Lee, E. Sally; McDonald, David W.; Anderson, Nicholas; Tarczy-Hornoch, Peter
2008-01-01
Due to its complex nature, modern biomedical research has become increasingly interdisciplinary and collaborative in nature. Although a necessity, interdisciplinary biomedical collaboration is difficult. There is, however, a growing body of literature on the study and fostering of collaboration in fields such as computer supported cooperative work (CSCW) and information science (IS). These studies of collaboration provide insight into how to potentially alleviate the difficulties of interdisciplinary collaborative research. We, therefore, undertook a cross cutting study of science and engineering collaboratories to identify emergent themes. We review many relevant collaboratory concepts: (a) general collaboratory concepts across many domains: communication, common workspace and coordination, and data sharing and management, (b) specific collaboratory concepts of particular biomedical relevance: data integration and analysis, security structure, metadata and data provenance, and interoperability and data standards, (c) environmental factors that support collaboratories: administrative and management structure, technical support, and available funding as critical environmental factors, and (d) future considerations for biomedical collaboration: appropriate training and long-term planning. In our opinion, the collaboratory concepts we discuss can guide planning and design of future collaborative infrastructure by biomedical informatics researchers to alleviate some of the difficulties of interdisciplinary biomedical collaboration. PMID:18706852
Computational approaches for predicting biomedical research collaborations.
Zhang, Qing; Yu, Hong
2014-01-01
Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.
Myneni, Sahiti; Patel, Vimla L.; Bova, G. Steven; Wang, Jian; Ackerman, Christopher F.; Berlinicke, Cynthia A.; Chen, Steve H.; Lindvall, Mikael; Zack, Donald J.
2016-01-01
This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to 1) characterize specific problems faced by biomedical researchers with traditional information management practices, 2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to 3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. PMID:26652980
Advanced Biomedical Computing Center (ABCC) | DSITP
The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.
Building dialogues between clinical and biomedical research through cross-species collaborations.
Chao, Hsiao-Tuan; Liu, Lucy; Bellen, Hugo J
2017-10-01
Today, biomedical science is equipped with an impressive array of technologies and genetic resources that bolster our basic understanding of fundamental biology and enhance the practice of modern medicine by providing clinicians with a diverse toolkit to diagnose, prognosticate, and treat a plethora of conditions. Many significant advances in our understanding of disease mechanisms and therapeutic interventions have arisen from fruitful dialogues between clinicians and biomedical research scientists. However, the increasingly specialized scientific and medical disciplines, globalization of science and technology, and complex datasets often hinder the development of effective interdisciplinary collaborations between clinical medicine and biomedical research. The goal of this review is to provide examples of diverse strategies to enhance communication and collaboration across diverse disciplines. First, we discuss examples of efforts to foster interdisciplinary collaborations at institutional and multi-institutional levels. Second, we explore resources and tools for clinicians and research scientists to facilitate effective bi-directional dialogues. Third, we use our experiences in neurobiology and human genetics to highlight how communication between clinical medicine and biomedical research lead to effective implementation of cross-species model organism approaches to uncover the biological underpinnings of health and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J
2016-04-01
This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ravid, Katya; Seta, Francesca; Center, David; Waters, Gloria; Coleman, David
2017-10-01
Team science has been recognized as critical to solving increasingly complex biomedical problems and advancing discoveries in the prevention, diagnosis, and treatment of human disease. In 2009, the Evans Center for Interdisciplinary Biomedical Research (ECIBR) was established in the Department of Medicine at Boston University School of Medicine as a new organizational paradigm to promote interdisciplinary team science. The ECIBR is made up of affinity research collaboratives (ARCs), consisting of investigators from different departments and disciplines who come together to study biomedical problems that are relevant to human disease and not under interdisciplinary investigation at the university. Importantly, research areas are identified by investigators according to their shared interests. ARC proposals are evaluated by a peer review process, and collaboratives are funded annually for up to three years.Initial outcomes of the first 12 ARCs show the value of this model in fostering successful biomedical collaborations that lead to publications, extramural grants, research networking, and training. The most successful ARCs have been developed into more sustainable organizational entities, including centers, research cores, translational research projects, and training programs.To further expand team science at Boston University, the Interdisciplinary Biomedical Research Office was established in 2015 to more fully engage the entire university, not just the medical campus, in interdisciplinary research using the ARC mechanism. This approach to promoting team science may be useful to other academic organizations seeking to expand interdisciplinary research at their institutions.
Myneni, Sahiti; Patel, Vimla L
2010-06-01
Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.
Myneni, Sahiti; Patel, Vimla L.
2010-01-01
Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment. PMID:20543892
Collaborative mining and interpretation of large-scale data for biomedical research insights.
Tsiliki, Georgia; Karacapilidis, Nikos; Christodoulou, Spyros; Tzagarakis, Manolis
2014-01-01
Biomedical research becomes increasingly interdisciplinary and collaborative in nature. Researchers need to efficiently and effectively collaborate and make decisions by meaningfully assembling, mining and analyzing available large-scale volumes of complex multi-faceted data residing in different sources. In line with related research directives revealing that, in spite of the recent advances in data mining and computational analysis, humans can easily detect patterns which computer algorithms may have difficulty in finding, this paper reports on the practical use of an innovative web-based collaboration support platform in a biomedical research context. Arguing that dealing with data-intensive and cognitively complex settings is not a technical problem alone, the proposed platform adopts a hybrid approach that builds on the synergy between machine and human intelligence to facilitate the underlying sense-making and decision making processes. User experience shows that the platform enables more informed and quicker decisions, by displaying the aggregated information according to their needs, while also exploiting the associated human intelligence.
Collaborative Mining and Interpretation of Large-Scale Data for Biomedical Research Insights
Tsiliki, Georgia; Karacapilidis, Nikos; Christodoulou, Spyros; Tzagarakis, Manolis
2014-01-01
Biomedical research becomes increasingly interdisciplinary and collaborative in nature. Researchers need to efficiently and effectively collaborate and make decisions by meaningfully assembling, mining and analyzing available large-scale volumes of complex multi-faceted data residing in different sources. In line with related research directives revealing that, in spite of the recent advances in data mining and computational analysis, humans can easily detect patterns which computer algorithms may have difficulty in finding, this paper reports on the practical use of an innovative web-based collaboration support platform in a biomedical research context. Arguing that dealing with data-intensive and cognitively complex settings is not a technical problem alone, the proposed platform adopts a hybrid approach that builds on the synergy between machine and human intelligence to facilitate the underlying sense-making and decision making processes. User experience shows that the platform enables more informed and quicker decisions, by displaying the aggregated information according to their needs, while also exploiting the associated human intelligence. PMID:25268270
Building biomedical web communities using a semantically aware content management system.
Das, Sudeshna; Girard, Lisa; Green, Tom; Weitzman, Louis; Lewis-Bowen, Alister; Clark, Tim
2009-03-01
Web-based biomedical communities are becoming an increasingly popular vehicle for sharing information amongst researchers and are fast gaining an online presence. However, information organization and exchange in such communities is usually unstructured, rendering interoperability between communities difficult. Furthermore, specialized software to create such communities at low cost-targeted at the specific common information requirements of biomedical researchers-has been largely lacking. At the same time, a growing number of biological knowledge bases and biomedical resources are being structured for the Semantic Web. Several groups are creating reference ontologies for the biomedical domain, actively publishing controlled vocabularies and making data available in Resource Description Framework (RDF) language. We have developed the Science Collaboration Framework (SCF) as a reusable platform for advanced structured online collaboration in biomedical research that leverages these ontologies and RDF resources. SCF supports structured 'Web 2.0' style community discourse amongst researchers, makes heterogeneous data resources available to the collaborating scientist, captures the semantics of the relationship among the resources and structures discourse around the resources. The first instance of the SCF framework is being used to create an open-access online community for stem cell research-StemBook (http://www.stembook.org). We believe that such a framework is required to achieve optimal productivity and leveraging of resources in interdisciplinary scientific research. We expect it to be particularly beneficial in highly interdisciplinary areas, such as neurodegenerative disease and neurorepair research, as well as having broad utility across the natural sciences.
Modeling a description logic vocabulary for cancer research.
Hartel, Frank W; de Coronado, Sherri; Dionne, Robert; Fragoso, Gilberto; Golbeck, Jennifer
2005-04-01
The National Cancer Institute has developed the NCI Thesaurus, a biomedical vocabulary for cancer research, covering terminology across a wide range of cancer research domains. A major design goal of the NCI Thesaurus is to facilitate translational research. We describe: the features of Ontylog, a description logic used to build NCI Thesaurus; our methodology for enhancing the terminology through collaboration between ontologists and domain experts, and for addressing certain real world challenges arising in modeling the Thesaurus; and finally, we describe the conversion of NCI Thesaurus from Ontylog into Web Ontology Language Lite. Ontylog has proven well suited for constructing big biomedical vocabularies. We have capitalized on the Ontylog constructs Kind and Role in the collaboration process described in this paper to facilitate communication between ontologists and domain experts. The artifacts and processes developed by NCI for collaboration may be useful in other biomedical terminology development efforts.
CGH U.S.-China Program for Biomedical Research Cooperation
The International Bilateral Programs for Collaborative Scientific Research seeks to enhance the global activities of NCI’s intramural researchers and grantees through co-funded support for collaborative research between NIH and international scientific research agencies.
NIH/NSF accelerate biomedical research innovations
A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in
González-Alcaide, Gregorio; Valderrama-Zurián, Juan Carlos; Ramos-Rincón, José Manuel
2010-10-01
Collaboration is essential for biomedical research. The Carlos III Health Institute (the Spanish national public organization responsible for promoting biomedical research) has encouraged scientific collaboration by promoting Thematic Networks and Cooperative Research Centres. Scientific collaboration in Enfermedades Infecciosas y Microbiología Clinica journal is investigated. Papers published in Enfermedades Infecciosas y Microbiología Clinica in the period 2002-2007 have been identified. Bibliometrics and Social Network Analysis methods have been carried out in order to quantify and characterise scientific collaboration and research areas. A total of 805 papers generated by 2,289 authors and 326 institutions have been analysed. There were 36 research groups involving 138 authors identified. The Collaboration Index for articles was 5.5. Institutional collaboration was determined in 75% of articles. The collaboration between departments or units of the same institution prevails (43%), followed by intra-regional domestic collaboration (41%) and inter-regional domestic collaboration (14%). Hospital centres were the main institutional sector responsible of research (88% of papers), with 68% of articles cited. Sida/VIH (AIDS/HIV) is the main research area (n=114), followed by Staphylococcal Infections (n=33). Notable collaboration and citation rates have been observed. Research is focused on diseases with the highest mortality rates caused by infectious diseases in Spain. Copyright © 2009 Elsevier España, S.L. All rights reserved.
FREDERICK, Md. -- A new collaboration established between Georgetown University and the Frederick National Laboratory for Cancer Research aims to expand both institutions’ research and training missions in the biomedical sciences. Representatives f
Resource for the Development of Biomedical Accelerator Mass Spectrometry (AMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuerteltaub, K. W.; Bench, G.; Buchholz, B. A.
The NIH Research Resource for Biomedical AMS was originally funded at Lawrence Livermore National Laboratory in 1999 to develop and apply the technology of accelerator mass spectrometry (AMS) in broad- based biomedical research. The Resource’s niche is to fill needs for ultra high sensitivity quantitation when isotope-labeled agents are used. The Research Resource’s Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of seven Driving Biomedical Projects (DBPs) that will drive the Center’s technical capabilities through three core TR&Ds. We will expand our present capabilities by developing a fully integratedmore » HPLC AMS to increase our capabilities for metabolic measurements, we will develop methods to understand cellular processes and we will develop and validate methods for the application of AMS in human studies, which is a growing area of demand by collaborators and service users. In addition, we will continue to support new and ongoing collaborative and service projects that require the capabilities of the Resource. The Center will continue to train researchers in the use of the AMS capabilities being developed, and the results of all efforts will be widely disseminated to advance progress in biomedical research. Towards these goals, our specific aims are to:1.) Increase the value and information content of AMS measurements by combining molecular speciation with quantitation of defined macromolecular isolates. Specifically, develop and validate methods for macromolecule labeling, characterization and quantitation.2.) Develop and validate methods and strategies to enable AMS to become more broadly used in human studies. Specifically, demonstrate robust methods for conducting pharmacokinetic/pharmacodynamics studies in humans and model systems.3.) Increase the accessibility of AMS to the Biomedical research community and the throughput of AMS through direct coupling to separatory instruments.4.) Provide high throughput 14C BioAMS analysis for collaborative and service clients.« less
Resource for the Development of Biomedical Accelerator Mass Spectrometry (AMS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turteltaub, K. W.; Bench, G.; Buchholz, B. A.
2016-04-08
The NIH Research Resource for Biomedical AMS was originally funded at Lawrence Livermore National Laboratory in 1999 to develop and apply the technology of accelerator mass spectrometry (AMS) in broad- based biomedical research. The Resource’s niche is to fill needs for ultra high sensitivity quantitation when isotope-labeled agents are used. The Research Resource’s Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of seven Driving Biomedical Projects (DBPs) that will drive the Center’s technical capabilities through three core TR&Ds. We will expand our present capabilities by developing a fully integratedmore » HPLC AMS to increase our capabilities for metabolic measurements, we will develop methods to understand cellular processes and we will develop and validate methods for the application of AMS in human studies, which is a growing area of demand by collaborators and service users. In addition, we will continue to support new and ongoing collaborative and service projects that require the capabilities of the Resource. The Center will continue to train researchers in the use of the AMS capabilities being developed, and the results of all efforts will be widely disseminated to advance progress in biomedical research. Towards these goals, our specific aims are to:1.) Increase the value and information content of AMS measurements by combining molecular speciation with quantitation of defined macromolecular isolates. Specifically, develop and validate methods for macromolecule labeling, characterization and quantitation.2.) Develop and validate methods and strategies to enable AMS to become more broadly used in human studies. Specifically, demonstrate robust methods for conducting pharmacokinetic/pharmacodynamics studies in humans and model systems.3.) Increase the accessibility of AMS to the Biomedical research community and the throughput of AMS through direct coupling to separatory instruments.4.) Provide high throughput 14C BioAMS analysis for collaborative and service clients.« less
CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks
Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.
2014-01-01
Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477
e-Science platform for translational biomedical imaging research: running, statistics, and analysis
NASA Astrophysics Data System (ADS)
Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo
2015-03-01
In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.
Collaborative Research to Optimize Warfighter Nutrition II (CROWN II)
2016-09-01
Award Number: W81XWH-14-1-0335 TITLE: Collaborative Research to Optimize Warfighter Nutrition II (CROWN II) PRINCIPAL INVESTIGATOR: Jennifer C...2016 4. TITLE AND SUBTITLE Collaborative Research to Optimize Warfighter Nutrition II (CROWN II) 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1...has been forged between USARIEM and Pennington Biomedical Research Center (PBRC) since 1988. Objective: CROWN II conducts research in nutrition
100 Metrics to Assess and Communicate the Value of Biomedical Research: An Ideas Book.
Guthrie, Susan; Krapels, Joachim; Lichten, Catherine A; Wooding, Steven
2017-01-01
Biomedical research affects society in many ways. It has been shown to improve health, create jobs, add to our knowledge, and foster new collaborations. Despite the complexity of modern research, many of the metrics used to evaluate the impacts of research still focus on the traditional, often academic, part of the research pathway, covering areas such as the amount of grant funding received and the number of peer-reviewed publications. In response to increasing expectations of accountability and transparency, the Association of American Medical Colleges (AAMC), in collaboration with RAND Europe, undertook a project to help communicate the wider value of biomedical research. The initiative developed resources to support academic medical centers in evaluating the outcomes and impacts of their research using approaches relevant to various stakeholders, including patients, providers, administrators, and legislators. This study presents 100 ideas for metrics that can be used to assess and communicate the value of biomedical research. The list is not comprehensive, and the metrics are not fully developed, but they should serve to stimulate and broaden thinking about how academic medical centers can communicate the value of their research to a broad range of stakeholders.
100 Metrics to Assess and Communicate the Value of Biomedical Research
Guthrie, Susan; Krapels, Joachim; Lichten, Catherine A.; Wooding, Steven
2017-01-01
Abstract Biomedical research affects society in many ways. It has been shown to improve health, create jobs, add to our knowledge, and foster new collaborations. Despite the complexity of modern research, many of the metrics used to evaluate the impacts of research still focus on the traditional, often academic, part of the research pathway, covering areas such as the amount of grant funding received and the number of peer-reviewed publications. In response to increasing expectations of accountability and transparency, the Association of American Medical Colleges (AAMC), in collaboration with RAND Europe, undertook a project to help communicate the wider value of biomedical research. The initiative developed resources to support academic medical centers in evaluating the outcomes and impacts of their research using approaches relevant to various stakeholders, including patients, providers, administrators, and legislators. This study presents 100 ideas for metrics that can be used to assess and communicate the value of biomedical research. The list is not comprehensive, and the metrics are not fully developed, but they should serve to stimulate and broaden thinking about how academic medical centers can communicate the value of their research to a broad range of stakeholders. PMID:28983437
The SWAN biomedical discourse ontology.
Ciccarese, Paolo; Wu, Elizabeth; Wong, Gwen; Ocana, Marco; Kinoshita, June; Ruttenberg, Alan; Clark, Tim
2008-10-01
Developing cures for highly complex diseases, such as neurodegenerative disorders, requires extensive interdisciplinary collaboration and exchange of biomedical information in context. Our ability to exchange such information across sub-specialties today is limited by the current scientific knowledge ecosystem's inability to properly contextualize and integrate data and discourse in machine-interpretable form. This inherently limits the productivity of research and the progress toward cures for devastating diseases such as Alzheimer's and Parkinson's. SWAN (Semantic Web Applications in Neuromedicine) is an interdisciplinary project to develop a practical, common, semantically structured, framework for biomedical discourse initially applied, but not limited, to significant problems in Alzheimer Disease (AD) research. The SWAN ontology has been developed in the context of building a series of applications for biomedical researchers, as well as in extensive discussions and collaborations with the larger bio-ontologies community. In this paper, we present and discuss the SWAN ontology of biomedical discourse. We ground its development theoretically, present its design approach, explain its main classes and their application, and show its relationship to other ongoing activities in biomedicine and bio-ontologies.
Nitzlnader, Michael; Falgenhauer, Markus; Gossy, Christian; Schreier, Günter
2015-01-01
Today, progress in biomedical research often depends on large, interdisciplinary research projects and tailored information and communication technology (ICT) support. In the context of the European Network for Cancer Research in Children and Adolescents (ENCCA) project the exchange of data between data source (Source Domain) and data consumer (Consumer Domain) systems in a distributed computing environment needs to be facilitated. This work presents the requirements and the corresponding solution architecture of the Advanced Biomedical Collaboration Domain for Europe (ABCD-4-E). The proposed concept utilises public as well as private cloud systems, the Integrating the Healthcare Enterprise (IHE) framework and web-based applications to provide the core capabilities in accordance with privacy and security needs. The utility of crucial parts of the concept was evaluated by prototypic implementation. A discussion of the design indicates that the requirements of ENCCA are fully met. A whole system demonstration is currently being prepared to verify that ABCD-4-E has the potential to evolve into a domain-bridging collaboration platform in the future.
Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H
2005-01-01
Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.
Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay
2017-05-01
The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC is an e-learning platform that empowers the biomedical community to develop, launch and share open training materials. It deploys hands-on software training toolboxes through virtualization technologies such as Amazon EC2 and Virtualbox. The BBDTC facilitates migration of courses across other course management platforms. The framework encourages knowledge sharing and content personalization through the playlist functionality that enables unique learning experiences and accelerates information dissemination to a wider community.
Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza
2015-01-01
Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.
John, Theresa Adebola
2014-12-29
In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a perspective derived from the FASEB journal publications. The author examines the thirty three peer reviewed scientific research articles in a centennial (April 2012) issue of the FASEB Journal [Volume 26(4)] using the following parameters: number of authors contributing to the paper; number of academic departments contributing to the paper; number of academic institutions contributing to the paper; funding of the research reported in the article. The articles were written by 7.97±0.61 authors from 3.46±0.3 departments of 2.79±0.29 institutions. The contributors were classified into four categories: basic sciences, clinical sciences, institutions and centers, and programs and labs. Amongst the publications, 21.2% were single disciplinary. Two tier collaboration amongst any two of the four categories were observed in 16/33 (48.5%) of the articles. Three tier and four tier collaborations were observed amongst 7/33 (21.2%) and 3/33 (9%) of the articles respectively. Therefore 26/33 (78.7%) of the articles were multidisciplinary. Collaborative efforts between basic science and clinical science departments were observed in 9/33 (27.3%) articles. Public funding through government agencies provided 85 out of a total of 143 (59.5%) grants. The collaborative and multidisciplinary nature and government support are characteristic of biomedical science in the US where research tends to result in solutions to problems and economic benefits.
From global bioethics to ethical governance of biomedical research collaborations.
Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret; Lu, Guangxiu; Döring, Ole; Cong, Yali; Laska-Formejster, Alicja; He, Jing; Chen, Haidan; Gottweis, Herbert; Rose, Nikolas
2013-12-01
One of the features of advanced life sciences research in recent years has been its internationalisation, with countries such as China and South Korea considered 'emerging biotech' locations. As a result, cross-continental collaborations are becoming common generating moves towards ethical and legal standardisation under the rubric of 'global bioethics'. Such a 'global', 'Western' or 'universal' bioethics has in turn been critiqued as an imposition upon resource-poor, non-Western or local medical settings. In this article, we propose that a different tack is necessary if we are to come to grips with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four 'spheres' - deliberation, regulation, oversight and interaction - as a helpful way to conceptualise national systems of ethical governance. Using a workshop-based mapping methodology (workshops held in Beijing, Shanghai, Changsha, Xian, Shenzen and London) we identified three specific ethical challenges arising from cross-continental research collaborations: (1) ambiguity as to which regulations are applicable; (2) lack of ethical review capacity not only among ethical review board members but also collaborating scientists; (3) already complex, researcher-research subject interaction is further complicated when many nationalities are involved. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin
2011-01-01
A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.
Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang
2014-11-30
Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and increase research interactions among investigators.
Comparative case study of two biomedical research collaboratories.
Schleyer, Titus K L; Teasley, Stephanie D; Bhatnagar, Rishi
2005-10-25
Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific activity of two biomedical research centers. The two centers were the Great Lakes Regional Center for AIDS Research (HIV/AIDS Center) and the New York University Oral Cancer Research for Adolescent and Adult Health Promotion Center (Oral Cancer Center). In each collaboratory, we used semistructured interviews, surveys, and contextual inquiry to assess user needs and define the technology requirements. We evaluated and selected commercial software applications by comparing their feature sets with requirements and then pilot-testing the applications. Local and remote support staff cooperated in the implementation and end user training for the collaborative tools. Collaboratory staff evaluated each implementation by analyzing utilization data, administering user surveys, and functioning as participant observers. The HIV/AIDS Center primarily required real-time interaction for developing projects and attracting new participants to the center; the Oral Cancer Center, on the other hand, mainly needed tools to support distributed and asynchronous work in small research groups. The HIV/AIDS Center's collaboratory included a center-wide website that also served as the launch point for collaboratory applications, such as NetMeeting, Timbuktu Conference, PlaceWare Auditorium, and iVisit. The collaboratory of the Oral Cancer Center used Groove and Genesys Web conferencing. The HIV/AIDS Center was successful in attracting new scientists to HIV/AIDS research, and members used the collaboratory for developing and implementing new research studies. The Oral Cancer Center successfully supported highly distributed and asynchronous research, and the collaboratory facilitated real-time interaction for analyzing data and preparing publications. The two collaboratory implementations demonstrated the feasibility of supporting biomedical research centers using off-the-shelf commercial tools, but they also identified several barriers to successful collaboration. These barriers included computing platform incompatibilities, network infrastructure complexity, variable availability of local versus remote IT support, low computer and collaborative software literacy, and insufficient maturity of available collaborative software. Factors enabling collaboratory use included collaboration incentives through funding mechanism, a collaborative versus competitive relationship of researchers, leadership by example, and tools well matched to tasks and technical progress. Integrating electronic collaborative tools into routine scientific practice can be successful but requires further research on the technical, social, and behavioral factors influencing the adoption and use of collaboratories.
Godecharle, Simon; Nemery, Benoit; Dierickx, Kris
2017-09-14
Despite the ever increasing collaboration between industry and universities, the previous empirical studies on research integrity and misconduct excluded participants of biomedical industry. Hence, there is a lack of empirical data on how research managers and biomedical researchers active in industry perceive the issues of research integrity and misconduct, and whether or not their perspectives differ from those of researchers and research managers active in universities. If various standards concerning research integrity and misconduct are upheld between industry and universities, this might undermine research collaborations. Therefore we performed a qualitative study by conducting 22 semi-structured interviews in order to investigate and compare the perspectives and attitudes concerning the issues of research integrity and misconduct of research managers and biomedical researchers active in industry and universities. Our study showed clear discrepancies between both groups. Diverse strategies in order to manage research misconduct and to stimulate research integrity were observed. Different definitions of research misconduct were given, indicating that similar actions are judged heterogeneously. There were also differences at an individual level, whether the interviewees were active in industry or universities. Overall, the management of research integrity proves to be a difficult exercise, due to many diverse perspectives on several essential elements connected to research integrity and misconduct. A management policy that is not in line with the vision of the biomedical researchers and research managers is at risk of being inefficient.
A community of practice: librarians in a biomedical research network.
De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara
2014-01-01
Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.
Crowdsourcing biomedical research: leveraging communities as innovation engines
Saez-Rodriguez, Julio; Costello, James C.; Friend, Stephen H.; Kellen, Michael R.; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo
2018-01-01
The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories. PMID:27418159
Crowdsourcing biomedical research: leveraging communities as innovation engines.
Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo
2016-07-15
The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less
Myneni, Sahiti; Patel, Vimla L.
2009-01-01
Biomedical researchers often have to work on massive, detailed, and heterogeneous datasets that raise new challenges of information management. This study reports an investigation into the nature of the problems faced by the researchers in two bioscience test laboratories when dealing with their data management applications. Data were collected using ethnographic observations, questionnaires, and semi-structured interviews. The major problems identified in working with these systems were related to data organization, publications, and collaboration. The interoperability standards were analyzed using a C4I framework at the level of connection, communication, consolidation, and collaboration. Such an analysis was found to be useful in judging the capabilities of data management systems at different levels of technological competency. While collaboration and system interoperability are the “must have” attributes of these biomedical scientific laboratory information management applications, usability and human interoperability are the other design concerns that must also be addressed for easy use and implementation. PMID:20351900
International tuberculosis research collaborations within Asia.
Molton, James S; Singh, Shweta; Chen, Ling Jun; Paton, Nicholas I
2017-09-07
Asia bears more than half the global tuberculosis (TB) burden. Economic development in the region has increased available funding for biomedical research and opportunity for collaboration. We explored the extent of international tuberculosis research collaborations between institutions within Asia. We conducted a Pubmed search for all articles with tuberculosis in the title published during a 12 month period with at least one author affiliation listed in Asia, then identified international collaborations from institution websites and internet searches. We identified 99 international collaborations involving an institution within Asia, of which only 8 (8.1%) were collaborations between Asian institutions. The remainder were with institutions outside of Asia. The paucity of intra-Asian international research collaboration represents a lost opportunity to optimise regional research funding, capacity building and the development of an Asia-relevant TB research agenda.
Comparative Case Study of Two Biomedical Research Collaboratories
Teasley, Stephanie D; Bhatnagar, Rishi
2005-01-01
Background Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. Objective The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific activity of two biomedical research centers. The two centers were the Great Lakes Regional Center for AIDS Research (HIV/AIDS Center) and the New York University Oral Cancer Research for Adolescent and Adult Health Promotion Center (Oral Cancer Center). Methods In each collaboratory, we used semistructured interviews, surveys, and contextual inquiry to assess user needs and define the technology requirements. We evaluated and selected commercial software applications by comparing their feature sets with requirements and then pilot-testing the applications. Local and remote support staff cooperated in the implementation and end user training for the collaborative tools. Collaboratory staff evaluated each implementation by analyzing utilization data, administering user surveys, and functioning as participant observers. Results The HIV/AIDS Center primarily required real-time interaction for developing projects and attracting new participants to the center; the Oral Cancer Center, on the other hand, mainly needed tools to support distributed and asynchronous work in small research groups. The HIV/AIDS Center’s collaboratory included a center-wide website that also served as the launch point for collaboratory applications, such as NetMeeting, Timbuktu Conference, PlaceWare Auditorium, and iVisit. The collaboratory of the Oral Cancer Center used Groove and Genesys Web conferencing. The HIV/AIDS Center was successful in attracting new scientists to HIV/AIDS research, and members used the collaboratory for developing and implementing new research studies. The Oral Cancer Center successfully supported highly distributed and asynchronous research, and the collaboratory facilitated real-time interaction for analyzing data and preparing publications. Conclusions The two collaboratory implementations demonstrated the feasibility of supporting biomedical research centers using off-the-shelf commercial tools, but they also identified several barriers to successful collaboration. These barriers included computing platform incompatibilities, network infrastructure complexity, variable availability of local versus remote IT support, low computer and collaborative software literacy, and insufficient maturity of available collaborative software. Factors enabling collaboratory use included collaboration incentives through funding mechanism, a collaborative versus competitive relationship of researchers, leadership by example, and tools well matched to tasks and technical progress. Integrating electronic collaborative tools into routine scientific practice can be successful but requires further research on the technical, social, and behavioral factors influencing the adoption and use of collaboratories. PMID:16403717
Kahn, Laura H; Kaplan, Bruce; Steele, James H
2007-01-01
In the 19th century, the concept of 'one medicine' was embraced by leaders in the medical and veterinary medical communities. In the 20th century, collaborative efforts between medicine and veterinary medicine diminished considerably. While there have been some notable exceptions, such as Calvin W. Schwabe's proposal for unifying human and veterinary medicine and joint efforts by the Food and Agriculture Organization and World Health Organization to control zoonotic diseases, 'one medicine' has languished in the modern milieu of clinical care, public health, and biomedical research. Risks of zoonotic disease transmission are rarely discussed in clinical care which is of particular concern if humans and/or animals are immunosuppressed. Physicians and veterinarians should advise their patients and pet-owning clients that some animals should not be pets. The risk of zoonotic disease acquisition can be considerable in the occupational setting. Collaborative efforts in biomedical research could do much to improve human and animal health. As the threat of zoonotic diseases continues to increase in the 21st century, medicine and veterinary medicine must revive 'one medicine' in order to adequately address these challenges. 'One medicine' revival strategies must involve medical and veterinary medical education, clinical care, public health and biomedical research.
Functional requirements for a central research imaging data repository.
Franke, Thomas; Gruetz, Romanus; Dickmann, Frank
2013-01-01
The current situation at many university medical centers regarding the management of biomedical research imaging data leaves much to be desired. In contrast to the recommendations of the German Research Foundation (DFG) and the German Council of Sciences and Humanities regarding the professional management of research data, there are commonly many individual data pools for research data in each institute and the management remains the responsibility of the researcher. A possible solution for this situation would be to install local central repositories for biomedical research imaging data. In this paper, we developed a scenario based on abstracted use-cases for institutional research undertakings as well as collaborative biomedical research projects and analyzed the functional requirements that a local repository would have to fulfill. We determined eight generic categories of functional requirements, which can be viewed as a basic guideline for the minimum functionality of a central repository for biomedical research imaging data.
Building a biomedical cyberinfrastructure for collaborative research.
Schad, Peter A; Mobley, Lee Rivers; Hamilton, Carol M
2011-05-01
For the potential power of genome-wide association studies (GWAS) and translational medicine to be realized, the biomedical research community must adopt standard measures, vocabularies, and systems to establish an extensible biomedical cyberinfrastructure. Incorporating standard measures will greatly facilitate combining and comparing studies via meta-analysis. Incorporating consensus-based and well-established measures into various studies should reduce the variability across studies due to attributes of measurement, making findings across studies more comparable. This article describes two well-established consensus-based approaches to identifying standard measures and systems: PhenX (consensus measures for phenotypes and eXposures), and the Open Geospatial Consortium (OGC). NIH support for these efforts has produced the PhenX Toolkit, an assembled catalog of standard measures for use in GWAS and other large-scale genomic research efforts, and the RTI Spatial Impact Factor Database (SIFD), a comprehensive repository of geo-referenced variables and extensive meta-data that conforms to OGC standards. The need for coordinated development of cyberinfrastructure to support measures and systems that enhance collaboration and data interoperability is clear; this paper includes a discussion of standard protocols for ensuring data compatibility and interoperability. Adopting a cyberinfrastructure that includes standard measures and vocabularies, and open-source systems architecture, such as the two well-established systems discussed here, will enhance the potential of future biomedical and translational research. Establishing and maintaining the cyberinfrastructure will require a fundamental change in the way researchers think about study design, collaboration, and data storage and analysis. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Building a Biomedical Cyberinfrastructure for Collaborative Research
Schad, Peter A.; Mobley, Lee Rivers; Hamilton, Carol M.
2018-01-01
For the potential power of genome-wide association studies (GWAS) and translational medicine to be realized, the biomedical research community must adopt standard measures, vocabularies, and systems to establish an extensible biomedical cyberinfrastructure. Incorporating standard measures will greatly facilitate combining and comparing studies via meta-analysis, which is a means for deriving larger populations, needed for increased statistical power to detect less apparent and more complex associations (gene-environment interactions and polygenic gene-gene interactions). Incorporating consensus-based and well-established measures into various studies should reduce the variability across studies due to attributes of measurement, making findings across studies more comparable. This article describes two consensus-based approaches to establishing standard measures and systems: PhenX (consensus measures for Phenotypes and eXposures), and the Open Geospatial Consortium (OGC). National Institutes of Health support for these efforts has produced the PhenX Toolkit, an assembled catalog of standard measures for use in GWAS and other large-scale genomic research efforts, and the RTI Spatial Impact Factor Database (SIFD), a comprehensive repository of georeferenced variables and extensive metadata that conforms to OGC standards. The need for coordinated development of cyberinfrastructure to support collaboration and data interoperability is clear, and we discuss standard protocols for ensuring data compatibility and interoperability. Adopting a cyberinfrastructure that includes standard measures, vocabularies, and open-source systems architecture will enhance the potential of future biomedical and translational research. Establishing and maintaining the cyberinfrastructure will require a fundamental change in the way researchers think about study design, collaboration, and data storage and analysis. PMID:21521587
Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution
Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William
2014-01-01
BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS Through this study, we have developed a set of techniques and tools for analyzing research collaboration networks and conducted a comprehensive case study focusing on a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in understanding the generative mechanisms of research collaborations and helping identify beneficial collaborations to members in the research community. PMID:24560679
Biomedical image analysis and processing in clouds
NASA Astrophysics Data System (ADS)
Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John
2013-10-01
Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.
Communicating with Investigators about Financial Compensation for Statistical Collaboration
ERIC Educational Resources Information Center
Ittenbach, Richard F.; DeAngelis, Francis W.; Altaye, Mekibib
2013-01-01
Communicating with investigators about financial compensation in the area of statistical collaboration represents an important but often underemphasized component of biomedical research. The more complex the area, the greater the need for sound and effective communication strategies. Ittenbach and DeAngelis (2012) recently compared two…
The National Center for Biomedical Ontology
Noy, Natalya F; Shah, Nigam H; Whetzel, Patricia L; Chute, Christopher G; Story, Margaret-Anne; Smith, Barry
2011-01-01
The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop and use ontologies and terminologies in biomedicine. The centerpiece of the National Center for Biomedical Ontology is a web-based resource known as BioPortal. BioPortal makes available for research in computationally useful forms more than 270 of the world's biomedical ontologies and terminologies, and supports a wide range of web services that enable investigators to use the ontologies to annotate and retrieve data, to generate value sets and special-purpose lexicons, and to perform advanced analytics on a wide range of biomedical data. PMID:22081220
Menzel, Julia; Weil, Philipp; Bittihn, Philip; Hornung, Daniel; Mathieu, Nadine; Demiroglu, Sara Y
2013-01-01
Sustainable data management in biomedical research requires documentation of metadata for all experiments and results. Scientists usually document research data and metadata in laboratory paper notebooks. An electronic laboratory notebook (ELN) can keep metadata linked to research data resulting in a better understanding of the research results, meaning a scientific benefit [1]. Besides other challenges [2], the biggest hurdles for introducing an ELN seem to be usability, file formats, and data entry mechanisms [3] and that many ELNs are assigned to specific research fields such as biology, chemistry, or physics [4]. We aimed to identify requirements for the introduction of ELN software in a biomedical collaborative research center [5] consisting of different scientific fields and to find software fulfilling most of these requirements.
CoMetaR: A Collaborative Metadata Repository for Biomedical Research Networks.
Stöhr, Mark R; Helm, Gudrun; Majeed, Raphael W; Günther, Andreas
2017-01-01
The German Center for Lung Research (DZL) is a research network with the aim of researching respiratory diseases. To perform consortium-wide queries through one single interface, it requires a uniform conceptual structure. No single terminology covers all our concepts. To achieve a broadly accepted and complete ontology, we developed a platform for collaborative metadata management "CoMetaR". Anyone can browse and discuss the ontology while editing can be performed by authenticated users.
Synergistic Combination Agent for Cancer Therapy | NCI Technology Transfer Center | TTC
The Nanotechnology Characterization Laboratory of the Frederick National Laboratory for Biomedical Research seeks parties interested in collaborative research to co-develop a ceramide and vinca alkaloid combination therapy for treatment of cancer.
Durack, Jeremy C.; Chao, Chih-Chien; Stevenson, Derek; Andriole, Katherine P.; Dev, Parvati
2002-01-01
Medical media collections are growing at a pace that exceeds the value they currently provide as research and educational resources. To address this issue, the Stanford MediaServer was designed to promote innovative multimedia-based application development. The nucleus of the MediaServer platform is a digital media database strategically designed to meet the information needs of many biomedical disciplines. Key features include an intuitive web-based interface for collaboratively populating the media database, flexible creation of media collections for diverse and specialized purposes, and the ability to construct a variety of end-user applications from the same database to support biomedical education and research. PMID:12463820
Durack, Jeremy C; Chao, Chih-Chien; Stevenson, Derek; Andriole, Katherine P; Dev, Parvati
2002-01-01
Medical media collections are growing at a pace that exceeds the value they currently provide as research and educational resources. To address this issue, the Stanford MediaServer was designed to promote innovative multimedia-based application development. The nucleus of the MediaServer platform is a digital media database strategically designed to meet the information needs of many biomedical disciplines. Key features include an intuitive web-based interface for collaboratively populating the media database, flexible creation of media collections for diverse and specialized purposes, and the ability to construct a variety of end-user applications from the same database to support biomedical education and research.
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
1998-01-01
The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.
Metadata based management and sharing of distributed biomedical data
Vergara-Niedermayr, Cristobal; Liu, Peiya
2014-01-01
Biomedical research data sharing is becoming increasingly important for researchers to reuse experiments, pool expertise and validate approaches. However, there are many hurdles for data sharing, including the unwillingness to share, lack of flexible data model for providing context information, difficulty to share syntactically and semantically consistent data across distributed institutions, and high cost to provide tools to share the data. SciPort is a web-based collaborative biomedical data sharing platform to support data sharing across distributed organisations. SciPort provides a generic metadata model to flexibly customise and organise the data. To enable convenient data sharing, SciPort provides a central server based data sharing architecture with a one-click data sharing from a local server. To enable consistency, SciPort provides collaborative distributed schema management across distributed sites. To enable semantic consistency, SciPort provides semantic tagging through controlled vocabularies. SciPort is lightweight and can be easily deployed for building data sharing communities. PMID:24834105
Medicine 2.0: social networking, collaboration, participation, apomediation, and openness.
Eysenbach, Gunther
2008-08-25
In a very significant development for eHealth, broad adoption of Web 2.0 technologies and approaches coincides with the more recent emergence of Personal Health Application Platforms and Personally Controlled Health Records such as Google Health, Microsoft HealthVault, and Dossia. "Medicine 2.0" applications, services and tools are defined as Web-based services for health care consumers, caregivers, patients, health professionals, and biomedical researchers, that use Web 2.0 technologies and/or semantic web and virtual reality approaches to enable and facilitate specifically 1) social networking, 2) participation, 3) apomediation, 4) openness and 5) collaboration, within and between these user groups. The Journal of Medical Internet Research (JMIR) publishes a Medicine 2.0 theme issue and sponsors a conference on "How Social Networking and Web 2.0 changes Health, Health Care, Medicine and Biomedical Research", to stimulate and encourage research in these five areas.
Biomedical informatics training at the University of Wisconsin-Madison.
Severtson, D J; Pape, L; Page, C D; Shavlik, J W; Phillips, G N; Flatley Brennan, P
2007-01-01
The purpose of this paper is to describe biomedical informatics training at the University of Wisconsin-Madison (UW-Madison). We reviewed biomedical informatics training, research, and faculty/trainee participation at UW-Madison. There are three primary approaches to training 1) The Computation & Informatics in Biology & Medicine Training Program, 2) formal biomedical informatics offered by various campus departments, and 3) individualized programs. Training at UW-Madison embodies the features of effective biomedical informatics training recommended by the American College of Medical Informatics that were delineated as: 1) curricula that integrate experiences among computational sciences and application domains, 2) individualized and interdisciplinary cross-training among a diverse cadre of trainees to develop key competencies that he or she does not initially possess, 3) participation in research and development activities, and 4) exposure to a range of basic informational and computational sciences. The three biomedical informatics training approaches immerse students in multidisciplinary training and education that is supported by faculty trainers who participate in collaborative research across departments. Training is provided across a range of disciplines and available at different training stages. Biomedical informatics training at UW-Madison illustrates how a large research University, with multiple departments across biological, computational and health fields, can provide effective and productive biomedical informatics training via multiple bioinformatics training approaches.
ERIC Educational Resources Information Center
Tran, Tam; Bowman-Carpio, LeeAnna; Buscher, Nate; Davidson, Pamela; Ford, Jennifer J.; Jenkins, Erick; Kalay, Hillary Noll; Nakazono, Terry; Orescan, Helene; Sak, Rachael; Shin, Irene
2017-01-01
In 2013, the University of California, Biomedical Research, Acceleration, Integration, and Development (UC BRAID) convened a regional network of contracting directors from the five University of California (UC) health campuses to: (i) increase collaboration, (ii) operationalize and measure common metrics as a basis for performance improvement…
What We Do | Frederick National Laboratory for Cancer Research
The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can
Health Information Research Platform (HIReP)--an architecture pattern.
Schreiweis, Björn; Schneider, Gerd; Eichner, Theresia; Bergh, Björn; Heinze, Oliver
2014-01-01
Secondary use or single source is still far from routine in healthcare, although lots of data are available either structured or unstructured. As data are stored in multiple systems, using them for biomedical research is difficult. Clinical data warehouses already help overcoming this issue, but currently they are only used for certain parts of biomedical research. A comprehensive research platform based on a generic architecture pattern could increase the benefits of existing data warehouses for both patient care and research by meeting two objectives: serving as a so called single point-of-truth and acting as a mediator between them strengthening interaction and close collaboration. Another effect is to reduce boundaries for the implementation of data warehouses. Taking further settings into account the architecture of a clinical data warehouse supporting patient care and biomedical research needs to be integrated with biomaterial banks and other sources. This work provides a solution conceptualizing a comprehensive architecture pattern of a Health Information Research Platform (HIReP) derived from use cases of the patient care and biomedical research domain. It serves as single IT infrastructure providing solutions for any type of use case.
Medicine 2.0: Social Networking, Collaboration, Participation, Apomediation, and Openness
2008-01-01
In a very significant development for eHealth, a broad adoption of Web 2.0 technologies and approaches coincides with the more recent emergence of Personal Health Application Platforms and Personally Controlled Health Records such as Google Health, Microsoft HealthVault, and Dossia. “Medicine 2.0” applications, services, and tools are defined as Web-based services for health care consumers, caregivers, patients, health professionals, and biomedical researchers, that use Web 2.0 technologies and/or semantic web and virtual reality approaches to enable and facilitate specifically 1) social networking, 2) participation, 3) apomediation, 4) openness, and 5) collaboration, within and between these user groups. The Journal of Medical Internet Research (JMIR) publishes a Medicine 2.0 theme issue and sponsors a conference on “How Social Networking and Web 2.0 changes Health, Health Care, Medicine, and Biomedical Research”, to stimulate and encourage research in these five areas. PMID:18725354
A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue
2012-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123
A roadmap for caGrid, an enterprise Grid architecture for biomedical research.
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil
2008-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.
Perspectives of clinician and biomedical scientists on interdisciplinary health research.
Laberge, Suzanne; Albert, Mathieu; Hodges, Brian D
2009-11-24
Interdisciplinary health research is a priority of many funding agencies. We surveyed clinician and biomedical scientists about their views on the value and funding of interdisciplinary health research. We conducted semistructured interviews with 31 biomedical and 30 clinician scientists. The scientists were selected from the 2000-2006 membership lists of peer-review committees of the Canadian Institutes of Health Research. We investigated respondents' perspectives on the assumption that collaboration across disciplines adds value to health research. We also investigated their perspectives on funding agencies' growing support of interdisciplinary research. The 61 respondents expressed a wide variety of perspectives on the value of interdisciplinary health research, ranging from full agreement (22) to complete disagreement (11) that it adds value; many presented qualified viewpoints (28). More than one-quarter viewed funding agencies' growing support of interdisciplinary research as appropriate. Most (44) felt that the level of support was unwarranted. Arguments included the belief that current support leads to the creation of artificial teams and that a top-down process of imposing interdisciplinary structures on teams constrains scientists' freedom. On both issues we found contrasting trends between the clinician and the biomedical scientists. Despite having some positive views about the value of interdisciplinary research, scientists, especially biomedical scientists, expressed reservations about the growing support of interdisciplinary research.
ERIC Educational Resources Information Center
Burriss, Annie Hunt
2010-01-01
One innovative, higher-education response to globalization and changing fiscal realities is the curricular joint venture (CJV), a formal collaboration between academic institutions that leverages missions through new joint degrees and research not previously offered by collaborating institutions (Eckel, 2003). In 1997, a pioneering biomedical…
Effective collaborative learning in biomedical education using a web-based infrastructure.
Wu, Yunfeng; Zheng, Fang; Cai, Suxian; Xiang, Ning; Zhong, Zhangting; He, Jia; Xu, Fang
2012-01-01
This paper presents a feature-rich web-based system used for biomedical education at the undergraduate level. With the powerful groupware features provided by the wiki system, the instructors are able to establish a community-centered mentoring environment that capitalizes on local expertise to create a sense of online collaborative learning among students. The web-based infrastructure can help the instructors effectively organize and coordinate student research projects, and the groupware features may support the interactive activities, such as interpersonal communications and data sharing. The groupware features also provide the web-based system with a wide range of additional ways of organizing collaboratively developed materials, which makes it become an effective tool for online active learning. Students are able to learn the ability to work effectively in teams, with an improvement of project management, design collaboration, and technical writing skills. With the fruitful outcomes in recent years, it is positively thought that the web-based collaborative learning environment can perform an excellent shift away from the conventional instructor-centered teaching to community- centered collaborative learning in the undergraduate education.
ERIC Educational Resources Information Center
Leavitt, Lewis A.; Goldson, Edward
1996-01-01
Introduces a special section of five articles that highlight new collaborative research opportunities for developmental psychologists and other biomedical researchers. Such research has focused on the transition from fetus to newborn, evaluation of early toxin exposure, and the behavioral phenotype associated with genetic syndromes. (MDM)
Leveraging Industry-Academia Collaborations in Adaptive Biomedical Innovation.
Stewart, S R; Barone, P W; Bellisario, A; Cooney, C L; Sharp, P A; Sinskey, A J; Natesan, S; Springs, S L
2016-12-01
Despite the rapid pace of biomedical innovation, research and development (R&D) productivity in the pharmaceutical industry has not improved broadly. Increasingly, firms need to leverage new approaches to product development and commercial execution, while maintaining adaptability to rapid changes in the marketplace and in biomedical science. Firms are also seeking ways to capture some of the talent, infrastructure, and innovation that depends on federal R&D investment. As a result, a major transition to external innovation is taking place across the industry. One example of these external innovation initiatives is the Sanofi-MIT Partnership, which provided seed funding to MIT investigators to develop novel solutions and approaches in areas of interest to Sanofi. These projects were highly collaborative, with information and materials flowing both ways. The relatively small amount of funding and short time frame of the awards built an adaptable and flexible process to advance translational science. © 2016 American Society for Clinical Pharmacology and Therapeutics.
Co-Transcriptional Assembly of Modified RNA Nanoparticles | NCI Technology Transfer Center | TTC
The National Cancer Institute’s Nanobiology Program seeks parties interested in collaborative research to co-develop a method to generate RNA molecules suitable for nanoparticle and biomedical applications.
Rezaeian, Mohsen
2015-01-01
OBJECTIVES: English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. METHODS: In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. RESULTS: The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. CONCLUSIONS: The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans. PMID:25968115
Rezaeian, Mohsen
2015-01-01
English has become the most frequently used language for scientific communication in the biomedical field. Therefore, scholars from all over the world try to publish their findings in English. This trend has a number of advantages, along with several disadvantages. In the current article, the most important disadvantages of publishing biomedical research articles in English for non-native speakers of English are reviewed. The most important disadvantages of publishing biomedical research articles in English for non-native speakers may include: Overlooking, either unintentionally or even deliberately, the most important local health problems; failure to carry out groundbreaking research due to limited medical research budgets; violating generally accepted codes of publication ethics and committing research misconduct and publications in open-access scam/predatory journals rather than prestigious journals. The above mentioned disadvantages could eventually result in academic establishments becoming irresponsible or, even worse, corrupt. In order to avoid this, scientists, scientific organizations, academic institutions, and scientific associations all over the world should design and implement a wider range of collaborative and comprehensive plans.
NCI and the Republic of Peru Sign Statement of Intent
The U.S. National Cancer Institute and the Republic of Peru signed a statement of intent to share an interest in fostering collaborative biomedical research in oncology and a common goal in educating and training the next generation of cancer research sci
Is Open Science the Future of Drug Development?
Shaw, Daniel L
2017-03-01
Traditional drug development models are widely perceived as opaque and inefficient, with the cost of research and development continuing to rise even as production of new drugs stays constant. Searching for strategies to improve the drug discovery process, the biomedical research field has begun to embrace open strategies. The resulting changes are starting to reshape the industry. Open science-an umbrella term for diverse strategies that seek external input and public engagement-has become an essential tool with researchers, who are increasingly turning to collaboration, crowdsourcing, data sharing, and open sourcing to tackle some of the most pressing problems in medicine. Notable examples of such open drug development include initiatives formed around malaria and tropical disease. Open practices have found their way into the drug discovery process, from target identification and compound screening to clinical trials. This perspective argues that while open science poses some risks-which include the management of collaboration and the protection of proprietary data-these strategies are, in many cases, the more efficient and ethical way to conduct biomedical research.
Payne, Philip R O; Embi, Peter J; Niland, Joyce
2010-01-01
Advances in clinical and translational science, along with related national-scale policy and funding mechanisms, have provided significant opportunities for the advancement of applied clinical research informatics (CRI) and translational bioinformatics (TBI). Such efforts are primarily oriented to application and infrastructure development and are critical to the conduct of clinical and translational research. However, they often come at the expense of the foundational CRI and TBI research needed to grow these important biomedical informatics subdisciplines and ensure future innovations. In light of this challenge, it is critical that a number of steps be taken, including the conduct of targeted advocacy campaigns, the development of community-accepted research agendas, and the continued creation of forums for collaboration and knowledge exchange. Such efforts are needed to ensure that the biomedical informatics community is able to advance CRI and TBI science in the context of the modern clinical and translational science era.
Ford Carleton, Penny; Parrish, John A.; Collins, John M.; Crocker, J. Benjamin; Dixon, Ronald F.; Edgman-Levitan, Susan; Lewandrowski, Kent B.; Stahl, James E.; Klapperich, Catherine; Cabodi, Mario; Gaydos, Charlotte A.; Rompalo, Anne M.; Manabe, Yukari; Wang, Tza-Huei; Rothman, Richard; Geddes, Chris D.; Widdice, Lea; Jackman, Joany; Mathura, Rishi A.; Lash, Tiffani Bailey
2016-01-01
To advance the development of point-of-care technology (POCT), the National Institute of Biomedical Imaging and Bioengineering established the POCT Research Network (POCTRN), comprised of Centers that emphasize multidisciplinary partnerships and close facilitation to move technologies from an early stage of development into clinical testing and patient use. This paper describes the POCTRN and the three currently funded Centers as examples of academic-based organizations that support collaborations across disciplines, institutions, and geographic regions to successfully drive innovative solutions from concept to patient care. PMID:27730014
An analysis of national collaboration with Spanish researchers abroad in the health sciences.
Aceituno-Aceituno, Pedro; Romero-Martínez, Sonia Janeth; Victor-Ponce, Patricia; García-Núñez, José
2015-11-07
The establishment of scientific collaborations with researchers abroad can be considered a good practice to make appropriate use of their knowledge and to increase the possibilities of them returning to their country. This paper analyses the collaboration between Spanish researchers abroad devoted to health sciences and national science institutions. We used the Fontes' approach to perform a study on this collaboration with Spanish researchers abroad. We measured the level of national and international cooperation, the opportunity provided by the host country to collaborate, the promotion of collaboration by national science institutions, and the types of collaboration. A total of 88 biomedical researchers out of the 268 Spanish scientists who filled up the survey participated in the study. Different data analyses were performed to study the variables selected to measure the scientific collaboration and profile of Spanish researchers abroad. There is a high level of cooperation between Spanish health science researchers abroad and international institutions, which contrasts with the small-scale collaboration with national institutions. Host countries facilitate this collaboration with national and international scientific institutions to a larger extent than the level of collaboration promotion carried out by Spanish institutions. The national collaboration with Spanish researchers abroad in the health sciences is limited. Thus, the practice of making appropriate use of the potential of their expertise should be promoted and the opportunities for Spanish health science researchers to return home should be improved.
Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay
2016-06-01
The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules . Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist . Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes , are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: ( i ) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and ( ii ) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned for development in 2016.
Raff, Adam B.; Seiler, Theo G.; Apiou-Sbirlea, Gabriela
2017-01-01
The ‘Bridging medicine and biomedical technology’ special all-congress session took place for the first time at the OSA Biophotonics Congress: Optics in Life Sciences in 2017 (http://www.osa.org/enus/meetings/osa_meetings/optics_in_the_life_sciences/bridging_medicine_and_biomedical_technology_specia/). The purpose was to identify key challenges the biomedical scientists in academia have to overcome to translate their discoveries into clinical practice through robust collaborations with industry and discuss best practices to facilitate and accelerate the process. Our paper is intended to complement the session by providing a deeper insight into the concept behind the structure and the content we developed. PMID:29296473
Mensah, George A; Czajkowski, Susan M
2018-03-29
The prevention and effective treatment of many chronic diseases such as cardiovascular disease, cancer and diabetes are dependent on behaviors such as not smoking, adopting a physically-active lifestyle, eating a healthy diet, and adhering to prescribed medical and behavioral regimens. Yet adoption and maintenance of these behaviors pose major challenges for individuals, their families and communities, as well as clinicians and health care systems. These challenges can best be met through the integration of the biomedical and behavioral sciences that is achieved by the formation of strategic partnerships between researchers and practitioners in these disciplines to address pressing clinical and public health problems. The National Institutes of Health has supported a number of clinical trials and research initiatives that demonstrate the value of biomedical and behavioral science partnerships in translating fundamental discoveries into significant improvements in health outcomes. We review several such examples of collaborations between biomedical and behavioral researchers, describe key initiatives focused on advancing a transdisciplinary translational perspective, and outline areas which require insights, tools and findings from both the biomedical and behavioral sciences to advance the public's health.
You, Me, and We: Biolabs for the 21st Century.
Kornberg, Ken
2016-03-10
Twenty-first century biomedical research is advantaged by institutional infrastructures that foster a collaborative, multidisciplinary approach. A few critical elements in the design of labs, research buildings, or campus can make interaction easier while preserving privacy and comfort for the individual researcher. Copyright © 2016 Elsevier Inc. All rights reserved.
Steps towards Collective Sustainability in Biomedical Research.
Salvetti, Marco; Lubetzki, Catherine; Kapoor, Raj; Ristori, Giovanni; Costa, Ericka; Battaglia, Mario A; Andreaus, Michele; Abbracchio, Maria Pia; Matarese, Giuseppe; Zaratin, Paola
2018-05-01
The optimism surrounding multistakeholder research initiatives does not match the clear view of policies that are needed to exploit the potential of these collaborations. Here we propose some action items that stem from the integration between research advancements with the perspectives of patient-advocacy organizations, academia, and industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
A laboratory animal science pioneer.
Kostomitsopoulos, Nikolaos
2014-11-01
Nikolaos Kostomitsopoulos, DVM, PhD, is Head of Laboratory Animal Facilities and Designated Veterinarian, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. Dr. Kostomitsopoulos discusses his successes in implementing laboratory animal science legislation and fostering collaboration among scientists in Greece.
The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can
Gezmu, Misrak; DeGruttola, Victor; Dixon, Dennis; Essex, Max; Halloran, Elizabeth; Hogan, Joseph; Grobler, Anneke; Kim, Soyeon; McDermott, Jeanne; McKaig, Rosemary; Neaton, James D
2015-01-01
SUMMARY On September 30, 2009, the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) conducted a workshop on strengthening biostatistics resources in sub-Saharan Africa (SSA). An increase in global spending on health research over the last decade has boosted funds available to conduct biomedical research in low to mid income countries. The HIV/AIDS pandemic, the reemergence of malaria and tuberculosis, and other emerging infectious agents are major driving forces behind the increase in biomedical research and clinical care programs (clinical trials, observational studies and other public health programs) in SSA [1]. In addition, the increased engagement of the United States (US) government through the Global Health Initiative, which expands the traditional focus beyond infectious diseases to other causes of poor health and to the recognition of need to strengthen health systems for a sustainable response, only increases the need for in-depth in-country expertise in all aspects of biomedical research [2]. In this workshop, researchers both from the US and SSA were invited to discuss their collaborative work, to discuss ways in which biostatistical activities are carried out within their research projects, and to identify both general and specific needs for capacity building in biostatistics. Capacity building discussions highlighted the critical need to increase the number of well-trained in-country biostatisticians, both to participate in ongoing studies and to contribute to an infrastructure that can produce the next generation of biostatistical researchers. PMID:21394746
SOA-based digital library services and composition in biomedical applications.
Zhao, Xia; Liu, Enjie; Clapworthy, Gordon J; Viceconti, Marco; Testi, Debora
2012-06-01
Carefully collected, high-quality data are crucial in biomedical visualization, and it is important that the user community has ready access to both this data and the high-performance computing resources needed by the complex, computational algorithms that will process it. Biological researchers generally require data, tools and algorithms from multiple providers to achieve their goals. This paper illustrates our response to the problems that result from this. The Living Human Digital Library (LHDL) project presented in this paper has taken advantage of Web Services to build a biomedical digital library infrastructure that allows clinicians and researchers not only to preserve, trace and share data resources, but also to collaborate at the data-processing level. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
From biomedical-engineering research to clinical application and industrialization
NASA Astrophysics Data System (ADS)
Taguchi, Tetsushi; Aoyagi, Takao
2012-12-01
The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.
May 2012 DMM Podcast: an interview with Mark Fishman
2012-01-01
SUMMARY Mark Fishman, President of the Novartis Institutes for BioMedical Research, discusses developing the zebrafish as a research tool, academia-industry collaborations and perspectives on the future of drug development. Narrated by Sarah E. Allan. To listen to this podcast, visit http://www.biologists.com/DMM/podcasts/index.html.
Biogovernance Beyond the State: The Shaping of Stem Cell Therapy by Patient Organizations in India.
Heitmeyer, Carolyn
2017-04-01
Public engagement through government-sponsored "public consultations" in biomedical innovation, specifically stem cell research and therapy, has been relatively limited in India. However, patient groups are drawing upon collaborations with medical practitioners to gain leverage in promoting biomedical research and the conditions under which patients can access experimental treatments. Based on qualitative fieldwork conducted between 2012 and 2015, I examine the ways in which two patient groups engaged with debates around how experimental stem cell therapy should be regulated, given the current lack of legally binding research guidelines. Such processes of engagement can be seen as an alternative form of biomedical governance which responds to the priorities and exigencies of Indian patients, contrasting with the current measures taken by the Indian state which, instead, are primarily directed at the global scientific and corporate world.
Fuller, Sherrilynne; Garcia, Patricia J; Holmes, King K; Kimball, Ann Marie
2010-01-01
Well-trained people are urgently needed to tackle global health challenges through information and communication technologies. In this report, AMAUTA, a joint international collaborative training program between the Universidad Peruana Cayetano Heredia and the University of Washington, which has been training Peruvian health professionals in biomedical and health informatics since 1999, is described. Four short-term courses have been organized in Lima, offering training to more than 200 graduate-level students. Long-term training to masters or doctorate level has been undertaken by eight students at the University of Washington. A combination of short-term and long-term strategies was found to be effective for enhancing institutional research and training enterprise. The AMAUTA program promoted the development and institution of informatics research and training capacity in Peru, and has resulted in a group of trained people playing important roles at universities, non-government offices, and the Ministry of Health in Peru. At present, the hub is being extended into Latin American countries, promoting South-to-South collaborations. PMID:20595317
Incorporating ideas from computer-supported cooperative work.
Pratt, Wanda; Reddy, Madhu C; McDonald, David W; Tarczy-Hornoch, Peter; Gennari, John H
2004-04-01
Many information systems have failed when deployed into complex health-care settings. We believe that one cause of these failures is the difficulty in systematically accounting for the collaborative and exception-filled nature of medical work. In this methodological review paper, we highlight research from the field of computer-supported cooperative work (CSCW) that could help biomedical informaticists recognize and design around the kinds of challenges that lead to unanticipated breakdowns and eventual abandonment of their systems. The field of CSCW studies how people collaborate with each other and the role that technology plays in this collaboration for a wide variety of organizational settings. Thus, biomedical informaticists could benefit from the lessons learned by CSCW researchers. In this paper, we provide a focused review of CSCW methods and ideas-we review aspects of the field that could be applied to improve the design and deployment of medical information systems. To make our discussion concrete, we use electronic medical record systems as an example medical information system, and present three specific principles from CSCW: accounting for incentive structures, understanding workflow, and incorporating awareness.
Rapado-Castro, Marta; Pazos, Ángel; Fañanás, Lourdes; Bernardo, Miquel; Ayuso-Mateos, Jose Luis; Leza, Juan Carlos; Berrocoso, Esther; de Arriba, Jose; Roldán, Laura; Sanjuán, Julio; Pérez, Victor; Haro, Josep M; Palomo, Tomás; Valdizan, Elsa M; Micó, Juan Antonio; Sánchez, Manuel; Arango, Celso
2015-01-01
The number of large collaborative research networks in mental health is increasing. Training programs are an essential part of them. We critically review the specific implementation of a research training program in a translational Centre for Biomedical Research in Mental Health in order to inform the strategic integration of basic research into clinical practice to have a positive impact in the mental health system and society. Description of training activities, specific educational programs developed by the research network, and challenges on its implementation are examined. The Centre for Biomedical Research in Mental Health has focused on training through different activities which have led to the development of an interuniversity master's degree postgraduate program in mental health research, certified by the National Spanish Agency for Quality Evaluation and Accreditation. Consolidation of training programs within the Centre for Biomedical Research in Mental Health has considerably advanced the training of researchers to meet competency standards on research. The master's degree constitutes a unique opportunity to accomplish neuroscience and mental health research career-building within the official framework of university programs in Spain. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.
Glez-Peña, Daniel; Díaz, Fernando; Hernández, Jesús M; Corchado, Juan M; Fdez-Riverola, Florentino
2009-06-18
Bioinformatics and medical informatics are two research fields that serve the needs of different but related communities. Both domains share the common goal of providing new algorithms, methods and technological solutions to biomedical research, and contributing to the treatment and cure of diseases. Although different microarray techniques have been successfully used to investigate useful information for cancer diagnosis at the gene expression level, the true integration of existing methods into day-to-day clinical practice is still a long way off. Within this context, case-based reasoning emerges as a suitable paradigm specially intended for the development of biomedical informatics applications and decision support systems, given the support and collaboration involved in such a translational development. With the goals of removing barriers against multi-disciplinary collaboration and facilitating the dissemination and transfer of knowledge to real practice, case-based reasoning systems have the potential to be applied to translational research mainly because their computational reasoning paradigm is similar to the way clinicians gather, analyze and process information in their own practice of clinical medicine. In addressing the issue of bridging the existing gap between biomedical researchers and clinicians who work in the domain of cancer diagnosis, prognosis and treatment, we have developed and made accessible a common interactive framework. Our geneCBR system implements a freely available software tool that allows the use of combined techniques that can be applied to gene selection, clustering, knowledge extraction and prediction for aiding diagnosis in cancer research. For biomedical researches, geneCBR expert mode offers a core workbench for designing and testing new techniques and experiments. For pathologists or oncologists, geneCBR diagnostic mode implements an effective and reliable system that can diagnose cancer subtypes based on the analysis of microarray data using a CBR architecture. For programmers, geneCBR programming mode includes an advanced edition module for run-time modification of previous coded techniques. geneCBR is a new translational tool that can effectively support the integrative work of programmers, biomedical researches and clinicians working together in a common framework. The code is freely available under the GPL license and can be obtained at http://www.genecbr.org.
Black, Christine; Harris, Bethany; Mahraj, Katy; Schnitzer, Anna Ercoli; Rosenzweig, Merle
2013-01-01
Librarians have traditionally facilitated research development resulting in grants through performing biomedical literature searches for researchers. The librarians at the Taubman Health Sciences Library of the University of Michigan have taken additional steps forward by instituting a proactive approach to assisting investigators. To accomplish this, the librarians have taken part in a collaborative effort with the University of Michigan Medical School Office of Research. Through this partnership, both units have created and adopted various techniques intended to facilitate the submission of grants, thus allowing researchers more time to conduct their primary activities.
ERIC Educational Resources Information Center
Rolland, Betsy; Lee, Charlotte P.; Potter, John D.
2017-01-01
As collaborative biomedical research has increased in size and scope, so, too, has the need to facilitate the disparate work being done by investigators across institutional, geographic and, often, disciplinary boundaries. Yet we know little about what facilitation is on a day-to-day basis or what types of facilitation work contribute to the…
Organizational principles of cloud storage to support collaborative biomedical research.
Kanbar, Lara J; Shalish, Wissam; Robles-Rubio, Carlos A; Precup, Doina; Brown, Karen; Sant'Anna, Guilherme M; Kearney, Robert E
2015-08-01
This paper describes organizational guidelines and an anonymization protocol for the management of sensitive information in interdisciplinary, multi-institutional studies with multiple collaborators. This protocol is flexible, automated, and suitable for use in cloud-based projects as well as for publication of supplementary information in journal papers. A sample implementation of the anonymization protocol is illustrated for an ongoing study dealing with Automated Prediction of EXtubation readiness (APEX).
National Space Biomedical Research Institute Annual Report
NASA Technical Reports Server (NTRS)
2000-01-01
This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).
Is Open Science the Future of Drug Development?
Shaw, Daniel L.
2017-01-01
Traditional drug development models are widely perceived as opaque and inefficient, with the cost of research and development continuing to rise even as production of new drugs stays constant. Searching for strategies to improve the drug discovery process, the biomedical research field has begun to embrace open strategies. The resulting changes are starting to reshape the industry. Open science—an umbrella term for diverse strategies that seek external input and public engagement—has become an essential tool with researchers, who are increasingly turning to collaboration, crowdsourcing, data sharing, and open sourcing to tackle some of the most pressing problems in medicine. Notable examples of such open drug development include initiatives formed around malaria and tropical disease. Open practices have found their way into the drug discovery process, from target identification and compound screening to clinical trials. This perspective argues that while open science poses some risks—which include the management of collaboration and the protection of proprietary data—these strategies are, in many cases, the more efficient and ethical way to conduct biomedical research. PMID:28356902
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update
Afgan, Enis; Baker, Dannon; van den Beek, Marius; Blankenberg, Daniel; Bouvier, Dave; Čech, Martin; Chilton, John; Clements, Dave; Coraor, Nate; Eberhard, Carl; Grüning, Björn; Guerler, Aysam; Hillman-Jackson, Jennifer; Von Kuster, Greg; Rasche, Eric; Soranzo, Nicola; Turaga, Nitesh; Taylor, James; Nekrutenko, Anton; Goecks, Jeremy
2016-01-01
High-throughput data production technologies, particularly ‘next-generation’ DNA sequencing, have ushered in widespread and disruptive changes to biomedical research. Making sense of the large datasets produced by these technologies requires sophisticated statistical and computational methods, as well as substantial computational power. This has led to an acute crisis in life sciences, as researchers without informatics training attempt to perform computation-dependent analyses. Since 2005, the Galaxy project has worked to address this problem by providing a framework that makes advanced computational tools usable by non experts. Galaxy seeks to make data-intensive research more accessible, transparent and reproducible by providing a Web-based environment in which users can perform computational analyses and have all of the details automatically tracked for later inspection, publication, or reuse. In this report we highlight recently added features enabling biomedical analyses on a large scale. PMID:27137889
NATIONAL COLLABORATIVE PERINATAL PROJECT (AAD - HEALTH AND SOCIAL SERVICES BRANCH)
Study was conducted by NIH's National Institute of Neurological Diseases and Stroke. Biomedical and behavioral research in many areas of obstetrics, perinatology, pediatrics, and developmental psychology. The data also provide a prospective base for examining neurological and neu...
Emerging roles for biomedical librarians: a survey of current practice, challenges, and changes.
Crum, Janet A; Cooper, I Diane
2013-10-01
This study is intended to (1) identify emerging roles for biomedical librarians and determine how common these roles are in a variety of library settings, (2) identify barriers to taking on new roles, and (3) determine how librarians are developing the capacity to take on new roles. A survey was conducted of librarians in biomedical settings. Most biomedical librarians are taking on new roles. The most common roles selected by survey respondents include analysis and enhancement of user experiences, support for social media, support for systematic reviews, clinical informationist, help for faculty or staff with authorship issues, and implementation of researcher profiling and collaboration tools. Respondents in academic settings are more likely to report new roles than hospital librarians are, but some new roles are common in both settings. Respondents use a variety of methods to free up time for new roles, but predominant methods vary between directors and librarians and between academic and hospital respondents. Lack of time is the biggest barrier that librarians face when trying to adopt new roles. New roles are associated with increased collaboration with individuals and/or groups outside the library. This survey documents the widespread incorporation of new roles in biomedical libraries in the United States, as well as the barriers to adopting these roles and the means by which librarians are making time for them. The results of the survey can be used to inform strategic planning, succession planning, library education, and career development for biomedical librarians.
Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji
2014-01-01
Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.
Code of Federal Regulations, 2010 CFR
2010-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH SUPPORT PROGRAM § 52c.5 Grant awards. (a) Within the limits of funds available, and upon such... and resources (including where necessary collaborative arrangements with other institutions) to engage...
NCI and the Chinese Academy of Medical Sciences Sign Statement of Intent
Today the National Cancer Institute (NCI) and the Cancer Institute/Hospital of the Chinese Academy of Medical Sciences (CICAMS) signed a statement of intent to share an interest in fostering collaborative biomedical research in oncology and a common goal
Taylor, Barbara E; Reynolds, Arleigh J; Etz, Kathy E; MacCalla, Nicole M G; Cotter, Paul A; DeRuyter, Tiffany L; Hueffer, Karsten
2017-01-01
Most postsecondary institutions in the state of Alaska (USA) have a broad mission to serve diverse students, many of whom come from schools in rural villages that are accessible only by plane, boat, or snowmobile. The major research university, the University of Alaska in Fairbanks (UAF), serves a population whereby 40% are from groups recognized as underrepresented in the biomedical workforce. The purpose of this article is to describe the Building Infrastructure Leading to Diversity (BUILD)-supported program in the state of Alaska that seeks to engage students from rural areas with a culturally relevant approach that is centered on the One Health paradigm, integrating human, animal, and environmental health. The Biomedical Learning and Student Training (BLaST) program distinguished by broad themes that address recruitment, retention, and success of students in biomedical programs, especially for students from rural backgrounds. Targeted rural outreach emphasizes that biomedical research includes research on the integration of human, animal, and environmental health. This One Health perspective gives personal relevance and connection to biomedical research. This outreach is expected to benefit student recruitment, as well as foster family and community support for pursuit of college degrees. BLaST promotes integration of research into undergraduate curricula through curriculum development, and by creating a new class of instructors, laboratory research and teaching technicians, who provide research mentorship, course instruction, and comprehensive advising. Finally, BLaST facilitates early and sustained undergraduate research experiences in collaborations with graduate students and faculty. BLaST's approach is highly adapted to the Alaskan educational and physical environment, but components and concepts could be adapted to other rural areas as a means to engage students from rural backgrounds, who often have a closer relationship with the natural environment than urban students.
Human Centered Hardware Modeling and Collaboration
NASA Technical Reports Server (NTRS)
Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena
2013-01-01
In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.
Health care innovation: progress report and focus on biotechnology.
Read, J L; Lee, K B
1994-01-01
Funding for biomedical research has shifted from government to the private sector. One reason is rapid expansion in the number and strength of U.S. biotechnology companies, which collectively spend more than $6 billion a year on biomedical research. Most of these companies are not yet profitable and therefore depend on flows of capital from private investors, Wall Street, and large pharmaceutical company collaborations. Investment in the new drugs, devices, and vaccines in this pipeline is sensitive to signals emanating from the debate on health care reform, suggesting that new federal policy will have a major impact on steering the type of innovation to emerge in the future.
Agile methods in biomedical software development: a multi-site experience report.
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-05-30
Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods.
Agile methods in biomedical software development: a multi-site experience report
Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A
2006-01-01
Background Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. Results We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. Conclusion We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods. PMID:16734914
UCSD's Institute of Engineering in Medicine: fostering collaboration through research and education.
Chien, Shu
2012-07-01
The University of California, San Diego (UCSD) was established in 1961 as a new research university that emphasizes innovation, excellence, and interdisciplinary research and education. It has a School of Medicine (SOM) and the Jacobs School of Engineering (JSOE) in close proximity, and both schools have national rankings among the top 15. In 1991, with the support of the Whitaker Foundation, the Whitaker Institute of Biomedical Engineering was formed to foster collaborations in research and education. In 2008, the university extended the collaboration further by establishing the Institute of Engineering in Medicine (IEM), with the mission of accelerating the discoveries of novel science and technology to enhance health care through teamwork between engineering and medicine, and facilitating the translation of innovative technologies for delivery to the public through clinical application and commercialization.
Morales, Danielle X.; Grineski, Sara E.; Collins, Timothy W.
2017-01-01
Little attention has been paid to understanding faculty–student productivity via undergraduate research from the faculty member’s perspective. This study examines predictors of faculty–student publications resulting from mentored undergraduate research, including measures of faculty–student collaboration, faculty commitment to undergraduate students, and faculty characteristics. Generalized estimating equations were used to analyze data from 468 faculty members across 13 research-intensive institutions, collected by a cross-sectional survey in 2013/2014. Results show that biomedical faculty mentors were more productive in publishing collaboratively with undergraduate students when they worked with students for more than 1 year on average, enjoyed teaching students about research, had mentored Black students, had received more funding from the National Institutes of Health, had a higher H-index scores, and had more years of experience working in higher education. This study suggests that college administrators and research program directors should strive to create incentives for faculty members to collaborate with undergraduate students and promote faculty awareness that undergraduates can contribute to their research. PMID:28747352
Bonde, Robert K.; Garrett, Andrew; Belanger, Michael; Askin, Nesime; Tan, Luke; Wittnich, Carin
2012-01-01
Federal and state researchers have been involved in manatee (Trichechus manatus) biomedical health assessment programs for a couple of decades. These benchmark studies have provided a foundation for the development of consistent capture, handling, and processing techniques and protocols. Biologists have implemented training and encouraged multi-agency participation whenever possible to ensure reliable data acquisition, recording, sample collection, publication integrity, and meeting rigorous archival standards. Under a U.S. Fish and Wildlife Service wildlife research permit granted to the U.S. Geological Survey (USGS) Sirenia Project, federal biologists and collaborators are allowed to conduct research studies on wild and captive manatees detailing various aspects of their biology. Therefore, researchers with the project have been collaborating on numerous studies over the last several years. One extensive study, initiated in 2006 has focused on health and fitness of the winter manatee population located in Crystal River, Florida. During those health assessments, capture, handling, and work-up training has been afforded to many of the participants. That study has successfully captured and handled 123 manatees. The data gathered have provided baseline information on manatee health, reproductive status, and nutritional condition. This research initiative addresses concerns and priorities outlined in the Florida Manatee Recovery Plan. The assessment teams strive to continue this collaborative effort to help advance our understanding of health-related issues confronting manatees throughout their range and interlacing these findings with surrogate species concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, W. E.
2004-08-16
Computational Science plays a big role in research and development in mathematics, science, engineering and biomedical disciplines. The Alliance for Computational Science Collaboration (ACSC) has the goal of training African-American and other minority scientists in the computational science field for eventual employment with the Department of Energy (DOE). The involvements of Historically Black Colleges and Universities (HBCU) in the Alliance provide avenues for producing future DOE African-American scientists. Fisk University has been participating in this program through grants from the DOE. The DOE grant supported computational science activities at Fisk University. The research areas included energy related projects, distributed computing,more » visualization of scientific systems and biomedical computing. Students' involvement in computational science research included undergraduate summer research at Oak Ridge National Lab, on-campus research involving the participation of undergraduates, participation of undergraduate and faculty members in workshops, and mentoring of students. These activities enhanced research and education in computational science, thereby adding to Fisk University's spectrum of research and educational capabilities. Among the successes of the computational science activities are the acceptance of three undergraduate students to graduate schools with full scholarships beginning fall 2002 (one for master degree program and two for Doctoral degree program).« less
Life Sciences and the web: a new era for collaboration.
Sagotsky, Jonathan A; Zhang, Le; Wang, Zhihui; Martin, Sean; Deisboeck, Thomas S
2008-01-01
The World Wide Web has revolutionized how researchers from various disciplines collaborate over long distances. This is nowhere more important than in the Life Sciences, where interdisciplinary approaches are becoming increasingly powerful as a driver of both integration and discovery. Data access, data quality, identity, and provenance are all critical ingredients to facilitate and accelerate these collaborative enterprises and it is here where Semantic Web technologies promise to have a profound impact. This paper reviews the need for, and explores advantages of as well as challenges with these novel Internet information tools as illustrated with examples from the biomedical community.
Phase II, Compact AMS System for Biological Tracer Detection Final Report CRADA No. TSV-1533-96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T. A.; Hamm, R. W.
2017-11-01
The objective of this collaboration between LLNL and AccSys Technology, Inc. of Pleasanton, California was to build and demonstrate a low cost, compact tritium (3H) Accelerator Mass Spectrometer (AMS) system matched to the requirements of biomedical research.
ERIC Educational Resources Information Center
Bourke, Jaron
Harvard Watch asserts that withholding essential information from public scrutiny is not uncommon at Harvard University. Maintaining that Harvard has reversed its position from extolling the virtues of public disclosure to one of imposing secrecy, the document suggests that this about face is linked to the university's recent collaboration with…
González-Alcaide, Gregorio; Aleixandre-Benavent, Rafael; de Granda-Orive, José Ignacio
2010-02-01
Scientific cooperation is essential for the advance of biomedical research. Scientists set up informal groups to work together on common issues, who are the main units in the research funding system. Bibliometric and Social Network Analysis methods allow informal groups in scientific papers to be identified and characterised. The objective of the study is to identify research groups in Archivos de Bronconeumología between 2003 and 2007 period with the aim of characterizing their scientific collaboration patterns and research areas. Co-authorships, institutional collaboration relationships and the main research areas of papers published in Archivos de Bronconeumología have been identified. Co-authorship networks and institutional collaboration networks have been constructed by using Pajek software tool. A total of 41 research groups involving 171 investigators have been identified. The Collaboration Index for articles was 5.59 and the Transcience Index was 73.11%. There was institutional collaboration in 60.33% of papers. The collaboration between institutions of the same region prevails (41.03%), followed by collaborations between departments, services or units of the same institution (39.74%), inter-regional collaboration (14,97%) and international collaboration (6.83%). A total of 83.03% of articles were cited. The main research areas covered by groups were chronic obstructive pulmonary disease, asthma, lung neoplasm, bronchogenic carcinoma, smoking and pulmonary embolism. The scientific production of a large number of Respiratory System Spanish research groups is published in Archivos de Bronconeumología. A notable collaboration and citation rate has been observed. Nevertheless, it is still essential to encourage inter-regional and international collaboration. Copyright 2009 SEPAR. Published by Elsevier Espana. All rights reserved.
Emerging roles for biomedical librarians: a survey of current practice, challenges, and changes
Crum, Janet A.; Cooper, I. Diane
2013-01-01
Objective: This study is intended to (1) identify emerging roles for biomedical librarians and determine how common these roles are in a variety of library settings, (2) identify barriers to taking on new roles, and (3) determine how librarians are developing the capacity to take on new roles. Methods: A survey was conducted of librarians in biomedical settings. Results: Most biomedical librarians are taking on new roles. The most common roles selected by survey respondents include analysis and enhancement of user experiences, support for social media, support for systematic reviews, clinical informationist, help for faculty or staff with authorship issues, and implementation of researcher profiling and collaboration tools. Respondents in academic settings are more likely to report new roles than hospital librarians are, but some new roles are common in both settings. Respondents use a variety of methods to free up time for new roles, but predominant methods vary between directors and librarians and between academic and hospital respondents. Lack of time is the biggest barrier that librarians face when trying to adopt new roles. New roles are associated with increased collaboration with individuals and/or groups outside the library. Conclusion and Implications: This survey documents the widespread incorporation of new roles in biomedical libraries in the United States, as well as the barriers to adopting these roles and the means by which librarians are making time for them. The results of the survey can be used to inform strategic planning, succession planning, library education, and career development for biomedical librarians. PMID:24163599
Conceptualizing and Advancing Research Networking Systems.
Schleyer, Titus; Butler, Brian S; Song, Mei; Spallek, Heiko
2012-03-01
Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture , and evaluation . Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers' need for comprehensive information and potential collaborators' desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user's primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems.
Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J
2015-11-01
Pharmaceutical human biomedical research is a multi-dimensional endeavor that requires collaboration among many parties, including those who sponsor, conduct, participate in, or stand to benefit from the research. Human subjects' protections have been promulgated to ensure that the benefits of such research are accomplished with respect for and minimal risk to individual research participants, and with an overall sense of fairness. Although these protections are foundational to clinical research, most ethics guidance primarily highlights the responsibilities of investigators and ethics review boards. Currently, there is no published resource that comprehensively addresses bioethical responsibilities of industry sponsors; including their responsibilities to parties who are not research participants, but are, nevertheless key stakeholders in the endeavor. To fill this void, in 2010 Eli Lilly and Company instituted a Bioethics Framework for Human Biomedical Research. This paper describes how the framework was developed and implemented and provides a critique based on four years of experience. A companion article provides the actual document used by Eli Lilly and Company to guide ethical decisions regarding all phases of human clinical trials. While many of the concepts presented in this framework are not novel, compiling them in a manner that articulates the ethical responsibilities of a sponsor is novel. By utilizing this type of bioethics framework, we have been able to develop bioethics positions on various topics, provide research ethics consultations, and integrate bioethics into the daily operations of our human biomedical research. We hope that by sharing these companion papers we will stimulate discussion within and outside the biopharmaceutical industry for the benefit of the multiple parties involved in pharmaceutical human biomedical research.
Knowledge sharing and collaboration in translational research, and the DC-THERA Directory
Gündel, Michaela; Austyn, Jonathan M.; Cavalieri, Duccio; Scognamiglio, Ciro; Brandizi, Marco
2011-01-01
Biomedical research relies increasingly on large collections of data sets and knowledge whose generation, representation and analysis often require large collaborative and interdisciplinary efforts. This dimension of ‘big data’ research calls for the development of computational tools to manage such a vast amount of data, as well as tools that can improve communication and access to information from collaborating researchers and from the wider community. Whenever research projects have a defined temporal scope, an additional issue of data management arises, namely how the knowledge generated within the project can be made available beyond its boundaries and life-time. DC-THERA is a European ‘Network of Excellence’ (NoE) that spawned a very large collaborative and interdisciplinary research community, focusing on the development of novel immunotherapies derived from fundamental research in dendritic cell immunobiology. In this article we introduce the DC-THERA Directory, which is an information system designed to support knowledge management for this research community and beyond. We present how the use of metadata and Semantic Web technologies can effectively help to organize the knowledge generated by modern collaborative research, how these technologies can enable effective data management solutions during and beyond the project lifecycle, and how resources such as the DC-THERA Directory fit into the larger context of e-science. PMID:21969471
Harris, Thomas R; Brophy, Sean P
2005-09-01
Vanderbilt University, Northwestern University, the University of Texas and the Harvard/MIT Health Sciences Technology Program have collaborated since 1999 to develop means to improve bioengineering education. This effort, funded by the National Science Foundation as the VaNTH Engineering Research Center in Bioengineering Educational Technologies, has sought a synthesis of learning science, learning technology, assessment and the domains of bioengineering in order to improve learning by bioengineering students. Research has shown that bioengineering educational materials may be designed to emphasize challenges that engage the student and, when coupled with a learning cycle and appropriate technologies, can lead to improvements in instruction.
Multinational teams and diseconomies of scale in collaborative research.
Hsiehchen, David; Espinoza, Magdalena; Hsieh, Antony
2015-09-01
Collaborative research has become the mainstay in knowledge production across many domains of science and is widely promoted as a means of cultivating research quality, enhanced resource utilization, and high impact. An accurate appraisal of the value of collaborative research efforts is necessary to inform current funding and research policies. We reveal contemporary trends in collaborative research spanning multiple subject fields, with a particular focus on interactions between nations. We also examined citation outcomes of research teams and confirmed the accumulative benefits of having additional authors and unique countries involved. However, when per capita citation rates were analyzed to disambiguate the effects of authors and countries, decreasing returns in citations were noted with increasing authors among large research teams. In contrast, an increasing number of unique countries had a persistent additive citation effect. We also assessed the placement of foreign authors relative to the first author in paper bylines of biomedical research articles, which demonstrated a significant citation advantage of having an international presence in the second-to-last author position, possibly occupied by foreign primary co-investigators. Our analyses highlight the evolution and functional impact of team dynamics in research and suggest empirical strategies to evaluate team science.
Multinational teams and diseconomies of scale in collaborative research
Hsiehchen, David; Espinoza, Magdalena; Hsieh, Antony
2015-01-01
Collaborative research has become the mainstay in knowledge production across many domains of science and is widely promoted as a means of cultivating research quality, enhanced resource utilization, and high impact. An accurate appraisal of the value of collaborative research efforts is necessary to inform current funding and research policies. We reveal contemporary trends in collaborative research spanning multiple subject fields, with a particular focus on interactions between nations. We also examined citation outcomes of research teams and confirmed the accumulative benefits of having additional authors and unique countries involved. However, when per capita citation rates were analyzed to disambiguate the effects of authors and countries, decreasing returns in citations were noted with increasing authors among large research teams. In contrast, an increasing number of unique countries had a persistent additive citation effect. We also assessed the placement of foreign authors relative to the first author in paper bylines of biomedical research articles, which demonstrated a significant citation advantage of having an international presence in the second-to-last author position, possibly occupied by foreign primary co-investigators. Our analyses highlight the evolution and functional impact of team dynamics in research and suggest empirical strategies to evaluate team science. PMID:26601251
A midas plugin to enable construction of reproducible web-based image processing pipelines
Grauer, Michael; Reynolds, Patrick; Hoogstoel, Marion; Budin, Francois; Styner, Martin A.; Oguz, Ipek
2013-01-01
Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by those biomedical researchers with limited image processing knowledge. These tools are implemented as a plugin for Midas, an open-source toolkit for creating web based scientific data storage and processing platforms. Using this plugin, an image processing expert can construct a pipeline, create a web-based User Interface, manage jobs, and visualize intermediate results. Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This represents a new capability for biomedical researchers and offers an innovative platform for scientific collaboration. Current tools work well, but can be inaccessible for those lacking image processing expertise. Using this plugin, researchers in collaboration with image processing experts can create workflows with reasonable default settings and streamlined user interfaces, and data can be processed easily from a lab environment without the need for a powerful desktop computer. This platform allows simplified troubleshooting, centralized maintenance, and easy data sharing with collaborators. These capabilities enable reproducible science by sharing datasets and processing pipelines between collaborators. In this paper, we present a description of this innovative Midas plugin, along with results obtained from building and executing several ITK based image processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as well as recommendations for building automated image processing pipelines. Although the particular image processing pipelines developed were focused on rodent brain MRI, the presented plugin can be used to support any executable or script-based pipeline. PMID:24416016
A midas plugin to enable construction of reproducible web-based image processing pipelines.
Grauer, Michael; Reynolds, Patrick; Hoogstoel, Marion; Budin, Francois; Styner, Martin A; Oguz, Ipek
2013-01-01
Image processing is an important quantitative technique for neuroscience researchers, but difficult for those who lack experience in the field. In this paper we present a web-based platform that allows an expert to create a brain image processing pipeline, enabling execution of that pipeline even by those biomedical researchers with limited image processing knowledge. These tools are implemented as a plugin for Midas, an open-source toolkit for creating web based scientific data storage and processing platforms. Using this plugin, an image processing expert can construct a pipeline, create a web-based User Interface, manage jobs, and visualize intermediate results. Pipelines are executed on a grid computing platform using BatchMake and HTCondor. This represents a new capability for biomedical researchers and offers an innovative platform for scientific collaboration. Current tools work well, but can be inaccessible for those lacking image processing expertise. Using this plugin, researchers in collaboration with image processing experts can create workflows with reasonable default settings and streamlined user interfaces, and data can be processed easily from a lab environment without the need for a powerful desktop computer. This platform allows simplified troubleshooting, centralized maintenance, and easy data sharing with collaborators. These capabilities enable reproducible science by sharing datasets and processing pipelines between collaborators. In this paper, we present a description of this innovative Midas plugin, along with results obtained from building and executing several ITK based image processing workflows for diffusion weighted MRI (DW MRI) of rodent brain images, as well as recommendations for building automated image processing pipelines. Although the particular image processing pipelines developed were focused on rodent brain MRI, the presented plugin can be used to support any executable or script-based pipeline.
Urgent Need for Improved Mental Health Care and a More Collaborative Model of Care
Lake, James; Turner, Mason Spain
2017-01-01
Current treatments and the dominant model of mental health care do not adequately address the complex challenges of mental illness, which accounts for roughly one-third of adult disability globally. These circumstances call for radical change in the paradigm and practices of mental health care, including improving standards of clinician training, developing new research methods, and re-envisioning current models of mental health care delivery. Because of its dominant position in the US health care marketplace and its commitment to research and innovation, Kaiser Permanente (KP) is strategically positioned to make important contributions that will shape the future of mental health care nationally and globally. This article reviews challenges facing mental health care and proposes an agenda for developing a collaborative care model in primary care settings that incorporates conventional biomedical therapies and complementary and alternative medicine approaches. By moving beyond treatment delivery via telephone and secure video and providing earlier interventions through primary care clinics, KP is shifting the paradigm of mental health care to a collaborative care model focusing on prevention. Recommendations are to expand current practices to include integrative treatment strategies incorporating evidence-based biomedical and complementary and alternative medicine modalities that can be provided to patients using a collaborative care model. Recommendations also are made for an internal research program aimed at investigating the efficacy and cost-effectiveness of promising complementary and alternative medicine and integrative treatments addressing the complex needs of patients with severe psychiatric disorders, many of whom respond poorly to treatments available in KP mental health clinics. PMID:28898197
Issues and special features of animal health research
2011-01-01
In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food security, agriculture economics, and the ensemble of economic activities associated with agriculture. There are in addition issues related to public health (zoonoses, xenobiotics, antimicrobial resistance), the environment, and animal welfare. Animal health research is distinguished by particular methodologies and scientific questions that stem from the specific biological features of domestic species and from animal husbandry practices. It generally does not explore the same scientific questions as research on human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context. Generic and methodological synergies nevertheless exist with biomedical research, particularly with regard to tools and biological models. Certain domestic species furthermore present more functional similarities with humans than laboratory rodents. The singularity of animal health research in relation to biomedical research should be taken into account in the organization, evaluation, and funding of the field through a policy that clearly recognizes the specific issues at stake. At the same time, the One Health approach should facilitate closer collaboration between biomedical and animal health research at the level of research teams and programmes. PMID:21864344
Issues and special features of animal health research.
Ducrot, Christian; Bed'hom, Bertrand; Béringue, Vincent; Coulon, Jean-Baptiste; Fourichon, Christine; Guérin, Jean-Luc; Krebs, Stéphane; Rainard, Pascal; Schwartz-Cornil, Isabelle; Torny, Didier; Vayssier-Taussat, Muriel; Zientara, Stephan; Zundel, Etienne; Pineau, Thierry
2011-08-24
In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food security, agriculture economics, and the ensemble of economic activities associated with agriculture. There are in addition issues related to public health (zoonoses, xenobiotics, antimicrobial resistance), the environment, and animal welfare.Animal health research is distinguished by particular methodologies and scientific questions that stem from the specific biological features of domestic species and from animal husbandry practices. It generally does not explore the same scientific questions as research on human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context.Generic and methodological synergies nevertheless exist with biomedical research, particularly with regard to tools and biological models. Certain domestic species furthermore present more functional similarities with humans than laboratory rodents.The singularity of animal health research in relation to biomedical research should be taken into account in the organization, evaluation, and funding of the field through a policy that clearly recognizes the specific issues at stake. At the same time, the One Health approach should facilitate closer collaboration between biomedical and animal health research at the level of research teams and programmes.
Collaborative research in cardiovascular dynamics and bone elasticity
NASA Technical Reports Server (NTRS)
1974-01-01
A collaborative research program covering a variety of topics of biomechanics and biomedical engineering within the fields of cardiovascular dynamics, respiration, bone elasticity and vestibular physiology is described. The goals of the research were to promote: (1) a better understanding of the mechanical behavior of the circulatory system and its control mechanisms; (2) development of noninvasive methods of measuring the changes in the mechanical properties of blood vessels and other cardiovascular parameters in man; (3) application of these noninvasive methods to examine in man the physiological effects of environmental changes, including earth-simulated gravitational changes; and (4) development of in-flight methods for studying the events which lead to post-flight postural hypotension.
Bridging the social and the biomedical: engaging the social and political sciences in HIV research.
Kippax, Susan C; Holt, Martin; Friedman, Samuel R
2011-09-27
This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologies (such as HIV treatments, HIV testing, viral load testing, male circumcision, microbicides, and pre-and post-exposure prophylaxis) on sexual cultures, drug practices, relationships and social networks in different cultural, economic and political contexts. The supplement is also concerned with how we might examine the relationship between HIV prevention and treatment, understand the social and political mobilization required to tackle HIV, and sustain the range of disciplinary approaches needed to inform and guide responses to the global pandemic. The six articles included in the supplement demonstrate the value of fostering high quality social and political research to inform, guide and challenge our collaborative responses to HIV/AIDS.
Prayer Camps and Biomedical Care in Ghana: Is Collaboration in Mental Health Care Possible?
Arias, Daniel; Taylor, Lauren; Ofori-Atta, Angela; Bradley, Elizabeth H
2016-01-01
Experts have suggested that intersectoral partnerships between prayer camps and biomedical care providers may be an effective strategy to address the overwhelming shortage of mental health care workers in Africa and other low-income settings. Nevertheless, previous studies have not explored whether the prayer camp and biomedical staff beliefs and practices provide sufficient common ground to enable cooperative relationships. Therefore, we sought to examine the beliefs and practices of prayer camp staff and the perspective of biomedical care providers, with the goal of characterizing interest in-and potential for-intersectoral partnership between prayer camp staff and biomedical care providers. We conducted 50 open-ended, semi-structured interviews with prophets and staff at nine Christian prayer camps in Ghana, and with staff within Ghana's three public psychiatric hospitals. We used the purposive sampling method to recruit participants and the constant comparative method for qualitative data analysis. Prayer camp staff expressed interest in collaboration with biomedical mental health care providers, particularly if partnerships could provide technical support introducing medications in the prayer camp and address key shortcomings in their infrastructure and hygienic conditions. Nevertheless, challenges for collaboration were apparent as prayer camp staff expressed strong beliefs in a spiritual rather than biomedical explanatory model for mental illness, frequently used fasting and chained restraints in the course of treatment, and endorsed only short-term use of medication to treat mental illness-expressing concerns that long-term medication regimens masked underlying spiritual causes of illness. Biomedical providers were skeptical about the spiritual interpretations of mental illness held by faith healers, and were concerned by the use of chains, fasting, and the lack of adequate living facilities for patients in prayer camps; many, however, expressed interest in engaging with prayer camps to expand access to clinical care for patients residing in the camps. The findings demonstrate that biomedical care providers are interested in engaging with prayer camps. Key areas where partnerships may best improve conditions for patients at prayer camps include collaborating on creating safe and secure physical spaces and delivering medication for mental illness to patients living in prayer camps. However, while prayer camp staff are willing to engage biomedical knowledge, deeply held beliefs and routine practices of faith and biomedical healers are difficult to reconcile Additional discussion is needed to find the common ground on which the scarce resources for mental health care in Ghana can collaborate most effectively.
Prayer Camps and Biomedical Care in Ghana: Is Collaboration in Mental Health Care Possible?
Arias, Daniel; Taylor, Lauren; Ofori-Atta, Angela; Bradley, Elizabeth H.
2016-01-01
Background Experts have suggested that intersectoral partnerships between prayer camps and biomedical care providers may be an effective strategy to address the overwhelming shortage of mental health care workers in Africa and other low-income settings. Nevertheless, previous studies have not explored whether the prayer camp and biomedical staff beliefs and practices provide sufficient common ground to enable cooperative relationships. Therefore, we sought to examine the beliefs and practices of prayer camp staff and the perspective of biomedical care providers, with the goal of characterizing interest in—and potential for—intersectoral partnership between prayer camp staff and biomedical care providers. Methods We conducted 50 open-ended, semi-structured interviews with prophets and staff at nine Christian prayer camps in Ghana, and with staff within Ghana’s three public psychiatric hospitals. We used the purposive sampling method to recruit participants and the constant comparative method for qualitative data analysis. Results Prayer camp staff expressed interest in collaboration with biomedical mental health care providers, particularly if partnerships could provide technical support introducing medications in the prayer camp and address key shortcomings in their infrastructure and hygienic conditions. Nevertheless, challenges for collaboration were apparent as prayer camp staff expressed strong beliefs in a spiritual rather than biomedical explanatory model for mental illness, frequently used fasting and chained restraints in the course of treatment, and endorsed only short-term use of medication to treat mental illness—expressing concerns that long-term medication regimens masked underlying spiritual causes of illness. Biomedical providers were skeptical about the spiritual interpretations of mental illness held by faith healers, and were concerned by the use of chains, fasting, and the lack of adequate living facilities for patients in prayer camps; many, however, expressed interest in engaging with prayer camps to expand access to clinical care for patients residing in the camps. Conclusions The findings demonstrate that biomedical care providers are interested in engaging with prayer camps. Key areas where partnerships may best improve conditions for patients at prayer camps include collaborating on creating safe and secure physical spaces and delivering medication for mental illness to patients living in prayer camps. However, while prayer camp staff are willing to engage biomedical knowledge, deeply held beliefs and routine practices of faith and biomedical healers are difficult to reconcile Additional discussion is needed to find the common ground on which the scarce resources for mental health care in Ghana can collaborate most effectively. PMID:27618551
Finding collaborators: toward interactive discovery tools for research network systems.
Borromeo, Charles D; Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry
2014-11-04
Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows.
Finding Collaborators: Toward Interactive Discovery Tools for Research Network Systems
Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry
2014-01-01
Background Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. Objective The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Methods Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Results Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Conclusions Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows. PMID:25370463
Santesmases, María Jesús
2006-01-01
A political discourse of peace marked the distribution and use of radioisotopes in biomedical research and in medical diagnosis and therapy in the post-World War II period. This occurred during the era of expansion and strengthening of the United States' influence on the promotion of sciences and technologies in Europe as a collaborative effort, initially encouraged by the policies and budgetary distribution of the Marshall Plan. This article follows the importation of radioisotopes by two Spanish research groups, one in experimental endocrinology and one in molecular biology. For both groups foreign funds were instrumental in the early establishment of their laboratories. The combination of funding and access to previously scarce radioisotopes helped position these groups at the forefront of research in Spain.
North-South health research collaboration: challenges in institutional interaction.
Maina-Ahlberg, B; Nordberg, E; Tomson, G
1997-04-01
North-South health development cooperation often includes research financed largely by external donors. The cooperation varies between projects and programmes with regard to subject area, mix of disciplines involved, research methods, training components and project management arrangements. A variety of problems is encountered, but they are rarely described and discussed in published project reports. We authors conducted a study of a small number of European health researchers collaborating with researchers from the Third World. We focused upon projects involving both biomedical and social science researchers, and apart from a literature review three methods were applied: self-administered questionnaires to European researchers, semistructured interviews with five IHCAR researchers, and written summaries by the three authors, each on one recent or ongoing collaborative project of their choice. Most collaborative projects were initiated from the North and are monodisciplinary or partly interdisciplinary in the sense that researchers did independent data collection preceded by joint planning and followed by joint analysis and write-up. There may be disagreements concerning remuneration such as allowances in relation to fieldwork and training. Socio-cultural misunderstanding and conflict was reportedly rare, and no serious problems were reported regarding authorship and publishing. It is concluded that collaborative research is a complex and poorly understood process with considerable potential and worth pursuing despite the problems. Difficulties related to logistics and finance are easily and freely discussed, while there is little evidence that transdisciplinary research is conducted or even discussed. We recommend that published and unpublished reports on collaborative research projects include more detailed accounts of the North-South collaborative arrangements and their management, ethical and financial aspects.
Fonseca, Bruna de Paula Fonseca E; Albuquerque, Priscila Costa; Noyons, Ed; Zicker, Fabio
2018-03-01
South-south collaboration on health and development research is a critical mechanism for social and economic progress. It allows sharing and replicating experiences to find a "southern solution" to meet shared health challenges, such as access to adequate HIV/AIDS prevention and treatment. This study aimed to generate evidence on the dynamics of south-south collaboration in HIV/AIDS research, which could ultimately inform stakeholders on the progress and nature of collaboration towards increased research capacities in low- and middle-income countries (LMIC). Bibliometric and social network analysis methods were used to assess the 10-year (2006-2015) scientific contribution of LMIC, through the analysis of scientific publications on HIV/AIDS prevention and/or treatment. Five dimensions oriented the study: knowledge production, co-authorship analysis, research themes mapping, research types classification and funding sources. Publications involving LMIC have substantially increased overtime, despite small expression of south-south collaboration. Research themes mapping revealed that publication focus varied according to collaborating countries' income categories, from diagnosis, opportunistic infections and laboratory-based research (LMIC single or LMIC-LMIC) to human behavior and healthcare, drug therapy and mother to child transmission (LMIC-HIC). The analysis of research types showed that south-south collaborations frequently targeted social sciences issues. Funding agencies acknowledged in south-south collaboration also showed diverse focus: LMIC-based funders tended to support basic biomedical research whereas international/HIC-based funders seem to cover predominantly social sciences-oriented research. Although the global environment has fostered an increasing participation of LMIC in collaborative learning models, south-south collaboration on HIV/AIDS prevention and/or treatment research seemed to be lower than expected, stressing the need for strategies to foster these partnerships. The evidence presented in this study can be used to strengthen a knowledge platform to inform future policy, planning and funding decisions, contributing to the development of enhanced collaboration and a priority research agenda for LMICs.
ICM: a web server for integrated clustering of multi-dimensional biomedical data.
He, Song; He, Haochen; Xu, Wenjian; Huang, Xin; Jiang, Shuai; Li, Fei; He, Fuchu; Bo, Xiaochen
2016-07-08
Large-scale efforts for parallel acquisition of multi-omics profiling continue to generate extensive amounts of multi-dimensional biomedical data. Thus, integrated clustering of multiple types of omics data is essential for developing individual-based treatments and precision medicine. However, while rapid progress has been made, methods for integrated clustering are lacking an intuitive web interface that facilitates the biomedical researchers without sufficient programming skills. Here, we present a web tool, named Integrated Clustering of Multi-dimensional biomedical data (ICM), that provides an interface from which to fuse, cluster and visualize multi-dimensional biomedical data and knowledge. With ICM, users can explore the heterogeneity of a disease or a biological process by identifying subgroups of patients. The results obtained can then be interactively modified by using an intuitive user interface. Researchers can also exchange the results from ICM with collaborators via a web link containing a Project ID number that will directly pull up the analysis results being shared. ICM also support incremental clustering that allows users to add new sample data into the data of a previous study to obtain a clustering result. Currently, the ICM web server is available with no login requirement and at no cost at http://biotech.bmi.ac.cn/icm/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
PASSIM--an open source software system for managing information in biomedical studies.
Viksna, Juris; Celms, Edgars; Opmanis, Martins; Podnieks, Karlis; Rucevskis, Peteris; Zarins, Andris; Barrett, Amy; Neogi, Sudeshna Guha; Krestyaninova, Maria; McCarthy, Mark I; Brazma, Alvis; Sarkans, Ugis
2007-02-09
One of the crucial aspects of day-to-day laboratory information management is collection, storage and retrieval of information about research subjects and biomedical samples. An efficient link between sample data and experiment results is absolutely imperative for a successful outcome of a biomedical study. Currently available software solutions are largely limited to large-scale, expensive commercial Laboratory Information Management Systems (LIMS). Acquiring such LIMS indeed can bring laboratory information management to a higher level, but often implies sufficient investment of time, effort and funds, which are not always available. There is a clear need for lightweight open source systems for patient and sample information management. We present a web-based tool for submission, management and retrieval of sample and research subject data. The system secures confidentiality by separating anonymized sample information from individuals' records. It is simple and generic, and can be customised for various biomedical studies. Information can be both entered and accessed using the same web interface. User groups and their privileges can be defined. The system is open-source and is supplied with an on-line tutorial and necessary documentation. It has proven to be successful in a large international collaborative project. The presented system closes the gap between the need and the availability of lightweight software solutions for managing information in biomedical studies involving human research subjects.
78 FR 17218 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... Allergy and Infectious Diseases; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... Infectious Diseases Special Emphasis Panel, ``Limited Competition: Collaborative Partnership to Advance Global Biomedical Research Programs (U01).'' Date: April 12, 2013. Time: 1:00 p.m. to 3:00 p.m. Agenda...
Biomedical equipment in the neonatal intensive care unit: is it a stressor?
Gibbons, C; Geller, S; Glatz, E
1998-12-01
The objective of this research was to learn more about nurses' perceptions of the sources of stress in a neonatal intensive care unit and based on the results, to initiate programs to combat stressors. Nurses were asked to complete a demographic sheet and stress audit. Thirty-three (52%) nurses responded and reported that their greatest source of stress was centered on bio-medical equipment--specifically on access, storage, design, and function issues. Nurses reported their least sources were advanced positions, stable infants, and routine procedures. Plans are underway to remedy equipment issues--primarily to inform and collaborate with others.
Keikelame, Mpoe Johannah; Swartz, Leslie
2015-01-01
The experience of epilepsy is profoundly culturally mediated and the meanings attributed to the condition can have a great impact on its social course. This qualitative study used Kleinman’s Explanatory Model framework to explore traditional healers’ perspectives on epilepsy in an urban township in Cape Town, South Africa. The healers who participated in the study were Xhosa-speaking, had experience caring for patients with epilepsy, and had not received any training on epilepsy. Six individual in-depth interviews and one focus group with nine traditional healers were conducted using a semi-structured interview guide. Traditional healers identified several different names referring to epilepsy. They explained epilepsy as a thing inside the body which is recognized by the way it presents itself during an epileptic seizure. According to these healers, epilepsy is difficult to understand because it is not easily detectable. Their biomedical explanations of the cause of epilepsy included, among others, lack of immunizations, child asphyxia, heredity, traumatic birth injuries and dehydration. These healers believed that epilepsy could be caused by amafufunyana (evil spirits) and that biomedical doctors could not treat the supernatural causes of epilepsy. However, the healers believed that western medicines, as well as traditional medicines, could be effective in treating the epileptic seizures. Traditional healers were supportive of collaboration with western-trained practitioners and highlighted that the strategy must have formal agreements in view of protection of intellectual property, accountability and respect of their indigenous knowledge. The findings suggest a need for interventions that promote cultural literacy among mental health practitioners. Research is urgently needed to assess the impact of such collaborations between biomedical services and traditional healers on epilepsy treatment and care. PMID:25680366
The RA-MAP Consortium: a working model for academia-industry collaboration.
Cope, Andrew P; Barnes, Michael R; Belson, Alexandra; Binks, Michael; Brockbank, Sarah; Bonachela-Capdevila, Francisco; Carini, Claudio; Fisher, Benjamin A; Goodyear, Carl S; Emery, Paul; Ehrenstein, Michael R; Gozzard, Neil; Harris, Ray; Hollis, Sally; Keidel, Sarah; Levesque, Marc; Lindholm, Catharina; McDermott, Michael F; McInnes, Iain B; Mela, Christopher M; Parker, Gerry; Read, Simon; Pedersen, Ayako Wakatsuki; Ponchel, Frederique; Porter, Duncan; Rao, Ravi; Rowe, Anthony; Schulz-Knappe, Peter; Sleeman, Matthew A; Symmons, Deborah; Taylor, Peter C; Tom, Brian; Tsuji, Wayne; Verbeeck, Denny; Isaacs, John D
2018-01-01
Collaboration can be challenging; nevertheless, the emerging successes of large, multi-partner, multi-national cooperatives and research networks in the biomedical sector have sustained the appetite of academics and industry partners for developing and fostering new research consortia. This model has percolated down to national funding agencies across the globe, leading to funding for projects that aim to realise the true potential of genomic medicine in the 21st century and to reap the rewards of 'big data'. In this Perspectives article, the experiences of the RA-MAP consortium, a group of more than 140 individuals affiliated with 21 academic and industry organizations that are focused on making genomic medicine in rheumatoid arthritis a reality are described. The challenges of multi-partner collaboration in the UK are highlighted and wide-ranging solutions are offered that might benefit large research consortia around the world.
Project-based learning with international collaboration for training biomedical engineers.
Krishnan, Shankar
2011-01-01
Training biomedical engineers while effectively keeping up with the fast paced scientific breakthroughs and the growth in technical innovations poses arduous challenges for educators. Traditional pedagogical methods are employed for coping with the increasing demands in biomedical engineering (BME) training and continuous improvements have been attempted with some success. Project-based learning (PBL) is an academic effort that challenges students by making them carry out interdisciplinary projects aimed at accomplishing a wide range of student learning outcomes. PBL has been shown to be effective in the medical field and has been adopted by other fields including engineering. The impact of globalization in healthcare appears to be steadily increasing which necessitates the inclusion of awareness of relevant international activities in the curriculum. Numerous difficulties are encountered when the formation of a collaborative team is tried, and additional difficulties occur as the collaboration team is extended to international partners. Understanding and agreement of responsibilities becomes somewhat complex and hence the collaborative project has to be planned and executed with clear understanding by all partners and participants. A model for training BME students by adopting PBL with international collaboration is proposed. The results of previous BME project work with international collaboration fit partially into the model. There were many logistic issues and constraints; however, the collaborative projects themselves greatly enhanced the student learning outcomes. This PBL type of learning experience tends to promote long term retention of multidisciplinary material and foster high-order cognitive activities such as analysis, synthesis and evaluation. In addition to introducing the students to experiences encountered in the real-life workforce, the proposed approach enhances developing professional contracts and global networking. In conclusion, despite initial challenges, adopting project-based learning with international collaboration has strong potentials to be valuable in the training of biomedical engineering students.
Conceptualizing and Advancing Research Networking Systems
SCHLEYER, TITUS; BUTLER, BRIAN S.; SONG, MEI; SPALLEK, HEIKO
2013-01-01
Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers’ need for comprehensive information and potential collaborators’ desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user’s primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309
Patel, Vimla L; Yoskowitz, Nicole A; Arocha, Jose F; Shortliffe, Edward H
2009-02-01
Theoretical and methodological advances in the cognitive and learning sciences can greatly inform curriculum and instruction in biomedicine and also educational programs in biomedical informatics. It does so by addressing issues such as the processes related to comprehension of medical information, clinical problem-solving and decision-making, and the role of technology. This paper reviews these theories and methods from the cognitive and learning sciences and their role in addressing current and future needs in designing curricula, largely using illustrative examples drawn from medical education. The lessons of this past work are also applicable, however, to biomedical and health professional curricula in general, and to biomedical informatics training, in particular. We summarize empirical studies conducted over two decades on the role of memory, knowledge organization and reasoning as well as studies of problem-solving and decision-making in medical areas that inform curricular design. The results of this research contribute to the design of more informed curricula based on empirical findings about how people learn and think, and more specifically, how expertise is developed. Similarly, the study of practice can also help to shape theories of human performance, technology-based learning, and scientific and professional collaboration that extend beyond the domain of medicine. Just as biomedical science has revolutionized health care practice, research in the cognitive and learning sciences provides a scientific foundation for education in biomedicine, the health professions, and biomedical informatics.
Scientists Still Behaving Badly? A Survey Within Industry and Universities.
Godecharle, Simon; Fieuws, Steffen; Nemery, Ben; Dierickx, Kris
2017-10-02
Little is known about research misconduct within industry and how it compares to universities, even though a lot of biomedical research is performed by-or in collaboration with-commercial entities. Therefore, we sent an e-mail invitation to participate in an anonymous computer-based survey to all university researchers having received a biomedical research grant or scholarship from one of the two national academic research funders of Belgium between 2010 and 2014, and to researchers working in large biomedical companies or spin-offs in Belgium. The validated survey included questions about various types of research misconduct committed by respondents themselves and observed among their colleagues in the last three years. Prevalences of misconduct were compared between university and industry respondents using binary logistic regression models, with adjustments for relevant personal characteristics, and with significance being accepted for p < 0.01. The survey was sent to 1766 people within universities and an estimated 255 people from industry. Response rates were 43 (767/1766) and 48% (123/255), and usable information was available for 617 and 100 respondents, respectively. In general, research misconduct was less likely to be reported by industry respondents compared to university respondents. Significant differences were apparent for one admitted action (gift authorship) and three observed actions (plagiarism, gift authorship, and circumventing animal-subjects research requirements), always with lower prevalences for industry compared to universities, except for plagiarism. This survey, based on anonymous self-report, shows that research misconduct occurs to a substantial degree among biomedical researchers from both industry and universities.
ERIC Educational Resources Information Center
Brokaw, James J.; O'Loughlin, Valerie D.
2015-01-01
In 2008, the Indiana University School of Medicine, in collaboration with the School of Education, admitted its first student to a newly approved PhD program in Anatomy and Cell Biology focusing on educational research rather than biomedical research. The goal of the program is twofold: (1) to provide students with extensive training in all of the…
Evaluation Metrics for Biostatistical and Epidemiological Collaborations
Rubio, Doris McGartland; del Junco, Deborah J.; Bhore, Rafia; Lindsell, Christopher J.; Oster, Robert A.; Wittkowski, Knut M.; Welty, Leah J.; Li, Yi-Ju; DeMets, Dave
2011-01-01
Increasing demands for evidence-based medicine and for the translation of biomedical research into individual and public health benefit have been accompanied by the proliferation of special units that offer expertise in biostatistics, epidemiology, and research design (BERD) within academic health centers. Objective metrics that can be used to evaluate, track, and improve the performance of these BERD units are critical to their successful establishment and sustainable future. To develop a set of reliable but versatile metrics that can be adapted easily to different environments and evolving needs, we consulted with members of BERD units from the consortium of academic health centers funded by the Clinical and Translational Science Award Program of the National Institutes of Health. Through a systematic process of consensus building and document drafting, we formulated metrics that covered the three identified domains of BERD practices: the development and maintenance of collaborations with clinical and translational science investigators, the application of BERD-related methods to clinical and translational research, and the discovery of novel BERD-related methodologies. In this article, we describe the set of metrics and advocate their use for evaluating BERD practices. The routine application, comparison of findings across diverse BERD units, and ongoing refinement of the metrics will identify trends, facilitate meaningful changes, and ultimately enhance the contribution of BERD activities to biomedical research. PMID:21284015
Gray, N; Womack, C; Jack, S J
1999-04-01
NHS histopathology laboratories are well placed to develop banks of surgically removed surplus human tissues to meet the increasing demands of commercial biomedical companies. The ultimate aim could be national network of non-profit making NHS tissue banks conforming to national minimum ethical, legal, and quality standards which could be monitored by local research ethics committees. The Nuffield report on bioethics provides ethical and legal guidance but we believe that the patient should be fully informed and the consent given explicit. Setting up a tissue bank requires enthusiasm, hard work, and determination as well as coordination between professionals in the NHS trust and in the commercial sector. The rewards are exiting new collaborations with commercial biomedical companies which could help secure our future.
Schleyer, Titus; Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory
2008-08-13
As biomedical research projects become increasingly interdisciplinary and complex, collaboration with appropriate individuals, teams, and institutions becomes ever more crucial to project success. While social networks are extremely important in determining how scientific collaborations are formed, social networking technologies have not yet been studied as a tool to help form scientific collaborations. Many currently emerging expertise locating systems include social networking technologies, but it is unclear whether they make the process of finding collaborators more efficient and effective. This study was conducted to answer the following questions: (1) Which requirements should systems for finding collaborators in biomedical science fulfill? and (2) Which information technology services can address these requirements? The background research phase encompassed a thorough review of the literature, affinity diagramming, contextual inquiry, and semistructured interviews. This phase yielded five themes suggestive of requirements for systems to support the formation of collaborations. In the next phase, the generative phase, we brainstormed and selected design ideas for formal concept validation with end users. Then, three related, well-validated ideas were selected for implementation and evaluation in a prototype. Five main themes of systems requirements emerged: (1) beyond expertise, successful collaborations require compatibility with respect to personality, work style, productivity, and many other factors (compatibility); (2) finding appropriate collaborators requires the ability to effectively search in domains other than your own using information that is comprehensive and descriptive (communication); (3) social networks are important for finding potential collaborators, assessing their suitability and compatibility, and establishing contact with them (intermediation); (4) information profiles must be complete, correct, up-to-date, and comprehensive and allow fine-grained control over access to information by different audiences (information quality and access); (5) keeping online profiles up-to-date should require little or no effort and be integrated into the scientist's existing workflow (motivation). Based on the requirements, 16 design ideas underwent formal validation with end users. Of those, three were chosen to be implemented and evaluated in a system prototype, "Digital|Vita": maintaining, formatting, and semi-automated updating of biographical information; searching for experts; and building and maintaining the social network and managing document flow. In addition to quantitative and factual information about potential collaborators, social connectedness, personal and professional compatibility, and power differentials also influence whether collaborations are formed. Current systems only partially model these requirements. Services in Digital|Vita combine an existing workflow, maintaining and formatting biographical information, with collaboration-searching functions in a novel way. Several barriers to the adoption of systems such as Digital|Vita exist, such as potential adoption asymmetries between junior and senior researchers and the tension between public and private information. Developers and researchers may consider one or more of the services described in this paper for implementation in their own expertise locating systems.
Promayon, Emmanuel; Fouard, Céline; Bailet, Mathieu; Deram, Aurélien; Fiard, Gaëlle; Hungr, Nikolai; Luboz, Vincent; Payan, Yohan; Sarrazin, Johan; Saubat, Nicolas; Selmi, Sonia Yuki; Voros, Sandrine; Cinquin, Philippe; Troccaz, Jocelyne
2013-01-01
Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc. CamiTK is a modular framework that helps researchers and clinicians to collaborate together in order to prototype CAMI applications by regrouping the knowledge and expertise from each discipline. It is an open-source, cross-platform generic and modular tool written in C++ which can handle medical images, surgical navigation, biomedicals simulations and robot control. This paper presents the Computer Assisted Medical Intervention ToolKit (CamiTK) and how it is used in various applications in our research team.
Interdisciplinary innovations in biomedical and health informatics graduate education.
Demiris, G
2007-01-01
Biomedical and health informatics (BHI) is a rapidly growing domain that relies on the active collaboration with diverse disciplines and professions. Educational initiatives in BHI need to prepare students with skills and competencies that will allow them to function within and even facilitate interdisciplinary teams (IDT). This paper describes an interdisciplinary educational approach introduced into a BHI graduate curriculum that aims to prepare informatics researchers to lead IDT research. A case study of the "gerontechnology" research track is presented which highlights how the curriculum fosters collaboration with and understanding of the disciplines of Nursing, Engineering, Computer Science, and Health Administration. Gerontechnology is a new interdisciplinary field that focuses on the use of technology to support aging. Its aim is to explore innovative ways to use information technology and develop systems that support independency and increase quality of life for senior citizens. As a result of a large research group that explores "smart home" technologies and the use of information technology, we integrated this new domain into the curriculum providing a platform for computer scientists, engineers, nurses and physicians to explore challenges and opportunities with our informatics students and faculty. The interdisciplinary educational model provides an opportunity for health informatics students to acquire the skills for communication and collaboration with other disciplines. Numerous graduate and postgraduate students have already participated in this initiative. The evaluation model of this approach is presented. Interdisciplinary educational models are required for health informatics graduate education. Such models need to be innovative and reflect the needs and trends in the domains of health care and information technology.
Simbios: an NIH national center for physics-based simulation of biological structures.
Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A; Altman, Russ B
2012-01-01
Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.
Linus Pauling's "molecular diseases": between history and memory.
Strasser, Bruno J
2002-08-30
In 1949, Linus Pauling and his collaborators published a study in the journal Science entitled "Sickle Cell Anemia, a Molecular Disease." In this now classic study, they showed that hemoglobin from patients suffering from sickle cell anemia has a different electrical charge than hemoglobin from healthy individuals. This result demonstrated for the first time that an abnormal protein could be causally linked to a disease, and that genes determined the structure of proteins. This report made headline news and had a powerful impact on both the biomedical community and the general public. Fifty years later, this study is discussed in almost every medical and biological textbook and has became a favorite example in editorials to illustrate the progress of biomedical research. This article explores the history of Pauling's sickle cell anemia and its subsequent integration in different collective memories, up to the present day. It also discusses the function of the collective memories of Pauling's discovery for contemporary biomedical research. Copyright 2002 Wiley-Liss, Inc.
Simbios: an NIH national center for physics-based simulation of biological structures
Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A
2011-01-01
Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations. PMID:22081222
Ogunrin, Olubunmi A; Ogundiran, Temidayo O; Adebamowo, Clement
2013-01-02
The formulation and implementation of national ethical regulations to protect research participants is fundamental to ethical conduct of research. Ethics education and capacity are inadequate in developing African countries. This study was designed to develop a module for online training in research ethics based on the Nigerian National Code of Health Research Ethics and assess its ease of use and reliability among biomedical researchers in Nigeria. This was a three-phased evaluation study. Phase one involved development of an online training module based on the Nigerian Code of Health Research Ethics (NCHRE) and uploading it to the Collaborative Institutional Training Initiative (CITI) website while the second phase entailed the evaluation of the module for comprehensibility, readability and ease of use by 45 Nigerian biomedical researchers. The third phase involved modification and re-evaluation of the module by 30 Nigerian biomedical researchers and determination of test-retest reliability of the module using Cronbach's alpha. The online module was easily accessible and comprehensible to 95% of study participants. There were significant differences in the pretest and posttest scores of study participants during the evaluation of the online module (p = 0.001) with correlation coefficients of 0.9 and 0.8 for the pretest and posttest scores respectively. The module also demonstrated excellent test-retest reliability and internal consistency as shown by Cronbach's alpha coefficients of 0.92 and 0.84 for the pretest and posttest respectively. The module based on the Nigerian Code was developed, tested and made available online as a valuable tool for training in cultural and societal relevant ethical principles to orient national and international biomedical researchers working in Nigeria. It would complement other general research ethics and Good Clinical Practice modules. Participants suggested that awareness of the online module should be increased through seminars, advertisement on government websites and portals used by Nigerian biomedical researchers, and incorporation of the Code into the undergraduate medical training curriculum.
Lewitt, Moira S; Ehrenborg, Ewa; Scheja, Max; Brauner, Annelie
2010-01-01
Interprofessional education (IPE) involving undergraduate health professionals is expected to promote collaboration in their later careers. The role of IPE between doctors and biomedical scientists has not been explored at the undergraduate level. Our aim was to introduce IPE sessions for medical and biomedical students in order to identify the benefits and barriers to these groups learning together. Medical and biomedical students together discussed laboratory results, relevant literature, and ideas for developing new diagnostic tools. The programme was evaluated with questionnaires and interviews. While there was general support for the idea of IPE, medical and biomedical students responded differently. Biomedical students were more critical, wanted more explicit learning objectives and felt that their professional role was often misunderstood. The medical students were more enthusiastic but regarded the way the biomedical students communicated concerns about their perceived role as a barrier to effective interprofessional learning. We conclude that stereotyping, which can impede effective collaborations between doctors and biomedical scientists, is already present at the undergraduate level and may be a barrier to IPE. Effective learning opportunities should be supported at the curriculum level and be designed to specifically enable a broad appreciation of each other's future professional roles.
Andreoli, Jeanne M; Feig, Andrew; Chang, Steven; Welch, Sally; Mathur, Ambika; Kuleck, Gary
2017-01-01
Faced with decades of severe economic decline, the city of Detroit, Michigan (USA) is on the cusp or reinventing itself. A Consortium was formed of three higher education institutions that have an established mission to serve an urban population and a vested interest in the revitalization of the health, welfare, and economic opportunity in the Detroit metro region that is synergistic with national goals to diversify the biomedical workforce. The purpose of this article is to describe the rationale, approach, and model of the Research Enhancement for BUILDing Detroit (ReBUILDetroit) Consortium, as a cross-campus collaborative for students, faculty, and institutional development. The ReBUILDetroit program is designed to transform the culture of higher education in Detroit, Michigan by educating and training students from diverse and socio-economically disadvantaged backgrounds to become the next generation of biomedical researchers. Marygrove College, University of Detroit Mercy, and Wayne State University established a Consortium to create and implement innovative, evidence-based and cutting-edge programming. Specific elements include: (1) a pre-college summer enrichment experience; (2) an inter-institutional curricular re-design of target foundational courses in biology, chemistry and social science using the Research Coordination Network (RCN) model; and (3) cross-institutional summer faculty-mentored research projects for ReBUILDetroit Scholars starting as rising sophomores. Student success support includes intentional and intrusive mentoring, financial support, close faculty engagement, ongoing workshops to overcome academic and non-academic barriers, and cohort building activities across the Consortium. Institutional supports, integral to program creation and sustainability, include creating faculty learning communities grounded in professional development opportunities in pedagogy, research and mentorship, and developing novel partnerships and accelerated pipeline programming across the Consortium. This article highlights the development, implementation and evolution of high-impact practices critical for student learning, research-based course development, and the creation of inter-institutional learning communities as a direct result of ReBUILDetroit. Our cross-institutional collaboration and leveraging of resources in a difficult economic environment, drawing students from high schools with a myriad of strengths and challenges, serves as a model for higher education institutions in large, urban centers who are seeking to diversify their workforces and provide additional opportunities for upward mobility among diverse populations.
Pain Research Forum: application of scientific social media frameworks in neuroscience.
Das, Sudeshna; McCaffrey, Patricia G; Talkington, Megan W T; Andrews, Neil A; Corlosquet, Stéphane; Ivinson, Adrian J; Clark, Tim
2014-01-01
Social media has the potential to accelerate the pace of biomedical research through online collaboration, discussions, and faster sharing of information. Focused web-based scientific social collaboratories such as the Alzheimer Research Forum have been successful in engaging scientists in open discussions of the latest research and identifying gaps in knowledge. However, until recently, tools to rapidly create such communities and provide high-bandwidth information exchange between collaboratories in related fields did not exist. We have addressed this need by constructing a reusable framework to build online biomedical communities, based on Drupal, an open-source content management system. The framework incorporates elements of Semantic Web technology combined with social media. Here we present, as an exemplar of a web community built on our framework, the Pain Research Forum (PRF) (http://painresearchforum.org). PRF is a community of chronic pain researchers, established with the goal of fostering collaboration and communication among pain researchers. Launched in 2011, PRF has over 1300 registered members with permission to submit content. It currently hosts over 150 topical news articles on research; more than 30 active or archived forum discussions and journal club features; a webinar series; an editor-curated weekly updated listing of relevant papers; and several other resources for the pain research community. All content is licensed for reuse under a Creative Commons license; the software is freely available. The framework was reused to develop other sites, notably the Multiple Sclerosis Discovery Forum (http://msdiscovery.org) and StemBook (http://stembook.org). Web-based collaboratories are a crucial integrative tool supporting rapid information transmission and translation in several important research areas. In this article, we discuss the success factors, lessons learned, and ongoing challenges in using PRF as a driving force to develop tools for online collaboration in neuroscience. We also indicate ways these tools can be applied to other areas and uses.
Pain Research Forum: application of scientific social media frameworks in neuroscience
Das, Sudeshna; McCaffrey, Patricia G.; Talkington, Megan W. T.; Andrews, Neil A.; Corlosquet, Stéphane; Ivinson, Adrian J.; Clark, Tim
2014-01-01
Background: Social media has the potential to accelerate the pace of biomedical research through online collaboration, discussions, and faster sharing of information. Focused web-based scientific social collaboratories such as the Alzheimer Research Forum have been successful in engaging scientists in open discussions of the latest research and identifying gaps in knowledge. However, until recently, tools to rapidly create such communities and provide high-bandwidth information exchange between collaboratories in related fields did not exist. Methods: We have addressed this need by constructing a reusable framework to build online biomedical communities, based on Drupal, an open-source content management system. The framework incorporates elements of Semantic Web technology combined with social media. Here we present, as an exemplar of a web community built on our framework, the Pain Research Forum (PRF) (http://painresearchforum.org). PRF is a community of chronic pain researchers, established with the goal of fostering collaboration and communication among pain researchers. Results: Launched in 2011, PRF has over 1300 registered members with permission to submit content. It currently hosts over 150 topical news articles on research; more than 30 active or archived forum discussions and journal club features; a webinar series; an editor-curated weekly updated listing of relevant papers; and several other resources for the pain research community. All content is licensed for reuse under a Creative Commons license; the software is freely available. The framework was reused to develop other sites, notably the Multiple Sclerosis Discovery Forum (http://msdiscovery.org) and StemBook (http://stembook.org). Discussion: Web-based collaboratories are a crucial integrative tool supporting rapid information transmission and translation in several important research areas. In this article, we discuss the success factors, lessons learned, and ongoing challenges in using PRF as a driving force to develop tools for online collaboration in neuroscience. We also indicate ways these tools can be applied to other areas and uses. PMID:24653693
Systems Biology of the Vervet Monkey
Jasinska, Anna J.; Schmitt, Christopher A.; Service, Susan K.; Cantor, Rita M.; Dewar, Ken; Jentsch, James D.; Kaplan, Jay R.; Turner, Trudy R.; Warren, Wesley C.; Weinstock, George M.; Woods, Roger P.; Freimer, Nelson B.
2013-01-01
Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations. PMID:24174437
2012-01-01
Abstract Principal investigators who received Clinical and Translational Science Awards created academic homes for biomedical research. They developed program‐supported websites to offer coordinated access to a range of core facilities and other research resources. Visitors to the 60 websites will find at least 170 generic services, which this review has categorized in the following seven areas: (1) core facilities, (2) biomedical informatics, (3) funding, (4) regulatory knowledge and support, (5) biostatistics, epidemiology, research design, and ethics, (6) participant and clinical interaction resources, and (7) community engagement. In addition, many websites facilitate access to resources with search engines, navigators, studios, project development teams, collaboration tools, communication systems, and teaching tools. Each of these websites may be accessed from a single site, http://www.CTSAcentral.org. The ability to access the research resources from 60 of the nation's academic health centers presents a novel opportunity for investigators engaged in clinical and translational research. Clin Trans Sci 2012; Volume #: 1–5 PMID:22376262
Rosenblum, Daniel
2012-02-01
Principal investigators who received Clinical and Translational Science Awards created academic homes for biomedical research. They developed program-supported websites to offer coordinated access to a range of core facilities and other research resources. Visitors to the 60 websites will find at least 170 generic services, which this review has categorized in the following seven areas: (1) core facilities, (2) biomedical informatics, (3) funding, (4) regulatory knowledge and support, (5) biostatistics, epidemiology, research design, and ethics, (6) participant and clinical interaction resources, and (7) community engagement. In addition, many websites facilitate access to resources with search engines, navigators, studios, project development teams, collaboration tools, communication systems, and teaching tools. Each of these websites may be accessed from a single site, http://www.CTSAcentral.org. The ability to access the research resources from 60 of the nation's academic health centers presents a novel opportunity for investigators engaged in clinical and translational research. © 2012 Wiley Periodicals, Inc.
Biomedical informatics publications: a global perspective: part I: conferences.
Maojo, V; García-Remesal, M; Bielza, C; Crespo, J; Perez-Rey, D; Kulikowski, C
2012-01-01
In the past decade, Medical Informatics (MI) and Bioinformatics (BI) have converged towards a new discipline, called Biomedical Informatics (BMI) bridging informatics methods across the spectrum from genomic research to personalized medicine and global healthcare. This convergence still raises challenging research questions which are being addressed by researchers internationally, which in turn raises the question of how biomedical informatics publications reflect the contributions from around the world in documenting the research. To analyse the worldwide participation of biomedical informatics researchers from professional groups and societies in the best-known scientific conferences in the field. The analysis is focused on their geographical affiliation, but also includes other features, such as the impact and recognition of the conferences. We manually collected data about authors of papers presented at three major MI conferences: Medinfo, MIE and the AMIA symposium. In addition, we collected data from a BI conference, ISMB, as a comparison. Finally, we analyzed the impact and recognition of these conferences within their scientific contexts. Data indicate a predominance of local authors at the regional conferences (AMIA and MIE), whereas other conferences with a world-wide scope (Medinfo and ISMB) had broader participation. Our analysis shows that the influence of these conferences beyond the discipline remains somewhat limited. Our results suggest that for BMI to be recognized as a broad discipline, both in the geographical and scientific sense, it will need to extend the scope of collaborations and their interdisciplinary impacts worldwide.
A System for Information Management in BioMedical Studies—SIMBioMS
Krestyaninova, Maria; Zarins, Andris; Viksna, Juris; Kurbatova, Natalja; Rucevskis, Peteris; Neogi, Sudeshna Guha; Gostev, Mike; Perheentupa, Teemu; Knuuttila, Juha; Barrett, Amy; Lappalainen, Ilkka; Rung, Johan; Podnieks, Karlis; Sarkans, Ugis; McCarthy, Mark I; Brazma, Alvis
2009-01-01
Summary: SIMBioMS is a web-based open source software system for managing data and information in biomedical studies. It provides a solution for the collection, storage, management and retrieval of information about research subjects and biomedical samples, as well as experimental data obtained using a range of high-throughput technologies, including gene expression, genotyping, proteomics and metabonomics. The system can easily be customized and has proven to be successful in several large-scale multi-site collaborative projects. It is compatible with emerging functional genomics data standards and provides data import and export in accepted standard formats. Protocols for transferring data to durable archives at the European Bioinformatics Institute have been implemented. Availability: The source code, documentation and initialization scripts are available at http://simbioms.org. Contact: support@simbioms.org; mariak@ebi.ac.uk PMID:19633095
Evidence of community structure in biomedical research grant collaborations.
Nagarajan, Radhakrishnan; Kalinka, Alex T; Hogan, William R
2013-02-01
Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states. One of the objectives of CTSA is to accelerate translation of research from bench to bedside to community and train a new genre of researchers under the translational research umbrella. Feasibility of such a translation implicitly demands multi-disciplinary collaboration and mentoring. Networks have proven to be convenient abstractions for studying research collaborations. The present study is a part of the CTSA baseline study and investigates existence of possible community-structure in Biomedical Research Grant Collaboration (BRGC) networks across data sets retrieved from the internally developed grants management system, the Automated Research Information Administrator (ARIA) at the University of Arkansas for Medical Sciences (UAMS). Fastgreedy and link-community community-structure detection algorithms were used to investigate the presence of non-overlapping and overlapping community-structure and their variation across years 2006 and 2009. A surrogate testing approach in conjunction with appropriate discriminant statistics, namely: the modularity index and the maximum partition density is proposed to investigate whether the community-structure of the BRGC networks were different from those generated by certain types of random graphs. Non-overlapping as well as overlapping community-structure detection algorithms indicated the presence of community-structure in the BRGC network. Subsequent, surrogate testing revealed that random graph models considered in the present study may not necessarily be appropriate generative mechanisms of the community-structure in the BRGC networks. The discrepancy in the community-structure between the BRGC networks and the random graph surrogates was especially pronounced at 2009 as opposed to 2006 indicating a possible shift towards team-science and formation of non-trivial modular patterns with time. The results also clearly demonstrate presence of inter-departmental and multi-disciplinary collaborations in BRGC networks. While the results are presented on BRGC networks as a part of the CTSA baseline study at UAMS, the proposed methodologies are as such generic with potential to be extended across other CTSA organizations. Understanding the presence of community-structure can supplement more traditional network analysis as they're useful in identifying research teams and their inter-connections as opposed to the role of individual nodes in the network. Such an understanding can be a critical step prior to devising meaningful interventions for promoting team-science, multi-disciplinary collaborations, cross-fertilization of ideas across research teams and identifying suitable mentors. Understanding the temporal evolution of these communities may also be useful in CTSA evaluation. Copyright © 2012. Published by Elsevier Inc.
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
2005-01-01
NSBRI partners with NASA to develop countermeasures against the deleterious effects of long duration space flight. NSBRI's science and technology projects are directed toward this goal, which is accomplished by: 1. Designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight. 2. Defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures. 3. Establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level and deliver quality medical care. 4. Transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of humankind; including the treatment of patients suffering from gravity- and radiation-related conditions on Earth. and 5. ensuring open involvement of the scientific community,industry and the public in the Institute's activities and fostering a robust collaboration with NASA, particularly through JSC.
Gururaj, Anupama E.; Chen, Xiaoling; Pournejati, Saeid; Alter, George; Hersh, William R.; Demner-Fushman, Dina; Ohno-Machado, Lucila
2017-01-01
Abstract The rapid proliferation of publicly available biomedical datasets has provided abundant resources that are potentially of value as a means to reproduce prior experiments, and to generate and explore novel hypotheses. However, there are a number of barriers to the re-use of such datasets, which are distributed across a broad array of dataset repositories, focusing on different data types and indexed using different terminologies. New methods are needed to enable biomedical researchers to locate datasets of interest within this rapidly expanding information ecosystem, and new resources are needed for the formal evaluation of these methods as they emerge. In this paper, we describe the design and generation of a benchmark for information retrieval of biomedical datasets, which was developed and used for the 2016 bioCADDIE Dataset Retrieval Challenge. In the tradition of the seminal Cranfield experiments, and as exemplified by the Text Retrieval Conference (TREC), this benchmark includes a corpus (biomedical datasets), a set of queries, and relevance judgments relating these queries to elements of the corpus. This paper describes the process through which each of these elements was derived, with a focus on those aspects that distinguish this benchmark from typical information retrieval reference sets. Specifically, we discuss the origin of our queries in the context of a larger collaborative effort, the biomedical and healthCAre Data Discovery Index Ecosystem (bioCADDIE) consortium, and the distinguishing features of biomedical dataset retrieval as a task. The resulting benchmark set has been made publicly available to advance research in the area of biomedical dataset retrieval. Database URL: https://biocaddie.org/benchmark-data PMID:29220453
Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?
Maojo, Victor; Kulikowski, Casimir A.
2003-01-01
In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552
Informatics for Peru in the new millennium.
Karras, B T; Kimball, A M; Gonzales, V; Pautler, N A; Alarcón, J; Garcia, P J; Fuller, S
2001-01-01
As efforts continue to narrow the digital divide between the North and South, a new biomedical and health informatics training effort has been launched in Peru. This report describes the first year of work on this collaborative effort between the University of Washington (Seattle) Universidad Peruana Cayetano Heredia and Universidad Nacional de San Marcos (Peru) To describe activities in the first year of a new International Research and Training Program in Biomedical and Health Informatics. Descriptive analysis of key activities including an assessment of electronic environment through observation and survey, an in country short course with quantitative evaluation, and first round of recruitment of Peruvian scholars for long-term training in Seattle. A two-week short course on informatics was held in the country. Participants' success in learning was demonstrated through pretest/posttest. A systematic assessment of electronic environment in Peru was carried out and two scholars for long-term training were enrolled at the University of Washington, Seattle. Initial activity in the collaborative training effort has been high. Of particular importance in this environment is orchestration of efforts among interested parties with similar goals in Peru, and integration of informatics skills into ongoing large-scale research projects in country.
NASA Technical Reports Server (NTRS)
Nall, Marsha M.; Barna, Gerald J.
2009-01-01
The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.
Evaluation metrics for biostatistical and epidemiological collaborations.
Rubio, Doris McGartland; Del Junco, Deborah J; Bhore, Rafia; Lindsell, Christopher J; Oster, Robert A; Wittkowski, Knut M; Welty, Leah J; Li, Yi-Ju; Demets, Dave
2011-10-15
Increasing demands for evidence-based medicine and for the translation of biomedical research into individual and public health benefit have been accompanied by the proliferation of special units that offer expertise in biostatistics, epidemiology, and research design (BERD) within academic health centers. Objective metrics that can be used to evaluate, track, and improve the performance of these BERD units are critical to their successful establishment and sustainable future. To develop a set of reliable but versatile metrics that can be adapted easily to different environments and evolving needs, we consulted with members of BERD units from the consortium of academic health centers funded by the Clinical and Translational Science Award Program of the National Institutes of Health. Through a systematic process of consensus building and document drafting, we formulated metrics that covered the three identified domains of BERD practices: the development and maintenance of collaborations with clinical and translational science investigators, the application of BERD-related methods to clinical and translational research, and the discovery of novel BERD-related methodologies. In this article, we describe the set of metrics and advocate their use for evaluating BERD practices. The routine application, comparison of findings across diverse BERD units, and ongoing refinement of the metrics will identify trends, facilitate meaningful changes, and ultimately enhance the contribution of BERD activities to biomedical research. Copyright © 2011 John Wiley & Sons, Ltd.
Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory
2008-01-01
Background As biomedical research projects become increasingly interdisciplinary and complex, collaboration with appropriate individuals, teams, and institutions becomes ever more crucial to project success. While social networks are extremely important in determining how scientific collaborations are formed, social networking technologies have not yet been studied as a tool to help form scientific collaborations. Many currently emerging expertise locating systems include social networking technologies, but it is unclear whether they make the process of finding collaborators more efficient and effective. Objective This study was conducted to answer the following questions: (1) Which requirements should systems for finding collaborators in biomedical science fulfill? and (2) Which information technology services can address these requirements? Methods The background research phase encompassed a thorough review of the literature, affinity diagramming, contextual inquiry, and semistructured interviews. This phase yielded five themes suggestive of requirements for systems to support the formation of collaborations. In the next phase, the generative phase, we brainstormed and selected design ideas for formal concept validation with end users. Then, three related, well-validated ideas were selected for implementation and evaluation in a prototype. Results Five main themes of systems requirements emerged: (1) beyond expertise, successful collaborations require compatibility with respect to personality, work style, productivity, and many other factors (compatibility); (2) finding appropriate collaborators requires the ability to effectively search in domains other than your own using information that is comprehensive and descriptive (communication); (3) social networks are important for finding potential collaborators, assessing their suitability and compatibility, and establishing contact with them (intermediation); (4) information profiles must be complete, correct, up-to-date, and comprehensive and allow fine-grained control over access to information by different audiences (information quality and access); (5) keeping online profiles up-to-date should require little or no effort and be integrated into the scientist’s existing workflow (motivation). Based on the requirements, 16 design ideas underwent formal validation with end users. Of those, three were chosen to be implemented and evaluated in a system prototype, “Digital|Vita”: maintaining, formatting, and semi-automated updating of biographical information; searching for experts; and building and maintaining the social network and managing document flow. Conclusions In addition to quantitative and factual information about potential collaborators, social connectedness, personal and professional compatibility, and power differentials also influence whether collaborations are formed. Current systems only partially model these requirements. Services in Digital|Vita combine an existing workflow, maintaining and formatting biographical information, with collaboration-searching functions in a novel way. Several barriers to the adoption of systems such as Digital|Vita exist, such as potential adoption asymmetries between junior and senior researchers and the tension between public and private information. Developers and researchers may consider one or more of the services described in this paper for implementation in their own expertise locating systems. PMID:18701421
Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A.; Noy, Natalya F.
2014-01-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain. PMID:24953242
Discovering beaten paths in collaborative ontology-engineering projects using Markov chains.
Walk, Simon; Singer, Philipp; Strohmaier, Markus; Tudorache, Tania; Musen, Mark A; Noy, Natalya F
2014-10-01
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain. Copyright © 2014 Elsevier Inc. All rights reserved.
Oushy, Mai H; Palacios, Rebecca; Holden, Alan E C; Ramirez, Amelie G; Gallion, Kipling J; O'Connell, Mary A
2015-01-01
Cancer health disparities research depends on access to biospecimens from diverse racial/ethnic populations. This multimethodological study, using mixed methods for quantitative and qualitative analysis of survey results, assessed barriers, concerns, and practices for sharing biospecimens/data among researchers working with biospecimens from minority populations in a 5 state region of the United States (Arizona, Colorado, New Mexico, Oklahoma, and Texas). The ultimate goals of this research were to understand data sharing barriers among biomedical researchers; guide strategies to increase participation in biospecimen research; and strengthen collaborative opportunities among researchers. Email invitations to anonymous participants (n = 605 individuals identified by the NIH RePORT database), resulted in 112 responses. The survey assessed demographics, specimen collection data, and attitudes about virtual biorepositories. Respondents were primarily principal investigators at PhD granting institutions (91.1%) conducting basic (62.3%) research; most were non-Hispanic White (63.4%) and men (60.6%). The low response rate limited the statistical power of the analyses, further the number of respondents for each survey question was variable. Findings from this study identified barriers to biospecimen research, including lack of access to sufficient biospecimens, and limited availability of diverse tissue samples. Many of these barriers can be attributed to poor annotation of biospecimens, and researchers' unwillingness to share existing collections. Addressing these barriers to accessing biospecimens is essential to combating cancer in general and cancer health disparities in particular. This study confirmed researchers' willingness to participate in a virtual biorepository (n = 50 respondents agreed). However, researchers in this region listed clear specifications for establishing and using such a biorepository: specifications related to standardized procedures, funding, and protections of human subjects and intellectual property. The results help guide strategies to increase data sharing behaviors and to increase participation of researchers with multiethnic biospecimen collections in collaborative research endeavors. Data sharing by researchers is essential to leveraging knowledge and resources needed for the advancement of research on cancer health disparities. Although U.S. funding entities have guidelines for data and resource sharing, future efforts should address researcher preferences in order to promote collaboration to address cancer health disparities.
Maintaining respect and fairness in the usage of stored shared specimens.
Mduluza, Takafira; Midzi, Nicholas; Duruza, Donold; Ndebele, Paul
2013-01-01
Every year, research specimens are shipped from one institution to another as well as across national boundaries. A significant proportion of specimens move from poor to rich countries. Concerns are always raised on the future usage of the stored specimens shipped to research institutions from developing countries. Creating awareness of the processes is required in all sectors involved in biomedical research. To maintain fairness and respect in sharing biomedical specimens and research products requires safeguarding by Ethics Review Committees in both provider and recipient institutions. Training in basic ethical principles in research is required to all sectors involved in biomedical research so as to level up the research playing field. By agreeing to provide specimens, individuals and communities from whom samples are collected would have placed their trust and all ensuing up-keep of the specimens to the researchers. In most collaborative set-up, laid down material transfer agreements are negotiated and signed before the shipment of specimens. Researchers, research ethics committees (RECs) and institutions in the countries of origin are supposed to serve as overseers of the specimens. There is need to advocate for honesty in sample handling and sharing, and also need to oversee any written commitments by researchers, RECs and institutions at source as well as in recipient institution. Commitments from source RECs and Institutional Review Boards (IRBs) and in the receiving institution on overseeing the future usage of stored specimens are required; including the ultimate confirmation abiding by the agreement. Training in ethical issues pertaining to sample handling and biomedical research in general is essential at all levels of academic pursuit. While sharing of biological specimens and research data demands honesty and oversight by ethical regulatory agents from both institutions in developing country and recipient institutions in developed countries. Archiving of biological specimens requires reconsideration for the future of biomedical findings and scientific break-throughs. Biomedical ethical regulations still need to established clear viable regulations that have vision for the future of science through shared and archived samples. This discussion covers and proposes essential points that need to be considered in view of future generations and scientific break-throughs. The discussion is based on the experience of working in resource-limited settings, the local regulatory laws and the need to refine research regulations governing sharing and storage of specimens for the future of science.
Maintaining respect and fairness in the usage of stored shared specimens
2013-01-01
Background Every year, research specimens are shipped from one institution to another as well as across national boundaries. A significant proportion of specimens move from poor to rich countries. Concerns are always raised on the future usage of the stored specimens shipped to research insitutions from developing countries. Creating awareness of the processes is required in all sectors involved in biomedical research. To maintain fairness and respect in sharing biomedical specimens and reserch products requires safeguarding by Ethics Review Committees in both provider and recepient institutions. Training in basic ethical principles in research is required to all sectors involved in biomedical research so as to level up the research playing field. Discussion By agreeing to provide specimens, individuals and communities from whom samples are collected would have placed their trust and all ensuing up-keep of the specimens to the researchers. In most collaborative set-up, laid down material transfer agreements are negotiated and signed before the shipment of specimens. Researchers, research ethics committees (RECs) and institutions in the countries of origin are supposed to serve as overseers of the specimens. There is need to advocate for honesty in sample handling and sharing, and also need to oversee any written commitments by researchers, RECs and institutions at source as well as in recipient institution. Commitments from source RECs and Institutional Review Boards (IRBs) and in the receiving institution on overseeing the future usage of stored specimens are required; including the ultimate confirmation abiding by the agreement. Training in ethical issues pertaining to sample handling and biomedical research in general is essential at all levels of academic pursuit. While sharing of biological specimens and research data demands honesty and oversight by ethical regulatory agents from both institutions in developing country and recepient institutions in developed countries. Concluding summary Archiving of biological specimens requires reconsideration for the future of biomedical findings and scientific break-throughs. Biomedical ethical regulations still need to established clear viable regulations that have vision for the future of science through shared and archived samples. This discussion covers and proposes essential points that need to be considered in view of future generations and scientific break-throughs. The discussion is based on the experience of working in resource-limited settings, the local regulatory laws and the need to refine research regulations governing sharing and storage of specimens for the future of science. PMID:24565022
Management of information in distributed biomedical collaboratories.
Keator, David B
2009-01-01
Organizing and annotating biomedical data in structured ways has gained much interest and focus in the last 30 years. Driven by decreases in digital storage costs and advances in genetics sequencing, imaging, electronic data collection, and microarray technologies, data is being collected at an alarming rate. The specialization of fields in biology and medicine demonstrates the need for somewhat different structures for storage and retrieval of data. For biologists, the need for structured information and integration across a number of domains drives development. For clinical researchers and hospitals, the need for a structured medical record accessible to, ideally, any medical practitioner who might require it during the course of research or patient treatment, patient confidentiality, and security are the driving developmental factors. Scientific data management systems generally consist of a few core services: a backend database system, a front-end graphical user interface, and an export/import mechanism or data interchange format to both get data into and out of the database and share data with collaborators. The chapter introduces some existing databases, distributed file systems, and interchange languages used within the biomedical research and clinical communities for scientific data management and exchange.
Nurmi, Sanna-Maria; Halkoaho, Arja; Kangasniemi, Mari; Pietilä, Anna-Maija
2017-10-25
Protecting human subjects from being exploited is one of the main ethical challenges for clinical research. However, there is also a responsibility to protect and respect the communities who are hosting the research. Recently, attention has focused on the most efficient way of carrying out clinical research, so that it benefits society by providing valuable research while simultaneously protecting and respecting the human subjects and the communities where the research is conducted. Collaboration between partners plays an important role and that is why we carried out a study to describe how collaborative partnership and social value are emerging in clinical research. A supra-analysis design for qualitative descriptive secondary analysis was employed to consider a novel research question that pertained to nurse leaders' perceptions of ethical recruitment in clinical research and the ethics-related aspects of clinical research from the perspective of administrative staff. The data consisted of two separate pre-existing datasets, comprising 451 pages from 41 interviews, and we considered the research question by using deductive-inductive content analysis with NVivo software. A deductive analysis matrix was generated on the basis of two requirements, namely collaborative partnership and social value, as presented in An Ethical Framework for Biomedical Research by Emanuel et al. The findings showed that collaborative partnership was a cornerstone for ethical clinical research and ways to foster inter-partner collaboration were indicated, such as supporting mutual respect and equality, shared goals and clearly defined roles and responsibilities. In addition, the social value of clinical research was an important precondition for ethical clinical research and its realisation required the research partners to demonstrate collaboration and shared responsibility during the research process. However, concerns emerged that the multidimensional meaning of clinical research for society was not fully recognised. Achieving greater social value for clinical research required greater transparency, setting research priorities, shared responsibility for the dissemination and use of the findings and stronger community awareness of the ethics-related aspects of clinical research. Collaborative partnership and social values are essential for protecting the human subjects and communities involved in clinical research.
Morales, Danielle X; Grineski, Sara E; Collins, Timothy W
2017-01-01
Little attention has been paid to understanding faculty-student productivity via undergraduate research from the faculty member's perspective. This study examines predictors of faculty-student publications resulting from mentored undergraduate research, including measures of faculty-student collaboration, faculty commitment to undergraduate students, and faculty characteristics. Generalized estimating equations were used to analyze data from 468 faculty members across 13 research-intensive institutions, collected by a cross-sectional survey in 2013/2014. Results show that biomedical faculty mentors were more productive in publishing collaboratively with undergraduate students when they worked with students for more than 1 year on average, enjoyed teaching students about research, had mentored Black students, had received more funding from the National Institutes of Health, had a higher H-index scores, and had more years of experience working in higher education. This study suggests that college administrators and research program directors should strive to create incentives for faculty members to collaborate with undergraduate students and promote faculty awareness that undergraduates can contribute to their research. © 2017 D. X. Morales et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Program for the Increased Participation of Minorities in NASA-Related Research
NASA Technical Reports Server (NTRS)
2003-01-01
The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications
Servoss, Jonathan; Chang, Connie; Fay, Jonathan; Lota, Kanchan Sehgal; Mashour, George A; Ward, Kevin R
2017-10-01
The Institute of Medicine recommended the advance of innovation and entrepreneurship training programs within the Clinical & Translational Science Award (CTSA) program; however, there remains a gap in adoption by CTSA institutes. The University of Michigan's Michigan Institute for Clinical & Health Research and Fast Forward Medical Innovation (FFMI) partnered to develop a pilot program designed to teach CTSA hubs how to implement innovation and entrepreneurship programs at their home institutions. The program provided a 2-day onsite training experience combined with observation of an ongoing course focused on providing biomedical innovation, commercialization and entrepreneurial training to a medical academician audience (FFMI fast PACE). All 9 participating CTSA institutes reported a greater connection to biomedical research commercialization resources. Six launched their own version of the FFMI fast PACE course or modified existing programs. Two reported greater collaboration with their technology transfer offices. The FFMI fast PACE course and training program may be suitable for CTSA hubs looking to enhance innovation and entrepreneurship within their institutions and across their innovation ecosystems.
Minie, Mark; Bowers, Stuart; Tarczy-Hornoch, Peter; Roberts, Edward; James, Rose A.; Rambo, Neil; Fuller, Sherrilynne
2006-01-01
Setting: The University of Washington Health Sciences Libraries and Information Center BioCommons serves the bioinformatics needs of researchers at the university and in the vibrant for-profit and not-for-profit biomedical research sector in the Washington area and region. Program Components: The BioCommons comprises services addressing internal University of Washington, not-for-profit, for-profit, and regional and global clientele. The BioCommons is maintained and administered by the BioResearcher Liaison Team. The BioCommons architecture provides a highly flexible structure for adapting to rapidly changing resources and needs. Evaluation Mechanisms: BioCommons uses Web-based pre- and post-course evaluations and periodic user surveys to assess service effectiveness. Recent surveys indicate substantial usage of BioCommons services and a high level of effectiveness and user satisfaction. Next Steps/Future Directions: BioCommons is developing novel collaborative Web resources to distribute bioinformatics tools and is experimenting with Web-based competency training in bioinformation resource use. PMID:16888667
Disaster and Contingency Planning for Scientific Shared Resource Cores.
Mische, Sheenah; Wilkerson, Amy
2016-04-01
Progress in biomedical research is largely driven by improvements, innovations, and breakthroughs in technology, accelerating the research process, and an increasingly complex collaboration of both clinical and basic science. This increasing sophistication has driven the need for centralized shared resource cores ("cores") to serve the scientific community. From a biomedical research enterprise perspective, centralized resource cores are essential to increased scientific, operational, and cost effectiveness; however, the concentration of instrumentation and resources in the cores may render them highly vulnerable to damage from severe weather and other disasters. As such, protection of these assets and the ability to recover from a disaster is increasingly critical to the mission and success of the institution. Therefore, cores should develop and implement both disaster and business continuity plans and be an integral part of the institution's overall plans. Here we provide an overview of key elements required for core disaster and business continuity plans, guidance, and tools for developing these plans, and real-life lessons learned at a large research institution in the aftermath of Superstorm Sandy.
Women's mental health research: the emergence of a biomedical field.
Blehar, Mary C
2006-01-01
This review surveys the field of women's mental health, with particular emphasis on its evolution into a distinct area of biomedical research. The field employs a biomedical disease model but it also emphasizes social and cultural influences on health outcomes. In recent years, its scope has expanded beyond studies of disorders occurring in women at times of reproductive transitions and it now encompasses a broader study of sex and gender differences. Historical and conceptual influences on the field are discussed. The review also surveys gender differences in the prevalence and clinical manifestations of mental disorders. Epidemiological findings have provided a rich resource for theory development, but without research tools to test theories adequately, findings of gender differences have begged the question of their biological, social, and cultural origins. Clinical depression is used to exemplify the usefulness of a sex/gender perspective in understanding mental illness; and major theories proposed to account for gender differences are critically evaluated. The National Institutes of Health (NIH) is the primary federal funding source for biomedical women's mental health research. The review surveys areas of emphasis in women's mental health research at the NIH as well as some collaborative activities that represent efforts to translate research findings into the public health and services arenas. As new analytic methods become available, it is anticipated that a more fundamental understanding of the biological and behavioral mechanisms underlying sex and gender differences in mental illness will emerge. Nonetheless, it is also likely that integration of findings predicated on different conceptual models of the nature and causes of mental illness will remain a challenge. These issues are discussed with reference to their impact on the field of women's mental health research.
2013-01-01
Background The formulation and implementation of national ethical regulations to protect research participants is fundamental to ethical conduct of research. Ethics education and capacity are inadequate in developing African countries. This study was designed to develop a module for online training in research ethics based on the Nigerian National Code of Health Research Ethics and assess its ease of use and reliability among biomedical researchers in Nigeria. Methodology This was a three-phased evaluation study. Phase one involved development of an online training module based on the Nigerian Code of Health Research Ethics (NCHRE) and uploading it to the Collaborative Institutional Training Initiative (CITI) website while the second phase entailed the evaluation of the module for comprehensibility, readability and ease of use by 45 Nigerian biomedical researchers. The third phase involved modification and re-evaluation of the module by 30 Nigerian biomedical researchers and determination of test-retest reliability of the module using Cronbach’s alpha. Results The online module was easily accessible and comprehensible to 95% of study participants. There were significant differences in the pretest and posttest scores of study participants during the evaluation of the online module (p = 0.001) with correlation coefficients of 0.9 and 0.8 for the pretest and posttest scores respectively. The module also demonstrated excellent test-retest reliability and internal consistency as shown by Cronbach’s alpha coefficients of 0.92 and 0.84 for the pretest and posttest respectively. Conclusion The module based on the Nigerian Code was developed, tested and made available online as a valuable tool for training in cultural and societal relevant ethical principles to orient national and international biomedical researchers working in Nigeria. It would complement other general research ethics and Good Clinical Practice modules. Participants suggested that awareness of the online module should be increased through seminars, advertisement on government websites and portals used by Nigerian biomedical researchers, and incorporation of the Code into the undergraduate medical training curriculum. PMID:23281968
Dengue research networks: building evidence for policy and planning in Brazil.
de Paula Fonseca E Fonseca, Bruna; Zicker, Fabio
2016-11-08
The analysis of scientific networks has been applied in health research to map and measure relationships between researchers and institutions, describing collaboration structures, individual roles, and research outputs, and helping the identification of knowledge gaps and cooperation opportunities. Driven by dengue continued expansion in Brazil, we explore the contribution, dynamics and consolidation of dengue scientific networks that could ultimately inform the prioritisation of research, financial investments and health policy. Social network analysis (SNA) was used to produce a 20-year (1995-2014) retrospective longitudinal evaluation of dengue research networks within Brazil and with its partners abroad, with special interest in describing institutional collaboration and their research outputs. The analysis of institutional co-authorship showed a significant expansion of collaboration over the years, increased international involvement, and ensured a shift from public health research toward vector control and basic biomedical research, probably as a reflection of the expansion of transmission, high burden and increasing research funds from the Brazilian government. The analysis identified leading national organisations that maintained the research network connectivity, facilitated knowledge exchange and reduced network vulnerability. SNA proved to be a valuable tool that, along with other indicators, can strengthen a knowledge platform to inform future policy, planning and funding decisions. The paper provides relevant information to policy and planning for dengue research as it reveals: (1) the effectiveness of the research network in knowledge generation, sharing and diffusion; (2) the near-absence of collaboration with the private sector; and (3) the key central organisations that can support strategic decisions on investments, development and implementation of innovations. In addition, the increase in research activities and collaboration has not yet significantly affected dengue transmission, suggesting a limited translation of research efforts into public health solutions.
Tindana, Paulina; Molyneux, Catherine S; Bull, Susan; Parker, Michael
2014-10-18
For many decades, access to human biological samples, such as cells, tissues, organs, blood, and sub-cellular materials such as DNA, for use in biomedical research, has been central in understanding the nature and transmission of diseases across the globe. However, the limitations of current ethical and regulatory frameworks in sub-Saharan Africa to govern the collection, export, storage and reuse of these samples have resulted in inconsistencies in practice and a number of ethical concerns for sample donors, researchers and research ethics committees. This paper examines stakeholders' perspectives of and responses to the ethical issues arising from these research practices. We employed a qualitative strategy of inquiry for this research including in-depth interviews and focus group discussions with key research stakeholders in Kenya (Nairobi and Kilifi), and Ghana (Accra and Navrongo). The stakeholders interviewed emphasised the compelling scientific importance of sample export, storage and reuse, and acknowledged the existence of some structures governing these research practices, but they also highlighted the pressing need for a number of practical ethical concerns to be addressed in order to ensure high standards of practice and to maintain public confidence in international research collaborations. These concerns relate to obtaining culturally appropriate consent for sample export and reuse, understanding cultural sensitivities around the use of blood samples, facilitating a degree of local control of samples and sustainable scientific capacity building. Drawing on these findings and existing literature, we argue that the ethical issues arising in practice need to be understood in the context of the interactions between host research institutions and local communities and between collaborating institutions. We propose a set of 'key points-to-consider' for research institutions, ethics committees and funding agencies to address these issues.
A National Virtual Specimen Database for Early Cancer Detection
NASA Technical Reports Server (NTRS)
Crichton, Daniel; Kincaid, Heather; Kelly, Sean; Thornquist, Mark; Johnsey, Donald; Winget, Marcy
2003-01-01
Access to biospecimens is essential for enabling cancer biomarker discovery. The National Cancer Institute's (NCI) Early Detection Research Network (EDRN) comprises and integrates a large number of laboratories into a network in order to establish a collaborative scientific environment to discover and validate disease markers. The diversity of both the institutions and the collaborative focus has created the need for establishing cross-disciplinary teams focused on integrating expertise in biomedical research, computational and biostatistics, and computer science. Given the collaborative design of the network, the EDRN needed an informatics infrastructure. The Fred Hutchinson Cancer Research Center, the National Cancer Institute,and NASA's Jet Propulsion Laboratory (JPL) teamed up to build an informatics infrastructure creating a collaborative, science-driven research environment despite the geographic and morphology differences of the information systems that existed within the diverse network. EDRN investigators identified the need to share biospecimen data captured across the country managed in disparate databases. As a result, the informatics team initiated an effort to create a virtual tissue database whereby scientists could search and locate details about specimens located at collaborating laboratories. Each database, however, was locally implemented and integrated into collection processes and methods unique to each institution. This meant that efforts to integrate databases needed to be done in a manner that did not require redesign or re-implementation of existing system
Developing student collaborations across disciplines, distances, and institutions.
Knisley, Jeff; Behravesh, Esfandiar
2010-01-01
Because quantitative biology requires skills and concepts from a disparate collection of different disciplines, the scientists of the near future will increasingly need to rely on collaborations to produce results. Correspondingly, students in disciplines impacted by quantitative biology will need to be taught how to create and engage in such collaborations. In response to this important curricular need, East Tennessee State University and Georgia Technological University/Emory University cooperated in an unprecedented curricular experiment in which theoretically oriented students at East Tennessee State designed biophysical models that were implemented and tested experimentally by biomedical engineers at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Technological University and Emory University. Implementing the collaborations between two institutions allowed an assessment of the student collaborations from before the groups of students had met for the first time until after they had finished their projects, thus providing insight about the formation and conduct of such collaborations that could not have been obtained otherwise.
Developing Student Collaborations across Disciplines, Distances, and Institutions
Behravesh, Esfandiar
2010-01-01
Because quantitative biology requires skills and concepts from a disparate collection of different disciplines, the scientists of the near future will increasingly need to rely on collaborations to produce results. Correspondingly, students in disciplines impacted by quantitative biology will need to be taught how to create and engage in such collaborations. In response to this important curricular need, East Tennessee State University and Georgia Technological University/Emory University cooperated in an unprecedented curricular experiment in which theoretically oriented students at East Tennessee State designed biophysical models that were implemented and tested experimentally by biomedical engineers at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Technological University and Emory University. Implementing the collaborations between two institutions allowed an assessment of the student collaborations from before the groups of students had met for the first time until after they had finished their projects, thus providing insight about the formation and conduct of such collaborations that could not have been obtained otherwise. PMID:20810970
Ranwala, Damayanthi; Alberg, Anthony J; Brady, Kathleen T; Obeid, Jihad S; Davis, Randal; Halushka, Perry V
2017-02-01
To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical and Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with 'speed dating' networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat begins with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 min scientific 'speed dating' period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. Copyright © 2016 American Federation for Medical Research.
Collaborative networks for both improvement and research.
Clancy, Carolyn M; Margolis, Peter A; Miller, Marlene
2013-06-01
Moving significant therapeutic discoveries beyond early biomedical translation or T1 science and into practice involves: (1) T2 science, identifying "the right treatment for the right patient in the right way at the right time" (eg, patient-centered outcomes research) and tools to implement this knowledge (eg, guidelines, registries); and (2) T3 studies addressing how to achieve health care delivery change. Collaborative improvement networks can serve as large-scale, health system laboratories to engage clinicians, researchers, patients, and parents in testing approaches to translate research into practice. Improvement networks are of particular importance for pediatric T2 and T3 research, as evidence to establish safety and efficacy of therapeutic interventions in children is often lacking. Networks for improvement and research are also consistent with the Institute of Medicine's Learning Healthcare Systems model in which learning networks provide a system for improving care and outcomes and generate new knowledge in near real-time. Creation of total population registries in collaborative network sites provides large, representative study samples with high-quality data that can be used to generate evidence and to inform clinical decision-making. Networks use collaboration, data, and quality-improvement methods to standardize practice. Therefore, variation in outcomes due to unreliable and unnecessary care delivery is reduced, increasing statistical power, and allowing a consistent baseline from which to test new strategies. In addition, collaborative networks for improvement and research offer the opportunity to not only make improvements but also to study improvements to determine which interventions and combination of strategies work best in what settings.
Alberg, Anthony J.; Brady, Kathleen T.; Obeid, Jihad S.; Davis, Randal; Halushka, Perry V.
2016-01-01
To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical & Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with “speed dating” networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat commences with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 minute scientific “speed dating” period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. PMID:27807146
Multicenter breast cancer collaborative registry.
Sherman, Simon; Shats, Oleg; Fleissner, Elizabeth; Bascom, George; Yiee, Kevin; Copur, Mehmet; Crow, Kate; Rooney, James; Mateen, Zubeena; Ketcham, Marsha A; Feng, Jianmin; Sherman, Alexander; Gleason, Michael; Kinarsky, Leo; Silva-Lopez, Edibaldo; Edney, James; Reed, Elizabeth; Berger, Ann; Cowan, Kenneth
2011-01-01
The Breast Cancer Collaborative Registry (BCCR) is a multicenter web-based system that efficiently collects and manages a variety of data on breast cancer (BC) patients and BC survivors. This registry is designed as a multi-tier web application that utilizes Java Servlet/JSP technology and has an Oracle 11g database as a back-end. The BCCR questionnaire has accommodated standards accepted in breast cancer research and healthcare. By harmonizing the controlled vocabulary with the NCI Thesaurus (NCIt) or Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT), the BCCR provides a standardized approach to data collection and reporting. The BCCR has been recently certified by the National Cancer Institute's Center for Biomedical Informatics and Information Technology (NCI CBIIT) as a cancer Biomedical Informatics Grid (caBIG(®)) Bronze Compatible product.The BCCR is aimed at facilitating rapid and uniform collection of critical information and biological samples to be used in developing diagnostic, prevention, treatment, and survivorship strategies against breast cancer. Currently, seven cancer institutions are participating in the BCCR that contains data on almost 900 subjects (BC patients and survivors, as well as individuals at high risk of getting BC).
Multicenter Breast Cancer Collaborative Registry
Sherman, Simon; Shats, Oleg; Fleissner, Elizabeth; Bascom, George; Yiee, Kevin; Copur, Mehmet; Crow, Kate; Rooney, James; Mateen, Zubeena; Ketcham, Marsha A.; Feng, Jianmin; Sherman, Alexander; Gleason, Michael; Kinarsky, Leo; Silva-Lopez, Edibaldo; Edney, James; Reed, Elizabeth; Berger, Ann; Cowan, Kenneth
2011-01-01
The Breast Cancer Collaborative Registry (BCCR) is a multicenter web-based system that efficiently collects and manages a variety of data on breast cancer (BC) patients and BC survivors. This registry is designed as a multi-tier web application that utilizes Java Servlet/JSP technology and has an Oracle 11g database as a back-end. The BCCR questionnaire has accommodated standards accepted in breast cancer research and healthcare. By harmonizing the controlled vocabulary with the NCI Thesaurus (NCIt) or Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT), the BCCR provides a standardized approach to data collection and reporting. The BCCR has been recently certified by the National Cancer Institute’s Center for Biomedical Informatics and Information Technology (NCI CBIIT) as a cancer Biomedical Informatics Grid (caBIG®) Bronze Compatible product. The BCCR is aimed at facilitating rapid and uniform collection of critical information and biological samples to be used in developing diagnostic, prevention, treatment, and survivorship strategies against breast cancer. Currently, seven cancer institutions are participating in the BCCR that contains data on almost 900 subjects (BC patients and survivors, as well as individuals at high risk of getting BC). PMID:21918596
Fawcett, Nicola J; Dumitriu, Anna
2018-06-01
The field of microbiology presents unique opportunities, and accompanying challenges, for artistic collaborations. On one hand, artistic works enable exploration of the aesthetics and of issues in biomedical science and new technologies, and draw in new, non-scientific audiences. On the other hand, creating art with microbes requires rigorous consideration of health and safety. Artists working in this field, known as Bio Art, tend to want to push the boundaries of what is possible or 'known', and work with new biomedical tools as they become available. However, when an artist's proposed work is raising novel questions where the risks are not fully understood, who should decide if the benefits outweigh the consequences? The reflections of an art-collaborating scientist are related. Also, considered is how close working relationships between disciplines can enable new ethical frameworks that consider these decisions, respecting artists' endeavours as a beneficial form of research in its own right, and even learning from the rich perspectives of artists to broaden reflections on the practice of science.
iDASH: integrating data for analysis, anonymization, and sharing
Bafna, Vineet; Boxwala, Aziz A; Chapman, Brian E; Chapman, Wendy W; Chaudhuri, Kamalika; Day, Michele E; Farcas, Claudiu; Heintzman, Nathaniel D; Jiang, Xiaoqian; Kim, Hyeoneui; Kim, Jihoon; Matheny, Michael E; Resnic, Frederic S; Vinterbo, Staal A
2011-01-01
iDASH (integrating data for analysis, anonymization, and sharing) is the newest National Center for Biomedical Computing funded by the NIH. It focuses on algorithms and tools for sharing data in a privacy-preserving manner. Foundational privacy technology research performed within iDASH is coupled with innovative engineering for collaborative tool development and data-sharing capabilities in a private Health Insurance Portability and Accountability Act (HIPAA)-certified cloud. Driving Biological Projects, which span different biological levels (from molecules to individuals to populations) and focus on various health conditions, help guide research and development within this Center. Furthermore, training and dissemination efforts connect the Center with its stakeholders and educate data owners and data consumers on how to share and use clinical and biological data. Through these various mechanisms, iDASH implements its goal of providing biomedical and behavioral researchers with access to data, software, and a high-performance computing environment, thus enabling them to generate and test new hypotheses. PMID:22081224
iDASH: integrating data for analysis, anonymization, and sharing.
Ohno-Machado, Lucila; Bafna, Vineet; Boxwala, Aziz A; Chapman, Brian E; Chapman, Wendy W; Chaudhuri, Kamalika; Day, Michele E; Farcas, Claudiu; Heintzman, Nathaniel D; Jiang, Xiaoqian; Kim, Hyeoneui; Kim, Jihoon; Matheny, Michael E; Resnic, Frederic S; Vinterbo, Staal A
2012-01-01
iDASH (integrating data for analysis, anonymization, and sharing) is the newest National Center for Biomedical Computing funded by the NIH. It focuses on algorithms and tools for sharing data in a privacy-preserving manner. Foundational privacy technology research performed within iDASH is coupled with innovative engineering for collaborative tool development and data-sharing capabilities in a private Health Insurance Portability and Accountability Act (HIPAA)-certified cloud. Driving Biological Projects, which span different biological levels (from molecules to individuals to populations) and focus on various health conditions, help guide research and development within this Center. Furthermore, training and dissemination efforts connect the Center with its stakeholders and educate data owners and data consumers on how to share and use clinical and biological data. Through these various mechanisms, iDASH implements its goal of providing biomedical and behavioral researchers with access to data, software, and a high-performance computing environment, thus enabling them to generate and test new hypotheses.
ERIC Educational Resources Information Center
Samsa, Gregory P.
2018-01-01
Collaborative biostatistics is the creative application of statistical tools to biomedical problems. The relatively modest literature about the traits of effective collaborative biostatisticians focuses on four core competencies: (a) technical and analytical; (b) substance-matter knowledge; (c) communication; and (d) problem solving and problem…
Collaboration of doctors and nurses with ethnomedical practitioners.
Bastien, J W
1994-01-01
In Bolivia, workshops serve as a means for biomedical practitioners and Aymara and Quechua ethnomedical practitioners from the Andes to share information about illnesses. The traditional practitioners demonstrate and biomedical personnel participate in curing rituals. Joint therapy sessions and development of joint strategies to improve health are included. Participants list the names, symptoms, causes, and treatments of diarrhea in a column for ethnomedicine and another for biomedicine. Biomedical and ethnomedical practitioners work together to persuade indigenous peoples to overcome their fear of and resistance to vaccination. One way to achieve this is by having people examine unsterilized knives under the microscope to see the tetanus toxoid. Physicians tend not to respect midwives and traditional birth attendants (TBAs). Biomedical trainers are not trained in and/or undervalue ethnomedicine, and can introduce midwives and TBAs to unhealthy practices. For example, they insist on scissors to cut the umbilical cord, but scissors are hard to sterilize, resulting in increased rates of neonatal tetanus. Women trained in medical anthropology, cross-cultural communication, and public health are the best trainers of TBAs and midwives. Supervision is needed to integrate TBAs and midwives into health programs and to improve their skills. Herbalism and ritual healing are more popular than the rural health care delivery system. Integrated clinics attract more clients than standard clinics. Recommended guidelines on collaboration revolve around recognition and respect of traditional healers, rewards for biomedical and ethnomedical personnel who collaborate, and issuance of health cards so both sets of practitioners can view patients' medical histories.
2013-01-01
Background While some effort has been made to integrate complementary and alternative medicine (CAM) information in conventional biomedical training, it is unclear whether regulated Canadian CAM schools’ students are exposed to research activities and continuing education, or whether topics such as evidence-based health care and interprofessional collaboration (IPC) are covered during their training. Since these areas are valued by the biomedical training field, this may help to bridge the attitudinal and communication gaps between these different practices. The aim of this study was to describe the training offered in these areas and gather the perceptions of curriculum/program directors in regulated Canadian CAM schools. Methods A two-phase study consisting of an electronic survey and subsequent semi-structured telephone interviews was conducted with curriculum/program (C/P) directors in regulated Canadian CAM schools. Questions assessed the extent of the research, evidence-based health care, IPC training and continuing education, as well as the C/P directors’ perceptions about the training. Descriptive statistics were used to describe the schools’, curriculum’s and the C/P directors’ characteristics. Content analysis was conducted on the interview material. Results Twenty-eight C/P directors replied to the electronic survey and 11 participated in the interviews, representing chiropractic, naturopathy, acupuncture and massage therapy schools. Canadian regulated CAM schools offered research and evidence-based health care training as well as opportunities for collaboration with biomedical peers and continuing education to a various extent (58% to 91%). Although directors were generally satisfied with the training offered at their school, they expressed a desire for improvements. They felt future CAM providers should understand research findings and be able to rely on high quality research and to communicate with conventional care providers as well as to engage in continuing education. Limited length of the curriculum was one of the barriers to such improvements. Conclusions These findings seem to reinforce the directors’ interest and the importance of integrating these topics in order to ensure best CAM practices and improve communication between CAM and conventional providers. PMID:24373181
Kaboru, Berthollet Bwira; Falkenberg, Torkel; Ndubani, Phillimon; Höjer, Bengt; Vongo, Rodwell; Brugha, Ruairi; Faxelid, Elisabeth
2006-01-01
Background The World Health Organization's World health report 2006: Working together for health underscores the importance of human resources for health. The shortage of trained health professionals is among the main obstacles to strengthening low-income countries' health systems and to scaling up HIV/AIDS control efforts. Traditional health practitioners are increasingly depicted as key resources to HIV/AIDS prevention and care. An appropriate and effective response to the HIV/AIDS crisis requires reconsideration of the collaboration between traditional and biomedical health providers (THPs and BHPs). The aim of this paper is to explore biomedical and traditional health practitioners' experiences of and attitudes towards collaboration and to identify obstacles and potential opportunities for them to collaborate regarding care for patients with sexually transmitted infections (STIs) and HIV/AIDS. Methods We conducted a cross-sectional study in two Zambian urban sites, using structured questionnaires. We interviewed 152 biomedical health practitioners (BHPs) and 144 traditional health practitioners (THPs) who reported attending to patients with STIs and HIV/AIDS. Results The study showed a very low level of experience of collaboration, predominated by BHPs training THPs (mostly traditional birth attendants) on issues of safe delivery. Intersectoral contacts addressing STIs and HIV/AIDS care issues were less common. However, both groups of providers overwhelmingly acknowledged the potential role of THPs in the fight against HIV/AIDS. Obstacles to collaboration were identified at the policy level in terms of legislation and logistics. Lack of trust in THPs by individual BHPs was also found to inhibit collaboration. Nevertheless, as many as 40% of BHPs expressed an interest in working more closely with THPs. Conclusion There is indication that practitioners from both sectors seem willing to strengthen collaboration with each other. However, there are missed opportunities. The lack of collaborative framework integrating maternal health with STIs and HIV/AIDS care is at odds with the needed comprehensive approach to HIV/AIDS control. Also, considering the current human resources crisis in Zambia, substantial policy commitment is called for to address the legislative obstacles and the stigma reported by THPs and to provide an adequate distribution of roles between all partners, including traditional health practitioners, in the struggle against HIV/AIDS. PMID:16846497
Scientific Cooperation Between the U.S. and the Republic of South Africa Funds 7 Cancer-Specific Pro
The NIH has recently awarded its first round of grants in a parallel U.S.-South Africa funding opportunity. Initiatives funded through this program will advance biomedical research for tuberculosis and HIV/AIDS in not only the US and South Africa, but will contribute to the global wealth of knowledge of these diseases. The scope of this initiative includes HIV/AIDS co-morbidities, and resulting malignancies. This opportunity was further targeted at expanding basic, translational, behavioral and applied research that will stimulate scientific discovery, and engage U.S. and South African researcher collaboration.
Life sciences domain analysis model
Freimuth, Robert R; Freund, Elaine T; Schick, Lisa; Sharma, Mukesh K; Stafford, Grace A; Suzek, Baris E; Hernandez, Joyce; Hipp, Jason; Kelley, Jenny M; Rokicki, Konrad; Pan, Sue; Buckler, Andrew; Stokes, Todd H; Fernandez, Anna; Fore, Ian; Buetow, Kenneth H
2012-01-01
Objective Meaningful exchange of information is a fundamental challenge in collaborative biomedical research. To help address this, the authors developed the Life Sciences Domain Analysis Model (LS DAM), an information model that provides a framework for communication among domain experts and technical teams developing information systems to support biomedical research. The LS DAM is harmonized with the Biomedical Research Integrated Domain Group (BRIDG) model of protocol-driven clinical research. Together, these models can facilitate data exchange for translational research. Materials and methods The content of the LS DAM was driven by analysis of life sciences and translational research scenarios and the concepts in the model are derived from existing information models, reference models and data exchange formats. The model is represented in the Unified Modeling Language and uses ISO 21090 data types. Results The LS DAM v2.2.1 is comprised of 130 classes and covers several core areas including Experiment, Molecular Biology, Molecular Databases and Specimen. Nearly half of these classes originate from the BRIDG model, emphasizing the semantic harmonization between these models. Validation of the LS DAM against independently derived information models, research scenarios and reference databases supports its general applicability to represent life sciences research. Discussion The LS DAM provides unambiguous definitions for concepts required to describe life sciences research. The processes established to achieve consensus among domain experts will be applied in future iterations and may be broadly applicable to other standardization efforts. Conclusions The LS DAM provides common semantics for life sciences research. Through harmonization with BRIDG, it promotes interoperability in translational science. PMID:22744959
S3DB core: a framework for RDF generation and management in bioinformatics infrastructures
2010-01-01
Background Biomedical research is set to greatly benefit from the use of semantic web technologies in the design of computational infrastructure. However, beyond well defined research initiatives, substantial issues of data heterogeneity, source distribution, and privacy currently stand in the way towards the personalization of Medicine. Results A computational framework for bioinformatic infrastructure was designed to deal with the heterogeneous data sources and the sensitive mixture of public and private data that characterizes the biomedical domain. This framework consists of a logical model build with semantic web tools, coupled with a Markov process that propagates user operator states. An accompanying open source prototype was developed to meet a series of applications that range from collaborative multi-institution data acquisition efforts to data analysis applications that need to quickly traverse complex data structures. This report describes the two abstractions underlying the S3DB-based infrastructure, logical and numerical, and discusses its generality beyond the immediate confines of existing implementations. Conclusions The emergence of the "web as a computer" requires a formal model for the different functionalities involved in reading and writing to it. The S3DB core model proposed was found to address the design criteria of biomedical computational infrastructure, such as those supporting large scale multi-investigator research, clinical trials, and molecular epidemiology. PMID:20646315
Feasibility study for a biomedical experimental facility based on LEIR at CERN.
Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken
2013-07-01
In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.
Feasibility study for a biomedical experimental facility based on LEIR at CERN
Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken
2013-01-01
In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. PMID:23824122
Huamaní, Charles; González A, Gregorio; Curioso, Walter H; Pacheco-Romero, José
2012-04-01
International collaboration is increasingly used in biomedical research. To describe the characteristics of scientific production in Latin America and the main international collaboration networks for the period 2000 to 2009. Search for papers generated in Latin American countries in the Clinical Medicine database of ISI Web of Knowledge v.4.10 - Current Contents Connect. The country of origin of the corresponding author was considered the producing country of the paper. International collaboration was analyzed calculating the number of countries that contributed to the generation of a particular paper. Collaboration networks were graphed to determine the centrality of each network. Twelve Latin American countries participated in the production of 253,362 papers. The corresponding author was South American in 79% of these papers. Sixteen percent of papers were on clinical medicine and 36% of these were carried out in collaboration. Brazil had the highest production (22,442 papers) and the lower percentage of international collaboration (31%). North America accounts for 63% of collaborating countries. Only 8% of collaboration is between South American countries. Brazil has the highest tendency to collaborate with other South American countries. Brazil is the South American country with the highest scientific production and indicators of centrality in South America. The most common collaboration networks are with North American countries.
Sathar, Aslam; Dhai, Amaboo; van der Linde, Stephan
2014-12-01
Human Biological Materials (HBMs) are an invaluable resource in biomedical research. To determine if researchers and a Research Ethics Committee (REC) at a South African institution addressed ethical issues pertaining to HBMs in collaborative research with developed countries. Ethically approved retrospective cross-sectional descriptive audit. Of the 1305 protocols audited, 151 (11.57%) fulfilled the study's inclusion criteria. Compared to other developed countries, a majority of sponsors (90) were from the USA (p = 0.0001). The principle investigators (PIs) in all 151 protocols informed the REC of their intent to store HBMs. Only 132 protocols informed research participants (P < 0.0001). In 148 protocols informed consent (IC) was obtained from research participants, 116 protocols (76.8%) solicited broad consent compared to specific consent (32; 21.2%) [p < 0.0001]. In 105 cases a code was used to maintain confidentiality. HBMs were anonymised in 14 protocols [p < 0.0001]. More protocols informed the REC (90) than the research participants (67) that HBMs would be exported (p = 0.011). Export permits (EPs) and Material Transfer Agreements (MTAs) were not available in 109 and 143 protocols, respectively. Researchers and the REC did not adequately address the inter-related ethical and regulatory issues pertaining to HBMs. There was a lack of congruence between the ethical guidelines of developed countries and their actions which are central to the access to HBMs in collaborative research. HBMs may be leaving South Africa without EPs and MTAs during the process of international collaborative research. © 2013 John Wiley & Sons Ltd.
The Global Research Collaboration of Network Meta-Analysis: A Social Network Analysis
Li, Lun; Catalá-López, Ferrán; Alonso-Arroyo, Adolfo; Tian, Jinhui; Aleixandre-Benavent, Rafael; Pieper, Dawid; Ge, Long; Yao, Liang; Wang, Quan; Yang, Kehu
2016-01-01
Background and Objective Research collaborations in biomedical research have evolved over time. No studies have addressed research collaboration in network meta-analysis (NMA). In this study, we used social network analysis methods to characterize global collaboration patterns of published NMAs over the past decades. Methods PubMed, EMBASE, Web of Science and the Cochrane Library were searched (at 9th July, 2015) to include systematic reviews incorporating NMA. Two reviewers independently selected studies and cross-checked the standardized data. Data was analyzed using Ucinet 6.0 and SPSS 17.0. NetDraw software was used to draw social networks. Results 771 NMAs published in 336 journals from 3459 authors and 1258 institutions in 49 countries through the period 1997–2015 were included. More than three-quarters (n = 625; 81.06%) of the NMAs were published in the last 5-years. The BMJ (4.93%), Current Medical Research and Opinion (4.67%) and PLOS One (4.02%) were the journals that published the greatest number of NMAs. The UK and the USA (followed by Canada, China, the Netherlands, Italy and Germany) headed the absolute global productivity ranking in number of NMAs. The top 20 authors and institutions with the highest publication rates were identified. Overall, 43 clusters of authors (four major groups: one with 37 members, one with 12 members, one with 11 members and one with 10 members) and 21 clusters of institutions (two major groups: one with 62 members and one with 20 members) were identified. The most prolific authors were affiliated with academic institutions and private consulting firms. 181 consulting firms and pharmaceutical industries (14.39% of institutions) were involved in 199 NMAs (25.81% of total publications). Although there were increases in international and inter-institution collaborations, the research collaboration by authors, institutions and countries were still weak and most collaboration groups were small sizes. Conclusion Scientific production on NMA is increasing worldwide with research leadership of Western countries (most notably, the UK, the USA and Canada). More authors, institutions and nations are becoming involved in research collaborations, but frequently with limited international collaborations. PMID:27685998
NASA Astrophysics Data System (ADS)
Evetts, S. N.
2014-08-01
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.
Oushy, Mai H.; Palacios, Rebecca; Holden, Alan E. C.; Ramirez, Amelie G.; Gallion, Kipling J.; O’Connell, Mary A.
2015-01-01
Background Cancer health disparities research depends on access to biospecimens from diverse racial/ethnic populations. This multimethodological study, using mixed methods for quantitative and qualitative analysis of survey results, assessed barriers, concerns, and practices for sharing biospecimens/data among researchers working with biospecimens from minority populations in a 5 state region of the United States (Arizona, Colorado, New Mexico, Oklahoma, and Texas). The ultimate goals of this research were to understand data sharing barriers among biomedical researchers; guide strategies to increase participation in biospecimen research; and strengthen collaborative opportunities among researchers. Methods and Population Email invitations to anonymous participants (n = 605 individuals identified by the NIH RePORT database), resulted in 112 responses. The survey assessed demographics, specimen collection data, and attitudes about virtual biorepositories. Respondents were primarily principal investigators at PhD granting institutions (91.1%) conducting basic (62.3%) research; most were non-Hispanic White (63.4%) and men (60.6%). The low response rate limited the statistical power of the analyses, further the number of respondents for each survey question was variable. Results Findings from this study identified barriers to biospecimen research, including lack of access to sufficient biospecimens, and limited availability of diverse tissue samples. Many of these barriers can be attributed to poor annotation of biospecimens, and researchers’ unwillingness to share existing collections. Addressing these barriers to accessing biospecimens is essential to combating cancer in general and cancer health disparities in particular. This study confirmed researchers’ willingness to participate in a virtual biorepository (n = 50 respondents agreed). However, researchers in this region listed clear specifications for establishing and using such a biorepository: specifications related to standardized procedures, funding, and protections of human subjects and intellectual property. The results help guide strategies to increase data sharing behaviors and to increase participation of researchers with multiethnic biospecimen collections in collaborative research endeavors Conclusions Data sharing by researchers is essential to leveraging knowledge and resources needed for the advancement of research on cancer health disparities. Although U.S. funding entities have guidelines for data and resource sharing, future efforts should address researcher preferences in order to promote collaboration to address cancer health disparities. PMID:26378445
Ofili, Elizabeth O; Fair, Alecia; Norris, Keith; Verbalis, Joseph G; Poland, Russell; Bernard, Gordon; Stephens, David S; Dubinett, Steven M; Imperato-McGinley, Julianne; Dottin, Robert P; Pulley, Jill; West, Andrew; Brown, Arleen; Mellman, Thomas A
2013-12-01
Health disparities are an immense challenge to American society. Clinical and Translational Science Awards (CTSAs) housed within the National Center for Advancing Translational Science (NCATS) are designed to accelerate the translation of experimental findings into clinically meaningful practices and bring new therapies to the doorsteps of all patients. Research Centers at Minority Institutions (RCMI) program at the National Institute on Minority Health and Health Disparities (NIMHD) are designed to build capacity for biomedical research and training at minority serving institutions. The CTSA created a mechanism fostering formal collaborations between research intensive universities and minority serving institutions (MSI) supported by the RCMI program. These consortium-level collaborations activate unique translational research approaches to reduce health disparities with credence to each academic institutions history and unique characteristics. Five formal partnerships between research intensive universities and MSI have formed as a result of the CTSA and RCMI programs. These partnerships present a multifocal approach; shifting cultural change and consciousness toward addressing health disparities, and training the next generation of minority scientists. This collaborative model is based on the respective strengths and contributions of the partnering institutions, allowing bidirectional interchange and leveraging NIH and institutional investments providing measurable benchmarks toward the elimination of health disparities. © 2013 Wiley Periodicals, Inc.
Fair, Alecia; Norris, Keith; Verbalis, Joseph G.; Poland, Russell; Bernard, Gordon; Stephens, David S.; Dubinett, Steven M.; Imperato‐McGinley, Julianne; Dottin, Robert P.; Pulley, Jill; West, Andrew; Brown, Arleen; Mellman, Thomas A.
2013-01-01
Abstract Health disparities are an immense challenge to American society. Clinical and Translational Science Awards (CTSAs) housed within the National Center for Advancing Translational Science (NCATS) are designed to accelerate the translation of experimental findings into clinically meaningful practices and bring new therapies to the doorsteps of all patients. Research Centers at Minority Institutions (RCMI) program at the National Institute on Minority Health and Health Disparities (NIMHD) are designed to build capacity for biomedical research and training at minority serving institutions. The CTSA created a mechanism fostering formal collaborations between research intensive universities and minority serving institutions (MSI) supported by the RCMI program. These consortium‐level collaborations activate unique translational research approaches to reduce health disparities with credence to each academic institutions history and unique characteristics. Five formal partnerships between research intensive universities and MSI have formed as a result of the CTSA and RCMI programs. These partnerships present a multifocal approach; shifting cultural change and consciousness toward addressing health disparities, and training the next generation of minority scientists. This collaborative model is based on the respective strengths and contributions of the partnering institutions, allowing bidirectional interchange and leveraging NIH and institutional investments providing measurable benchmarks toward the elimination of health disparities. PMID:24119157
Lindau, Stacy Tessler; Makelarski, Jennifer A.; Chin, Marshall H.; Desautels, Shane; Johnson, Daniel; Johnson, Waldo E.; Miller, Doriane; Peters, Susan; Robinson, Connie; Schneider, John; Thicklin, Florence; Watson, Natalie P.; Wolfe, Marcus; Whitaker, Eric
2011-01-01
Objective To describe the roles community members can and should play in, and an asset-based strategy used by Chicago’s South Side Health and Vitality Studies for, building sustainable, large-scale community health research infrastructure. The Studies are a family of research efforts aiming to produce actionable knowledge to inform health policy, programming, and investments for the region. Methods Community and university collaborators, using a consensus-based approach, developed shared theoretical perspectives, guiding principles, and a model for collaboration in 2008, which were used to inform an asset-based operational strategy. Ongoing community engagement and relationship-building support the infrastructure and research activities of the Studies. Results Key steps in the asset-based strategy include: 1) continuous community engagement and relationship building, 2) identifying community priorities, 3) identifying community assets, 4) leveraging assets, 5) conducting research, 6) sharing knowledge and 7) informing action. Examples of community member roles, and how these are informed by the Studies’ guiding principles, are provided. Conclusions Community and university collaborators, with shared vision and principles, can effectively work together to plan innovative, large-scale community-based research that serves community needs and priorities. Sustainable, effective models are needed to realize NIH’s mandate for meaningful translation of biomedical discovery into improved population health. PMID:21236295
21st century paradigm of tissue banking: the Clinical Breast Care Project.
Shriver, Craig D
2010-07-01
The Clinical Breast Care Project (CBCP) is a congressionally mandated program that began in the year 2000. The military-civilian collaboration was founded on five pillars: (1) center of excellence in clinical care, (2) risk reduction for women at risk for developing breast cancer, (3) tissue banking to develop and maintain the world's finest repository of human biospecimens of breast diseases, (4) targeted research into the molecular signatures of breast diseases and cancer, and (5) biomedical informatics core to support the data warehouse needs of the project. Now in its eighth year of operation, these efforts have resulted in more than 300 peer-reviewed scientific publications and dozens of collaborations with world leaders in cancer research. In this short time, CBCP has created what is believed to be the world's largest breast tissue biorepository.
Soucy, Katie; Fairhurst, Rick M; Lynn, Geoffrey M; Fomalont, Kevin; Wynn, Thomas A; Siegel, Richard M
2016-12-01
Immunology is an increasingly interdisciplinary field. Here we describe a new model for interinstitutional graduate training as partnerships between complementary laboratories. This collaborative model reduces time to graduation without compromising productivity or alumni outcomes. We offer our experience with one such program and thoughts on the ingredients for their success. Despite tremendous recent advances in technology, communications, and the translation of basic scientific discoveries into new diagnostics and therapies for human diseases, graduate training in immunology and other areas of biomedical research in the United States has remained remarkably unchanged since the early 20th century, with coursework and laboratory rotations taking up much of the first 2 years, and a single mentor shepherding the student through a research project over 3 or more subsequent years. The time to graduation still averages more than 6 years in the biomedical sciences field (http://www.nsf.gov/statistics/2016/nsf16300/), with uncertain benefit of this extended time to research productivity and career advancement. Published by Elsevier Ltd.
Disaster and Contingency Planning for Scientific Shared Resource Cores
Wilkerson, Amy
2016-01-01
Progress in biomedical research is largely driven by improvements, innovations, and breakthroughs in technology, accelerating the research process, and an increasingly complex collaboration of both clinical and basic science. This increasing sophistication has driven the need for centralized shared resource cores (“cores”) to serve the scientific community. From a biomedical research enterprise perspective, centralized resource cores are essential to increased scientific, operational, and cost effectiveness; however, the concentration of instrumentation and resources in the cores may render them highly vulnerable to damage from severe weather and other disasters. As such, protection of these assets and the ability to recover from a disaster is increasingly critical to the mission and success of the institution. Therefore, cores should develop and implement both disaster and business continuity plans and be an integral part of the institution’s overall plans. Here we provide an overview of key elements required for core disaster and business continuity plans, guidance, and tools for developing these plans, and real-life lessons learned at a large research institution in the aftermath of Superstorm Sandy. PMID:26848285
An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
Brokaw, James J; O'Loughlin, Valerie D
2015-01-01
In 2008, the Indiana University School of Medicine, in collaboration with the School of Education, admitted its first student to a newly approved PhD program in Anatomy and Cell Biology focusing on educational research rather than biomedical research. The goal of the program is twofold: (1) to provide students with extensive training in all of the anatomical disciplines coupled with sufficient teaching experience to assume major educational responsibilities upon graduation and (2) to train students to conduct rigorous medical education research and other scholarly work necessary for promotion and tenure. The 90 credit hour curriculum consists of biomedical courses taught within the School of Medicine and education courses taught within the School of Education, including courses in health sciences pedagogy, curriculum development, learning theory, quantitative, and qualitative research methods, statistics, and electives. To date, 16 students have entered the program, seven have passed their qualifying examinations, and five have earned their PhD degrees. Four students have received national recognition for their educational research and four graduates have obtained faculty appointments. Going forward, we must adapt the program's biomedical course requirements to incorporate the new integrated curriculum of the medical school, and we must secure additional funding to support more students. Overcoming these challenges will enable us to continue producing a small but stable supply of doctoral-level anatomy educators for a growing academic market. © 2014 American Association of Anatomists.
Marjanovic, Sonja; Soper, Bryony; Ismail, Sharif; Reding, Anais; Ling, Tom
2012-01-01
This article describes a review of the Biomedical Research Units (BRU) scheme, undertaken for the Department of Health. This review was a perceptions audit of senior executives involved in the scheme, and explored what impact they felt the scheme is having on the translational research landscape. More specifically, we investigated whether and how institutional relationships between NHS and academic partners, industry and other health research system players are changing because of the scheme; how the scheme is helping build critical mass in specific priority disease areas; and the effects of any changes on efforts to deliver the broader goals set out in Best Research for Best Health. The views presented are those of study informants only. The information obtained through our interviews suggests that the BRU scheme is significantly helping shape the health research system to pursue translational research and innovation, with the clear goal of realising patient benefit. The BRUs are already contributing to observable changes in institutional relationships between the NHS and academic partners: trusts and medical schools are collaborating more closely than in the past, have signed up to the same vision of translational research from bench to bedside, and are managing and governing targeted research resources more professionally and transparently than in the past. There is also a stronger emphasis on engaging industry and more strategic thinking about strengthening regional and national collaboration with other hospital trusts, PCTs, research organisations, networks and development agencies. The scheme is also transforming capacity building in the health research system. This includes (i) developing and modernising facilities and equipment for translation; (ii) building a critical mass of human resources through recruitment and training, as well as improving retention of existing expertise; and (iii) helping ensure a steady flow of funds needed to sustain research activity and accelerate movement through the innovation pipeline. A number of centres are also trying to recreate the BRU model in new disease areas, with their own resources.
Promoting collaborations between biomedical scholars in the U.S. and sub-Saharan Africa.
Glew, Robert H
2008-03-01
The premise of this piece is that a priority of international health should be to increase the number of investigators in the US and other developed countries who engage in research and other kinds of scholarly work in underdeveloped parts of the world, particularly sub-Saharan Africa where the overall disease burden is the highest and the gap in biomedical research infrastructure is the widest. The author's aim is to encourage medical students, resident doctors, and medical school faculty to devote a part of their career to teach, acquire clinical skills, or participate in research with health professionals at teaching hospitals in Africa. After briefly describing the thinking that led the author to Nigeria 30 years ago to teach and study biochemical aspects of health problems in rural and urban areas, he discusses some of the factors one needs to consider before entering into an international partnership, including identifying the right foreign collaborators, selecting a suitable research site, setting realistic goals, learning the local culture and indigenous language, and defining a theme for your program. Lastly, the piece points out potential pitfalls and problems that are often overlooked or underestimated in the early phases of planning an international partnership, including lukewarm institutional support at home, inflexible institutional review boards, dominance of the program by the US partner, maintaining continuity, and striking the right balance between scholarly work and humanitarian efforts. My hope is that US students and faculty in the health professions who read this piece will be stimulated and encouraged to consider how they might integrate into their curriculum or academic life visits lasting several months or more each year during which they would teach or train others or engage in research at a teaching hospital in some country in Africa.
ChemBank: a small-molecule screening and cheminformatics resource database.
Seiler, Kathleen Petri; George, Gregory A; Happ, Mary Pat; Bodycombe, Nicole E; Carrinski, Hyman A; Norton, Stephanie; Brudz, Steve; Sullivan, John P; Muhlich, Jeremy; Serrano, Martin; Ferraiolo, Paul; Tolliday, Nicola J; Schreiber, Stuart L; Clemons, Paul A
2008-01-01
ChemBank (http://chembank.broad.harvard.edu/) is a public, web-based informatics environment developed through a collaboration between the Chemical Biology Program and Platform at the Broad Institute of Harvard and MIT. This knowledge environment includes freely available data derived from small molecules and small-molecule screens and resources for studying these data. ChemBank is unique among small-molecule databases in its dedication to the storage of raw screening data, its rigorous definition of screening experiments in terms of statistical hypothesis testing, and its metadata-based organization of screening experiments into projects involving collections of related assays. ChemBank stores an increasingly varied set of measurements derived from cells and other biological assay systems treated with small molecules. Analysis tools are available and are continuously being developed that allow the relationships between small molecules, cell measurements, and cell states to be studied. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays that have been performed at the Broad Institute by collaborators from the worldwide research community. The goal of ChemBank is to provide life scientists unfettered access to biomedically relevant data and tools heretofore available primarily in the private sector.
Kamalo, Patrick Dongosolo; Manda-Taylor, Lucinda; Rennie, Stuart
2016-08-01
Compensation for research-related injuries (RRIs) remains a challenge in the current environment of global collaborative biomedical research as exemplified by the continued reluctance of the US government, a major player in international biomedical research, to enact regulation for mandatory compensation for RRIs. This stance is in stark contrast to the mandatory compensation policies adopted by other democracies like the European Union (EU) countries. These positions taken by the USA and the EU create a nexus of confusion when research is exported to low-income and middle-income countries which have no laws guiding compensation for RRIs. In this paper, we begin by exploring the background to policies concerning RRIs, how they reflect on the traditional dispute resolution mechanisms in African societies, and how this compares with the no-fault compensation model. We then explore the underlying African ethical framework of Ubuntu in the sub-Saharan region, guiding traditional practices of dispute resolution and compensation, and how this framework can help to form the moral justification for no-fault compensation as the preferred compensation model for RRIs for African countries. Finally, we call upon countries in the African Union (AU), to adopt a no-fault policy for compensation of RRIs, and enact it into a regulatory requirement for insurance-based no-fault compensation for biomedical research, which will then be enforced by member states of the AU. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Clinical extracts of biomedical literature for patient-centered problem solving.
Florance, V
1996-01-01
This paper reports on a four-part qualitative research project aimed at designing an online document surrogate tailored to the needs of physicians seeking biomedical literature for use in clinical problem solving. The clinical extract, designed in collaboration with three practicing physicians, combines traditional elements of the MEDLINE record (e.g., title, author, source, abstract) with new elements (e.g., table captions, text headings, case profiles) suggested by the physicians. Specifications for the prototype clinical extract were developed through a series of relevance-scoring exercises and semi-structured interviews. For six clinical questions, three physicians assessed the applicability of selected articles and their document surrogates, articulating relevance criteria and reasons for their judgments. A prototype clinical extract based on their suggestions was developed, tested, evaluated, and revised. The final version includes content and format aids to make the extract easy to use. The goals, methods, and outcomes of the research study are summarized, and a template of the final design is provided. PMID:8883986
Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges
Singhal, Ayush; Leaman, Robert; Catlett, Natalie; Lemberger, Thomas; McEntyre, Johanna; Polson, Shawn; Xenarios, Ioannis; Arighi, Cecilia; Lu, Zhiyong
2016-01-01
Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to the increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. Finally, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators. PMID:28025348
Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges
Singhal, Ayush; Leaman, Robert; Catlett, Natalie; ...
2016-12-26
Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to themore » increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. In conclusion, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators.« less
Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, Ayush; Leaman, Robert; Catlett, Natalie
Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system ‘accuracy’ remains a challenge and identify several additional common difficulties and potential research directions including (i) the ‘scalability’ issue due to themore » increasing need of mining information from millions of full-text articles, (ii) the ‘interoperability’ issue of integrating various text-mining systems into existing curation workflows and (iii) the ‘reusability’ issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. In conclusion, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators.« less
Brindley, David A.; French, Anna; Suh, Jane; Roberts, MacKenna; Davies, Benjamin; Pinedo-Villanueva, Rafael; Wartolowska, Karolina; Rooke, Kelly; Kramm, Anneke; Judge, Andrew; Morrey, Mark; Chandra, Amit; Hurley, Hannah; Grover, Liam; Bingham, Ian; Siegel, Bernard; Rattley, Matt S.; Buckler, R. Lee; McKeon, David; Krumholz, Katie; Hook, Lilian; May, Michael; Rikabi, Sarah; Pigott, Rosie; Morys, Megan; Sabokbar, Afsie; Titus, Emily; Laabi, Yacine; Lemaitre, Gilles; Zahkia, Raymond; Sipp, Doug; Horne, Robert; Bravery, Christopher; Williams, David; Wall, Ivan; Snyder, Evan Y.; Karp, Jeffrey M.; Barker, Richard W.; Bure, Kim; Carr, Andrew J.; Reeve, Brock
2013-01-01
Abstract Increased global connectivity has catalyzed technological development in almost all industries, in part through the facilitation of novel collaborative structures. Notably, open innovation and crowd-sourcing—of expertise and/or funding—has tremendous potential to increase the efficiency with which biomedical ecosystems interact to deliver safe, efficacious and affordable therapies to patients. Consequently, such practices offer tremendous potential in advancing development of cellular therapies. In this vein, the CASMI Translational Stem Cell Consortium (CTSCC) was formed to unite global thought-leaders, producing academically rigorous and commercially practicable solutions to a range of challenges in pluripotent stem cell translation. Critically, the CTSCC research agenda is defined through continuous consultation with its international funding and research partners. Herein, initial findings for all research focus areas are presented to inform global product development strategies, and to stimulate continued industry interaction around biomanufacturing, strategic partnerships, standards, regulation and intellectual property and clinical adoption. PMID:24304079
Collaborative Learning in Engineering Design.
ERIC Educational Resources Information Center
Newell, Sigrin
1990-01-01
Described is a capstone experience for undergraduate biomedical engineering students in which student teams work with children and adults with cerebral palsy to produce devices that make their lives easier or more enjoyable. The collaborative approach, benefits to the clients, and evaluation of the projects are discussed. (CW)
Batman, Angela M.; Miles, Michael F.
2015-01-01
Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of streamlining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD. PMID:26259085
Translating Alcohol Research: Opportunities and Challenges.
Batman, Angela M; Miles, Michael F
2015-01-01
Alcohol use disorder (AUD) and its sequelae impose a major burden on the public health of the United States, and adequate long-term control of this disorder has not been achieved. Molecular and behavioral basic science research findings are providing the groundwork for understanding the mechanisms underlying AUD and have identified multiple candidate targets for ongoing clinical trials. However, the translation of basic research or clinical findings into improved therapeutic approaches for AUD must become more efficient. Translational research is a multistage process of stream-lining the movement of basic biomedical research findings into clinical research and then to the clinical target populations. This process demands efficient bidirectional communication across basic, applied, and clinical science as well as with clinical practitioners. Ongoing work suggests rapid progress is being made with an evolving translational framework within the alcohol research field. This is helped by multiple interdisciplinary collaborative research structures that have been developed to advance translational work on AUD. Moreover, the integration of systems biology approaches with collaborative clinical studies may yield novel insights for future translational success. Finally, appreciation of genetic variation in pharmacological or behavioral treatment responses and optimal communication from bench to bedside and back may strengthen the success of translational research applications to AUD.
Duncan, Gregg A; Lockett, Angelia; Villegas, Leah R; Almodovar, Sharilyn; Gomez, Jose L; Flores, Sonia C; Wilkes, David S; Tigno, Xenia T
2016-04-01
Committed to its mission of conducting and supporting research that addresses the health needs of all sectors of the nation's population, the Division of Lung Diseases, National Heart, Lung, and Blood Institute of the National Institutes of Health (NHLBI/NIH) seeks to identify issues that impact the training and retention of underrepresented individuals in the biomedical research workforce. Early-stage investigators who received grant support through the NIH Research Supplements to Promote Diversity in Health Related Research Program were invited to a workshop held in Bethesda, Maryland in June, 2015, in order to (1) assess the effectiveness of the current NHLBI diversity program, (2) improve its strategies towards achieving its goal, and (3) provide guidance to assist the transition of diversity supplement recipients to independent NIH grant support. Workshop participants participated in five independent focus groups to discuss specific topics affecting underrepresented individuals in the biomedical sciences: (1) Socioeconomic barriers to success for diverse research scientists; (2) role of the academic research community in promoting diversity; (3) life beyond a research project grant: non-primary investigator career paths in research; (4) facilitating career development of diverse independent research scientists through NHLBI diversity programs; and (5) effectiveness of current NHLBI programs for promoting diversity of the biomedical workforce. Several key issues experienced by young, underrepresented biomedical scientists were identified, and solutions were proposed to improve on training and career development for diverse students, from the high school to postdoctoral trainee level, and address limitations of currently available diversity programs. Although some of the challenges mentioned, such as cost of living, limited parental leave, and insecure extramural funding, are also likely faced by nonminority scientists, these issues are magnified among diversity scientists and are complicated by unique circumstances in this group, such as limited exposure to science at a young age, absence of role models and mentors from underrepresented backgrounds, and social norms that relegate their career endeavors, particularly among women, to being subordinate to their expected cultural role. The factors influencing the participation of underrepresented minorities in the biomedical workforce are complex and span several continuous or overlapping stages in the professional development of scientists from these groups. Therefore, a multipronged approach is needed to enable the professional development and retention of underrepresented minorities in biomedical research. This approach should address both individual and social factors and should involve funding agencies, academic institutions, mentoring teams, professional societies, and peer collaboration. Implementation of some of the recommendations, such as access to child care, institutional support and health benefits for trainees, teaching and entrepreneurial opportunities, grant-writing webinars, and pre-NIH career development (Pre-K) pilot programs would not only benefit biomedical scientists from underrepresented groups but also improve the situation of nondiverse junior scientists. However, other issues, such as opportunities for early exposure to science of disadvantaged/minority groups, and identifying mentors/life coaches/peer mentors who come from similar cultural backgrounds and vantage points, are unique to this group.
Duncan, Gregg A.; Lockett, Angelia; Villegas, Leah R.; Almodovar, Sharilyn; Gomez, Jose L.; Flores, Sonia C.; Tigno, Xenia T.
2016-01-01
Rationale: Committed to its mission of conducting and supporting research that addresses the health needs of all sectors of the nation's population, the Division of Lung Diseases, National Heart, Lung, and Blood Institute of the National Institutes of Health (NHLBI/NIH) seeks to identify issues that impact the training and retention of underrepresented individuals in the biomedical research workforce. Objectives: Early-stage investigators who received grant support through the NIH Research Supplements to Promote Diversity in Health Related Research Program were invited to a workshop held in Bethesda, Maryland in June, 2015, in order to (1) assess the effectiveness of the current NHLBI diversity program, (2) improve its strategies towards achieving its goal, and (3) provide guidance to assist the transition of diversity supplement recipients to independent NIH grant support. Methods: Workshop participants participated in five independent focus groups to discuss specific topics affecting underrepresented individuals in the biomedical sciences: (1) Socioeconomic barriers to success for diverse research scientists; (2) role of the academic research community in promoting diversity; (3) life beyond a research project grant: non–primary investigator career paths in research; (4) facilitating career development of diverse independent research scientists through NHLBI diversity programs; and (5) effectiveness of current NHLBI programs for promoting diversity of the biomedical workforce. Measurements and Main Results: Several key issues experienced by young, underrepresented biomedical scientists were identified, and solutions were proposed to improve on training and career development for diverse students, from the high school to postdoctoral trainee level, and address limitations of currently available diversity programs. Although some of the challenges mentioned, such as cost of living, limited parental leave, and insecure extramural funding, are also likely faced by nonminority scientists, these issues are magnified among diversity scientists and are complicated by unique circumstances in this group, such as limited exposure to science at a young age, absence of role models and mentors from underrepresented backgrounds, and social norms that relegate their career endeavors, particularly among women, to being subordinate to their expected cultural role. Conclusions: The factors influencing the participation of underrepresented minorities in the biomedical workforce are complex and span several continuous or overlapping stages in the professional development of scientists from these groups. Therefore, a multipronged approach is needed to enable the professional development and retention of underrepresented minorities in biomedical research. This approach should address both individual and social factors and should involve funding agencies, academic institutions, mentoring teams, professional societies, and peer collaboration. Implementation of some of the recommendations, such as access to child care, institutional support and health benefits for trainees, teaching and entrepreneurial opportunities, grant-writing webinars, and pre-NIH career development (Pre-K) pilot programs would not only benefit biomedical scientists from underrepresented groups but also improve the situation of nondiverse junior scientists. However, other issues, such as opportunities for early exposure to science of disadvantaged/minority groups, and identifying mentors/life coaches/peer mentors who come from similar cultural backgrounds and vantage points, are unique to this group. PMID:27058184
Enhancing research capacity of African institutions through social networking.
Jimenez-Castellanos, Ana; Ramirez-Robles, Maximo; Shousha, Amany; Bagayoko, Cheick Oumar; Perrin, Caroline; Zolfo, Maria; Cuzin, Asa; Roland, Alima; Aryeetey, Richmond; Maojo, Victor
2013-01-01
Traditionally, participation of African researchers in top Biomedical Informatics (BMI) scientific journals and conferences has been scarce. Looking beyond these numbers, an educational goal should be to improve overall research and, therefore, to increase the number of scientists/authors able to produce and publish high quality research. In such scenario, we are carrying out various efforts to expand the capacities of various institutions located at four African countries - Egypt, Ghana, Cameroon and Mali - in the framework of a European Commission-funded project, AFRICA BUILD. This project is currently carrying out activities such as e-learning, collaborative development of informatics tools, mobility of researchers, various pilot projects, and others. Our main objective is to create a self-sustained South-South network of BMI developers.
Rocca, Elena
2017-02-01
The cultural divide between scientists and clinicians has been described as undermining the advance of medical science, by hindering the production of practice-relevant research and of research-informed clinical decisions. Here, I consider the field of post-marketing risk assessment of drugs as an example of strict interdependence between basic biomedical research, clinical research, and clinical evaluation and show how it would benefit from a closer collaboration between scientists and clinicians. The risk assessment of drugs after their marketing relies on spontaneous adverse effect reports to drug agencies and on peer-reviewed case reports. I emphasize the importance of qualitative analysis of such reports for the improvement of mechanistic understanding of harmful effects of drugs. I argue that mechanistic explanations of drug effects are at least as important as determination of their frequency, in order to establish causation. An ideal risk assessment, then, verifies not only the frequency of undesired effects but also why and how the harm happens. For this purpose, the frequency or novelty of the unintended outcome, although contextually indicative, should not determine the epistemic value of a report. Details about the context that generated an unexpected outcome, instead, can offer the chance of improving causal understanding about how the intervention works. This is illustrated through examples from medical research. Mechanistic understanding is a domain of joint collaboration among (1) clinicians, in charge of detailed, qualitative reporting of patient stories about side effects, (2) qualitative clinical researchers, in charge of analyzing clinical contexts or harmful effects and formulating explanatory hypotheses, and (3) basic biomedical researchers, in charge of verifying such hypotheses. In addition, direct information flow can on one side focus clinicians' attention on knowledge gaps about drugs/effects where more research is needed, while on the other side create a more contextualized concept of mechanism among scientists. © 2016 John Wiley & Sons, Ltd.
Anonymization of Longitudinal Electronic Medical Records
Tamersoy, Acar; Loukides, Grigorios; Nergiz, Mehmet Ercan; Saygin, Yucel; Malin, Bradley
2013-01-01
Electronic medical record (EMR) systems have enabled healthcare providers to collect detailed patient information from the primary care domain. At the same time, longitudinal data from EMRs are increasingly combined with biorepositories to generate personalized clinical decision support protocols. Emerging policies encourage investigators to disseminate such data in a deidentified form for reuse and collaboration, but organizations are hesitant to do so because they fear such actions will jeopardize patient privacy. In particular, there are concerns that residual demographic and clinical features could be exploited for reidentification purposes. Various approaches have been developed to anonymize clinical data, but they neglect temporal information and are, thus, insufficient for emerging biomedical research paradigms. This paper proposes a novel approach to share patient-specific longitudinal data that offers robust privacy guarantees, while preserving data utility for many biomedical investigations. Our approach aggregates temporal and diagnostic information using heuristics inspired from sequence alignment and clustering methods. We demonstrate that the proposed approach can generate anonymized data that permit effective biomedical analysis using several patient cohorts derived from the EMR system of the Vanderbilt University Medical Center. PMID:22287248
Messy entanglements: research assemblages in heart transplantation discourses and practices
Shildrick, Margrit; Carnie, Andrew; Wright, Alexa; McKeever, Patricia; Jan, Emily Huan-Ching; De Luca, Enza; Bachmann, Ingrid; Abbey, Susan; Dal Bo, Dana; Poole, Jennifer; El-Sheikh, Tammer; Ross, Heather
2018-01-01
The paper engages with a variety of data around a supposedly single biomedical event, that of heart transplantation. In conventional discourse, organ transplantation constitutes an unproblematised form of spare part surgery in which failing biological components are replaced by more efficient and enduring ones, but once that simple picture is complicated by employing a radically interdisciplinary approach, any biomedical certainty is profoundly disrupted. Our aim, as a cross-sectorial partnership, has been to explore the complexities of heart transplantation by explicitly entangling research from the arts, biosciences and humanities without privileging any one discourse. It has been no easy enterprise yet it has been highly productive of new insights. We draw on our own ongoing funded research with both heart donor families and recipients to explore our different perceptions of what constitutes data and to demonstrate how the dynamic entangling of multiple data produces a constitutive assemblage of elements in which no one can claim priority. Our claim is that the use of such research assemblages and the collaborations that we bring to our project breaks through disciplinary silos to enable a fuller comprehension of the significance and experience of heart transplantation in both theory and practice. PMID:28972037
Does Collocation Inform the Impact of Collaboration?
Lee, Kyungjoon; Brownstein, John S.; Mills, Richard G.; Kohane, Isaac S.
2010-01-01
Background It has been shown that large interdisciplinary teams working across geography are more likely to be impactful. We asked whether the physical proximity of collaborators remained a strong predictor of the scientific impact of their research as measured by citations of the resulting publications. Methodology/Principal Findings Articles published by Harvard investigators from 1993 to 2003 with at least two authors were identified in the domain of biomedical science. Each collaboration was geocoded to the precise three-dimensional location of its authors. Physical distances between any two coauthors were calculated and associated with corresponding citations. Relationship between distance of coauthors and citations for four author relationships (first-last, first-middle, last-middle, and middle-middle) were investigated at different spatial scales. At all sizes of collaborations (from two authors to dozens of authors), geographical proximity between first and last author is highly informative of impact at the microscale (i.e. within building) and beyond. The mean citation for first-last author relationship decreased as the distance between them increased in less than one km range as well as in the three categorized ranges (in the same building, same city, or different city). Such a trend was not seen in other three author relationships. Conclusions/Significance Despite the positive impact of emerging communication technologies on scientific research, our results provide striking evidence for the role of physical proximity as a predictor of the impact of collaborations. PMID:21179507
Geia, Lynore K; Hayes, Barbara; Usher, Kim
2013-12-01
There is increasing recognition of Indigenous perspectives from various parts of the world in relation to storytelling, research and its effects on practice. The recent emergence of storytelling or yarning as a research method in Australian Aboriginal and Torres Strait Island studies and other Indigenous peoples of the world is gaining momentum. Narratives, stories, storytelling and yarning are emerging methods in research and has wide ranging potential to shape conventional research discourse making research more meaningful and accessible for researchers. In this paper we argue for the importance of Indigenous research methods and Indigenous method(ology), within collaborative respectful partnerships with non-Indigenous researchers. It is imperative to take these challenging steps together towards better outcomes for Indigenous people and their communities. In the Australian context we as researchers cannot afford to allow the gap between Aboriginal and Torres Strait Islanders and mainstream Australia health outcomes to grow even wider. One such pathway is the inclusion of Aboriginal storytelling or yarning from an Aboriginal and Torres Strait perspective within Indigenous and non-Indigenous research paradigms. Utilising Aboriginal storytelling or yarning will provide deeper understanding; complementing a two-way research paradigm for collaborative research. Furthermore, it has significant social implications for research and clinical practice amongst Indigenous populations; thus complementing the biomedical medical paradigm.
Towards a research pole in photonics in Western Romania
NASA Astrophysics Data System (ADS)
Duma, Virgil-Florin; Negrutiu, Meda L.; Sinescu, Cosmin; Rominu, Mihai; Miutescu, Eftimie; Burlea, Amelia; Vlascici, Miomir; Gheorghiu, Nicolae; Cira, Octavian; Hutiu, Gheorghe; Mnerie, Corina; Demian, Dorin; Marcauteanu, Corina; Topala, Florin; Rolland, Jannick P.; Voiculescu, Ioana; Podoleanu, Adrian G.
2014-07-01
We present our efforts in establishing a Research Pole in Photonics in the future Arad-Timisoara metropolitan area projected to unite two major cities of Western Romania. Research objectives and related training activities of various institutions and groups that are involved are presented in their evolution during the last decade. The multi-disciplinary consortium consists principally of two universities, UAVA (Aurel Vlaicu University of Arad) and UMF (Victor Babes Medicine and Pharmacy University of Timisoara), but also of the Arad County Emergency University Hospital and several innovative SMEs, such as Bioclinica S.A. (the largest array of medical analysis labs in the region) and Inteliform S.R.L. (a competitive SME focused on mechatronics and mechanical engineering). A brief survey of the individual and joint projects of these institutions is presented, together with their teaching activities at graduate and undergraduate level. The research Pole collaborates in R&D, training and education in biomedical imaging with universities in USA and Europe. Collaborative activities, mainly on Optical Coherence Tomography (OCT) projects are presented in a multidisciplinary approach that includes optomechatronics, precision mechanics and optics, dentistry, medicine, and biology.
Payne, Philip R.O.; Borlawsky, Tara B.; Rice, Robert; Embi, Peter J.
2010-01-01
With the growing prevalence of large-scale, team science endeavors in the biomedical and life science domains, the impetus to implement platforms capable of supporting asynchronous interaction among multidisciplinary groups of collaborators has increased commensurately. However, there is a paucity of literature describing systematic approaches to identifying the information needs of targeted end-users for such platforms, and the translation of such requirements into practicable software component design criteria. In previous studies, we have reported upon the efficacy of employing conceptual knowledge engineering (CKE) techniques to systematically address both of the preceding challenges in the context of complex biomedical applications. In this manuscript we evaluate the impact of CKE approaches relative to the design of a clinical and translational science collaboration portal, and report upon the preliminary qualitative users satisfaction as reported for the resulting system. PMID:21347146
Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele
2008-11-01
Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.
Hutton, Brian; Wolfe, Dianna; Moher, David; Shamseer, Larissa
2017-05-01
Research waste has received considerable attention from the biomedical community. One noteworthy contributor is incomplete reporting in research publications. When detailing statistical methods and results, ensuring analytic methods and findings are completely documented improves transparency. For publications describing randomised trials and systematic reviews, guidelines have been developed to facilitate complete reporting. This overview summarises aspects of statistical reporting in trials and systematic reviews of health interventions. A narrative approach to summarise features regarding statistical methods and findings from reporting guidelines for trials and reviews was taken. We aim to enhance familiarity of statistical details that should be reported in biomedical research among statisticians and their collaborators. We summarise statistical reporting considerations for trials and systematic reviews from guidance documents including the Consolidated Standards of Reporting Trials (CONSORT) Statement for reporting of trials, the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Statement for trial protocols, the Statistical Analyses and Methods in the Published Literature (SAMPL) Guidelines for statistical reporting principles, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement for systematic reviews and PRISMA for Protocols (PRISMA-P). Considerations regarding sharing of study data and statistical code are also addressed. Reporting guidelines provide researchers with minimum criteria for reporting. If followed, they can enhance research transparency and contribute improve quality of biomedical publications. Authors should employ these tools for planning and reporting of their research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D
2016-06-01
The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina.
Kennedy's Biomedical Laboratory Makes Multi-Tasking Look Easy
NASA Technical Reports Server (NTRS)
Dunn, Carol Anne
2009-01-01
If it is one thing that Florida has in abundance, it is sunshine and with that sunshine heat and humidity. For workers at the Kennedy Space Center that have to work outside in the heat and humidity, heat exhaustion/stroke is a real possibility. It might help people to know that Kennedy's Biomedical Laboratory has been testing some new Koolvests(Trademark) that can be worn underneath SCAPE suits. They have also been working on how to block out high noise levels; in fact, Don Doerr, chief of the Biomedical Lab, says, "The most enjoyable aspect is knowing that the Biomedical Lab and the skills of its employees have been used to support safe space flight, not only for the astronaut flight crew, but just as important for the ground processing personnel as well." The NASA Biomedical Laboratory has existed in the John F. Kennedy's Operations and Checkout Building since the Apollo Program. The primary mission of this laboratory has been the biomedical support to major, manned space programs that have included Apollo, Apollo-Soyuz, Skylab, and Shuttle. In this mission, the laboratory has been responsible in accomplishing much of the technical design, planning, provision, fabrication, and maintenance of flight and ground biomedical monitoring instrumentation. This includes the electronics in the launch flight suit and similar instrumentation systems in the spacecraft. (Note: The Lab checked out the system for STS-128 at Pad A using Firing room 4 and ground support equipment in the lab.) During Apollo, there were six engineers and ten technicians in the facility. This has evolved today to two NASA engineers and two NASA technicians, a Life Science Support contract physiologist and part-time support from an LSSC nurse and physician. Over the years, the lab has enjoyed collaboration with outside agencies and investigators. These have included on-site support to the Ames Research Center bed rest studies (seven years) and the European Space Agency studies in Toulouse, France (two years). The lab has also actively collaborated with the US Army Institute for Surgical Research, the USAF School of Aerospace Medicine, and the USN Naval Experimental Diving Unit. Because the lab often evaluates various forms of commercial-off-the-shelf life support equipment, the laboratory works closely with private companies, both domestic and foreign. The European companies seem to be more proactive and participatory with the advancement of personal protective equipment. Because these companies have viewed the space program's unique need for advanced forms of personal protective equipment, some have responded with new designs based on the prediction that these advances will soon find markets in the commercial sector. Using much of the same skills and equipment, the laboratory also addresses physiological testing of humans by supporting flight experiments and personnel involved with ground processing. While Johnson Space Center is primarily responsible for flight experiments, the Kennedy's Biomedical Lab provides the local support. However, as stated above, there are many challenges facing KSC workers that gain the attention of this lab in the measurement of the problem and the selection and testing of countermeasures. These include respiratory protection, whole body suits, hearing protection and heat stress, among many others.
Mongeon, Philippe; Smith, Elise; Joyal, Bruno; Larivière, Vincent
2017-01-01
Contemporary biomedical research is performed by increasingly large teams. Consequently, an increasingly large number of individuals are being listed as authors in the bylines, which complicates the proper attribution of credit and responsibility to individual authors. Typically, more importance is given to the first and last authors, while it is assumed that the others (the middle authors) have made smaller contributions. However, this may not properly reflect the actual division of labor because some authors other than the first and last may have made major contributions. In practice, research teams may differentiate the main contributors from the rest by using partial alphabetical authorship (i.e., by listing middle authors alphabetically, while maintaining a contribution-based order for more substantial contributions). In this paper, we use partial alphabetical authorship to divide the authors of all biomedical articles in the Web of Science published over the 1980-2015 period in three groups: primary authors, middle authors, and supervisory authors. We operationalize the concept of middle author as those who are listed in alphabetical order in the middle of an authors' list. Primary and supervisory authors are those listed before and after the alphabetical sequence, respectively. We show that alphabetical ordering of middle authors is frequent in biomedical research, and that the prevalence of this practice is positively correlated with the number of authors in the bylines. We also find that, for articles with 7 or more authors, the average proportion of primary, middle and supervisory authors is independent of the team size, more than half of the authors being middle authors. This suggests that growth in authors lists are not due to an increase in secondary contributions (or middle authors) but, rather, in equivalent increases of all types of roles and contributions (including many primary authors and many supervisory authors). Nevertheless, we show that the relative contribution of alphabetically ordered middle authors to the overall production of knowledge in the biomedical field has greatly increased over the last 35 years.
Combining medically assisted treatment and Twelve-Step programming: a perspective and review.
Galanter, Marc
2018-01-01
People with severe substance use disorders require long-term rehabilitative care after the initial treatment. There is, however, a deficit in the availability of such care. This may be due both to inadequate medical coverage and insufficient use of community-based Twelve-Step programs in many treatment facilities. In order to address this deficit, rehabilitative care for severe substance use disorders could be promoted through collaboration between practitioners of medically assisted treatment, employing medications, and Twelve-Step-oriented practitioners. To describe the limitations and benefits in applying biomedical approaches and Twelve-Step resources in the rehabilitation of persons with severe substance use disorders; and to assess how the two approaches can be employed together to improve clinical outcome. Empirical literature focusing on clinical and manpower issues is reviewed with regard (a) to limitations in available treatment options in ambulatory and residential addiction treatment facilities for persons with severe substance use disorders, (b) problems of long-term rehabilitation particular to opioid-dependent persons, associated with the limitations of pharmacologic approaches, (c) the relative effectiveness of biomedical and Twelve-Step approaches in the clinical context, and (d) the potential for enhanced use of these approaches, singly and in combination, to address perceived deficits. The biomedical and Twelve-Step-oriented approaches are based on differing theoretical and empirically grounded models. Research-based opportunities are reviewed for improving addiction rehabilitation resources with enhanced collaboration between practitioners of these two potentially complementary practice models. This can involve medications for both acute and chronic treatment for substances for which such medications are available, and Twelve-Step-based support for abstinence and long-term rehabilitation. Clinical and Scientific Significance: Criteria for developing evidence-based approaches for combined treatment should be developed, and research for evidence-based treatment on this basis can be undertaken in order to develop improved clinical outcome.
Colquhoun, Amy; Geary, Janis; Goodman, Karen J
2013-01-01
Increasingly, health scientists are becoming aware that research collaborations that include community partnerships can be an effective way to broaden the scope and enhance the impact of research aimed at improving public health. Such collaborations extend the reach of academic scientists by integrating a variety of perspectives and thus strengthening the applicability of the research. Communication challenges can arise, however, when attempting to address specific research questions in these collaborations. In particular, inconsistencies can exist between scientists and community members in the use and interpretation of words and other language features, particularly when conducting research with a biomedical component. Additional challenges arise from differing perceptions of the investigative process. There may be divergent perceptions about how research questions should and can be answered, and in expectations about requirements of research institutions and research timelines. From these differences, misunderstandings can occur about how the results will ultimately impact the community. These communication issues are particularly challenging when scientists and community members are from different ethnic and linguistic backgrounds that may widen the gap between ways of talking and thinking about science, further complicating the interactions and exchanges that are essential for effective joint research efforts. Community-driven research that aims to describe the burden of disease associated with Helicobacter pylori infection is currently underway in northern Aboriginal communities located in the Yukon and Northwest Territories, Canada, with the goal of identifying effective public health strategies for reducing health risks from this infection. This research links community representatives, faculty from various disciplines at the University of Alberta, as well as territorial health care practitioners and officials. This highly collaborative work will be used to illustrate, from a researcher's perspective, some of the challenges of conducting public health research in teams comprising members with varying backgrounds. The consequences of these challenges will be outlined, and potential solutions will be offered.
The center for causal discovery of biomedical knowledge from big data
Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard
2015-01-01
The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. PMID:26138794
Byington, Carrie L; Keenan, Heather; Phillips, John D; Childs, Rebecca; Wachs, Erin; Berzins, Mary Anne; Clark, Kim; Torres, Maria K; Abramson, Jan; Lee, Vivian; Clark, Edward B
2016-04-01
Physician-scientists and scientists in all the health professions are vital members of the U.S. biomedical workforce, but their numbers at academic health centers are declining. Mentorship has been identified as a key component in retention of faculty members at academic health centers. Effective mentoring may promote the retention of clinician-scientists in the biomedical workforce. The authors describe a holistic institutional mentoring program to support junior faculty members engaged in clinical and translational science at the University of Utah. The clinical and translational scholars (CATS) program leverages the resources of the institution, including the Center for Clinical and Translational Science, to augment departmental resources to support junior faculty investigators and uses a multilevel mentoring matrix that includes self, senior, scientific, peer, and staff mentorship. Begun in the Department of Pediatrics, the program was expanded in 2013 to include all departments in the school of medicine and the health sciences. During the two-year program, scholars learn management essentials and have leadership training designed to develop principal investigators. Of the 86 program participants since fiscal year 2008, 92% have received extramural awards, 99% remain in academic medicine, and 95% remain at the University of Utah. The CATS program has also been associated with increased inclusion of women and underrepresented minorities in the institutional research enterprise. The CATS program manifests institutional collaboration and coordination of resources, which have benefited faculty members and the institution. The model can be applied to other academic health centers to support and sustain the biomedical workforce.
Dixon, Jenna; Elliott, Susan J; Clarke, Ann E
2016-01-01
Food allergy is a serious public health problem in Canada and other high-income countries, as it is potentially life threatening and severely impacts the quality of life for individuals and their families. Yet, many questions still remain as to its origins and determinants, and the best practices for treatment. Formed to tackle these very questions, the GET-FACTS research study centers on a novel concept in biomedical research: in order to make this science useful, knowledge creation must include meaningful interactions with knowledge-users. With this, knowledge-users are present at every stage of the research and are crucial, central and equal contributors. This study reflects on the early part of that journey from the perspective of the knowledge-users. We conducted interviews with all non-scientist members of the GET-FACTS steering committee, representing Canadian organizations that deal with patient advocacy and policy with regards to food allergy. Steering committee members had a clear sense that scientists and knowledge-users are equally responsible for putting knowledge into action and the importance of consulting and integrating knowledge-users throughout research. They also have high expectations for the GET-FACTS integrated process; that this model of doing science will create better scientists (e.g. improve communication skills) and make the scientific output more useful and relevant. Our work highlights both the unique contributions that knowledge-users can offer to knowledge creation as well as the challenges of trying to unify members from such different communities (policy/advocacy and biomedical science). There remains a real need to develop more touch points and opportunities for collaboration if true integration is to be achieved. Despite the obstacles, this model can help change the way knowledge is created in the biomedical world. ᅟ. Despite the burden of food allergic disease many questions remain as to its origins, determinants and best practices for treatment. Formed to tackle these very questions, the GET-FACTS (Genetics, Environment and Therapies: Food Allergy Clinical Tolerance Studies) research study centers around a novel concept in biomedical research: in order to make this science useful, knowledge creation must include meaningful interactions with knowledge-users, known as Integrated Knowledge Translation (IKT). In IKT, knowledge-users are present at every stage of the research and are crucial, central and equal contributors. This paper contributes to this exciting form of research by reflecting on the beginning of that journey from the perspective of the knowledge-users. Semi structured in-depth interviews were conducted in year 2 of the 5 year GET-FACTS project with all ( n = 9) non-scientist members of the GET-FACTS steering committee, representing Canadian organizations that deal with patient advocacy and policy with regards to food allergy. Transcripts were coded and organized by themes developed both deductively and inductively. Steering committee members indicated a clear sense that scientists and knowledge-users are equally responsible for the translation of knowledge into action and the importance of consulting and integrating knowledge-users throughout research. Overall, these knowledge-users have very high expectations for the GET-FACTS IKT process; they feel that this model of doing science will create better scientists (e.g. improve communication skills) and make the resulting science more useful and relevant; indeed, they reported that this model of knowledge creation can be paradigm shifting. This study highlights both the unique contributions that knowledge-users can offer to knowledge creation as well as the challenges of trying to unify members from such different communities (policy/advocacy and biomedical science). While our steering committee has a strong conceptual grasp on IKT and vision for their contributions, execution is not without challenges. There remains a real need to develop more touch points and opportunities for collaboration if true integration is to be achieved. Despite the obstacles, the GET-FACTS IKT model represents a new approach to knowledge creation in Canadian biomedical research and can help foster a culture of openness to participant involvement.
Pressing needs of biomedical text mining in biocuration and beyond: opportunities and challenges.
Singhal, Ayush; Leaman, Robert; Catlett, Natalie; Lemberger, Thomas; McEntyre, Johanna; Polson, Shawn; Xenarios, Ioannis; Arighi, Cecilia; Lu, Zhiyong
2016-01-01
Text mining in the biomedical sciences is rapidly transitioning from small-scale evaluation to large-scale application. In this article, we argue that text-mining technologies have become essential tools in real-world biomedical research. We describe four large scale applications of text mining, as showcased during a recent panel discussion at the BioCreative V Challenge Workshop. We draw on these applications as case studies to characterize common requirements for successfully applying text-mining techniques to practical biocuration needs. We note that system 'accuracy' remains a challenge and identify several additional common difficulties and potential research directions including (i) the 'scalability' issue due to the increasing need of mining information from millions of full-text articles, (ii) the 'interoperability' issue of integrating various text-mining systems into existing curation workflows and (iii) the 'reusability' issue on the difficulty of applying trained systems to text genres that are not seen previously during development. We then describe related efforts within the text-mining community, with a special focus on the BioCreative series of challenge workshops. We believe that focusing on the near-term challenges identified in this work will amplify the opportunities afforded by the continued adoption of text-mining tools. Finally, in order to sustain the curation ecosystem and have text-mining systems adopted for practical benefits, we call for increased collaboration between text-mining researchers and various stakeholders, including researchers, publishers and biocurators. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.
Galli, Joakim; Oelrich, Johan; Taussig, Michael J.; Andreasson, Ulrika; Ortega-Paino, Eva; Landegren, Ulf
2015-01-01
We report the development of a new database of technology services and products for analysis of biobank samples in biomedical research. BARCdb, the Biobanking Analysis Resource Catalogue (http://www.barcdb.org), is a freely available web resource, listing expertise and molecular resource capabilities of research centres and biotechnology companies. The database is designed for researchers who require information on how to make best use of valuable biospecimens from biobanks and other sample collections, focusing on the choice of analytical techniques and the demands they make on the type of samples, pre-analytical sample preparation and amounts needed. BARCdb has been developed as part of the Swedish biobanking infrastructure (BBMRI.se), but now welcomes submissions from service providers throughout Europe. BARCdb can help match resource providers with potential users, stimulating transnational collaborations and ensuring compatibility of results from different labs. It can promote a more optimal use of European resources in general, both with respect to standard and more experimental technologies, as well as for valuable biobank samples. This article describes how information on service and reagent providers of relevant technologies is made available on BARCdb, and how this resource may contribute to strengthening biomedical research in academia and in the biotechnology and pharmaceutical industries. PMID:25336620
Davidson, Pamela L; Maccalla, Nicole M G; Afifi, Abdelmonem A; Guerrero, Lourdes; Nakazono, Terry T; Zhong, Shujin; Wallace, Steven P
2017-01-01
The National Institutes of Health (NIH) funds training programs to increase the numbers and skills of scientists who obtain NIH research grants, but few programs have been rigorously evaluated. The sizeable recent NIH investment in developing programs to increase the diversity of the NIH-funded workforce, implemented through the Diversity Program Consortium (DPC), is unusual in that it also funds a Consortium-wide evaluation plan, which spans the activities of the 10 BUilding Infrastructure Leading to Diversity (BUILD) awardees and the National Research Mentoring Network (NRMN). The purpose of this article is to describe the evaluation design and innovations of the BUILD Program on students, faculty, and institutions of the 10 primarily undergraduate BUILD sites. Our approach to this multi-methods quasi-experimental longitudinal evaluation emphasizes stakeholder participation and collaboration. The evaluation plan specifies the major evaluation questions and key short- to long-term outcome measures (or Hallmarks of Success). The Coordination and Evaluation Center (CEC) embarked on a comprehensive evaluation strategy by developing a set of logic models that incorporate the Hallmarks of Success and other outcomes that were collaboratively identified by the DPC. Data were collected from each BUILD site through national surveys from the Higher Education Research Institute at UCLA (HERI), annual followup surveys that align with the HERI instruments, site visits and case studies, program encounter data ("tracker" data), and institutional data. The analytic approach involves comparing changes in Hallmarks (key outcomes) within institutions for biomedical students who participated versus those who did not participate in the BUILD program at each institution, as well as between institution patterns of biomedical students at the BUILD sites, and matched institutions that were not BUILD grantees. Case studies provide insights into the institutionalization of these new programs and help to explain the processes that lead to the observed outcomes. Ultimately, the results of the consortium-wide evaluation will be used to inform national policy in higher education and will provide relevant examples of institutional and educational programmatic changes required to diversify the biomedical workforce in the USA.
McCreath, Heather E; Norris, Keith C; Calderόn, Nancy E; Purnell, Dawn L; Maccalla, Nicole M G; Seeman, Teresa E
2017-01-01
The National Institutes of Health (NIH)-funded Diversity Program Consortium (DPC) includes a Coordination and Evaluation Center (CEC) to conduct a longitudinal evaluation of the two signature, national NIH initiatives - the Building Infrastructure Leading to Diversity (BUILD) and the National Research Mentoring Network (NRMN) programs - designed to promote diversity in the NIH-funded biomedical, behavioral, clinical, and social sciences research workforce. Evaluation is central to understanding the impact of the consortium activities. This article reviews the role and function of the CEC and the collaborative processes and achievements critical to establishing empirical evidence regarding the efficacy of federally-funded, quasi-experimental interventions across multiple sites. The integrated DPC evaluation is particularly significant because it is a collaboratively developed Consortium Wide Evaluation Plan and the first hypothesis-driven, large-scale systemic national longitudinal evaluation of training programs in the history of NIH/National Institute of General Medical Sciences. To guide the longitudinal evaluation, the CEC-led literature review defined key indicators at critical training and career transition points - or Hallmarks of Success. The multidimensional, comprehensive evaluation of the impact of the DPC framed by these Hallmarks is described. This evaluation uses both established and newly developed common measures across sites, and rigorous quasi-experimental designs within novel multi-methods (qualitative and quantitative). The CEC also promotes shared learning among Consortium partners through working groups and provides technical assistance to support high-quality process and outcome evaluation internally of each program. Finally, the CEC is responsible for developing high-impact dissemination channels for best practices to inform peer institutions, NIH, and other key national and international stakeholders. A strong longitudinal evaluation across programs allows the summative assessment of outcomes, an understanding of factors common to interventions that do and do not lead to success, and elucidates the processes developed for data collection and management. This will provide a framework for the assessment of other training programs and have national implications in transforming biomedical research training.
Ingham, Karen
2010-01-01
The correspondences and disparities between how artists and anatomists view the body have historically been a source of creative collaboration, but how is this imaginative interdisciplinarity sustained and expressed in a contemporary context? In this review I suggest that contemporary artists engaging with the body, and the corresponding biomedical and architectural spaces where the body is investigated, are engendering innovative and challenging artworks that stimulate new relationships between art and anatomy. Citing a number of examples from key artists and referencing some of my own practice-based research, I posit that creative cross-fertilization provokes a discourse between mediated public perceptions of disease, death and the disposal of morbid remains, and the contemporary reality of biomedical practice. This is a dialogue that is complex, rich and diverse, and ultimately rewarding for both art and anatomy. PMID:19929908
Rebholz-Schuhmann, Dietrich; Grabmüller, Christoph; Kavaliauskas, Silvestras; Croset, Samuel; Woollard, Peter; Backofen, Rolf; Filsell, Wendy; Clark, Dominic
2014-07-01
In the Semantic Enrichment of the Scientific Literature (SESL) project, researchers from academia and from life science and publishing companies collaborated in a pre-competitive way to integrate and share information for type 2 diabetes mellitus (T2DM) in adults. This case study exposes benefits from semantic interoperability after integrating the scientific literature with biomedical data resources, such as UniProt Knowledgebase (UniProtKB) and the Gene Expression Atlas (GXA). We annotated scientific documents in a standardized way, by applying public terminological resources for diseases and proteins, and other text-mining approaches. Eventually, we compared the genetic causes of T2DM across the data resources to demonstrate the benefits from the SESL triple store. Our solution enables publishers to distribute their content with little overhead into remote data infrastructures, such as into any Virtual Knowledge Broker. Copyright © 2013. Published by Elsevier Ltd.
The caBIG Terminology Review Process
Cimino, James J.; Hayamizu, Terry F.; Bodenreider, Olivier; Davis, Brian; Stafford, Grace A.; Ringwald, Martin
2009-01-01
The National Cancer Institute (NCI) is developing an integrated biomedical informatics infrastructure, the cancer Biomedical Informatics Grid (caBIG®), to support collaboration within the cancer research community. A key part of the caBIG architecture is the establishment of terminology standards for representing data. In order to evaluate the suitability of existing controlled terminologies, the caBIG Vocabulary and Data Elements Workspace (VCDE WS) working group has developed a set of criteria that serve to assess a terminology's structure, content, documentation, and editorial process. This paper describes the evolution of these criteria and the results of their use in evaluating four standard terminologies: the Gene Ontology (GO), the NCI Thesaurus (NCIt), the Common Terminology for Adverse Events (known as CTCAE), and the laboratory portion of the Logical Objects, Identifiers, Names and Codes (LOINC). The resulting caBIG criteria are presented as a matrix that may be applicable to any terminology standardization effort. PMID:19154797
Ingham, Karen
2010-02-01
The correspondences and disparities between how artists and anatomists view the body have historically been a source of creative collaboration, but how is this imaginative interdisciplinarity sustained and expressed in a contemporary context? In this review I suggest that contemporary artists engaging with the body, and the corresponding biomedical and architectural spaces where the body is investigated, are engendering innovative and challenging artworks that stimulate new relationships between art and anatomy. Citing a number of examples from key artists and referencing some of my own practice-based research, I posit that creative cross-fertilization provokes a discourse between mediated public perceptions of disease, death and the disposal of morbid remains, and the contemporary reality of biomedical practice. This is a dialogue that is complex, rich and diverse, and ultimately rewarding for both art and anatomy.
An informatics research agenda to support precision medicine: seven key areas
Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R
2016-01-01
The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM’s vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. PMID:27107452
Kibbe, Warren A; Arze, Cesar; Felix, Victor; Mitraka, Elvira; Bolton, Evan; Fu, Gang; Mungall, Christopher J; Binder, Janos X; Malone, James; Vasant, Drashtti; Parkinson, Helen; Schriml, Lynn M
2015-01-01
The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years. These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. This will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Nebeker, Camille; Murray, Kate; Holub, Christina; Haughton, Jessica; Arredondo, Elva M
2017-06-28
The rapid expansion of direct-to-consumer wearable fitness products (eg, Flex 2, Fitbit) and research-grade sensors (eg, SenseCam, Microsoft Research; activPAL, PAL Technologies) coincides with new opportunities for biomedical and behavioral researchers. Underserved communities report among the highest rates of chronic disease and could benefit from mobile technologies designed to facilitate awareness of health behaviors. However, new and nuanced ethical issues are introduced with new technologies, which are challenging both institutional review boards (IRBs) and researchers alike. Given the potential benefits of such technologies, ethical and regulatory concerns must be carefully considered. Our aim was to understand potential barriers to using wearable sensors among members of Latino, Somali and Native Hawaiian Pacific Islander (NHPI) communities. These ethnic groups report high rates of disparate health conditions and could benefit from wearable technologies that translate the connection between physical activity and desired health outcomes. Moreover, these groups are traditionally under-represented in biomedical research. We independently conducted formative research with individuals from southern California, who identified as Latino, Somali, or Native Hawaiian Pacific Islander (NHPI). Data collection methods included survey (NHPI), interview (Latino), and focus group (Somali) with analysis focusing on cross-cutting themes. The results pointed to gaps in informed consent, challenges to data management (ie, participant privacy, data confidentiality, and data sharing conventions), social implications (ie, unwanted attention), and legal risks (ie, potential deportation). Results shed light on concerns that may escalate the digital divide. Recommendations include suggestions for researchers and IRBs to collaborate with a goal of developing meaningful and ethical practices that are responsive to diverse research participants who can benefit from technology-enabled research methods. ClinicalTrials.gov NCT02505165; https://clinicaltrials.gov/ct2/show/NCT02505165 (Archived by WebCite at http://www.Webcitation.org/6r9ZSUgoT). ©Camille Nebeker, Kate Murray, Christina Holub, Jessica Haughton, Elva M Arredondo. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 28.06.2017.
2017-01-01
Background The rapid expansion of direct-to-consumer wearable fitness products (eg, Flex 2, Fitbit) and research-grade sensors (eg, SenseCam, Microsoft Research; activPAL, PAL Technologies) coincides with new opportunities for biomedical and behavioral researchers. Underserved communities report among the highest rates of chronic disease and could benefit from mobile technologies designed to facilitate awareness of health behaviors. However, new and nuanced ethical issues are introduced with new technologies, which are challenging both institutional review boards (IRBs) and researchers alike. Given the potential benefits of such technologies, ethical and regulatory concerns must be carefully considered. Objective Our aim was to understand potential barriers to using wearable sensors among members of Latino, Somali and Native Hawaiian Pacific Islander (NHPI) communities. These ethnic groups report high rates of disparate health conditions and could benefit from wearable technologies that translate the connection between physical activity and desired health outcomes. Moreover, these groups are traditionally under-represented in biomedical research. Methods We independently conducted formative research with individuals from southern California, who identified as Latino, Somali, or Native Hawaiian Pacific Islander (NHPI). Data collection methods included survey (NHPI), interview (Latino), and focus group (Somali) with analysis focusing on cross-cutting themes. Results The results pointed to gaps in informed consent, challenges to data management (ie, participant privacy, data confidentiality, and data sharing conventions), social implications (ie, unwanted attention), and legal risks (ie, potential deportation). Conclusions Results shed light on concerns that may escalate the digital divide. Recommendations include suggestions for researchers and IRBs to collaborate with a goal of developing meaningful and ethical practices that are responsive to diverse research participants who can benefit from technology-enabled research methods. Trial Registration ClinicalTrials.gov NCT02505165; https://clinicaltrials.gov/ct2/show/NCT02505165 (Archived by WebCite at http://www.Webcitation.org/6r9ZSUgoT) PMID:28659258
Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Hasbrook, Pete
2016-01-01
The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging systems mounted on ISS as well as other orbiting spacecraft to improve our understanding of the Earth and its climate. NASA and Roscosmos continue to encourage international scientific cooperation and expanded use of the ISS Laboratory. "Long-term", larger collaborations will achieve scientific objectives that no single national science team or agency can achieve on its own. The joint accomplishments achieved so far have paved the way for a stronger international scientific community and improved results and benefits from ISS.
The joint cardiovascular research profile of the university medical centres in the Netherlands.
van Welie, S D; van Leeuwen, T N; Bouma, C J; Klaassen, A B M
2016-05-01
Biomedical scientific research in the Netherlands has a good reputation worldwide. Quantitatively, the university medical centres (UMCs) deliver about 40 % of the total number of scientific publications of this research. Analysis of the bibliometric output data of the UMCs shows that their research is highly cited. These output-based analyses also indicate the high impact of cardiovascular scientific research in these centres, illustrating the strength of this research in the Netherlands. A set of six joint national cardiovascular research topics selected by the UMCs can be recognised. At the top are heart failure, rhythm disorder research and atherosclerosis. National collaboration of top scientists in consortia in these three areas is successful in acquiring funding of large-scale programs. Our observations suggest that funding national consortia of experts focused on a few selected research topics may increase the international competitiveness of cardiovascular research in the Netherlands.
Trustworthy Research Institutions: The Challenging Case of Studying the Genetics of Intelligence.
Johnston, Josephine; Banerjee, Mohini P; Geller, Gail
2015-01-01
It is simple enough to claim that academic research institutions ought to be trustworthy. Building the culture and taking the steps necessary to earn and preserve institutional trust are, however, complex processes. The experience motivating this special report--a request for the Center for Talented Youth at Johns Hopkins University to collaborate on research regarding the genetics of intelligence--illustrates how ensuring institutional trustworthiness can be in tension with a commitment to fostering research. In this essay, we explore the historical context for biomedical research institutions like Johns Hopkins that have worked to build local community trust. In so doing, we consider how the example under focus in this special report can lead to greater consideration of how research institutions balance fostering trust with their other commitments. © 2015 The Hastings Center.
ERIC Educational Resources Information Center
Walton, Kristen L. W.; Baker, Jason C.
2009-01-01
Communication of scientific and medical information and collaborative work are important skills for students pursuing careers in health professions and other biomedical sciences. In addition, group work and active learning can increase student engagement and analytical skills. Students in our public health microbiology class were required to work…
Supporting Emerging Disciplines with e-Communities: Needs and Benefits
Butler, Brian S; Schleyer, Titus K; Weiss, Patricia M; Wang, Xiaoqing; Thyvalikakath, Thankam P; Hatala, Courtney L; Naderi, Reza A
2008-01-01
Background Science has developed from a solitary pursuit into a team-based collaborative activity and, more recently, into a multidisciplinary research enterprise. The increasingly collaborative character of science, mandated by complex research questions and problems that require many competencies, requires that researchers lower the barriers to the creation of collaborative networks of experts, such as communities of practice (CoPs). Objectives The aim was to assess the information needs of prospective members of a CoP in an emerging field, dental informatics, and to evaluate their expectations of an e-community in order to design a suitable electronic infrastructure. Methods A Web-based survey instrument was designed and administered to 2768 members of the target audience. Benefit expectations were analyzed for their relationship to (1) the respondents’ willingness to participate in the CoP and (2) their involvement in funded research. Two raters coded the respondents’ answers regarding expected benefits using a 14-category coding scheme (Kappa = 0.834). Results The 256 respondents (11.1% response rate) preferred electronic resources over traditional print material to satisfy their information needs. The most frequently expected benefits from participation in the CoP were general information (85% of respondents), peer networking (31.1%), and identification of potential collaborators and/or research opportunities (23.2%). Conclusions The competitive social-information environment in which CoPs are embedded presents both threats to sustainability and opportunities for greater integration and impact. CoP planners seeking to support the development of emerging biomedical science disciplines should blend information resources, social search and filtering, and visibility mechanisms to provide a portfolio of social and information benefits. Assessing benefit expectations and alternatives provides useful information for CoP planners seeking to prioritize community infrastructure development and encourage participation. PMID:18653443
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Kisailus; Lara Estroff; Himadri S. Gupta
The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. Thismore » symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.« less
Johns, Margaret A; Meyerkord-Belton, Cheryl L; Du, Yuhong; Fu, Haian
2014-03-01
The Emory Chemical Biology Discovery Center (ECBDC) aims to accelerate high throughput biology and translation of biomedical research discoveries into therapeutic targets and future medicines by providing high throughput research platforms to scientific collaborators worldwide. ECBDC research is focused at the interface of chemistry and biology, seeking to fundamentally advance understanding of disease-related biology with its HTS/HCS platforms and chemical tools, ultimately supporting drug discovery. Established HTS/HCS capabilities, university setting, and expertise in diverse assay formats, including protein-protein interaction interrogation, have enabled the ECBDC to contribute to national chemical biology efforts, empower translational research, and serve as a training ground for young scientists. With these resources, the ECBDC is poised to leverage academic innovation to advance biology and therapeutic discovery.
The EuroPhysiome, STEP and a roadmap for the virtual physiological human.
Fenner, J W; Brook, B; Clapworthy, G; Coveney, P V; Feipel, V; Gregersen, H; Hose, D R; Kohl, P; Lawford, P; McCormack, K M; Pinney, D; Thomas, S R; Van Sint Jan, S; Waters, S; Viceconti, M
2008-09-13
Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.
Beak, Carla Pereira; Chargé, Sophie B; Isasi, Rosario; Knoppers, Bartha M
2015-05-01
In 2013 Canadian Blood Services (CBS) launched the National Public Cord Blood Bank (NPCBB), a program to collect, process, test, and store cord blood units donated for use in transplantation. A key component of the creation of the NPCBB is the establishment of a program that enables cord blood not suitable for banking or transplantation to be used for biomedical research purposes. Along with the development of processes and policies to manage the NPCBB and the cord blood research program, CBS-in collaboration with researchers from the Stem Cell Network-have also developed educational tools to provide relevant information for target audiences to aid implementation and operation. We describe here one of these tools, the REB Primer on Research and Cord Blood Donation (the Primer), which highlights key ethical and legal considerations and identifies Canadian documents that are relevant to the use of cord blood in biomedical research. The Primer also introduces the NPCBB and describes the systems CBS is implementing to address ethical issues. The Primer is intended to assist research ethics boards in evaluating the ethical acceptability of research protocols, to facilitate harmonized decision-making by providing a common reference, and to highlight the role of research ethics boards in governance frameworks. With the Primer we hope to illustrate how the development of such educational tools can facilitate the ethical implementation and governance of programs related to stem cell research in Canada and abroad.
Biomedical Risk Factors of Achilles Tendinopathy in Physically Active People: a Systematic Review.
Kozlovskaia, Maria; Vlahovich, Nicole; Ashton, Kevin J; Hughes, David C
2017-12-01
Achilles tendinopathy is the most prevalent tendon disorder in people engaged in running and jumping sports. Aetiology of Achilles tendinopathy is complex and requires comprehensive research of contributing risk factors. There is relatively little research focussing on potential biomedical risk factors for Achilles tendinopathy. The purpose of this systematic review is to identify studies and summarise current knowledge of biomedical risk factors of Achilles tendinopathy in physically active people. Research databases were searched for relevant articles followed by assessment in accordance with PRISMA statement and standards of Cochrane collaboration. Levels of evidence and quality assessment designation were implemented in accordance with OCEBM levels of evidence and Newcastle-Ottawa Quality Assessment Scale, respectively. A systematic review of the literature identified 22 suitable articles. All included studies had moderate level of evidence (2b) with the Newcastle-Ottawa score varying between 6 and 9. The majority (17) investigated genetic polymorphisms involved in tendon structure and homeostasis and apoptosis and inflammation pathways. Overweight as a risk factor of Achilles tendinopathy was described in five included studies that investigated non-genetic factors. COL5A1 genetic variants were the most extensively studied, particularly in association with genetic variants in the genes involved in regulation of cell-matrix interaction in tendon and matrix homeostasis. It is important to investigate connections and pathways whose interactions might be disrupted and therefore alter collagen structure and lead to the development of pathology. Polymorphisms in genes involved in apoptosis and inflammation, and Achilles tendinopathy did not show strong association and, however, should be considered for further investigation. This systematic review suggests that biomedical risk factors are an important consideration in the future study of propensity to the development of Achilles tendinopathy. The presence of certain medical comorbidities and genetic markers should be considered when contemplating the aetiology of Achilles tendinopathy. Further elucidation of biomedical risk factors will aid in the understanding of tendon pathology and patient risk, thereby informing prevention and management strategies for Achilles tendinopathy. PROSPERO CRD42016036558.
Foton-M2 Russian/US Biology Experiments - Development, Implementation, and Operations
NASA Technical Reports Server (NTRS)
Ilyin, Eugene A.; Tairbekov, Murad G.; Vasques, Marilyn F.; Skidmore, Michael G.
2006-01-01
The Russian Foton-M2 unmanned research satellite launched from Baikonur, Kazakhstan on May 31, 2005. The satellite was recovered 16 days later in northern Kazakhstan near Kustanay. Prior to this mission, the long history of joint NASA/IMBP research using Russian unmanned spacecraft was in danger of withering due to inactivity. This cooperative history included 9 Bion Russian spaceflights in the period from 1975 to 1997 where NASA had participated first as a guest and finally as a contractual partner. In an effort to reinvigorate this long-standing collaboration, the Institute for Biomedical Problems (IMBP) invited NASA participation in Russian experiments that had been manifested to fly on the Foton-M2 mission.
The Haiti research-based model of international public health collaboration: the GHESKIO Centers.
Pape, Jean W; Severe, Patrice D; Fitzgerald, Daniel W; Deschamps, Marie M; Joseph, Patrice; Riviere, Cynthia; Rouzier, Vanessa; Johnson, Warren D
2014-01-01
For 3 decades, GHESKIO (the Groupe Haitien d'Etude du Sarcome de Kaposi et des Infections Opportunistes), the Haitian Ministry of Health, and Weill Cornell have pursued a tripartite mission of service, training, and translational research. The initial focus was on AIDS and tuberculosis. The mission has expanded to include the local community and now provides maternal-child health, family planning, cancer prevention and treatment, immunizations (including human papillomavirus, cholera), and primary education through vocational and microcredit programs. Outcome measures include a reduction in HIV prevalence from 6.2% to the current 2.2%, extensive tuberculosis and cholera prevention and treatment programs, and national training programs for biomedical and community health workers.
A Suggested Model for Building Robust Biomedical Implants Registries.
Aloufi, Bader; Alshagathrah, Fahad; Househ, Mowafa
2017-01-01
Registries are an essential source of information for clinical and non-clinical decision-makers; because they provide evidence for post-market clinical follow-up and early detection of safety signals for biomedical implants. Yet, many of todays biomedical implants registries are facing a variety of challenges relating to a poorly designed dataset, the reliability of inputted data and low clinician and patient participation. The purpose of this paper is to present a best practice model for the implementation and use of biomedical implants registries to monitor the safety and effectiveness of implantable medical devices. Based on a literature review and an analysis of multiple national relevant registries, we identified six factors that address contemporary challenges and are believed to be the keys for building a successful biomedical implants registry, which include: sustainable development, international comparability, data reliability, purposeful design, ease of patient participation, and collaborative development at the national level.
An informatics research agenda to support precision medicine: seven key areas.
Tenenbaum, Jessica D; Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R
2016-07-01
The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM's vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
NASA Technical Reports Server (NTRS)
Shirazi, Yasaman; Choi, S.; Harris, C.; Gong, C.; Fisher, R. J.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. K.
2017-01-01
Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about common human diseases. Together, the hardware improvements (enrichment, telemetry sensors, cameras), new capabilities (live animal return), and experience that the Rodent Research team has gained working with principal investigator teams and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical research objectives.
Providing traceability for neuroimaging analyses.
McClatchey, Richard; Branson, Andrew; Anjum, Ashiq; Bloodsworth, Peter; Habib, Irfan; Munir, Kamran; Shamdasani, Jetendr; Soomro, Kamran
2013-09-01
With the increasingly digital nature of biomedical data and as the complexity of analyses in medical research increases, the need for accurate information capture, traceability and accessibility has become crucial to medical researchers in the pursuance of their research goals. Grid- or Cloud-based technologies, often based on so-called Service Oriented Architectures (SOA), are increasingly being seen as viable solutions for managing distributed data and algorithms in the bio-medical domain. For neuroscientific analyses, especially those centred on complex image analysis, traceability of processes and datasets is essential but up to now this has not been captured in a manner that facilitates collaborative study. Few examples exist, of deployed medical systems based on Grids that provide the traceability of research data needed to facilitate complex analyses and none have been evaluated in practice. Over the past decade, we have been working with mammographers, paediatricians and neuroscientists in three generations of projects to provide the data management and provenance services now required for 21st century medical research. This paper outlines the finding of a requirements study and a resulting system architecture for the production of services to support neuroscientific studies of biomarkers for Alzheimer's disease. The paper proposes a software infrastructure and services that provide the foundation for such support. It introduces the use of the CRISTAL software to provide provenance management as one of a number of services delivered on a SOA, deployed to manage neuroimaging projects that have been studying biomarkers for Alzheimer's disease. In the neuGRID and N4U projects a Provenance Service has been delivered that captures and reconstructs the workflow information needed to facilitate researchers in conducting neuroimaging analyses. The software enables neuroscientists to track the evolution of workflows and datasets. It also tracks the outcomes of various analyses and provides provenance traceability throughout the lifecycle of their studies. As the Provenance Service has been designed to be generic it can be applied across the medical domain as a reusable tool for supporting medical researchers thus providing communities of researchers for the first time with the necessary tools to conduct widely distributed collaborative programmes of medical analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Pharmacovigilance and Biomedical Informatics: A Model for Future Development.
Beninger, Paul; Ibara, Michael A
2016-12-01
The discipline of pharmacovigilance is rooted in the aftermath of the thalidomide tragedy of 1961. It has evolved as a result of collaborative efforts by many individuals and organizations, including physicians, patients, Health Authorities, universities, industry, the World Health Organization, the Council for International Organizations of Medical Sciences, and the International Conference on Harmonisation. Biomedical informatics is rooted in technologically based methodologies and has evolved at the speed of computer technology. The purpose of this review is to bring a novel lens to pharmacovigilance, looking at the evolution and development of the field of pharmacovigilance from the perspective of biomedical informatics, with the explicit goal of providing a foundation for discussion of the future direction of pharmacovigilance as a discipline. For this review, we searched [publication trend for the log 10 value of the numbers of publications identified in PubMed] using the key words [informatics (INF), pharmacovigilance (PV), phar-macovigilance þ informatics (PV þ INF)], for [study types] articles published between [1994-2015]. We manually searched the reference lists of identified articles for additional information. Biomedical informatics has made significant contributions to the infrastructural development of pharmacovigilance. However, there has not otherwise been a systematic assessment of the role of biomedical informatics in enhancing the field of pharmacovigilance, and there has been little cross-discipline scholarship. Rapidly developing innovations in biomedical informatics pose a challenge to pharmacovigilance in finding ways to include new sources of safety information, including social media, massively linked databases, and mobile and wearable wellness applications and sensors. With biomedical informatics as a lens, it is evident that certain aspects of pharmacovigilance are evolving more slowly. However, the high levels of mutual interest in both fields and intense global and economic external pressures offer opportunities for a future of closer collaboration. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Supplementing Resident Research Funding Through a Partnership With Local Industry.
Skube, Steven J; Arsoniadis, Elliot G; Jahansouz, Cyrus; Novitsky, Sherri; Chipman, Jeffrey G
2018-01-17
To develop a model for the supplementation of resident research funding through a resident-hosted clinical immersion with local industry. Designated research residents hosted multiple groups of engineers and business professionals from local industry in general surgery-focused clinical immersion weeks. The participants in these week-long programs are educated about general surgery and brought to the operating room to observe a variety of surgeries. This study was performed at the University of Minnesota, in Minneapolis, Minnesota, at a tertiary medical center. Ten designated research residents hosted general surgery immersion programs. Fifty-seven engineers and business professionals from 5 different local biomedical firms have participated in this program. General surgery research residents (in collaboration with the University of Minnesota's Institute for Engineering in Medicine) have hosted 9 clinical immersion programs since starting the collaborative in 2015. Immersion participant response to the experiences was very positive. Two full-time resident research positions can be funded annually through participation in this program. With decreasing funding available for surgical research, particularly resident research, innovative ways to fund resident research are needed. The general surgery clinical immersion program at the University of Minnesota has proven its value as a supplement for resident research funding and may be a sustainable model for the future. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Health Maintenance System (HMS) Hardware Research, Design, and Collaboration
NASA Technical Reports Server (NTRS)
Gonzalez, Stefanie M.
2010-01-01
The Space Life Sciences division (SLSD) concentrates on optimizing a crew member's health. Developments are translated into innovative engineering solutions, research growth, and community awareness. This internship incorporates all those areas by targeting various projects. The main project focuses on integrating clinical and biomedical engineering principles to design, develop, and test new medical kits scheduled for launch in the Spring of 2011. Additionally, items will be tagged with Radio Frequency Interference Devices (RFID) to keep track of the inventory. The tags will then be tested to optimize Radio Frequency feed and feed placement. Research growth will occur with ground based experiments designed to measure calcium encrusted deposits in the International Space Station (ISS). The tests will assess the urine calcium levels with Portable Clinical Blood Analyzer (PCBA) technology. If effective then a model for urine calcium will be developed and expanded to microgravity environments. To support collaboration amongst the subdivisions of SLSD the architecture of the Crew Healthcare Systems (CHeCS) SharePoint site has been redesigned for maximum efficiency. Community collaboration has also been established with the University of Southern California, Dept. of Aeronautical Engineering and the Food and Drug Administration (FDA). Hardware disbursements will transpire within these communities to support planetary surface exploration and to serve as an educational tool demonstrating how ground based medicine influenced the technological development of space hardware.
Musselwhite, Laura W; Maciag, Karolina; Lankowski, Alex; Gretes, Michael C; Wellems, Thomas E; Tavera, Gloria; Goulding, Rebecca E; Guillen, Ethan
2012-01-01
Universities Allied for Essential Medicines organized its first Neglected Diseases and Innovation Symposium to address expanding roles of public sector research institutions in innovation in research and development of biomedical technologies for treatment of diseases, particularly neglected tropical diseases. Universities and other public research institutions are increasingly integrated into the pharmaceutical innovation system. Academic entities now routinely undertake robust high-throughput screening and medicinal chemistry research programs to identify lead compounds for small molecule drugs and novel drug targets. Furthermore, product development partnerships are emerging between academic institutions, non-profit entities, and biotechnology and pharmaceutical companies to create diagnostics, therapies, and vaccines for diseases of the poor. With not for profit mission statements, open access publishing standards, open source platforms for data sharing and collaboration, and a shift in focus to more translational research, universities and other public research institutions are well-placed to accelerate development of medical technologies, particularly for neglected tropical diseases.
IT Strategic Planning Workshops Develop Long-Term Goals | Poster
As part of NCI’s Research IT Strategic Planning efforts, a workshop was held on the NIH main campus in June. The main purpose of the workshop was to discuss ways to better integrate IT and informatics throughout NCI, and develop specific, high-level goals and related objectives that will drive the direction of IT and informatics support over the next five years. The initiative to integrate NCI’s IT and informatics is a collaboration between the Center for Biomedical Informatics and Information Technology (CBIIT), Office of Scientific Operations, Data Management Services, and the IT Operations Group.
A histological ontology of the human cardiovascular system.
Mazo, Claudia; Salazar, Liliana; Corcho, Oscar; Trujillo, Maria; Alegre, Enrique
2017-10-02
In this paper, we describe a histological ontology of the human cardiovascular system developed in collaboration among histology experts and computer scientists. The histological ontology is developed following an existing methodology using Conceptual Models (CMs) and validated using OOPS!, expert evaluation with CMs, and how accurately the ontology can answer the Competency Questions (CQ). It is publicly available at http://bioportal.bioontology.org/ontologies/HO and https://w3id.org/def/System . The histological ontology is developed to support complex tasks, such as supporting teaching activities, medical practices, and bio-medical research or having natural language interactions.
Sobo, Elisa J
2017-10-01
Cannabis is an increasingly sought-after remedy for US children with intractable (biomedically uncontrollable) epilepsy. However, like other complementary-alternative medicine (CAM) modalities, and particularly as a federally illegal, stigmatized substance, it is unsanctioned by mainstream medicine. Parents are largely on their own when it comes to learning about, procuring, dispensing, and monitoring treatments. Exploring how they manage is crucial to better assist them. Moreover, it can illuminate how 'research' done on the ground by laypeople variously disrupts and reinforces lay-expert and science-non-science divides. To those ends, in 2016, 25 Southern California parents who used, had used, or sought to use cannabis pediatrically for epilepsy/seizures were interviewed regarding their evidentiary standards, research methods, and aims when trying the drug. Parents generally described their work as experimentation; they saw their efforts as adhering to authorized scientific practices and standards, and as contributing to the authorized medical cannabis knowledge base. Findings subverted assumptions, based on an outdated stereotype of CAM, that cannabis-using parents do not believe in biomedicine. Indeed, parents' desire for their children's biomedical demarginalization, combined with biomedical dependency and a high caregiver burden, fueled a collaborative stance. Implications for understanding the boundaries of science are explored, as are norms for parent agency as ill children's care managers, radicalization among people affected by contested illnesses, and the future of 'medical marijuana.' Copyright © 2017 Elsevier Ltd. All rights reserved.
An Integrated Framework for Gender Equity in Academic Medicine.
Westring, Alyssa; McDonald, Jennifer M; Carr, Phyllis; Grisso, Jeane Ann
2016-08-01
In 2008, the National Institutes of Health funded 14 R01 grants to study causal factors that promote and support women's biomedical careers. The Research Partnership on Women in Biomedical Careers, a multi-institutional collaboration of the investigators, is one product of this initiative.A comprehensive framework is needed to address change at many levels-department, institution, academic community, and beyond-and enable gender equity in the development of successful biomedical careers. The authors suggest four distinct but interrelated aspects of culture conducive to gender equity: equal access to resources and opportunities, minimizing unconscious gender bias, enhancing work-life balance, and leadership engagement. They review the collection of eight articles in this issue, which each address one or more of the four dimensions of culture. The articles suggest that improving mentor-mentee fit, coaching grant reviewers on unconscious bias, and providing equal compensation and adequate resources for career development will contribute positively to gender equity in academic medicine.Academic medicine must adopt an integrated perspective on culture for women and acknowledge the multiple facets essential to gender equity. To effect change, culture must be addressed both within and beyond academic health centers (AHCs). Leaders within AHCs must examine their institutions' processes, resources, and assessment for fairness and transparency; mobilize personnel and financial resources to implement evidence-based initiatives; and assign accountability for providing transparent progress assessments. Beyond AHCs, organizations must examine their operations and implement change to ensure parity of funding, research, and leadership opportunities as well as transparency of assessment and accreditation.
Sahota, Michael; Leung, Betty; Dowdell, Stephanie; Velan, Gary M
2016-12-12
Students in biomedical disciplines require understanding of normal and abnormal microscopic appearances of human tissues (histology and histopathology). For this purpose, practical classes in these disciplines typically use virtual microscopy, viewing digitised whole slide images in web browsers. To enhance engagement, tools have been developed to enable individual or collaborative annotation of whole slide images within web browsers. To date, there have been no studies that have critically compared the impact on learning of individual and collaborative annotations on whole slide images. Junior and senior students engaged in Pathology practical classes within Medical Science and Medicine programs participated in cross-over trials of individual and collaborative annotation activities. Students' understanding of microscopic morphology was compared using timed online quizzes, while students' perceptions of learning were evaluated using an online questionnaire. For senior medical students, collaborative annotation of whole slide images was superior for understanding key microscopic features when compared to individual annotation; whilst being at least equivalent to individual annotation for junior medical science students. Across cohorts, students agreed that the annotation activities provided a user-friendly learning environment that met their flexible learning needs, improved efficiency, provided useful feedback, and helped them to set learning priorities. Importantly, these activities were also perceived to enhance motivation and improve understanding. Collaborative annotation improves understanding of microscopic morphology for students with sufficient background understanding of the discipline. These findings have implications for the deployment of annotation activities in biomedical curricula, and potentially for postgraduate training in Anatomical Pathology.
Bakal, Gokhan; Talari, Preetham; Kakani, Elijah V; Kavuluru, Ramakanth
2018-06-01
Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying different causal relations between biomedical entities is also critical to understand biomedical processes. Generally, natural language processing (NLP) and machine learning are used to predict specific relations between any given pair of entities using the distant supervision approach. To build high accuracy supervised predictive models to predict previously unknown treatment and causative relations between biomedical entities based only on semantic graph pattern features extracted from biomedical knowledge graphs. We used 7000 treats and 2918 causes hand-curated relations from the UMLS Metathesaurus to train and test our models. Our graph pattern features are extracted from simple paths connecting biomedical entities in the SemMedDB graph (based on the well-known SemMedDB database made available by the U.S. National Library of Medicine). Using these graph patterns connecting biomedical entities as features of logistic regression and decision tree models, we computed mean performance measures (precision, recall, F-score) over 100 distinct 80-20% train-test splits of the datasets. For all experiments, we used a positive:negative class imbalance of 1:10 in the test set to model relatively more realistic scenarios. Our models predict treats and causes relations with high F-scores of 99% and 90% respectively. Logistic regression model coefficients also help us identify highly discriminative patterns that have an intuitive interpretation. We are also able to predict some new plausible relations based on false positives that our models scored highly based on our collaborations with two physician co-authors. Finally, our decision tree models are able to retrieve over 50% of treatment relations from a recently created external dataset. We employed semantic graph patterns connecting pairs of candidate biomedical entities in a knowledge graph as features to predict treatment/causative relations between them. We provide what we believe is the first evidence in direct prediction of biomedical relations based on graph features. Our work complements lexical pattern based approaches in that the graph patterns can be used as additional features for weakly supervised relation prediction. Copyright © 2018 Elsevier Inc. All rights reserved.
Telehealth innovations in health education and training.
Conde, José G; De, Suvranu; Hall, Richard W; Johansen, Edward; Meglan, Dwight; Peng, Grace C Y
2010-01-01
Telehealth applications are increasingly important in many areas of health education and training. In addition, they will play a vital role in biomedical research and research training by facilitating remote collaborations and providing access to expensive/remote instrumentation. In order to fulfill their true potential to leverage education, training, and research activities, innovations in telehealth applications should be fostered across a range of technology fronts, including online, on-demand computational models for simulation; simplified interfaces for software and hardware; software frameworks for simulations; portable telepresence systems; artificial intelligence applications to be applied when simulated human patients are not options; and the development of more simulator applications. This article presents the results of discussion on potential areas of future development, barries to overcome, and suggestions to translate the promise of telehealth applications into a transformed environment of training, education, and research in the health sciences.
Evaluation of research in biomedical ontologies
Dumontier, Michel; Gkoutos, Georgios V.
2013-01-01
Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research. PMID:22962340
Trust me, I'm a researcher!: The role of trust in biomedical research.
Kerasidou, Angeliki
2017-03-01
In biomedical research lack of trust is seen as a great threat that can severely jeopardise the whole biomedical research enterprise. Practices, such as informed consent, and also the administrative and regulatory oversight of research in the form of research ethics committees and Institutional Review Boards, are established to ensure the protection of future research subjects and, at the same time, restore public trust in biomedical research. Empirical research also testifies to the role of trust as one of the decisive factors in research participation and lack of trust as a barrier for consenting to research. However, what is often missing is a clear definition of trust. This paper seeks to address this gap. It starts with a conceptual analysis of the term trust. It compares trust with two other related terms, those of reliance and trustworthiness, and offers a defence of Baier's attribute of 'good will' a basic characteristic of trust. It, then, proceeds to consider trust in the context of biomedical research by examining two questions: First, is trust necessary in biomedical research?; and second, do increases in regulatory oversight of biomedical research also increase trust in the field? This paper argues that regulatory oversight is important for increasing reliance in biomedical research, but it does not improve trust, which remains important for biomedical research. It finishes by pointing at professional integrity as a way of promoting trust and trustworthiness in this field.
Authorship and sampling practice in selected biomechanics and sports science journals.
Knudson, Duane V
2011-06-01
In some biomedical sciences, changes in patterns of collaboration and authorship have complicated the assignment of credit and responsibility for research. It is unclear if this problem of "promiscuous coauthorship" or "hyperauthorship" (defined as six or more authors) is also apparent in the applied research disciplines within sport and exercise science. This study documented the authorship and sampling of patterns of original research reports in three applied biomechanics (Clinical Biomechanics, Journal of Applied Biomechanics, and Sports Biomechanics) and five similar subdisciplinary journals within sport and exercise science (International Journal of Sports Physiology and Performance, Journal of Sport Rehabilitation, Journal of Teaching Physical Education, Measurement in Physical Education and Exercise Sciences, and Motor Control). Original research reports from the 2009 volumes of these biomechanics and sport and exercise journals were reviewed. Single authorship of papers was rare (2.6%) in these journals, with the mean number of authors ranging from 2.7 to 4.5. Sample sizes and the ratio of sample to authors varied widely, and these variables tended not to be associated with number of authors. Original research reports published in these journals in 2009 tended to be published by small teams of collaborators, so currently there may be few problems with promiscuous coauthorship in these subdisciplines of sport and exercise science.
A Community-Academic Partnered Grant Writing Series to Build Infrastructure for Partnered Research.
King, Keyonna M; Pardo, Yvette-Janine; Norris, Keith C; Diaz-Romero, Maria; Morris, D'Ann; Vassar, Stefanie D; Brown, Arleen F
2015-10-01
Grant writing is an essential skill necessary to secure financial support for community programs and research projects. Increasingly, funding opportunities for translational biomedical research require studies to engage community partners, patients, or other stakeholders in the research process to address their concerns. However, there is little evidence on strategies to prepare teams of academic and community partners to collaborate on grants. This paper presents the description and formative evaluation of a two-part community-academic partnered grant writing series designed to help community organizations and academic institutions build infrastructure for collaborative research projects using a partnered approach. The first phase of the series was a half-day workshop on grant readiness, which was open to all interested community partners. The second phase, open only to community-academic teams that met eligibility criteria, was a 12-week session that covered partnered grant writing for foundation grants and National Institutes of Health grants. Participants in both phases reported an increase in knowledge and self-efficacy for writing partnered proposals. At 1-year follow-up, participants in Phase 2 had secured approximately $1.87 million in funding. This community-academic partnered grant writing series helped participants obtain proposal development skills and helped community-academic teams successfully compete for funding. © 2015 Wiley Periodicals, Inc.
A Community–Academic Partnered Grant Writing Series to Build Infrastructure for Partnered Research
Pardo, Yvette‐Janine; Norris, Keith C.; Diaz‐Romero, Maria; Morris, D'Ann; Vassar, Stefanie D.; Brown, Arleen F.
2015-01-01
Abstract Grant writing is an essential skill necessary to secure financial support for community programs and research projects. Increasingly, funding opportunities for translational biomedical research require studies to engage community partners, patients, or other stakeholders in the research process to address their concerns. However, there is little evidence on strategies to prepare teams of academic and community partners to collaborate on grants. This paper presents the description and formative evaluation of a two‐part community–academic partnered grant writing series designed to help community organizations and academic institutions build infrastructure for collaborative research projects using a partnered approach. The first phase of the series was a half‐day workshop on grant readiness, which was open to all interested community partners. The second phase, open only to community–academic teams that met eligibility criteria, was a 12‐week session that covered partnered grant writing for foundation grants and National Institutes of Health grants. Participants in both phases reported an increase in knowledge and self‐efficacy for writing partnered proposals. At 1‐year follow‐up, participants in Phase 2 had secured approximately $1.87 million in funding. This community–academic partnered grant writing series helped participants obtain proposal development skills and helped community–academic teams successfully compete for funding. PMID:26365589
Project definition study for the National Biomedical Tracer Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roozen, K.
The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendationsmore » for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.« less
Gallo, Stephen A; Lemaster, Michael; Glisson, Scott R
2016-02-01
Despite the presumed frequency of conflicts of interest in scientific peer review, there is a paucity of data in the literature reporting on the frequency and type of conflicts that occur, particularly with regard to the peer review of basic science applications. To address this gap, the American Institute of Biological Sciences (AIBS) conducted a retrospective analysis of conflict of interest data from the peer review of 282 biomedical research applications via several onsite review panels. The overall conflicted-ness of these panels was significantly lower than that reported for regulatory review. In addition, the majority of identified conflicts were institutional or collaborative in nature. No direct financial conflicts were identified, although this is likely due to the relatively basic science nature of the research. It was also found that 65 % of identified conflicts were manually detected by AIBS staff searching reviewer CVs and application documents, with the remaining 35 % resulting from self-reporting. The lack of self-reporting may be in part attributed to a lack of perceived risk of the conflict. This result indicates that many potential conflicts go unreported in peer review, underscoring the importance of improving detection methods and standardizing the reporting of reviewer and applicant conflict of interest information.
Code of Federal Regulations, 2012 CFR
2012-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Code of Federal Regulations, 2010 CFR
2010-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Code of Federal Regulations, 2011 CFR
2011-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Code of Federal Regulations, 2013 CFR
2013-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Code of Federal Regulations, 2014 CFR
2014-10-01
... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MINORITY BIOMEDICAL RESEARCH... Biomedical Research Support Program) awarded in accordance with section 301(a)(3) of the Public Health... investigators engaged in biomedical research, and to broaden the opportunities for participation in biomedical...
Valenta, Annette L; Meagher, Emma A; Tachinardi, Umberto
2016-01-01
Since the inception of the Clinical and Translational Science Award (CTSA) program in 2006, leaders in education across CTSA sites have been developing and updating core competencies for Clinical and Translational Science (CTS) trainees. By 2009, 14 competency domains, including biomedical informatics, had been identified and published. Since that time, the evolution of the CTSA program, changes in the practice of CTS, the rapid adoption of electronic health records (EHRs), the growth of biomedical informatics, the explosion of big data, and the realization that some of the competencies had proven to be difficult to apply in practice have made it clear that the competencies should be updated. This paper describes the process undertaken and puts forth a new set of competencies that has been recently endorsed by the Clinical Research Informatics Workgroup of AMIA. In addition to providing context and background for the current version of the competencies, we hope this will serve as a model for revision of competencies over time. PMID:27121608
Boudet, Samuel; Peyrodie, Laurent; Gallois, Philippe; de l'Aulnoit, Denis Houzé; Cao, Hua; Forzy, Gérard
2013-01-01
This paper presents a Matlab-based software (MathWorks inc.) called BioSigPlot for the visualization of multi-channel biomedical signals, particularly for the EEG. This tool is designed for researchers on both engineering and medicine who have to collaborate to visualize and analyze signals. It aims to provide a highly customizable interface for signal processing experimentation in order to plot several kinds of signals while integrating the common tools for physician. The main advantages compared to other existing programs are the multi-dataset displaying, the synchronization with video and the online processing. On top of that, this program uses object oriented programming, so that the interface can be controlled by both graphic controls and command lines. It can be used as EEGlab plug-in but, since it is not limited to EEG, it would be distributed separately. BioSigPlot is distributed free of charge (http://biosigplot.sourceforge.net), under the terms of GNU Public License for non-commercial use and open source development.
ARX - A Comprehensive Tool for Anonymizing Biomedical Data
Prasser, Fabian; Kohlmayer, Florian; Lautenschläger, Ronald; Kuhn, Klaus A.
2014-01-01
Collaboration and data sharing have become core elements of biomedical research. Especially when sensitive data from distributed sources are linked, privacy threats have to be considered. Statistical disclosure control allows the protection of sensitive data by introducing fuzziness. Reduction of data quality, however, needs to be balanced against gains in protection. Therefore, tools are needed which provide a good overview of the anonymization process to those responsible for data sharing. These tools require graphical interfaces and the use of intuitive and replicable methods. In addition, extensive testing, documentation and openness to reviews by the community are important. Existing publicly available software is limited in functionality, and often active support is lacking. We present ARX, an anonymization tool that i) implements a wide variety of privacy methods in a highly efficient manner, ii) provides an intuitive cross-platform graphical interface, iii) offers a programming interface for integration into other software systems, and iv) is well documented and actively supported. PMID:25954407
ERIC Educational Resources Information Center
Sahota, Puneet Chawla
2012-01-01
Native Americans have been underrepresented in previous studies of biomedical research participants. This paper reports a qualitative interview study of Native Americans' perspectives on biomedical research. In-depth interviews were conducted with 53 members of a Southwest tribal community. Many interviewees viewed biomedical research studies as a…
Tullo, Ellen StClair; Robinson, Lisa; Newton, Julia
2015-05-01
public and patient involvement (PPI) in clinical research is increasingly advocated by funding and regulatory bodies. However, little is known about the views of either academics or members of the public about perceptions of the practical realities of PPI, particularly in relation to ageing research. to survey current levels of PPI in biomedical and clinical research relating to ageing at one institution. To compare and contrast the views of academics and the public about PPI relating to research about ageing. electronic survey of senior academics, postgraduate students and members of a local user group for older people. thirty-three academics (18 principal investigators and 15 PhD students) at a biomedical research institution. Fifty-four members of a local user group for older people. thirty per cent (10/33) of projects described some PPI activity. Older adults were more positive about active involvement in research about ageing than academics. The perceived benefits of and barriers to involvement in research were similar among all groups, although older members of the public were more likely than academics to acknowledge potential barriers to involvement. academics and older people share some perceptions about PPI in ageing research, but members of the public are more optimistic about active involvement. Further correspondence between these groups may help to identify feasible involvement activities for older people and encourage collaborative research about ageing. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Person-generated Data in Self-quantification. A Health Informatics Research Program.
Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark
2017-01-09
The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.
Singh, Kumar Saurabh; Thual, Dominique; Spurio, Roberto; Cannata, Nicola
2015-01-01
One of the most crucial characteristics of day-to-day laboratory information management is the collection, storage and retrieval of information about research subjects and environmental or biomedical samples. An efficient link between sample data and experimental results is absolutely important for the successful outcome of a collaborative project. Currently available software solutions are largely limited to large scale, expensive commercial Laboratory Information Management Systems (LIMS). Acquiring such LIMS indeed can bring laboratory information management to a higher level, but most of the times this requires a sufficient investment of money, time and technical efforts. There is a clear need for a light weighted open source system which can easily be managed on local servers and handled by individual researchers. Here we present a software named SaDA for storing, retrieving and analyzing data originated from microorganism monitoring experiments. SaDA is fully integrated in the management of environmental samples, oligonucleotide sequences, microarray data and the subsequent downstream analysis procedures. It is simple and generic software, and can be extended and customized for various environmental and biomedical studies. PMID:26047146
Singh, Kumar Saurabh; Thual, Dominique; Spurio, Roberto; Cannata, Nicola
2015-06-03
One of the most crucial characteristics of day-to-day laboratory information management is the collection, storage and retrieval of information about research subjects and environmental or biomedical samples. An efficient link between sample data and experimental results is absolutely important for the successful outcome of a collaborative project. Currently available software solutions are largely limited to large scale, expensive commercial Laboratory Information Management Systems (LIMS). Acquiring such LIMS indeed can bring laboratory information management to a higher level, but most of the times this requires a sufficient investment of money, time and technical efforts. There is a clear need for a light weighted open source system which can easily be managed on local servers and handled by individual researchers. Here we present a software named SaDA for storing, retrieving and analyzing data originated from microorganism monitoring experiments. SaDA is fully integrated in the management of environmental samples, oligonucleotide sequences, microarray data and the subsequent downstream analysis procedures. It is simple and generic software, and can be extended and customized for various environmental and biomedical studies.
Opal web services for biomedical applications.
Ren, Jingyuan; Williams, Nadya; Clementi, Luca; Krishnan, Sriram; Li, Wilfred W
2010-07-01
Biomedical applications have become increasingly complex, and they often require large-scale high-performance computing resources with a large number of processors and memory. The complexity of application deployment and the advances in cluster, grid and cloud computing require new modes of support for biomedical research. Scientific Software as a Service (sSaaS) enables scalable and transparent access to biomedical applications through simple standards-based Web interfaces. Towards this end, we built a production web server (http://ws.nbcr.net) in August 2007 to support the bioinformatics application called MEME. The server has grown since to include docking analysis with AutoDock and AutoDock Vina, electrostatic calculations using PDB2PQR and APBS, and off-target analysis using SMAP. All the applications on the servers are powered by Opal, a toolkit that allows users to wrap scientific applications easily as web services without any modification to the scientific codes, by writing simple XML configuration files. Opal allows both web forms-based access and programmatic access of all our applications. The Opal toolkit currently supports SOAP-based Web service access to a number of popular applications from the National Biomedical Computation Resource (NBCR) and affiliated collaborative and service projects. In addition, Opal's programmatic access capability allows our applications to be accessed through many workflow tools, including Vision, Kepler, Nimrod/K and VisTrails. From mid-August 2007 to the end of 2009, we have successfully executed 239,814 jobs. The number of successfully executed jobs more than doubled from 205 to 411 per day between 2008 and 2009. The Opal-enabled service model is useful for a wide range of applications. It provides for interoperation with other applications with Web Service interfaces, and allows application developers to focus on the scientific tool and workflow development. Web server availability: http://ws.nbcr.net.
A collaborative filtering-based approach to biomedical knowledge discovery.
Lever, Jake; Gakkhar, Sitanshu; Gottlieb, Michael; Rashnavadi, Tahereh; Lin, Santina; Siu, Celia; Smith, Maia; Jones, Martin R; Krzywinski, Martin; Jones, Steven J M; Wren, Jonathan
2018-02-15
The increase in publication rates makes it challenging for an individual researcher to stay abreast of all relevant research in order to find novel research hypotheses. Literature-based discovery methods make use of knowledge graphs built using text mining and can infer future associations between biomedical concepts that will likely occur in new publications. These predictions are a valuable resource for researchers to explore a research topic. Current methods for prediction are based on the local structure of the knowledge graph. A method that uses global knowledge from across the knowledge graph needs to be developed in order to make knowledge discovery a frequently used tool by researchers. We propose an approach based on the singular value decomposition (SVD) that is able to combine data from across the knowledge graph through a reduced representation. Using cooccurrence data extracted from published literature, we show that SVD performs better than the leading methods for scoring discoveries. We also show the diminishing predictive power of knowledge discovery as we compare our predictions with real associations that appear further into the future. Finally, we examine the strengths and weaknesses of the SVD approach against another well-performing system using several predicted associations. All code and results files for this analysis can be accessed at https://github.com/jakelever/knowledgediscovery. sjones@bcgsc.ca. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The center for causal discovery of biomedical knowledge from big data.
Cooper, Gregory F; Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard
2015-11-01
The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rising Expectations: Access to Biomedical Information
Lindberg, D. A. B.; Humphreys, B. L.
2008-01-01
Summary Objective To provide an overview of the expansion in public access to electronic biomedical information over the past two decades, with an emphasis on developments to which the U.S. National Library of Medicine contributed. Methods Review of the increasingly broad spectrum of web-accessible genomic data, biomedical literature, consumer health information, clinical trials data, and images. Results The amount of publicly available electronic biomedical information has increased dramatically over the past twenty years. Rising expectations regarding access to biomedical information were stimulated by the spread of the Internet, the World Wide Web, advanced searching and linking techniques. These informatics advances simplified and improved access to electronic information and reduced costs, which enabled inter-organizational collaborations to build and maintain large international information resources and also aided outreach and education efforts The demonstrated benefits of free access to electronic biomedical information encouraged the development of public policies that further increase the amount of information available. Conclusions Continuing rapid growth of publicly accessible electronic biomedical information presents tremendous opportunities and challenges, including the need to ensure uninterrupted access during disasters or emergencies and to manage digital resources so they remain available for future generations. PMID:18587496
Collaborative Initiative in Biomedical Imaging to Study Complex Diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Weili; Fiddy, Michael A.
2012-03-31
The work reported addressed these topics: Fluorescence imaging; Optical coherence tomography; X-ray interferometer/phase imaging system; Quantitative imaging from scattered fields, Terahertz imaging and spectroscopy; and Multiphoton and Raman microscopy.
Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang
2009-10-01
The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories.
New and evolving rare diseases research programs at the National Institutes of Health.
Groft, S C; Rubinstein, Y R
2013-01-01
Research emphasis on rare diseases and orphan products remains a major focus of the research Institutes and Centers of National Institutes of Health (NIH). NIH provides more than USD 31 billion annually in biomedical research and research support. This research is the basis of many of the health advances in rare and common diseases. Numerous efforts and a major emphasis by the public and private sector initiatives have resulted in an increase of interventions and diagnostics for rare diseases. Newer translational research programs provide a more systematic and coordinated approach to rare diseases research and orphan products development. The approach that is offered requires extensive public-private partnerships with the pharmaceutical industry, contract research organizations, philanthropic foundations, medical and scientific advisory boards, patient advocacy groups, the academic research community, research and regulatory scientists, government funding agencies, and the public. Each program is unique and requires lengthy planning and collaborative efforts to reach programmatic goals. © 2013 S. Karger AG, Basel.
Roper, Nitin; Korenstein, Deborah
2015-10-01
Journals have increased disclosure requirements in recent years, in part to deter guest authorship. The prevalence of guest authorship among primary authors (first and last) in the current era of increased disclosure requirements is unknown. Our aim was to examine the self-reported prevalence of guest authorship among primary authors from a sample of randomized clinical trials with and without industry funding and industry collaboration in the design, analysis or reporting of trials. Cross-sectional analysis of randomized, drug/device clinical trials with published details on the "Role of the Funding Source/Sponsor" published in high-impact biomedical journals between 1 December 2011 and 31 November 2012. Phase 1 or 2 trials, secondary trial analyses, and trials that were not listed on ClinicalTrials.gov were excluded. Primary guest authorship was defined, based on International Committee of Medical Journal Editors (ICMJE) criteria, when neither the first nor last author contributed to either of the following: 1) the design of the trial or the analysis/interpretation of data; or 2) drafting part or all of the manuscript. One hundred and sixty-eight randomized clinical trials that met inclusion criteria were included. We measured differences in the prevalence of guest authorship between trials with neither industry funding nor collaboration and 1) trials with industry funding without collaboration, and 2) trials with industry funding with collaboration. The overall prevalence of primary guest authorship was 6 % (10/168). Primary guest authorship was significantly more common in trials with industry funding with collaboration than in those with neither industry funding nor collaboration [13.2 % (10/76) vs. 0 % (0/39); p < 0.02]. Primary guest authorship did not differ between trials with industry funding without collaboration and trials with neither industry funding nor collaboration. Among a sample of randomized, drug/device clinical trials in high-impact biomedical journals, primary guest authorship was overall uncommon and occurred exclusively among trials with industry funding with collaboration.
Kibbe, Warren A.; Arze, Cesar; Felix, Victor; Mitraka, Elvira; Bolton, Evan; Fu, Gang; Mungall, Christopher J.; Binder, Janos X.; Malone, James; Vasant, Drashtti; Parkinson, Helen; Schriml, Lynn M.
2015-01-01
The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years. These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. This will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning. PMID:25348409
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update.
Afgan, Enis; Baker, Dannon; Batut, Bérénice; van den Beek, Marius; Bouvier, Dave; Cech, Martin; Chilton, John; Clements, Dave; Coraor, Nate; Grüning, Björn A; Guerler, Aysam; Hillman-Jackson, Jennifer; Hiltemann, Saskia; Jalili, Vahid; Rasche, Helena; Soranzo, Nicola; Goecks, Jeremy; Taylor, James; Nekrutenko, Anton; Blankenberg, Daniel
2018-05-22
Galaxy (homepage: https://galaxyproject.org, main public server: https://usegalaxy.org) is a web-based scientific analysis platform used by tens of thousands of scientists across the world to analyze large biomedical datasets such as those found in genomics, proteomics, metabolomics and imaging. Started in 2005, Galaxy continues to focus on three key challenges of data-driven biomedical science: making analyses accessible to all researchers, ensuring analyses are completely reproducible, and making it simple to communicate analyses so that they can be reused and extended. During the last two years, the Galaxy team and the open-source community around Galaxy have made substantial improvements to Galaxy's core framework, user interface, tools, and training materials. Framework and user interface improvements now enable Galaxy to be used for analyzing tens of thousands of datasets, and >5500 tools are now available from the Galaxy ToolShed. The Galaxy community has led an effort to create numerous high-quality tutorials focused on common types of genomic analyses. The Galaxy developer and user communities continue to grow and be integral to Galaxy's development. The number of Galaxy public servers, developers contributing to the Galaxy framework and its tools, and users of the main Galaxy server have all increased substantially.
ERIC Educational Resources Information Center
Institute of Medicine (NAS), Washington, DC.
Designed to provide assistance in the assessment of the need for biomedical and behavioral research personnel, this report presents research findings related to specific medical careers. The review includes an examination of the system under which biomedical and behavioral scientists are trained for research careers and the United States…
Publishing priorities of biomedical research funders
Collins, Ellen
2013-01-01
Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520
[Main characteristics of current biomedical research, in Chile].
Valdés S, Gloria; Armas M, Rodolfo; Reyes B, Humberto
2012-04-01
Biomedical research is a fundamental tool for the development of a country, requiring human and financial resources. To define some current characteristics of biomedical research, in Chile. Data on entities funding bio-medical research, participant institutions, and the number of active investigators for the period 2007-2009 were obtained from institutional sources; publications indexed in PubMed for 2008-2009 were analysed. Most financial resources invested in biomedical research projects (approximately US$ 19 million per year) came from the "Comisión Nacional de Investigación Científica y Tecnológica" (CONICYT), a state institution with 3 independent Funds administering competitive grant applications open annually to institutional or independent investigators in Chile. Other sources and universities raised the total amount to US$ 26 million. Since 2007 to 2009, 408 investigators participated in projects funded by CONICYT. The main participant institutions were Universidad de Chile and Pontificia Universidad Católica de Chile, both adding up to 84% of all funded projects. Independently, in 2009,160 research projects -mainly multi centric clinical trials- received approximately US$ 24 million from foreign pharmaceutical companies. Publications listed in PubMed were classified as "clinical research" (n = 879, including public health) or "basic biomedical research" (n = 312). Biomedical research in Chile is mainly supported by state funds and university resources, but clinical trials also obtained an almost equivalent amount from foreign resources. Investigators are predominantly located in two universities. A small number of MD-PhD programs are aimed to train and incorporate new scientists. Only a few new Medical Schools participate in biomedical research. A National Registry of biomedical research projects, including the clinical trials, is required among other initiatives to stimulate research in biomedical sciences in Chile.
Campbell-Hall, Vicky; Petersen, Inge; Bhana, Arvin; Mjadu, Sithembile; Hosegood, Victoria; Flisher, Alan J
2010-09-01
The majority of the black African population in South Africa utilize both traditional and public sector Western systems of healing for mental health care. There is a need to develop models of collaboration that promote a workable relationship between the two healing systems. The aim of this study was to explore perceptions of service users and providers of current interactions between the two systems of care and ways in which collaboration could be improved in the provision of community mental health services. Qualitative individual and focus group interviews were conducted with key health care providers and service users in one typical rural South African health sub-district. The majority of service users held traditional explanatory models of illness and used dual systems of care, with shifting between treatment modalities reportedly causing problems with treatment adherence. Traditional healers expressed a lack of appreciation from Western health care practitioners but were open to training in Western biomedical approaches and establishing a collaborative relationship in the interests of improving patient care. Western biomedically trained practitioners were less interested in such an arrangement. Interventions to acquaint traditional practitioners with Western approaches to the treatment of mental illness, orientation of Western practitioners towards a culture-centred approach to mental health care, as well as the establishment of fora to facilitate the negotiation of respectful collaborative relationships between the two systems of healing are required at district level to promote an equitable collaboration in the interests of improved patient care.
Reis, Steven E.; Berglund, Lars; Bernard, Gordon R.; Califf, Robert M.; FitzGerald, Garret A.; Johnson, Peter C.
2009-01-01
Advances in human health require the efficient and rapid translation of scientific discoveries into effective clinical treatments; this process in turn depends upon observational data gathered from patients, communities, and public-health research that can be used to guide basic scientific investigation. Such bidirectional translational science, however, faces unprecedented challenges due to the rapid pace of scientific and technological development, as well as the difficulties of negotiating increasingly complex regulatory and commercial environments that overlap the research domain. Further, numerous barriers to translational science have emerged among the nation’s academic research centers, including basic structural and cultural impediments to innovation and collaboration, shortages of trained investigators, and inadequate funding. To address these serious and systemic problems, in 2006, the National Institutes of Health created the Clinical and Translational Science Awards (CTSA) program, which aims to catalyze the transformation of biomedical research at a national level, speeding the discovery and development of therapies, fostering collaboration, engaging communities, and training succeeding generations of clinical and translational researchers. The authors report in detail on the planning process, begun in 2008, that was used to engage stakeholders and to identify, refine, and ultimately implement the CTSA program’s overarching strategic goals. They also discuss the implications and likely impact of this strategic planning process as it is applied among the nation’s academic health centers. PMID:20182119
Reis, Steven E; Berglund, Lars; Bernard, Gordon R; Califf, Robert M; Fitzgerald, Garret A; Johnson, Peter C
2010-03-01
Advances in human health require the efficient and rapid translation of scientific discoveries into effective clinical treatments; this process, in turn, depends on observational data gathered from patients, communities, and public health research that can be used to guide basic scientific investigation. Such bidirectional translational science, however, faces unprecedented challenges due to the rapid pace of scientific and technological development, as well as the difficulties of negotiating increasingly complex regulatory and commercial environments that overlap the research domain. Further, numerous barriers to translational science have emerged among the nation's academic research centers, including basic structural and cultural impediments to innovation and collaboration, shortages of trained investigators, and inadequate funding.To address these serious and systemic problems, in 2006 the National Institutes of Health created the Clinical and Translational Science Awards (CTSA) program, which aims to catalyze the transformation of biomedical research at a national level, speeding the discovery and development of therapies, fostering collaboration, engaging communities, and training succeeding generations of clinical and translational researchers. The authors report in detail on the planning process, begun in 2008, that was used to engage stakeholders and to identify, refine, and ultimately implement the CTSA program's overarching strategic goals. They also discuss the implications and likely impact of this strategic planning process as it is applied among the nation's academic health centers.
Moody, George B; Mark, Roger G; Goldberger, Ary L
2011-01-01
PhysioNet provides free web access to over 50 collections of recorded physiologic signals and time series, and related open-source software, in support of basic, clinical, and applied research in medicine, physiology, public health, biomedical engineering and computing, and medical instrument design and evaluation. Its three components (PhysioBank, the archive of signals; PhysioToolkit, the software library; and PhysioNetWorks, the virtual laboratory for collaborative development of future PhysioBank data collections and PhysioToolkit software components) connect researchers and students who need physiologic signals and relevant software with researchers who have data and software to share. PhysioNet's annual open engineering challenges stimulate rapid progress on unsolved or poorly solved questions of basic or clinical interest, by focusing attention on achievable solutions that can be evaluated and compared objectively using freely available reference data.
Casas, Caty; Codogno, Patrice; Pinti, Marcello; Batoko, Henri; Morán, María; Proikas-Cezanne, Tassula; Reggiori, Fulvio; Sirko, Agnieszka; Soengas, María S; Velasco, Guillermo; Lafont, Frank; Lane, Jon; Faure, Mathias; Cossarizza, Andrea
2016-01-01
A collaborative consortium, named "TRANSAUTOPHAGY," has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications.
Casas, Caty; Codogno, Patrice; Pinti, Marcello; Batoko, Henri; Morán, María; Proikas-Cezanne, Tassula; Reggiori, Fulvio; Sirko, Agnieszka; Soengas, María S; Velasco, Guillermo; Lafont, Frank; Lane, Jon; Faure, Mathias; Cossarizza, Andrea
2016-01-01
abstract A collaborative consortium, named “TRANSAUTOPHAGY,” has been created among European research groups, comprising more than 150 scientists from 21 countries studying diverse branches of basic and translational autophagy. The consortium was approved in the framework of the Horizon 2020 Program in November 2015 as a COST Action of the European Union (COST means: CO-operation in Science and Technology), and will be sponsored for 4 years. TRANSAUTOPHAGY will form an interdisciplinary platform for basic and translational researchers, enterprises and stakeholders of diverse disciplines (including nanotechnology, bioinformatics, physics, chemistry, biology and various medical disciplines). TRANSAUTOPHAGY will establish 5 different thematic working groups, formulated to cooperate in research projects, share ideas, and results through workshops, meetings and short term exchanges of personnel (among other initiatives). TRANSAUTOPHAGY aims to generate breakthrough multidisciplinary knowledge about autophagy regulation, and to boost translation of this knowledge into biomedical and biotechnological applications. PMID:27046256
Telehealth Innovations in Health Education and Training
De, Suvranu; Hall, Richard W.; Johansen, Edward; Meglan, Dwight; Peng, Grace C.Y.
2010-01-01
Abstract Telehealth applications are increasingly important in many areas of health education and training. In addition, they will play a vital role in biomedical research and research training by facilitating remote collaborations and providing access to expensive/remote instrumentation. In order to fulfill their true potential to leverage education, training, and research activities, innovations in telehealth applications should be fostered across a range of technology fronts, including online, on-demand computational models for simulation; simplified interfaces for software and hardware; software frameworks for simulations; portable telepresence systems; artificial intelligence applications to be applied when simulated human patients are not options; and the development of more simulator applications. This article presents the results of discussion on potential areas of future development, barries to overcome, and suggestions to translate the promise of telehealth applications into a transformed environment of training, education, and research in the health sciences. PMID:20155874
Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates
NASA Astrophysics Data System (ADS)
Vohra, Yogesh; Nordlund, Thomas
2009-03-01
The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.
Global Health, Medical Anthropology, and Social Marketing: Steps to the Ecology of Collaboration.
Whiteford, Linda
2015-06-01
Anthropology and global health have long been a focus of research for both biological and medical anthropologists. Research has looked at physiological adaptations to high altitudes, community responses to water-borne diseases, the integration of traditional and biomedical approaches to health, global responses to HIV/AIDS, and more recently, to the application of cultural approaches to the control of the Ebola epidemic. Academic anthropology has employed theory and methods to extend knowledge, but less often to apply that knowledge. However, anthropologists outside of the academy have tackled global health issues such as family planning and breast-feeding by bringing together applied medical anthropology and social marketing. In 2014, that potent and provocative combination resulted in the University of South Florida in Tampa, Florida being made the home of an innovative center designed to combine academic and applied anthropology with social marketing in order to facilitate social change. This article discusses how inter- and intra-disciplinary research/application has led to the development of Florida's first World Health Organization Collaborating Center (WHO CC), and the first such center to focus on social marketing, social change and non-communicable diseases. This article explains the genesis of the Center and presents readers with a brief overview, basic principles and applications of social marketing by reviewing a case study of a water conservation project. The article concludes with thoughts on the ecology of collaboration among global health, medical anthropology and social marketing practitioners.
Lorenzetti, Diane L; Rutherford, Gayle
2012-12-01
This pilot study explores the conditions that support or hinder information professionals' participation in interdisciplinary research teams. We undertook a preliminary grounded theory study investigating factors that impact on information professionals' participation in interdisciplinary research. Four biomedical information professionals working in academic universities and teaching hospitals in Canada participated in semi-structured interviews. Grounded theory methods guided the data collection and analysis. Participants identified the conditions that support or hinder research participation as belonging to four distinct overlapping domains: client-level factors including preconceptions and researcher resistance; individual-level factors such as research readiness; opportunities that are most often made not found; and organisational supports. Creating willingness, building preparedness and capitalising on opportunity appear crucial to successful participation in interdisciplinary research. Further exploration of the importance of educational, collegial and organisational supports may reveal additional data to support the development of a grounded theory regarding the facilitation of information professionals' engagement in interdisciplinary research. © 2012 The authors. Health Information and Libraries Journal © 2012 Health Libraries Group.
Are we studying what matters? Health priorities and NIH-funded biomedical engineering research.
Rubin, Jessica B; Paltiel, A David; Saltzman, W Mark
2010-07-01
With the founding of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) in 1999, the National Institutes of Health (NIH) made explicit its dedication to expanding research in biomedical engineering. Ten years later, we sought to examine how closely federal funding for biomedical engineering aligns with U.S. health priorities. Using a publicly accessible database of research projects funded by the NIH in 2008, we identified 641 grants focused on biomedical engineering, 48% of which targeted specific diseases. Overall, we found that these disease-specific NIH-funded biomedical engineering research projects align with national health priorities, as quantified by three commonly utilized measures of disease burden: cause of death, disability-adjusted survival losses, and expenditures. However, we also found some illnesses (e.g., cancer and heart disease) for which the number of research projects funded deviated from our expectations, given their disease burden. Our findings suggest several possibilities for future studies that would serve to further inform the allocation of limited research dollars within the field of biomedical engineering.
Sharing Data and Analytical Resources Securely in a Biomedical Research Grid Environment
Langella, Stephen; Hastings, Shannon; Oster, Scott; Pan, Tony; Sharma, Ashish; Permar, Justin; Ervin, David; Cambazoglu, B. Barla; Kurc, Tahsin; Saltz, Joel
2008-01-01
Objectives To develop a security infrastructure to support controlled and secure access to data and analytical resources in a biomedical research Grid environment, while facilitating resource sharing among collaborators. Design A Grid security infrastructure, called Grid Authentication and Authorization with Reliably Distributed Services (GAARDS), is developed as a key architecture component of the NCI-funded cancer Biomedical Informatics Grid (caBIG™). The GAARDS is designed to support in a distributed environment 1) efficient provisioning and federation of user identities and credentials; 2) group-based access control support with which resource providers can enforce policies based on community accepted groups and local groups; and 3) management of a trust fabric so that policies can be enforced based on required levels of assurance. Measurements GAARDS is implemented as a suite of Grid services and administrative tools. It provides three core services: Dorian for management and federation of user identities, Grid Trust Service for maintaining and provisioning a federated trust fabric within the Grid environment, and Grid Grouper for enforcing authorization policies based on both local and Grid-level groups. Results The GAARDS infrastructure is available as a stand-alone system and as a component of the caGrid infrastructure. More information about GAARDS can be accessed at http://www.cagrid.org. Conclusions GAARDS provides a comprehensive system to address the security challenges associated with environments in which resources may be located at different sites, requests to access the resources may cross institutional boundaries, and user credentials are created, managed, revoked dynamically in a de-centralized manner. PMID:18308979
Demagny, Lise; Bungener, Martine; Faurisson, François
2015-11-01
Although the involvement of patient associations in biomedical research is well known, conversely, researchers' views and perceptions of these associations have remained unknown. For this reason, Inserm's Patients' Association Liaison Group (GRAM) launched the CAIRNET survey in 2012, based on questionnaires and interviews conducted with researchers working at Inserm. The variety of their opinions made it possible to distinguish four profiles, the committed, the pragmatic, the reticent and the distant. Thus 41 % of respondents reported ongoing relationships with at least one association, 72 % for the committed and 16 % for the distant. Although these relationships are formed more easily among researchers involved in clinical activity, they also encourage collaborations between clinicians and basic researchers. The apparently lower degree of involvement of female researchers proved to be associated with a lower level of clinical activity, limited permanent recruitment, and a lower hierarchical status. © 2015 médecine/sciences – Inserm.
Biomedical Research Division significant accomplishments for FY 1983
NASA Technical Reports Server (NTRS)
Martello, N. V.
1984-01-01
Various research and technology activities of Ames Research Center's Biomedical Research Division are described. Contributions to the Space Administration's goals in the life sciences include research in operational medicine, cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, fluid and electrolyte changes, radiation effects and protection, human behavior and performance, general biomedical research, and gravitational biology.
Development of concept-based physiology lessons for biomedical engineering undergraduate students.
Nelson, Regina K; Chesler, Naomi C; Strang, Kevin T
2013-06-01
Physiology is a core requirement in the undergraduate biomedical engineering curriculum. In one or two introductory physiology courses, engineering students must learn physiology sufficiently to support learning in their subsequent engineering courses and careers. As preparation for future learning, physiology instruction centered on concepts may help engineering students to further develop their physiology and biomedical engineering knowledge. Following the Backward Design instructional model, a series of seven concept-based lessons was developed for undergraduate engineering students. These online lessons were created as prerequisite physiology training to prepare students to engage in a collaborative engineering challenge activity. This work is presented as an example of how to convert standard, organ system-based physiology content into concept-based content lessons.
Institutional shared resources and translational cancer research.
De Paoli, Paolo
2009-06-29
The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology.In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment and management represent essential tools, providing solutions to overcome existing barriers in the development of translational research in biomedical research centers.
Institutional shared resources and translational cancer research
De Paoli, Paolo
2009-01-01
The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology. In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment and management represent essential tools, providing solutions to overcome existing barriers in the development of translational research in biomedical research centers. PMID:19563639
de Lecuona, Itziar
2013-01-01
The article explores and analyses the content of the Council of Europe's Additional Protocol to the Convention on Human Rights and Biomedicine concerning Biomedical Research regarding the standard legal instrument in biomedical research, issued by an international organization with leadership in bioethics. This implies ethics committees are mechanisms of protection of humans in biomedical research and not mere bureaucratic agencies and that a sound inescapable international regulatory framework exists for States to regulate biomedical research. The methodology used focuses on the analysis of the background, the context in which it is made and the nature and scope of the Protocol. It also identifies and analyses the characteristics and functions of ethics committees in biomedical research and, in particular, the information that should be provided to this bodies to develop their functions previously, during and at the end of research projects. This analysis will provide guidelines, suggestions and conclusions for the awareness and training of members of these committees in order to influence the daily practice. This paper may also be of interest to legal practitioners who work in different areas of biomedical research. From this practical perspective, the article examines the legal treatment of the Protocol to meet new challenges and classic issues in research: the treatment of human biological samples, the use of placebos, avoiding double standards, human vulnerability, undue influence and conflicts of interest, among others. Also, from a critical view, this work links the legal responses to develop work procedures that are required for an effective performance of the functions assigned of ethics committees in biomedical research. An existing international legal response that lacks doctrinal standards and provides little support should, however, serve as a guide and standard to develop actions that allow ethics committees -as key bodies for States- to advance in the protection of humans in biomedical research.
The Future of Dental Schools in Research Universities and Academic Health Centers.
McCauley, Laurie K
2017-09-01
As a profession, dentistry is at a point of discernible challenge as well as incredible opportunity in a landscape of evolving changes to health care, higher education, and evidence-based decision making. Respecting the past yet driving forward, a well-mapped future course is critical. Orchestrating this course in a collaborative manner is essential for the visibility, well-being, and potentially the existence of the dental profession. The research performed in dental institutions needs to be contemporary, aligned with biomedical science in general, and united with other disciplines. Dentistry is at risk of attrition in the quality of its research and discovery mission if participation with bioscience colleagues in the collaborative generation of new knowledge is underoptimized. A fundamental opportunity dentistry has is to contribute via its position in academic health centers. Rigorous research as to the impact of interprofessional education and collaborative care on population health outcomes provides significant potential for the dental profession to participate and/or lead such evidence-centered efforts. It is imperative that academic dental institutions are part of interdisciplinary and transdisciplinary organizations that move health care into its new day. Strategizing diversity by bringing together people who have different ways of seeing problems to share perspectives, heuristics, interpretations, technologies, and predictive models across disciplines will lead to impactful progress. Academic dental institutions are a natural part of an emphasis on translational research and acceleration of implementing new scientific discoveries. Dentistry needs to remain an essential and integrated component of higher education in the health professions; doing so necessitates deliberate, respectful, and committed change. This article was written as part of the project "Advancing Dental Education in the 21 st Century."
Project development teams: a novel mechanism for accelerating translational research.
Sajdyk, Tammy J; Sors, Thomas G; Hunt, Joe D; Murray, Mary E; Deford, Melanie E; Shekhar, Anantha; Denne, Scott C
2015-01-01
The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators.Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds.
Outreach and online training services at the Saccharomyces Genome Database.
MacPherson, Kevin A; Starr, Barry; Wong, Edith D; Dalusag, Kyla S; Hellerstedt, Sage T; Lang, Olivia W; Nash, Robert S; Skrzypek, Marek S; Engel, Stacia R; Cherry, J Michael
2017-01-01
The Saccharomyces Genome Database (SGD; www.yeastgenome.org ), the primary genetics and genomics resource for the budding yeast S. cerevisiae , provides free public access to expertly curated information about the yeast genome and its gene products. As the central hub for the yeast research community, SGD engages in a variety of social outreach efforts to inform our users about new developments, promote collaboration, increase public awareness of the importance of yeast to biomedical research, and facilitate scientific discovery. Here we describe these various outreach methods, from networking at scientific conferences to the use of online media such as blog posts and webinars, and include our perspectives on the benefits provided by outreach activities for model organism databases. http://www.yeastgenome.org. © The Author(s) 2017. Published by Oxford University Press.
Zhang, Helen L; Omondi, Michael W; Musyoka, Augustine M; Afwamba, Isaac A; Swai, Remigi P; Karia, Francis P; Muiruri, Charles; Reddy, Elizabeth A; Crump, John A; Rubach, Matthew P
2016-08-01
Using a clinical research laboratory as a case study, we sought to characterize barriers to maintaining Good Clinical Laboratory Practice (GCLP) services in a developing world setting. Using a US Centers for Disease Control and Prevention framework for program evaluation in public health, we performed an evaluation of the Kilimanjaro Christian Medical Centre-Duke University Health Collaboration clinical research laboratory sections of the Kilimanjaro Clinical Research Institute in Moshi, Tanzania. Laboratory records from November 2012 through October 2014 were reviewed for this analysis. During the 2-year period of study, seven instrument malfunctions suspended testing required for open clinical trials. A median (range) of 9 (1-55) days elapsed between instrument malfunction and biomedical engineer service. Sixteen (76.1%) of 21 suppliers of reagents, controls, and consumables were based outside Tanzania. Test throughput among laboratory sections used a median (range) of 0.6% (0.2%-2.7%) of instrument capacity. Five (55.6%) of nine laboratory technologists left their posts over 2 years. These findings demonstrate that GCLP laboratory service provision in this setting is hampered by delays in biomedical engineer support, delays and extra costs in commodity procurement, low testing throughput, and high personnel turnover. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hitziger, Martin; Berger Gonzalez, Mónica; Gharzouzi, Eduardo; Ochaíta Santizo, Daniela; Solis Miranda, Regina; Aguilar Ferro, Andrea Isabel; Vides-Porras, Ana; Heinrich, Michael; Edwards, Peter; Krütli, Pius
2017-08-08
Up to one half of the population in Africa, Asia and Latin America has little access to high-quality biomedical services and relies on traditional health systems. Medical pluralism is thus in many developing countries the rule rather than the exception, which is why the World Health Organization is calling for intercultural partnerships to improve health care in these regions. They are, however, challenging due to disparate knowledge systems and lack of trust that hamper understanding and collaboration. We developed a collaborative, patient-centered boundary mechanism to overcome these challenges and to foster intercultural partnerships in health care. To assess its impact on the quality of intercultural patient care in a medically pluralistic developing country, we conducted and evaluated a case study. The case study took place in Guatemala, since previous efforts to initiate intercultural medical partnerships in this country were hampered by intense historical and societal conflicts. It was designed by a team from ETH Zurich's Transdisciplinarity Lab, the National Cancer Institute of Guatemala, two traditional Councils of Elders and 25 Mayan healers from the Kaqchikel and Q'eqchi' linguistic groups. It was implemented from January 2014 to July 2015. Scientists and traditional political authorities collaborated to facilitate workshops, comparative diagnoses and patient referrals, which were conducted jointly by biomedical and traditional practitioners. The traditional medical practices were thoroughly documented, as were the health-seeking pathways of patients, and the overall impact was evaluated. The boundary mechanism was successful in discerning barriers of access for indigenous patients in the biomedical health system, and in building trust between doctors and healers. Learning outcomes included a reduction of stereotypical attitudes towards traditional healers, improved biomedical procedures due to enhanced self-reflection of doctors, and improved traditional health care due to refined diagnoses and adapted treatment strategies. In individual cases, the beneficial effects of traditional treatments were remarkable, and the doctors continued to collaborate with healers after the study was completed. Comparison of the two linguistic groups illustrated that the outcomes are highly context-dependent. If well adapted to local context, patient-centered boundary mechanisms can enable intercultural partnerships by creating access, building trust and fostering mutual learning, even in circumstances as complex as those in Guatemala. Creating multilateral patient-centered boundary mechanisms is thus a promising approach to improve health care in medically pluralistic developing countries.
Text mining patents for biomedical knowledge.
Rodriguez-Esteban, Raul; Bundschus, Markus
2016-06-01
Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Troubled minds in the Gulf: mental health research in the United Arab Emirates (1989-2008).
Osman, Ossama T; Afifi, M
2010-07-01
This article aims to describe the characteristics of the United Arab Emirates (UAE) mental health research published from 1989 to 2008 in PubMed indexed journals to identify gaps and to suggest recommendations. Our sensitive PubMed search for general and mental health publications in Gulf Cooperation Council (GCC) countries and the UAE revealed a total of 192 mental health studies published in GCC countries over the past 20 years, which constituted less than 1% of the GCC total biomedical research. Most of the studies were from the UAE University and were either epidemiologic (48.98%) or psychometric (24.49%) with no studies addressing mental health systems research. Underrepresented were studies on health promotion and interdisciplinary, cross-cultural, ethnic, and gender research. There is a need for more international collaboration and for policies that link research conducted to services provided with longitudinal studies to test the long-term impact of early preventive interventions.
Hughes, Christine A; Bauer, Mark C; Horazdovsky, Bruce F; Garrison, Edward R; Patten, Christi A; Petersen, Wesley O; Bowman, Clarissa N; Vierkant, Robert A
2013-03-01
The Mayo Clinic Cancer Center and Diné College received funding for a 4-year collaborative P20 planning grant from the National Cancer Institute in 2006. The goal of the partnership was to increase Navajo undergraduates' interest in and commitment to biomedical coursework and careers, especially in cancer research. This paper describes the development, pilot testing, and evaluation of Native CREST (Cancer Research Experience and Student Training), a 10-week cancer research training program providing mentorship in a Mayo Clinic basic science or behavioral cancer research lab for Navajo undergraduate students. Seven Native American undergraduate students (five females, two males) were enrolled during the summers of 2008-2011. Students reported the program influenced their career goals and was valuable to their education and development. These efforts may increase the number of Native American career scientists developing and implementing cancer research, which will ultimately benefit the health of Native American people.
Hughes, Christine A.; Bauer, Mark C.; Horazdovsky, Bruce F.; Garrison, Edward R.; Patten, Christi A.; Petersen, Wesley O.; Bowman, Clarissa N.; Vierkant, Robert A.
2012-01-01
The Mayo Clinic Cancer Center and Diné College received funding for a 4-year collaborative P20 planning grant from the National Cancer Institute in 2006. The goal of the partnership was to increase Navajo undergraduates’ interest in and commitment to biomedical coursework and careers, especially in cancer research. This paper describes the development, pilot testing and evaluation of Native CREST (Cancer Research Experience & Student Training), a 10-week cancer research training program providing mentorship in a Mayo Clinic basic science or behavioral cancer research lab for Navajo undergraduate students. Seven Native American undergraduate students (5 females, 2 males) were enrolled during the summers of 2008 - 2011. Students reported the program influenced their career goals and was valuable to their education and development. These efforts may increase the number of Native American career scientists developing and implementing cancer research, which will ultimately benefit the health of Native American people. PMID:23001889
Engelgau, Michael M; Sampson, Uchechukwu K; Rabadan-Diehl, Cristina; Smith, Richard; Miranda, Jaime; Bloomfield, Gerald S; Belis, Deshiree; Narayan, K M Venkat
2016-03-01
Effectively tackling the growing noncommunicable disease (NCD) burden in low- and middle-income countries (LMIC) is a major challenge. To address research needs in this setting for NCDs, in 2009, National Heart, Lung, and Blood Institute (NHLBI) and UnitedHealth Group (UHG) engaged in a public-private partnership that supported a network of 11 LMIC-based research centers and created the NHLBI-UnitedHealth Global Health Centers of Excellence (COE) Program. The Program's overall goal was to contribute to reducing the cardiovascular and lung disease burdens by catalyzing in-country research institutions to develop a global network of biomedical research centers. Key elements of the Program included team science and collaborative approaches, developing research and training platforms for future investigators, and creating a data commons. This Program embraced a strategic approach for tackling NCDs in LMICs and will provide capacity for locally driven research efforts that can identify and address priority health issues in specific countries' settings. Published by Elsevier B.V.
First Universities Allied for Essential Medicines (UAEM) Neglected Diseases and Innovation Symposium
Musselwhite, Laura W.; Maciag, Karolina; Lankowski, Alex; Gretes, Michael C.; Wellems, Thomas E.; Tavera, Gloria; Goulding, Rebecca E.; Guillen, Ethan
2012-01-01
Universities Allied for Essential Medicines organized its first Neglected Diseases and Innovation Symposium to address expanding roles of public sector research institutions in innovation in research and development of biomedical technologies for treatment of diseases, particularly neglected tropical diseases. Universities and other public research institutions are increasingly integrated into the pharmaceutical innovation system. Academic entities now routinely undertake robust high-throughput screening and medicinal chemistry research programs to identify lead compounds for small molecule drugs and novel drug targets. Furthermore, product development partnerships are emerging between academic institutions, non-profit entities, and biotechnology and pharmaceutical companies to create diagnostics, therapies, and vaccines for diseases of the poor. With not for profit mission statements, open access publishing standards, open source platforms for data sharing and collaboration, and a shift in focus to more translational research, universities and other public research institutions are well-placed to accelerate development of medical technologies, particularly for neglected tropical diseases. PMID:22232453
Erick Peirson, B R; Kropp, Heather; Damerow, Julia; Laubichler, Manfred D
2017-05-01
Contrary to concerns of some critics, we present evidence that biomedical research is not dominated by a small handful of model organisms. An exhaustive analysis of research literature suggests that the diversity of experimental organisms in biomedical research has increased substantially since 1975. There has been a longstanding worry that organism-centric funding policies can lead to biases in experimental organism choice, and thus negatively impact the direction of research and the interpretation of results. Critics have argued that a focus on model organisms has unduly constrained the diversity of experimental organisms. The availability of large electronic databases of scientific literature, combined with interest in quantitative methods among philosophers of science, presents new opportunities for data-driven investigations into organism choice in biomedical research. The diversity of organisms used in NIH-funded research may be considerably lower than in the broader biomedical sciences, and may be subject to greater constraints on organism choice. © 2017 WILEY Periodicals, Inc.
[Biology and culture: a dimension of collaboration between anthropology and epidemiology].
Song, Leiming; Wang, Ning
2016-01-01
Biology is the important basis of epidemiological study. Based on biology, psychology, social and cultural factors can influence human's health and disease incidence. The medical mode has changed from "biomedical mode" to "bio-psycho-social medical model" , but culture factor was neglected somewhat during this process, so paying attention to culture factor in anthropologic study and using it as biologic basis in epidemiologic study might be a dimension of collaboration between of anthropology and epidemiology.
[Research resource network and Parkinson disease brain bank donor registration program in Japan].
Arima, Kunimasa
2010-10-01
In spite of the increasing need for brain tissue in biomedical research, overall brain banking activities in Japan has been lagging behind. On the initiative of the National Center of Neurology and Psychiatry, 2 projects have been carried out; the Research Resource Network (RRN) and the Parkinson's Disease Brain Bank (PDBB) donor registration program. RRN is a nation-wide network that links 15 brain repositories, and 1,463 autopsy brains have been registered in this network as of December 2009. The brain donor registration program for PDBB was established in 2006. A donor without cognitive impairment can enroll in this PDBB donor registration program. When the donor dies, the next-of-kin will contact the PDBB coordinators for subsequent autopsy services and brain retention. On obtaining the next-of-kin's consent at the time of donor's death, autopsy will be performed at PDBB collaborating hospitals of National Center of Neurology and Psychiatry, Juntendo University Hospital, and Tokyo Metropolitan Geriatric Hospital. In order to arouse public interest, lecture meetings for citizens have been held on a regular basis. Fifty individuals have registered in the PDBB donor registration program including 27 patients with PD, 4 patient with Parkinson syndrome, 1 patient with progressive supranuclear palsy, and 18 individuals without PD or related disorders as of December 2009. Autopsies have been performed for 2 of these donors. To promote brain banking activities,it is necessary to establish legal and ethical guidelines for the use of autopsied materials in biomedical research.
Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment
ERIC Educational Resources Information Center
Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.
2011-01-01
"Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an…
2014-01-01
Background Over the last few decades, biomedical HIV prevention research had engaged multiple African stakeholders. There have however been few platforms to enable regional stakeholders to engage with one another. In partnership with the World AIDS Campaign International, the Institute of Public Health of Obafemi Awolowo University, and the National Agency for the Control of AIDS in Nigeria, the New HIV Vaccine and Microbicide Advocacy Society hosted a forum on biomedical HIV prevention research in Africa. Stakeholders’ present explored evidences related to biomedical HIV prevention research and development in Africa, and made recommendations to inform policy, guidelines and future research agenda. Discussion The BHPF hosted 342 participants. Topics discussed included the use of antiretrovirals for HIV prevention, considerations for biomedical HIV prevention among key populations; HIV vaccine development; HIV cure; community and civil society engagement; and ethical considerations in implementation of biomedical HIV prevention research. Participants identified challenges for implementation of proven efficacious interventions and discovery of other new prevention options for Africa. Concerns raised included limited funding by African governments, lack of cohesive advocacy and policy agenda for biomedical HIV prevention research and development by Africa, varied ethical practices, and limited support to communities’ capacity to actively engaged with clinical trial conducts. Participants recommended that the African Government implement the Abuja +12 declaration; the civil society build stronger partnerships with diverse stakeholders, and develop a coherent advocacy agenda that also enhances community research literacy; and researchers and sponsors of trials on the African continent establish a process for determining appropriate standards for trial conduct on the continent. Conclusion By highlighting key considerations for biomedical HIV prevention research and development in Africa, the forum has helped identify key advocacy issues that Civil Society can expend efforts on so as to strengthen support for future biomedical HIV prevention research on the continent. PMID:26636825
Folayan, Morenike Oluwatoyin; Gottemoeller, Megan; Mburu, Rosemary; Brown, Brandon
2014-01-01
Over the last few decades, biomedical HIV prevention research had engaged multiple African stakeholders. There have however been few platforms to enable regional stakeholders to engage with one another. In partnership with the World AIDS Campaign International, the Institute of Public Health of Obafemi Awolowo University, and the National Agency for the Control of AIDS in Nigeria, the New HIV Vaccine and Microbicide Advocacy Society hosted a forum on biomedical HIV prevention research in Africa. Stakeholders' present explored evidences related to biomedical HIV prevention research and development in Africa, and made recommendations to inform policy, guidelines and future research agenda. The BHPF hosted 342 participants. Topics discussed included the use of antiretrovirals for HIV prevention, considerations for biomedical HIV prevention among key populations; HIV vaccine development; HIV cure; community and civil society engagement; and ethical considerations in implementation of biomedical HIV prevention research. Participants identified challenges for implementation of proven efficacious interventions and discovery of other new prevention options for Africa. Concerns raised included limited funding by African governments, lack of cohesive advocacy and policy agenda for biomedical HIV prevention research and development by Africa, varied ethical practices, and limited support to communities' capacity to actively engaged with clinical trial conducts. Participants recommended that the African Government implement the Abuja +12 declaration; the civil society build stronger partnerships with diverse stakeholders, and develop a coherent advocacy agenda that also enhances community research literacy; and researchers and sponsors of trials on the African continent establish a process for determining appropriate standards for trial conduct on the continent. By highlighting key considerations for biomedical HIV prevention research and development in Africa, the forum has helped identify key advocacy issues that Civil Society can expend efforts on so as to strengthen support for future biomedical HIV prevention research on the continent.
Kibbe, Warren A.; Arze, Cesar; Felix, Victor; ...
2014-10-27
The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years.more » These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. In conclusion, this will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kibbe, Warren A.; Arze, Cesar; Felix, Victor
The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years.more » These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. In conclusion, this will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning.« less
eClims: An Extensible and Dynamic Integration Framework for Biomedical Information Systems.
Savonnet, Marinette; Leclercq, Eric; Naubourg, Pierre
2016-11-01
Biomedical information systems (BIS) require consideration of three types of variability: data variability induced by new high throughput technologies, schema or model variability induced by large scale studies or new fields of research, and knowledge variability resulting from new discoveries. Beyond data heterogeneity, managing variabilities in the context of BIS requires extensible and dynamic integration process. In this paper, we focus on data and schema variabilities and we propose an integration framework based on ontologies, master data, and semantic annotations. The framework addresses issues related to: 1) collaborative work through a dynamic integration process; 2) variability among studies using an annotation mechanism; and 3) quality control over data and semantic annotations. Our approach relies on two levels of knowledge: BIS-related knowledge is modeled using an application ontology coupled with UML models that allow controlling data completeness and consistency, and domain knowledge is described by a domain ontology, which ensures data coherence. A system build with the eClims framework has been implemented and evaluated in the context of a proteomic platform.
Connectivity: An emerging concept for physiotherapy practice.
Nicholls, David A; Atkinson, Karen; Bjorbækmo, Wenche S; Gibson, Barbara E; Latchem, Julie; Olesen, Jens; Ralls, Jenny; Setchell, Jennifer
2016-01-01
Having spent their first century anchored to a biomedical model of practice, physiotherapists have been increasingly interested in exploring new models and concepts that will better equip them for serving the health-care needs of 21st century clients/patients. Connectivity offers one such model. With an extensive philosophical background in phenomenology, symbolic interactionism, structuralism, and postmodern research, connectivity resists the prevailing western biomedical view that health professionals should aim to increase people's independence and autonomy, preferring instead to identify and amplify opportunities for collaboration and co-dependence. Connectivity critiques the normalization that underpins modern health care, arguing that our constant search for deviance is building stigma and discrimination into our everyday practice. It offers provocative opportunities for physiotherapists to rethink some of the fundamental tenets of their profession and better align physiotherapy with 21st century societal expectations. In this paper, we provide a background to the place connectivity may play in future health care, and most especially future physiotherapy practice. The paper examines some of the philosophical antecedents that have made connectivity an increasingly interesting and challenging concept in health care today.
Therapeutic robotics for children with disabilities: a case study.
Drane, James; Safos, Charlotte; Lathan, Corinna E
2009-01-01
The advancement of technology is having a profound effect on enhancing the lives of children with disabilities. As advances in biomedical technology allow research breakthroughs to continue at a steady pace, more and more is being discovered about the nature of different disorders in children. At the same time, partly due to the continuing rapid rate of advancement (and societal acceptance) of robotics technology, researchers, educators, and therapists are exploring the idea that robots might be used as an effective therapeutic and educational tool. Over the past nine years, AnthroTronix has collaborated extensively with therapists, educators, researchers, parents, and children to uncover the therapeutic and educational benefits of including robotics as part of rehabilitation curriculum for children. As a central part of this effort, the company has worked with its colleagues to develop and refine the CosmoBot system, an interactive robotic toolkit designed to enhance therapy, education, and play for children with disabilities.
Morrissey, Bethny; Blyth, Karen; Carter, Phil; Chelala, Claude; Jones, Louise; Holen, Ingunn; Speirs, Valerie
2017-01-01
While significant medical breakthroughs have been achieved through using animal models, our experience shows that often there is surplus material remaining that is frequently never revisited but could be put to good use by other scientists. Recognising that most scientists are willing to share this material on a collaborative basis, it makes economic, ethical, and academic sense to explore the option to utilise this precious resource before generating new/additional animal models and associated samples. To bring together those requiring animal tissue and those holding this type of archival material, we have devised a framework called Sharing Experimental Animal Resources, Coordinating Holdings (SEARCH) with the aim of making remaining material derived from animal studies in biomedical research more visible and accessible to the scientific community. We encourage journals, funding bodies, and scientists to unite in promoting a new way of approaching animal research by adopting the SEARCH framework.
Morrissey, Bethny; Blyth, Karen; Carter, Phil; Chelala, Claude; Jones, Louise; Holen, Ingunn; Speirs, Valerie
2017-01-01
While significant medical breakthroughs have been achieved through using animal models, our experience shows that often there is surplus material remaining that is frequently never revisited but could be put to good use by other scientists. Recognising that most scientists are willing to share this material on a collaborative basis, it makes economic, ethical, and academic sense to explore the option to utilise this precious resource before generating new/additional animal models and associated samples. To bring together those requiring animal tissue and those holding this type of archival material, we have devised a framework called Sharing Experimental Animal Resources, Coordinating Holdings (SEARCH) with the aim of making remaining material derived from animal studies in biomedical research more visible and accessible to the scientific community. We encourage journals, funding bodies, and scientists to unite in promoting a new way of approaching animal research by adopting the SEARCH framework. PMID:28081116
Code of Federal Regulations, 2013 CFR
2013-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2014 CFR
2014-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2012 CFR
2012-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Code of Federal Regulations, 2010 CFR
2010-10-01
... receives PHS support for any activity or program that involves the conduct of biomedical or behavioral research, biomedical or behavioral research training, or activities related to that research or training. This includes, but is not limited to colleges and universities, PHS intramural biomedical or behavioral...
Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.
Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh
2018-05-01
A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.
Buseh, Aaron G; Stevens, Patricia E; Millon-Underwood, Sandra; Townsend, Leolia; Kelber, Sheryl T
2013-10-01
There is limited information about what African Americans think about biobanks and the ethical questions surrounding them. Likewise, there is a gap in capacity to successfully enroll African Americans as biobank donors. The purposes of this community-based participatory study were to: (a) explore African Americans' perspectives on genetics/genomic research, (b) understand facilitators and barriers to participation in such studies, and (c) enlist their ideas about how to attract and sustain engagement of African Americans in genetics initiatives. As the first phase in a mixed methods study, we conducted four focus groups with 21 African American community leaders in one US Midwest city. The sample consisted of executive directors of community organizations and prominent community activists. Data were analyzed thematically. Skepticism about biomedical research and lack of trust characterized discussions about biomedical research and biobanks. The Tuskegee Untreated Syphilis Study and the Henrietta Lacks case influenced their desire to protect their community from harm and exploitation. Connections between genetics and family history made genetics/genomics research personal, pitting intrusion into private affairs against solutions. Participants also expressed concerns about ethical issues involved in genomics research, calling attention to how research had previously been conducted in their community. Participants hoped personalized medicine might bring health benefits to their people and proposed African American communities have a "seat at the table." They called for basic respect, authentic collaboration, bidirectional education, transparency and prerogative, and meaningful benefits and remuneration. Key to building trust and overcoming African Americans' trepidation and resistance to participation in biobanks are early and persistent engagement with the community, partnerships with community stakeholders to map research priorities, ethical conduct of research, and a guarantee of equitable distribution of benefits from genomics discoveries.
NASA Technical Reports Server (NTRS)
Leveton, L. B.; VanderArk, S. T.
2014-01-01
The Behavioral Health and Performance discipline at NASA Johnson Space Center is organized into two distinct Divisions (Biomedical Research and Environmental Science Division and Space and Clinical Operations Division) but is integrated and interrelated in its day-to-day work. Ongoing operations supporting NASA's spaceflight goals benefit from the research portfolios that address risks to mission success. Similarly, these research portfolios are informed by operations to ensure investigations stay relevant given the dynamic environment of spaceflight. There are many success stories that can be presented where initial work begun as a BHP Research project, and funded through the Human Research Program, was fully implemented in operations or addressed an operational need. Examples include improving effectiveness of the debriefings used within Mission Control by the Mission Operations Directorate and countermeasures for fatigue management. There is also ongoing collaboration with research and operations for developing selection methods for future generation astronauts, and to enhance and inform the current family support function. The objective of this panel is to provide examples of recent success stories, describe areas where close collaboration is benefitting ongoing research and operations, and summarize how this will come together as NASA plans for the one year ISS mission - a unique opportunity for both BHP operations and research to learn more about preparing and supporting crewmembers for extended missions in space. The proposed panel will be comprised of six presentations, each describing a unique aspect of research or operations and the benefits to current and future spaceflight.
Reich, Margaret; Shipman, Jean P; Narus, Scott P; Weir, Charlene; Madsen, Randy; Schultz, N Dustin; Cameron, Justin M; Adamczyk, Abby L; Mitchell, Joyce A
2013-01-01
How can health sciences librarians and biomedical informaticians offer relevant support to Clinical and Translational Science Award (CTSA) personnel? The Spencer S. Eccles Health Sciences Library and the associate vice president for information technology for the health sciences office at the University of Utah conducted a needs assessment. Faculty and staff from these two units, with the services of a consultant and other CTSA partners, employed a survey, focus groups, interviews, and committee discussions. An information portal was created to meet identified needs. A directive white paper was created. The process employed to plan a virtual and physical collaborative, collegial space for clinical researchers at the university and its three inter-institutional CTSA partners is described. The university's model can assist other librarians and informaticians with how to become part of a CTSA-focused infrastructure for clinical and translational research and serve researchers in general.
The Cell Collective: Toward an open and collaborative approach to systems biology
2012-01-01
Background Despite decades of new discoveries in biomedical research, the overwhelming complexity of cells has been a significant barrier to a fundamental understanding of how cells work as a whole. As such, the holistic study of biochemical pathways requires computer modeling. Due to the complexity of cells, it is not feasible for one person or group to model the cell in its entirety. Results The Cell Collective is a platform that allows the world-wide scientific community to create these models collectively. Its interface enables users to build and use models without specifying any mathematical equations or computer code - addressing one of the major hurdles with computational research. In addition, this platform allows scientists to simulate and analyze the models in real-time on the web, including the ability to simulate loss/gain of function and test what-if scenarios in real time. Conclusions The Cell Collective is a web-based platform that enables laboratory scientists from across the globe to collaboratively build large-scale models of various biological processes, and simulate/analyze them in real time. In this manuscript, we show examples of its application to a large-scale model of signal transduction. PMID:22871178
The Need for Veterinarians in Biomedical Research
Rosol, Thomas J.; Moore, Rustin M.; Saville, William J.A.; Oglesbee, Michael J.; Rush, Laura J.; Mathes, Lawrence E.; Lairmore, Michael D.
2010-01-01
The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedical research with applications to animal or human health. There are too few graduate veterinarians to serve broad national needs in private practice; academia; local, state, and federal government agencies; and private industry. There are no easy solutions to the problem of increasing the number of veterinarians in biomedical research. Progress will require creativity, modification of priorities, broad-based communication, support from faculty and professional organizations, effective mentoring, education in research and alternative careers as part of the veterinary professional curriculum, and recognition of the value of research experience among professional schools’ admissions committees. New resources should be identified to improve communication and education, professional and graduate student programs in biomedical research, and support to junior faculty. These actions are necessary for the profession to sustain its viability as an integral part of biomedical research. PMID:19435992
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2013 CFR
2013-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2012 CFR
2012-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
42 CFR 93.301 - Institutional assurances.
Code of Federal Regulations, 2014 CFR
2014-10-01
... assurances. (a) General policy. An institution with PHS supported biomedical or behavioral research, research... biomedical and behavioral research, research training, or activities related to that research or research...
Benefits of International Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Hasbrook, Pete; Robinson, Julie A.; Brown Tate, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki;
2017-01-01
The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the efforts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible "open data" repositories. For ISS data, these repositories include GeneLab and the Physical Science Informatics System. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research. The paper explores international collaboration history, its evolution and maturation, change of focus during its different phases, and growth of its effectiveness (in accordance with the especially established criteria) in the light of benefits for the entire ISS community. With the International Space Station extended through at least 2024, more crew time becoming available and new facilities arriving on board the ISS, these benefits of international scientific collaboration on the ISS can only increase.
Bulletin of the Division of Electrical Engineering, 1987-1988, volume 3, number 2
NASA Astrophysics Data System (ADS)
1988-05-01
A report is provided on the activities of the Division of Electrical Engineering of the National Research Council of Canada. The Division engages in the development of standards and test procedures, and undertakes applied research in support of Canadian industry, government departments, and universities. Technology transfer and collaborative research continue to grow in importance as focuses of Division activities. The Division is comprised of three sections: the Laboratory for Biomedical Engineering, the Laboratory for Electromagnetic and Power Engineering, and the Laboratory for Intelligent Systems. An agreement has been reached to commercially exploit the realtime multiprocessor operating system Harmony. The dielectrics group has made contract research agreements with industry from both Canada and the United States. The possibility of employing a new advanced laser vision camera, which can be mounted on a robot arm in a variety of industrial applications is being explored. Potential short-term spinoffs related to intelligent wheelchairs are being sought as part of the new interlaboratory program which has as its long-term objective the development of a mobile robot for health care applications. A program in applied artificial intelligence has been established. Initiatives in collaboration with outside groups include proposals for major institutes in areas ranging from police and security research to rehabilitation research, programs to enhance Canadian industrial competence working with the Canadian Manufacturers' Association and other government departments, and approaches to the utilization of existing facilities which will make them more valuable without significant financial expenditures.
Developing international open science collaborations: Funder reflections on the Open Science Prize.
Kittrie, Elizabeth; Atienza, Audie A; Kiley, Robert; Carr, David; MacFarlane, Aki; Pai, Vinay; Couch, Jennifer; Bajkowski, Jared; Bonner, Joseph F; Mietchen, Daniel; Bourne, Philip E
2017-08-01
The Open Science Prize was established with the following objectives: first, to encourage the crowdsourcing of open data to make breakthroughs that are of biomedical significance; second, to illustrate that funders can indeed work together when scientific interests are aligned; and finally, to encourage international collaboration between investigators with the intent of achieving important innovations that would not be possible otherwise. The process for running the competition and the successes and challenges that arose are presented.
Developing international open science collaborations: Funder reflections on the Open Science Prize
Kittrie, Elizabeth; Atienza, Audie A.; Kiley, Robert; Carr, David; MacFarlane, Aki; Pai, Vinay; Couch, Jennifer; Bajkowski, Jared; Bonner, Joseph F.; Mietchen, Daniel
2017-01-01
The Open Science Prize was established with the following objectives: first, to encourage the crowdsourcing of open data to make breakthroughs that are of biomedical significance; second, to illustrate that funders can indeed work together when scientific interests are aligned; and finally, to encourage international collaboration between investigators with the intent of achieving important innovations that would not be possible otherwise. The process for running the competition and the successes and challenges that arose are presented. PMID:28763440
Superhydrophobic Materials for Biomedical Applications
Colson, Yolonda L.; Grinstaff, Mark W.
2016-01-01
Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air state at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors’ future perspectives on the utility of superhydrophobic surfaces for biomedical applications. PMID:27449946
Facilities available for biomedical science research in the public universities in Lagos, Nigeria.
John, T A
2010-03-01
Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.
Benefits of International Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Hasbrook, Pete; Tate Brown, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki;
2017-01-01
The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the e orts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible \\open data" repositories. For ISS data, these repositories include GeneLab, the Physical Science Informatics System, and different Earth science data systems. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research. The paper explores effectiveness of international collaboration in the course of the ISS Program execution. The collaboration history, its evolution and maturation, change of focus during its different phases, and growth of its effectiveness (in accordance with the especially established criteria) are also considered in the paper in the light of benefits for the entire ISS community. With the International Space Station extended through at least 2024, more crew time becoming available and new facilities arriving on board the ISS, these benefits of international scientific collaboration on the ISS can only increase.
A Scientific Workflow Platform for Generic and Scalable Object Recognition on Medical Images
NASA Astrophysics Data System (ADS)
Möller, Manuel; Tuot, Christopher; Sintek, Michael
In the research project THESEUS MEDICO we aim at a system combining medical image information with semantic background knowledge from ontologies to give clinicians fully cross-modal access to biomedical image repositories. Therefore joint efforts have to be made in more than one dimension: Object detection processes have to be specified in which an abstraction is performed starting from low-level image features across landmark detection utilizing abstract domain knowledge up to high-level object recognition. We propose a system based on a client-server extension of the scientific workflow platform Kepler that assists the collaboration of medical experts and computer scientists during development and parameter learning.
Information Retrieval in Biomedical Research: From Articles to Datasets
ERIC Educational Resources Information Center
Wei, Wei
2017-01-01
Information retrieval techniques have been applied to biomedical research for a variety of purposes, such as textual document retrieval and molecular data retrieval. As biomedical research evolves over time, information retrieval is also constantly facing new challenges, including the growing number of available data, the emerging new data types,…
ERIC Educational Resources Information Center
Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.
2013-01-01
This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based…
Latino Beliefs about Biomedical Research Participation: A Qualitative Study on the US-Mexico Border
Ceballos, Rachel; Knerr, Sarah; Scott, Mary Alice; Hohl, Sarah; Malen, Rachel; Vilchis, Hugo; Thompson, Beti
2015-01-01
Latinos are under-represented in biomedical research conducted in the United States (US), impeding disease prevention and treatment efforts for this growing demographic group. We gathered perceptions of biomedical research and gauged willingness to participate through elicitation interviews and focus groups with Latinos living on the US-Mexico border. Themes that emerged included a strong willingness to participate in biomedical studies and suggested that Latinos may be under-represented due to limited formal education and access to health information, not distrust. The conflation of research and clinical care was common and motivated participation. Outreach efforts and educational interventions to inform Latinos of participation opportunities and clarify harms and benefits associated with biomedical research participation will be essential to maintain trust within Latino communities. PMID:25747293
Implantable Biomedical Microsystems: A New Graduate Course in Biomedical Circuits and Systems
ERIC Educational Resources Information Center
Sodagar, Amir M.
2014-01-01
After more than two decades of research on the design and development of implantable biomedical microsystems, it is time now to organize research achievements in this area in a consolidated and pedagogical form. This paper introduces a new graduate course in advanced biomedical circuits and systems. Designed for graduate students with electrical…
The Ontology for Biomedical Investigations.
Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie
2016-01-01
The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.
The Ontology for Biomedical Investigations
Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie
2016-01-01
The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl. PMID:27128319
2014-01-01
Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852
NEMO: Extraction and normalization of organization names from PubMed affiliations.
Jonnalagadda, Siddhartha Reddy; Topham, Philip
2010-10-04
Today, there are more than 18 million articles related to biomedical research indexed in MEDLINE, and information derived from them could be used effectively to save the great amount of time and resources spent by government agencies in understanding the scientific landscape, including key opinion leaders and centers of excellence. Associating biomedical articles with organization names could significantly benefit the pharmaceutical marketing industry, health care funding agencies and public health officials and be useful for other scientists in normalizing author names, automatically creating citations, indexing articles and identifying potential resources or collaborators. Large amount of extracted information helps in disambiguating organization names using machine-learning algorithms. We propose NEMO, a system for extracting organization names in the affiliation and normalizing them to a canonical organization name. Our parsing process involves multi-layered rule matching with multiple dictionaries. The system achieves more than 98% f-score in extracting organization names. Our process of normalization that involves clustering based on local sequence alignment metrics and local learning based on finding connected components. A high precision was also observed in normalization. NEMO is the missing link in associating each biomedical paper and its authors to an organization name in its canonical form and the Geopolitical location of the organization. This research could potentially help in analyzing large social networks of organizations for landscaping a particular topic, improving performance of author disambiguation, adding weak links in the co-author network of authors, augmenting NLM's MARS system for correcting errors in OCR output of affiliation field, and automatically indexing the PubMed citations with the normalized organization name and country. Our system is available as a graphical user interface available for download along with this paper.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
Biomedical technology transfer applications of NASA science and technology
NASA Technical Reports Server (NTRS)
1972-01-01
The identification and solution of research and clinical problems in cardiovascular medicine which were investigated by means of biomedical data transfer are reported. The following are sample areas that were focused upon by the Stanford University Biomedical Technology Transfer Team: electrodes for hemiplegia research; vectorcardiogram computer analysis; respiration and phonation electrodes; radiotelemetry of intracranial pressure; and audiotransformation of the electrocardiographic signal. It is concluded that this biomedical technology transfer is significantly aiding present research in cardiovascular medicine.
ERIC Educational Resources Information Center
Haller, Edwin W., Ed.; Myers, Ruth A., Ed.
This document contains edited versions of tape-recorded speeches given at a conference titled "American Indians and Alaskan Natives in Biomedical Research." The proceedings is divided into two sections: "Research in the Biomedical Sciences: American Indians Speak Out" that includes presentations on aspects of biomedical careers and their federal…
Otero, P; Hersh, W
2011-01-01
Web 3.0 is transforming the World Wide Web by allowing knowledge and reasoning to be gleaned from its content. Describe a new scenario in education and training known as "Education 3.0" that can help in the promotion of learning in health informatics in a collaborative way. Review of the current standards available for curricula and learning activities in in Biomedical and Health Informatics (BMHI) for a Web 3.0 scenario. A new scenario known as "Education 3.0" can provide open educational resources created and reused throughout different institutions and improved by means of an international collaborative knowledge powered by the use of E-learning. Currently there are standards that could be used in identifying and deliver content in education in BMHI in the semantic web era such as Resource Description Format (RDF), Web Ontology Language (OWL) and Sharable Content Object Reference Model (SCORM). In addition, there are other standards to support healthcare education and training. There are few experiences in the use of standards in e-learning in BMHI published in the literature. Web 3.0 can propose new approaches to building the BMHI workforce so there is a need to build tools as knowledge infrastructure to leverage it. The usefulness of standards in the content and competencies of training programs in BMHI needs more experience and research so as to promote the interoperability and sharing of resources in this growing discipline.
Biomedical ontologies: toward scientific debate.
Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C
2011-01-01
Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, K.S.
1994-12-31
When the North Carolina Association for Biomedical Research (NCABR) surveyed the state`s science teachers in March 1993, 92% of those responding requested information related to biomedical research. Most of the teachers requested lesson plans and activities designed to help them give students an accurate and balanced perspective on research. In response to that need, NCABR has recently completed production of a 300-page teacher`s manual that provides an overview of the biomedical research process and describes the role and care of animals in that process. Rx for Science Literacy incorporates background information, lesson plans, handouts and activities to assist teachers inmore » K-12 classrooms. Developed by a science teacher with assistance from science and education experts, the manual captures the complex biomedical research process in an easy-to-follow, easy-to-use format. In North Carolina, NCABR plans to begin these workshops in fall 1994. The workshops will include a tour of a biomedical research laboratory and on-site presentations by bench scientists. Teacher evaluation of the manual will be structured into the workshop program. The manual is available at cost to all interested individuals and organizations.« less
Kombe, Francis
2015-11-13
The integrity of biomedical research depends heavily on the quality of research data collected. In turn, data quality depends on processes of data collection, a task undertaken by frontline research staff in many research programmes in Africa and elsewhere. These frontline research staff often have additional responsibilities including translating and communicating research in local languages, seeking informed consent for study participation and maintaining supportive relationships between research institutions and study participants and wider communities. The level of skills that fieldworkers need to undertake these responsibilities clearly affects the quality of data collected, the ethics of research 'on the ground' and the short and long term acceptability of research.We organised an international workshop in Kenya in July 2014 to discuss the role of frontline staff in scientific research. A total of 25 field managers from 9 African countries and the UK met for 2.5 days to discuss the relationship between data quality and institutional performance management systems and how they affect career progression and supportive supervision policies of research frontline staff.From this workshop, and supporting an expanding literature on the role of fieldworkers in international health research, participants agreed that fieldworkers' roles present them with practical and ethical challenges that their routine training does not adequately prepare them for. We argue that the common and complex challenges facing fieldworkers should in part be addressed through increased investment and collaborative agreements across types of research institutions in Africa. We call for standardization of core elements of training for this critically important cadre of research staff who perform similar roles and encounter similar challenges in many African settings. Although many valuable training elements are offered in institutions, there is a need to develop broader, more grounded and innovative strategies to address complex realities for fieldworkers, and support the integrity and ethics of health research in these settings.
Indications for Seeking a Medical Consultation
ERIC Educational Resources Information Center
Wodrich, David L.; Kaplan, Allen M.
2006-01-01
Recognizing barriers to academic success and full student development, some of which are medical in nature, is a primary task of school psychologists. Expanding biomedical information compels school-based psychologists to collaborate with medical professionals when their input can clarify diagnostic issues and expand treatment choices. This…
Project Development Teams: A Novel Mechanism for Accelerating Translational Research
Sajdyk, Tammy J.; Sors, Thomas G.; Hunt, Joe D.; Murray, Mary E.; Deford, Melanie E.; Shekhar, Anantha; Denne, Scott C.
2014-01-01
The trend in conducting successful biomedical research is shifting from individual academic labs to coordinated collaborative research teams. Teams of experienced investigators with a wide variety of expertise are now critical for developing and maintaining a successful, productive research program. However, assembling a team whose members have the right expertise requires a great deal of time and many resources. To assist investigators seeking such resources, the Indiana Clinical and Translational Sciences Institute (Indiana CTSI) created the Project Development Teams (PDTs) Program to support translational research on and across the Indiana University-Purdue University Indianapolis, Indiana University, Purdue University, and University of Notre Dame campuses. PDTs are multidisciplinary committees of seasoned researchers who assist investigators, at any stage of research, in transforming ideas/hypotheses into well-designed translational research projects. The teams help investigators capitalize on Indiana CTSI resources by providing investigators with, as needed, mentoring and career development; protocol development; pilot funding; institutional review board, regulatory, and/or nursing support; intellectual property support; access to institutional technology; and assistance with biostatistics, bioethics, recruiting participants, data mining, engaging community health, and collaborating with other investigators. Indiana CTSI leaders have analyzed metrics, collected since the inception of the PDT Program in 2008 from both investigators and team members, and found evidence strongly suggesting that the highly responsive teams have become an important one-stop venue for facilitating productive interactions between basic and clinical scientists across four campuses, have aided in advancing the careers of junior faculty, and have helped investigators successfully obtain external funds. PMID:25319172
The Impact of Regulating Social Science Research with Biomedical Regulations
ERIC Educational Resources Information Center
Durosinmi, Brenda Braxton
2011-01-01
The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…
An Evolving Research Culture: Analysis of Biomedical Publications from Libya, 2003-13
ERIC Educational Resources Information Center
Ahmed, Mohamed O.; Daw, Mohamed A.; van Velkinburgh, Jennifer C.
2017-01-01
Understanding the publication output of a country's biomedical research can provide information for strengthening its policies, economy, and educational systems. Yet, this is the first bibliometric study to date to analyze and provide an in-depth discussion of the biomedical research productivity from Libyan academic institutions. The biomedical…
Greenberg, Alexandra; Kiddell-Monroe, Rachel
2016-09-14
In recent years, the world has witnessed the tragic outcomes of multiple global health crises. From Ebola to high prices to antibiotic resistance, these events highlight the fundamental constraints of the current biomedical research and development (R&D) system in responding to patient needs globally.To mitigate this lack of responsiveness, over 100 self-identified "alternative" R&D initiatives, have emerged in the past 15 years. To begin to make sense of this panoply of initiatives working to overcome the constraints of the current system, UAEM began an extensive, though not comprehensive, mapping of the alternative biomedical R&D landscape. We developed a two phase approach: (1) an investigation, via the RE:Route Mapping, of both existing and proposed initiatives that claim to offer an alternative approach to R&D, and (2) evaluation of those initiatives to determine which are in fact achieving increased access to and innovation in medicines. Through phase 1, the RE:Route Mapping, we examined 81 initiatives that claim to redress the inequity perpetuated by the current system via one of five commonly recognized mechanisms necessary for truly alternative R&D.Preliminary analysis of phase 1 provides the following conclusions: 1. No initiative presents a completely alternative model of biomedical R&D. 2. The majority of initiatives focus on developing incentives for drug discovery. 3. The majority of initiatives focus on rare diseases or diseases of the poor and marginalized. 4. There is an increasing emphasis on the use of push, pull, pool, collaboration and open mechanisms alongside the concept of delinkage in alternative R&D. 5. There is a trend towards public funding and launching of initiatives by the Global South. Given the RE:Route Mapping's inevitable limitations and the assumptions made in its methodology, it is not intended to be the final word on a constantly evolving and complex field; however, its findings are significant. The Mapping's value lies in its timely and unique insight into the importance of ongoing efforts to develop a new global framework for biomedical R&D. As we progress to phase 2, an evaluation tool for initiatives focused on identifying which approaches have truly achieved increased innovation and access for patients, we aim to demonstrate that there are a handful of initiatives which represent some, but not all, of the building blocks for a new approach to R&D.Through this mapping and our forthcoming evaluation, UAEM aims to initiate an evidence-based conversation around a truly alternative biomedical R&D model that serves people rather than profits.
The Obligation to Participate in Biomedical Research
Schaefer, G. Owen; Emanuel, Ezekiel J.; Wertheimer, Alan
2009-01-01
The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to participate. The current social norm is that people participate only if they have a good reason to do so. The public goods argument implies that people should participate unless they have a good reason not to. Such a shift would be of great aid to the progress of biomedical research, eventually making our society significantly healthier and longer-lived. PMID:19567441
Wallen, M; Pandit, A
2009-05-01
In addressing the task of developing an undergraduate module in the field of tissue engineering, the greatest challenge lies in managing to capture what is a growing and rapidly changing field. Acknowledging the call for the development of greater critical thinking and interpersonal skills among the next generation of engineers as well as encouraging students to engage actively with the dynamic nature of research in the field, the module was developed to include both project-based and cooperative-learning experiences. These learning activities include developing hypotheses for the application of newly introduced laboratory procedures, a collaborative mock grant submission, and debates on ethical issues in which students are assigned roles as various stakeholders. Feedback from module evaluations has indicated that, while students find the expectations challenging, they are able to gain an advanced insight into a dynamic field. More importantly, students develop research competencies by engaging in activities that require them to link current research directions with their own development of hypotheses for future tissue-engineering applications.
Brunner, Julian W; Sankaré, Ibrahima C; Kahn, Katherine L
2015-12-01
Much of dissemination, implementation, and improvement (DII) science is conducted by social scientists, healthcare practitioners, and biomedical researchers. While each of these groups has its own venues for sharing methods and findings, forums that bring together the diverse DII science workforce provide important opportunities for cross-disciplinary collaboration and learning. In particular, such forums are uniquely positioned to foster the sharing of three important components of research. First: they allow the sharing of conceptual frameworks for DII science that focus on the use and spread of innovations. Second: they provide an opportunity to share strategies for initiating and governing DII research, including approaches for eliciting and incorporating the research priorities of patients, study participants, and healthcare practitioners, and decision-makers. Third: they allow the sharing of outcome measures well-suited to the goals of DII science, thereby helping to validate these outcomes in diverse contexts, improving the comparability of findings across settings, and elevating the study of the implementation process itself. © 2015 Wiley Periodicals, Inc.
Brunner, Julian W.; Sankaré, Ibrahima C.
2015-01-01
Abstract Much of dissemination, implementation, and improvement (DII) science is conducted by social scientists, healthcare practitioners, and biomedical researchers. While each of these groups has its own venues for sharing methods and findings, forums that bring together the diverse DII science workforce provide important opportunities for cross‐disciplinary collaboration and learning. In particular, such forums are uniquely positioned to foster the sharing of three important components of research. First: they allow the sharing of conceptual frameworks for DII science that focus on the use and spread of innovations. Second: they provide an opportunity to share strategies for initiating and governing DII research, including approaches for eliciting and incorporating the research priorities of patients, study participants, and healthcare practitioners, and decision‐makers. Third: they allow the sharing of outcome measures well‐suited to the goals of DII science, thereby helping to validate these outcomes in diverse contexts, improving the comparability of findings across settings, and elevating the study of the implementation process itself. PMID:26349456
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin
2013-10-01
Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.
An open annotation ontology for science on web 3.0
2011-01-01
Background There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges. Methods Initial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work. Results This paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables “stand-off” or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO’s Google Code page: http://code.google.com/p/annotation-ontology/ . Conclusions The Annotation Ontology meets critical requirements for an open, freely shareable model in OWL, of annotation metadata created against scientific documents on the Web. We believe AO can become a very useful common model for annotation metadata on Web documents, and will enable biomedical domain ontologies to be used quite widely to annotate the scientific literature. Potential collaborators and those with new relevant use cases are invited to contact the authors. PMID:21624159
An open annotation ontology for science on web 3.0.
Ciccarese, Paolo; Ocana, Marco; Garcia Castro, Leyla Jael; Das, Sudeshna; Clark, Tim
2011-05-17
There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges. Initial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work. This paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables "stand-off" or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO's Google Code page: http://code.google.com/p/annotation-ontology/ . The Annotation Ontology meets critical requirements for an open, freely shareable model in OWL, of annotation metadata created against scientific documents on the Web. We believe AO can become a very useful common model for annotation metadata on Web documents, and will enable biomedical domain ontologies to be used quite widely to annotate the scientific literature. Potential collaborators and those with new relevant use cases are invited to contact the authors.
Contemporary HIV/AIDS research: Insights from knowledge management theory.
Callaghan, Chris William
2017-12-01
Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn's paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the 'crowd,' thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process.
Simbody: multibody dynamics for biomedical research.
Sherman, Michael A; Seth, Ajay; Delp, Scott L
Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.
The importance of Zebrafish in biomedical research.
Tavares, Bárbara; Santos Lopes, Susana
2013-01-01
Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.
NASA Astrophysics Data System (ADS)
Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra
2015-12-01
Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.
Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?
Zuberi, Aamir; Lutz, Cathleen
2016-01-01
Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems, are synergistic and serve to make the mouse a better model for biomedical research, enhancing the potential for preclinical drug discovery and personalized medicine. PMID:28053071
Benefits of International Collaboration on the International Space Station
NASA Technical Reports Server (NTRS)
Hasbrook, Pete; Robinson, Julie A.; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Shirakawa, Masaki; Karabadzhak, Georgy; Sorokin, Igor V.; Valentini, Giovanni
2017-01-01
The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the efforts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and down mass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible "open data" repositories. For ISS data, these repositories include GeneLab, the Physical Science Informatics System, and different Earth data systems. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research.
Biomedical text mining for research rigor and integrity: tasks, challenges, directions.
Kilicoglu, Halil
2017-06-13
An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the manifestation of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices, providing significant benefits for the biomedical research enterprise. Published by Oxford University Press 2017. This work is written by a US Government employee and is in the public domain in the US.
Use of Nonhuman Primates in Research in North America
Turner, Patricia V; Mullan, Robert J; Galland, G Gale
2014-01-01
In North America, the biomedical research community faces social and economic challenges to nonhuman primate (NHP) importation that could reduce the number of NHP available for research needs. The effect of such limitations on specific biomedical research topics is unknown. The Association of Primate Veterinarians (APV), with assistance from the Centers for Disease Control and Prevention, developed a survey regarding biomedical research involving NHP in the United States and Canada. The survey sought to determine the number and species of NHP maintained at APV members’ facilities, current uses of NHP to identify the types of biomedical research that rely on imported animals, and members’ perceived trends in NHP research. Of the 149 members contacted, 33 (22%) replied, representing diverse facility sizes and types. Cynomolgus and rhesus macaques were the most common species housed at responding institutions and comprised the majority of newly acquired and imported NHP. The most common uses for NHP included pharmaceutical research and development and neuroscience, neurology, or neuromuscular disease research. Preclinical safety testing and cancer research projects usually involved imported NHP, whereas research on aging or degenerative disease, reproduction or reproductive disease, and organ or tissue transplantation typically used domestic-bred NHP. The current results improve our understanding of the research uses for imported NHP in North America and may facilitate estimating the potential effect of any future changes in NHP accessibility for research purposes. Ensuring that sufficient NHP are available for critical biomedical research remains a pressing concern for the biomedical research community in North America. PMID:24827570
Code of Federal Regulations, 2011 CFR
2011-07-01
... research to qualified persons doing biomedical or social science research under the conditions outlined in... who wish to have access to records restricted by § 1256.56 to conduct biomedical or social science... even for biomedical or social science research; (ii) The methodology proposed by the requester will...
Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 1: Findings.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.
This is the first of three volumes which presents the Committee on Biomedical and Behavioral Research Personnel's examination of the educational process that leads to doctoral degrees in biomedical and behavioral science (and to postdoctoral study in some cases) and the role of the National Research Service Awards (NRSA) training programs in it.…
From the NIH: A Systems Approach to Increasing the Diversity of the Biomedical Research Workforce
Valantine, Hannah A.; Lund, P. Kay; Gammie, Alison E.
2016-01-01
The National Institutes of Health (NIH) is committed to attracting, developing, and supporting the best scientists from all groups as an integral part of excellence in training. Biomedical research workforce diversity, capitalizing on the full spectrum of skills, talents, and viewpoints, is essential for solving complex human health challenges. Over the past few decades, the biomedical research workforce has benefited from NIH programs aimed at enhancing diversity. However, there is considerable room for improvement, particularly at the level of independent scientists and within scientific leadership. We provide a rationale and specific opportunities to develop and sustain a diverse biomedical research workforce through interventions that promote the successful transitions to different stages on the path toward completion of training and entry into the biomedical workforce. PMID:27587850
Stucki, Gerold; Celio, Marco
2007-05-01
There is a strong movement towards interdisciplinary research around common and scientifically competitive themes, both at universities and at the national and regional level. Human functioning and rehabilitation is a new, highly innovative and relevant theme. It has the potential to attract researchers from a wide range of disciplines, institutions and organizations. It is thus of interest for universities seeking to embark upon a new and unique research area. Similarly, it is a promising theme for individual researchers, institutions and organizations aiming to develop a national or regional collaboration network for interdisciplinary research. Human functioning and rehabilitation complements established themes from the biomedical perspective. In the context of the life sciences, it can be seen as an extension of the biosciences towards a comprehensive understanding of human life, including human interaction and communication, against the background of the natural and social environment. Based on a better understanding of human functioning and disability, there is a wide range of largely unexplored possibilities to optimize populations' functioning and minimize persons' experience of disability in the presence of a health condition. Rehabilitation research is uniquely positioned to integrate and translate scientific advances into benefits for people and the society. Rehabilitation research from the comprehensive perspective can thus become a catalyst of interdisciplinary research that crosses the boundaries of the natural sciences and engineering research, the human and behavioral sciences, the social sciences and a wide range of related scientific areas. Rehabilitation research is also uniquely positioned to cross the boundaries of medicine and the health sector at large, and to translate knowledge across sectors including education, labor and social affairs.
Halban, P A; Boulton, A J M; Smith, U
2013-03-01
Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking diabetes research as the model, a new paradigm for European biomedical research is presented, which offers improved co-ordination and common resources that will benefit both academic and industrial clinical research. This includes the creation of a European Council for Health Research, first proposed by the Alliance for Biomedical Research in Europe, which will bring together and consult with all health stakeholders to develop strategic and multidisciplinary research programmes addressing the full innovation cycle. A European Platform for Clinical Research in Diabetes is proposed by the Alliance for European Diabetes Research (EURADIA) in response to the special challenges and opportunities presented by research across the European region, with the need for common standards and shared expertise and data.
Biomedical research applications of electromagnetically separated enriched stable isotopes
NASA Astrophysics Data System (ADS)
Lambrecht, R. M.
The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.
The Tuskegee Legacy Project: willingness of minorities to participate in biomedical research.
Katz, Ralph V; Kegeles, S Steven; Kressin, Nancy R; Green, B Lee; Wang, Min Qi; James, Sherman A; Russell, Stefanie Luise; Claudio, Cristina
2006-11-01
The broad goal of the Tuskegee Legacy Project (TLP) study was to address, and understand, a range of issues related to the recruitment and retention of Blacks and other minorities in biomedical research studies. The specific aim of this analysis was to compare the self-reported willingness of Blacks, Hispanics, and Whites to participate as research subjects in biomedical studies, as measured by the Likelihood of Participation (LOP) Scale and the Guinea Pig Fear Factor (GPFF) Scale. The Tuskegee Legacy Project Questionnaire, a 60 item instrument, was administered to 1,133 adult Blacks, Hispanics, and non-Hispanic Whites in 4 U.S. cities. The findings revealed no difference in self-reported willingness to participate in biomedical research, as measured by the LOP Scale, between Blacks, Hispanics, and Whites, despite Blacks being 1.8 times as likely as Whites to have a higher fear of participation in biomedical research on the GPFF Scale.
The Tuskegee Legacy Project: Willingness of Minorities to Participate in Biomedical Research
Katz, Ralph V.; Russell, Stefanie L.; Kegeles, S. Steven; Kressin, Nancy R.; Green, B. Lee; Wang, Min Qi; James, Sherman A.; Claudio, Cristina
2006-01-01
The broad goal of the Tuskegee Legacy Project (TLP) study was to address, and understand, a range of issues related to the recruitment and retention of Blacks and other minorities in biomedical research studies. The specific aim of this analysis was to compare the self-reported willingness of Blacks, Hispanics, and Whites to participate as research subjects in biomedical studies, as measured by the Likelihood of Participation (LOP) Scale and the Guinea Pig Fear Factor (GPFF) Scale. The Tuskegee Legacy Project Questionnaire, a 60 item instrument, was administered to 1,133 adult Blacks, Hispanics, and non-Hispanic Whites in 4 U.S. cities. The findings revealed no difference in self-reported willingness to participate in biomedical research, as measured by the LOP Scale, between Blacks, Hispanics, and Whites, despite Blacks being 1.8 times as likely as Whites to have a higher fear of participation in biomedical research on the GPFF Scale. PMID:17242525
The Central Importance of Laboratories for Reducing Waste in Biomedical Research.
Stroth, Nikolas
2016-12-01
The global biomedical research enterprise is driving substantial advances in medicine and healthcare. Yet it appears that the enterprise is rather wasteful, falling short of its true innovative potential. Suggested reasons are manifold and involve various stakeholders, such that there is no single remedy. In the present paper, I will argue that laboratories are the basic working units of the biomedical research enterprise and an important site of action for corrective intervention. Keeping laboratories relatively small will enable better training and mentoring of individual scientists, which in turn will yield better performance of the scientific workforce. The key premise of this argument is that people are at the heart of the successes and failures of biomedical research, yet the human dimension of science has been unduly neglected in practice. Renewed focus on the importance of laboratories and their constituent scientists is one promising approach to reducing waste and increasing efficiency within the biomedical research enterprise.
Future Directions in Medical Physics: Models, Technology, and Translation to Medicine
NASA Astrophysics Data System (ADS)
Siewerdsen, Jeffrey
The application of physics in medicine has been integral to major advances in diagnostic and therapeutic medicine. Two primary areas represent the mainstay of medical physics research in the last century: in radiation therapy, physicists have propelled advances in conformal radiation treatment and high-precision image guidance; and in diagnostic imaging, physicists have advanced an arsenal of multi-modality imaging that includes CT, MRI, ultrasound, and PET as indispensible tools for noninvasive screening, diagnosis, and assessment of treatment response. In addition to their role in building such technologically rich fields of medicine, physicists have also become integral to daily clinical practice in these areas. The future suggests new opportunities for multi-disciplinary research bridging physics, biology, engineering, and computer science, and collaboration in medical physics carries a strong capacity for identification of significant clinical needs, access to clinical data, and translation of technologies to clinical studies. In radiation therapy, for example, the extraction of knowledge from large datasets on treatment delivery, image-based phenotypes, genomic profile, and treatment outcome will require innovation in computational modeling and connection with medical physics for the curation of large datasets. Similarly in imaging physics, the demand for new imaging technology capable of measuring physical and biological processes over orders of magnitude in scale (from molecules to whole organ systems) and exploiting new contrast mechanisms for greater sensitivity to molecular agents and subtle functional / morphological change will benefit from multi-disciplinary collaboration in physics, biology, and engineering. Also in surgery and interventional radiology, where needs for increased precision and patient safety meet constraints in cost and workflow, development of new technologies for imaging, image registration, and robotic assistance can leverage collaboration in physics, biomedical engineering, and computer science. In each area, there is major opportunity for multi-disciplinary collaboration with medical physics to accelerate the translation of such technologies to clinical use. Research supported by the National Institutes of Health, Siemens Healthcare, and Carestream Health.
Assistance to NASA in biomedical areas of the technology utilization program
NASA Technical Reports Server (NTRS)
Culclasure, D. F.; Eckhardt, L.
1972-01-01
The applications of aerospace technology to biomedical research are reported. The medical institutions participating in the Biomedical Applications Program are listed along with the institutions currently utilizing the services of the Southwest Research Institute Biomedical Applications Team. Significant accomplishments during this period include: ultra-low bandpass amplifier for gastro-intestinal electric potentials; non-encumbering EEG electrode assembly suitable for long term sleep research; accurate cardiac telemetry system for active subjects; warning system for the deaf; tracking cane for the blind; and an improved control mechanism to expand the self-sufficiency of quadriplegics.
Vallis, Michael
2015-08-01
Self-management and self-management support are concepts very familiar to those of us in diabetes care. These concepts require openness to understanding the behaviours of persons with diabetes broadly, not only behaviours restricted to the biomedical perspective. Understanding the importance of health behaviour change and working within the Expanded Chronic Care Model define the context within which self-management support should occur. The purpose of this perspective is to identify a potential limitation in existing self-management support initiatives. This potential limitation reflects provider issues, not patient issues; that is, true self-management support might require changes by healthcare providers. Specifically, although behavioural interventions within the context of academic research studies are evidence based, behaviour change interventions implemented in general practice settings might prove less effective unless healthcare providers are able to shift from a practice based on the biomedical model to a practice based on the self-management support model. The purpose of this article is to facilitate effective self-management support by encouraging providers to switch from a model of care based on the expert clinician encountering the uninformed help seeker (the biomedical model) to one guided by collaboration grounded in the principles of description, prediction and choice. Key to understanding the value of making this shift are patient-centered communication principles and the tenets of complexity theory. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
Accessing and integrating data and knowledge for biomedical research.
Burgun, A; Bodenreider, O
2008-01-01
To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues. Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge. New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies. As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research.
NASA Technical Reports Server (NTRS)
Culclasure, D. F.; Sigmon, J. L.; Carter, J. M.
1973-01-01
The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts.
US and Cuban Scientists Forge Collaboration on Arbovirus Research.
Pérez-Ávila, Jorge; Guzmán-Tirado, Maria G; Fraga-Nodarse, Jorge; Handley, Gray; Meegan, James; Pelegrino-Martínez de la Cotera, Jose L; Fauci, Anthony S
2018-04-01
After December 17, 2014, when the US and Cuban governments announced their intent to restore relations, the two countries participated in various exchange activities in an effort to encourage cooperation in public health, health research and biomedical sciences. The conference entitled Exploring Opportunities for Arbovirus Research Collaboration, hosted at Havana's Hotel Nacional, was part of these efforts and was the first major US-Cuban scientific conference in over 50 years. Its purpose was to share information about current arbovirus research and recent findings, and to explore opportunities for future joint research. The nearly 100 participants included leading arbovirus and vector transmission experts from ten US academic institutions, NIH, CDC, FDA and the US Department of Defense. Cuban participants included researchers, clinicians and students from Cuba's Ministry of Public Health, Pedro Kourí Tropical Medicine Institute, Center for Genetic Engineering and Biotechnology, Center for State Control of Medicines and Medical Devices and other health research and regulatory organizations. Topics highlighted at the three-day meeting included surveillance, research and epidemiology; pathogenesis, immunology and virology; treatment and diagnosis; vector biology and control; vaccine development and clinical trials; and regulatory matters. Concurrent breakout discussions focused on novel vector control, nonvector transmission, community engagement, Zika in pregnancy, and workforce development. Following the conference, the Pedro Kourí Tropical Medicine Institute and the US National Institute of Allergic and Infectious Diseases have continued to explore ways to encourage and support scientists in Cuba and the USA who wish to pursue arbovirus research cooperation to advance scientific discovery to improve disease prevention and control. KEYWORDS Arboviruses, flavivirus, Zika virus, chikungunya virus, dengue virus, research, disease vectors, Cuba, USA.
National Space Biomedical Research Institute
NASA Technical Reports Server (NTRS)
2003-01-01
In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.
Selishchev, S V
2004-01-01
The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.
Bichutskiy, Vadim Y.; Colman, Richard; Brachmann, Rainer K.; Lathrop, Richard H.
2006-01-01
Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.) PMID:19458771
2011-01-01
Background The practice and research of medicine generates considerable quantities of data and model resources (DMRs). Although in principle biomedical resources are re-usable, in practice few can currently be shared. In particular, the clinical communities in physiology and pharmacology research, as well as medical education, (i.e. PPME communities) are facing considerable operational and technical obstacles in sharing data and models. Findings We outline the efforts of the PPME communities to achieve automated semantic interoperability for clinical resource documentation in collaboration with the RICORDO project. Current community practices in resource documentation and knowledge management are overviewed. Furthermore, requirements and improvements sought by the PPME communities to current documentation practices are discussed. The RICORDO plan and effort in creating a representational framework and associated open software toolkit for the automated management of PPME metadata resources is also described. Conclusions RICORDO is providing the PPME community with tools to effect, share and reason over clinical resource annotations. This work is contributing to the semantic interoperability of DMRs through ontology-based annotation by (i) supporting more effective navigation and re-use of clinical DMRs, as well as (ii) sustaining interoperability operations based on the criterion of biological similarity. Operations facilitated by RICORDO will range from automated dataset matching to model merging and managing complex simulation workflows. In effect, RICORDO is contributing to community standards for resource sharing and interoperability. PMID:21878109
Prussing, Erica; Sobo, Elisa J; Walker, Elizabeth; Dennis, Kimberly; Kurtin, Paul S
2004-01-01
Barriers to communication about complementary/alternative medicine (CAM) between parents and pediatricians are frequently documented, yet the scope of these barriers remains poorly understood. Such barriers are especially troubling when they involve children with special health needs, among whom CAM use is especially common. This pilot study of parents of children with Down syndrome (DS) used qualitative methods to explore parents' perceptions of the extent and quality of communication about CAM with pediatricians, to elicit parents' recommendations for improvement, and to formulate new research questions. Semistructured interviews were conducted with parents from 30 families with children with DS. Data were audiotaped and analyzed with assistance from qualitative data analysis software. Parents described how they advocated vigorously with their pediatricians about biomedical concerns such as the American Academy of Pediatrics healthcare guidelines for DS, but often avoided discussion of nonbiomedical concerns such as CAM. Many parents looked to pediatricians to initiate conversations about CAM. Even parents who assertively advocate for biomedical concerns in their children's health care may be unlikely to disclose and discuss CAM use with their pediatricians. Attending to parents' experiences helps to illuminate the nature and scope of current communication barriers and poses new research questions for assessing and improving parent-physician collaboration about health-related issues that may be prioritized differently by parents and pediatricians.
Topics in Biomedical Optics: Introduction
NASA Astrophysics Data System (ADS)
Hebden, Jeremy C.; Boas, David A.; George, John S.; Durkin, Anthony J.
2003-06-01
The field of biomedical optics is experiencing tremendous growth. Biomedical technologies contribute in the creation of devices used in healthcare of various specialties (ophthalmology, cardiology, anesthesiology, and immunology, etc.). Recent research in biomedical optics is discussed. Overviews of meetings held at the 2002 Optical Society of America Biomedical Topical Meetings are presented.
PsychDT Working Group: Report Psychosocial Aspects of Artificial Pancreas Systems.
Barnard, Katharine D; Venkat, Manu V; Close, Kelly; Heinemann, Lutz; Weissberg-Benchell, Jill; Hood, Korey K; Kubiak, Thomas; Kowalski, Aaron J; Laffel, Lori
2015-07-01
Diabetes technology is a cornerstone of diabetes management in the 21st century, with advances in available devices over recent years playing a central role in the way that health care has progressed. Psychosocial interventions have been shown to have a positive impact on glycemic control, reduce psychological distress and reduce costs of health care. Addressing and improving psychosocial outcomes that complement biomedical improvements and looking to the future are crucial to enhance patient acceptance of artificial pancreas (AP) systems. To achieve closer collaboration and comparability across different AP research trials, a working group was established. Existing measures fail to adequately capture the extent to which human and psychological factors play a role in the uptake and efficient use of AP systems. Understanding these factors will ultimately lead to the most benefit for users. Reliable measures of the psychosocial impact of AP systems for users is crucial to ensure that (1) regulatory authorities are able to robustly consider these aspects as part of their approval process, (2) government and private payers are able to factor these aspects into their decisions regarding reimbursement, and (3) persons with diabetes maximize benefits in terms of both glycemic control and quality of life to minimize the burden of diabetes in everyday life. This working group will serve as a platform to foster exchange, identify research needs, and guide and initiate collaborative research laying the groundwork for optimal utilization of diabetes technology in clinical diabetes care. A close collaboration among all key stakeholders is crucial to ensure that devices are designed, trialed, approved, and provided with minimal user burden and maximum beneficial effect. © 2015 Diabetes Technology Society.
Manpower development for the biomedical industry space.
Goh, James C H
2013-01-01
The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical industry in Singapore.
What do international ethics guidelines say in terms of the scope of medical research ethics?
Bernabe, Rosemarie D L C; van Thiel, Ghislaine J M W; van Delden, Johannes J M
2016-04-26
In research ethics, the most basic question would always be, "which is an ethical issue, which is not?" Interestingly, depending on which ethics guideline we consult, we may have various answers to this question. Though we already have several international ethics guidelines for biomedical research involving human participants, ironically, we do not have a harmonized document which tells us what these various guidelines say and shows us the areas of consensus (or lack thereof). In this manuscript, we attempted to do just that. We extracted the imperatives from five internationally-known ethics guidelines and took note where the imperatives came from. In doing so, we gathered data on how many guidelines support a specific imperative. We found that there is no consensus on the majority of the imperatives and that in only 8.2% of the imperatives were there at least moderate consensus (i.e., consensus of at least 3 of the 5 ethics guidelines). Of the 12 clusters (Basic Principles; Research Collaboration; Social Value; Scientific Validity; Participant Selection; Favorable Benefit/Risk Ratio; Independent Review; Informed Consent; Respect for Participants; Publication and Registration; Regulatory Sanctions; and Justified Research on the Vulnerable Population), Informed Consent has the highest level of consensus and Research Collaboration and Regulatory Sanctions have the least. There was a lack of consensus in the majority of imperatives from the five internationally-known ethics guidelines. This may be partly explained by the differences among the guidelines in terms of their levels of specification as well as conceptual/ideological differences.
2009-01-01
Background Analysis of biomedical research and publications in a country or group of countries is used to monitor research progress and trends. This study aims to assess the performance of biomedical research in the Arab world during 2001–2005 and to compare it with other Middle Eastern non-Arab countries. Methods PubMed and Science Citation Index Expanded (SCI-expanded) were searched systematically for the original biomedical research publications and their citation frequencies of 16 Arab nations and three non-Arab Middle Eastern countries (Iran, Israel and Turkey), all of which are classified as middle or high income countries. Results The 16 Arab countries together have 5775 and 14,374 original research articles listed by PubMed and SCI-expanded, respectively, significantly less (p < 0.001) than the other three Middle Eastern countries (25,643 and 49,110). The Arab countries also scored less when the data were normalized to population, gross domestic product (GDP), and GDP/capita. The publications from the Arab countries also have a significantly lower (p < 0.001) citation frequency. Conclusion The Arab world is producing fewer biomedical publications of lower quality than other Middle Eastern countries. Studies are needed to clarify the causes and to propose strategies to improve the biomedical research status in Arab countries. PMID:19374747
Proceedings of the First Biennial Space Biomedical Investigators' Workshop
NASA Technical Reports Server (NTRS)
1999-01-01
The First Biennial Space Biomedical Investigators' Workshop, held January 11-13, 1999, was unique in that it assembled, for the first time, a broad cross section of NASA-funded biomedical researchers to present the current status of their projects and their plans for future investigations. All principal investigators with active, or recently-completed ground-based projects in NASA's Biomedical Research and Countermeasures Program that were funded through NASA's Office of Life and Microgravity Sciences and Applications were invited. Included were individual investigators funded through NASA Research Announcements, investigators with NASA Specialized Centers of Research and Training, investigators with the recently established National Space Biomedical Research Institute (NSBRI), and NASA civil servant investigators. Seventy-seven percent of all eligible projects were presented at the workshop. Thus, these Proceedings should provide a useful snapshot of the status of NASA-funded space biomedical research as of January 1999. An important workshop objective was to achieve free and open communication among the presenting investigators. Therefore, presentation of new and incomplete results, as well as hypotheses and ideas for future research, was encouraged. Comments and constructive criticisms from the presenters' colleagues were also encouraged. These ground rules resulted in many lively and useful discussions, during both the presentation sessions and informal evening gatherings and breaks.
Brotherhood, Emilie; Ball, Philip; Camic, Paul M; Evans, Caroline; Fox, Nick; Murphy, Charlie; Walsh, Fergus; West, Julian; Windle, Gill; Billiald, Sarah; Firth, Nicholas; Harding, Emma; Harrison, Charles; Holloway, Catherine; Howard, Susanna; McKee-Jackson, Roberta; Jones, Esther; Junghaus, Janette; Martin, Harriet; Nolan, Kailey; Rollins, Bridie; Shapiro, Lillian; Shapiro, Lionel; Twigg, Jane; van Leeuwen, Janneke; Walton, Jill; Warren, Jason; Wray, Selina; Yong, Keir; Zeilig, Hannah; Crutch, Sebastian
2017-01-01
Created Out of Mind is an interdisciplinary project, comprised of individuals from arts, social sciences, music, biomedical sciences, humanities and operational disciplines. Collaboratively we are working to shape perceptions of dementias through the arts and sciences, from a position within the Wellcome Collection. The Collection is a public building, above objects and archives, with a porous relationship between research, museum artefacts, and the public. This pre-planning framework will act as an introduction to Created Out of Mind. The framework explains the rationale and aims of the project, outlines our focus for the project, and explores a number of challenges we have encountered by virtue of working in this way. PMID:29387805
Ontology driven integration platform for clinical and translational research
Mirhaji, Parsa; Zhu, Min; Vagnoni, Mattew; Bernstam, Elmer V; Zhang, Jiajie; Smith, Jack W
2009-01-01
Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described. PMID:19208190
Schlötelburg, C; Becks, T; Stieglitz, T
2010-08-01
Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.
McIntosh, Leslie D; Zabarovskaya, Connie; Uhlmansiek, Mary
2015-01-01
Academic biomedical informatics cores are beholden to funding agencies, institutional administration, collaborating researchers, and external agencies for ongoing funding and support. Services provided and translational research outcomes are increasingly important to monitor, report and analyze, to demonstrate value provided to the organization and the greater scientific community. Thus, informatics operations are also business operations. As such, adopting business intelligence practices offers an opportunity to improve the efficiency of evaluation efforts while fulfilling reporting requirements. Organizing informatics development documentation, service requests, and work performed with adaptable tools have greatly facilitated these and related business activities within our informatics center. Through the identification and measurement of key performance indicators, informatics objectives and results are now quickly and nimbly assessed using dashboards. Acceptance of the informatics operation as a business venture and the adoption of business intelligence strategies has allowed for data-driven decision making, faster corrective action, and greater transparency for interested stakeholders.
Studying the effects of microgravity on lower vertebrate development and behavior
NASA Technical Reports Server (NTRS)
Wassersug, Richard J.; Pronych, Scott; Souza, Kenneth A.
1991-01-01
Lower vertebrates have been used in space research for at least 3 decades, and have a number of advantages such as the ability to be maintained safely in space conditions, high development rates, easy observability, and small size. Several major investigations with lower vertebrates are in the flight queue in various countries, and some of this research with amphibians that has Canadian Space Agency sponsorship is reviewed. In connection with NASA's frog embryology experiment, Canadian scientists will conduct postflight experiments on live tadpoles brought back from space to determine whether larvae that develop from these embryos are behaviorally normal. Swimming kinematics in particular will be examined, since a distinctive looping behavior of Xenopus tadpoles under microgravity has been noted. A collaborative study with the Institute of Biomedical Problems in Moscow is designed to elucidate the relationship between buoyancy regulation and lung development in tadpoles, and is scheduled to fly on a Biocosmos satellite in 1992.
An introduction to interactive hypermedia.
Lynch, P J; Jaffe, C C
1990-01-01
Current computers can create and display documents that incorporate a variety of audiovisual media, and can be organized to allow the user, guided by curiosity and not by a fixed path through the material, to move through the information in non-linear pathways. These hypermedia documents and the concept of hypertext offer significant new possibilities for the creation of educational materials for the biomedical sciences. If the full capabilities of the computer are to be used to enhance the educational experience for learners, computer professionals need to collaborate with publishing and teaching professionals. Biomedical communications professionals can and should play a role in establishing and evaluating hypermedia documents for medical education.
Biomedical engineering continues to make the future.
Fantini, Sergio; Bennis, Caoimhe; Kaplan, David
2011-01-01
Biomedical engineering (BME) continues to make the future, not just respond to the present, by anticipating the needs of interface engineering and clinical medicine. In many respects, BME is the educational mode of the future, fostering collaboration among disciplines at its core by building on basic concepts in engineering and biology. We strive to educate where the needs, opportunities, and jobs are and will be in the future. The bridge between engineering, biology, and medicine is a growing link, and there is no sign that this interface will slow. With an aging population, dynamic changes in health care, as well as global economies and related themes upon us, we are only at the very beginning of the impact that BME will have on medicine and the quality of life. Those of us in BME are excited to be setting this agenda and welcome your participation. In part, this is why we have designed our BME major to cover both the depth and breadth, always a challenge, but one that we are committed to. The depth of the design projects, research experience, coursework, study abroad options, and internships all convenes to establish a solid foundation for our students as they embark on their career paths.
Chang, Leanne; Lim, Jing Ci Jill
2017-11-22
In Singapore, the institutional preference for biomedicine and the cultural importance of traditional Chinese medicine (TCM) have created tensions between the two medical systems and erected barriers to a more collaborative health-care system. This study foregrounds TCM physicians' voice to reveal ideological struggles and power imbalances that underlie the interprofessional tensions and accompanying marginalization of TCM. Through in-depth interviews with 22 TCM physicians in Singapore, this study reveals the incongruences in ideological underpinnings between biomedicine and TCM, reflected in their different worldviews and epistemological approaches to knowledge formation and evaluation. Power differentials between the two medical systems are manifest in TCM physicians' inferior position in relation to their biomedical peers, the patients' internalization of biomedical standards to question the TCM profession and their own interest in seeking TCM treatments, and the state's limited support for TCM research, subsidies, and service provision in hospital settings. The results suggest that more open dialogue about the dichotomous framings of biomedicine and TCM is key to disrupting the mutual reinforcement of ideology and power, as well as to creating increased mutual understanding between the two medical systems.
Is there a need for biomedical CBIR systems in clinical practice? Outcomes from a usability study
NASA Astrophysics Data System (ADS)
Antani, Sameer; Xue, Zhiyun; Long, L. Rodney; Bennett, Deborah; Ward, Sarah; Thoma, George R.
2011-03-01
Articles in the literature routinely describe advances in Content Based Image Retrieval (CBIR) and its potential for improving clinical practice, biomedical research and education. Several systems have been developed to address particular needs, however, surprisingly few are found to be in routine practical use. Our collaboration with the National Cancer Institute (NCI) has identified a need to develop tools to annotate and search a collection of over 100,000 cervigrams and related, anonymized patient data. One such tool developed for a projected need for retrieving similar patient images is the prototype CBIR system, called CervigramFinder, which retrieves images based on the visual similarity of particular regions on the cervix. In this article we report the outcomes from a usability study conducted at a primary meeting of practicing experts. We used the study to not only evaluate the system for software errors and ease of use, but also to explore its "user readiness", and to identify obstacles that hamper practical use of such systems, in general. Overall, the participants in the study found the technology interesting and bearing great potential; however, several challenges need to be addressed before the technology can be adopted.
MAPI: a software framework for distributed biomedical applications
2013-01-01
Background The amount of web-based resources (databases, tools etc.) in biomedicine has increased, but the integrated usage of those resources is complex due to differences in access protocols and data formats. However, distributed data processing is becoming inevitable in several domains, in particular in biomedicine, where researchers face rapidly increasing data sizes. This big data is difficult to process locally because of the large processing, memory and storage capacity required. Results This manuscript describes a framework, called MAPI, which provides a uniform representation of resources available over the Internet, in particular for Web Services. The framework enhances their interoperability and collaborative use by enabling a uniform and remote access. The framework functionality is organized in modules that can be combined and configured in different ways to fulfil concrete development requirements. Conclusions The framework has been tested in the biomedical application domain where it has been a base for developing several clients that are able to integrate different web resources. The MAPI binaries and documentation are freely available at http://www.bitlab-es.com/mapi under the Creative Commons Attribution-No Derivative Works 2.5 Spain License. The MAPI source code is available by request (GPL v3 license). PMID:23311574
Sughayer, Maher A; Souan, Lina
2015-01-01
King Hussein Cancer (KHCC) is a specialized cancer center that treats both adult and pediatric cancer patients from Jordan and the neighboring countries. KHCC is acknowledged as a leader in cancer treatment in the Middle East and its vision is to maintain its leading position in cancer therapy and research. Hence, KHCC embarked on establishing the first ISO compliant cancer biobank (KHCCBIO) in Jordan.Currently, there are very few biobanks in the Middle East, hence, KHCC wanted to change this situation by establishing an ISO-compliant cancer biobank which would incorporate all current international guidelines and best-in class practices under an approved quality management system for the benefit of researchers in Jordan, its neighboring countries, and throughout the world. The established biobank would follow the highest ethical standards in collecting, processing, storing and distributing high-quality, clinically annotated biospecimens.The strategy used in establishing KHCCBIO was based on taking advantage of international networking and collaboration. This in essence led to knowledge transfer between well established organizations, institutions and individuals from Europe and Jordan, in existing technological innovation and internationally recognized quality standards. KHCC efforts were facilitated by a grant from the European Union under the seventh frame work program.Future aims of KHCCBIO are to develop KHCC's research infrastructure, increase its scope and visibility and improve its competitiveness throughout the biomedical science arena. Moreover, KHCCBIO is aiming to establish a platform for future knowledge transfer and collaborative research; develop partnerships between European and Middle Eastern organizations.
Globalization and changing trends of biomedical research output.
Conte, Marisa L; Liu, Jing; Schnell, Santiago; Omary, M Bishr
2017-06-15
The US continues to lead the world in research and development (R&D) expenditures, but there is concern that stagnation in federal support for biomedical research in the US could undermine the leading role the US has played in biomedical and clinical research discoveries. As a readout of research output in the US compared with other countries, assessment of original research articles published by US-based authors in ten clinical and basic science journals during 2000 to 2015 showed a steady decline of articles in high-ranking journals or no significant change in mid-ranking journals. In contrast, publication output originating from China-based investigators, in both high- and mid-ranking journals, has steadily increased commensurate with significant growth in R&D expenditures. These observations support the current concerns of stagnant and year-to-year uncertainty in US federal funding of biomedical research.
The value of biomedical research training for veterinary anatomic and clinical pathologists.
Sharkey, L C; Simpson, R M; Wellman, M L; Craig, L E; Birkebak, T A; Kock, N D; Miller, M A; Harris, R K; Munson, L
2012-07-01
Veterinary pathologists traditionally have been actively engaged in research as principal investigators and as collaborators. Pathologists frequently obtain advanced training in research; however, it appears that in the last 10 years there has been a reversal of a previous trend toward increasing numbers of pathologists obtaining PhD degrees. This has arisen despite an established shortage of veterinarians engaged in research. This article evaluates the benefits of research training for individual pathologists, including a wide spectrum of professional opportunities and additional skill development beyond that usually provided by diagnostic pathology training alone. Various training models are discussed, including combined and sequential diagnostic residency and research degree training as well as the nondegree research fellowship programs more commonly pursued in human medicine. Best-practice recommendations for program infrastructure, mentorship, time management, and a team approach to research and research training are advocated to facilitate the development of successful programs and to encourage a continued emphasis on integrated training for pathologists as both clinical diagnosticians and experimentalists. This article is intended to help prospective and active pathology trainees, their mentors, and educational administrators optimize opportunities to ensure the future vitality of veterinary pathologists, and their contributions, in basic and applied research.
Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.
2010-01-01
Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198
Characteristics Desired in Clinical Data Warehouse for Biomedical Research
Shin, Soo-Yong; Kim, Woo Sung
2014-01-01
Objectives Due to the unique characteristics of clinical data, clinical data warehouses (CDWs) have not been successful so far. Specifically, the use of CDWs for biomedical research has been relatively unsuccessful thus far. The characteristics necessary for the successful implementation and operation of a CDW for biomedical research have not clearly defined yet. Methods Three examples of CDWs were reviewed: a multipurpose CDW in a hospital, a CDW for independent multi-institutional research, and a CDW for research use in an institution. After reviewing the three CDW examples, we propose some key characteristics needed in a CDW for biomedical research. Results A CDW for research should include an honest broker system and an Institutional Review Board approval interface to comply with governmental regulations. It should also include a simple query interface, an anonymized data review tool, and a data extraction tool. Also, it should be a biomedical research platform for data repository use as well as data analysis. Conclusions The proposed characteristics desired in a CDW may have limited transfer value to organizations in other countries. However, these analysis results are still valid in Korea, and we have developed clinical research data warehouse based on these desiderata. PMID:24872909
Systematic review and meta-analysis: tools for the information age.
Weatherall, Mark
2017-11-01
The amount of available biomedical information is vast and growing. Natural limitations of the way clinicians and researchers approach this treasure trove of information comprise difficulties locating the information, and once located, cognitive biases may lead to inappropriate use of the information. Systematic reviews and meta-analyses represent important tools in the information age to improve knowledge and action. Systematic reviews represent a census approach to identifying literature to avoid non-response bias. They are a necessary prelude to producing combined quantitative summaries of associations or treatment effects. Meta-analysis comprises the arithmetical techniques for producing combined summaries from individual study reports. Careful, thoughtful and rigorous use of these tools is likely to enhance knowledge and action. Use of standard guidelines, such as the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, or embedding these activities within collaborative groups such as the Cochrane Collaboration, are likely to lead to more useful systematic review and meta-analysis reporting. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Samman, Samir; McCarthur, Jennifer O; Peat, Mary
2006-01-01
Benchmarking has been adopted by educational institutions as a potentially sensitive tool for improving learning and teaching. To date there has been limited application of benchmarking methodology in the Discipline of Nutritional Science. The aim of this survey was to define core elements and outstanding practice in Nutritional Science through collaborative benchmarking. Questionnaires that aimed to establish proposed core elements for Nutritional Science, and inquired about definitions of " good" and " outstanding" practice were posted to named representatives at eight Australian universities. Seven respondents identified core elements that included knowledge of nutrient metabolism and requirement, food production and processing, modern biomedical techniques that could be applied to understanding nutrition, and social and environmental issues as related to Nutritional Science. Four of the eight institutions who agreed to participate in the present survey identified the integration of teaching with research as an indicator of outstanding practice. Nutritional Science is a rapidly evolving discipline. Further and more comprehensive surveys are required to consolidate and update the definition of the discipline, and to identify the optimal way of teaching it. Global ideas and specific regional requirements also need to be considered.
Christensen, Bodil Just; Hillersdal, Line; Holm, Lotte
2017-08-01
This paper explores the productive tensions occurring in an interdisciplinary research project on weight loss after obesity surgery. The study was a bio-medical/anthropological collaboration investigating to what extent eating patterns, the subjective experience of hunger and physiological mechanisms are involved in appetite regulation that might determine good or poor response to the surgery. Linking biomedical and anthropological categories and definitions of central concepts about the body turned out to be a major challenge in the collaborative analysis. Notably, the conception of what constitutes 'appetite' was a key concern, as each discipline has its particular definition and operationalization of the term. In response, a material-semiotic approach was chosen which allowed for a reconceptualization of appetite as a 'fractional object', engaged in multiple relations and enacted differently in each instance. This perspective produced creative contrasts and offered alternative explorations of both scientific knowledge production and anthropological practices. The paper thereby explores the interfaces between anthropology and medical science by attending to the challenges and opportunities that result from destabilising an assumed fixed and well-defined concept associated with the body.
Accessing and Integrating Data and Knowledge for Biomedical Research
Burgun, A.; Bodenreider, O.
2008-01-01
Summary Objectives To review the issues that have arisen with the advent of translational research in terms of integration of data and knowledge, and survey current efforts to address these issues. Methods Using examples form the biomedical literature, we identified new trends in biomedical research and their impact on bioinformatics. We analyzed the requirements for effective knowledge repositories and studied issues in the integration of biomedical knowledge. Results New diagnostic and therapeutic approaches based on gene expression patterns have brought about new issues in the statistical analysis of data, and new workflows are needed are needed to support translational research. Interoperable data repositories based on standard annotations, infrastructures and services are needed to support the pooling and meta-analysis of data, as well as their comparison to earlier experiments. High-quality, integrated ontologies and knowledge bases serve as a source of prior knowledge used in combination with traditional data mining techniques and contribute to the development of more effective data analysis strategies. Conclusion As biomedical research evolves from traditional clinical and biological investigations towards omics sciences and translational research, specific needs have emerged, including integrating data collected in research studies with patient clinical data, linking omics knowledge with medical knowledge, modeling the molecular basis of diseases, and developing tools that support in-depth analysis of research data. As such, translational research illustrates the need to bridge the gap between bioinformatics and medical informatics, and opens new avenues for biomedical informatics research. PMID:18660883
[Big Data: the great opportunities and challenges to microbiome and other biomedical research].
Xu, Zhenjiang
2015-02-01
With the development of high-throughput technologies, biomedical data has been increasing exponentially in an explosive manner. This brings enormous opportunities and challenges to biomedical researchers on how to effectively utilize big data. Big data is different from traditional data in many ways, described as 3Vs - volume, variety and velocity. From the perspective of biomedical research, here I introduced the characteristics of big data, such as its messiness, re-usage and openness. Focusing on microbiome research of meta-analysis, the author discussed the prospective principles in data collection, challenges of privacy protection in data management, and the scalable tools in data analysis with examples from real life.
Tenenbaum, Jessica D.; Whetzel, Patricia L.; Anderson, Kent; Borromeo, Charles D.; Dinov, Ivo D.; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; Nyulas, Csongor; Rubenson, David; Saxman, Paul R.; Singh, Harpreet; Whelan, Nancy; Wright, Zach; Athey, Brian D.; Becich, Michael J.; Ginsburg, Geoffrey S.; Musen, Mark A.; Smith, Kevin A.; Tarantal, Alice F.; Rubin, Daniel L; Lyster, Peter
2010-01-01
The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health. PMID:20955817
Advancement of Women in the Biomedical Workforce: Insights for Success
Barfield, Whitney L.; Plank-Bazinet, Jennifer L.; Clayton, Janine Austin
2016-01-01
Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the Working Group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the Research Partnership and published in this issue of Academic Medicine. The authors highlight the role government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection. PMID:27306970
Advancement of Women in the Biomedical Workforce: Insights for Success.
Barfield, Whitney L; Plank-Bazinet, Jennifer L; Austin Clayton, Janine
2016-08-01
Women continue to face unique barriers in the biomedical workforce that affect their advancement and retention in this field. The National Institutes of Health (NIH) formed the Working Group on Women in Biomedical Careers to address these issues. Through the efforts of the working group, the NIH funded 14 research grants to identify barriers or to develop and/or test interventions to support women in the biomedical workforce. The grantees that were funded through this endeavor later established the grassroots Research Partnership on Women in Biomedical Careers, and they continue to conduct research and disseminate information on the state of women in academic medicine. This Commentary explores the themes introduced in a collection of articles organized by the research partnership and published in this issue of Academic Medicine. The authors highlight the role that government plays in the advancement of women in academic medicine and highlight the findings put forward in this collection.
ROLE OF INSTITUTIONAL CLIMATE IN FOSTERING DIVERSITY IN BIOMEDICAL RESEARCH WORKFORCE: A CASE STUDY
Butts, Gary C.; Hurd, Yasmin; Palermo, Ann-Gel S.; Delbrune, Denise; Saran, Suman; Zony, Chati; Krulwich, Terry A.
2012-01-01
This article reviews the barriers to diversity in biomedical research, describes the evolution and efforts to address climate issues to enhance the ability to attract, retain and develop underrepresented minorities (URM) - underrepresented minorities whose underrepresentation is found both in science and medicine, in the graduate school biomedical research doctoral programs (PhD and MD/PhD) at Mount Sinai School of Medicine (MSSM). We also describe the potential beneficial impact of having a climate that supports diversity and inclusion in the biomedical research workforce. MSSM diversity climate efforts are discussed as part of a comprehensive plan to increase diversity in all institutional programs PhD, MD/PhD, MD, and at the residency, post doctoral fellow, and faculty levels. Lessons learned from four decades of targeted programs and activities at MSSM may be of value to other institutions interested in improving diversity in the biomedical science and academic medicine workforce. PMID:22786740
Quinn, Gwendolyn P; Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K
2014-07-01
While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking.
Koskan, Alexis; Sehovic, Ivana; Pal, Tuya; Meade, Cathy; Gwede, Clement K.
2014-01-01
While ethical concerns about participating in biospecimen research have been previously identified, few studies have reported the concerns among individuals with familial risk for hereditary cancer (IFRs). At the same time, biomedical researchers often lack training in discussing such concerns to potential donors. This study explores IFRs' and biomedical researchers' perceptions of ethical concerns about participating in biobanking research. In separate focus groups, IFRs and biomedical researchers participated in 90-min telephone focus groups. Focus group questions centered on knowledge about laws that protect the confidentiality of biospecimen donors, understanding of informed consent and study procedures, and preferences for being recontacted about potential incidental discovery and also study results. A total of 40 IFRs and 32 biomedical researchers participated in the focus groups. Results demonstrated discrepancies between the perceptions of IFRs and researchers. IFRs' concerns centered on health information protection; potential discrimination by insurers and employers; and preferences for being recontacted upon discovery of gene mutations or to communicate study results. Researchers perceived that participants understood laws protecting donors' privacy and (detailed study information outlined in the informed consent process), study outcomes were used to create a training tool kit to increase researchers' understanding of IFRs' concerns about biobanking. PMID:24786355
Support for Taverna workflows in the VPH-Share cloud platform.
Kasztelnik, Marek; Coto, Ernesto; Bubak, Marian; Malawski, Maciej; Nowakowski, Piotr; Arenas, Juan; Saglimbeni, Alfredo; Testi, Debora; Frangi, Alejandro F
2017-07-01
To address the increasing need for collaborative endeavours within the Virtual Physiological Human (VPH) community, the VPH-Share collaborative cloud platform allows researchers to expose and share sequences of complex biomedical processing tasks in the form of computational workflows. The Taverna Workflow System is a very popular tool for orchestrating complex biomedical & bioinformatics processing tasks in the VPH community. This paper describes the VPH-Share components that support the building and execution of Taverna workflows, and explains how they interact with other VPH-Share components to improve the capabilities of the VPH-Share platform. Taverna workflow support is delivered by the Atmosphere cloud management platform and the VPH-Share Taverna plugin. These components are explained in detail, along with the two main procedures that were developed to enable this seamless integration: workflow composition and execution. 1) Seamless integration of VPH-Share with other components and systems. 2) Extended range of different tools for workflows. 3) Successful integration of scientific workflows from other VPH projects. 4) Execution speed improvement for medical applications. The presented workflow integration provides VPH-Share users with a wide range of different possibilities to compose and execute workflows, such as desktop or online composition, online batch execution, multithreading, remote execution, etc. The specific advantages of each supported tool are presented, as are the roles of Atmosphere and the VPH-Share plugin within the VPH-Share project. The combination of the VPH-Share plugin and Atmosphere engenders the VPH-Share infrastructure with far more flexible, powerful and usable capabilities for the VPH-Share community. As both components can continue to evolve and improve independently, we acknowledge that further improvements are still to be developed and will be described. Copyright © 2017 Elsevier B.V. All rights reserved.
A standard based approach for biomedical knowledge representation.
Farkash, Ariel; Neuvirth, Hani; Goldschmidt, Yaara; Conti, Costanza; Rizzi, Federica; Bianchi, Stefano; Salvi, Erika; Cusi, Daniele; Shabo, Amnon
2011-01-01
The new generation of health information standards, where the syntax and semantics of the content is explicitly formalized, allows for interoperability in healthcare scenarios and analysis in clinical research settings. Studies involving clinical and genomic data include accumulating knowledge as relationships between genotypic and phenotypic information as well as associations within the genomic and clinical worlds. Some involve analysis results targeted at a specific disease; others are of a predictive nature specific to a patient and may be used by decision support applications. Representing knowledge is as important as representing data since data is more useful when coupled with relevant knowledge. Any further analysis and cross-research collaboration would benefit from persisting knowledge and data in a unified way. This paper describes a methodology used in Hypergenes, an EC FP7 project targeting Essential Hypertension, which captures data and knowledge using standards such as HL7 CDA and Clinical Genomics, aligned with the CEN EHR 13606 specification. We demonstrate the benefits of such an approach for clinical research as well as in healthcare oriented scenarios.
Computer Model Used to Help Customize Medicine
NASA Technical Reports Server (NTRS)
Stauber, Laurel J.; Veris, Jenise
2001-01-01
Dr. Radhakrishnan, a researcher at the NASA Glenn Research Center, in collaboration with biomedical researchers at the Case Western Reserve University School of Medicine and Rainbow Babies and Children's Hospital, is developing computational models of human physiology that quantitate metabolism and its regulation, in both healthy and pathological states. These models can help predict the effects of stresses or interventions, such as drug therapies, and contribute to the development of customized medicine. Customized medical treatment protocols can give more comprehensive evaluations and lead to more specific and effective treatments for patients, reducing treatment time and cost. Commercial applications of this research may help the pharmaceutical industry identify therapeutic needs and predict drug-drug interactions. Researchers will be able to study human metabolic reactions to particular treatments while in different environments as well as establish more definite blood metabolite concentration ranges in normal and pathological states. These computational models may help NASA provide the background for developing strategies to monitor and safeguard the health of astronauts and civilians in space stations and colonies. They may also help to develop countermeasures that ameliorate the effects of both acute and chronic space exposure.
Animal coloration research: why it matters
2017-01-01
While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines. This article is part of the themed issue ‘Animal coloration: production, perception, function and application’. PMID:28533451
Networking for rare diseases: a necessity for Europe.
Aymé, S; Schmidtke, J
2007-12-01
Most rare diseases are life-threatening and chronically debilitating conditions, and the vast majority of them are genetically determined. Their individually low prevalence requires special combined efforts to address them so as to improve diagnosis, care and prevention. Though it is difficult to develop a public health policy specific to each rare disease, it is possible to have a global rather than a piecemeal approach in the areas of scientific and biomedical research, drug research and development, industry policy, information and training, social benefits, hospitalisation and outpatient care. In the recent past, several initiatives at EU and Member States levels have been taken and proved efficient in developing suitable solutions which are now having a positive impact on the quality of life of patients. These initiatives are presented here. They include the establishment of Orphanet, a database of rare diseases and orphan drugs providing an encyclopedia of rare diseases and a directory of associated expert services, the funding of research networks to boost the collaboration between research teams, as well as the funding of networks of clinical centres of reference to better serve the patients and contribute to developing clinical research.
Animal coloration research: why it matters.
Caro, Tim; Stoddard, Mary Caswell; Stuart-Fox, Devi
2017-07-05
While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).
Military research needs in biomedical informatics.
Reifman, Jaques; Gilbert, Gary R; Fagan, Lawrence; Satava, Richard
2002-01-01
The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies.
A BRIEF HISTORY OF BIOMEDICAL RESEARCH ETHICS IN IRAN: CONFLICT OF PARADIGMS
ARAMESH, KIARASH
2014-01-01
During the past two decades, Iran has experienced a noteworthy growth in its biomedical research sector. At the same time, ethical concerns and debates resulting from this burgeoning enterprise has led to increasing attention paid to biomedical ethics. In Iran, Biomedical research ethics and research oversight passed through major periods during the past decades, separated by a paradigm shift. Period 1, starting from the early 1970s, is characterized by research paternalism and complete reliance on researchers as virtuous and caring physicians. This approach was in concordance with the paternalistic clinical practice of physicians outside of research settings during the same period. Period 2, starting from the late 1990s, was partly due to revealing of ethical flaws that occurred in biomedical research in Iran. The regulatory and funding bodies concluded that it was not sufficient to rely solely on the personal and professional virtues of researchers to safeguard human subjects’ rights and welfare. The necessity for independent oversight, emphasized by international declarations, became obvious and undeniable. This paradigm shift led to the establishment of research ethics committees throughout the country, the establishment of academic research centers focusing on medical ethics (MEHR) and the compilation of the first set of national ethical guidelines on biomedical research–one of the first and most important projects conducted by and in the MEHR. Although not yet arrived, ‘period 3’ is on its way. It is predictable from the obvious trends toward performance of high-quality clinical research and the appearance of a highly educated new generation, especially among women. PMID:24720443
45 CFR 46.306 - Permitted research involving prisoners.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Permitted research involving prisoners. 46.306... HUMAN SUBJECTS Additional Protections Pertaining to Biomedical and Behavioral Research Involving Prisoners as Subjects § 46.306 Permitted research involving prisoners. (a) Biomedical or behavioral research...
ERIC Educational Resources Information Center
Fortson, Leigh
1999-01-01
An African-American researcher is spearheading a black biomedical research movement to urge more African Americans to investigate the health issues affecting their communities. His research focuses on the acquired immune deficiency syndrome (AIDS) virus, but he is encouraging general expansion of the black researcher population. (MSE)
ERIC Educational Resources Information Center
Technical Education Research Center, Cambridge, MA.
OFFICIALS OF A REPRESENTATIVE SAMPLE OF HOSPITALS, BIOMEDICAL EQUIPMENT MANUFACTURERS, AND MEDICAL RESEARCH INSTITUTES IN NEW ENGLAND AND THREE MIDDLE ATLANTIC STATES WERE INTERVIEWED TO DETERMINE THE NEED FOR TECHNICIANS TO SERVICE AND MAINTAIN EQUIPMENT FOUND IN HOSPITALS AND BIOMEDICAL RESEARCH INSTITUTIONS. RESPONSES INDICATED A NEED FOR…
Payakachat, Nalin; Tilford, J Mick; Ungar, Wendy J
2016-02-01
The National Database for Autism Research (NDAR) is a US National Institutes of Health (NIH)-funded research data repository created by integrating heterogeneous datasets through data sharing agreements between autism researchers and the NIH. To date, NDAR is considered the largest neuroscience and genomic data repository for autism research. In addition to biomedical data, NDAR contains a large collection of clinical and behavioral assessments and health outcomes from novel interventions. Importantly, NDAR has a global unique patient identifier that can be linked to aggregated individual-level data for hypothesis generation and testing, and for replicating research findings. As such, NDAR promotes collaboration and maximizes public investment in the original data collection. As screening and diagnostic technologies as well as interventions for children with autism are expensive, health services research (HSR) and health technology assessment (HTA) are needed to generate more evidence to facilitate implementation when warranted. This article describes NDAR and explains its value to health services researchers and decision scientists interested in autism and other mental health conditions. We provide a description of the scope and structure of NDAR and illustrate how data are likely to grow over time and become available for HSR and HTA.
Semantic Similarity in Biomedical Ontologies
Pesquita, Catia; Faria, Daniel; Falcão, André O.; Lord, Phillip; Couto, Francisco M.
2009-01-01
In recent years, ontologies have become a mainstream topic in biomedical research. When biological entities are described using a common schema, such as an ontology, they can be compared by means of their annotations. This type of comparison is called semantic similarity, since it assesses the degree of relatedness between two entities by the similarity in meaning of their annotations. The application of semantic similarity to biomedical ontologies is recent; nevertheless, several studies have been published in the last few years describing and evaluating diverse approaches. Semantic similarity has become a valuable tool for validating the results drawn from biomedical studies such as gene clustering, gene expression data analysis, prediction and validation of molecular interactions, and disease gene prioritization. We review semantic similarity measures applied to biomedical ontologies and propose their classification according to the strategies they employ: node-based versus edge-based and pairwise versus groupwise. We also present comparative assessment studies and discuss the implications of their results. We survey the existing implementations of semantic similarity measures, and we describe examples of applications to biomedical research. This will clarify how biomedical researchers can benefit from semantic similarity measures and help them choose the approach most suitable for their studies. Biomedical ontologies are evolving toward increased coverage, formality, and integration, and their use for annotation is increasingly becoming a focus of both effort by biomedical experts and application of automated annotation procedures to create corpora of higher quality and completeness than are currently available. Given that semantic similarity measures are directly dependent on these evolutions, we can expect to see them gaining more relevance and even becoming as essential as sequence similarity is today in biomedical research. PMID:19649320
Do corresponding authors take responsibility for their work? A covert survey.
Teunis, Teun; Nota, Sjoerd P F T; Schwab, Joseph H
2015-02-01
Publication of a manuscript does not end an author's responsibilities. Reasons to contact an author after publication include clarification, access to raw data, and collaboration. However, legitimate questions have been raised regarding whether these responsibilities generally are being met by corresponding authors of biomedical publications. This study aims to establish (1) what proportion of corresponding authors accept the responsibility of correspondence; (2) identify characteristics of responders; and (3) assess email address decay with time. We hypothesize that the response rate is unrelated to journal impact factor. We contacted 450 corresponding authors throughout various fields of biomedical research regarding the availability of additional data from their study, under the pretense of needing these data for a related review article. Authors were randomly selected from 45 journals whose impact factors ranged from 52 to 0; the source articles were published between May 2003 and May 2013. The proportion of corresponding authors who replied, along with author characteristics were recorded, as was the proportion of emails that were returned for inactive addresses; 446 authors were available for final analysis. Fifty-three percent (190/357) of the authors with working email addresses responded to our request. Clinical researchers were more likely to reply than basic/translational scientists (51% [114/225] versus 34% [76/221]; p<0.001). Impact factor and other author characteristics did not differ. Logistic regression analysis showed that the odds of replying decreased by 15% per year (odds ratio [OR], 0.85; 95% CI, 0.79-0.91; p<0.001), and showed a positive relationship between clinical research and response (OR, 2.0; 95% CI, 1.3-2.9; p=0.001). In 2013 all email addresses (45/45) were reachable, but within 10 years, 49% (21/43) had become invalid. Our results suggest that contacting corresponding authors is problematic throughout the field of biomedical research. Defining the responsibilities of corresponding authors by journals more explicitly-particularly after publication of their manuscript-may increase the response rate on data requests. Possible other ways to improve communication after research publication are: (1) listing more than one email address per corresponding author, eg, an institutional and personal address; (2) specifying all authors' email addresses; (3) when an author leaves an institution, send an automated reply offering alternative ways to get in touch; and (4) linking published manuscripts to research platforms.
77 FR 6809 - National Institute of General Medical Sciences; Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... Biomedical Research Support; 93.821, Cell Biology and Biophysics Research; 93.859, Pharmacology, Physiology, and Biological Chemistry Research; 93.862, Genetics and Developmental Biology Research; 93.88... Sciences Initial Review Group Biomedical Research and Research Training Review Subcommittee A. Date: March...
The distribution of biomedical research resources and international justice.
Resnik, David B
2004-05-01
According to some estimates, less than 10% of the world's biomedical research funds are dedicated to addressing problems that are responsible for 90% of the world's burden of disease. This paper explains why this disparity exists and what should be done about it. It argues that the disparity exists because: 1) multinational pharmaceutical and biotechnology companies do not regard research and development investments on the health problems of developing nations to be economically lucrative; and 2) governmental agencies that sponsor biomedical research face little political pressure to allocate funds for the problems of developing nations. This paper argues that developed nations have an obligation to address disparities related to biomedical research funding. To facilitate this effort, developed countries should establish a trust fund dedicated to research on the health problems of developing nations similar to the Global AIDS Fund.
A Method for Evaluating and Standardizing Ontologies
ERIC Educational Resources Information Center
Seyed, Ali Patrice
2012-01-01
The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative effort for developing interoperable, science-based ontologies. The Basic Formal Ontology (BFO) serves as the upper ontology for the domain-level ontologies of OBO. BFO is an upper ontology of types as conceived by defenders of realism. Among the ontologies developed for OBO…
Defining the Field of Behavioral Medicine: A Collaborative Endeavor.
Dekker, Joost; Stauder, Adrienne; Penedo, Frank J
2017-02-01
To respond to comments on our proposal for an update of the definition and scope of behavioral medicine. We identify common themes in the comments and provide a response. We discuss the relationship of behavioral medicine to other disciplines and fields, the scope of behavioral medicine, and issues related to the application of behavioral medicine. Based on the comments of our esteemed colleagues and our reflection on those comments, we now offer the following refined definition and scope of behavioral medicine. 'Behavioral medicine can be defined as the field characterized by the collaboration among multiple disciplines concerned with the development and integration of biomedical and behavioral knowledge relevant to health and disease, and the application of this knowledge to prevention, health promotion, diagnosis, treatment, rehabilitation, and care. The scope of behavioral medicine extends from bio-behavioral mechanisms (i.e. the interaction among biomedical, psychological, social, societal, cultural and environmental processes related to health and disease), to clinical diagnosis and intervention, and to public health'. We propose to use this refined definition and scope as the starting point for seeking further input from the ISBM member societies.
A survey of working conditions within biomedical research in the United Kingdom.
Riddiford, Nick
2017-01-01
Background: Many recent articles have presented a bleak view of career prospects in biomedical research in the US. Too many PhDs and postdocs are trained for too few research positions, creating a "holding-tank" of experienced senior postdocs who are unable to get a permanent position. Coupled with relatively low salaries and high levels of pressure to publish in top-tier academic journals, this has created a toxic environment that is perhaps responsible for a recently observed decline in biomedical postdocs in the US, the so-called "postdocalypse". Methods: In order to address the gulf of information relating to working habits and attitudes of UK-based biomedical researchers, a link to an online survey was included in an article published in the Guardian newspaper. Survey data were collected between 21 st March 2016 and 6 th November 2016 and analysed to examine discrete profiles for three major career stages: the PhD, the postdoc and the principal investigator. Results: Overall, the data presented here echo trends observed in the US: The 520 UK-based biomedical researchers responding to the survey reported feeling disillusioned with academic research, due to the low chance of getting a permanent position and the long hours required at the bench. Also like the US, large numbers of researchers at each distinct career stage are considering leaving biomedical research altogether. Conclusions: There are several systemic flaws in the academic scientific research machine - for example the continual overproduction of PhDs and the lack of stability in the early-mid stages of a research career - that are slowly being addressed in countries such as the US and Germany. These data suggest that similar flaws also exist in the UK, with a large proportion of respondents concerned about their future in research. To avoid lasting damage to the biomedical research agenda in the UK, addressing such concerns should be a major priority.