days [range, 1 day to 1 month]) 16%. A female predominance was observed in the pediatric population (M:F sex ratio, 3.2), whereas for the neonatal population, the proportions were almost identical in both sexes (M:F sex ratio, 1.1). Most of the positive urine cultures (n=1234) were from the community. Hospitalized patients (n=636) were divided into pediatric (60%) and neonatal units (40%). Five bacterial genera dominated the bacteriological profile: E. coli, Klebsiella sp., Proteus sp., Enterobacter sp., and Enterococcus. The susceptibility of the main BUP antibiotics used for treatment of frequent UTI showed the effectiveness of furadoine, imipenem, fosfomycin, and colistin. Amoxicillin kept constant activity against Enterococcus and Streptococcus agalactiae. The rates of resistance of Enterobacteriaceae to beta-lactam antibiotics were high, especially in the neonatal population. The production of extended-spectrum beta-lactamase (ESBL) was noted in 12.8% of pediatric Enterobacteria vs. 22.6% of the neonatal strains. For community Enterobacteriaceae, the activity of beta-lactam antibiotics was limited with 11.2% resistance to third-generation cephalosporins (C3G), including 8.6% ESBL production. The impact of widespread use of beta-lactam antibiotics in

  11. Antimicrobials in small-scale urban pig farming in a lower middle-income country - arbitrary use and high resistance levels.

    PubMed

    Ström, G; Boqvist, S; Albihn, A; Fernström, L-L; Andersson Djurfeldt, A; Sokerya, S; Sothyra, T; Magnusson, U

    2018-01-01

    Administration of antimicrobials to food-producing animals is regarded as a major contributor to the overall emergence of resistance in bacteria worldwide. However, few data are available on global antimicrobial use and resistance (AMR) in livestock, especially from low- and middle-income countries. We conducted a structured survey of 91 small-scale pig farms in the urban and peri-urban areas of Phnom Penh, Cambodia, to assess the farmers' knowledge, attitudes and practices related to antimicrobial use in their pig production. Commensal Escherichia coli was isolated from three healthy pigs from each farm ( n  = 261) and susceptibility testing was performed against 14 antimicrobials, using broth microdilution. Univariable logistic regression and generalized linear mixed models were used to investigate potential associations between farm characteristics, management factors and resistance to different types of antimicrobials. We found a widespread and arbitrary use of antimicrobials, often based on the farmer's own judgment. Around 66% of the farmers reported frequently self-adjusting treatment duration and dosage, and 45% had not heard about the term 'antimicrobial resistance'. The antimicrobials most commonly mentioned or kept by the farmers were amoxicillin, tylosin, gentamicin and colistin. Around 37% used a feed concentrate that contained antimicrobials, while antimicrobials for humans were used as a last-line treatment by 10% of the farmers. Commensal E. coli exhibited high prevalence of resistance to several antimicrobials considered to be of critical importance for human medicine, including ampicillin, ciprofloxacin and colistin, and multidrug-resistance was found in 79% of the samples. Higher prevalence of resistance was observed on farms that administered prophylactic antimicrobials and on farms that treated the entire group or herd in the event of disease. The widespread and arbitrary use of antimicrobials in pig farming in Cambodia is highly worrisome

  12. Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae

    PubMed Central

    Zowawi, Hosam M.; Forde, Brian M.; Alfaresi, Mubarak; Alzarouni, Abdulqadir; Farahat, Yasser; Chong, Teik-Min; Yin, Wai-Fong; Chan, Kok-Gan; Li, Jian; Schembri, Mark A.; Beatson, Scott A.; Paterson, David L.

    2015-01-01

    Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics. PMID:26478520

  13. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes

    PubMed Central

    Jayol, Aurélie; Nordmann, Patrice

    2017-01-01

    SUMMARY Polymyxins are well-established antibiotics that have recently regained significant interest as a consequence of the increasing incidence of infections due to multidrug-resistant Gram-negative bacteria. Colistin and polymyxin B are being seriously reconsidered as last-resort antibiotics in many areas where multidrug resistance is observed in clinical medicine. In parallel, the heavy use of polymyxins in veterinary medicine is currently being reconsidered due to increased reports of polymyxin-resistant bacteria. Susceptibility testing is challenging with polymyxins, and currently available techniques are presented here. Genotypic and phenotypic methods that provide relevant information for diagnostic laboratories are presented. This review also presents recent works in relation to recently identified mechanisms of polymyxin resistance, including chromosomally encoded resistance traits as well as the recently identified plasmid-encoded polymyxin resistance determinant MCR-1. Epidemiological features summarizing the current knowledge in that field are presented. PMID:28275006

  14. Drug-sensitivity of El Tor vibrio strains isolated in the Philippines in 1964 and 1965*

    PubMed Central

    Kuwahara, Shogo; Goto, Sachiko; Kimura, Masatake; Abe, Hisao

    1967-01-01

    About 1500 strains of El Tor vibrios, isolated in 1964 and 1965 in the Philippines, were examined for their susceptibilities to 17 drugs. All the strains tested were highly sensitive to dihydroxymethyl-furalazine, and most were highly sensitive to tetracycline hydrochloride, chloramphenicol and erythromycin, and moderately sensitive to novobiocin, dihydrostreptomycin sulfate, kanamycin and neomycin. They showed a remarkable fluctuation of sensitivity to ampicillin, cefaloridine, cefalotin and sulfafurazole, and a high resistance to benzylpenicillin sodium, oleandomycin and spiramycin. Experimental confirmation was provided of the fact that El Tor vibrios and non-agglutinable vibrios can be distinguished from classical cholera vibrios by their resistance to polymyxin B and colistin. Highly streptomycin-resistant strains, and to a lesser extent ampicillin- and sulfafurazole-resistant strains, were relatively often isolated from cholera patients who had been treated with antibiotics. One patient yielded a strain resistant to tetracycline, chloramphenicol, streptomycin and sulfafurazole. PMID:4870079

  15. Microbiological Features of KPC-Producing Enterobacter Isolates Identified in a U.S. Hospital System

    PubMed Central

    Ahn, Chulsoo; Syed, Alveena; Hu, Fupin; O’Hara, Jessica A.; Rivera, Jesabel I.; Doi, Yohei

    2014-01-01

    Microbiological data regarding KPC-producing Enterobacter spp. are scarce. In this study, 11 unique KPC-producing Enterobacter isolates were identified among 44 ertapenem-non-susceptible Enterobacter isolates collected between 2009 and 2013 at a hospital system in Western Pennsylvania. All cases were healthcare-associated and occurred in medically complex patients. While pulsed-field gel electrophoresis (PFGE) showed diverse restriction patterns overall, multilocus sequence typing (MLST) identified Enterobacter cloacae isolates with sequence types (STs) 93 and 171 from two hospitals each. The levels of carbapenem minimum inhibitory concentrations were highly variable. All isolates remained susceptible to colistin, tigecycline, and the majority to amikacin and doxycycline. A blaKPC-carrying IncN plasmid conferring trimethoprim-sulfamethoxazole resistance was identified in three of the isolates. Spread of blaKPC in Enterobacter spp. appears to be due to a combination of plasmid-mediated and clonal processes. PMID:25053203

  16. The rapid spread of carbapenem-resistant Enterobacteriaceae

    PubMed Central

    Potter, Robert F.; D’Souza, Alaric W.; Dantas, Gautam

    2016-01-01

    Carbapenems, our one-time silver bullet for multidrug resistant bacterial infections, are now threatened by widespread dissemination of carbapenem-resistant Enterobacteriaceae (CRE). Successful expansion of Enterobacteriaceae clonal groups and frequent horizontal gene transfer of carbapenemase expressing plasmids are causing increasing carbapenem resistance. Recent advances in genetic and phenotypic detection facilitate global surveillance of CRE diversity and prevalence. In particular, whole genome sequencing enabled efficient tracking, annotation, and study of genetic elements colocalized with carbapenemase genes on chromosomes and on plasmids. Improved characterization helps detail the co-occurrence of other antibiotic resistance genes in CRE isolates and helps identify pan-drug resistance mechanisms. The novel β-lactamase inhibitor, avibactam, combined with ceftazidime or aztreonam, is a promising CRE treatment compared to current colistin or tigecycline regimens. To halt increasing CRE-associated morbidity and mortality, we must continue quality, cooperative monitoring and urgently investigate novel treatments. PMID:27912842

  17. Interventions for children with ear discharge occurring at least two weeks following grommet (ventilation tube) insertion.

    PubMed

    Venekamp, Roderick P; Javed, Faisal; van Dongen, Thijs Ma; Waddell, Angus; Schilder, Anne Gm

    2016-11-17

    quality of the evidence for each outcome; this is indicated in italics. We included nine studies, evaluating a range of treatments, with 2132 children who developed acute ear discharge beyond the immediate postoperative period. We judged the risk of bias to be low to moderate in most studies. Antibiotic eardrops (with or without corticosteroid) versus oral antibioticsAntibiotic eardrops with or without corticosteroid were more effective than oral antibiotics in terms of:- resolution of discharge at one week (one study, 42 children, ciprofloxacin eardrops versus amoxicillin: 77% versus 30%; risk ratio (RR) 2.58, 95% confidence interval (CI) 1.27 to 5.22; moderate-quality evidence);- resolution of discharge at two weeks (one study, 153 children, bacitracin-colistin-hydrocortisone eardrops versus amoxicillin-clavulanate: 95% versus 56%; RR 1.70, 95% CI 1.38 to 2.08; moderate-quality evidence);- duration of discharge (two studies, 233 children, ciprofloxacin eardrops versus amoxicillin: median 4 days versus 7 days and bacitracin-colistin-hydrocortisone eardrops versus amoxicillin-clavulanate: 4 days versus 5 days; moderate-quality evidence);- ear discharge recurrences (one study, 148 children, bacitracin-colistin-hydrocortisone eardrops versus amoxicillin-clavulanate: 0 versus 1 episode at six months; low-quality evidence); and- disease-specific quality of life (one study, 153 children, bacitracin-colistin-hydrocortisone eardrops versus amoxicillin-clavulanate: difference in change in median Otitis Media-6 total score (range 6 to 42) at two weeks: -2; low-quality evidence).We found no evidence that antibiotic eardrops were more effective in terms of the proportion of children developing chronic ear discharge or tube blockage, generic quality of life or hearing.Adverse events occurred at similar rates in children treated with antibiotic eardrops and those treated with oral antibiotics, while no serious complications occurred in either of the groups. Other comparisons

  18. Laboratory-based evaluation of MDR strains of Pseudomonas in patients with acute burn injuries

    PubMed Central

    Zhang, Hong-Tu; Liu, Hui

    2015-01-01

    Localization of burn was variable: head and face in 76 patients (29%), trunk in 58 (49%), upper limb in 37 (52%), lower limbs in 44 (41%), hands in 16 (15%), perinea area in 26 (5.5%) and whole body except perinea area in 10 (9%) patients. Inhalation syndrome was present in 56 (44%) patients. Ninety patients (82%) had indwelling venous catheters, 83 (75.5%) patients’ arterial catheter and 86 (78%) patients’ urinary catheters. By multivariate analysis: age ≤4 years, Garcés 4, colistin use in documented multiresistant infections, and mechanical ventilation were independent variables related with mortality and graft requirement was a protective factor for mortality. Despite advances in care, gram negative bacterial infections and infection with Pseudomonas aeruginosa remain the most common cause of bacteria related mortality early in the hospital course. Viral infections are also associated with mortality and numbers have remained stable when compared to data from prior years. PMID:26629178

  19. Should Aerosolized Antibiotics Be Used to Treat Ventilator-Associated Pneumonia?

    PubMed

    Zhang, Changsheng; Berra, Lorenzo; Klompas, Michael

    2016-06-01

    In patients with ventilator-associated pneumonia, systemic use of antibiotics is the cornerstone of medical management. Supplemental use of aerosolized antibiotics with intravenous antibiotics in both experimental and clinical studies has been shown to have the following pharmacologic benefits: (1) aerosolized antibiotics reach the infected lung parenchyma without crossing the pulmonary alveolar capillary barrier; (2) aerosolized antibiotics increase anti-bacterial efficacy through increased local antibiotic concentration; and (3) aerosolized antibiotics decrease systemic toxicity. These benefits may be particularly beneficial to treat pneumonia caused by multidrug-resistant pathogens. Clinical data on the benefits of aerosolized antibiotics are more limited. Studies to date have not clearly shown improvements in time to extubation, mortality, or other patient-centered outcomes. At present, amikacin, colistin, and ceftazidime are the most frequently used and studied aerosolized antibiotics. This review summarizes the characteristics of aerosolized antibiotics, reviews the advantages and disadvantages of using aerosolized antibiotics, and calls for future investigations based on animal study data. Copyright © 2016 by Daedalus Enterprises.

  20. [Risk factors for the oral use of antibiotics and animal treatment incidence of weaners in Switzerland].

    PubMed

    Hirsiger, P; Malik, J; Kommerlen, D; Vidondo, B; Arnold, C; Harisberger, M; Spring, P; Sidler, X

    2015-12-01

    In the present study, risk factors for the use of oral antibiotics in weaned piglets were collected on 112 pig farms by a personal questionaire. The most common indication for an antibiotic group therapy was diarrhoea, and the most frequently used antibiotic was Colistin. On average, 27.33 daily doses in the control farms and 387.21 daily doses in the problem farms per 1000 weaners were administered on a given day. The significant risk factors in the multivariate model were poor hygiene in the water supply of suckling piglets, less than two doses ofprestarter feed daily, lack of an all-in-and-all-out production system in weaners, no herd book performance data analysis, and less than two of the legally prescribed veterinary visits per year. Furthermore, the treatment incidence of weaners for oral antibiotics was calculated on the basis of the drug inventory. This study provides evidence that the use of oral antibiotics in weaners can be reduced by interventions in hygiene and management.

  1. Implementation of European standards of care for cystic fibrosis--control and treatment of infection.

    PubMed

    Elborn, J S; Hodson, M; Bertram, C

    2009-05-01

    Several guidelines on infection control and treatment of infection exist for cystic fibrosis (CF) caregivers, although the extent of implementation is variable. Adherence to European Consensus Guidelines for CF was studied by sending surveys to named healthcare professionals in 487 European CF centres/units. Qualitative data analysis was performed. A total of 177/547 (32%) surveys were returned. Infection control policies were implemented by most (77%) respondents. Separation of patients with Burkholderia cepacia was more common in adults (95%) than children (9%), and was implemented by 53% of respondents for Pseudomonas aeruginosa. Nebulised colistin plus oral ciprofloxacin was the most common (43%) therapy for P. aeruginosa infection. First infections of P. aeruginosa were usually treated with inhaled tobramycin; 41% of repondents did not intervene until lung function deteriorated. Most exacerbations were treated for less than the recommended period. European Consensus Guidelines are widely adhered to. Areas for improvement include: initiating therapy for exacerbations early, separating infected patients and optimising duration of antibiotic therapy.

  2. Could chloramphenicol be used against ESKAPE pathogens? A review of in vitro data in the literature from the 21st century.

    PubMed

    Čivljak, Rok; Giannella, Maddalena; Di Bella, Stefano; Petrosillo, Nicola

    2014-02-01

    The widespread use of antibiotics has been associated with the emergence of antimicrobial resistance among bacteria. 'ESKAPE' (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acintobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) pathogens play a major role in the rapidly changing scenario of antimicrobial resistance in the 21st century. Chloramphenicol is a broad spectrum antibiotic that was abandoned in developed countries due to its association with fatal aplastic anemia. However, it is still widely used in the developing world. In light of the emerging problem of multi-drug resistant pathogens, its role should be reassessed. Our paper reviews in vitro data on the activity of chloramphenicol against ESKAPE pathogens. Susceptibility patterns for Gram-positives were good, although less favorable for Gram-negatives. However, in combination with colistin, chloramphenicol was found to have synergistic activity. The risk-benefit related to chloramphenicol toxicity has not been analyzed. Therefore, extra precautions should be taken when prescribing this agent.

  3. Antimicrobial resistance in Campylobacter spp isolated from broiler flocks

    PubMed Central

    Kuana, Suzete Lora; dos Santos, Luciana Ruschel; Rodrigues, Laura Beatriz; Borsoi, Anderlise; Moraes, Hamilton Luis do Souza; Salle, Carlos Tadeu Pippi; do Nascimento, Vladimir Pinheiro

    2008-01-01

    The aim of this study was to assess the antimicrobial susceptibility of 62 Campylobacter spp. strains obtained from broiler flocks using the agar diffusion method. The Campylobacter spp strains were isolated from 22 flocks aged between 3 and 5 weeks of life, isolated from cloacae swabs, stools and cecal droppings in the farm and from the carcass rinsing in the slaughterhouse. Campylobacter spp strains were tested on Mueller-Hilton (MH) agar (27 samples) and MH plus TTC agar (35 samples). The antimicrobial susceptibility test revealed a 62.5% resistance to at least one drug, especially to enrofloxacin (71%), neomycin (50%), lincomycin (50%), tetracycline (43%), penicillin (42%), ceftiofur (33%) amoxicillin (27%), spiramycin (20%), ampicillin (18%) and norfloxacin (14%), whereas a lower percentage of strains was resistant to erythromycin (10%) and doxycycline (10%). All strains were sensitive to gentamicin and lincomycin-spectinomycin and 80% of them to colistin. These results indicate that it is necessary to reduce the use of antimicrobials in veterinary and human medicine. PMID:24031299

  4. Characterization and antibiotic susceptibility of Listeria monocytogenes isolated from poultry and red meat in Morocco

    PubMed Central

    Ennaji, Hayat; Timinouni, Mohammed; Ennaji, My Mustapha; Hassar, Mohammed; Cohen, Nozha

    2008-01-01

    This study was carried out on 426 samples of raw meats collected from butcheries and supermarkets in Casablanca, Morocco. The samples were examined for the occurrence of Listeria species. Strains of Listeria monocytogenes were characterized by several biochemical tests and confirmed by polymerase chain reaction (PCR). β-hemolytic cultures and nonhemolytic isolates were tested for biochemical properties with the Listeria API test. Among the 43 Listeria species isolates; we identified 10 strains for L. monocytogenes (23.3%), 31 strains for L. innocua (72.1%) and 2 strains for L. welshimeri (4.6%). Strains of L. monocytogenes were separated by multiplex PCR; two serogroups IIb and IVb were thus differentiated. Antibiotic susceptibility of L. monocytogenes to 21 antibiotics was determined by the disk diffusion method. All isolates were susceptible to a wide range of the tested antibiotics with the exception of nalidixic acid, colistine and cephalosporins second and third generation for which they were all resistant. PMID:21694879

  5. Virulence factors and antimicrobial resistance of escherichia coli isolated from urinary tract of swine in southern of Brazil

    PubMed Central

    da Costa, Mateus Matiuzzi; Drescher, Guilherme; Maboni, Franciele; Weber, Shana; de Avila Botton, Sônia; Vainstein, Marilene Henning; Schrank, Irene Silveira; de Vargas, Agueda Castagna

    2008-01-01

    The present study determined the molecular and resistance patterns of E. coli isolates from urinary tract of swine in Southern of Brazil. Molecular characterization of urinary vesicle samples was performed by PCR detection of virulence factors from ETEC, STEC and UPEC. From a total of 82 E. coli isolates, 34 (38.63%) harbored one or more virulence factors. The frequency of virulence factors genes detected by PCR were: pap (10.97%), hlyA (10.97%), iha (9.75%), lt (8.53%), sta (7.31%) sfa (6.09%), f4 (4.87%), f5 (4.87%), stb (4.87%), f6 (1.21%) and f41 (1.21%). Isolates were resistant to penicillin (95.12%), lincomycin (93.9%), erythromycin (92.68%), tetracycline (90.24%), amoxicillin (82.92%), ampicillin (74.39%), josamycin (79.26%), norfloxacin (58.53%), enrofloxacin (57.31%), gentamicin (39.02%), neomycin (37.8%), apramycin (30.48%), colistine (30.48%) and cefalexin (6.09%). A number of 32 (39.02%) E. coli isolates harbored plasmids. PMID:24031300

  6. Comparison of the Virulence-Associated Phenotypes of Five Species of Acinetobacter baumannii Complex.

    PubMed

    Na, In Young; Chung, Eun Seon; Jung, Chang-Yun; Kim, Dae Hun; Shin, Juyoun; Kang, KyeongJin; Kim, Seong-Tae; Ko, Kwan Soo

    2016-01-01

    In this study, we compared the virulence-associated factors of Acinetobacter baumannii complex species. Sixty-three isolates of five A. baumannii complex species, including 19 A. baumannii, 15 A. nosocomialis, 13 A. seifertii, 13 A. pittii, and 3 A. calcoaceticus isolates, were included in this study. For all isolates, biofilm formation, A549 cell adherence, resistance to normal human serum, and motility were evaluated. A. baumannii complex isolates showed diversity in biofilm formation, A549 cell adherence, and serum resistance, and no strong positive relationships among these virulence characteristics. However, A. seifertii showed relatively consistent virulence-associated phenotypes. In addition, A. baumannii clone ST110 exhibited consistently high virulence-associated phenotypes. Motility was observed in seven isolates, and all four A. baumannii ST110 isolates showed twitching motility. Although some inconsistencies in virulence-associated phenotypes were seen, high virulence characteristics were observed in A. seifertii, which has been mainly reported in Korea and shows high rates of colistin resistance.

  7. A Study of Plazomicin Compared With Colistin in Patients With Infection Due to Carbapenem-Resistant Enterobacteriaceae (CRE)

    ClinicalTrials.gov

    2016-10-03

    Bloodstream Infections (BSI) Due to CRE; Hospital-Acquired Bacterial Pneumonia (HABP) Due to CRE; Ventilator-Associated Bacterial Pneumonia (VABP) Due to CRE; Complicated Urinary Tract Infection (cUTI) Due to CRE; Acute Pyelonephritis (AP) Due to CRE

  8. The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance.

    PubMed

    Lesho, Emil P; Waterman, Paige E; Chukwuma, Uzo; McAuliffe, Kathryn; Neumann, Charlotte; Julius, Michael D; Crouch, Helen; Chandrasekera, Ruvani; English, Judith F; Clifford, Robert J; Kester, Kent E

    2014-08-01

    Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ferro, A.; Ritchie, K.; Bugbee, B. G.

    1995-01-01

    No straightforward method exists for separating the proportion of ion exchange and respiration due to rhizoplane microbial organisms from that of root ion exchange and respiration. We examined several antibiotics that might be used for the temporary elimination of rhizoplane bacteria from hydroponically grown wheat roots (Triticum aestivum cv. Veery 10). Each antibiotic was tested for herbicidal activity and plate counts were used to enumerate bacteria and evaluate antibiotic kinetics. Only lactam antibiotics (penicillins and cephalosporins) did not reduce wheat growth rates. Aminoglycosides, the pyrimidine trimethoprim, colistin and rifampicin reduced growth rates substantially. Antibiotics acted slowly, with maximum reductions in rhizoplane bacteria occurring after more than 48 h of exposure. Combinations of nonphytotoxic antibiotics reduced platable rhizoplane bacteria by as much as 98%; however, this was generally a reduction from about 10(9) to 10(6) colony forming units per gram of dry root mass, so that many viable bacteria remained on root surfaces. We present evidence which suggests that insufficient bacterial biomass exists on root surfaces of nonstressed plants grown under well-aerated conditions to quantitatively interfere with root nitrogen absorption measurements.

  10. Regional Resistance Surveillance Program Results for 12 Asia-Pacific Nations (2011)

    PubMed Central

    Mendes, Rodrigo E.; Mendoza, Myrna; Banga Singh, Kirnpal K.; Castanheira, Mariana; Bell, Jan M.; Turnidge, John D.; Lin, Stephen S. F.

    2013-01-01

    The Regional Resistance Surveillance program monitored susceptibility rates and developing resistance by geographic region, including 12 Asia-Pacific (APAC) countries. Reference broth microdilution methods for susceptibility/interpretations were applied, processing 5,053 strains. Among Staphylococcus aureus isolates (37% methicillin-resistant S. aureus [MRSA], highest in South Korea [73%]), linezolid (LZD), tigecycline (TIG), and vancomycin were 100% active, but 33 and 34% of strains were levofloxacin (LEV) or macrolide resistant, respectively. Streptococcus pneumoniae was most resistant to β-lactams and macrolides (45%) but was LZD, LEV, and TIG susceptible (>98%). Extended-spectrum β-lactamase (ESBL) phenotype rates in Escherichia coli and Klebsiella spp. were 48 and 47%, respectively, and were highest in Taiwan, at 75 to 91%. The best anti-ESBL-phenotype agents were amikacin (81 to 96% susceptible), colistin (COL; >98%), TIG (>98%), and carbapenems (81 to 97%). Pseudomonas aeruginosa showed ≥20% resistance to all drugs except COL (99% susceptible). In conclusion, endemic evolving antimicrobial resistances in APAC nations show compromised roles for many commonly used antimicrobials. PMID:23959306

  11. Cysteamine, an Endogenous Aminothiol, and Cystamine, the Disulfide Product of Oxidation, Increase Pseudomonas aeruginosa Sensitivity to Reactive Oxygen and Nitrogen Species and Potentiate Therapeutic Antibiotics against Bacterial Infection

    PubMed Central

    Smith, Daniel; Kowalczuk, Aleksandra; Robertson, Jennifer; Lovie, Emma; Perenyi, Peter; Cole, Michelle; Doumith, Michel; Hill, Robert L. R.; Hopkins, Katie L.; Woodford, Neil; O'Neil, Deborah A.

    2018-01-01

    ABSTRACT Cysteamine is an endogenous aminothiol produced in mammalian cells as a consequence of coenzyme A metabolism through the activity of the vanin family of pantetheinase ectoenzymes. It is known to have a biological role in oxidative stress, inflammation, and cell migration. There have been several reports demonstrating anti-infective properties targeting viruses, bacteria, and even the malarial parasite. We and others have previously described broad-spectrum antimicrobial and antibiofilm activities of cysteamine. Here, we go further to demonstrate redox-dependent mechanisms of action for the compound and how its antimicrobial effects are, at least in part, due to undermining bacterial defenses against oxidative and nitrosative challenges. We demonstrate the therapeutic potentiation of antibiotic therapy against Pseudomonas aeruginosa in mouse models of infection. We also demonstrate potentiation of many different classes of antibiotics against a selection of priority antibiotic-resistant pathogens, including colistin (often considered an antibiotic of last resort), and we discuss how this endogenous antimicrobial component of innate immunity has a role in infectious disease that is beginning to be explored and is not yet fully understood. PMID:29581193

  12. Emergence of KPC-producing Klebsiella pneumoniae in Uruguay: infection control and molecular characterization

    PubMed Central

    Marquez, C; Ingold, A; Echeverría, N; Acevedo, A; Vignoli, R; García-Fulgueiras, V; Viroga, J; Gonzalez, O; Odizzio, V; Etulain, K; Nuñez, E; Albornoz, H; Borthagaray, G; Galiana, A

    2014-01-01

    We describe the first outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP), the infection control measures adopted and the shift in resistance patterns of isolates during antibiotic treatment. The ST258 KPC-KP strain exhibited a multiresistant antibiotic phenotype including co-resistance to gentamycin, colistin and tigecycline intermediate susceptibility. Isolates before and after treatment had different behaviour concerning their antibiotic susceptibility and the population analysis profile study. A progressive increase in the aminoglycosides (acquiring amicacin resistance) and β-lactam MICs, and a decreased susceptibility to fosfomycin was observed throughout the administration of combined antimicrobial regimens including meropenem. A high meropenem resistance KPC-KP homogeneous population (MIC 256 Jg/mL), could arise from the meropenem heterogeneous low-level resistance KPC-KP population (MIC 8 Jg/mL), by the selective pressure of the prolonged meropenem therapy. The kpc gene was inserted in a Tn4401 isoform a, and no transconjugants were detected. The core measures adopted were successful to prevent evolution towards resistance dissemination. PMID:25356345

  13. In vitro comparison of the activity of various antibiotics and drugs against new Taiwan isolates and standard strains of avian mycoplasma.

    PubMed

    Lin, M Y

    1987-01-01

    Twenty-nine antibiotics or drugs were incorporated individually into mycoplasma agar to evaluate their inhibitory activity against avian mycoplasmas: 100 recent Taiwan isolates of 7 serotypes and 10 standard strains of 7 serotypes were tested. All of the standard strains were very sensitive to erythromycin, chlorotetracycline, doxycycline, minocycline, and tetracycline, but the local isolates were highly resistant to these antibiotics. The drugs or antibiotics that possessed an MIC90 of 50 micrograms/ml or less against the local isolates were tiamulin (less than 0.4 micrograms/ml), lincospectin (2.7), josamycin (2.7), lincomycin (3.0), spectinomycin (4.8), tylosin (6.0), kanamycin (6.0), chloramphenicol (6.0), gentamicin (7.5), apramycin (24.5), doxycycline (27.4), minocycline (29.0), spiramycin (30.0), colistin (44.3), leucomycin (45.0), and streptomycin (50.0). The MIC90 of the other antibiotics or drugs was greater than 50 micrograms/ml. None of the isolates or strains were sensitive to nalidixic acid, ronidazole, penicillin, ampicillin, cephalexin, carbadox, or four sulfa drugs at a concentration about 5 times the therapeutic level.

  14. Effect of apitherapy in piglets with preweaning diarrhea.

    PubMed

    Choi, Seok Hwa; Cho, Seong Koo; Kang, Seong Soo; Bae, Chun Sik; Bai, Young Hoon; Lee, Seung Hoo; Pak, Sok Cheon

    2003-01-01

    This study was designed to examine the therapeutic effect of honeybee (Apis mellifera L.) venom in piglets with bacterial diarrhea Comparison between bee venom- and drug-treated groups was our main concern in the present study. Preweaning piglets were assigned to treated and non-treated control groups. In the treated group, 47 piglets were acupunctured with the worker honeybee once a day for three consecutive days. Two acupoints, GV-1 (Jiao-chao) and ST-25 (Hai-men), were selected for apitherapy. In the control group, 44 piglets were intramuscularly injected with a standard dose of a known antibacterial drug, colistin sulfate (300,000 IU/kg of body weight), and an antidiarrheal drug (berberine, 2 ml/kg) once a day for three consecutive days. At post-treatment, 90.9% of the control piglets and 93.6% of piglets in the treated group recovered from bacterial diarrhea. Bee acupuncture therapy did not show any side effects such as allergy, intoxication, hemorrhage or infection. It is concluded that bee venom therapy was effective in controlling bacterial diarrhea in preweaning piglets.

  15. Selective differential human blood bilayer media for isolation of Gardnerella (Haemophilus) vaginalis.

    PubMed Central

    Totten, P A; Amsel, R; Hale, J; Piot, P; Holmes, K K

    1982-01-01

    New selective and differential human blood bilayer agar media with Tween 80 (HBT medium) or without Tween 80 (HB medium), developed for the isolation of Gardnerella (Haemophilus) vaginalis, permitted significantly higher G. vaginalis isolation rates than have been obtained for other media used for this purpose. HB medium consists of a basal layer of Columbia agar base containing colistin and naladixic acid with added amphotericin B and an overlayer of the same composition plus 5% human blood. HBT agar also contains Proteose Peptone No. 3 (Difco Laboratories) and Tween 80 in the basal layer and the overlayer. Both Tween 80 and the bilayer composition enhanced G. vaginalis production of human blood hemolysis, permitting detection of this organism even in the presence of heavy growth of other vaginal flora. The use of HB or HBT medium thus permitted the demonstration that G. vaginalis was present in vaginal fluid from a large percentage (up to 68%) of normal women. However, the concentration of G. vaginalis was found by semiquantitative analysis to be significantly higher in vaginal fluid from women with nonspecific vaginitis than in fluid from normal women. Images PMID:6764766

  16. Complex dissemination of the diversified mcr-1-harbouring plasmids in Escherichia coli of different sequence types

    PubMed Central

    Lin, Jingxia; Wang, Xiuna; Deng, Xianbo; Feng, Youjun

    2016-01-01

    The emergence of the mobilized colistin resistance gene, representing a novel mechanism for bacterial drug resistance, challenges the last resort against the severe infections by Gram-negative bacteria with multi-drug resistances. Very recently, we showed the diversity in the mcr-1-carrying plasmid reservoirs from the gut microbiota. Here, we reported that a similar but more complex scenario is present in the healthy swine populations, Southern China, 2016. Amongst the 1026 pieces of Escherichia coli isolates from 3 different pig farms, 302 E. coli isolates were determined to be positive for the mcr-1 gene (30%, 302/1026). Multi-locus sequence typing assigned no less than 11 kinds of sequence types including one novel Sequence Type to these mcr-1-positive strains. PCR analyses combined with the direct DNA sequencing revealed unexpected complexity of the mcr-1-harbouring plasmids whose backbones are at least grouped into 6 types four of which are new. Transcriptional analyses showed that the mcr-1 promoter of different origins exhibits similar activity. It seems likely that complex dissemination of the diversified mcr-1-bearing plasmids occurs amongst the various ST E. coli inhabiting the healthy swine populations, in Southern China. PMID:27741523

  17. [Impact of rational use of antibiotics in a third level clinic in Colombia].

    PubMed

    Pallares, Christian J; Cataño, Juan C

    2017-06-01

    The increasing resistance of bacteria to antibiotics threatens the survival of patients and health costs. To determine the impact of an antimicrobial stewardship program in bacterial resistance and antibiotic consumption. Quasi experimental study in a third level clinic in the city of Medellin, that evaluate in two time periods (pre-intervention between October 2012 and September 2013 and post intervention between October 2013 and September 2014) the impact of an antimicrobial stewardship program in terms of antibiotic consumption and bacterial ecology. Adherence to institutional guidelines for management of infections in the post-intervention period was 82%. Antibiotic consumption of meropenem, ceftriaxone, vancomycin and colistin decreased, and imipenem, daptomycin and linezolid was increased. A significant decrease in antibiotic resistance in Pseudomonas aeruginosa was observed, including carbapenems. An increase of extended spectrum beta lactamase production (ESBL) in Enterobacteriaceae (especially E. coli) and piperacillin/tazobactam resistance was observed. The construction and implementation of a strategy in hospitals with guidelines for managing infectious diseases, restrictions in antibiotic use, a permanent monitoring system for the formulation of antibiotics, achieved a positive impact on reducing antibiotic use and bacterial resistance.

  18. Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011)

    PubMed Central

    Averbuch, Diana; Cordonnier, Catherine; Livermore, David M.; Mikulska, Małgorzata; Orasch, Christina; Viscoli, Claudio; Gyssens, Inge C.; Kern, Winfried V.; Klyasova, Galina; Marchetti, Oscar; Engelhard, Dan; Akova, Murat

    2013-01-01

    The detection of multi-resistant bacterial pathogens, particularly those to carbapenemases, in leukemic and stem cell transplant patients forces the use of old or non-conventional agents as the only remaining treatment options. These include colistin/polymyxin B, tigecycline, fosfomycin and various anti-gram-positive agents. Data on the use of these agents in leukemic patients are scanty, with only linezolid subjected to formal trials. The Expert Group of the 4th European Conference on Infections in Leukemia has developed guidelines for their use in these patient populations. Targeted therapy should be based on (i) in vitro susceptibility data, (ii) knowledge of the best treatment option against the particular species or phenotype of bacteria, (iii) pharmacokinetic/pharmacodynamic data, and (iv) careful assessment of the risk-benefit balance. For infections due to resistant Gram-negative bacteria, these agents should be preferably used in combination with other agents that remain active in vitro, because of suboptimal efficacy (e.g., tigecycline) and the risk of emergent resistance (e.g., fosfomycin). The paucity of new antibacterial drugs in the near future should lead us to limit the use of these drugs to situations where no alternative exists. PMID:24323984

  19. Pyrazolopyrimidines establish MurC as a vulnerable target in Pseudomonas aeruginosa and Escherichia coli.

    PubMed

    Hameed P, Shahul; Manjrekar, Praveena; Chinnapattu, Murugan; Humnabadkar, Vaishali; Shanbhag, Gajanan; Kedari, Chaitanyakumar; Mudugal, Naina Vinay; Ambady, Anisha; de Jonge, Boudewijn L M; Sadler, Claire; Paul, Beena; Sriram, Shubha; Kaur, Parvinder; Guptha, Supreeth; Raichurkar, Anandkumar; Fleming, Paul; Eyermann, Charles J; McKinney, David C; Sambandamurthy, Vasan K; Panda, Manoranjan; Ravishankar, Sudha

    2014-10-17

    The bacterial peptidoglycan biosynthesis pathway provides multiple targets for antibacterials, as proven by the clinical success of β-lactam and glycopeptide classes of antibiotics. The Mur ligases play an essential role in the biosynthesis of the peptidoglycan building block, N-acetyl-muramic acid-pentapeptide. MurC, the first of four Mur ligases, ligates l-alanine to UDP-N-acetylmuramic acid, initiating the synthesis of pentapeptide precursor. Therefore, inhibiting the MurC enzyme should result in bacterial cell death. Herein, we report a novel class of pyrazolopyrimidines with subnanomolar potency against both Escherichia coli and Pseudomonas aeruginosa MurC enzymes, which demonstrates a concomitant bactericidal activity against efflux-deficient strains. Radio-labeled precursor incorporation showed these compounds selectively inhibited peptidoglycan biosynthesis, and genetic studies confirmed the target of pyrazolopyrimidines to be MurC. In the presence of permeability enhancers such as colistin, pyrazolopyrimidines exhibited low micromolar MIC against the wild-type bacteria, thereby, indicating permeability and efflux as major challenges for this chemical series. Our studies provide biochemical and genetic evidence to support the essentiality of MurC and serve to validate the attractiveness of target for antibacterial discovery.

  20. Next-generation approaches to understand and combat the antibiotic resistome

    PubMed Central

    Crofts, Terence S.; Gasparrini, Andrew J.; Dantas, Gautam

    2017-01-01

    Antibiotic resistance is a natural feature of diverse microbial ecosystems. Although recent studies of the antibiotic resistome have highlighted barriers to the horizontal transfer of antibiotic resistance genes between habitats, the rapid global spread of genes that confer resistance to carbapenem, colistin and quinolone antibiotics illustrates the dire clinical and societal consequences of such events. Over time, the study of antibiotic resistance has grown from focusing on single pathogenic organisms in axenic culture to studying antibiotic resistance in pathogenic, commensal and environmental bacteria at the level of microbial communities. As the study of antibiotic resistance advances, it is important to incorporate this comprehensive approach to better inform global antibiotic resistance surveillance and antibiotic development. It is increasingly becoming apparent that although not all resistance genes are likely to geographically and phylogenetically disseminate, the threat presented by those that are is serious and warrants an interdisciplinary research focus. In this Review, we highlight seminal work in the resistome field, discuss recent advances in the studies of resistomes, and propose a resistome paradigm that can pave the way for the improved proactive identification and mitigation of emerging antibiotic resistance threats. PMID:28392565

  1. [Metallo-beta-lactamase-mediated resistance among carbapenem-resistant Pseudomonas aeruginosa clinical isolates].

    PubMed

    Mereuţă, Ana Irina; Tuchiluş, Cristina; Bădescu, Aida Corina; Iancu, Luminiţa Smaranda

    2011-01-01

    The aim of our study was to evaluate the antimicrobial susceptibility profile and the presence of metallo-beta-lactamases (MBLs) among carbapenem-resistant Pseudomonas aeruginosa clinical isolates. A total of 84 P. aeruginosa clinical isolates collected between January 2007- February 2011 from four university hospitals in Iasi (North-East region of Romania) were randomly selected. Antimicrobial susceptibility testing was performed according to CLSI 2010 (Clinical and Laboratory Standards Institute) guidelines. The isolates were tested for MBLs using EPI (EDTA-phenanthroline-imipenem) phenotypic test and polymerase chain reaction (PCR) for bla(VIM) and bla(IMP). Fifty-eight carbapenem resistant strains were identified, from which 24 (41,3%) were positive for VIM-type MBLs. No IMP - type MBL was detected. All MBL-producing isolates displayed a MDR (multidrug resistant) phenotype, two of them were XDR (extensively drug-resistant). Colistin remained the most effective antibiotic. The high proportion of MBL producing P. aeruginosa clinical isolates urges the need for a better use of antibiotics and for efficient infection control measures to prevent dissemination of MBL producers. This is the first report of VIM-like enzymes in P. aeruginosa isolates from the Iasi area.

  2. Antibiotic resistance and population structure of cystic fibrosis Pseudomonas aeruginosa isolates from a Spanish multi-centre study.

    PubMed

    López-Causapé, Carla; de Dios-Caballero, Juan; Cobo, Marta; Escribano, Amparo; Asensio, Óscar; Oliver, Antonio; Del Campo, Rosa; Cantón, Rafael; Solé, Amparó; Cortell, Isidoro; Asensio, Oscar; García, Gloria; Martínez, María Teresa; Cols, María; Salcedo, Antonio; Vázquez, Carlos; Baranda, Félix; Girón, Rosa; Quintana, Esther; Delgado, Isabel; de Miguel, María Ángeles; García, Marta; Oliva, Concepción; Prados, María Concepción; Barrio, María Isabel; Pastor, María Dolores; Olveira, Casilda; de Gracia, Javier; Álvarez, Antonio; Escribano, Amparo; Castillo, Silvia; Figuerola, Joan; Togores, Bernat; Oliver, Antonio; López, Carla; de Dios Caballero, Juan; Tato, Marta; Máiz, Luis; Suárez, Lucrecia; Cantón, Rafael

    2017-09-01

    The first Spanish multi-centre study on the microbiology of cystic fibrosis (CF) was conducted from 2013 to 2014. The study involved 24 CF units from 17 hospitals, and recruited 341 patients. The aim of this study was to characterise Pseudomonas aeruginosa isolates, 79 of which were recovered from 75 (22%) patients. The study determined the population structure, antibiotic susceptibility profile and genetic background of the strains. Fifty-five percent of the isolates were multi-drug-resistant, and 16% were extensively-drug-resistant. Defective mutS and mutL genes were observed in mutator isolates (15.2%). Considerable genetic diversity was observed by pulsed-field gel electrophoresis (70 patterns) and multi-locus sequence typing (72 sequence types). International epidemic clones were not detected. Fifty-one new and 14 previously described array tube (AT) genotypes were detected by AT technology. This study found a genetically unrelated and highly diverse CF P. aeruginosa population in Spain, not represented by the epidemic clones widely distributed across Europe, with multiple combinations of virulence factors and high antimicrobial resistance rates (except for colistin). Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  3. Acinetobacter baumannii: a universal threat to public health?

    PubMed

    Giamarellou, Helen; Antoniadou, Anastasia; Kanellakopoulou, Kyriaki

    2008-08-01

    Acinetobacter spp. are non-fermentative, strictly aerobic, Gram-negative microorganisms with a confusing taxonomic history. The Acinetobacter baumannii-Acinetobacter calcoaceticus complex is the species most commonly isolated from clinical specimens. It is ubiquitous in nature and has been found as part of the normal skin, throat and rectal flora as well as in food and body lice. It colonises patients in Intensive Care Units and contaminates inanimate hospital surfaces and devices as well as wounds, including war injuries. Although a frequent coloniser, Acinetobacter can be the cause of severe and sometimes lethal infections, mostly of nosocomial origin, predominantly ventilator-associated pneumonia. Bacteraemic infections are rare but may evolve to septic shock. Acinetobacter also emerges as a cause of nosocomial outbreaks and is characterised by increasing antimicrobial multiresistance. Antibiotic use, especially carbapenems and third-generation cephalosporins, is recognised as the most important risk factor for multiresistance. Described resistance mechanisms include hydrolysis by beta-lactamases, alterations in outer membrane proteins and penicillin-binding proteins, and increased activity of efflux pumps. Today, Acinetobacter resistant to carbapenems, aminoglycosides and fluoroquinolones presents a challenge to the clinician. However, sulbactam, tigecycline and colistin represent the current therapeutic approaches, which are associated with satisfactory efficacy.

  4. Development and validation of rapid multiresidue and multi-class analysis for antibiotics and anthelmintics in feed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Robert, Christelle; Brasseur, Pierre-Yves; Dubois, Michel; Delahaut, Philippe; Gillard, Nathalie

    2016-08-01

    A new multi-residue method for the analysis of veterinary drugs, namely amoxicillin, chlortetracycline, colistins A and B, doxycycline, fenbendazole, flubendazole, ivermectin, lincomycin, oxytetracycline, sulfadiazine, tiamulin, tilmicosin and trimethoprim, was developed and validated for feed. After acidic extraction, the samples were centrifuged, purified by SPE and analysed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Quantitative validation was done in accordance with the guidelines laid down in European Commission Decision 2002/657/CE. Matrix-matched calibration with internal standards was used to reduce matrix effects. The target level was set at the authorised carryover level (1%) and validation levels were set at 0.5%, 1% and 1.5%. Method performances were evaluated by the following parameters: linearity (0.986 < R(2) < 0.999), precision (repeatability < 12.4% and reproducibility < 14.0%), accuracy (89% < recovery < 107%), sensitivity, decision limit (CCα), detection capability (CCβ), selectivity and expanded measurement uncertainty (k = 2).This method has been used successfully for three years for routine monitoring of antibiotic residues in feeds during which period 20% of samples were found to exceed the 1% authorised carryover limit and were deemed non-compliant.

  5. Next-generation approaches to understand and combat the antibiotic resistome.

    PubMed

    Crofts, Terence S; Gasparrini, Andrew J; Dantas, Gautam

    2017-07-01

    Antibiotic resistance is a natural feature of diverse microbial ecosystems. Although recent studies of the antibiotic resistome have highlighted barriers to the horizontal transfer of antibiotic resistance genes between habitats, the rapid global spread of genes that confer resistance to carbapenem, colistin and quinolone antibiotics illustrates the dire clinical and societal consequences of such events. Over time, the study of antibiotic resistance has grown from focusing on single pathogenic organisms in axenic culture to studying antibiotic resistance in pathogenic, commensal and environmental bacteria at the level of microbial communities. As the study of antibiotic resistance advances, it is important to incorporate this comprehensive approach to better inform global antibiotic resistance surveillance and antibiotic development. It is increasingly becoming apparent that although not all resistance genes are likely to geographically and phylogenetically disseminate, the threat presented by those that are is serious and warrants an interdisciplinary research focus. In this Review, we highlight seminal work in the resistome field, discuss recent advances in the studies of resistomes, and propose a resistome paradigm that can pave the way for the improved proactive identification and mitigation of emerging antibiotic resistance threats.

  6. Managing Pseudomonas aeruginosa respiratory infections in cystic fibrosis.

    PubMed

    Langan, Katherine M; Kotsimbos, Tom; Peleg, Anton Y

    2015-12-01

    The current guidelines and recent clinical research in the management of Pseudomonas aeruginosa respiratory infections in cystic fibrosis (CF) are reviewed. Areas where further research is required will also be highlighted. P. aeruginosa is a key respiratory pathogen in CF. Inhaled tobramycin or colistin is recommended for early eradication to prevent establishment of chronic infection. Other antibiotic options are currently being investigated. The long-term success of eradication strategies is also now being assessed. The use of inhaled antibiotics in the management of chronic P. aeruginosa infection is an area of active investigation. Acute pulmonary exacerbations are still a major cause of morbidity and mortality. Guidelines continue to recommend combination intravenous therapy but further research is required to clarify the advantage of this approach. Multidrug resistance is common and potentially more effective antipseudomonal antibiotics may soon become available. The management of P. aeruginosa respiratory infection in CF remains a challenging area, especially in the setting of multidrug resistance. The role of inhaled antibiotics continues to be expanded. Further research is required in the key areas of eradication and management of chronic infection and acute pulmonary exacerbations to identify those treatments that optimize long-term, clinical benefits.

  7. An overview of antimicrobial peptides and the latest advances in their development.

    PubMed

    Sierra, Josep M; Fusté, Ester; Rabanal, Francesc; Vinuesa, Teresa; Viñas, Miguel

    2017-06-01

    The recent dramatic increase in the incidence of antimicrobial resistance has been recognized by organizations such as the United Nations and World Health Organization as well as the governments of the USA and several European countries. A relatively new weapon in the fight against severe infections caused by multi-drug resistant bacteria is antimicrobial peptides (AMPs). These include colistin, currently regarded as the last line of antimicrobial therapy against multi-drug resistant microorganisms. Areas covered: Here, the authors provide an overview of the current research on AMPs. The focus is AMPs currently being developed for the treatment of recalcitrant bacterial infections, the synergies of AMPs and antibiotics, and the activity of AMPs against biofilm. This review also includes a brief introduction into the use of AMPs in infections caused by Mycobacterium, fungi, and parasites. Expert opinion: In research into new antimicrobials, AMPs are gaining increasing attention. While many are natural and are produced by a wide variety of organisms, others are being newly designed and chemically synthesized in the laboratory to achieve novel antimicrobial agents. The same strategy to fight infections in nature is thus being effectively exploited to safeguard human and animal health.

  8. Incidence of bloodstream infections in small bowel transplant recipients receiving selective decontamination of the digestive tract: A single-center experience.

    PubMed

    Galloway, David; Danziger-Isakov, Lara; Goldschmidt, Monique; Hemmelgarn, Trina; Courter, Joshua; Nathan, Jaimie D; Alonso, Maria; Tiao, Greg; Fei, Lin; Kocoshis, Samuel

    2015-11-01

    Pediatric patients undergoing small bowel transplantation are susceptible to postoperative CLABSI. SDD directed against enteric microbes is a strategy for reducing CLABSI. We hypothesized that SDD reduces the frequency of CLABSI, infections outside the bloodstream, and allograft rejection during the first 30 days following transplant. A retrospective chart review of 38 pediatric small bowel transplant recipients at CCHMC from 2003 to 2011 was conducted. SDD antimicrobials were oral colistin, tobramycin, and amphotericin B. The incidence of CLABSI, infections outside the bloodstream, and rejection episodes were compared between study periods. The incidence of CLABSI did not differ between study periods (6.9 CLABSI vs. 4.6 CLABSI per 1000 catheter days; p = 0.727), but gram positives and Candida predominated in the first 30 days. Incidence of bacterial infections outside the bloodstream did not differ (p = 0.227). Rejection occurred more frequently during the first month following transplant (p = 0.302). SDD does not alter the incidence of CLABSI, bacterial infections outside the bloodstream, or allograft rejection in the immediate 30 days post-transplantation. However, SDD does influence CLABSI organism types (favoring gram positives and Candida) and Candidal infections outside the bloodstream. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Clinical, economic and societal impact of antibiotic resistance.

    PubMed

    Barriere, Steven L

    2015-02-01

    The concern over antibiotic resistance has been voiced since the discovery of modern antibiotics > 75 years ago. The concerns have only increased with time, with efforts to control resistance caused by widespread overuse of antibiotics in human medicine and far more than appreciated use in the feeding of animals for human consumption to promote growth. The problem is worldwide, but certain regions and selected health care institutions report far more resistance, including strains of Gram-negative bacteria that are susceptible only to the once discarded drugs polymyxin B or colistin, and pan-resistant strains are on the rise. One of the central efforts to control resistance, apart from antimicrobial stewardship, is the development of new antimicrobial agents. This has lagged significantly over the past 10 - 15 years, for a variety of reasons; but promising new agents are being developed, unfortunately none thus far addressing all potentially resistant strains. There is the unlikely, but not unreal, possibility that we could return to a pre-antibiotic era, where morbidity and mortality rates have risen dramatically and routine surgical procedures are not performed for fear of post-operative infections. The onus of control of resistance is a moral imperative that falls on the shoulders of all.

  10. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria.

    PubMed

    Kidd, James M; Kuti, Joseph L; Nicolau, David P

    2018-03-01

    Hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) are among the most prevalent infections in hospitalized patients, particularly those in the intensive care unit. Importantly, the frequency of multidrug resistant (MDR) Gram-negative (GN) bacteria as the bacteriologic cause of HABP/VABP is increasing. These include MDR Pseudomonas aeruginosa, Acinetobacter baumannii, and carbapenem resistant Enterobacteriaceae (CRE). Few antibiotics are currently available when such MDR Gram-negatives are encountered and older agents such as polymyxin B, colistin (polymyxin E), and tigecycline have typically performed poorly in HABP/VABP. Areas covered: In this review, the authors summarize novel antibiotics which have reached phase 3 clinical trials including patients with HABP/VABP. For each agent, the spectrum of activity, pertinent pharmacological characteristics, clinical trial data, and potential utility in the treatment of MDR-GN HABP/VABP is discussed. Expert opinion: Novel antibiotics currently available, and those soon to be, will expand opportunities to treat HABP/VABP caused by MDR-GN organisms and minimize the use of more toxic, less effective drugs. However, with sparse clinical data available, defining the appropriate role for each of the new agents is challenging. In order to maximize the utility of these antibiotics, combination therapy and the role of therapeutic drug monitoring should be investigated.

  11. Antimicrobial activity of Nigerian medicinal plants

    PubMed Central

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  12. Detection of Vibrio vulnificus biotypes 1 and 2 in eels and oysters by PCR amplification.

    PubMed Central

    Coleman, S S; Melanson, D M; Biosca, E G; Oliver, J D

    1996-01-01

    DNA extraction procedures and PCR conditions to detect Vibrio vulnificus cells naturally occurring in oysters were developed. In addition, PCR amplification of V. vulnificus from oysters seeded with biotype 1 cells was demonstrated. By the methods described, V. vulnificus cells on a medium (colistin-polymyxin B-cellobiose agar) selective for this pathogen were detectable in oysters harvested in January and March, containing no culturable cells (< 67 CFU/g), as well as in oysters harvested in May and June, containing culturable cells. It was possible to complete DNA extraction, PCR, and gel electrophoresis within 10 h by using the protocol described for oysters. V. vulnificus biotype 2 cells were also detected in eel tissues that had been infected with this strain and subsequently preserved in formalin. The protocol used for detection of V. vulnificus cells in eels required less than 5 h to complete. Optimum MgCl2 concentrations for the PCR of V. vulnificus from oysters and eels were different, although the same primer pair was used for both. This is the first report on the detection of cells of V. vulnificus naturally present in shellfish and represents a potentially powerful method for monitoring this important human and eel pathogen. PMID:8919800

  13. A survey of group-level antibiotic prescriptions in pig production in France.

    PubMed

    Chauvin, Claire; Beloeil, Pierre-Alexandre; Orand, Jean-Pierre; Sanders, Pascal; Madec, François

    2002-09-30

    There is world-wide concern that antimicrobial use in food-producing animals might contribute to antimicrobial resistance both in animals and in humans. The relationship between antimicrobial use and resistance is likely to be related to frequency of prescription of the compound, dose and duration of treatment. Routine collection of that information is not possible today in France. A postal survey of French pig veterinarians therefore was carried out in October 2000. The questionnaire focused on the last antibiotic group-level prescription made; data were collected on the type of animals, presumptive clinical diagnosis and drug prescription. The list frame was defined using a veterinary yearbook. All practitioners with mention of pig in the treated species or with employment in intensive animal production were sent the questionnaire. Out of the 431 selected practitioners, 303 responded to the self-administered questionnaire (overall return proportion 70%). 159 prescriptions were received and analysed (response proportion 37%). Their repartitions according to indications and active compounds were summarised. Mean prescribed daily doses and mean treatment length were calculated for four antibiotics: amoxicillin, colistin, oxytetracycline, tylosin. Prescribed daily dose were in the range of dosages used and recommended in Europe. High variations were encountered in treatment length: from 3 to 21 days.

  14. Pharmacokinetic and pharmacodynamic considerations of antimicrobial drug therapy in cancer patients with kidney dysfunction

    PubMed Central

    Keller, Frieder; Schröppel, Bernd; Ludwig, Ulla

    2015-01-01

    Patients with cancer have a high inherent risk of infectious complications. In addition, the incidence of acute and chronic kidney dysfunction rises in this population. Anti-infective drugs often require dosing modifications based on an estimate of kidney function, usually the glomerular filtration rate (GFR). However, there is still no preferential GFR formula to be used, and in acute kidney injury there is always a considerable time delay between true kidney function and estimated GFR. In most cases, the anti-infective therapy should start with an immediate and high loading dose. Pharmacokinetic as well as pharmacodynamic principles must be applied for further dose adjustment. Anti-infective drugs with time-dependent action should be given with the target of high trough concentrations (e.g., beta lactam antibiotics, penems, vancomycin, antiviral drugs). Anti-infective drugs with concentration-dependent action should be given with the target of high peak concentrations (e.g., aminoglycosides, daptomycin, colistin, quinolones). Our group created a pharmacokinetic database, called NEPharm, hat serves as a reference to obtain reliable dosing regimens of anti-infective drugs in kidney dysfunction as well as renal replacement therapy. To avoid the risk of either too low or too infrequent peak concentrations, we prefer the eliminated fraction rule for dose adjustment calculations. PMID:26167456

  15. Serogroups, atypical biochemical characters, colicinogeny and antibiotic resistance pattern of Shiga toxin-producing Escherichia coli isolated from diarrhoeic calves in Gujarat, India.

    PubMed

    Arya, G; Roy, A; Choudhary, V; Yadav, M M; Joshi, C G

    2008-01-01

    This study was designed to investigate the antibiotic resistance, colicinogeny, serotyping and atypical biochemical characteristics of 41 Shiga toxin-producing Escherichia coli (STEC) strains detected using polymerase chain reaction from 90 E. coli strains isolated from 46 diarrhoeic calves. The STEC strains belonged to 14 different serogroups. Seventeen per cent of the STEC strains carried the eaeA gene while 14.28% of the 49 non-STEC strains were eaeA positive. Twenty eight (68.29%) of the 41 STEC strains were rhamnose non-fermentors. All the STEC strains revealed resistance to at least three of the antibiotics tested. 100% resistance was found against kanamycin and cephalexin followed by cephaloridine, enrofloxacin, amikacin, ampicillin, tetracycline, ceftiofur, ciprofloxacin, colistin and co-trimoxazole. Eighteen (44%) of the STEC strains produced colicin and all these colicinogenic strains were resistant to three or more antibiotics. Eleven STEC strains (26.82%) showed urease activity. The results of this study suggest that diarrhoeic calves are an important reservoir of STEC strains that are potentially pathogenic for farm animals and humans. Moreover, rhamnose fermentation, colicinogeny and atypical biochemical behaviour, such as urease activity, may serve as important markers or diagnostic tools for epidemiological surveys to trace the source of infection in disease outbreaks.

  16. Designation of pathogenic resistant bacteria in the Sparusaurata sea collected in Tunisia coastlines: Correlation with high performance liquid chromatography-tandem mass spectrometry analysis of antibiotics.

    PubMed

    Zouiten, Amina; Mehri, Ines; Beltifa, Asma; Ghorbel, Asma; Sire, Olivier; Van Loco, Joris; Abdenaceur, Hassen; Reyns, Tim; Ben Mansour, Hedi

    2017-05-01

    Vibrio is characterized by a large number of species and some of them are human pathogens causing gastro intestinal and wound infections through the ingestion or manipulation of contaminated fishes including Vibrio parahaemolyticus and Vibrio alginolyticus. In this study, we reported the phenotypic and molecular characterization of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from wild and farm sea bream (Sparus aurata L.) along the Tunisian coast from December 2015 to April 2016. Therefore, the antibiograms indicate a difference between farmed and wild fish. Resistance against amoxicillin antibiotic appears for the bacteria isolated from wild fish, while those from aquaculture farming presented sensitivity to amoxicillin and resistance to antibiotics colistin and fusidic acid. The chloramphenicol antibiotic exhibited a high sensitivity in all isolated bacteria. In fact, traces of amoxicillin in the organs of the fish from Hergla farm were detected by UPLC-MS/MS analysis during December 2016 to April 2016. In addition, antibiotics were detected in January 2014 with high concentration of norfloxacin 2262 ng/g in fish from Hergla coast. The results obtained in this work indicated that the use and presence of antibiotics in water impacts on the occurrence of resistant bacteria and the detection of antibiotic in fish. Copyright © 2017. Published by Elsevier Ltd.

  17. Antimicrobial susceptibility pattern in nosocomial infections caused by Acinetobacter species in Asir Region, Saudi Arabia.

    PubMed

    Abdalla, Nazar M; Osman, Amani A; Haimour, Waleed O; Sarhan, Mohammed A A; Mohammed, Mohammed N; Zyad, Eyhab M; Al-Ghtani, Abdalla M

    2013-03-15

    This study aimed at evaluating the sensitivity of antibiotics towards nosocomial infections caused by Acinetobacter species. The study took place during the period Dec. 2011- Dec. 2012 at Assir Central Hospital in collaboration with the department of microbiology, college of medicine, King Khalid University, Abha. A prospective study involving 150 patients presented with nosocomial infections due to Acinetobacter species detected by bacteriological tests; direct microscopy, culture in blood agar media, fermentation test in MacConkey media and MIC (minimum inhibitory concentration) for antibiotics sensitivity using Muller Hinton media and Chemical test using API 20. A 150 nosocomial infections in this study showed gram-negative coccobacilli, non motile, glucose-negative fermentor and oxidase negative. All isolates showed 100% sensitivity to: Imipramine, Meropenem, Colistin. From the rest of tested antibiotics the higher resistant ones were; Nitrofurantoin 87% and Cefoxitin 85%. The least resistant antibiotics; Imipenem 3% and Ticarcillin 7%. While variable resistance in the rest of tested antimicrobials. A 47 patients (31.3%) have used antibiotics prior to this study. The high rate of usage occurred in elder patients. The frequency of Acinetobacter calcoaceticus baumannii complex multi-drugs resistance ABCMDR is rising including almost all commonly used antibiotics. Only few antibiotics exert 100% sensitivity towards these bacteria.

  18. Intravenous Minocycline: A Review in Acinetobacter Infections.

    PubMed

    Greig, Sarah L; Scott, Lesley J

    2016-10-01

    Intravenous minocycline (Minocin ® ) is approved in the USA for use in patients with infections due to susceptible strains of Gram-positive and Gram-negative pathogens, including infections due to Acinetobacter spp. Minocycline is a synthetic tetracycline derivative that was originally introduced in the 1960s. A new intravenous formulation of minocycline was recently approved and introduced to address the increasing prevalence of multidrug-resistant (MDR) pathogens. Minocycline shows antibacterial activity against A. baumannii clinical isolates worldwide, and exhibits synergistic bactericidal activity against MDR and extensively drug-resistant (XDR) A. baumannii isolates when combined with other antibacterial agents. In retrospective studies, intravenous minocycline provided high rates of clinical success or improvement and was generally well tolerated among patients with MDR or carbapenem-resistant A. baumannii infections. While randomized clinical trial data would be useful to fully establish the place of minocycline in the management of these infections for which there are currently very few available options, clinical trials in patients with infections due to Acinetobacter spp. are difficult to perform. Nevertheless, current data indicate a potential role for intravenous minocycline in the treatment of patients MDR A. baumannii infections, particularly when combined with a second antibacterial agent (e.g. colistin).

  19. Rapid Molecular Characterization of Acinetobacter baumannii Clones with rep-PCR and Evaluation of Carbapenemase Genes by New Multiplex PCR in Hospital District of Helsinki and Uusimaa

    PubMed Central

    Pasanen, Tanja; Koskela, Suvi; Mero, Sointu; Tarkka, Eveliina; Tissari, Päivi; Vaara, Martti; Kirveskari, Juha

    2014-01-01

    Multidrug-resistant Acinetobacter baumannii (MDRAB) is an increasing problem worldwide. Prevalence of carbapenem resistance in Acinetobacter spp. due to acquired carbapenemase genes is not known in Finland. The purpose of this study was to examine prevalence and clonal spread of multiresistant A. baumannii group species, and their carbapenemase genes. A total of 55 Acinetobacter isolates were evaluated with repetitive PCR (DiversiLab) to analyse clonality of isolates, in conjunction with antimicrobial susceptibility profile for ampicillin/sulbactam, colistin, imipenem, meropenem, rifampicin and tigecycline. In addition, a new real-time PCR assay, detecting most clinically important carbapenemase genes just in two multiplex reactions, was developed. The assay detects genes for KPC, VIM, IMP, GES-1/-10, OXA-48, NDM, GIM-1, SPM-1, IMI/NMC-A, SME, CMY-10, SFC-1, SIM-1, OXA-23-like, OXA-24/40-like, OXA-58 and ISAbaI-OXA-51-like junction, and allows confident detection of isolates harbouring acquired carbapenemase genes. There was a time-dependent, clonal spread of multiresistant A. baumannii strongly correlating with carbapenamase gene profile, at least in this geographically restricted study material. The new carbapenemase screening assay was able to detect all the genes correctly suggesting it might be suitable for epidemiologic screening purposes in clinical laboratories. PMID:24465749

  20. [Epidemiological profile and antibiotic resistance of Pseudomonas aeruginosa isolates in burn and traumatology center in Tunisia over a three-year period].

    PubMed

    Zoghlami, Ayoub; Kanzari, Lamia; Boukadida, Jalel; Messadi, Amen Allah; Ghanem, Abdelraouef

    2012-11-01

    Pseudomonas aeruginosa is a known opportunistic pathogen frequently causing serious infections in burned patients. To analyze the epidemiological profile of Pseudomonas aeruginosa isolated in a Tunisian burn unit. During a 3-year period (from 01 July 2008 to 30 June 2011), 544 non repetitive strains of P. aeruginosa were isolated from burn patients. Susceptibility to antibiotics was assessed according to CA-SFM guidelines. Serotypes were identified by slide agglutination test using P.aeruginosa O antisera (Biorad). Producing carbapenemase was analyzed for 202 imipenem resistant isolates by EDTA test. Susceptibility testing data were stored in a laboratory data base using whonet 5.3 software. The most frequent sites of isolation were cutaneous infections and blood cultures (83.4%). The percentages of resistant isolates were as follows: ceftazidime: 34%; imipenem: 37.1%, ciprofloxacin: 27.1% and amikacin: 29.6%. The most prevalent serotypes were: 011(51%), 06(17%), 03 (8%), 04(12%), 012(5%). Among the 202 imipenem resistant strains, 58% expressed a metallocarbapenemase. All theses strains were resistant to all tested antibiotics except colistin and belonged to the serotype O11. The dissemination of carbapenemases strains must be contained by implementation of timely identification, strict isolation methods and better hygienic procedures.

  1. [Lung transplantation in cystic fibrosis].

    PubMed

    Borro Maté, J M; Calvo Medina, V; Morant Guillén, P; Morales Marín, P; Vicente Guillén, R; Tarrazona Hervas, V; Ramos Briones, F; Lozano Ruiz, C; Ferrer Calvete, F

    1996-11-01

    Since 1990 we have performed 40 lung transplants in the Hospital "La Fe" in Valencia. Nine of them have been performed in cystic fibrosis patients, which is the subject of this paper. The mean age of the patients was 19.8 years, with the youngest patient being 14 years of age. In regards to patient selection, it is important to mention that one had a previous lobectomy, another one a thoracic deformity due to long term atelectasis and one needed intubation for hemoptysis within the 7 days before the lung transplant. Prophylaxis with imipenem and cyprofloxicin, aerosolized colistin and amphotericin B, prompt weaning and intensive respiratory physiotherapy were important for controlling postoperative infection. With 15.3 months as the mean follow-up (range 36-3), 3 year survival was 87.5%. Pulmonary infection, which was the most frequent complication, had a good response to adequate antibiotic treatment. The main postoperative problem pertained to the bronchial suture with 2 partial dehiscences, 2 stenoses and one bronchopleural fistula by Aspergillus, all of which were resolved with conservative procedures without surgery. Middle and long term evolution in these patients shows an excellent quality of life with spirometric and ergometric tests within the normal range.

  2. Epidemiology and Antibiotic Resistance Phenotypes of Diarrheagenic Escherichia Coli Responsible for Infantile Gastroenteritis in Ouagadougou, Burkina Faso

    PubMed Central

    Konaté, Ali; Dembélé, René; Guessennd, Nathalie K.; Kouadio, Fernique Konan; Kouadio, Innocent Kouamé; Ouattara, Mohamed Baguy; Kaboré, Wendpoulomdé A. D.; Kagambèga, Assèta; Cissé, Haoua; Ibrahim, Hadiza Bawa; Bagré, Touwendsida Serge; Traoré, Alfred S.; Barro, Nicolas

    2017-01-01

    The emergence and persistence of multidrug-resistant (MDR) diarrheagenic Escherichia coli (DEC) causing acute diarrhea is a major public health challenge in developing countries. The aim of this study was to evaluate the resistance phenotypes of DEC isolated from stool samples collected from children less than 5 years of age with acute diarrhea living in Ouagadougou/Burkina Faso. From August 2013 to October 2015, this study was carried out on 31 DEC strains of our study conducted in “Centre Médical avec Antenne Chirurgicale (CMA)” Paul VI and CMA of Schiphra. DEC were isolated and identified by standard microbiological methods and polymerase chain reaction (PCR) method was used to further characterize them. Antimicrobial susceptibility testing was done based on the disk diffusion method. DEC isolates were high resistant to tetracycline (83.9%), amoxicillin (77.4%), amoxicillin clavulanic acid (77.4%), piperacillin (64.5%), and colistin sulfate (61.3%). The most resistant phenotype represented was the extended spectrum β-lactamase (ESBL) phenotype (67.7%). Aminoglycosides were 100% active on enteroinvasive E. coli (EIEC) and enterohemorrhagic E. coli (EHEC). All the DEC isolates exhibited absolute (100%) sensitivity to ciprofloxacin. Monitoring and studying the resistance profile of DEC to antibiotics are necessary to guide probabilistic antibiotic therapy, especially in pediatric patients. PMID:29034106

  3. Klebsiella pneumoniae in Singapore: Hypervirulent Infections and the Carbapenemase Threat

    PubMed Central

    Chew, Ka Lip; Lin, Raymond T. P.; Teo, Jeanette W. P.

    2017-01-01

    Klebsiella pneumoniae remains a major pathogen responsible for localized infections such as cystitis and pneumonia, and disseminated infections that may result in severe sepsis and death. Invasive disease such as liver abscesses and endogenous endophthalmitis are associated with capsular serotypes K1 and K2. These infections require a prolonged course of antimicrobial treatment which has evolved over the years from inpatient treatment to outpatient parenteral antibiotic therapy. The emergence of plasmid-mediated resistance began with extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases. This was followed by carbapenemase genes and now plasmid transmissible colistin resistance (mcr), thus limiting viable treatment options. Plasmid-mediated carbapenemase production in Singapore was first reported in 1996. Carbapenemase production has since become the predominant mechanism of carbapenem resistance and incidence rates continue to increase over time. Although carbapenemases can occur in all Enterobacteriaceae, K. pneumoniae are the most common carrier of carbapenemase genes. Alternative treatment options are urgently required before the simplest infections, let alone invasive infections are left potentially untreatable. Clinical management requires guidance from robust laboratory testing methods to optimize patient outcomes. We explore past and present trends in treatment of K. pneumoniae infections, and discuss future treatment options and gaps in knowledge for further study. PMID:29312894

  4. Emergence of Colistin Resistance Gene mcr-1 in Cronobacter sakazakii Producing NDM-9 and in Escherichia coli from the Same Animal.

    PubMed

    Liu, Bao-Tao; Song, Feng-Jing; Zou, Ming; Hao, Zhi-Hui; Shan, Hu

    2017-02-01

    We report the presence of mcr-1 in Escherichia coli and carbapenem-resistant Cronobacter sakazakii from the same diseased chicken. The mcr-1 gene linked with ISApl1 was located on two different IncI2 plasmids, including one multidrug plasmid in E. coli, whereas fosA3-bla NDM-9 was on an IncB/O plasmid in C. sakazakii The development of the fosA3-bla NDM-9 resistance region was mediated by IS26 The colocation of mcr-1 or bla NDM-9 with other resistance genes will accelerate the dissemination of the two genes. Copyright © 2017 American Society for Microbiology.

  5. [Characterization and determination of antibiotic resistance profiles of a single clone Acinetobacter baumannii strains isolated from blood cultures].

    PubMed

    Karagöz, Alper; Baran, Irmak; Aksu, Neriman; Acar, Sümeyra; Durmaz, Rıza

    2014-10-01

    Acinetobacter baumannii which is a significant cause of nosocomial infections, increases the rate of morbidity and mortality in health care settings especially in intensive care units (ICUs). The aim of this study was to determine the antibiotic resistance profiles of A.baumannii strains isolated from blood cultures of inpatients from different ICUs, wards and hospital environment and evaluate their clonal relationships and epidemiologic features. A total of 54 A.baumannii strains (47 from the blood cultures and 7 from the hospital environment), identified between 01 January 2012-28 December 2012 at the Clinical Microbiology Laboratory of Ankara Numune Training and Research Hospital, Turkey, were included in the study. Identification of A.baumannii isolates and their antimicrobial [sulbactam-ampicillin (SAM), piperacillin (PIP), piperacillin-tazobactam (TZP), ceftazidime (CFZ), cefoperazone-sulbactam (SCF), cefepime (CEF), imipenem (IMP), meropenem (MER), amikacin (AMK), gentamicin (GEN), netilmicin (NT), ciprofloxacin (CIP), levofloxacin (LVF), tetracycline (TET), tigecycline (TG), colistin (COL), trimethoprim-sulfamethoxazole (SXT)] susceptibility testing were performed by Vitek 2 (bioMérieux, France) system. The clonal relationship between the A.baumannii isolates was analysed by pulsed-field gel electrophoresis (PFGE). In our study colistin, tigecycline and netilmicin were found to be the most effective agents against A.baumannii isolates. All of the clinical isolates (n= 47) were found susceptible to COL, however all were resistant to SAM, PIP, TZP, CEF, IPM, CFZ, MER and CIP. While 1.85%, 14.8%, 14.8%, 16.6%, 59.2% and 22.2% of the isolates were susceptible to SCF, AMK, NT, GEN, TG and SXT, respectively; 1.85%, 1.85%, 9.2%, 16.6%, 38.8% and 27.7% of the isolates were intermediate to SCF, TET, AMK, NT, LVF and TG, respectively. Similarly, all of the environmental A.baumannii isolates (n= 7) were resistant to SAM, PIP, TZP, CFZ, CEF, IPM, MER and CIP, and all

  6. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria

    PubMed Central

    Uppu, Divakara S. S. M.; Konai, Mohini M.; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C. M.; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R.; Franco, Octávio L.

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections. PMID:28837596

  7. Survey of quantitative antimicrobial consumption per production stage in farrow-to-finish pig farms in Spain

    PubMed Central

    Moreno, Miguel A.

    2014-01-01

    Objectives To characterise antimicrobial use (AMU) per production stage in terms of drugs, routes of application, indications, duration and exposed animals in farrow-to-finish pig farms in Spain. Design Survey using a questionnaire on AMU during the six months prior to the interview, administered in face-to-face interviews completed from April to October 2010. Participants 108 potentially eligible farms covering all the country were selected using a multistage sampling methodology; of these, 33 were excluded because they did not fulfil the participation criteria and 49 were surveyed. Results The rank of the most used antimicrobials per farm and production stage and administration route started with polymyxins (colistin) by feed during the growing and the preweaning phases, followed by β-lactams by feed during the growing and the preweaning phases and by injection during the preweaning phase. Conclusions The study demonstrates that the growing stage (from weaning to the start of finishing) has the highest AMU according to different quantitative indicators (number of records, number of antimicrobials used, percentage of farms reporting use, relative number of exposed animals per farm and duration of exposure); feed is the administration route that produces the highest antimicrobial exposure based on the higher number of exposed animals and the longer duration of treatment; and there are large differences in AMU among individual pig farms. PMID:26392868

  8. Microbioassay of Antimicrobial Agents

    PubMed Central

    Simon, Harold J.; Yin, E. Jong

    1970-01-01

    A previously described agar-diffusion technique for microbioassay of antimicrobial agents has been modified to increase sensitivity of the technique and to extend the range of antimicrobial agents to which it is applicable. This microtechnique requires only 0.02 ml of an unknown test sample for assay, and is capable of measuring minute concentrations of antibiotics in buffer, serum, and urine. In some cases, up to a 20-fold increase in sensitivity is gained relative to other published standardized methods and the error of this method is less than ±5%. Buffer standard curves have been established for this technique, concurrently with serum standard curves, yielding information on antimicrobial serum-binding and demonstrating linearity of the data points compared to the estimated regression line for the microconcentration ranges covered by this technique. This microassay technique is particularly well suited for pediatric research and for other investigations where sample volumes are small and quantitative accuracy is desired. Dilution of clinical samples to attain concentrations falling with the range of this assay makes the technique readily adaptable and suitable for general clinical pharmacological studies. The microassay technique has been standardized in buffer solutions and in normal human serum pools for the following antimicrobials: ampicillin, methicillin, penicillin G, oxacillin, cloxacillin, dicloxacillin, cephaloglycin, cephalexin, cephaloridine, cephalothin, erythromycin, rifamycin amino methyl piperazine, kanamycin, neomycin, streptomycin, colistin, polymyxin B, doxycycline, minocycline, oxytetracycline, tetracycline, and chloramphenicol. PMID:4986725

  9. Antibiotic Resistance in an Indian Rural Community: A ‘One-Health’ Observational Study on Commensal Coliform from Humans, Animals, and Water

    PubMed Central

    Purohit, Manju Raj; Chandran, Salesh; Shah, Harshada; Diwan, Vishal; Tamhankar, Ashok J.; Stålsby Lundborg, Cecilia

    2017-01-01

    Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a ‘one-health’ approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1–3 years and their environment (animals, drinking water from children's households, common source- and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human (n = 127), animal (n = 21), waste- (n = 12), source- (n = 10), and household drinking water (n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes blaCTX-M-9 and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a ‘one-health’ approach. PMID:28383517

  10. Effect of various concentrations of antibiotics on osteogenic cell viability and activity.

    PubMed

    Rathbone, Christopher R; Cross, Jessica D; Brown, Kate V; Murray, Clinton K; Wenke, Joseph C

    2011-07-01

    Infection is a common complication of open fractures. Systemic antibiotics often cause adverse events before eradication of infected bone occurs. The local delivery of antibiotics and the use of implants that deliver both growth factors and antimicrobials are ways to circumvent systemic toxicity while decreasing infection and to reach extremely high levels required to treat bacterial biofilms. When choosing an antibiotic for a local delivery system, one should consider the effect that the antibiotic has on cell viability and osteogenic activity. To address this concern, osteoblasts were treated with 21 different antibiotics over 8 concentrations from 0 to 5000 µg/ml. Osteoblast deoxyribonucleic acid content and alkaline phosphatase activity (ALP) were measured to determine cell number and osteogenic activity, respectively. Antibiotics that caused the greatest decrement include rifampin, minocycline, doxycycline, nafcillin, penicillin, ciprofloxacin, colistin methanesulfonate, and gentamicin; their cell number and ALP were significantly less than control at drug concentrations ≤ 200 µg/ml. Conversely, amikacin, tobramycin, and vancomycin were the least cytotoxic and did not appreciably affect cell number and ALP until very high concentrations were used. This comprehensive evaluation of numerous antibiotics' effects on osteoblast viability and activity will enable clinicians and researchers to choose the optimal antibiotic for treatment of infection and maintenance of healthy host bone. Copyright © 2011 Orthopaedic Research Society.

  11. Clinico-microbiological study of Pseudomonas aeruginosa in wound infections and the detection of metallo-β-lactamase production.

    PubMed

    Bangera, Divya; Shenoy, Suchitra M; Saldanha, Dominic Rm

    2016-12-01

    Pseudomonas aeruginosa is a common opportunistic pathogen of humans among the Gram-negative bacilli. Clinically, it is associated with nosocomial infections like burns and surgical-site wound infections and remains a major health concern, especially among critically ill and immunocompromised patients. This is a prospective laboratory-based 2 year study conducted to isolate P. aeruginosa from wound specimens and the antimicrobial susceptibility pattern with reference to metallo-β-lactamase (MBL) production. Two hundred and twenty-four samples of P. aeruginosa isolated from wound specimens were included in the study. Antimicrobial susceptibility was done as per Clinical Laboratory Standard Institute (CLSI) guidelines. MBL-producing P. aeruginosa was detected using the EDTA disk diffusion synergy test. Statistical analysis was done using the SPSS 11 package (SPSS Inc., Chicago, IL). Out of the 224 P. aeruginosa isolates, 100% were susceptible to polymyxin B and colistin, 92·8% were sensitive to imipenem, 38% showed resistance to gentamicin followed by ceftazidime (31·69%) and meropenem (33·03). Sixteen (7·14%) isolates showed MBL production. Infection caused by drug-resistant P. aeruginosa is important to identify as it poses a therapeutic problem and is also a serious concern for infection control management. The acquired resistance genes can be horizontally transferred to other pathogens or commensals if aseptic procedures are not followed. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  12. Pseudomonas Aeruginosa: Resistance to the Max

    PubMed Central

    Poole, Keith

    2011-01-01

    Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us? PMID:21747788

  13. Infections Caused by Stenotrophomonas maltophilia in Recipients of Hematopoietic Stem Cell Transplantation

    PubMed Central

    Al-Anazi, Khalid Ahmed; Al-Jasser, Asma M.

    2014-01-01

    Stenotrophomonas maltophilia (S. maltophilia) is a globally emerging Gram-negative bacillus that is widely spread in environment and hospital equipment. Recently, the incidence of infections caused by this organism has increased, particularly in patients with hematological malignancy and in recipients of hematopoietic stem cell transplantation (HSCT) having neutropenia, mucositis, diarrhea, central venous catheters or graft versus host disease and receiving intensive cytotoxic chemotherapy, immunosuppressive therapy, or broad-spectrum antibiotics. The spectrum of infections in HSCT recipients includes pneumonia, urinary tract and surgical site infection, peritonitis, bacteremia, septic shock, and infection of indwelling medical devices. The organism exhibits intrinsic resistance to many classes of antibiotics including carbapenems, aminoglycosides, most of the third-generation cephalosporins, and other β-lactams. Despite the increasingly reported drug resistance, trimethoprim-sulfamethoxazole is still the drug of choice. However, the organism is still susceptible to ticarcillin-clavulanic acid, tigecycline, fluoroquinolones, polymyxin-B, and rifampicin. Genetic factors play a significant role not only in evolution of drug resistance but also in virulence of the organism. The outcome of patients having S. maltophilia infections can be improved by: using various combinations of novel therapeutic agents and aerosolized aminoglycosides or colistin, prompt administration of in vitro active antibiotics, removal of possible sources of infection such as infected indwelling intravascular catheters, and application of strict infection control measures. PMID:25202682

  14. Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt.

    PubMed

    Osman, K M; Elhariri, M

    2013-12-01

    The use of antibiotic feed additives in broiler chickens results in a high prevalence of resistance among their enteric bacteria, with a consequent emergence of antibiotic resistance in zoonotic enteropathogens. Despite growing concerns about the emergence of antibiotic-resistant strains, which show varying prevalences in different geographic regions, little work has been done to investigate this issue in the Middle East. This study provides insight into one of the world's most common and financially crippling poultry diseases, necrotic enteritis caused by Clostridium perfringens. The study was designed to determine the prevalence of antibiotic resistance in C. perfringens isolates from clinical cases of necrotic enteritis in broiler chickens in Egypt. A total of 125 isolates were obtained from broiler flocks in 35 chicken coops on 17 farms and were tested using the disc diffusion method. All 125 isolates were resistant to gentamicin, streptomycin, oxolinic acid, lincomycin, erythromycin and spiramycin. The prevalence of resistance to other antibiotics was also high: rifampicin (34%), chloramphenicol (46%), spectinomycin (50%), tylosin-fosfomycin (52%), ciprofloxacin (58%), norfloxacin (67%), oxytetracycline (71%), flumequine (78%), enrofloxacin (82%), neomycin (93%), colistin (94%), pefloxacin (94%), doxycycline (98%) and trimethoprim-sulfamethoxazole (98%). It is recommended that C. perfringens infections in Egypt should be treated with antibiotics for which resistant isolates are rare at present; namely, amoxicillin, ampicillin, cephradine, fosfomycin and florfenicol.

  15. [Group B Streptococcus carriers among pregnant women].

    PubMed

    García, S D; Eliseth, M Cora; Lazzo, M J; Copolillo, E; Barata, A D; de Torres, R; Vay, C A; Famiglietti, A M

    2003-01-01

    Streptococcus agalactiae--group B streptococci (GBS)--is a main cause of severe neonatal infections with a high mortality rate. The detection of pregnant GBS carriers (5-35%) allows intrapartum administration of antibiotic prophylaxis to these women and prevents perinatal infection. We studied the prevalence of GBS in 259 patients between 28 and 37 weeks gestation from April 2000 to March 2002. The anorectum (AR) and vaginal introitus swabs (VI) were cultured in selective Todd-Hewitt broth containing colistin (10 micrograms/ml) and nalidixic acid (15 micrograms/ml) while vaginal swabs (VFS) were cultured following conventional methods. A total of 47 strains of EGB were isolated from 259 patients (18.15%). The prevalence in different samples were: 5.40% in VFS, 13.51% in VI, 11.58% in AR and 17.76% in VI + AR (reference method). The isolates were tested against penicillin, ceftriaxone, erythromycin, clindamycin, vancomycin, gentamicin and streptomycin to determine the minimum inhibitory concentration. The resistance phenotypes of erythromycin-resistant GBS were determined by the double-disk test. All strains were susceptible to penicillin, ceftriaxone and vancomycin, only one strain was erythromycin and clindamycin resistant by IMLSB mechanism. None of the isolated strains had a high resistant level to aminoglycosides. The sensitivity of cultures increased when selective broths were used as the primary detection method.

  16. Emergence and clonal dissemination of carbapenem-hydrolysing OXA-58-producing Acinetobacter baumannii isolates in Bolivia.

    PubMed

    Sevillano, Elena; Fernández, Elena; Bustamante, Zulema; Zabalaga, Silvia; Rosales, Ikerne; Umaran, Adelaida; Gallego, Lucía

    2012-01-01

    Acinetobacter baumannii is an emerging multidrug-resistant pathogen and very little information is available regarding its imipenem resistance in Latin American countries such as Bolivia. This study investigated the antimicrobial resistance profile of 46 clinical strains from different hospitals in Cochabamba, Bolivia, from March 2008 to July 2009, and the presence of carbapenemases as a mechanism of resistance to imipenem. Isolates were obtained from 46 patients (one isolate per patient; 30 males,16 females) with an age range of 1 day to 84 years, and were collected from different sample types, the majority from respiratory tract infections (17) and wounds (13). Resistance to imipenem was detected in 15 isolates collected from different hospitals of the city. These isolates grouped into the same genotype, named A, and were resistant to all antibiotics tested including imipenem, with susceptibility only to colistin. Experiments to detect carbapenemases revealed the presence of the OXA-58 carbapenemase. Further analysis revealed the location of the bla(OXA-58) gene on a 40 kb plasmid. To our knowledge, this is the first report of carbapenem resistance in A. baumannii isolates from Bolivia that is conferred by the OXA-58 carbapenemase. The presence of this gene in a multidrug-resistant clone and its location within a plasmid is of great concern with regard to the spread of carbapenem-resistant A. baumannii in the hospital environment in Bolivia.

  17. Beta-lactamases in Enterobacteriaceae infections in children.

    PubMed

    Moxon, Christopher Alan; Paulus, Stéphane

    2016-07-05

    Multi-drug resistance in Gram negative bacteria, particularly in Enterobacteriaceae, is a major clinical and public health challenge. The main mechanism of resistance in Enterobacteriaceae is linked to the production of beta-lactamase hydrolysing enzymes such as extended spectrum beta-lactamases (ESBL), AmpC beta-lactamases and carbapenemases (Carbapenemase Producing Enterobacteriaceae (CPE)). ESBL and CPE resistance genes are located on plasmids, which can be transmitted between Enterobacteriaceae, facilitating their spread in hospitals and communities. These plasmids usually harbour multiple additional co-resistance genes, including to trimethoprim-sulfamethoxazole, aminoglycosides, and fluoroquinolones, making these infections challenging to treat. Asymptomatic carriage in healthy children as well as community acquired infections are increasingly reported, particularly with ESBL. Therapeutic options are limited and previously little used antimicrobials such as fosfomycin and colistin have been re-introduced in clinical practice. Paediatric experience with these agents is limited hence there is a need to further examine their clinical efficacy, dosage and toxicity in children. Antimicrobial stewardship along with strict infection prevention and control practices need to be adopted widely in order to preserve currently available antimicrobials. The future development of novel agents effective against beta-lactamases producers and their applicability in children is urgently needed to address the challenge of multi-resistant Gram negative infections. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  18. Sinus surgery can improve quality of life, lung infections, and lung function in patients with primary ciliary dyskinesia.

    PubMed

    Alanin, Mikkel Christian; Aanaes, Kasper; Høiby, Niels; Pressler, Tania; Skov, Marianne; Nielsen, Kim Gjerum; Johansen, Helle Krogh; von Buchwald, Christian

    2017-03-01

    Chronic rhinosinusitis (CRS) and bacterial sinusitis are ubiquitous in patients with primary ciliary dyskinesia (PCD). From the sinuses, Pseudomonas aeruginosa can infect the lungs. We studied the effect of endoscopic sinus surgery (ESS) on symptoms of CRS and lower airway infections in PCD patients in a prospective single-arm intervention study of ESS with adjuvant therapy using nasal irrigation with saline, topical nasal steroids, and 2 weeks of systemic antibiotics. Additional treatment with local colistin for 6 months was instigated when P. aeruginosa was cultured at ESS. Twenty-four PCD patients underwent ESS to search for an infectious focus (n = 10), due to severe symptoms of CRS (n = 8), or both (n = 6). Bacteria were cultured from sinus samples in 21 patients (88%), and simultaneous sinus and lung colonization with identical pathogens were observed in 13 patients (62%). Four patients with preoperative P. aeruginosa lung colonization (25%) had no regrowth during follow-up; 2 of these had P. aeruginosa sinusitis. Sinonasal symptoms were improved 12 months after ESS and we observed a trend toward better lung function after ESS. We demonstrated an improvement in CRS-related symptoms after ESS and adjuvant therapy. In selected PCD patients, the suggested regimen may postpone chronic lung infection with P. aeruginosa and stabilize lung function. © 2016 ARS-AAOA, LLC.

  19. N-acetylglucosamine-6-phosphate deacetylase (NagA) of Listeria monocytogenes EGD, an essential enzyme for the metabolism and recycling of amino sugars.

    PubMed

    Popowska, Magdalena; Osińska, Magdalena; Rzeczkowska, Magdalena

    2012-04-01

    The main aim of our study was to determine the physiological function of NagA enzyme in the Listeria monocytogenes cell. The primary structure of the murein of L. monocytogenes is very similar to that of Escherichia coli, the main differences being amidation of diaminopimelic acid and partial de-N-acetylation of glucosamine residues. NagA is needed for the deacetylation of N-acetyl-glucosamine-6 phosphate to glucosamine-6 phosphate and acetate. Analysis of the L. monocytogenes genome reveals the presence of two proteins with NagA domain, Lmo0956 and Lmo2108, which are cytoplasmic putative proteins. We introduced independent mutations into the structural genes for the two proteins. In-depth characterization of one of these mutants, MN1, deficient in protein Lmo0956 revealed strikingly altered cell morphology, strongly reduced cell wall murein content and decreased sensitivity to cell wall hydrolase, mutanolysin and peptide antibiotic, colistin. The gene products of operon 150, consisting of three genes: lmo0956, lmo0957, and lmo0958, are necessary for the cytosolic steps of the amino-sugar-recycling pathway. The cytoplasmic de-N-acetylase Lmo0956 of L. monocytogenes is required for cell wall peptidoglycan and teichoic acid biosynthesis and is also essential for bacterial cell growth, cell division, and sensitivity to cell wall hydrolases and peptide antibiotics.

  20. Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France.

    PubMed

    Cimmino, T; Rolain, J-M

    2016-07-01

    We decipher the resistome of Chryseobacterium indologenes MARS15, an emerging multidrug-resistant clinical strain, using the whole genome sequencing strategy. The bacterium was isolated from the sputum of a hospitalized patient with cystic fibrosis in the Timone Hospital in Marseille, France. Genome sequencing was done with Illumina MiSeq using a paired-end strategy. The in silico analysis was done by RAST, the resistome by the ARG-ANNOT database and detection of polyketide synthase (PKS) by ANTISMAH. The genome size of C. indologenes MARS15 is 4 972 580 bp with 36.4% GC content. This multidrug-resistant bacterium was resistant to all β-lactams, including imipenem, and also to colistin. The resistome of C. indologenes MARS15 includes Ambler class A and B β-lactams encoding bla CIA and bla IND-2 genes and MBL (metallo-β-lactamase) genes, the CAT (chloramphenicol acetyltransferase) gene and the multidrug efflux pump AcrB. Specific features include the presence of an urease operon, an intact prophage and a carotenoid biosynthesis pathway. Interestingly, we report for the first time in C. indologenes a PKS cluster that might be responsible for secondary metabolite biosynthesis, similar to erythromycin. The whole genome sequence analysis provides insight into the resistome and the discovery of new details, such as the PKS cluster.

  1. Prevalence and distribution of Vibrio parahaemolyticus in finfish from Cochin (south India).

    PubMed

    Sudha, Santha; Divya, Puthenkandathil S; Francis, Bini; Hatha, Ammanamveetil A M

    2012-01-01

    Finfish samples obtained from four retail outlets in Cochin between June 2009 and June 2010 were investigated for the occurrence of Vibrio parahaemolyticus. A total of 182 samples were collected and suspect isolates were identified using standard biochemical tests and were further confirmed by a species-specific tlh gene. V. parahaemolyticus was detected in 45.1% of samples, with demersal fish being more affected than pelagic species. The bacterium was isolated more frequently from the skin and gills of pelagic fish, while the intestine yielded greater numbers of V. parahaemolyticus in demersal fish. The highest incidence of antibiotic resistance was recorded against ampicillin and streptomycin, followed by carbenicillin, cefpodoxime, cephalothin, colistin and amoxycillin; the lowest was against nalidixic acid, tetracycline, chloramphenicol and ciprofloxacin. Multiple drug resistance was prevalent among isolates. Although only a fraction of strains are pathogenic for humans, the time-temperature abuse in markets provides ample scope for these strains to multiply to dangerous levels. The multidrug resistant nature of the strains adds to the gravity of the problem. High V. parahaemolyticus incidence rates in market finfish samples from areas in and around Cochin clearly indicates that control measures should be adopted to reduce post-harvest contamination in seafood and time-temperature abuse in markets to diminish the risk of V. parahaemolyticus infection associated with seafood destined for human consumption.

  2. Antibiotic Resistance in an Indian Rural Community: A 'One-Health' Observational Study on Commensal Coliform from Humans, Animals, and Water.

    PubMed

    Purohit, Manju Raj; Chandran, Salesh; Shah, Harshada; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia

    2017-04-06

    Antibiotic-resistant bacteria are an escalating grim menace to global public health. Our aim is to phenotype and genotype antibiotic-resistant commensal Escherichia coli (E. coli) from humans, animals, and water from the same community with a 'one-health' approach. The samples were collected from a village belonging to demographic surveillance site of Ruxmaniben Deepchand (R.D.) Gardi Medical College Ujjain, Central India. Commensal coliforms from stool samples from children aged 1-3 years and their environment (animals, drinking water from children's households, common source- and waste-water) were studied for antibiotic susceptibility and plasmid-encoded resistance genes. E. coli isolates from human ( n = 127), animal ( n = 21), waste- ( n = 12), source- ( n = 10), and household drinking water ( n = 122) carried 70%, 29%, 41%, 30%, and 30% multi-drug resistance, respectively. Extended spectrum beta-lactamase (ESBL) producers were 57% in human and 23% in environmental isolates. Co-resistance was frequent in penicillin, cephalosporin, and quinolone. Antibiotic-resistance genes bla CTX-M-9 and qnrS were most frequent. Group D-type isolates with resistance genes were mainly from humans and wastewater. Colistin resistance, or the mcr-1 gene, was not detected. The frequency of resistance, co-resistance, and resistant genes are high and similar in coliforms from humans and their environment. This emphasizes the need to mitigate antibiotic resistance with a 'one-health' approach.

  3. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011.

    PubMed

    Hrabák, J; Papagiannitsis, C C; Študentová, V; Jakubu, V; Fridrichová, M; Zemlickova, H

    2013-11-07

    Carbapenemase-producing Enterobacteriaceae and Pseudomonas spp. are increasingly reported in many countries all over the world. Due to the resistance of those bacteria to almost all antibiotics (e.g.beta-lactams, aminoglycosides, fluoroquinolones),treatment options are seriously limited. In the Czech Republic, the incidence of carbapenemase-producing Enterobacteriaceae seems to be low, restricted to only three cases detected between 2009 and 2010.Here, we describe molecular typing of 15 carbapenemase-producing Klebsiella pneumoniae isolates identified in the Czech Republic during 2011. Five VIM-1-producing isolates belonging to sequence type (ST)11 and one VIM-4-producing isolate of ST1029 have been detected. blaVIM-1 and blaVIM-4 as a part of class 1 integrons were chromosomally located or carried by a plasmid belonging to A/C replicon type (blaVIM-4). KPC-3-producing isolates of ST512, recovered from six patients, caused an outbreak. Three more isolates producing KPC-2 enzyme belonged to ST258. Both blaKPCgenes were part of the Tn4401a transposon carried on plasmids of the pKpQIL type. The isolates were resistant to all antibiotics tested except colistin and/or gentamicin.Four of these 15 strains were recovered from patients repatriated to the Czech Republic from Greece and Italy. This is the first report of outbreaks caused by carbapenemase-producing Enterobacteriaceae in the Czech Republic.

  4. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.

    PubMed

    Langton Hewer, Simon C; Smyth, Alan R

    2017-04-25

    numbers of participants and most had relatively short follow-up periods; however, there was generally a low risk of bias from missing data. In most trials it was difficult to blind participants and clinicians to treatment given the interventions and comparators used. Two trials were supported by the manufacturers of the antibiotic used.Evidence from two trials (38 participants) at the two-month time-point showed treatment of early Pseudomonas aeruginosa infection with inhaled tobramycin results in microbiological eradication of the organism from respiratory secretions more often than placebo, odds ratio 0.15 (95% confidence interval (CI) 0.03 to 0.65) and data from one of these trials, with longer follow up, suggested that this effect may persist for up to 12 months.One randomised controlled trial (26 participants) compared oral ciprofloxacin and nebulised colistin versus usual treatment. Results after two years suggested treatment of early infection results in microbiological eradication of Pseudomonas aeruginosa more often than no anti-pseudomonal treatment, odds ratio 0.12 (95% CI 0.02 to 0.79).One trial comparing 28 days to 56 days treatment with nebulised tobramycin solution for inhalation in 88 participants showed that both treatments were effective and well-tolerated, with no notable additional improvement with longer over shorter duration of therapy. However, this trial was not powered to detect non-inferiority or equivalence .A trial of oral ciprofloxacin with inhaled colistin versus nebulised tobramycin solution for inhalation alone (223 participants) failed to show a difference between the two strategies, although it was underpowered to show this. A further trial of inhaled colistin with oral ciprofloxacin versus nebulised tobramycin solution for inhalation with oral ciprofloxacin also showed no superiority of the former, with increased isolation of Stenotrophomonas maltophilia in both groups.A recent, large trial in 306 children aged between one and 12 years

  5. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water.

    PubMed

    Vaz-Moreira, Ivone; Nunes, Olga C; Manaia, Célia M

    2011-08-15

    Sphingomonadaceae (n = 86) were isolated from a drinking water treatment plant (n = 6), tap water (n = 55), cup fillers for dental chairs (n = 21), and a water demineralization filter (n = 4). The bacterial isolates were identified based on analysis of the 16S rRNA gene sequence, and intraspecies variation was assessed on the basis of atpD gene sequence analysis. The isolates were identified as members of the genera Sphingomonas (n = 27), Sphingobium (n = 28), Novosphingobium (n = 12), Sphingopyxis (n = 7), and Blastomonas (n = 12). The patterns of susceptibility to five classes of antibiotics were analyzed and compared for the different sites of isolation and taxonomic groups. Colistin resistance was observed to be intrinsic (92%). The highest antibiotic resistance prevalence values were observed in members of the genera Sphingomonas and Sphingobium and for beta-lactams, ciprofloxacin, and cotrimoxazole. In tap water and in water from dental chairs, antibiotic resistance was more prevalent than in the other samples, mainly due to the predominance of isolates of the genera Sphingomonas and Sphingobium. These two genera presented distinct patterns of association with antibiotic resistance, suggesting different paths of resistance development. Antibiotic resistance patterns were often related to the species rather than to the site or strain, suggesting the importance of vertical resistance transmission in these bacteria. This is the first study demonstrating that members of the family Sphingomonadaceae are potential reservoirs of antibiotic resistance in drinking water.

  6. Draft genome sequence of carbapenem-resistant Shewanella algae strain AC isolated from small abalone (Haliotis diversicolor).

    PubMed

    Huang, Yao-Ting; Cheng, Jan-Fang; Chen, Shi-Yu; Hong, Yu-Kai; Wu, Zong-Yen; Liu, Po-Yu

    2018-06-19

    Shewanella algae is an environmental marine bacteria and an emerging opportunistic human pathogen. Moreover, there are increasing reports of strains showing multi-drug resistance, particularly carbapenem-resistant isolates. Although S. algae have been found in bivalve shellfish aquaculture, there is very little genome-wide data on resistant determinants in S. algae from shellfish. In the study, we aimed to determine the whole genome sequence of carbapenem-resistant S. algae strain AC isolated from small abalone in Taiwan. Genome DNA was sequenced using an Illumina MiSeq platform using 250bp paired-end reads. De novo genome assembly was performed using Velvet v1.2.07. The whole genome was annotated and several candidate genes for antimicrobial resistance were identified. The genome size was calculated at 4,751,156bp, with a mean G+C content of 53.09%. A total of 4,164 protein-coding sequences, 7 rRNAs, 85 tRNAs, and 5 non-coding RNAs were identified. The genome contains genes associated with resistance to β-lactams, trimethoprim, tetracycline, colistin, and quinolone resistance. Multiple efflux pump genes were also detected. Small abalone is a potential source of foodborne drug resistant S. algae. The genome sequence of a carbapenem-resistant S. algae strain AC isolated from small abalone will provide valuable information for further study of the dissemination of resistance genes at the human-animal interface. Copyright © 2018. Published by Elsevier Ltd.

  7. Blue light irradiation triggers the antimicrobial potential of ZnO nanoparticles on drug-resistant Acinetobacter baumannii.

    PubMed

    Yang, Ming-Yeh; Chang, Kai-Chih; Chen, Liang-Yu; Wang, Po-Ching; Chou, Chih-Chiang; Wu, Zhong-Bin; Hu, Anren

    2018-03-01

    Photodynamic inactivation (PDI) is a non-invasive and safe therapeutic method for microbial infections. Bacterial antibiotic resistance is caused by antibiotics abuse. Drug-resistant Acinetobacter spp. is a serious problem in hospitals around the world. These pathogens from nosocomial infections have high mortality rates in frailer people, and Acinetobacter spp. is commonly found in immunocompromised patients. Visible light is safer than ultraviolet light (UV) for PDI of nosocomial pathogens with mammalian cells. Zinc oxide nanoparticles (ZnO-NPs) were used in this study as an antimicrobial agent and a photosensitizer. ZnO is recognized as safe and has extensive usage in food additives, medical and cosmetic products. In this study, we used 0.125 mg/ml ZnO-NPs combined with 10.8 J/cm 2 blue light (BL) on Acinetobacter baumannii (A. baumannii) that could significantly reduce microbial survival. However, individual exposure to ZnO-NPs does not affect the viability of A. baumannii. BL irradiation could trigger the antimicrobial ability of ZnO nanoparticles on A. baumannii. The mechanism of photocatalytic ZnO-NPs treatment for sterilization occurs through bacterial membrane disruptions. Otherwise, the photocatalytic ZnO-NPs treatment showed high microbial eradication in nosocomial pathogens, including colistin-resistant and imipenem-resistant A. baumannii and Klebsiella pneumoniae. Based on our results, the photocatalytic ZnO-NPs treatment could support hygiene control and clinical therapies without antibiotics to nosocomial bacterial infections. Copyright © 2018. Published by Elsevier B.V.

  8. Clonal dissemination of multilocus sequence type ST15 KPC-2-producing Klebsiella pneumoniae in Bulgaria.

    PubMed

    Markovska, Rumyana; Stoeva, Temenuga; Schneider, Ines; Boyanova, Lyudmila; Popova, Valentina; Dacheva, Daniela; Kaneva, Radka; Bauernfeind, Adolf; Mitev, Vanyo; Mitov, Ivan

    2015-10-01

    A total of 36 consecutive clinical and two fecal-screening carbapenem-resistant Klebsiella pneumoniae isolates from two Bulgarian university hospitals (Varna and Pleven) were investigated. Susceptibility testing, conjugation experiments, and plasmid replicon typing were carried out. Beta-lactamases were characterized by isoelectric focusing, PCR, and sequencing. Clonal relatedness was investigated by RAPD and multilocus sequence typing (MLST). Most of the isolates demonstrated multidrug resistance profile. Amikacin and tigecycline retained good activity with susceptibility rates of 95 and 87%, respectively. The resistance rate to colistin was 63%. Six RAPD- and MLST-types were identified: the dominating MLST-type was ST15 (27 isolates), followed by ST76 (six isolates), and ST1350 (two isolates). ST101, ST258, and ST151 were detected once. All except one of the K. pneumoniae produced KPC-2, mostly in combination with CTX-M-15, while for one isolate (ST101) the enzymes OXA-48 and CTX-M-14 were found. All KPC-2-producing transconjugants revealed the presence of IncFII plasmid. The OXA-48- and CTX-M-14-producing isolate showed the presence of L/M replicon type. The dissemination of KPC-2-producing K.pneumoniae in Bulgaria is mainly due to the sustained spread of successful ST15 clone and to a lesser extent of ST76 clone. This is the first report of OXA-48 producing ST101 K. pneumoniae in Bulgaria. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  9. Diversity and Antibiotic Resistance Patterns of Sphingomonadaceae Isolates from Drinking Water▿

    PubMed Central

    Vaz-Moreira, Ivone; Nunes, Olga C.; Manaia, Célia M.

    2011-01-01

    Sphingomonadaceae (n = 86) were isolated from a drinking water treatment plant (n = 6), tap water (n = 55), cup fillers for dental chairs (n = 21), and a water demineralization filter (n = 4). The bacterial isolates were identified based on analysis of the 16S rRNA gene sequence, and intraspecies variation was assessed on the basis of atpD gene sequence analysis. The isolates were identified as members of the genera Sphingomonas (n = 27), Sphingobium (n = 28), Novosphingobium (n = 12), Sphingopyxis (n = 7), and Blastomonas (n = 12). The patterns of susceptibility to five classes of antibiotics were analyzed and compared for the different sites of isolation and taxonomic groups. Colistin resistance was observed to be intrinsic (92%). The highest antibiotic resistance prevalence values were observed in members of the genera Sphingomonas and Sphingobium and for beta-lactams, ciprofloxacin, and cotrimoxazole. In tap water and in water from dental chairs, antibiotic resistance was more prevalent than in the other samples, mainly due to the predominance of isolates of the genera Sphingomonas and Sphingobium. These two genera presented distinct patterns of association with antibiotic resistance, suggesting different paths of resistance development. Antibiotic resistance patterns were often related to the species rather than to the site or strain, suggesting the importance of vertical resistance transmission in these bacteria. This is the first study demonstrating that members of the family Sphingomonadaceae are potential reservoirs of antibiotic resistance in drinking water. PMID:21705522

  10. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Anderson, Neil W; Buchan, Blake W; Riebe, Katherine M; Parsons, Lauren N; Gnacinski, Stacy; Ledeboer, Nathan A

    2012-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for the identification of bacteria. Factors that may alter protein profiles, including growth conditions and presence of exogenous substances, could hinder identification. Bacterial isolates identified by conventional methods were grown on various media and identified using the MALDI Biotyper (Bruker Daltonics, Billerica, MA) using a direct smear method and an acid extraction method. Specimens included 23 Pseudomonas isolates grown on blood agar, Pseudocel (CET), and MacConkey agar (MAC); 20 Staphylococcus isolates grown on blood agar, colistin-nalidixic acid agar (CNA), and mannitol salt agar (MSA); and 25 enteric isolates grown on blood agar, xylose lysine deoxycholate agar (XLD), Hektoen enteric agar (HE), salmonella-shigella agar (SS), and MAC. For Pseudomonas spp., the identification rate to genus using the direct method was 83% from blood, 78% from MAC, and 94% from CET. For Staphylococcus isolates, the identification rate to genus using the direct method was 95% from blood, 75% from CNA, and 95% from MSA. For enteric isolates, the identification rate to genus using the direct method was 100% from blood, 100% from MAC, 100% from XLD, 92% from HE, and 87% from SS. Extraction enhanced identification rates. The direct method of MALDI-TOF analysis of bacteria from selective and differential media yields identifications of varied confidence. Notably, Staphylococci spp. from CNA exhibit low identification rates. Extraction enhances identification rates and is recommended for colonies from this medium.

  11. Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria.

    PubMed

    Nguyen, Thuy-Khanh; Lam, Shu Jie; Ho, Kitty K K; Kumar, Naresh; Qiao, Greg G; Egan, Suhelen; Boyer, Cyrille; Wong, Edgar H H

    2017-03-10

    Infections caused by multidrug-resistant bacteria are on the rise and, therefore, new antimicrobial agents are required to prevent the onset of a postantibiotic era. In this study, we develop new antimicrobial compounds in the form of single-chain polymeric nanoparticles (SCPNs) that exhibit excellent antimicrobial activity against Gram-negative bacteria (e.g., Pseudomonas aeruginosa) at micromolar concentrations (e.g., 1.4 μM) and remarkably kill ≥99.99% of both planktonic cells and biofilm within an hour. Linear random copolymers, which comprise oligoethylene glycol (OEG), hydrophobic, and amine groups, undergo self-folding in aqueous systems due to intramolecular hydrophobic interactions to yield these SCPNs. By systematically varying the hydrophobicity of the polymer, we can tune the extent of cell membrane wall disruption, which in turn governs the antimicrobial activity and rate of resistance acquisition in bacteria. We also show that the incorporation of OEG groups into the polymer design is essential in preventing complexation with proteins in biological medium, thereby maintaining the antimicrobial efficacy of the compound even in in vivo mimicking conditions. In comparison to the last-resort antibiotic colistin, our lead agents have a higher therapeutic index (by ca. 2-3 times) and hence better biocompatibility. We believe that the SCPNs developed here have potential for clinical applications and the information pertaining to their structure-activity relationship will be valuable toward the general design of synthetic antimicrobial (macro)molecules.

  12. Plasmid Profile Analysis and bla VIM Gene Detection of Metalo β-lactamase (MBL) Producing Pseudomonas aeruginosa Isolates from Clinical Samples.

    PubMed

    S, Jayanthi; M, Jeya

    2014-06-01

    Pseudomonas aeruginosa is a frequent colonizer of hospitalized patients. They are responsible for serious infections such as meningitis, urological infections, septicemia and pneumonia. Carbapenem resistance of Pseudomonas aeruginosa is currently increasingly reported which is often mediated by production of metallo-β-lactamase (MBL). Multidrug resistant Pseudomonas aeruginosa isolates may involve reduced cell wall permeability, production of chromosomal and plasmid mediated β lactamases, aminoglycosides modifying enzymes and an active multidrug efflux mechanism. This study is aimed to detect the presence and the nature of plasmids among metallo-β-lactamase producing Pseudomonas aeruginosa isolates. Also to detect the presence of bla VIM gene from these isolates. Clinical isolates of Pseudomonas aeruginosa showing the metalo-β-lactamase enzyme (MBL) production were isolated. The MBL production was confirmed by three different methods. From the MBL producing isolates plasmid extraction was done by alkaline lysis method. Plasmid positive isolates were subjected for blaVIM gene detection by PCR method. Two thousand seventy six clinical samples yielded 316 (15.22%) Pseudomonas aeruginosa isolates, out of which 141 (44.62%) were multidrug resistant. Among them 25 (17.73%) were metallo-β-lactamase enzyme producers. Plasmids were extracted from 18 out of 25 isolates tested. Five out of 18 isolates were positive for the blaVIM gene detection by the PCR amplification. The MBL producers were susceptible to polymyxin /colistin with MIC ranging from 0.5 - 2μg/ml. Molecular detection of specific genes bla VIM were positive among the carbapenem resistant isolates.

  13. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa

    PubMed Central

    Scott, Martin; Worden, Paul; Huntington, Peter; Hudson, Bernard; Karagiannis, Thomas; Charles, Ian G.; Djordjevic, Steven P.

    2016-01-01

    Pseudomonas aeruginosa are noscomially acquired, opportunistic pathogens that pose a major threat to the health of burns patients and the immunocompromised. We sequenced the genomes of P. aeruginosa isolates RNS_PA1, RNS_PA46 and RNS_PAE05, which displayed resistance to almost all frontline antibiotics, including gentamicin, piperacillin, timentin, meropenem, ceftazidime and colistin. We provide evidence that the isolates are representatives of P. aeruginosa sequence type (ST) 235 and carry Tn6162 and Tn6163 in genomic islands 1 (GI1) and 2 (GI2), respectively. GI1 disrupts the endA gene at precisely the same chromosomal location as in P. aeruginosa strain VR-143/97, of unknown ST, creating an identical CA direct repeat. The class 1 integron associated with Tn6163 in GI2 carries a blaGES-5–aacA4–gcuE15–aphA15 cassette array conferring resistance to carbapenems and aminoglycosides. GI2 is flanked by a 12 nt direct repeat motif, abuts a tRNA-gly gene, and encodes proteins with putative roles in integration, conjugative transfer as well as integrative conjugative element-specific proteins. This suggests that GI2 may have evolved from a novel integrative conjugative element. Our data provide further support to the hypothesis that genomic islands play an important role in de novo evolution of multiple antibiotic resistance phenotypes in P. aeruginosa. PMID:26962050

  14. Resistance Pattern and Detection of Metallo-beta-lactamase Genes in Clinical Isolates of Pseudomonas aeruginosa in a Central Nigeria Tertiary Hospital.

    PubMed

    Zubair, K O; Iregbu, K C

    2018-02-01

    Acquired metallo-β-lactamases (MBLs) pose serious problem both in terms of treatment and infection control in the hospitals and report across the world showed an increase in their prevalence. However, there is a paucity of data from Africa, and their report is rare in Nigeria. This study aimed to determine the prevalence of acquired MBL-resistant genes in carbapenem-resistant Pseudomonas aeruginosa in Abuja, North Central Nigeria. Two hundred nonduplicate, consecutive isolates of P. aeruginosa from clinical samples submitted to the Medical Microbiology Laboratory of National Hospital, Abuja were screened for carbapenem resistance using imipenem and meropenem. Phenotypic detection of MBL-producing strains was determined using Total MBL confirm kits and E-test strips on isolates that were resistant to both Imipenem and meropenem. The MBL genes were detected using multiplex polymerase chain reaction, while the gene variant was determined by sequencing. Twenty-two MBL-producing strains were detected phenotypically, but only 5 harbored the blaVIM-1 gene, giving a prevalence of 2.5%. These 5 strains were resistant to all the antipseudomonal antibiotics tested except Aztreonam and Colistin. Other common MBL-genes were not detected. The prevalence of MBL-producing strains of P. aeruginosa which poses serious challenge for therapeutics and infection control is currently low in Abuja, North Central, Nigeria. Therefore, rational use of the carbapenems and other antipseudomonal antibiotics, regular surveillance and adequate infection control measures should be instituted to limit further spread.

  15. Detection and characterization of carbapenemase-producing Enterobacteriaceae in wounded Syrian patients admitted to hospitals in northern Israel.

    PubMed

    Lerner, A; Solter, E; Rachi, E; Adler, A; Rechnitzer, H; Miron, D; Krupnick, L; Sela, S; Aga, E; Ziv, Y; Peretz, A; Labay, K; Rahav, G; Geffen, Y; Hussein, K; Eluk, O; Carmeli, Y; Schwaber, M J

    2016-01-01

    Since 2013, four hospitals in northern Israel have been providing care for Syrian nationals, primarily those wounded in the ongoing civil war. We analyzed carbapenemase-producing Enterobacteriaceae (CPE) isolates obtained from these patients. Isolate identification was performed using the VITEK 2 system. Polymerase chain reaction (PCR) was performed for the presence of bla KPC, bla NDM, and bla OXA-48. Susceptibility testing and genotyping were performed on selected isolates. During the study period, 595 Syrian patients were hospitalized, most of them young men. Thirty-two confirmed CPE isolates were grown from cultures taken from 30 patients. All but five isolates were identified as Klebsiella pneumoniae and Escherichia coli. Nineteen isolates produced NDM and 13 produced OXA-48. Among a further 29 isolates tested, multilocus sequence typing (MLST) showed that ST278 and ST38 were the major sequence types among the NDM-producing K. pneumoniae and OXA-48-producing E. coli isolates, respectively. Most were resistant to all three carbapenems in use in Israel and to gentamicin, but susceptible to colistin and fosfomycin. The source for bacterial acquisition could not be determined; however, some patients admitted to different medical centers were found to carry the same sequence type. CPE containing bla NDM and bla OXA-48 were prevalent among Syrian wounded hospitalized patients in northern Israel. The finding of the same sequence type among patients at different medical centers implies a common, prehospital source for these patients. These findings have implications for public health throughout the region.

  16. Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran

    PubMed Central

    Moghadam, MN; Motamedifar, M; Sarvari, J; Sedigh, Ebrahim-Saraie H; Mousavi, Same M; Moghadam, FN

    2016-01-01

    Background: Metallo-beta-lactamase (MβL) enzymes production is one of the most important resistance mechanisms against carbapenems in some bacteria including Acinetobacter baumannii. Aims: This study was aimed to determine the antimicrobial susceptibility and the prevalence of MβL among carbapenem-resistant isolates of A. baumannii. Materials and Methods: In this cross-sectional study from October 2012 to April 2013, 98 isolates were identified as A. baumannii using Microgen™ kits and confirmed by molecular method. These isolates were tested for antimicrobial susceptibilities by disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. Carbapenem-resistant isolates were further detected phenotypically by MβL minimal inhibitory concentration (MIC)-test strips, and subsequently positive MβL isolates were confirmed by polymerase chain reaction (PCR). Results: Overall, 98% (96/98) of A. baumannii isolates were detected as carbapenem-resistant by MIC test. Highest sensitivity to the tested antibiotic with 42.9% (42/98) was observed to colistin. Of 96 carbapenem-resistant isolates, 43 were phenotypically positive for MβL; out of 43 isolates, 37 were confirmed for the presence of MβL genes by PCR. Conclusion: The frequency of drug resistance among the clinical samples of A. baumannii isolated in our study against most of the antibiotics was very high. Moreover, all MβL producing isolates were multidrug resistance. Therefore, systematic surveillance to detect MβL producing bacteria and rational prescription and use of carbapenems could be helpful to prevent the spread of carbapenem resistance. PMID:27398247

  17. Survey of quantitative antimicrobial consumption in two different pig finishing systems.

    PubMed

    Moreno, M A

    2012-09-29

    The primary objectives of this study were to: (a) collect on-farm antimicrobial use (AMU) data in fattener pigs employing two questionnaire-based surveys; (b) assess different quantitative measures for quantifying AMU in fattener pigs; (c) compare AMU in fattener pigs between two different management systems producing finishers: farrow-to-finish (FtF) farms versus finisher farms. Two questionnaires were designed both containing five groups of questions focused on the responder, the farm and AMU (eg, in-feed, in-drinking water and parenteral); both surveys were carried out by means of personal face-to-face interviews. Both surveys started with a sample size of 108 potentially eligible farms per survey; nevertheless, finally 67 finisher farms and 49 FtF farms were recruited. Overall percentages of animals exposed to antimicrobials (AM) were high (90 per cent in finisher farms and 54 per cent FtF farms); colistin (61 per cent and 33 per cent) and doxycycline (62 per cent and 23 per cent) were the most common AMs, followed by amoxicillin (51 per cent and 19 per cent) and lincomycin (49 per cent), respectively. Questionnaire-based surveys using face-to-face interviews are useful for capturing information regarding AMU at the farm level. Farm-level data per administration route can be used for comparative AMU analysis between farms. Nevertheless, for the analysis of the putative relationships between AMU and AM resistance, measures based on exposed animals or exposure events are needed.

  18. Improved agar diffusion method for detecting residual antimicrobial agents.

    PubMed

    Tsai, C E; Kondo, F

    2001-03-01

    The improved agar diffusion method for determination of residual antimicrobial agents was investigated, and the sensitivities of various combinations of test organisms and assay media were determined using 7 organisms, 5 media, and 31 antimicrobial agents. Bacillus stearothermophilus and synthetic assay medium (SAM) showed the greatest sensitivity for screening penicillins (penicillin G and ampicillin). The combination of Bacillus subtilis and minimum medium (MM) was the most sensitive for tetracyclines (oxytetracycline and chlortetracycline), B. stearothermophilus and SAM or Micrococcus luteus and Mueller-Hinton agar (MHA) for detecting tylosin and erythromycin, B. subtilis and MHA for aminoglycosides (streptomycin, kanamycin, gentamicin, and dihydrostreptomycin), B. stearothermophilus and SAM for polyethers (salinomycin and lasalocid), and B. subtilis and MM or Clostridium perfringens and GAM for polypeptides (thiopeptin, enramycin, virginiamycin, and bacitracin). However, gram-negative bacterium Escherichia coli ATCC 27166 and MM were better for screening for colistin and polymixin-B. For detecting the synthetic drugs tested, the best combination was B. subtilis and MM for sulfonamides, E. coli 27166 and MM for quinolones (oxolinic acid and nalidixic acid), B. subtilis and MM for furans (furazolidone), and the bioluminescent bacterium Photobacterium phosphoreum and luminescence assay medium for chloramphenicol and oxolinic acid. The results showed that the use of four assay plates, B. stearothermophilus and SAM, B. subtilis and MM, M. luteus and MHA, and E. coli 27166 and MM, was superior to the currently available techniques for screening for residual antimicrobial agents in edible animal tissues.

  19. Pathogenicity of pan-drug-resistant Serratia marcescens harbouring blaNDM-1.

    PubMed

    Gruber, Teresa M; Göttig, Stephan; Mark, Laura; Christ, Sara; Kempf, Volkhard A J; Wichelhaus, Thomas A; Hamprecht, Axel

    2015-04-01

    To characterize a pan-drug-resistant Serratia marcescens clinical isolate carrying the New Delhi metallo-β-lactamase (NDM)-1. The presence of β-lactamase genes was examined by PCR and sequencing. Antibiotic susceptibility was determined by antibiotic gradient test. Transformation assays, transconjugation assays, PFGE and PCR-based replicon typing were used for plasmid analysis. Horizontal gene transfer was evaluated by liquid mating using Escherichia coli J53 as a recipient. Pathogenicity of NDM-1 expressing S. marcescens was analysed using the Galleria mellonella infection model. S. marcescens isolate SM1890 was non-susceptible to all tested antibiotics, with minocycline retaining intermediate activity. blaNDM-1 was located on a 140 kb IncA/C-type plasmid which was transferable to E. coli and Klebsiella pneumoniae by conjugation. The LD50 of the NDM-positive, SM1890 isolate was higher than that of other, NDM-1 negative, S. marcescens strains. The presence of a blaNDM-1-harbouring IncA/C plasmid resulted in marked resistance to β-lactam antibiotics, but had no significant effect on virulence of isogenic strains. Because of the intrinsic resistance of S. marcescens to colistin and reduced susceptibility to tigecycline, treatment options for infections by NDM-1-positive isolates are extremely limited in this species. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.

    PubMed

    Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne

    2018-06-08

    Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.

  1. Activities of doripenem against nosocomial bacteremic drug-resistant Gram-negative bacteria in a medical center in Taiwan.

    PubMed

    Dong, Shao-Xing; Wang, Jann-Tay; Chang, Shan-Chwen

    2012-12-01

    The majority of nosocomial infections in Taiwan hospitals are caused by drug-resistant Gram-negative bacteria (GNB), including Pseudomonas aeruginosa, Acinetobacter baumannii, and various species of Enterobacteriaceae. Carbapenems are important agents for treating infections caused by these GNB. Recently, doripenem was approved for use in Taiwan in August 2009. However, data on its in vitro activity against nosocomial GNB isolated from Taiwan remain limited. The study was designed to look into this clinical issue. A total of 400 nonduplicated nosocomial blood isolates isolated in 2009, inclusive of P. aeruginosa (n = 100), A. baumannii (n = 100), and Enterobacteriaceae (n = 200), were randomly selected from the bacterial bank preserved at National Taiwan University Hospital. Susceptibilities of these 400 isolates to various antibiotics, including doripenem, imipenem, meropenem, ceftazidime, amikacin, ciprofloxacin, colistin, and tigecycline were determined by using Etest. Doripenem demonstrated similar in vitro activity to imipenem and meropenem against P. aeruginosa (87%, vs. 85% and 89%), A. baumannii (56%, vs. 60% and 60%), and Enterobacteriaceae (100%, vs. 98.5% and 99.5%). The prevalence of carbapenem-resistant (any one of three tested carbapenems) P. aeruginosa, A. baumannii, and Enterobacteriaceae isolates was 15%, 44%, and 0.5%, respectively. Doripenem was as effective as imipenem and meropenem in our study. However, there was a significant proportion of carbapenem resistance among the tested isolates. Hence, longitudinal surveillance is necessary to monitor the resistance trend. Copyright © 2012. Published by Elsevier B.V.

  2. An evidential example of airborne bacteria in a crowded, underground public concourse in Tokyo

    NASA Astrophysics Data System (ADS)

    Seino, Kaoruko; Takano, Takehito; Nakamura, Keiko; Watanabe, Masafumi

    2005-01-01

    We examined airborne bacteria in an underground concourse in Tokyo and investigated conditions that influenced bacterial counts. Airborne bacteria were collected by using an impactor sampler. Colonies on plate count agar (PCA) and Columbia colistin-nalidixic acid agar with 5% sheep blood (CNA agar) were enumerated. The range, geometric mean, and 95% CI of the bacterial counts (CFU m-3) on PCA and CNA agar were 150-1380, 456, 382-550 and 50-990, 237, 182-309, respectively. Bacterial counts on PCA significantly correlated with number of the pedestrians (r=0.89), relative humidity (r=0.70) and airborne dust (PM5.0) (r=0.73). Results of a multiple regression indicated independent positive association between the number of pedestrians and bacterial counts on PCA (p<0.01) after excluding the influence of relative humidity and airborne dust. Similar results were obtained with the statistical analysis for the counts of bacteria on CNA agar. Gram-positive cocci were dominant on PCA and CNA agar. Staphylococcus epidermidis and Micrococcus spp. were dominant among the 11 genera and 19 species identified in the present study. Considering the pattern of identified species and the significant independent association between number of pedestrians and bacterial counts, airborne bacteria in a crowded underground concourse were mostly originated from the pedestrians who were walking in the underground concourse. This study gave an evidential example of bacterial conditions in the air of an underground crowded public space in Tokyo.

  3. In vitro susceptibility and resistance phenotypes in contemporary Citrobacter isolates in a University Hospital in Crete, Greece.

    PubMed

    Maraki, Sofia; Vardakas, Konstantinos Z; Mavromanolaki, Viktoria-Eirini; Kyriakidou, Margarita; Spais, George; Kofteridis, Diamantis P; Samonis, George; Falagas, Matthew E

    2017-07-01

    Data on Citrobacter spp. susceptibility are scarce. We sought to study the evolution in the susceptibility of 385 Citrobacter spp. at the University Hospital of Heraklion, Crete, Greece during a six-year period (2010-2015). Non-duplicate strains isolated from inpatients (intensive care unit, oncology, surgery, internal medicine, paediatrics) and outpatients were studied using Vitek 2. Phenotypic confirmatory tests were applied for detection of β-lactamases and aminoglycoside modifying enzymes. C. freundii (172, 44.7%) and C. koseri (166, 43.1%) were the most commonly isolated species. C. braakii (34), C. amalonaticus (6), C. youngae (6) and C. sedlakii (1) were the remaining isolates. Colistin and fosfomycin were the most active antibiotics (both 99.2%) followed by carbapenems (99%) aminoglycosides (96.6-98.4%), tigecycline (96.1%), cefepime (94.8%), ciprofloxacin (94.3%), tetracycline (92.7%), trimethoprim/sulphamethoxazole (91.4%), chloramphenicol (88.1%), piperacillin/tazobactam (86.5%) and 3rd generation cephalosporins (85.7%). C. freundii were more resistant than C. koseri. Antibiotic resistance did not increase during the study period for most antibiotics. Lower susceptibility to all antibiotics was observed among multi-drug resistant (MDR) strains. AmpC was the most common resistant mechanism (10.9%); carbapenemases (1.3%) and aminoglycoside modifying enzymes (2.9%) were also detected. All AmpC producers were resistant to cephalosporins but not to carbapenems. In all but one isolates aminoglycoside resistance was accompanied by acquired β-lactamases. Although Citrobacter species in general were susceptible, antibiotic susceptibility testing is required for the detection of resistant isolates.

  4. An Update on Aerosolized Antibiotics for Treating Hospital-Acquired and Ventilator-Associated Pneumonia in Adults.

    PubMed

    Wood, G Christopher; Swanson, Joseph M

    2017-12-01

    A significant percentage of patients with hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) have poor outcomes with intravenous antibiotics. It is not clear if adding aerosolized antibiotics improves treatment. This review is an update on using aerosolized antibiotics for treating HAP/VAP in adults. PubMed search using the terms "aerosolized antibiotics pneumonia," "nebulized antibiotics pneumonia," and "inhaled antibiotics pneumonia." Reference lists from identified articles were also searched. Clinical studies of aerosolized antibiotics for treating HAP/VAP in adults from July 2010 to March 2017. This article updates a previous review on this topic written in mid-2010. The size and quality of studies have improved dramatically in the recent time period compared to previous studies. However, there still are not large randomized controlled trials available. Colistin and aminoglycosides were the most commonly studied agents, and the most common pathogens were Pseudomonas and Acinetobacter. The clinical efficacy of adding aerosolized antibiotics was mixed. Approximately half of the studies showed better outcomes, and none showed worse outcomes. Aerosolized antibiotics appear to be relatively safe, though pulmonary adverse events can occur. Attention to proper administration technique in mechanically ventilated patients is required, including the use of vibrating plate nebulizers. Adding aerosolized antibiotics to intravenous antibiotics may improve the outcomes of adult patients with HAP/VAP in some settings. It seems reasonable to add aerosolized antibiotics in patients with multidrug-resistant organisms or who appear to be failing therapy. Clinicians should pay attention to potential adverse events and proper administration technique.

  5. Treatment strategy for a multidrug-resistant Klebsiella UTI.

    PubMed

    Fleming, Erin; Heil, Emily L; Hynicka, Lauren M

    2014-01-01

    To describe the management strategy for a multidrug-resistant (MDR) Klebsiella urinary tract infection (UTI). A 69-year-old Caucasian woman with a past medical history of recurrent UTIs and a right-lung transplant presented with fever to 101.4°F, chills, malaise, and cloudy, foul-smelling urine for approximately 1 week. She was found to have a MDR Klebsiella UTI that was sensitive to tigecycline and cefepime. To further evaluate the degree of resistance Etest minimum inhibitory concentrations were requested for cefepime, amikacin, meropenem, and ertapenem. The patient received a 14-day course of amikacin, which resulted in resolution of her symptoms. One month later, the patient's UTI symptoms returned. The urine culture again grew MDR Klebsiella, sensitive only to tigecycline. Fosfomycin was initiated and resulted in limited resolution of her symptoms. Colistin was started, however, therapy was discontinued on day 5 secondary to the development of acute kidney injury. Despite the short course of therapy, the patient's symptoms resolved. The case presented lends itself well to numerous discussion items that are important to consider when determining optimal treatment for MDR Gram-negative bacilli (GNBs). Susceptibility testing is an important tool for optimizing antibiotic therapy, however, automated systems may overestimate the susceptibility profile for a MDR GNB. Treatment strategies evaluated to treat MDR GNB, include combination therapy with a carbepenem and synergy using polymyxin. We have described the management strategy for a MDR Klebsiella UTI, the consequences of the initial management strategy, and potential strategies to manage these types of infections in future patients.

  6. Plasmid Profile Analysis and bla VIM Gene Detection of Metalo β-lactamase (MBL) Producing Pseudomonas aeruginosa Isolates from Clinical Samples

    PubMed Central

    M, Jeya

    2014-01-01

    Introduction:Pseudomonas aeruginosa is a frequent colonizer of hospitalized patients. They are responsible for serious infections such as meningitis, urological infections, septicemia and pneumonia. Carbapenem resistance of Pseudomonas aeruginosa is currently increasingly reported which is often mediated by production of metallo-β-lactamase (MBL). Multidrug resistant Pseudomonas aeruginosa isolates may involve reduced cell wall permeability, production of chromosomal and plasmid mediated β lactamases, aminoglycosides modifying enzymes and an active multidrug efflux mechanism. Objective: This study is aimed to detect the presence and the nature of plasmids among metallo-β-lactamase producing Pseudomonas aeruginosa isolates. Also to detect the presence of bla VIM gene from these isolates. Materials and Methods: Clinical isolates of Pseudomonas aeruginosa showing the metalo-β-lactamase enzyme (MBL) production were isolated. The MBL production was confirmed by three different methods. From the MBL producing isolates plasmid extraction was done by alkaline lysis method. Plasmid positive isolates were subjected for blaVIM gene detection by PCR method. Results: Two thousand seventy six clinical samples yielded 316 (15.22%) Pseudomonas aeruginosa isolates, out of which 141 (44.62%) were multidrug resistant. Among them 25 (17.73%) were metallo-β-lactamase enzyme producers. Plasmids were extracted from 18 out of 25 isolates tested. Five out of 18 isolates were positive for the blaVIM gene detection by the PCR amplification. Conclusion: The MBL producers were susceptible to polymyxin /colistin with MIC ranging from 0.5 – 2μg/ml. Molecular detection of specific genes bla VIM were positive among the carbapenem resistant isolates. PMID:25120980

  7. Using experimental evolution to identify druggable targets that could inhibit the evolution of antimicrobial resistance

    PubMed Central

    Mehta, Heer H.; Prater, Amy G.; Shamoo, Yousif

    2017-01-01

    With multi-drug and pan-drug resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach. PMID:28928474

  8. Drug elution from high-dose antibiotic-loaded acrylic cement: a comparative, in vitro study.

    PubMed

    Gasparini, Giorgio; De Gori, Marco; Calonego, Giovanni; Della Bora, Tommaso; Caroleo, Benedetto; Galasso, Olimpio

    2014-11-01

    High-dose antibiotic-loaded acrylic cement (ALAC) is used for managing peri-prosthetic joint infections (PJIs). The marked increase in resistant high-virulence bacteria is drawing the attention of physicians toward alternative antimicrobial formulations loaded into acrylic bone cement. The aim of this in vitro study was to determine the elution kinetics of 14 different high-dose ALACs. All ALAC samples showed a burst release of antibiotics in the first hour, progressively decreasing over time, and elution curves strictly adhered to a nonlinear regression analysis formula. Among aminoglycosides, commonly seen as the most appropriate antibiotics to be loaded into the bone cement, the highest elution rate was that of tobramycin. Among the glycopeptides, a class of antibiotics that should be considered to treat PJIs because of the prevalence of aminoglycoside resistance, vancomycin showed better elution than teicoplanin. Clindamycin, which can be associated with aminoglycosides to prepare ALACs and represents a useful option against the most common pathogens responsible for PJIs, showed the highest absolute and relative elutions among all the tested formulations. A noticeable elution was also detected for colistin, an antibiotic of last resort for treating multidrug-resistant bacteria. The current study demonstrates theoretical advantages in the preparation of ALAC for some antibiotics not routinely used in the clinical setting for PJIs. The use of these antibiotics based on the infecting bacteria sensitivity may represent a useful option for physicians to eradicate PJIs. In vivo testing should be considered in the future to confirm the results of this study. Copyright 2014, SLACK Incorporated.

  9. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods

    PubMed Central

    Lee, Chang-Ro; Lee, Jung Hun; Park, Kwang Seung; Kim, Young Bae; Jeong, Byeong Chul; Lee, Sang Hee

    2016-01-01

    The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed. PMID:27379038

  10. A novel agar formulation for isolation and direct enumeration of Vibrio vulnificus from oyster tissue.

    PubMed

    Griffitt, Kimberly J; Grimes, D Jay

    2013-08-01

    A new selective and differential medium, Vibrio vulnificus X-Gal (VVX), was developed for direct enumeration of V. vulnificus (Vv) from oyster samples. This agar utilizes cellobiose and lactose as carbon sources, and the antibiotics colistin and polymyxin B as selective agents. Hydrolysis of 5-bromo-4-chloro-3-indolyl- beta-d-galactopyranoside (x-gal), used in the agar as a lactose analog, produces an insoluble blue dye that makes lactose positive colonies easily distinguishable from any non-lactose fermenting bacteria. Various bacterial species were spot plated onto thiosulfate-citrate-bile salts-sucrose agar (TCBS), and CHROMagar Vibrio, two vibrio-specific selective agars, non-selective agar, and VVX to compare selectivity of VVX to other widely used media. A V. vulnificus pure culture was serially diluted on VVX and non-selective agar to determine the VVX percent recovery. Water and oyster samples were spread plated on VVX agar and allowed to incubate for 16-18 h at 33 °C. Blue and white colonies from VVX agar were picked and screened by end point PCR for the Vv hemolysin vvhA. VVX agar showed a significant improvement over TCBS and CHROMagar at preventing non-target growth. There was an 87.5% recovery compared to non-selective plating and a 98% positivity rate of blue colonies picked from oyster tissue plating. The findings suggest that this new agar is a fast, distinctive, and accurate method for enumeration of V. vulnificus from the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Emerging Infectious Diseases, Antimicrobial Resistance and Millennium Development Goals: Resolving the Challenges through One Health.

    PubMed

    Asokan, G V; Kasimanickam, R K

    2013-01-01

    Most emerging infectious diseases are zoonoses, which could severely hamper reaching the targets of millennium development goals (MDG). Five out of the total eight MDG's are strongly associated with the Emerging Infectious Diseases (EIDs). Recent emergence and dissemination of drug-resistant pathogens has accelerated and prevent reaching the targets of MDG, with shrinking of therapeutic arsenal, mostly due to antimicrobial resistance (AMR). World Health Organization (WHO has identified AMR as 1 of the 3 greatest threats to global health. Until now, methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) have been observed in hospital-acquired infections. In India, within a span of three years, New Delhi metallo-β-lactamase prevalence has risen from three percent in hospitals to twenty- fifty percent and is found to be colistin resistant as well. Routine use of antimicrobials in animal husbandry accounts for more than 50% in tonnage of all antimicrobial production to promote growth and prophylaxis. This has consequences to human health and environmental contamination with a profound impact on the environmental microbiome, resulting in resistance. Antibiotic development is now considered a global health crisis. The average time required to receive regulatory approval is 7.2 years. Moreover, the clinical approval success is only 16%. To overcome resistance in antimicrobials, intersectoral partnerships among medical, veterinary, and environmental disciplines, with specific epidemiological, diagnostic, and therapeutic approaches are needed. Joint efforts under "One Health", beyond individual professional boundaries are required to stop antimicrobial resistance against zoonoses (EID) and reach the MDG.

  12. Appropriateness of antibiotic prescription for targeted therapy of infections caused by multidrug-resistant bacteria: assessment of the most common improper uses in a tertiary hospital in southern Italy.

    PubMed

    Viceconte, Giulio; Maraolo, Alberto Enrico; Iula, Vita Dora; Catania, Maria Rosaria; Tosone, Grazia; Orlando, Raffaele

    2017-09-01

    A huge proportion of antibiotic therapies for infections caused by multidrug-resistant bacteria (MDR) are inappropriate. In this study, we described the most common causes of inappropriateness of definitive antibiotic regimes in a large university hospital in southern Italy and we evaluated the impact on microbial eradication, length of stay, 30-day readmission and mortality. We retrospectively assessed 45 patients who received a definitive antibiotic therapy after isolation of multidrug-resistant Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter spp. strains between 2014 and 2015. From the literature, we set a series of criteria to retrospectively determine the appropriateness of the therapy. In all, 61% of the prescribed antibiotic regimes were found to be inappropriate, especially due to incorrect drug dosage. It emerged that meropenem was the antibiotic most frequently inappropriately used. In 46% of infections caused by MDR but not extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenems were inappropriately administered. Microbial eradication was achieved in 87% of the appropriate therapy group compared to 31% of the inappropriate therapy group (chi-square=6.750, p<0.027). No statistically significant association was found between inappropriate therapy and the length of stay (chi-square=3.084, p=0.101) and 30-day readmission (p=0.103). Definitive antibiotic therapy in infections caused by multidrug-resistant bacteria in a large university hospital is often inappropriate, especially due to the drug dosing regimen, particularly in the case of meropenem and colistin. This inappropriateness has a significant impact on post-treatment microbial eradication in specimens collected after antibiotic therapy.

  13. A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ3N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli.

    PubMed

    Rana, Namrata; Jesse, Helen E; Tinajero-Trejo, Mariana; Butler, Jonathan A; Tarlit, John D; von Und Zur Muhlen, Milena L; Nagel, Christoph; Schatzschneider, Ulrich; Poole, Robert K

    2017-10-01

    Carbon monoxide-releasing molecules (CORMs) are a promising class of new antimicrobials, with multiple modes of action that are distinct from those of standard antibiotics. The relentless increase in antimicrobial resistance, exacerbated by a lack of new antibiotics, necessitates a better understanding of how such novel agents act and might be used synergistically with established antibiotics. This work aimed to understand the mechanism(s) underlying synergy between a manganese-based photoactivated carbon monoxide-releasing molecule (PhotoCORM), [Mn(CO)3(tpa-κ 3 N)]Br [tpa=tris(2-pyridylmethyl)amine], and various classes of antibiotics in their activities towards Escherichia coli EC958, a multi-drug-resistant uropathogen. The title compound acts synergistically with polymyxins [polymyxin B and colistin (polymyxin E)] by damaging the bacterial cytoplasmic membrane. [Mn(CO)3(tpa-κ 3 N)]Br also potentiates the action of doxycycline, resulting in reduced expression of tetA, which encodes a tetracycline efflux pump. We show that, like tetracyclines, the breakdown products of [Mn(CO)3(tpa-κ 3 N)]Br activation chelate iron and trigger an iron starvation response, which we propose to be a further basis for the synergies observed. Conversely, media supplemented with excess iron abrogated the inhibition of growth by doxycycline and the title compound. In conclusion, multiple factors contribute to the ability of this PhotoCORM to increase the efficacy of antibiotics in the polymyxin and tetracycline families. We propose that light-activated carbon monoxide release is not the sole basis of the antimicrobial activities of [Mn(CO)3(tpa-κ 3 N)]Br.

  14. Beta-lactams in continuous infusion for Gram-negative bacilli osteoarticular infections: an easy method for clinical use.

    PubMed

    Ribera, Alba; Soldevila, Laura; Rigo-Bonnin, Raul; Tubau, Fe; Padullés, Ariadna; Gómez-Junyent, Joan; Ariza, Javier; Murillo, Oscar

    2018-04-01

    Continuous infusion (CI) of beta-lactams could optimize their pharmacokinetic/pharmacodynamic indices, especially in difficult-to-treat infections. To validate an easy-to-use method to guide beta-lactams dosage in CI (formula). A retrospective analysis was conducted of a prospectively collected cohort (n = 24 patients) with osteoarticular infections caused by Gram-negative bacilli (GNB) managed with beta-lactams in CI. Beta-lactams dose was calculated using a described formula (daily dose = 24 h × beta-lactam clearance × target "steady-state" concentration) to achieve concentrations above the MIC. We correlated the predicted concentration (C pred  = daily dose/24 h × beta-lactam clearance) with the patient's observed concentration (C obs ) measured by UPLC-MS/MS (Spearman's coefficient). The most frequent microorganism treated was P. aeruginosa (21 cases; 9 MDR). Beta-lactams in CI were ceftazidime (n = 14), aztreonam (7), and piperacillin/tazobactam (3), mainly used in combination (12 with colistin, 5 with ciprofloxacin) and administered without notable side effects. The plasma C obs was higher overall than C pred ; the Spearman correlation between both concentrations was rho = 0.6 (IC 95%: 0.2-0.8) for all beta-lactams, and rho = 0.8 (IC 95%: 0.4-1) for those treated with ceftazidime. The formula may be useful in clinical practice for planning the initial dosage of beta-lactams in CI, while we await a systematic therapeutic drug monitoring. The use of beta-lactams in CI was safe.

  15. Surveillance of carbapenemase-producing Enterobacteriaceae in the Indian Ocean Region between January 2010 and December 2015.

    PubMed

    Holman, A M; Allyn, J; Miltgen, G; Lugagne, N; Traversier, N; Picot, S; Lignereux, A; Oudin, C; Belmonte, O; Allou, N

    2017-09-01

    The aim of this study was to trace the emergence of carbapenemase-producing Enterobacteriaceae (CPE) on Reunion Island, a French overseas territory well suited for the surveillance of CPE emergence in patients from the entire Indian Ocean Region. This retrospective multicenter study was conducted on Reunion Island between 2010 and 2015. A total of 43 CPEs were isolated during the course of the study, in 36 patients (50% in the last year alone). Among these patients, 21 had a link with a foreign country (58%), mainly Mauritius (47.6%). Over the same period, CPEs were isolated from 13 of 1735 (0.7%) repatriated patients to Reunion Island from another country of the Indian Ocean Region. The incidence of isolation of CPEs in the repatriated patients treated in Mauritius was higher (9.2%) than in patients treated in Madagascar or the Comoros Islands (<1%, P<0.001). The most commonly isolated microorganism was Klebsiella pneumoniae (39.5%). The most frequently identified carbapenemase was NDM-1 (81.4%); 100% and 56% of the NDM-1 strains were susceptible to tigecycline and colistin, respectively. In-hospital mortality rate was higher in patients presenting with CPE infection than in patients without CPE infection (75% vs. 25%, P=0.04). As elsewhere in the world, the number of CPE cases on Reunion Island is on the rise. Most cases involve patients from Mauritius, which justifies screening and isolating CPE in patients from that country. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009.

    PubMed

    Carbonne, A; Thiolet, J M; Fournier, S; Fortineau, N; Kassis-Chikhani, N; Boytchev, I; Aggoune, M; Seguier, J C; Senechal, H; Tavolacci, M P; Coignard, B; Astagneau, P; Jarlier, V

    2010-12-02

    An outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae type 2 was detected in September 2009 in two hospitals in a suburb south of Paris, France. In total, 13 KPC-producing K. pneumoniae type 2 cases (four with infections and nine with digestive-tract colonisations) were identified, including a source case transferred from a Greek hospital. Of the 13 cases, seven were secondary cases associated with use of a contaminated duodenoscope used to examine the source case (attack rate: 41%) and five were secondary cases associated with patient-to-patient transmission in hospital. All isolated strains from the 13 patients: (i) exhibited resistance to all antibiotics except gentamicin and colistin, (ii) were more resistant to ertapenem (minimum inhibitory concentration (MIC) always greater than 4 mg/L) than to imipenem (MIC: 1–8 mg/L, depending on the isolate), (iii) carried the blaKPC-2 and blaSHV12 genes and (iv) had an indistinguishable pulsed-field gel electrophoresis (PFGE) pattern. These cases occurred in three hospitals: some were transferred to four other hospitals. Extended infection control measures implemented in the seven hospitals included: (i) limiting transfer of cases and contact patients to other wards, (ii) cohorting separately cases and contact patients, (iii) reinforcing hand hygiene and contact precautions and (iv) systematic screening of contact patients. Overall, 341 contact patients were screened. A year after the outbreak, no additional case has been identified in these seven hospitals. This outbreak emphasises the importance of rapid identification and notification of emerging highly resistant K. pneumoniae strains in order to implement reinforced control measures.

  17. Antibiotic susceptibility patterns and prevalence of group B Streptococcus isolated from pregnant women in Misiones, Argentina

    PubMed Central

    Quiroga, M.; Pegels, E.; Oviedo, P.; Pereyra, E.; Vergara, M.

    2008-01-01

    This study was performed to determine the susceptibility patterns and the colonization rate of Group B Streptococcus (GBS) in a population of pregnant women. From January 2004 to December 2006, vaginal-rectal swabs were obtained from 1105 women attending Dr. Ramón Madariaga Hospital, in Posadas, Misiones, Argentina. The carriage rate of GBS among pregnant women was 7.6%. A total of 62 GBS strains were randomly selected for in vitro susceptibility testing to penicillin G, ampicillin, tetracycline, levofloxacin, gatifloxacin, ciprofloxacin, quinupristin-dalfopristin, linezolid, vancomycin, rifampicin, trimethoprim- sulfametoxazol, nitrofurantoin, gentamicin, clindamycin and erythromycin, and determination of resistance phenotypes. No resistance to penicillin, ampicillin, quinupristin-dalfopristin, linezolid, and vancomycin was found. Of the isolates examined 96.8%, 98.3%, 46.8%, and 29.0% were susceptible to rifampicin, nitrofurantoin, trimethoprim-sulfametoxazol and tetracycline, respectively. Rank order of susceptibility for the quinolones was: gatifloxacin (98.4%) > levofloxacin (93.5%) > ciprofloxacin (64.5%). The rate of resistance to erythromycin (9.7%) was higher than that of other reports from Argentina. High-level resistance to gentamicin was not detected in any of the isolates. Based on our finding of 50% of GBS isolates with MIC to gentamicin equal o lower than 8 μg/ml, a concentration used in one of the selective media recommended for GBS isolation, we suggested, at least in our population, the use of nalidixic acid and colistin in selective media with the aim to improve the sensitivity of screening cultures for GBS carriage in women. PMID:24031210

  18. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2016-01-01

    Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p < 0.0001) decrease the bacterial burden in mice with chronic A. baumannii burn wound infection. The polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Development of a Selective Culture Medium for Primary Isolation of the Main Brucella Species▿

    PubMed Central

    De Miguel, M. J.; Marín, C. M.; Muñoz, P. M.; Dieste, L.; Grilló, M. J.; Blasco, J. M.

    2011-01-01

    Bacteriological diagnosis of brucellosis is performed by culturing animal samples directly on both Farrell medium (FM) and modified Thayer-Martin medium (mTM). However, despite inhibiting most contaminating microorganisms, FM also inhibits the growth of Brucella ovis and some B. melitensis and B. abortus strains. In contrast, mTM is adequate for growth of all Brucella species but only partially inhibitory for contaminants. Moreover, the performance of both culture media for isolating B. suis has never been established properly. We first determined the performance of both media for B. suis isolation, proving that FM significantly inhibits B. suis growth. We also determined the susceptibility of B. suis to the antibiotics contained in both selective media, proving that nalidixic acid and bacitracin are highly inhibitory, thus explaining the reduced performance of FM for B. suis isolation. Based on these results, a new selective medium (CITA) containing vancomycin, colistin, nystatin, nitrofurantoin, and amphotericin B was tested for isolation of the main Brucella species, including B. suis. CITA's performance was evaluated using reference contaminant strains but also field samples taken from brucella-infected animals or animals suspected of infection. CITA inhibited most contaminant microorganisms but allowed the growth of all Brucella species, to levels similar to those for both the control medium without antibiotics and mTM. Moreover, CITA medium was more sensitive than both mTM and FM for isolating all Brucella species from field samples. Altogether, these results demonstrate the adequate performance of CITA medium for the primary isolation of the main Brucella species, including B. suis. PMID:21270216

  20. Release of antibiotics from collagen dressing.

    PubMed

    Grzybowski, J; Antos-Bielska, M; Ołdak, E; Trafny, E A

    1997-01-01

    Our new collagen dressing has been developed recently. Three types (A, B, and C) of the dressing were prepared in this study. Each type contained bacitracin, neomycin or colistin. The antibiotic was input into: i. collagen sponge (CS)--type A, ii. layer of limited hydrophobicity (LLH)--type B, and iii. into both CS and LLH layers--type C. The final concentration of the antibiotic that resulted from the loading level was 2 mg/cm2 for the dressings of type A and B and 4 mg/cm2 for the dressing of type C. The antibiotics were then extracted from the pieces of dressings for two days through dialysis membrane. Susceptibility of 54 bacterial strains (S. aureus, P. aeruginosa, and Acinetobacter) isolated from burn wounds were tested to the three antibiotics used for preparation of the dressings. The results of the study evidenced that efficiency of released of antibiotics into the extracts depended on the kind of antibiotic and on the type of dressing. The concentration of the antibiotics proved to be much higher than MIC90 values of the bacterial isolates tested in respect to their susceptibility. The dressing containing mixture of the three antibiotics in two layers--CS and LLH is now considered as potentially effective for care of infected wounds. It may be useful for the treatment of infected wounds or for profilaxis of contaminated wounds, ensuring: i. sufficient antimicrobial activity in wound, and ii. optimal wound environment for the presence of collagenic biomaterial on the damaged tissue.

  1. Emergence of NDM-1 among carbapenem-resistant Klebsiella pneumoniae in Iraqi hospitals.

    PubMed

    Hussein, Nadheema Hammood

    2017-09-01

    Carbapenems are the last drugs of choice apart from colistin against serious infections caused by Gram-negative bacteria. However, there are increasing number of reports indicating prevailing emergence of metallo-β-lactamase (MBL)-producing clinical isolates worldwide and among them New Delhi MBL (NDM) is the most prevalent one. This study reports NDM-1 for the first time among Klebsiella pneumoniae from hospitalized patients in Baghdad, Iraq. Fifty-five clinical isolates of K. pneumoniae resistant to carbapenem were investigated from burned wounds, sputum, and blood samples. The susceptibility to different antibiotics was tested by VITEK-2 system. All strains were multidrug-resistant and they showed nine different antimicrobial-resistant patterns (A-I) and the most effective antibiotic on these strains was levofloxacin (85.45%). The phenotypic detection of carbapenemases by MASTDISCS D70C revealed 29 (52.73%) strains were MBL-producing, out of 55 were carbapenem-resistant K. pneumoniae strains. The bla NDM-1 and other MBL genes were detected by conventional PCR and the result showed 37 (67.27%) strains positive for bla NDM-1 gene and only 5 (9.1%) strains harbored bla IMP gene, while all strains were negative for bla VIM , bla SIM , bla GIM , and bla SPM genes. Our results showed the coexistence of both bla NDM-1 and bla IMP genes in three strains of K. pneumoniae, while indicated widespread NDM-1 in Baghdad, Iraq. Hence, it is necessary to follow proper infection control practices and physicians should be aware of the patients with such risk factors.

  2. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d.

    PubMed

    Tang, Zhiru; Yin, Yulong; Zhang, Youming; Huang, Ruilin; Sun, Zhihong; Li, Tiejun; Chu, Wuying; Kong, Xiangfeng; Li, Lili; Geng, Meimei; Tu, Qiang

    2009-04-01

    Lactoferrin has antimicrobial activity associated with peptide fragments lactoferricin (LFC) and lactoferrampin (LFA) released on digestion. These two fragments have been expressed in Photorhabdus luminescens as a fusion peptide linked to protein cipB. The construct cipB-LFC-LFA was tested as an alternative to antimicrobial growth promoters in pig production. Sixty piglets with an average live body weight of 5.42 (sem 0.59) kg were challenged with enterotoxigenic Escherichia coli and randomly assigned to four treatment groups fed a maize-soyabean meal diet containing either no addition (C), cipB at 100 mg/kg (C+B), cipB-LFC-LFA at 100 mg/kg (C+L) or colistin sulfate at 100 mg/kg (C+CS) for 3 weeks. Compared with C, dietary supplementation with C+L for 3 weeks increased daily weight gain by 21 %, increased recovery from diarrhoea, enhanced serum glutathione peroxidase (GPx), peroxidase (POD) and total antioxidant content (T-AOC), liver GPx, POD, superoxide dismutase and T-AOC, Fe, total Fe-binding capacity, IgA, IgG and IgM levels (P < 0.05), decreased the concentration of E. coli in the ileum, caecum and colon (P < 0.05), increased the concentration of lactobacilli and bifidobacteria in the ileum, caecum and colon (P < 0.05), and promoted development of the villus-crypt architecture of the small intestine. Growth performance was similar between C+L- and C+CS-supplemented pigs. The present results indicate that LFC-LFA is an effective alternative to the feed antibiotic CS for enhancing growth performance in piglets weaned at age 21 d.

  3. Prevalence and molecular characterization of Vibrio cholerae O1, non-O1 and non-O139 in tropical seafood in Cochin, India.

    PubMed

    Kumar, Rakesh; Lalitha, Kuttannappilly V

    2013-03-01

    The objective of this study was to determine the prevalence of O1, O139, and non-O1 and non-O139 Vibrio cholerae, which were associated with fresh and raw seafood samples harvested from Cochin, India waters during 2009-2011. Results from V. cholerae-specific biochemical, molecular, and serological assays identified five El Tor V. cholerae O1 Ogawa strains and 377 non-O1, non-O139 V. cholerae strains from 265 seafood samples. V. cholerae O139 strains were not isolated. Polymerase chain reaction assays confirmed the presence of V. cholerae O1 El Tor biotype in seafood. Antibiotic susceptibility analysis revealed that the V. cholerae O1 strains were pansusceptible to 20 test antibiotics, whereas 26%, 40%, 62%, and 84% of the non-O1, non-O139 V. cholerae strains were resistant to cefpodoxime, ticarcillin, augmentin, and colistin, respectively. Detection of virulence and regulatory genes in V. cholerae associated with seafood revealed the presence of virulence and regulatory genes (i.e., ctx, zot, ace, toxR genes) in V. cholerae O1 strains, nevertheless, presence of ace and toxR genes were detected in non-O1, non-O139 in 9.8 and 91% strains, respectively. In conclusion, the presence of pathogenic V. cholerae in seafood harvested from local Cochin waters warrants the introduction of a postharvest seafood monitoring program, which will lead to a greater understanding of the distribution, abundance, and virulence of diverse pathogenic Vibrio populations that inhabit these different coastal regions so that a risk management program can be established.

  4. In vitro activity of tigecycline and comparators against gram-negative bacteria isolated from a tertiary hospital in Alexandria, Egypt.

    PubMed

    Mohamed, Nelly M; Youssef, Alaa A F

    2011-12-01

    The emergence of infections caused by multidrug-resistant Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, has necessitated the search for alternative therapy by either introducing new agents or renewing interest in old agents. This study compares the in vitro activity of tigecycline (TIG), recently introduced to Egyptian market, to other potentially active antimicrobials as Colistin (COL), imipenem (IPM), levofloxacin (LEV), and piperacillin/tazobactam (PIP/TAZ) against 67 Gram-negative clinical isolates obtained from El- Meery Hospital in Alexandria, Egypt. El-Meery Hospital is a 1,500-bed tertiary teaching hospital where TIG has not been previously used. Based on MIC(90)s, TIG was found to be a comparator to IPM and COL (MIC(90)= 8 μg/ml). LEV and PIP/TAZ were less active than TIG exhibiting high MIC(90)s. TIG inhibited 100% of Escherichia coli and K. pneumoniae and 60% of Ps. aeruginosa and A. baumannii isolates. In time-kill studies against IPM-resistant isolates, TIG showed bactericidal activity after 6 hours of contact against the Enterobacteriaceae isolates and after 3 hours for the tested Ps. aeruginosa isolates at 4× and 8× MIC. Against A. baumannii, TIG exerted a bacteriostatic effect. TIG demonstrated variable ability to suppress biofilm formation affecting mainly E. coli and A. baumannii isolates. These results point TIG to be a promising agent in treatment of infections caused by strains for which adequate therapy has been limited. As far as we know, this is the first report evaluating the in vitro activity of TIG against Egyptian clinical isolates.

  5. RUCS: rapid identification of PCR primers for unique core sequences.

    PubMed

    Thomsen, Martin Christen Frølund; Hasman, Henrik; Westh, Henrik; Kaya, Hülya; Lund, Ole

    2017-12-15

    Designing PCR primers to target a specific selection of whole genome sequenced strains can be a long, arduous and sometimes impractical task. Such tasks would benefit greatly from an automated tool to both identify unique targets, and to validate the vast number of potential primer pairs for the targets in silico. Here we present RUCS, a program that will find PCR primer pairs and probes for the unique core sequences of a positive genome dataset complement to a negative genome dataset. The resulting primer pairs and probes are in addition to simple selection also validated through a complex in silico PCR simulation. We compared our method, which identifies the unique core sequences, against an existing tool called ssGeneFinder, and found that our method was 6.5-20 times more sensitive. We used RUCS to design primer pairs that would target a set of genomes known to contain the mcr-1 colistin resistance gene. Three of the predicted pairs were chosen for experimental validation using PCR and gel electrophoresis. All three pairs successfully produced an amplicon with the target length for the samples containing mcr-1 and no amplification products were produced for the negative samples. The novel methods presented in this manuscript can reduce the time needed to identify target sequences, and provide a quick virtual PCR validation to eliminate time wasted on ambiguously binding primers. Source code is freely available on https://bitbucket.org/genomicepidemiology/rucs. Web service is freely available on https://cge.cbs.dtu.dk/services/RUCS. mcft@cbs.dtu.dk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  6. Competitive Growth Enhances Conditional Growth Mutant Sensitivity to Antibiotics and Exposes a Two-Component System as an Emerging Antibacterial Target in Burkholderia cenocepacia.

    PubMed

    Gislason, April S; Choy, Matthew; Bloodworth, Ruhi A M; Qu, Wubin; Stietz, Maria S; Li, Xuan; Zhang, Chenggang; Cardona, Silvia T

    2017-01-01

    Chemogenetic approaches to profile an antibiotic mode of action are based on detecting differential sensitivities of engineered bacterial strains in which the antibacterial target (usually encoded by an essential gene) or an associated process is regulated. We previously developed an essential-gene knockdown mutant library in the multidrug-resistant Burkholderia cenocepacia by transposon delivery of a rhamnose-inducible promoter. In this work, we used Illumina sequencing of multiplex-PCR-amplified transposon junctions to track individual mutants during pooled growth in the presence of antibiotics. We found that competition from nontarget mutants magnified the hypersensitivity of a clone underexpressing gyrB to novobiocin by 8-fold compared with hypersensitivity measured during clonal growth. Additional profiling of various antibiotics against a pilot library representing most categories of essential genes revealed a two-component system with unknown function, which, upon depletion of the response regulator, sensitized B. cenocepacia to novobiocin, ciprofloxacin, tetracycline, chloramphenicol, kanamycin, meropenem, and carbonyl cyanide 3-chlorophenylhydrazone, but not to colistin, hydrogen peroxide, and dimethyl sulfoxide. We named the gene cluster esaSR for enhanced sensitivity to antibiotics sensor and response regulator. Mutational analysis and efflux activity assays revealed that while esaS is not essential and is involved in antibiotic-induced efflux, esaR is an essential gene and regulates efflux independently of antibiotic-mediated induction. Furthermore, microscopic analysis of cells stained with propidium iodide provided evidence that depletion of EsaR has a profound effect on the integrity of cell membranes. In summary, we unraveled a previously uncharacterized two-component system that can be targeted to reduce antibiotic resistance in B. cenocepacia. Copyright © 2016 American Society for Microbiology.

  7. Global Dissemination of blaKPC into Bacterial Species beyond Klebsiella pneumoniae and In Vitro Susceptibility to Ceftazidime-Avibactam and Aztreonam-Avibactam.

    PubMed

    Kazmierczak, Krystyna M; Biedenbach, Douglas J; Hackel, Meredith; Rabine, Sharon; de Jonge, Boudewijn L M; Bouchillon, Samuel K; Sahm, Daniel F; Bradford, Patricia A

    2016-08-01

    The Klebsiella pneumoniae carbapenemase (KPC), first described in the United States in 1996, is now a widespread global problem in several Gram-negative species. A worldwide surveillance study collected Gram-negative pathogens from 202 global sites in 40 countries during 2012 to 2014 and determined susceptibility to β-lactams and other class agents by broth microdilution testing. Molecular mechanisms of β-lactam resistance among carbapenem-nonsusceptible Enterobacteriaceae and Pseudomonas aeruginosa were determined using PCR and sequencing. Genes encoding KPC enzymes were found in 586 isolates from 22 countries (76 medical centers), including countries in the Asia-Pacific region (32 isolates), Europe (264 isolates), Latin America (210 isolates), and the Middle East (19 isolates, Israel only) and the United States (61 isolates). The majority of isolates were K. pneumoniae (83.4%); however, KPC was detected in 13 additional species. KPC-2 (69.6%) was more common than KPC-3 (29.5%), with regional variation observed. A novel KPC variant, KPC-18 (KPC-3[V8I]), was identified during the study. Few antimicrobial agents tested remained effective in vitro against KPC-producing isolates, with ceftazidime-avibactam (MIC90, 4 μg/ml), aztreonam-avibactam (MIC90, 0.5 μg/ml), and tigecycline (MIC90, 2 μg/ml) retaining the greatest activity against Enterobacteriaceae cocarrying KPC and other β-lactamases, whereas colistin (MIC90, 2 μg/ml) demonstrated the greatest in vitro activity against KPC-positive P. aeruginosa This analysis of surveillance data demonstrated that KPC is widely disseminated. KPC was found in multiple species of Enterobacteriaceae and P. aeruginosa and has now become a global problem. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Influence of regular reporting on local Pseudomonas aeruginosa and Acinetobacter spp. sensitivity to antibiotics on consumption of antibiotics and resistance patterns.

    PubMed

    Djordjevic, Z M; Folic, M M; Jankovic, S M

    2017-10-01

    Regular surveillance of antimicrobial resistance is an important component of multifaceted interventions directed at the problem with resistance of bacteria causing healthcare-associated infections (HAIs) in intensive care units (ICUs). Our aim was to analyse antimicrobial consumption and resistance among isolates of Pseudomonas aeruginosa and Acinetobacter spp. causing HAIs, before and after the introduction of mandatory reporting of resistance patterns to prescribers. A retrospective observational study was conducted between January 2011 and December 2015, at an interdisciplinary ICU of the Clinical Centre Kragujevac, Serbia. The intervention consisted of continuous resistance monitoring of all bacterial isolates from ICU patients and biannual reporting of results per isolate to prescribers across the hospital. Both utilization of antibiotics and density of resistant isolates of P. aeruginosa and Acinetobacter spp. were followed within the ICU. Resistance densities of P. aeruginosa to all tested antimicrobials were lower in 2015, in comparison with 2011. Although isolates of Acinetobacter spp. had lower resistance density in 2015 than in 2011 to the majority of investigated antibiotics, a statistically significant decrease was noted only for piperacillin/tazobactam. Statistically significant decreasing trends of consumption were recorded for third-generation cephalosporins, aminoglycosides and fluoroquinolones, whereas for the piperacillin/tazobactam, ampicillin/sulbactam and carbapenems, utilization trends were decreasing, but without statistical significance. In the same period, increasing trends of consumption were observed for tigecycline and colistin. Regular monitoring of resistance of bacterial isolates in ICUs and reporting of summary results to prescribers may lead to a significant decrease in utilization of some antibiotics and slow restoration of P. aeruginosa and Acinetobacter spp. susceptibility. © 2017 John Wiley & Sons Ltd.

  9. Antibiotic sensitivity pattern in blaNDM-1-positive and carbapenemase-producing Enterobacteriaceae

    PubMed Central

    Mulla, Summaiya; Charan, Jaykaran; Rajdev, Sangita

    2016-01-01

    Background: Some studies published in recent time revealed that many bacteria from Enterobacteriaceae group are multi-antibiotic-resistant because of the production enzymes carbapenemase particularly New Delhi metallo-beta-lactamase encoded by gene called blaNDM-1. Looking at public health importance of this issue there is a need for studies at other centers to confirm or refute published findings. Objectives: This study was designed with the aim of exploring antibiotic resistance in Enterobacteriaceae group of bacteria and also to explore gene and enzyme responsible for it. Materials and Methods: Samples of Enterobacteriaceae were collected from wards and outpatient departments. Antibiotic sensitivity was checked by an automated system (VITEK 2 COMPACT). Carbapenemase production was assessed by Modified Hodge Test. Presence of blaNDM-1 was assessed by polymerase chain reaction. Statistics: Frequency and percentage were used to describe the data. Frequency of sensitivity was compared between carbapenemase producers and noncarbapenemase producers by Fisher's exact test. Results: Forty-seven percent bacteria were found to be producing carbapenemase enzyme. These bacteria were significantly less sensitive to cefoperazone, cefepime, and amikacin. Among carbapenemase-producing organisms, 3% and 6% were resistant to tigecycline and colistin, respectively. Forty percent bacteria were found to be having blaNDM-1 gene. There was a significant difference between blaNDM-1-positive and blaNDM-1-negative for sensitivity toward cefoperazone + sulbactam, imipenem, meropenem, amikacin, tobramycine, ciprofloxacin, and levofloxacin. Conclusion: Presence of carbapenemase enzyme and blaNDM-1 gene is associated with high level of resistance in Enterobacteriaceae group of bacteria and only few antibiotics have good sensitivity for these organisms. PMID:26958516

  10. Antimicrobial Consumption in Medicated Feeds in Vietnamese Pig and Poultry Production.

    PubMed

    Van Cuong, Nguyen; Nhung, Nguyen Thi; Nghia, Nguyen Huu; Mai Hoa, Nguyen Thi; Trung, Nguyen Vinh; Thwaites, Guy; Carrique-Mas, Juan

    2016-09-01

    Antimicrobials are extensively used as growth promoters in animal feeds worldwide, but reliable estimates are lacking. We conducted an internet-based survey of commercial chicken and pig feed products officially approved for sale in Vietnam over the period March-June 2015. Information on the antimicrobial contents in feed products, alongside animal production data, was used to estimate in-feed antimicrobial consumption to produce one kilogram of live animal (chicken, pig), as well as to estimate country-wide antimicrobial consumption through animal feeds. A total of 1462 commercial feed formulations were examined. The survey-adjusted estimated antimicrobial contents were 25.7 and 62.3 mg/kg in chicken and pig feeds, respectively. Overall, it was estimated that 77.4 mg [95% CI 48.1-106.8] and 286.6 mg [95% CI 191.6-418.3] of in-feed antimicrobials were used to raise 1 kg of live chicken and pig, respectively. Bacitracin (15.5% feeds), chlortetracycline (11.4%), and enramycin (10.8%) were the most common antimicrobials present in chicken feed formulations, whereas bacitracin (24.8%), chlortetracycline (23.9%), and florfenicol (17.4%) were the most common in pig feed formulations. Overall, 57% of the total quantitative usage consisted of antimicrobials regarded by WHO of importance for human medicine, including amoxicillin, colistin, tetracyclines, neomycin, lincomycin, and bacitracin. These figures confirm a very high magnitude of in-feed consumption of antimicrobials, especially in pig production. Results from this study should encourage further monitoring of antimicrobials used in animal production, and foster discussion about existing policies on inclusion of antimicrobials in animal feed rations.

  11. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review.

    PubMed

    Jacobs, David M; Safir, M Courtney; Huang, Dennis; Minhaj, Faisal; Parker, Adam; Rao, Gauri G

    2017-11-25

    The spread of carbapenemase-producing K. pneumoniae (CPKP) has become a significant problem worldwide. Combination therapy for CPKP is encouraging, but polymyxin resistance to many antibiotics is hampering effective treatment. Combination therapy with three or more antibiotics is being increasingly reported, therefore we performed a systematic review of triple combination cases in an effort to evaluate their clinical effectiveness for CPKP infections. The PubMed database was searched to identify all published clinical outcomes of CPKP infections treated with triple combination therapy. Articles were stratified into two tiers depending on the level of clinical detail provided. A tier 1 study included: antibiotic regimen, regimen-specific outcome, patient status at onset of infection, and source of infection. Articles not reaching these criteria were considered tier 2. Thirty-three studies were eligible, 23 tier 1 and ten tier 2. Among tier 1 studies, 53 cases were included in this analysis. The most common infection was pneumonia (31%) followed by primary or catheter-related bacteremia (21%) and urinary tract infection (17%). Different combinations of antibiotic classes were utilized in triple combinations, the most common being a polymyxin (colistin or polymyxin B, 86.8%), tigecycline (73.6%), aminoglycoside (43.4%), or carbapenem (43.4%). Clinical and microbiological failure occurred in 14/39 patients (35.9%) and 22/42 patients (52.4%), respectively. Overall mortality for patients treated with triple combination therapy was 35.8% (19/53 patients). Triple combination therapy is being considered as a treatment option for CPKP. Polymyxin-based therapy is the backbone antibiotic in these regimens, but its effectiveness needs establishing in prospective clinical trials.

  12. [Effective management of an outbreak with multiresistent Klebsiella pneumoniae in a neurorehabilitation unit].

    PubMed

    Dohle, Christian; Korr, Gerit; Friedrichs, Michael; Kullmann, Volker; Tung, Mei-Lin; Kaase, Martin; Rüssmann, Holger; Sissolak, Dagmar; Werber, Dirk; Becker, Laura; Fuchs, Stephan; Pfeifer, Yvonne; Semmler, Torsten; Widders, Gudrun; Eckmanns, Tim; Werner, Guido; Zill, Edith; Haller, Sebastian

    2018-05-01

    In addition to acute care hospitals, rehabilitation centres are increasingly confronted with multi-resistant pathogens. Long durations of stay and intensive treatments impose special hygienic challenges. We investigated an extended spectrum beta-lactamase-Klebsiella pneumoniae (ESBL-K. pneumoniae) outbreak in a neurorehabilitation centre. We defined confirmed cases as patients who stayed in the centre during the outbreak period and from whom ESBL-K. pneumoniae was isolated with the outbreak sequence type. Probable cases had an epidemiological link to at least one confirmed case but no isolate for typing. Next generation sequencing (NGS) was performed on 53 isolates from patients. Environmental sampling was performed. Systematic microbiological screening was implemented and ESBL-K. pneumoniae-positive patients were cohorted in a designated ward. We identified 30 confirmed and 6 probable cases. NGS revealed three genetic clusters: Cluster 1 - the outbreak cluster - with isolates of 30 cases (sequence type ST15), Cluster 2 with 7 patients (ST405) and Cluster 3 with 8 patients (ST414). In two patients, the outbreak strain developed further antibiotic resistance, one with colistin resistance and the other carbapenem resistance. The outbreak ceased after strict isolation measures. Epidemiology and NGS results paired with the effectiveness of cohorting suggest that transmission occurred mainly from person to person in this outbreak. There was an apparent association of the probability to acquire ESBL-K. pneumoniae and treatment intensity, whereas infection rate was related to morbidity. The identification of the outbreak clone and additional clusters plus the development of additional antibiotic resistance shows the relevance of NGS and highlights the need for timely and efficient outbreak management.

  13. Nosocomial outbreak caused by Salmonella enterica serotype Livingstone producing CTX-M-27 extended-spectrum beta-lactamase in a neonatal unit in Sousse, Tunisia.

    PubMed

    Bouallègue-Godet, Olfa; Ben Salem, Youssef; Fabre, Laëtitia; Demartin, Marie; Grimont, Patrick A D; Mzoughi, Ridha; Weill, François-Xavier

    2005-03-01

    In this study, we report an outbreak of Salmonella enterica serotype Livingstone resistant to extended-spectrum cephalosporins that occurred in a neonatal ward of the maternity department of Farhat Hached Hospital, Sousse, Tunisia, in 2002. A total of 16 isolates were recovered from 16 babies hospitalized in the ward during the period 1 to 16 July. All these babies developed diarrhea, and three of them developed septicemia. All the isolates demonstrated resistance to ceftriaxone and ceftazidime due to the production of an extended-spectrum beta-lactamase (ESBL). The isolates were also resistant to aminoglycosides (kanamycin, tobramycin, netilmicin, gentamicin, and amikacin) and sulfamethoxazole-trimethoprim. DNA profiles were determined by pulsed-field gel electrophoresis using the XbaI and SpeI endonucleases and by ribotyping with PstI digestion. They yielded the same patterns, showing that the outbreak was caused by a single clone. The ESBL was identified as CTX-M-27 by sequencing of PCR products and by isoelectric focusing. The ESBL resistance was transferred by a 40-kb conjugative plasmid. The mobile insertion sequence ISEcp1 was found to be located upstream of bla(CTX-M-27) in the same position as that known for a bla(CTX-M-14) sequence. A new gene named dfrA21, encoding resistance to trimethoprim and carried by a 90-kb plasmid, was characterized. The dfrA21 gene was inserted as a single resistance cassette in a class I integron. The babies were treated with colistin, and all except two recovered. The outbreak came to an end when appropriate actions were taken: patient isolation, hand washing, and disinfection of the ward.

  14. Identification, epidemiological relatedness, and biofilm formation of clinical Chryseobacterium indologenes isolates from central Taiwan.

    PubMed

    Chang, Yi-Cheng; Lo, Hsueh-Hsia; Hsieh, Hsiu-Ying; Chang, Shan-Min

    2015-10-01

    The clinical impact of Chryseobacterium indologenes infection is increasing; nevertheless, most studies had been conducted in northern Taiwan, but rarely in central Taiwan. Using 16S rRNA gene sequencing, 34 isolates of C. indologenes were identified at the Central Region Hospital Alliance between 2007 and 2011. Vitek 2 and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) methods were compared for the feasibility to identify this bacterium. Drug susceptibility test, biofilm formation, and pulsed-field gel electrophoresis (PFGE) were also performed. All isolates were collected from hospitalized patients with an average age of 70.8 ± 18.5 years. The most prevalent sample was urine (50.0%), followed by sputum (32.4%). The accuracy rate of species-level identification reached 94.1% using the Vitek 2 method and 85.3% using the MALDI-TOF MS method. All of the isolates were resistant to gentamicin, amikacin, ceftriaxone, chloramphenicol, colistin, and imipenem, but completely susceptible to minocycline. While analyzing biofilm-forming ability, 38.2% (13/34) of C. indologenes isolates displayed a positive phenotype using the Luria-Bertani (LB) medium. However, 80.0% (4/5) of invasive isolates were biofilm producers. Based on PFGE analysis, several clusters were found, and the possible intrahospital spread of this bacterium in this area could not be excluded. Both Vitek 2 and MALDI-TOF MS methods showed good ability in the determination of C. indologenes. Among the examined drugs, minocycline was the most potent one. As many as 38.2% C. indologenes isolates showed biofilm-forming ability. PFGE analyses revealed the possible intrahospital transmission of this bacterium in central Taiwan. Copyright © 2014. Published by Elsevier B.V.

  15. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems.

    PubMed

    Breathnach, A S; Cubbon, M D; Karunaharan, R N; Pope, C F; Planche, T D

    2012-09-01

    Multidrug-resistant Pseudomonas aeruginosa (MDR-P) expressing VIM-metallo-beta-lactamase is an emerging infection control problem. The source of many such infections is unclear, though there are reports of hospital outbreaks of P. aeruginosa related to environmental contamination, including tap water. We describe two outbreaks of MDR-P, sensitive only to colistin, in order to highlight the potential for hospital waste-water systems to harbour this organism. The outbreaks were investigated by a combination of descriptive epidemiology, inspection and microbiological sampling of the environment, and molecular strain typing. The outbreaks occurred in two English hospitals; each involved a distinct genotype of MDR-P. One outbreak was hospital-wide, involving 85 patients, and the other was limited to four cases in one specialized medical unit. Extensive environmental sampling in each outbreak yielded MDR-P only from the waste-water systems. Inspection of the environment and estates records revealed many factors that may have contributed to contamination of clinical areas, including faulty sink, shower and toilet design, clean items stored near sluices, and frequent blockages and leaks from waste pipes. Blockages were due to paper towels, patient wipes, or improper use of bedpan macerators. Control measures included replacing sinks and toilets with easier-to-clean models less prone to splashback, educating staff to reduce blockages and inappropriate storage, reviewing cleaning protocols, and reducing shower flow rates to reduce flooding. These measures were followed by significant reductions in cases. The outbreaks highlight the potential of hospital waste systems to act as a reservoir of MDR-P and other nosocomial pathogens. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Koserella trabulsii, a new genus and species of Enterobacteriaceae formerly known as Enteric Group 45.

    PubMed Central

    Hickman-Brenner, F W; Huntley-Carter, G P; Fanning, G R; Brenner, D J; Farmer, J J

    1985-01-01

    The name Koserella trabulsii is proposed for a group of Enterobacteriaceae formerly called Enteric Group 45. This group consists of 12 strains that were originally identified as atypical Hafnia alvei. K. trabulsii strains were negative for indole production, Voges-Proskauer, H2S production, urea hydrolysis, phenylalanine deaminase, and acid production from glycerol, lactose, sucrose, and D-sorbitol; they were positive for methyl red, citrate (Simmons), lysine and ornithine decarboxylases, arginine dihydrolase (negative in 1 to 2 days and positive in 3 to 7 days), and acid production from cellobiose and melibiose; and they were resistant to the Hafnia-specific bacteriophage of Guinée and Valkenburg. They were tested for DNA relatedness by the hydroxyapatite method with 32PO4-labeled DNA from the designated type strain (CDC 3349-72, ATCC 35313). The 12 strains were 87 to 99% related in 60 degrees C reactions. Relatedness of K. trabulsii to 71 DNA hybridization reference strains of representative species of Enterobacteriaceae was 4 to 37%. It was 15 to 16% related to H. alvei. All strains were susceptible to nalidixic acid, sulfadiazine, gentamicin, kanamycin, and chloramphenicol, and 83% were susceptible to nalidixic acid, sulfadiazine, gentamicin, kanamycin, and chloramphenicol, and 83% were susceptible to tetracycline. Most of the strains were resistant or intermediate to penicillin, ampicillin, carbenicillin, colistin, and cephalothin. Five of the strains were isolated from wounds, three were from the respiratory tract, and one each was from a stool, knee fluid, water, and an unknown source. The clinical significance of this organism is not known; therefore, future studies should focus on its isolation and its relationship to human disease. PMID:3968202

  17. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms

    PubMed Central

    Baker, Perrin; Hill, Preston J.; Snarr, Brendan D.; Alnabelseya, Noor; Pestrak, Matthew J.; Lee, Mark J.; Jennings, Laura K.; Tam, John; Melnyk, Roman A.; Parsek, Matthew R.; Sheppard, Donald C.; Wozniak, Daniel J.; Howell, P. Lynne

    2016-01-01

    Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics. PMID:27386527

  18. Characterization of OXA-48-like carbapenemase producers in Canada, 2011-14.

    PubMed

    Mataseje, Laura F; Boyd, David A; Fuller, Jeffrey; Haldane, David; Hoang, Linda; Lefebvre, Brigitte; Melano, Roberto G; Poutanen, Susan; Van Caeseele, Paul; Mulvey, Michael R

    2017-12-18

    Since the first identification of the OXA-48 carbapenemase in 2001, Enterobacteriaceae harbouring OXA-48-like enzymes have been reported globally. Here, we applied WGS to characterize the molecular epidemiology of these bacterial isolates. Enterobacteriaceae non-susceptible to carbapenems isolated from patients between 2011 and 2014 were voluntarily submitted to the Canadian National Microbiology Laboratory where they were screened for carbapenemase genes. WGS was conducted on OXA-48-like producers using the Illumina MiSeq platform. WGS data were used for single nucleotide variant (SNV) analysis, MLST analysis, detection of resistance genes and partial plasmid characterization. Susceptibilities were determined using Vitek2 and Etest. Patient data provided from sites were reviewed. Sixty-seven non-duplicated cases were identified among Escherichia coli (n = 21) and Klebsiella pneumoniae (n = 46). Recent international travel was observed in 40.4% of cases. OXA-181 (52.2%) and OXA-48 (31.3%) were the most common variants, one E. coli OXA-48 producer was found to harbour the acquired colistin resistance gene mcr-1. The dominant STs were ST38 and ST410 in E. coli and ST14 in K. pneumoniae. Three common plasmid types were observed among isolates: IncL/M associated with OXA-48 producers, and ColKP3 and IncX3 associated with OXA-181/232 producers. Enterobacteriaceae with OXA-48-like carbapenemases are emerging in Canada. This study highlights the complexity of OXA-48-types identified in Canada owing to travel and the successful clones and plasmids harbouring the OXA-48-like enzyme. © Her Majesty the Queen in Right of Canada 2017. Reproduced with the permission of the Minister of Health.

  19. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes.

    PubMed

    Candon, Sophie; Perez-Arroyo, Alicia; Marquet, Cindy; Valette, Fabrice; Foray, Anne-Perrine; Pelletier, Benjamin; Milani, Christian; Milani, Cristian; Ventura, Marco; Bach, Jean-François; Chatenoud, Lucienne

    2015-01-01

    Insulin-dependent or type 1 diabetes is a prototypic autoimmune disease whose incidence steadily increased over the past decades in industrialized countries. Recent evidence suggests the importance of the gut microbiota to explain this trend. Here, non-obese diabetic (NOD) mice that spontaneously develop autoimmune type 1 diabetes were treated with different antibiotics to explore the influence of a targeted intestinal dysbiosis in the progression of the disease. A mixture of wide spectrum antibiotics (i.e. streptomycin, colistin and ampicillin) or vancomycin alone were administered orally from the moment of conception, treating breeding pairs, and during the postnatal and adult life until the end of follow-up at 40 weeks. Diabetes incidence significantly and similarly increased in male mice following treatment with these two antibiotic regimens. In NOD females a slight yet not significant trend towards an increase in disease incidence was observed. Changes in gut microbiota composition were assessed by sequencing the V3 region of bacterial 16S rRNA genes. Administration of the antibiotic mixture resulted in near complete ablation of the gut microbiota. Vancomycin treatment led to increased Escherichia, Lactobacillus and Sutterella genera and decreased members of the Clostridiales order and Lachnospiraceae, Prevotellaceae and Rikenellaceae families, as compared to control mice. Massive elimination of IL-17-producing cells, both CD4+TCRαβ+ and TCRγδ+ T cells was observed in the lamina propria of the ileum and the colon of vancomycin-treated mice. These results show that a directed even partial ablation of the gut microbiota, as induced by vancomycin, significantly increases type 1 diabetes incidence in male NOD mice thus prompting for caution in the use of antibiotics in pregnant women and newborns.

  20. Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action

    PubMed Central

    2012-01-01

    Resistance to antibiotics has increased dramatically over the past few years and has now reached a level that places future patients in real danger. Microorganisms such as Escherichia coli and Klebsiella pneumoniae, which are commensals and pathogens for humans and animals, have become increasingly resistant to third-generation cephalosporins. Moreover, in certain countries, they are also resistant to carbapenems and therefore susceptible only to tigecycline and colistin. Resistance is primarily attributed to the production of beta-lactamase genes located on mobile genetic elements, which facilitate their transfer between different species. In some rare cases, Gram-negative rods are resistant to virtually all known antibiotics. The causes are numerous, but the role of the overuse of antibiotics in both humans and animals is essential, as well as the transmission of these bacteria in both the hospital and the community, notably via the food chain, contaminated hands, and between animals and humans. In addition, there are very few new antibiotics in the pipeline, particularly for Gram-negative bacilli. The situation is slightly better for Gram-positive cocci as some potent and novel antibiotics have been made available in recent years. A strong and coordinated international programme is urgently needed. To meet this challenge, 70 internationally recognized experts met for a two-day meeting in June 2011 in Annecy (France) and endorsed a global call to action ("The Pensières Antibiotic Resistance Call to Action"). Bundles of measures that must be implemented simultaneously and worldwide are presented in this document. In particular, antibiotics, which represent a treasure for humanity, must be protected and considered as a special class of drugs. PMID:22958833

  1. Population Pharmacokinetics and Pharmacodynamics Modeling To Optimize Dosage Regimens of Sulbactam in Critically Ill Patients with Severe Sepsis Caused by Acinetobacter baumannii

    PubMed Central

    Wongpoowarak, Wibul; Wattanavijitkul, Thitima; Sukarnjanaset, Waroonrat; Samaeng, Maseetoh; Nawakitrangsan, Monchana; Ingviya, Natnicha

    2016-01-01

    Sulbactam is being considered as an alternative concomitant medication with other effective antibiotics for the treatment of multidrug-resistant (MDR) Acinetobacter baumannii infections. Pathophysiological changes in critically ill patients with severe sepsis, resulting in altered pharmacokinetic (PK) patterns for antibiotics, are important factors in determining therapeutic success. The aims of this study were (i) to examine the population PK parameters and (ii) to assess the probability of target attainment (PTA) for sulbactam in patients with severe sepsis caused by A. baumannii. PK studies were carried out following administration of 2 g of sulbactam every 12 h on the 4th day of drug administration in 27 patients, and a Monte Carlo simulation was performed to determine the PTA of achieving 40% exposure time during which the plasma drug concentration remained above the MIC (T>MIC) and 60% T>MIC. The central and peripheral volumes of distribution were 14.56 and 9.55 liters, respectively, and total clearances of sulbactam were 2.26 liters/h and 7.64 liters/h in patients aged >65 years and ≤65 years, respectively. The high PTAs (≥90%) for targets of 40% T>MIC and 60% T>MIC with a MIC of 4 μg/ml were observed when sulbactam was administered by a 4-h infusion of 1 g every 12 h and 1 g every 8 h, respectively. Sulbactam would be an alternative antibiotic option to coadminister with colistin for the treatment of infections caused by MDR A. baumannii. However, for pathogens with MICs of >4 μg/ml, higher dosage regimens of sulbactam are required. PMID:27671056

  2. Emergence of Pseudomonas aeruginosa with class 1 integron carrying blaVIM-2 and blaVIM-4 in the University Clinical Hospital of Bialystok (northeastern Poland).

    PubMed

    Michalska-Falkowska, Anna; Sacha, Paweł Tomasz; Grześ, Henryk; Hauschild, Tomasz; Wieczorek, Piotr; Ojdana, Dominika; Tryniszewska, Elżbieta Anna

    2017-07-11

    The effectiveness of carbapenems, considered as last-resort antimicrobials in severe infections, becomes compromised by bacterial resistance. The production of metallo-β-lactamases (MBLs) is the most significant threat to carbapenems activity among Pseudomonas aeruginosa. The aim of this study was to assess the presence and type of MBLs genes in carbapenem-resistant P. aeruginosa clinical strains, to identify the location of MBLs genes and to determine genetic relatedness between MBL-producers using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The first identified MBL-positive (with blaVIM genes) P. aeruginosa strains were isolated from patients hospitalized in the University Clinical Hospital of Bialystok in the period from September 2012 to December 2013. Variants of MBLs genes and variable integron regions were characterized by PCR and sequencing. PFGE was performed after digesting of bacterial genomes by XbaI enzyme. By MLST seven housekeeping genes were analyzed for the determination of sequence type (ST). Three strains carried the blaVIM-2 gene and one harbored the blaVIM-4 gene. The blaVIM genes resided within class 1 integrons. PCR mapping of integrons revealed the presence of four different cassette arrays. Genetic relatedness analysis by PFGE classified VIM-positive strains into four unrelated pulsotypes (A-D). MLST demonstrated the presence of four (ST 111, ST27, and ST17) different sequence type including one previously undescribed new type of ST 2342. Antimicrobial susceptibility testing showed that VIM-positive strains were resistant to carbapenems, cephalosporins, aminoglycosides, and quinolones, intermediate to aztreonam, and susceptible only to colistin. Integrons mapping, PFGE, and MLST results may point to different origin of these strains and independent introduction into hospitalized patients.

  3. Emerging Carbapenem-Resistant Pseudomonas aeruginosa Isolates Carrying blaIMP Among Burn Patients in Isfahan, Iran.

    PubMed

    Radan, Mohsen; Moniri, Rezvan; Khorshidi, Ahmad; Gilasi, Hamidreza; Norouzi, Zohreh; Beigi, Fahimeh; Dasteh Goli, Yasaman

    2016-09-01

    Metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa is a significant pathogen in burn patients. The aim of this study was to determine the prevalence of carbapenem-resistant P. aeruginosa isolates, including those resistant to imipenemase (IMP), in a burn unit in Isfahan, Iran. One hundred and fifty P. aeruginosa isolates from burn patients were tested for antibiotic susceptibility by the disc diffusion method in accordance with CLSI guidelines. Production of MBL was identified with the EDTA disk method. DNA was purified from the MBL-positive isolates, and detection of the bla IMP gene was performed with PCR. Fifty-seven out of 150 (38%) isolates were multi-drug resistant (MDR), and 93 (62%) were extensively-drug resistant (XDR). Among all isolates, the resistance rate to ciprofloxacin, tobramycin, imipenem, meropenem, amikacin, ceftazidime, and cefepime was higher than 90%, while the resistance rates to piperacillin/tazobactam and aztreonam were 70.7% and 86%, respectively. Colistin and polymyxin B remained the most effective studied antibiotics. All of the imipenem-resistant P. aeruginosa isolates were MBL-positive, and 107 out of 144 (74.3%) of the MBL isolates were positive for the bla IMP gene. The results of this study show that the rate of P. aeruginosa -caused burn wound infections was very high, and many of the isolates were resistant to three or more classes of antimicrobials. Such extensive resistance to antimicrobial classes is important because few treatment options remain for patients with burn wound infections. bla IMP -producing P. aeruginosa isolates are a rising threat in burn-care units, and should be controlled by conducting infection-control assessments.

  4. Digestive microbiota is different in pigs receiving antimicrobials or a feed additive during the nursery period.

    PubMed

    Soler, Cassandra; Goossens, Tim; Bermejo, Alvaro; Migura-García, Lourdes; Cusco, Anna; Francino, Olga; Fraile, Lorenzo

    2018-01-01

    Antimicrobials have been used in a prophylactic way to decrease the incidence of digestive disorders during the piglet post-weaning period. Nowadays, it is urgent to reduce their consumption in livestock to address the problem of antimicrobial resistance. In this study, the effect of a product on piglet microbiota has been investigated as an alternative to antimicrobials. Three groups of ten post-weaning pigs were sampled at 0, 15 and 30 days one week post-weaning; the control, antibiotic and feed additive group received a standard post-weaning diet without antibiotics or additives, the same diet as the control group but with amoxicillin and colistin sulphate and the same diet as the control group but with a feed additive (Sanacore-EN, Nutriad International N.V.), respectively. The total DNA extracted from faeces was used to amplify the 16S RNA gene for massive sequencing under manufacturer's conditions. Sequencing data was quality filtered and analyzed using QIIME software and suitable statistical methods. In general terms, age modifies significantly the microbiota of the piglets. Thus, the oldest the animal, the highest bacterial diversity observed for the control and the feed additive groups. However, this diversity was very similar in the antibiotic group throughout the trial. Interestingly, a clear increase in abundance of Bacillus and Lactobacillus spp was detected within the feed additive group versus the antibiotic and control groups. In conclusion, the feed additive group had a positive effect in the endogenous microbiota of post-weaning pigs increasing both, the diversity of bacterial families and the abundance of lactic acid bacteria during the post-weaning period.

  5. The Antibacterial Activity of Metal Complexes Containing 1,10- phenanthroline: Potential as Alternative Therapeutics in the Era of Antibiotic Resistance.

    PubMed

    Viganor, Livia; Howe, Orla; McCarron, Pauraic; McCann, Malachy; Devereux, Michael

    2017-01-01

    The "antibiotic era", characterized by the overuse and misuse of antibiotics, over the last half-century has culminated in the present critical "era of resistance". The treatment of bacterial infections is challenging because of a decline in the current arsenal of useful antibiotics and the slow rate of new drug development. The discovery of a new gene (mcr-1) in 2015, which enables bacteria to be highly resistant to polymyxins (such as colistin), the last line of antibiotic defence left, heralds a new level of concern as this gene is susceptible to horizontal gene transfer, with alarming potential to be spread between different bacterial populations, suggesting that the progression from "extensive drug resistance" to "pan-drug resistance" may be inevitable. Clearly there is a need for the development of novel classes of anti-bacterial agents capable of killing bacteria through mechanisms that are different to those of the known classes of antibiotics. 1,10-phenanthroline (phen) is a heterocyclic organic compound which exerts in vitro antimicrobial activity against a broad-spectrum of bacteria. The antimicrobial activity of phen can be significantly modulated by modifying its structure. The development of metal-phen complexes offers the medicinal chemist an opportunity to expand such structural diversity by controlling the geometry and varying the oxidation states of the metal centre, with the inclusion of appropriate auxiliary ligands in the structure, offering the opportunity to target different biochemical pathways in bacteria. In this review, we summarize what is currently known about the antibacterial capability of metal-phen complexes and their mechanisms of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Invasive bacterial infections in a pediatric oncology unit in a tertiary care center.

    PubMed

    Trehan, A; Totadri, S; Gautam, V; Bansal, D; Ray, P

    2014-01-01

    Multidrug resistant (MDR) pathogens are becoming a major problem worldwide, more so in the immunocompromised hosts resulting in the urgent need of antibiotic stewardship. To analyze the organisms isolated and the drug resistance pattern in a pediatric oncology unit. Data pertaining to infections with 128 positive cultures in patients with febrile neutropenia over a period of 1-year are presented. The unit antibiotic policy is decided depending on the sensitivity of the prevailing common organisms. We isolated Gram-negative organisms in 56% cases. Escherichia coli and Klebseilla were the most frequent lactose fermenting Gram-negative Bacilli and Pseudomonas and Acinetobacter the nonfermenting Gram-negative Bacilli. Only 20-30% of the Gram-negative organisms cultured were sensitive to a 3rd/4th generation cephalosporin. The combination of a beta-lactam/inhibitor covered 2/3rd of Gram-negative organisms. About 80% of the organisms were sensitive to carbapenems. There was no colistin resistance. About 44% of our cultures grew a Gram-positive bacterial organism and included coagulase negative Staphylococcus. We had an incidence of methicillin resistant Staphylococcus aureus to be 30%. About 30% of the enterococci isolated in our unit were vancomycin-resistant enterococci. About 23% of patients with a positive bacterial culture died. Infections in pediatric cancer patient's account for about 15-20% of the deaths in developing countries as these patients are at a high risk for developing MDR infections. Resistance rates among Gram-positive and Gram-negative organisms have increased worldwide. Every unit needs a rational antibiotic policy. Antibiotic de-escalation and judicious decrease in the duration of antibiotics needs to be practiced.

  7. Inhaled Antibiotics for Lower Airway Infections

    PubMed Central

    Quon, Bradley S.; Goss, Christopher H.

    2014-01-01

    Inhaled antibiotics have been used to treat chronic airway infections since the 1940s. The earliest experience with inhaled antibiotics involved aerosolizing antibiotics designed for parenteral administration. These formulations caused significant bronchial irritation due to added preservatives and nonphysiologic chemical composition. A major therapeutic advance took place in 1997, when tobramycin designed for inhalation was approved by the U.S. Food and Drug Administration (FDA) for use in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infection. Attracted by the clinical benefits observed in CF and the availability of dry powder antibiotic formulations, there has been a growing interest in the use of inhaled antibiotics in other lower respiratory tract infections, such as non-CF bronchiectasis, ventilator-associated pneumonia, chronic obstructive pulmonary disease, mycobacterial disease, and in the post–lung transplant setting over the past decade. Antibiotics currently marketed for inhalation include nebulized and dry powder forms of tobramycin and colistin and nebulized aztreonam. Although both the U.S. Food and Drug Administration and European Medicines Agency have approved their use in CF, they have not been approved in other disease areas due to lack of supportive clinical trial evidence. Injectable formulations of gentamicin, tobramycin, amikacin, ceftazidime, and amphotericin are currently nebulized “off-label” to manage non-CF bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Future inhaled antibiotic trials must focus on disease areas outside of CF with sample sizes large enough to evaluate clinically important endpoints such as exacerbations. Extrapolating from CF, the impact of eradicating organisms such as P. aeruginosa in non-CF bronchiectasis should also be evaluated. PMID:24673698

  8. Inhaled antibiotics for lower airway infections.

    PubMed

    Quon, Bradley S; Goss, Christopher H; Ramsey, Bonnie W

    2014-03-01

    Inhaled antibiotics have been used to treat chronic airway infections since the 1940s. The earliest experience with inhaled antibiotics involved aerosolizing antibiotics designed for parenteral administration. These formulations caused significant bronchial irritation due to added preservatives and nonphysiologic chemical composition. A major therapeutic advance took place in 1997, when tobramycin designed for inhalation was approved by the U.S. Food and Drug Administration (FDA) for use in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infection. Attracted by the clinical benefits observed in CF and the availability of dry powder antibiotic formulations, there has been a growing interest in the use of inhaled antibiotics in other lower respiratory tract infections, such as non-CF bronchiectasis, ventilator-associated pneumonia, chronic obstructive pulmonary disease, mycobacterial disease, and in the post-lung transplant setting over the past decade. Antibiotics currently marketed for inhalation include nebulized and dry powder forms of tobramycin and colistin and nebulized aztreonam. Although both the U.S. Food and Drug Administration and European Medicines Agency have approved their use in CF, they have not been approved in other disease areas due to lack of supportive clinical trial evidence. Injectable formulations of gentamicin, tobramycin, amikacin, ceftazidime, and amphotericin are currently nebulized "off-label" to manage non-CF bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Future inhaled antibiotic trials must focus on disease areas outside of CF with sample sizes large enough to evaluate clinically important endpoints such as exacerbations. Extrapolating from CF, the impact of eradicating organisms such as P. aeruginosa in non-CF bronchiectasis should also be evaluated.

  9. Risk factors for fecal carriage of carbapenemase producing Enterobacteriaceae among intensive care unit patients from a tertiary care center in India.

    PubMed

    Mittal, Gajanand; Gaind, Rajni; Kumar, Deepak; Kaushik, Gaurav; Gupta, Kunj Bihari; Verma, P K; Deb, Monorama

    2016-07-08

    Resistance amongst the commensal flora is a serious threat because a very highly populated ecosystem like the gut, may at a later stage, be a source of extra intestinal infections, resistant strains may spread to other host or transfer genetic resistance element to other members of micro-biota including pathogens. This study was carried out to assess fecal colonization by carbapenemase producing Enterobacteriaceae (CPE) and associated risk factors among 100 patients admitted to intensive care unit (ICU). The phenotypic and molecular characterizations of CPE were also included. Colonization with CPE was observed in 6.6 % (8/122) controls. Among ICU patients, fecal carriage of CPE was significantly higher on day 4 (D4) (22 %) as compared to day 1 (D1) (11 %) (p value 0.002). The carbapenemase genes detected included OXA- 48, 181, KPC and NDM-1 with NDM-1 being the predominant carbapenemase in both ICU D1 and D4. Among the 50 CPE isolates, 8 (16 %) were susceptible to meropenem and imipenem (Minimum inhibitory concentration; MIC ≤ 1 mg/L) and all were susceptible to colistin (MIC range 0.125 - 1 mg/L) and tigecycline (MIC range 0.06- 1.5 mg/L). The risk factors associated with CPE carriage were duration of ICU stay, use of ventilator and aminoglycosides. Prior colonization with CPE could result in their influx and spread in ICU, challenging infection control measures. Exposure to ICU further increases risk of colonization with diverse carbapenemase-producing Enterobacteriaceae. Gut colonization with these strains may be a source of endogenous infection and horizontal transfer of these genes in future.

  10. Device-Associated Healthcare-Associated Infections (DA-HAI) and the caveat of multiresistance in a multidisciplinary intensive care unit.

    PubMed

    Khan, Inam Danish; Basu, Atoshi; Kiran, Sheshadri; Trivedi, Shaleen; Pandit, Priyanka; Chattoraj, Anupam

    2017-07-01

    Device-Associated Healthcare-Associated Infections (DA-HAI), including Ventilator-Associated Pneumonia (VAP), Central-Line-Associated Blood Stream Infection (CLABSI), and Catheter-Related Urinary Tract Infection (CAUTI), are considered as principal contributors to healthcare hazard and threat to patient safety as they can cause prolonged hospital stay, sepsis, and mortality in the ICU. The study intends to characterize DA-HAI in a tertiary care multidisciplinary ICU of a teaching hospital in eastern India. This prospective outcome-surveillance study was conducted among 2157 ICU patients of a 760-bedded teaching hospital in Eastern India. Clinical, laboratory and environmental surveillance, and screening of HCPs were conducted using the US Centers for Disease Control and Prevention (CDC)'s National Healthcare Safety Network (NHSN) definitions and methods. With 8824 patient/bed/ICU days and 14,676 device days, pooled average device utilization ratio was 1.66, total episodes of DA-HAI were 114, and mean monthly rates of DA-HAI, VAP, CLABSI, and CAUTI were 4.75, 2, 1.4, and 1.25/1000 device days. Most common pathogens isolated from DA-HAI patients were Klebsiella pneumoniae (24.6%), Escherichia coli (21.9%), and Pseudomonas aeruginosa (20.2%). All Acinetobacter baumanii , >80% K. pneumoniae and E. coli , and >70% P. aeruginosa were susceptible only to colistin and tigecycline. One P. aeruginosa isolate was panresistant. Mean rates of VAP, CLABSI, and CAUTI were 14.4, 8.1, and 4.5 per 1000 device days, which are comparable with Indian and global ICUs. Patients and HCPs form important reservoirs of infection. Resolute conviction and sustained momentum in Infection Control Initiatives are an essential step toward patient safety.

  11. Antibiotic drug usage in pigs in Germany—Are the class profiles changing?

    PubMed Central

    May, Thomas; Seiler, Julia; Hartmann, Maria; Kreienbrock, Lothar

    2017-01-01

    The development of antimicrobial resistance is triggered by the use of antibiotic drugs. Therefore, the consumption of antibiotics in livestock is monitored, and different measures may be applied if the usage of antibiotic drugs seems inappropriate. Unfortunately, the surveillance of antibiotic consumption is not standardised, and surveillance systems differ. In Germany, the food quality assurance system QS Qualität und Sicherheit GmbH (QS) began the documentation of antibiotic drug usage in pigs in 2012 in a private economic based database, and for its members, documentation has been mandatory in all pig age groups since 2014. In this investigation, we calculated the distribution of the antibiotics use per pig age group and half-year, and the percentage of the active substances used from overall treatments within German pig holdings from 1 July, 2013 to 30 June, 2015. In fattening pigs, the median of the treatment frequency is 4.3 in 2013–2 and exhibits a decreasing trend in this time period up to 2.1 in 2015–1. In weaners the median ranged between 11.3 in 2014–2 and 5.8 in 2013–2. The median of sucklers varies between 21.6 and 25.0. In sucklers and weaners, a clear temporal trend is not seen to date. The share of the active substances differs between the age groups. In fattening pigs, mostly tetracyclines and penicillines were used, occurring in approximately 60% of the total treatments. In weaners, amoxicillin and colistin have the highest shares of the treatment frequency, at approximately 60%. The treatment frequencies of macrolides and penicillines have the highest share in sucklers. PMID:28841685

  12. Illumina Miseq platform analysis caecum bacterial communities of rex rabbits fed with different antibiotics.

    PubMed

    Zou, Fuqin; Zeng, Dong; Wen, Bin; Sun, Hao; Zhou, Yi; Yang, Mingyue; Peng, Zhirong; Xu, Shuai; Wang, Hesong; Fu, Xiangchao; Du, Dan; Zeng, Yan; Zhu, Hui; Pan, Kangcheng; Jing, Bo; Wang, Ping; Ni, Xueqin

    2016-12-01

    Antibiotics have been widely used for the prevention and the treatment of diseases to humans and animals, and they have fed additives for agricultural animals to promote growth. However, there is a growing concern over the practice due to its side effects on intestinal microbial communities which plays a vital role in animals' health. To investigate the effect of antibiotics on the bacterial population of the caecum in rex rabbits, 80 rex rabbits were randomly divided into four groups: control group (B, basal diet), chlortetracycline group (C, 50 mg/kg), colistin sulfate group (S, 20 mg/kg) and zinc bacitracin group (Z, 40 mg/kg). Caecum microbial communities of rex rabbits from the four groups were analyzed through Illumina Miseq platform after being fed 28 days. The results showed that most obtained sequences belongs to Firmicutes followed by Bacteroidetes, and the ratio of Bacteroidetes/Firmicutes in C group (42.31 %) was higher than that in Z group (21.84 %). Zinc bacitracin supplementation caused a significant decreased of the Proteobacteria phylum and Lactobacillus spp. (P < 0.05), while the Lactobacillus spp. significantly increased in S group (P < 0.05). In addition, Ruminococcus spp., especially Ruminococcus albus were the predominant bacterial species found in both S and Z groups. The proportion of Coprococcus spp. significantly increased in Z group (P < 0.05). These findings suggested that the antibiotics used may cause significant changes in the caecum microbiota of rex rabbits, and we also found C group had a similarity caecum bacteria structure with B group which was probably due to the high levels of chlortetracycline resistance.

  13. Surveillance of antimicrobial resistance in Lebanese hospitals: retrospective nationwide compiled data.

    PubMed

    Chamoun, Kamal; Farah, Maya; Araj, Georges; Daoud, Ziad; Moghnieh, Rima; Salameh, Pascale; Saade, Danielle; Mokhbat, Jacques; Abboud, Emme; Hamze, Monzer; Abboud, Edmond; Jisr, Tamima; Haddad, Antoine; Feghali, Rita; Azar, Nadim; El-Zaatari, Mohammad; Chedid, Marwan; Haddad, Christian; Zouain Dib Nehme, Mireille; Barakat, Angelique; Husni, Rola

    2016-05-01

    Antimicrobial resistance is closely linked to antimicrobial use and is a growing concern worldwide. Antimicrobial resistance increases healthcare costs substantially in many countries, including Lebanon. National data from Lebanon have, in the most part, been limited to a few academic hospitals. The Lebanese Society of Infectious Diseases conducted a retrospective study to better describe the antimicrobial susceptibility patterns of bacterial isolates in Lebanon. Data were based on records retrieved from the bacteriology laboratories of 16 different Lebanese hospitals between January 2011 and December 2013. The susceptibility results of a total 20684 Gram-positive and 55594 Gram-negative bacteria were analyzed. The prevalence rate of methicillin-resistant Staphylococcus aureus was 27.6% and of vancomycin-resistant Enterococcus spp was 1%. Streptococcus pneumoniae had susceptibilities of 46% to oxacillin, 63% to erythromycin, and 98% to levofloxacin. Streptococcus pyogenes had susceptibilities of 94% to erythromycin and 95% to clindamycin. The mean ampicillin susceptibility of Haemophilus influenzae, Salmonella spp, and Shigella spp isolates was 79%, 81.3%, and 62.2%, respectively. The extended-spectrum beta-lactamase production rate for Escherichia coli was 32.3% and for Klebsiella spp was 29.2%. Acinetobacter spp showed high resistance to most antimicrobials, with low resistance to colistin (17.1%). Pseudomonas spp susceptibilities to piperacillin-tazobactam and imipenem were lower than 80% (79.7% and 72.8%, respectively). This study provides population-specific data that are valuable in guiding antimicrobial use in Lebanon and neighbouring countries and will help in the establishment of a surveillance system for antimicrobial resistance following the implementation of a nationwide standardization of laboratory methods and data entry. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Antibiotic resistance pattern among the Salmonella isolated from human, animal and meat in India.

    PubMed

    Singh, Shweta; Agarwal, Rajesh Kumar; Tiwari, Suresh C; Singh, Himanshu

    2012-03-01

    The present study was conducted to study the antibiotic resistance pattern among nontyphoidal Salmonella isolated from human, animal and meat. A total of 37 Salmonella strains isolated from clinical cases (human and animal) and meat during 2008-2009 belonging to 12 serovars were screened for their antimicrobial resistance pattern using 25 antimicrobial agents falling under 12 different antibiotic classes. All the Salmonella isolates tested showed multiple drug resistance varying from 5.40% to 100% with 16 of the 25 antibiotics tested. None of the isolates were sensitive to erythromycin and metronidazole. Resistance was also observed against clindamycin (94.59%), ampicillin (86.49%), co-trimoxazole (48.65%), colistin (45.94%), nalidixic acid (35.10%), amoxyclave (18.90%), cephalexin, meropenem, tobramycin, nitrofurantoin, tetracycline, amoxicillin (8.10% each), sparfloxacin and streptomycin (5.40% each). Isolates from clinical cases of animals were resistant to as many as 16 antibiotics, whereas isolates from human clinical cases and meat were resistant to 9 and 14 antibiotics, respectively. Overall, 19 resistotypes were recorded. Analysis of multiple antibiotic resistance index (MARI) indicated that clinical isolates from animals had higher MARI (0.25) as compared to isolates from food (0.22) and human (0.21). Among the different serotypes studied for antibiogram, Paratyhi B isolates, showed resistance to three to 13 antibiotics, whereas Typhimurium strains were resistant to four to seven antibiotics. Widespread multidrug resistance among the isolates from human, animal and meat was observed. Some of the uncommon serotypes exhibited higher resistance rate. Considerable changes in the resistance pattern were also noted. An interesting finding was the reemergence of sensitivity to some of the old antibiotics (chloromphenicol, tetracycline).

  15. In vitro reduction of antibacterial activity of tigecycline against multidrug-resistant Acinetobacter baumannii with host stress hormone norepinephrine.

    PubMed

    Inaba, Masato; Matsuda, Naoyuki; Banno, Hirotsugu; Jin, Wanchun; Wachino, Jun-Ichi; Yamada, Keiko; Kimura, Kouji; Arakawa, Yoshichika

    2016-12-01

    The host stress hormone norepinephrine (NE), also called noradrenaline, is reported to augment bacterial growth and pathogenicity, but few studies have focused on the effect of NE on the activity of antimicrobials. The aim of this study was to clarify whether NE affects antimicrobial activity against multidrug-resistant Acinetobacter baumannii (MDR-AB). Time-kill studies of tigecycline (TIG) and colistin (COL) against MDR-AB as well as assays for factors contributing to antibiotic resistance were performed using MDR-AB clinical strains both in the presence and absence of 10 µM NE. In addition, expression of three efflux pump genes (adeB, adeJ and adeG) in the presence and absence of NE was analysed by quantitative reverse transcription PCR. Viable bacterial cell counts in TIG-supplemented medium containing NE were significantly increased compared with those in medium without NE. In contrast, NE had little influence on viable bacterial cell counts in the presence of COL. NE-supplemented medium resulted in an ca. 2 log increase in growth and in bacterial cell numbers adhering on polyurethane, silicone and polyvinylchloride surfaces. Amounts of biofilm in the presence of NE were ca. 3-fold higher than without NE. Expression of the adeG gene was upregulated 4-6-fold in the presence of NE. In conclusion, NE augmented factors contributing to antibiotic resistance and markedly reduced the in vitro antibacterial activity of TIG against MDR-AB. These findings suggest that NE treatment may contribute to the failure of TIG therapy in patients with MDR-AB infections. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  16. Frequent acquisition of low-virulence strains of ESBL-producing Escherichia coli in travellers.

    PubMed

    Vading, M; Kabir, M H; Kalin, M; Iversen, A; Wiklund, S; Nauclér, P; Giske, C G

    2016-12-01

    International travel is a risk factor for intestinal colonization with ESBL-producing Enterobacteriaceae (EPE). This prospective cohort study focuses on molecular features of and risk factors for travel-acquired EPE. Rectal swabs and survey data were collected from 188 Swedes travelling to four regions of high EPE prevalence. Samples were plated onto selective agars. ESBL producers were determined using phenotypic methods. Molecular characterization regarding virulence factors and phylogenetic grouping of ESBL-producing Escherichia coli was done using PCR. Isolates were also screened for the plasmid-mediated colistin resistance gene mcr-1. Among 175 pre-travel EPE-negative participants, 32% were positive upon return. No carbapenemase-producing Enterobacteriaceae were found, but one CTX-M-producing E. coli harboured mcr-1 (travel to Thailand). Most E. coli strains (43.1%) belonged to phylogroup A and were rarely associated with extraintestinal infections and a few (9.2%) expressed uropathogenicity pap genes. During 10-26 months of follow-up, no clinical infections were observed. Colonization rates varied by visited region: the Indian subcontinent, 49.2%; northern Africa, 44.0%; South-East Asia, 19.1%; and Turkey, 9.5%. Travellers' diarrhoea (OR 2.5, P = 0.04) or antimicrobial treatment during the trip (OR 5.9, P = 0.02) were both independent risk factors for EPE colonization. EPE acquired during travel have seemingly low pathogenicity, possibly indicating a low risk of clinical infection. Pre-travel advice should emphasize avoiding unnecessary antibiotic treatment during travel. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms.

    PubMed

    Baker, Perrin; Hill, Preston J; Snarr, Brendan D; Alnabelseya, Noor; Pestrak, Matthew J; Lee, Mark J; Jennings, Laura K; Tam, John; Melnyk, Roman A; Parsek, Matthew R; Sheppard, Donald C; Wozniak, Daniel J; Howell, P Lynne

    2016-05-01

    Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P. aeruginosa biofilms. Evaluating these enzymes as potential therapeutics, we demonstrate that these glycoside hydrolases selectively target and degrade the exopolysaccharide component of the biofilm matrix. PelAh and PslGh inhibit biofilm formation over a 24-hour period with a half maximal effective concentration (EC50) of 69.3 ± 1.2 and 4.1 ± 1.1 nM, respectively, and are capable of disrupting preexisting biofilms in 1 hour with EC50 of 35.7 ± 1.1 and 12.9 ± 1.1 nM, respectively. This treatment was effective against clinical and environmental P. aeruginosa isolates and reduced biofilm biomass by 58 to 94%. These noncytotoxic enzymes potentiated antibiotics because the addition of either enzyme to a sublethal concentration of colistin reduced viable bacterial counts by 2.5 orders of magnitude when used either prophylactically or on established 24-hour biofilms. In addition, PelAh was able to increase neutrophil killing by ~50%. This work illustrates the feasibility and benefits of using bacterial exopolysaccharide biosynthetic glycoside hydrolases to develop novel antibiofilm therapeutics.

  18. [Characterization of isolates of carbapenemase-producing Pseudomonas aeruginosa from seven Colombian provinces].

    PubMed

    Saavedra, Sandra Yamile; Duarte, Carolina; González, María Nilse; Realpe, María Elena

    2014-04-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes multiple infections in hospitalized patients. This microorganism has developed resistance to several antimicrobial agents, including carbapenems, which are considered to be the last therapeutic option against these infections. Carbapenem resistance of P. aeruginosa is mediated by different mechanisms: Carbapenemases class B (MBL) and A, alterations in the OprD expression and overexpression of the Mex efflux pump. To describe the presence of carbapenemases in P. aeruginosa isolates from seven Colombian provinces. A total of 57 P. aeruginosa isolates were collected between September 2012 and March 2013 from national surveillance in Colombia and were sent to the Grupo de Microbiología at the Instituto Nacional de Salud (INS) for evaluation. Iidentification and antimicrobial susceptibility were confirmed through automated method (Vitek ® 2) and disk diffusion (Kirby-Bauer) according to the Clinical and Laboratory Standards Institute, CLSI, 2013. Phenotypic and genotypic confirmation was determined using the modified Hodge test (MHT), a synergism test using imipenem, EDTA-SMA and meropenem, and conventional PCR to detect the bla KPC, bla VIM, bla IMP and bla NDM genes. Of the 57 isolates, two showed sensitivity to carbapenems. Forty-three isolates were positive for carbapenemases with a high percentage of sensitivity to colistin (76.4%, n=42). The 43 isolates producing carbapenemases showed multiple drug resistance: 72.1% were positive in the MHT and 79.1% showed MBL synergism. PCR amplification confirmed that 33 isolates were positive for bla VIM, nine were positive for bla KPC and one isolate expressed both KPC and VIM carbapenemases. No isolates showed amplified products with bla IMP and bla NDM primers. The most frequent carbapenemase was VIM, followed by KPC in an approximate ratio of 3:1.

  19. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007-11 study.

    PubMed

    Zhanel, George G; Adam, Heather J; Baxter, Melanie R; Fuller, Jeff; Nichol, Kimberly A; Denisuik, Andrew J; Lagacé-Wiens, Philippe R S; Walkty, Andrew; Karlowsky, James A; Schweizer, Frank; Hoban, Daryl J

    2013-05-01

    The purpose of the CANWARD study was to assess the antimicrobial activity of a variety of available agents against 22,746 pathogens isolated from patients in Canadian hospitals between 2007 and 2011. Between 2007 and 2011, 27,123 pathogens were collected from tertiary-care centres from across Canada; 22,746 underwent antimicrobial susceptibility testing using CLSI broth microdilution methods. Patient demographic data were also collected. Of the isolates collected, 45.2%, 29.6%, 14.8% and 10.4% were from blood, respiratory, urine and wound specimens, respectively. Patient demographics were as follows: 54.4%/45.6% male/female, 12.8% ≤ 17 years old, 45.1% 18-64 years old and 42.1% ≥65 years old. Isolates were obtained from patients in medical and surgical wards (37.8%), emergency rooms (25.7%), clinics (18.0%) and intensive care units (18.5%). The three most common pathogens were Escherichia coli (20.1%), Staphylococcus aureus [methicillin-susceptible S. aureus and methicillin-resistant S. aureus (MRSA)] (20.0%) and Pseudomonas aeruginosa (8.0%), which together accounted for nearly half of the isolates obtained. Susceptibility rates (SRs) for E. coli were 100% meropenem, 99.9% tigecycline, 99.7% ertapenem, 97.7% piperacillin/tazobactam, 93.7% ceftriaxone, 90.5% gentamicin, 77.9% ciprofloxacin and 73.4% trimethoprim/sulfamethoxazole. Twenty-three percent of the S. aureus were MRSA. SRs for MRSA were 100% daptomycin, 100% linezolid, 100% telavancin, 99.9% vancomycin, 99.8% tigecycline, 92.2% trimethoprim/sulfamethoxazole and 48.2% clindamycin. SRs for P. aeruginosa were 90.1% amikacin, 93.1% colistin, 84.0% piperacillin/tazobactam, 83.5% ceftazidime, 82.6% meropenem, 72.0% gentamicin and 71.9% ciprofloxacin. The CANWARD surveillance study has provided important data on the antimicrobial susceptibility of pathogens commonly causing infections in Canadian hospitals.

  20. Trends in Drug Resistance of Acinetobacter baumannii over a 10-year Period: Nationwide Data from the China Surveillance of Antimicrobial Resistance Program.

    PubMed

    Gao, Lei; Lyu, Yuan; Li, Yun

    2017-03-20

    Acinetobacter baumannii has emerged as an important pathogen causing a variety of infections. Using data from the China Surveillance of Antimicrobial Resistance Program conducted biennially, we investigated the secular changes in the resistance of 2917 isolates of A. baumannii from 2004 to 2014 to differ antimicrobial agents. Pathogen samples were collected from 17 to 20 hospitals located in the eastern, central, and western regions of China. Minimum inhibitory concentrations (MICs) were determined by a 2-fold agar dilution method, and antimicrobial susceptibility was established using the 2014 Clinical Laboratory Standards Institute-approved breakpoints. Isolates not susceptible to all the tested aminoglycosides, fluoroquinolones, β-lactams, β-lactam/β-lactam inhibitors and carbapenems were defined as extensively drug resistant. The rates of nonsusceptibility to common antimicrobial agents remained high (>65%) over the years with some fluctuations to certain agents. The prevalence of imipenem-resistant A. baumannii (IRAB) increased from 13.3% in 2004 to 70.5% in 2014 and that of extensively drug-resistant A. baumannii (XDRAB) increased from 11.1% in 2004 to 60.4% in 2014. The activity of tigecycline was stable with MIC90 ≤4 mg/L against A. baumannii from 2009 to 2014. Susceptibility to colistin remained high (97.0%) from 2009 to 2014. The prevalence of XDRAB increased in all the three surveillance regions over the years and was significantly higher in Intensive Care Unit (ICU) wards than non-ICU wards. This longitudinal multicenter surveillance program revealed the nationwide emergence of A. baumannii in China and showed a significant increase in prevalence from 2004 to 2014. High levels of bacterial resistance were detected among samples collected from clinical settings in China, with IRAB and XDRAB being especially prevalent. This study will help to guide empirical therapy and identify at-risk groups requiring more intense interventional infection control

  1. Bis-Indolyl Benzenoids, Hydroxypyrrolidine Derivatives and Other Constituents from Cultures of the Marine Sponge-Associated Fungus Aspergillus candidus KUFA0062

    PubMed Central

    Ramos, Alice A.; Inácio, Ângela; Dethoup, Tida; Lee, Michael; Sekeroglu, Nazim; Rocha, Eduardo

    2018-01-01

    A previously unreported bis-indolyl benzenoid, candidusin D (2e) and a new hydroxypyrrolidine alkaloid, preussin C (5b) were isolated together with fourteen previously described compounds: palmitic acid, clionasterol, ergosterol 5,8-endoperoxides, chrysophanic acid (1a), emodin (1b), six bis-indolyl benzenoids including asterriquinol D dimethyl ether (2a), petromurin C (2b), kumbicin B (2c), kumbicin A (2d), 2″-oxoasterriquinol D methyl ether (3), kumbicin D (4), the hydroxypyrrolidine alkaloid preussin (5a), (3S, 6S)-3,6-dibenzylpiperazine-2,5-dione (6) and 4-(acetylamino) benzoic acid (7), from the cultures of the marine sponge-associated fungus Aspergillus candidus KUFA 0062. Compounds 1a, 2a–e, 3, 4, 5a–b, and 6 were tested for their antibacterial activity against Gram-positive and Gram-negative reference and multidrug-resistant strains isolated from the environment. Only 5a exhibited an inhibitory effect against S. aureus ATCC 29213 and E. faecalis ATCC29212 as well as both methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains. Both 1a and 5a also reduced significant biofilm formation in E. coli ATCC 25922. Moreover, 2b and 5a revealed a synergistic effect with oxacillin against MRSA S. aureus 66/1 while 5a exhibited a strong synergistic effect with the antibiotic colistin against E. coli 1410/1. Compound 1a, 2a–e, 3, 4, 5a–b, and 6 were also tested, together with the crude extract, for cytotoxic effect against eight cancer cell lines: HepG2, HT29, HCT116, A549, A 375, MCF-7, U-251, and T98G. Except for 1a, 2a, 2d, 4, and 6, all the compounds showed cytotoxicity against all the cancer cell lines tested. PMID:29642369

  2. In vitro assay for the anti-brucella activity of medicinal plants against tetracycline-resistant Brucella melitensis *

    PubMed Central

    Motamedi, Hossein; Darabpour, Esmaeil; Gholipour, Mahnaz; Seyyed Nejad, Seyyed Mansour

    2010-01-01

    Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. Brucella melitensis is the main causative agent of brucellosis in both human and small ruminants. As an alternative to conventional antibiotics, medicinal plants are valuable resources for new agents against antibiotic-resistant strains. The aim of this study was to investigate the usage of native plants for brucellosis treatment. For this purpose, the anti-brucella activities of ethanolic and methanolic extracts of Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, Plantago ovata, Cordia myxa, and Crocus sativus were assessed. The activity against a resistant Br. melitensis strain was determined by disc diffusion method at various concentrations from 50–400 mg/ml. Antibiotic discs were also used as a control. Among the evaluated herbs, six plant (Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, and Crocus sativus) showed anti-brucella activity. Oliveria decumbens was chosen as the most effective plant for further studies. A tested isolate exhibited resistance to tetracycline, nafcillin, oxacillin, methicillin, and colistin. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for Oliveria decumbens against resistant Br. melitensis were the same (5 mg/ml), and for gentamicin they were both 2 mg/ml. Time-kill kinetics for a methanolic extract of Oliveria decumbens was 7 h whereas for an ethanolic extract it was 28 h. Also, Oliveria decumbens extracts showed a synergistic effect in combination with doxycycline and tetracycline. In general, the similar values of MIC and MBC for Oliveria decumbens suggest that these extracts could act as bactericidal agents against Br. melitensis. In addition to Oliveria decumbens, Crocus sativus and Salvia sclarea also had good anti-brucella activity and these should be considered for further study. PMID:20593515

  3. In vitro assay for the anti-Brucella activity of medicinal plants against tetracycline-resistant Brucella melitensis.

    PubMed

    Motamedi, Hossein; Darabpour, Esmaeil; Gholipour, Mahnaz; Seyyed Nejad, Seyyed Mansour

    2010-07-01

    Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. Brucella melitensis is the main causative agent of brucellosis in both human and small ruminants. As an alternative to conventional antibiotics, medicinal plants are valuable resources for new agents against antibiotic-resistant strains. The aim of this study was to investigate the usage of native plants for brucellosis treatment. For this purpose, the anti-brucella activities of ethanolic and methanolic extracts of Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, Plantago ovata, Cordia myxa, and Crocus sativus were assessed. The activity against a resistant Br. melitensis strain was determined by disc diffusion method at various concentrations from 50-400 mg/ml. Antibiotic discs were also used as a control. Among the evaluated herbs, six plant (Salvia sclarea, Oliveria decumbens, Ferulago angulata, Vitex pseudo-negundo, Teucrium polium, and Crocus sativus) showed anti-brucella activity. Oliveria decumbens was chosen as the most effective plant for further studies. A tested isolate exhibited resistance to tetracycline, nafcillin, oxacillin, methicillin, and colistin. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for Oliveria decumbens against resistant Br. melitensis were the same (5 mg/ml), and for gentamicin they were both 2 mg/ml. Time-kill kinetics for a methanolic extract of Oliveria decumbens was 7 h whereas for an ethanolic extract it was 28 h. Also, Oliveria decumbens extracts showed a synergistic effect in combination with doxycycline and tetracycline. In general, the similar values of MIC and MBC for Oliveria decumbens suggest that these extracts could act as bactericidal agents against Br. melitensis. In addition to Oliveria decumbens, Crocus sativus and Salvia sclarea also had good anti-brucella activity and these should be considered for further study.

  4. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt

    PubMed Central

    Osman, Kamelia M; Marouf, Sherif H; Zolnikov, Tara R; AlAtfeehy, Nayerah

    2014-01-01

    Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18.5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes. PMID:24548159

  5. Outbreak of Acinetobacter baumannii in a neonatal intensive care unit: antimicrobial susceptibility and genotyping analysis.

    PubMed

    Touati, Arabella; Achour, Wafa; Cherif, Ahmed; Hmida, Hayet Ben; Afif, Firas Bou; Jabnoun, Sami; Khrouf, Naima; Hassen, Assia Ben

    2009-06-01

    We describe an outbreak of nosocomial respiratory infection caused by multi-drug resistant Acinetobacter baumannii in a neonatal intensive care unit (NICU) in Tunis and our investigation to determine the source. Between May 2006 and February 2007, 31 infants hospitalized in the NICU of the Centre of Maternity and Neonatology of La Rabta in Tunis developed A. baumannii pneumonia. A case (infected infant) was defined as any patient hospitalized in the NICU during the outbreak period, with clinical signs of pneumonia and isolation of A. baumannii from tracheal aspirate. Ten rectal swabs and 98 environmental specimens were collected for the epidemiological investigation. Thirty-nine A. baumannii isolates were collected: 31 clinical strains from tracheal aspirates (>10(3) colony-forming units [CFU]/mL), 3 environmental strains from incubators, and 5 from rectal swab. For the genotyping method, we used pulsed-field gel electrophoresis using ApaI restriction endonuclease. Thirty-one neonates developed multiple drug-resistant A. baumannii-associated pneumonia with 10 deaths due to A. baumannii infection, 48.4% had very low birth weight (colistin. Pulsed-field gel electrophoresis analysis of outbreak-isolates indicated the presence of only one clone (A) containing nine subtypes genetically related to the outbreak strain. The clonal diffusion of A. baumannii strains in an NICU was confirmed by molecular method. Control measures were reinforced to contain the outbreak.

  6. Cluster-distinguishing genotypic and phenotypic diversity of carbapenem-resistant Gram-negative bacteria in solid-organ transplantation patients: a comparative study.

    PubMed

    Karampatakis, Theodoros; Geladari, Anastasia; Politi, Lida; Antachopoulos, Charalampos; Iosifidis, Elias; Tsiatsiou, Olga; Karyoti, Aggeliki; Papanikolaou, Vasileios; Tsakris, Athanassios; Roilides, Emmanuel

    2017-07-31

    Solid-organ transplant recipients may display high rates of colonization and/or infection by multidrug-resistant bacteria. We analysed and compared the phenotypic and genotypic diversity of carbapenem-resistant (CR) strains of Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii isolated from patients in the Solid Organ Transplantation department of our hospital. Between March 2012 and August 2013, 56 CR strains from various biological fluids underwent antimicrobial susceptibility testing with VITEK 2, molecular analysis by PCR amplification and genotypic analysis with pulsed-field gel electrophoresis (PFGE). They were clustered according to antimicrobial drug susceptibility and genotypic profiles. Diversity analyses were performed by calculating Simpson's diversity index and applying computed rarefaction curves.Results/Key findings. Among K. pneumoniae, KP-producers predominated (57.1 %). VIM and OXA-23 carbapenemases prevailed among P. aeruginosa and A. baumannii (89.4 and 88.9 %, respectively). KPC-producing K. pneumoniae and OXA-23 A. baumannii were assigned in single PFGE pulsotypes. VIM-producing P. aeruginosa generated multiple pulsotypes. CR K. pneumoniae strains displayed phenotypic diversity in tigecycline, colistin (CS), amikacin (AMK), gentamicin (GEN) and co-trimoxazole (SXT) (16 clusters); P. aeruginosa displayed phenotypic diversity in cefepime (FEP), ceftazidime, aztreonam, piperacillin, piperacillin-tazobactam, AMK, GEN and CS (9 clusters); and A. baumannii displayed phenotypic diversity in AMK, GEN, SXT, FEP, tobramycin and rifampicin (8 clusters). The Simpson diversity indices for the interpretative phenotype and PFGE analysis were 0.89 and 0.6, respectively, for K. pneumoniae strains (P<0.001); 0.77 and 0.6 for P. aeruginosa (P=0.22); and 0.86 and 0.19 for A. baumannii (P=0.004). The presence of different antimicrobial susceptibility profiles does not preclude the possibility that two CR K. pneumoniae or A. baumannii

  7. Occurrence and characterization of mcr-1-harbouring Escherichia coli isolated from pigs in Great Britain from 2013 to 2015.

    PubMed

    Duggett, Nicholas A; Sayers, Ellie; AbuOun, Manal; Ellis, Richard J; Nunez-Garcia, Javier; Randall, Luke; Horton, Robert; Rogers, Jon; Martelli, Francesca; Smith, Richard P; Brena, Camilla; Williamson, Susanna; Kirchner, Miranda; Davies, Robert; Crook, Derrick; Evans, Sarah; Teale, Chris; Anjum, Muna F

    2017-03-01

    To determine the occurrence of mcr-1 -harbouring Escherichia coli in archived pig material originating in Great Britain (GB) from 2013 to 2015 and characterize mcr-1 plasmids. Enrichment and selective culture of 387 archived porcine caecal contents and recovery from archive of 1109 E. coli isolates to identify colistin-resistant bacteria by testing for the presence of mcr-1 by PCR and RT-PCR. mcr-1 -harbouring E. coli were characterized by WGS and compared with other available mcr-1 WGS. Using selective isolation following enrichment, the occurrence of mcr-1 E. coli in caeca from healthy pigs at slaughter from unique farms in GB was 0.6% (95% CI 0%-1.5%) in 2015. mcr-1 E. coli were also detected in isolates from two porcine veterinary diagnostic submissions in 2015. All isolates prior to 2015 were negative. WGS analysis of the four mcr-1 -positive E. coli indicated no other antimicrobial resistance (AMR) genes were linked to mcr-1 -plasmid-bearing contigs, despite all harbouring multiple AMR genes. The sequence similarity between mcr-1 -plasmid-bearing contigs identified and those found in GB, Chinese and South African human isolates and Danish, French and Estonian livestock-associated isolates was 90%-99%. mcr-1- harbouring plasmids were diverse, implying transposable elements are involved in mcr-1 transmission in GB. The low number of mcr-1 -positive E. coli isolates identified suggested mcr-1 is currently uncommon in E. coli from pigs within GB. The high sequence similarity between mcr-1 plasmid draft genomes identified in pig E. coli and plasmids found in human and livestock-associated isolates globally requires further investigation to understand the full implications. © Crown copyright 2016.

  8. Influence of the treatment of Listeria monocytogenes and Salmonella enterica serovar Typhimurium with citral on the efficacy of various antibiotics.

    PubMed

    Zanini, Surama F; Silva-Angulo, Angela B; Rosenthal, Amauri; Aliaga, Dolores Rodrigo; Martínez, Antonio

    2014-04-01

    The main goal of this work was to study the bacterial adaptive responses to antibiotics induced by sublethal concentration of citral on first-and second-generation cells of Listeria monocytogenes serovar 4b (CECT 4032) and Salmonella enterica serovar Typhimurium (CECT 443). The first-generation cells were not pretreated with citral, while the second-generation cells were obtained from cells previously exposed to citral during 5 h. The trials were conducted at 37°C. The presence of citral in the culture medium and the antibiotic strips resulted in a reduced minimum inhibitory concentration (MIC) for the first-generation cells of Listeria monocytogenes serovar 4b and Salmonella Typhimurium. This result was observed for almost all the antibiotics, compared with the same microorganisms of the control group (without citral), which could represent an additive effect. For Listeria serovar 4b, the second-generation cells of the test group maintained the same susceptibility to antibiotics compared with cells in the control group and in the test group of the first generation. The second-generation cells of the control group indicated that the Salmonella Typhimurium maintained the same sensitivity to the antibiotics tested compared with the first generation of this group, except in the case of erythromycin, which exhibited an increased MIC value. With respect to the second-generation cells of Salmonella Typhimurium, the presence of citral determined a decrease in the antibiotic susceptibility for almost all of the antibiotics, except colistin, compared with the first-generation of the test group, which can be seen by increase of MIC values. In conclusion, the presence of citral in the culture medium of Listeria 4b and Salmonella Typhimurium increased the antibiotic susceptibility of the first generations, while we observed an increase in antibiotic resistance in the second generation of Salmonella Typhimurium.

  9. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance.

    PubMed

    Wang, Mingyu; Shen, Weitao; Yan, Lei; Wang, Xin-Hua; Xu, Hai

    2017-12-01

    Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Prevalence, antibiogram and risk factors of thermophilic campylobacter spp. in dressed porcine carcass of Chitwan, Nepal

    PubMed Central

    2014-01-01

    Background Campylobacter is the primary cause of food borne gastroenteritis. Moreover, the emergence of multiple drug resistant campylobacters from poultry and pork has produced a potential threat to public health. Research addressing these issues is sparse in Nepal. So, this cross-sectional study aims at determining the prevalence, antibiogram and risk factors of campylobacters from dressed porcine carcass of Chitwan, Nepal. Results We collected 139 samples of dressed porcine carcass from 10 different pork shops located in Chitwan district and processed according to OIE Terrestrial Manual, 2008, chapter 2.8.10. Antibiogram of identified Campylobacter spp. was evaluated against nine commonly used antibiotics by using disc diffusion method following CLSI guidelines. The prevalence of Campylobacter spp. was 38.84% (C. coli 76% and C. jejuni 24%). There was no significant difference (p > 0.05) between the prevalence rate of male (32.4%) and female (41%) carcass. Ampicillin and erythromycin showed the highest resistance (92.59% each) followed by colistin (72.2%), tetracycline (61.1%), nalidixic acid and cotrimoxazole (44.4% each), ciprofloxacin (31.5%) and gentamicin (5.56%). Moreover, 77.8% of the isolates were resistant to more than two antimicrobials. Nalidixic acid and tetracycline showed significant difference (p < 0.05) in the resistivity pattern among different species of Campylobacters. The association between prevalence rate and regular sanitization of slaughter slab equipments was significant (p < 0.05). Similarly, prevalence rate was significantly associated (p < 0.01) with chilling and contamination of intestinal content with carcass. Conclusions The pork meat of Chitwan is highly contaminated with antibiotic-resistant Campylobacters and slaughtering practices play significant role in contamination. It is necessary to train the butchers about hygienic slaughtering practice. The consumers as well as butchers should adopt safety measures to prevent themselves

  11. Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria.

    PubMed

    Pontikis, Konstantinos; Karaiskos, Ilias; Bastani, Styliani; Dimopoulos, George; Kalogirou, Michalis; Katsiari, Maria; Oikonomou, Angelos; Poulakou, Garyphallia; Roilides, Emmanuel; Giamarellou, Helen

    2014-01-01

    Fosfomycin is active in vitro against extensively drug-resistant (XDR) and pandrug-resistant (PDR) Pseudomonas aeruginosa and Klebsiella pneumoniae carbapenemase-producing strains; however, the in vivo effectiveness against such pathogens is almost unknown. A multicentre, observational, prospective case-series study was performed in 11 ICUs. All consecutive fosfomycin-treated patients suffering from XDR or PDR fosfomycin-susceptible, microbiologically documented infections were recorded. Clinical and microbiological outcomes were assessed. A safety analysis was performed. In total, 68 patients received fosfomycin during the study period, 48 of whom were considered suitable for effectiveness analysis based on predefined criteria. Bacteraemia and ventilator-associated pneumonia were the main infections. Carbapenemase-producing K. pneumoniae and P. aeruginosa were isolated in 41 and 17 cases, respectively. All isolates exhibited an XDR or PDR profile, being fosfomycin-susceptible by definition. Fosfomycin was administered intravenously at a median dose of 24g/day for a median of 14 days, mainly in combination with colistin or tigecycline. Clinical outcome at Day 14 was successful in 54.2% of patients, whilst failure, indeterminate outcome and superinfection were documented in 33.3%, 6.3% and 6.3%, respectively. All-cause mortality at Day 28 was 37.5%. Bacterial eradication was observed in 56.3% of cases. Fosfomycin resistance developed in three cases. The main adverse event was reversible hypokalaemia. In conclusion, fosfomycin could have a place in the armamentarium against XDR and PDR Gram-negative infections in the critically ill. Resistance development during therapy, which has been a matter of concern in previous studies, did not occur frequently. The necessity of combination with other antibiotics requires further investigation. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  12. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection.

    PubMed

    Al Dawodeyah, Heba Y; Obeidat, Nathir; Abu-Qatouseh, Luay F; Shehabi, Asem A

    2018-03-01

    Pseudomonas aeruginosa is a common agent causing community acquired and nosocomial respiratory tract infections, with particularly life-threatening manifestations in patients who are immunocompromised of who have cystic fibrosis. This study investigated the occurrence of extended-spectrum β-lactamases (ESBLs) and metallo β-lactamase (MBL) in association with important putative virulence genes and genotypes variation among P. aeruginosa isolates from respiratory tract infection of Jordanian patients. Over a period of 8-month, a total of 284 respiratory tract samples were obtained from patients diagnosed with respiratory tract infection while attending the Pulmonary Clinic/Intensive Care Unit, Jordan University Hospital (JUH). At the time of sampling most were inpatients (86.9%). Samples were cultured specifically for P. aeruginosa . A total of 61/284 (21.5%) P. aeruginosa isolates were recovered from respiratory samples of patients. The percentage of MDR P. aeruginosa isolates was 52.5%, and all isolates were susceptible to colistin with lower rates of susceptibility to other tested antibiotics. Positive genes of bla CTX-M , bla VEB , bla TEM , bla GES and bla SHV were detected in 68.9%, 18.9%, 18.9%, 15.6% and 12.5% of isolates, respectively. Genotyping revealed no significant genetic relationship among MDR P. aeruginosa isolates from hospitalized patients as judged by the constructed dendrogram and the presence of 14 genotypic groups. The percentages of the virulence genes algD , lasB , toxA , exoS , and exoU among P. aeruginosa isolates were 98%, 98%, 80%, 33% and 33%, respectively, and 87% of isolates produced pyocyanin. The present study demonstrates high occurrence of MDR P. aeruginosa isolates carrying bla CTX-M genes. No specific associations were found between antibiotic resistance, virulence genes and genotypes among MDR isolates.

  13. Actinomyces radicidentis and Actinomyces haliotis, coccoid Actinomyces species isolated from the human oral cavity.

    PubMed

    Claesson, Rolf; Sjögren, Ulf; Esberg, Anders; Brundin, Malin; Granlund, Margareta

    2017-12-01

    There are few reports on the bacterial species Actinomyces radicidentis in the literature. In this study, putative A. radicidentis isolates were collected from 16 root canal samples from 601 examined patients. The isolates were examined by biochemical tests, 16S rRNA gene sequencing, Arbitrarily-primed (AP-) PCR, antibiotic susceptibility testing, and MALDI-TOF analyses. In parallel, two A. radicidentis reference strains and two putative A. radicidentis isolates from United Kingdom were tested. Sixteen of the 18 isolates were confirmed as A. radicidentis. The remaining two isolates, both of which were isolated from root canals (one from Sweden and the other from the UK), but were identified as Actinomyces haliotis by sequencing ∼ 1300 base pairs of the 16S rRNA-gene. This isolates had a divergent, but between them similar, AP-PCR pattern, and a common distribution of sequence signatures in the 16S rRNA gene, but were not identified by MALDI-TOF. A. haliotis is a close relative to A. radicidentis, hitherto only been described from a sea-snail. The identity of A. haliotis was confirmed by a phylogenetic tree based on 16S rRNA gene sequences with species specific sequences included, and by additional biochemical tests. The examined bacteria exhibited similar antibiotic susceptibility patterns when tested for 10 separate antibiotic classes with E-tests (bioMérieux). The MIC 90 for β-lactams (benzylpenicillin and cefuroxime) and vancomycin was 0.5 mg/L, for colistin and ciprofloxacin 8 mg/mL and for the other antibiotic classes ≤ 25 mg/mL The isolation of A. haliotis from infected dental root canals cast doubt on the accepted opinion that all Actinomyces infections have an endogenous source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of automated time-lapse microscopy for assessment of in vitro activity of antibiotics.

    PubMed

    Ungphakorn, Wanchana; Malmberg, Christer; Lagerbäck, Pernilla; Cars, Otto; Nielsen, Elisabet I; Tängdén, Thomas

    2017-01-01

    This study aimed to evaluate the potential of a new time-lapse microscopy based method (oCelloScope) to efficiently assess the in vitro antibacterial effects of antibiotics. Two E. coli and one P. aeruginosa strain were exposed to ciprofloxacin, colistin, ertapenem and meropenem in 24-h experiments. Background corrected absorption (BCA) derived from the oCelloScope was used to detect bacterial growth. The data obtained with the oCelloScope were compared with those of the automated Bioscreen C method and standard time-kill experiments and a good agreement in results was observed during 6-24h of experiments. Viable counts obtained at 1, 4, 6 and 24h during oCelloScope and Bioscreen C experiments were well correlated with the corresponding BCA and optical density (OD) data. Initial antibacterial effects during the first 6h of experiments were difficult to detect with the automated methods due to their high detection limits (approximately 10 5 CFU/mL for oCelloScope and 10 7 CFU/mL for Bioscreen C), the inability to distinguish between live and dead bacteria and early morphological changes of bacteria during exposure to ciprofloxacin, ertapenem and meropenem. Regrowth was more frequently detected in time-kill experiments, possibly related to the larger working volume with an increased risk of pre-existing or emerging resistance. In comparison with Bioscreen C, the oCelloScope provided additional information on bacterial growth dynamics in the range of 10 5 to 10 7 CFU/mL and morphological features. In conclusion, the oCelloScope would be suitable for detection of in vitro effects of antibiotics, especially when a large number of regimens need to be tested. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Nebulization of Antiinfective Agents in Invasively Mechanically Ventilated Adults: A Systematic Review and Meta-analysis.

    PubMed

    Solé-Lleonart, Candela; Rouby, Jean-Jacques; Blot, Stijn; Poulakou, Garyfallia; Chastre, Jean; Palmer, Lucy B; Bassetti, Matteo; Luyt, Charles-Edouard; Pereira, Jose M; Riera, Jordi; Felton, Tim; Dhanani, Jayesh; Welte, Tobias; Garcia-Alamino, Jose M; Roberts, Jason A; Rello, Jordi

    2017-05-01

    Nebulization of antiinfective agents is a common but unstandardized practice in critically ill patients. A systematic review of 1,435 studies was performed in adults receiving invasive mechanical ventilation. Two different administration strategies (adjunctive and substitute) were considered clinically relevant. Inclusion was restricted to studies using jet, ultrasonic, and vibrating-mesh nebulizers. Studies involving children, colonized-but-not-infected adults, and cystic fibrosis patients were excluded. Five of the 11 studies included had a small sample size (fewer than 50 patients), and only 6 were randomized. Diversity of case-mix, dosage, and devices are sources of bias. Only a few patients had severe hypoxemia. Aminoglycosides and colistin were the most common antibiotics, being safe regarding nephrotoxicity and neurotoxicity, but increased respiratory complications in 9% (95% CI, 0.01 to 0.18; I = 52%), particularly when administered to hypoxemic patients. For tracheobronchitis, a significant decrease in emergence of resistance was evidenced (risk ratio, 0.18; 95% CI, 0.05 to 0.64; I = 0%). Similar findings were observed in pneumonia by susceptible pathogens, without improvement in mortality or ventilation duration. In pneumonia caused by resistant pathogens, higher clinical resolution (odds ratio, 1.96; 95% CI, 1.30 to 2.96; I = 0%) was evidenced. These findings were not consistently evidenced in the assessment of efficacy against pneumonia caused by susceptible pathogens. Performance of randomized trials evaluating the impact of nebulized antibiotics with more homogeneous populations, standardized drug delivery, predetermined clinical efficacy, and safety outcomes is urgently required. Infections by resistant pathogens might potentially have higher benefit from nebulized antiinfective agents. Nebulization, without concomitant systemic administration of the drug, may reduce nephrotoxicity but may also be associated with higher risk of respiratory

  16. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions

    PubMed Central

    McDaniel, Cameron; Su, Shengchang; Panmanee, Warunya; Lau, Gee W.; Browne, Tristan; Cox, Kevin; Paul, Andrew T.; Ko, Seung-Hyun B.; Mortensen, Joel E.; Lam, Joseph S.; Muruve, Daniel A.; Hassett, Daniel J.

    2016-01-01

    Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains. PMID:27064218

  17. Pseudomonas aeruginosa-producing Metallo-β-lactamases (VIM, IMP, SME, and AIM) in the Clinical Isolates of Intensive Care Units, a University Hospital in Isfahan, Iran.

    PubMed

    Khorvash, Farzin; Yazdani, Mohammadreza; Shabani, Shiva; Soudi, Aliasghar

    2017-01-01

    Pseudomonas aeruginosa is a severe challenge for antimicrobial therapy, due to the chromosomal mutations or exhibition of intrinsic resistance to various antimicrobial agents such as most β-lactams. We undertook this study to evaluate the existence of SME, IMP, AIM, and VIM metallo-β-lactamases (MBL) encoding genes among P. aeruginosa strains isolated from Intensive Care Unit (ICU) patients in Al-Zahra Hospital in Isfahan, Iran. In a retrospective cross-sectional study that was conducted between March 2012 and April 2013, a total of 48 strains of P. aeruginosa were collected from clinical specimens of bedridden patients in ICU wards. Susceptibility test was performed by disc diffusion method. All of the meropenem-resistant strains were subjected to modified Hodge test for detection of carbapenemases. Multiplex polymerase chain reaction was performed for detection of blaVIM, blaIMP, blaAIM, and blaSME genes. In disk diffusion method, imipenem and meropenem showed the most and colistin the least resistant antimicrobial agents against P. aeruginosa strains. Of the 48 isolates, 36 (75%) were multidrug resistant (MDR). Amplification of β-lactamase genes showed the presence of blaVIM genes in 7 (%14.6) strains and blaIMP genes in 15 (31.3%) strains. All of the isolates were negative for blaSME and blaAIM genes. We could not find any statistically significant difference among the presence of this gene and MDR positive, age, or source of the specimen. As patients with infections caused by MBL-producing bacteria are at an intensified risk of treatment failure, fast determination of these organisms is necessary. Our findings may provide useful insights in replace of the appropriate antibiotics and may also prevent MBLs mediated resistance problem.

  18. The Clinical Urine Culture: Enhanced Techniques Improve Detection of Clinically Relevant Microorganisms

    PubMed Central

    Price, Travis K.; Dune, Tanaka; Hilt, Evann E.; Thomas-White, Krystal J.; Kliethermes, Stephanie; Brincat, Cynthia; Brubaker, Linda; Wolfe, Alan J.

    2016-01-01

    Enhanced quantitative urine culture (EQUC) detects live microorganisms in the vast majority of urine specimens reported as “no growth” by the standard urine culture protocol. Here, we evaluated an expanded set of EQUC conditions (expanded-spectrum EQUC) to identify an optimal version that provides a more complete description of uropathogens in women experiencing urinary tract infection (UTI)-like symptoms. One hundred fifty adult urogynecology patient-participants were characterized using a self-completed validated UTI symptom assessment (UTISA) questionnaire and asked “Do you feel you have a UTI?” Women responding negatively were recruited into the no-UTI cohort, while women responding affirmatively were recruited into the UTI cohort; the latter cohort was reassessed with the UTISA questionnaire 3 to 7 days later. Baseline catheterized urine samples were plated using both standard urine culture and expanded-spectrum EQUC protocols: standard urine culture inoculated at 1 μl onto 2 agars incubated aerobically; expanded-spectrum EQUC inoculated at three different volumes of urine onto 7 combinations of agars and environments. Compared to expanded-spectrum EQUC, standard urine culture missed 67% of uropathogens overall and 50% in participants with severe urinary symptoms. Thirty-six percent of participants with missed uropathogens reported no symptom resolution after treatment by standard urine culture results. Optimal detection of uropathogens could be achieved using the following: 100 μl of urine plated onto blood (blood agar plate [BAP]), colistin-nalidixic acid (CNA), and MacConkey agars in 5% CO2 for 48 h. This streamlined EQUC protocol achieved 84% uropathogen detection relative to 33% detection by standard urine culture. The streamlined EQUC protocol improves detection of uropathogens that are likely relevant for symptomatic women, giving clinicians the opportunity to receive additional information not currently reported using standard urine culture

  19. Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infections in a Chinese Children's Hospital: Predominance of New Delhi Metallo-β-Lactamase-1.

    PubMed

    Dong, Fang; Zhang, Ye; Yao, Kaihu; Lu, Jie; Guo, Lingyun; Lyu, Shuang; Yang, Ying; Wang, Yan; Zheng, Hongyan; Song, Wenqi; Liu, Gang

    2018-03-01

    The spread of carbapenem-resistant Klebsiella pneumoniae (CRKp) has become a significant problem worldwide; however, relevant data in children are limited. We performed a retrospective study to better understand the epidemiology of CRKp bloodstream infections at Beijing Children's Hospital. A total of 164 K. pneumoniae strains were collected from blood cultures between January 2011 and September 2014, of which 52 (31.7%) were CRKp strains. All 52 CRKp strains were multidrug resistant; 46 (88.5%) and 49 (94.2%) isolates were resistant to meropenem and imipenem, respectively. Low rates of resistance to amikacin (5.8%), levofloxacin (7.7%), and ciprofloxacin (15.4%) were observed. All isolates were susceptible to colistin. Among the tested carbapenem resistance genes, the predominant gene was bla NDM-1 , detected in 28 (53.8%) isolates, followed by bla IMP-4 (19, 36.5%) and bla KPC-2 (4, 7.7%). Multilocus sequence typing identified 31 sequence types (STs), the most predominant of which was ST782 (9, 29.0%). All ST782 strains were New Delhi metallo-β-lactamase-1 (NDM-1) producing. Four novel STs (ST2010, ST2011, ST2012, and ST2013) and two novel alleles (phoE243 and tonB324) were also detected. Hematologic disease was the most common underlying disease (73.1%). All children received initial empirical therapy. A total of 59.6% (31/52) patients received inappropriate empirical therapy, and 45.2% (14/31) changed antimicrobial therapy after blood culture results were obtained. The overall mortality rate was 11.5%. In conclusion, we observed a high rate of CRKp isolates collected from blood cultures and the predominance of NDM-1-producing K. pneumoniae among children from 2011 to 2014.

  20. Pseudomonas aeruginosa-producing Metallo-β-lactamases (VIM, IMP, SME, and AIM) in the Clinical Isolates of Intensive Care Units, a University Hospital in Isfahan, Iran

    PubMed Central

    Khorvash, Farzin; Yazdani, Mohammadreza; Shabani, Shiva; Soudi, Aliasghar

    2017-01-01

    Background: Pseudomonas aeruginosa is a severe challenge for antimicrobial therapy, due to the chromosomal mutations or exhibition of intrinsic resistance to various antimicrobial agents such as most β-lactams. We undertook this study to evaluate the existence of SME, IMP, AIM, and VIM metallo-β-lactamases (MBL) encoding genes among P. aeruginosa strains isolated from Intensive Care Unit (ICU) patients in Al-Zahra Hospital in Isfahan, Iran. Materials and Methods: In a retrospective cross-sectional study that was conducted between March 2012 and April 2013, a total of 48 strains of P. aeruginosa were collected from clinical specimens of bedridden patients in ICU wards. Susceptibility test was performed by disc diffusion method. All of the meropenem-resistant strains were subjected to modified Hodge test for detection of carbapenemases. Multiplex polymerase chain reaction was performed for detection of blaVIM, blaIMP, blaAIM, and blaSME genes. Results: In disk diffusion method, imipenem and meropenem showed the most and colistin the least resistant antimicrobial agents against P. aeruginosa strains. Of the 48 isolates, 36 (75%) were multidrug resistant (MDR). Amplification of β-lactamase genes showed the presence of blaVIM genes in 7 (%14.6) strains and blaIMP genes in 15 (31.3%) strains. All of the isolates were negative for blaSME and blaAIM genes. We could not find any statistically significant difference among the presence of this gene and MDR positive, age, or source of the specimen. Conclusion: As patients with infections caused by MBL-producing bacteria are at an intensified risk of treatment failure, fast determination of these organisms is necessary. Our findings may provide useful insights in replace of the appropriate antibiotics and may also prevent MBLs mediated resistance problem. PMID:29285477