Design and Evaluation of a Collaborative Learning Environment
ERIC Educational Resources Information Center
Wang, Qiyun
2009-01-01
Collaboration becomes an essential competency in the current knowledge society. In this study, a collaborative learning environment was designed to facilitate students in group collaboration. Instructional support strategies of friendship and meaningful learning tasks were applied to promote collaboration. Scaffolding strategies such as writing…
A Proposed Framework for Collaborative Design in a Virtual Environment
NASA Astrophysics Data System (ADS)
Breland, Jason S.; Shiratuddin, Mohd Fairuz
This paper describes a proposed framework for a collaborative design in a virtual environment. The framework consists of components that support a true collaborative design in a real-time 3D virtual environment. In support of the proposed framework, a prototype application is being developed. The authors envision the framework will have, but not limited to the following features: (1) real-time manipulation of 3D objects across the network, (2) support for multi-designer activities and information access, (3) co-existence within same virtual space, etc. This paper also discusses a proposed testing to determine the possible benefits of a collaborative design in a virtual environment over other forms of collaboration, and results from a pilot test.
CoLeMo: A Collaborative Learning Environment for UML Modelling
ERIC Educational Resources Information Center
Chen, Weiqin; Pedersen, Roger Heggernes; Pettersen, Oystein
2006-01-01
This paper presents the design, implementation, and evaluation of a distributed collaborative UML modelling environment, CoLeMo. CoLeMo is designed for students studying UML modelling. It can also be used as a platform for collaborative design of software. We conducted formative evaluations and a summative evaluation to improve the environment and…
User-Centered Iterative Design of a Collaborative Virtual Environment
2001-03-01
cognitive task analysis methods to study land navigators. This study was intended to validate the use of user-centered design methodologies for the design of...have explored the cognitive aspects of collaborative human way finding and design for collaborative virtual environments. Further investigation of design paradigms should include cognitive task analysis and behavioral task analysis.
Communication Resource Use in a Networked Collaborative Design Environment.
ERIC Educational Resources Information Center
Gay, Geri; Lentini, Marc
The purpose of this exploratory study was to examine student use of a prototype networked collaborative design environment to support or augment learning about engineering design. The theoretical framework is based primarily on Vygotsky's social construction of knowledge and the belief that collaboration and communication are critical components…
Supporting Scientific Analysis within Collaborative Problem Solving Environments
NASA Technical Reports Server (NTRS)
Watson, Velvin R.; Kwak, Dochan (Technical Monitor)
2000-01-01
Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.
ERIC Educational Resources Information Center
Koszalka, Tiffany A.; Wu, Yiyan
2010-01-01
Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
1999-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
2000-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Astrophysics Data System (ADS)
Monell, Donald W.; Piland, William M.
2000-07-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
Use of Communication Resources in a Networked Collaborative Design Environment.
ERIC Educational Resources Information Center
Gay, Geri; Lentini, Marc
1995-01-01
Examines student use of a prototype networked collaborative design environment to support or augment learning about engineering design. Finds that students use the channels for a variety of activities to increase depth of communication, increase breadth of communication, and overcome technical difficulty. Suggests that students need multiple…
ERIC Educational Resources Information Center
Cho, Ji Young; Cho, Moon-Heum; Kozinets, Nadya
2016-01-01
With the recognition of the importance of collaboration in a design studio and the advancement of technology, increasing numbers of design students collaborate with others in a technology-mediated learning environment (TMLE); however, not all students have positive experiences in TMLEs. One possible reason for unsatisfactory collaboration…
Using a Game Environment to Foster Collaborative Learning: A Design-Based Study
ERIC Educational Resources Information Center
Hamalainen, Raija
2011-01-01
Designing collaborative three-dimensional learning games for vocational learning may be one way to respond to the needs of working life. The theoretical vantage points of collaborative learning for game development and the "design-based research" methodology are described; these have been used to support collaborative learning in the…
An interdisciplinary lighting design studio: Opportunities and challenges of collaborative learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzowski, M.; Ginthner, D.
1997-12-31
Interdisciplinary study is based on the proposition that collaboration will enrich and expand understanding within a discipline and will also reveal connections to other fields of study, the community, the natural environment, etc. This study, the community, the natural environment, etc. This paper will present the results of a collaborative lighting design studio which was conducted by the Department of Architecture and the Interior Design Program at the University of Minnesota. The objectives of the studio were threefold: (1) To provide an opportunity for collaboration between students in design disciplines, (2) to introduce students to collaboration with design practitioners andmore » clients, and (3) to expose students to interdisciplinary work prior to graduation. Three projects by local firms were used for the design investigation. The following discussion will explore the opportunities and challenges of collaborative education and the interdisciplinary design studio. The objectives, roles of the teachers and the students, coursework, and future directions will be considered.« less
Distributed Collaborative Homework Activities in a Problem-Based Usability Engineering Course
ERIC Educational Resources Information Center
Carroll, John M.; Jiang, Hao; Borge, Marcela
2015-01-01
Teams of students in an upper-division undergraduate Usability Engineering course used a collaborative environment to carry out a series of three distributed collaborative homework assignments. Assignments were case-based analyses structured using a jigsaw design; students were provided a collaborative software environment and introduced to a…
ERIC Educational Resources Information Center
Ünal, Erhan; Çakir, Hasan
2017-01-01
The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…
Using Five Stage Model to Design of Collaborative Learning Environments in Second Life
ERIC Educational Resources Information Center
Orhan, Sevil; Karaman, M. Kemal
2014-01-01
Specifically Second Life (SL) among virtual worlds draws attention of researchers to form collaborative learning environments (Sutcliffe & Alrayes, 2012) since it could be used as a rich platform to simulate a real environment containing many collaborative learning characteristics and interaction tools within itself. Five Stage Model (FSM)…
Application of a Novel Collaboration Engineering Method for Learning Design: A Case Study
ERIC Educational Resources Information Center
Cheng, Xusen; Li, Yuanyuan; Sun, Jianshan; Huang, Jianqing
2016-01-01
Collaborative case studies and computer-supported collaborative learning (CSCL) play an important role in the modern education environment. A number of researchers have given significant attention to learning design in order to improve the satisfaction of collaborative learning. Although collaboration engineering (CE) is a mature method widely…
Internet-based distributed collaborative environment for engineering education and design
NASA Astrophysics Data System (ADS)
Sun, Qiuli
2001-07-01
This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the same geometric model simultaneously over the Internet and communicate with each other through a chat room. They can also conduct finite element analysis collaboratively on the same object over the Internet. They can mesh the same object, apply and edit the same boundary conditions and forces, obtain the same analysis results, and then discuss the results through the Internet.
Aerostructural interaction in a collaborative MDO environment
NASA Astrophysics Data System (ADS)
Ciampa, Pier Davide; Nagel, Björn
2014-10-01
The work presents an approach for aircraft design and optimization, developed to account for fluid-structure interactions in MDO applications. The approach makes use of a collaborative distributed design environment, and focuses on the influence of multiple physics based aerostructural models, on the overall aircraft synthesis and optimization. The approach is tested for the design of large transportation aircraft.
Tabletop Support for Collaborative Design: An Initial Evaluation of IdeaSpace
ERIC Educational Resources Information Center
Ioannou, Andri; Loizides, Fernando; Vasiliou, Christina; Zaphiris, Panayiotis; Parmaxi, Antigoni
2015-01-01
With the increasing availability of interactive tabletops, researchers and practitioners have the opportunity to expand the learning environment and provide further support for collaboration and reflective conversations around design problems. In this manuscript, we present IdeaSpace, a tabletop application designed to support collaborative design…
ERIC Educational Resources Information Center
Gunawardena, Charlotte N.
1998-01-01
Explores issues related to the design of collaborative-learning environments mediated by computer conferencing from the perspective of challenges faced in the sociocultural context of the Indian sub-continent. Examines the impact of online features on social cohesiveness, group dynamics, interaction, communication anxiety, and participation.…
ERIC Educational Resources Information Center
Bower, Matt
2011-01-01
Based on a three-semester design-based research study examining learning and teaching in a web-conferencing environment, this article identifies types of synchronous collaboration competencies and reveals their influence on learning processes. Four levels of online collaborative competencies were observed--operational, interactional, managerial,…
Role Management in a Privacy-Enhanced Collaborative Environment
ERIC Educational Resources Information Center
Lorenz, Anja; Borcea-Pfitzmann, Katrin
2010-01-01
Purpose: Facing the dilemma between collaboration and privacy is a continual challenge for users. In this setting, the purpose of this paper is to discuss issues of a highly flexible role management integrated in a privacy-enhanced collaborative environment (PECE). Design/methodology/approach: The general framework was provided by former findings…
NASA Technical Reports Server (NTRS)
Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave
1994-01-01
This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.
Design Thinking in Elementary Students' Collaborative Lamp Designing Process
ERIC Educational Resources Information Center
Kangas, Kaiju; Seitamaa-Hakkarainen, Pirita; Hakkarainen, Kai
2013-01-01
Design and Technology education is potentially a rich environment for successful learning, if the management of the whole design process is emphasised, and students' design thinking is promoted. The aim of the present study was to unfold the collaborative design process of one team of elementary students, in order to understand their multimodal…
High-Fidelity e-Learning: SEI’s Virtual Training Environment (VTE)
2009-01-01
Assessment 2.4 Collaboration 2.4.1 Peer-Student Collaboration 2.4.2 Instructor Support 2.5 Accessibility 2.6 Modularity 2.6.1 Design for Re-Use 2.6.2 Design ...ing Environment as an implementation of a high-fidelity e-Ieaming system. This report does not cover concepts of pedagogy or instructional design in e...pedagogical agents. This is the basis for Clark and Mayer’s Personalization principle for designing media for e-learning [Clark & Mayer 2003]. E-learning
ERIC Educational Resources Information Center
Kollias, V.; Mamalougos, N.; Vamvakoussi, X.; Lakkala, M.; Vosniadou, S.
2005-01-01
Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical…
NASA Technical Reports Server (NTRS)
Chow, Edward; Spence, Matthew Chew; Pell, Barney; Stewart, Helen; Korsmeyer, David; Liu, Joseph; Chang, Hsin-Ping; Viernes, Conan; Gogorth, Andre
2003-01-01
This paper discusses the challenges and security issues inherent in building complex cross-organizational collaborative projects and software systems within NASA. By applying the design principles of compartmentalization, organizational hierarchy and inter-organizational federation, the Secured Advanced Federated Environment (SAFE) is laying the foundation for a collaborative virtual infrastructure for the NASA community. A key element of SAFE is the Micro Security Domain (MSD) concept, which balances the need to collaborate and the need to enforce enterprise and local security rules. With the SAFE approach, security is an integral component of enterprise software and network design, not an afterthought.
Supporting Distance Learners for Collaborative Problem Solving.
ERIC Educational Resources Information Center
Verdejo, M. F.; Barros, B.; Abad, M. T.
This paper describes a computer-supported environment designed to facilitate distance learning through collaborative problem-solving. The goal is to encourage distance learning students to work together, in order to promote both learning of collaboration and learning through collaboration. Collaboration is defined as working together on a common…
AMOEBA: Designing for Collaboration in Computer Science Classrooms through Live Learning Analytics
ERIC Educational Resources Information Center
Berland, Matthew; Davis, Don; Smith, Carmen Petrick
2015-01-01
AMOEBA is a unique tool to support teachers' orchestration of collaboration among novice programmers in a non-traditional programming environment. The AMOEBA tool was designed and utilized to facilitate collaboration in a classroom setting in real time among novice middle school and high school programmers utilizing the IPRO programming…
Collaborative Annotation System Environment (CASE) for Online Learning
ERIC Educational Resources Information Center
Glover, Ian; Hardaker, Glenn; Xu, Zhijie
2004-01-01
This paper outlines the design and development process of an online annotation system and how it is applied to the sphere of collaborative online learning. The architecture and design of the annotation system, illustrated in this paper, have been developed to enrich collaborative learning content through adding a layer of information in online…
Learning with Collaborative Inquiry: A Science Learning Environment for Secondary Students
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit; Xie, Wenting
2017-01-01
When inquiry-based learning is designed for a collaborative context, the interactions that arise in the learning environment can become fairly complex. While the learning effectiveness of such learning environments has been reported in the literature, there have been fewer studies on the students' learning processes. To address this, the article…
Cultivating Collaborations: Site Specific Design for Embodied Science Learning.
Gill, Katherine; Glazier, Jocelyn; Towns, Betsy
2018-05-21
Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.
Hitch, Danielle; Larkin, Helen; Watchorn, Valerie; Ang, Susan
2012-10-01
The design of built environments is a critical factor in facilitating participation for all community members. This study aimed to explore key stakeholders' views on the role and collaboration of occupational therapists and architects in relation to universal design and the built environment. This study is currently the only research to focus on the needs and practices of both occupational therapy and architecture in universal design. The results have implications for both clinical practice and professional education, and highlight an area of developing interest in occupational therapy. Focus groups and semi-structured telephone interviews were conducted with key stakeholders involved in the design of built environments. Data from these interviews were analysed qualitatively, using codes of interpreted meaning which were then organised into themes. Three main themes emerged in relation to inter-professional collaboration around universal design: 'form vs. function', 'the earlier the better' and 'universal design as a specialist area'. Although there are areas of synergy between occupational therapy and architecture in universal design, each profession has its own strengths and skills to bring to the design process. Given the multidisciplinary nature of ensuring designs support participation in occupations and roles, both professions could benefit from opportunities to meaningfully collaborate during professional education and in the workplace. © 2011 The Authors. Australian Occupational Therapy Journal © 2011 Occupational Therapy Australia.
Supporting Effective Collaboration: Using a Rearview Mirror to Look Forward
ERIC Educational Resources Information Center
McManus, Margaret M.; Aiken, Robert M.
2016-01-01
Our original research, to design and develop an Intelligent Collaborative Learning System (ICLS), yielded the creation of a Group Leader Tutor software system which utilizes a Collaborative Skills Network to monitor students working collaboratively in a networked environment. The Collaborative Skills Network was a conceptualization of…
Actor Interdependence in Collaborative Telelearning.
ERIC Educational Resources Information Center
Wasson, Barbara; Bourdeau, Jacqueline
This paper presents a model of collaborative telelearning and describes how coordination theory has provided a framework for the analysis of actor (inter)dependencies in this scenario. The model is intended to inform the instructional design of learning scenarios, the technological design of the telelearning environment, and the design of…
A Virtual Mission Operations Center: Collaborative Environment
NASA Technical Reports Server (NTRS)
Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.
NASA Astrophysics Data System (ADS)
Schmeil, Andreas; Eppler, Martin J.
Despite the fact that virtual worlds and other types of multi-user 3D collaboration spaces have long been subjects of research and of application experiences, it still remains unclear how to best benefit from meeting with colleagues and peers in a virtual environment with the aim of working together. Making use of the potential of virtual embodiment, i.e. being immersed in a space as a personal avatar, allows for innovative new forms of collaboration. In this paper, we present a framework that serves as a systematic formalization of collaboration elements in virtual environments. The framework is based on the semiotic distinctions among pragmatic, semantic and syntactic perspectives. It serves as a blueprint to guide users in designing, implementing, and executing virtual collaboration patterns tailored to their needs. We present two team and two community collaboration pattern examples as a result of the application of the framework: Virtual Meeting, Virtual Design Studio, Spatial Group Configuration, and Virtual Knowledge Fair. In conclusion, we also point out future research directions for this emerging domain.
A Tool Supporting Collaborative Data Analytics Workflow Design and Management
NASA Astrophysics Data System (ADS)
Zhang, J.; Bao, Q.; Lee, T. J.
2016-12-01
Collaborative experiment design could significantly enhance the sharing and adoption of the data analytics algorithms and models emerged in Earth science. Existing data-oriented workflow tools, however, are not suitable to support collaborative design of such a workflow, to name a few, to support real-time co-design; to track how a workflow evolves over time based on changing designs contributed by multiple Earth scientists; and to capture and retrieve collaboration knowledge on workflow design (discussions that lead to a design). To address the aforementioned challenges, we have designed and developed a technique supporting collaborative data-oriented workflow composition and management, as a key component toward supporting big data collaboration through the Internet. Reproducibility and scalability are two major targets demanding fundamental infrastructural support. One outcome of the project os a software tool, supporting an elastic number of groups of Earth scientists to collaboratively design and compose data analytics workflows through the Internet. Instead of recreating the wheel, we have extended an existing workflow tool VisTrails into an online collaborative environment as a proof of concept.
Collaborative project-based learning: an integrative science and technological education project
NASA Astrophysics Data System (ADS)
Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan
2017-04-01
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills.
Understanding Collaboration Environments to Support Green Infrastructure Construction
DOT National Transportation Integrated Search
2011-12-01
Close collaboration among stakeholders has long been recognized as an important factor of a successful project. In todays climate of a heightened focus on sustainability, collaboration needs to be taken to a new level in the design and constructio...
Students Assessing Their Own Collaborative Knowledge Building
ERIC Educational Resources Information Center
Lee, Eddy Y. C.; Chan, Carol K. K.; van Aalst, Jan
2006-01-01
We describe the design of a knowledge-building environment and examine the role of knowledge-building portfolios in characterizing and scaffolding collaborative inquiry. Our goal is to examine collaborative knowledge building in the context of exploring the alignment of learning, collaboration, and assessment in computer forums. The key design…
Designing and Deploying 3D Collaborative Games in Education
ERIC Educational Resources Information Center
Mavridis, Apostolos; Tsiatsos, Thrasyvoulos; Terzidou, Theodouli
2016-01-01
This paper focuses on methodologies of serious games deployment and evaluation. Particularly, this study will present a specific category of serious games that are based on Collaborative Virtual Environments and they aim to support Collaborative Learning. We call these serious games Collaborative Virtual Educational Games (CVEG). The paper aims to…
NASA Technical Reports Server (NTRS)
Braun, R. D.; Kroo, I. M.
1995-01-01
Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.
Use of FirstClass as a Collaborative Learning Environment.
ERIC Educational Resources Information Center
Persico, Donatella; Manca, Stefania
2000-01-01
Describes the use of SoftArc Intranet FirstClass, a collaborative learning environment that uses computer conferencing, and discusses pros and cons of choosing this system for running online courses from a distance. Presents case studies from Italy and presents viewpoints of students, tutors, designers and administrators. (Author/LRW)
Social and Collaborative Interactions for Educational Content Enrichment in ULEs
ERIC Educational Resources Information Center
Araújo, Rafael D.; Brant-Ribeiro, Taffarel; Mendonça, Igor E. S.; Mendes, Miller M.; Dorça, Fabiano A.; Cattelan, Renan G.
2017-01-01
This article presents a social and collaborative model for content enrichment in Ubiquitous Learning Environments. Designed as a loosely coupled software architecture, the proposed model was implemented and integrated into the Classroom eXperience, a multimedia capture platform for educational environments. After automatically recording a lecture…
Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry
NASA Astrophysics Data System (ADS)
Sun, Daner; Looi, Chee-Kit
2013-02-01
The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.
ERIC Educational Resources Information Center
Hurvitz, Tate; Benvau, Roxane; Parry, Megan
2015-01-01
Creating a collaborative environment across student services and instruction is often more challenging than it may first seem. Although effective collaboration is context specific, keeping student learning at the center of the work is a powerful element in successful collaborations. Grossmont College's first year experience program has attempted…
Learning in the "Café": Pilot Testing the Collaborative Application for Education in Facebook
ERIC Educational Resources Information Center
McCarthy, Josh
2015-01-01
This paper reports on a pilot study using the "Café," the collaborative application for education as an online learning environment within the Facebook framework, for first-year tertiary design students. The "Café," a new e-learning application, has been designed based on five principles of user interface design--visibility,…
Advanced engineering environment collaboration project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.
2008-12-01
The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less
Teachers as Designers of Collaborative Distance Learning.
ERIC Educational Resources Information Center
Spector, J. Michael
There is an obvious growth in the use of distributed and online learning environments. There is some evidence to believe that collaborative learning environments can be effective, especially when using advanced technology to support learning in and about complex domains. There is also an extensive body of research literature in the areas of…
Scripting for Construction of a Transactive Memory System in Multidisciplinary CSCL Environments
ERIC Educational Resources Information Center
Noroozi, Omid; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin; Chizari, Mohammad
2013-01-01
Establishing a Transactive Memory System (TMS) is essential for groups of learners, when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) could be designed to facilitate the TMS. This study investigates how various aspects of a TMS (i.e., specialization, coordination, and trust)…
Coral-View: A Network-Based Design Environment for Collaborative Learning
ERIC Educational Resources Information Center
Sun, Chuen-Tsai; Lin, Sunny S. J.
2004-01-01
The vast majority of complex engineering tasks in today's business world are completed using a team-oriented approach. Therefore, teaching collaborative skills to university students can be viewed as a practical means of enhancing their employability. With these goals in mind, the authors developed a network environment that helps Taiwanese…
The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments
ERIC Educational Resources Information Center
Goldstein, Jessica; Puntambeka, Sadhana
2004-01-01
This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students attitudes towards using computers and working in groups during scientific inquiry. Students attitudes towards technology and group work were…
The development of a collaborative virtual environment for finite element simulation
NASA Astrophysics Data System (ADS)
Abdul-Jalil, Mohamad Kasim
Communication between geographically distributed designers has been a major hurdle in traditional engineering design. Conventional methods of communication, such as video conferencing, telephone, and email, are less efficient especially when dealing with complex design models. Complex shapes, intricate features and hidden parts are often difficult to describe verbally or even using traditional 2-D or 3-D visual representations. Virtual Reality (VR) and Internet technologies have provided a substantial potential to bridge the present communication barrier. VR technology allows designers to immerse themselves in a virtual environment to view and manipulate this model just as in real-life. Fast Internet connectivity has enabled fast data transfer between remote locations. Although various collaborative virtual environment (CVE) systems have been developed in the past decade, they are limited to high-end technology that is not accessible to typical designers. The objective of this dissertation is to discover and develop a new approach to increase the efficiency of the design process, particularly for large-scale applications wherein participants are geographically distributed. A multi-platform and easily accessible collaborative virtual environment (CVRoom), is developed to accomplish the stated research objective. Geographically dispersed designers can meet in a single shared virtual environment to discuss issues pertaining to the engineering design process and to make trade-off decisions more quickly than before, thereby speeding the entire process. This 'faster' design process will be achieved through the development of capabilities to better enable the multidisciplinary and modeling the trade-off decisions that are so critical before launching into a formal detailed design. The features of the environment developed as a result of this research include the ability to view design models, use voice interaction, and to link engineering analysis modules (such as Finite Element Analysis module, such as is demonstrated in this work). One of the major issues in developing a CVE system for engineering design purposes is to obtain any pertinent simulation results in real-time. This is critical so that the designers can make decisions based on these results quickly. For example, in a finite element analysis, if a design model is changed or perturbed, the analysis results must be obtained in real-time or near real-time to make the virtual meeting environment realistic. In this research, the finite difference-based Design Sensitivity Analysis (DSA) approach is employed to approximate structural responses (i.e. stress, displacement, etc), so as to demonstrate the applicability of CVRoom for engineering design trade-offs. This DSA approach provides for fast approximation and is well-suited for the virtual meeting environment where fast response time is required. The DSA-based approach is tested on several example test problems to show its applicability and limitations. This dissertation demonstrates that an increase in efficiency and reduction of time required for a complex design processing can be accomplished using the approach developed in this dissertation research. Several implementations of CVRoom by students working on common design tasks were investigated. All participants confirmed the preference of using the collaborative virtual environment developed in this dissertation work (CVRoom) over other modes of interactions. It is proposed here that CVRoom is representative of the type of collaborative virtual environment that will be used by most designers in the future to reduce the time required in a design cycle and thereby reduce the associated cost.
Collaborative Instructional Strategies to Enhance Knowledge Convergence
ERIC Educational Resources Information Center
Draper, Darryl C.
2015-01-01
To promote knowledge convergence through collaborative learning activities in groups, this qualitative case study involved a layered approach for the design and delivery of a highly collaborative learning environment incorporating various instructional technologies grounded in learning theory. In a graduate-level instructional technology course,…
Facilitating Learning in Multidisciplinary Groups with Transactive CSCL Scripts
ERIC Educational Resources Information Center
Noroozi, Omid; Teasley, Stephanie D.; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin
2013-01-01
Knowledge sharing and transfer are essential for learning in groups, especially when group members have different disciplinary expertise and collaborate online. Computer-Supported Collaborative Learning (CSCL) environments have been designed to facilitate transactive knowledge sharing and transfer in collaborative problem-solving settings. This…
Virtual Collaborative Simulation Environment for Integrated Product and Process Development
NASA Technical Reports Server (NTRS)
Gulli, Michael A.
1997-01-01
Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.
Team Expo: A State-of-the-Art JSC Advanced Design Team
NASA Technical Reports Server (NTRS)
Tripathi, Abhishek
2001-01-01
In concert with the NASA-wide Intelligent Synthesis Environment Program, the Exploration Office at the Johnson Space Center has assembled an Advanced Design Team. The purpose of this team is two-fold. The first is to identify, use, and develop software applications, tools, and design processes that streamline and enhance a collaborative engineering environment. The second is to use this collaborative engineering environment to produce conceptual, system-level-of-detail designs in a relatively short turnaround time, using a standing team of systems and integration experts. This includes running rapid trade studies on varying mission architectures, as well as producing vehicle and/or subsystem designs. The standing core team is made up of experts from all of the relevant engineering divisions (e.g. Power, Thermal, Structures, etc.) as well as representatives from Risk and Safety, Mission Operations, and Crew Life Sciences among others. The Team works together during 2- hour sessions in the same specially enhanced room to ensure real-time integration/identification of cross-disciplinary issues and solutions. All subsystem designs are collectively reviewed and approved during these same sessions. In addition there is an Information sub-team that captures and formats all data and makes it accessible for use by the following day. The result is Team Expo: an Advanced Design Team that is leading the change from a philosophy of "over the fence" design to one of collaborative engineering that pushes the envelope to achieve the next-generation analysis and design environment.
ERIC Educational Resources Information Center
Cela, Karina L.; Sicilia, Miguel Ángel; Sánchez, Salvador
2015-01-01
Teachers and instructional designers frequently incorporate collaborative learning approaches into their e-learning environments. A key factor of collaborative learning that may affect learner outcomes is whether the collaborative groups are assigned project topics randomly or based on a shared interest in the topic. This is a particularly…
Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT
NASA Technical Reports Server (NTRS)
Dryer, David A.
2002-01-01
This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.
Agent-Based Learning Environments as a Research Tool for Investigating Teaching and Learning.
ERIC Educational Resources Information Center
Baylor, Amy L.
2002-01-01
Discusses intelligent learning environments for computer-based learning, such as agent-based learning environments, and their advantages over human-based instruction. Considers the effects of multiple agents; agents and research design; the use of Multiple Intelligent Mentors Instructing Collaboratively (MIMIC) for instructional design for…
Cameron, Josh; Hart, Angie; Brooker, Saff; Neale, Paul; Reardon, Mair
2018-05-15
Recovery Colleges address mental health challenges using an educative approach underpinned by a collaborative recovery orientated philosophy. Research has been limited with no studies identified reporting research on the design and delivery of a specific course. To understand how Recovery College students and tutors experience the design and delivery of a mental health Recovery College course, specifically the "'Building Resilience" course. Thematic analysis of qualitative data related to the experience and process of collaboration in recovery college course design and delivery. Data included 13 qualitative individual interviews with course students and tutors and "naturally occurring" data generated through course preparation and delivery. Findings drew attention to the centrality of: prior experience and design related to students, tutors and the course structure; co-delivery related to tutors and co-learner impacts; and to the course methods and environment. Commitment to collaboration in design and delivery of Recovery College courses can mobilise the diverse experiences and expertise of tutors and students. The environment and methods of learning have a significant impact and should be considered alongside content. Boundaries between people and areas of knowledge and experience that arise can be viewed as sources of creativity that can enrich courses.
Gum, Lyn Frances; Prideaux, David; Sweet, Linda; Greenhill, Jennene
2012-01-01
Interprofessional practice implies that health professionals are able to contribute patient care in a collaborative environment. In this paper, it is argued that in a hospital the nurses' station is a form of symbolic power. The term could be reframed as a "health team hub," which fosters a place for communication and interprofessional working. Studies have found that design of the Nurses' Station can impact on the walking distance of hospital staff, privacy for patients and staff, jeopardize patient confidentiality and access to resources. However, no studies have explored the implications of nurses' station design on interprofessional practice. A multi-site collective case study of three rural hospitals in South Australia explored the collaborative working culture of each hospital. Of the cultural concepts being studied, the physical design of nurses' stations and the general physical environment were found to have a major influence on an effective collaborative practice. Communication barriers were related to poor design, lack of space, frequent interruptions and a lack of privacy; the name "nurses' station" denotes the space as the primary domain of nurses rather than a workspace for the healthcare team. Immersive work spaces could encourage all members of the healthcare team to communicate more readily with one another to promote interprofessional collaboration.
Bines, Julie E; Jamieson, Peter
2013-09-01
Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.
ERIC Educational Resources Information Center
Menorath, Darren; Antonczak, Laurent
2017-01-01
This paper examines the state of the art of mobile Augmented Reality (AR) and mobile Virtual Reality (VR) in relation to collaboration and professional practices in a creative digital environment and higher education. To support their discussion, the authors use a recent design-based research project named "Juxtapose," which explores…
Educational Visualizations in 3D Collaborative Virtual Environments: A Methodology
ERIC Educational Resources Information Center
Fominykh, Mikhail; Prasolova-Forland, Ekaterina
2012-01-01
Purpose: Collaborative virtual environments (CVEs) have become increasingly popular in educational settings and the role of 3D content is becoming more and more important. Still, there are many challenges in this area, such as lack of empirical studies that provide design for educational activities in 3D CVEs and lack of norms of how to support…
ERIC Educational Resources Information Center
Oikarinen, Juho Kaleva; Järvelä, Sanna; Kaasila, Raimo
2014-01-01
This design-based research project focuses on documenting statistical learning among 16-17-year-old Finnish upper secondary school students (N = 78) in a computer-supported collaborative learning (CSCL) environment. One novel value of this study is in reporting the shift from teacher-led mathematical teaching to autonomous small-group learning in…
Advanced engineering environment pilot project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty
2006-10-01
The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solutionmore » to deploy the AEE across the NWC.« less
System Level Uncertainty Assessment for Collaborative RLV Design
NASA Technical Reports Server (NTRS)
Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew
2002-01-01
A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.
NASA Astrophysics Data System (ADS)
Duan, Pengfei; Lei, Wenping
2017-11-01
A number of disciplines (mechanics, structures, thermal, and optics) are needed to design and build Space Camera. Separate design models are normally constructed by each discipline CAD/CAE tools. Design and analysis is conducted largely in parallel subject to requirements that have been levied on each discipline, and technical interaction between the different disciplines is limited and infrequent. As a result a unified view of the Space Camera design across discipline boundaries is not directly possible in the approach above, and generating one would require a large manual, and error-prone process. A collaborative environment that is built on abstract model and performance template allows engineering data and CAD/CAE results to be shared across above discipline boundaries within a common interface, so that it can help to attain speedy multivariate design and directly evaluate optical performance under environment loadings. A small interdisciplinary engineering team from Beijing Institute of Space Mechanics and Electricity has recently conducted a Structural/Thermal/Optical (STOP) analysis of a space camera with this collaborative environment. STOP analysis evaluates the changes in image quality that arise from the structural deformations when the thermal environment of the camera changes throughout its orbit. STOP analyses were conducted for four different test conditions applied during final thermal vacuum (TVAC) testing of the payload on the ground. The STOP Simulation Process begins with importing an integrated CAD model of the camera geometry into the collaborative environment, within which 1. Independent thermal and structural meshes are generated. 2. The thermal mesh and relevant engineering data for material properties and thermal boundary conditions are then used to compute temperature distributions at nodal points in both the thermal and structures mesh through Thermal Desktop, a COTS thermal design and analysis code. 3. Thermally induced structural deformations of the camera are then evaluated in Nastran, an industry standard code for structural design and analysis. 4. Thermal and structural results are next imported into SigFit, another COTS tool that computes deformation and best fit rigid body displacements for the optical surfaces. 5. SigFit creates a modified optical prescription that is imported into CODE V for evaluation of optical performance impacts. The integrated STOP analysis was validated using TVAC test data. For the four different TVAC tests, the relative errors between simulation and test data of measuring points temperatures were almost around 5%, while in some test conditions, they were even much lower to 1%. As to image quality MTF, relative error between simulation and test was 8.3% in the worst condition, others were all below 5%. Through the validation, it has been approved that the collaborative design and simulation environment can achieved the integrated STOP analysis of Space Camera efficiently. And further, the collaborative environment allows an interdisciplinary analysis that formerly might take several months to perform to be completed in two or three weeks, which is very adaptive to scheme demonstration of projects in earlier stages.
Center for the Built Environment: Research on Indoor Environmental Quality
Comfort System Speech Privacy Task Ambient Conditioning Team Space Design Study Thermal Comfort Automotive resulting from HVAC, building, and facade design decisions. Acoustical Analysis in Office Environments Using building energy. The Impact of Team Space Design on Collaboration Assessing individual and group worker
The Impact of Using Synchronous Collaborative Virtual Tangram in Children's Geometric
ERIC Educational Resources Information Center
Lin, Chiu-Pin; Shao, Yin-juan; Wong, Lung-Hsiang; Li, Yin-Jen; Niramitranon, Jitti
2011-01-01
This study aimed to develop a collaborative and manipulative virtual Tangram puzzle to facilitate children to learn geometry in the computer-supported collaborative learning environment with Tablet PCs. In promoting peer interactions and stimulating students' higher-order thinking and creativity toward geometric problem-solving, we designed a…
Collaborative Project-Based Learning: An Integrative Science and Technological Education Project
ERIC Educational Resources Information Center
Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan
2017-01-01
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…
Graphing in Groups: Learning about Lines in a Collaborative Classroom Network Environment
ERIC Educational Resources Information Center
White, Tobin; Wallace, Matthew; Lai, Kevin
2012-01-01
This article presents a design experiment in which we explore new structures for classroom collaboration supported by a classroom network of handheld graphing calculators. We describe a design for small group investigations of linear functions and present findings from its implementation in three high school algebra classrooms. Our coding of the…
The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science
NASA Astrophysics Data System (ADS)
Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.
2015-10-01
Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning environment, whereas students in the experimental group participated in online collaborative activities using the Edmodo educational platform in a hybrid learning environment. Students completed the Classroom Community Scale survey as a pretest and posttest. Results indicated that the students who participated in the face-to-face classroom had higher overall sense of community and learning community than students who participated in collaborative activities in the online environment. Results and implications are discussed and suggestions for future research are provided.
Information Infrastructure, Information Environments, and Long-Term Collaboration
NASA Astrophysics Data System (ADS)
Baker, K. S.; Pennington, D. D.
2009-12-01
Information infrastructure that supports collaborative science is a complex system of people, organizational arrangements, and tools that require co-management. Contemporary studies are exploring how to establish and characterize effective collaborative information environments. Collaboration depends on the flow of information across the human and technical system components through mechanisms that create linkages, both conceptual and technical. This transcends the need for requirements solicitation and usability studies, highlighting synergistic interactions between humans and technology that can lead to emergence of group level cognitive properties. We consider the ramifications of placing priority on establishing new metaphors and new types of learning environments located near-to-data-origin for the field sciences. In addition to changes in terms of participant engagement, there are implications in terms of innovative contributions to the design of information systems and data exchange. While data integration occurs in the minds of individual participants, it may be facilitated by collaborative thinking and community infrastructure. Existing learning frameworks - from Maslow’s hierarchy of needs to organizational learning - require modification and extension if effective approaches to decentralized information management and systems design are to emerge. Case studies relating to data integration include ecological community projects: development of cross-disciplinary conceptual maps and of a community unit registry.
The Impact of Integrated Coaching and Collaboration within an Inquiry Learning Environment
ERIC Educational Resources Information Center
Dragon, Toby
2013-01-01
This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…
ERIC Educational Resources Information Center
Ngai, E. W. T.; Lam, S. S.; Poon, J. K. L.
2013-01-01
This paper describes the successful application of a computer-supported collaborative learning system in teaching e-commerce. The authors created a teaching and learning environment for 39 local secondary schools to introduce e-commerce using a computer-supported collaborative learning system. This system is designed to equip students with…
The Proposed Model of Collaborative Virtual Learning Environment for Introductory Programming Course
ERIC Educational Resources Information Center
Othman, Mahfudzah; Othman, Muhaini
2012-01-01
This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the "Think-Pair-Share". The main objective of this study is to design a model for an online learning system that facilitates the…
A Framework for Adaptive Learning Design in a Web-Conferencing Environment
ERIC Educational Resources Information Center
Bower, Matt
2016-01-01
Many recent technologies provide the ability to dynamically adjust the interface depending on the emerging cognitive and collaborative needs of the learning episode. This means that educators can adaptively re-design the learning environment during the lesson, rather than purely relying on preemptive learning design thinking. Based on a…
ERIC Educational Resources Information Center
Titova, Svetlana
2014-01-01
Mobile devices can enhance learning experience in many ways: provide instant feedback and better diagnosis of learning problems; enhance learner autonomy; create mobile networking collaboration; help design enquiry-based activities based on augmented reality, geo-location awareness and video-capture. One of the main objectives of the international…
Vroom: designing an augmented environment for remote collaboration in digital cinema production
NASA Astrophysics Data System (ADS)
Margolis, Todd; Cornish, Tracy
2013-03-01
As media technologies become increasingly affordable, compact and inherently networked, new generations of telecollaborative platforms continue to arise which integrate these new affordances. Virtual reality has been primarily concerned with creating simulations of environments that can transport participants to real or imagined spaces that replace the "real world". Meanwhile Augmented Reality systems have evolved to interleave objects from Virtual Reality environments into the physical landscape. Perhaps now there is a new class of systems that reverse this precept to enhance dynamic media landscapes and immersive physical display environments to enable intuitive data exploration through collaboration. Vroom (Virtual Room) is a next-generation reconfigurable tiled display environment in development at the California Institute for Telecommunications and Information Technology (Calit2) at the University of California, San Diego. Vroom enables freely scalable digital collaboratories, connecting distributed, high-resolution visualization resources for collaborative work in the sciences, engineering and the arts. Vroom transforms a physical space into an immersive media environment with large format interactive display surfaces, video teleconferencing and spatialized audio built on a highspeed optical network backbone. Vroom enables group collaboration for local and remote participants to share knowledge and experiences. Possible applications include: remote learning, command and control, storyboarding, post-production editorial review, high resolution video playback, 3D visualization, screencasting and image, video and multimedia file sharing. To support these various scenarios, Vroom features support for multiple user interfaces (optical tracking, touch UI, gesture interface, etc.), support for directional and spatialized audio, giga-pixel image interactivity, 4K video streaming, 3D visualization and telematic production. This paper explains the design process that has been utilized to make Vroom an accessible and intuitive immersive environment for remote collaboration specifically for digital cinema production.
Experiential Collaborative Learning and Preferential Thinking
NASA Astrophysics Data System (ADS)
Volpentesta, Antonio P.; Ammirato, Salvatore; Sofo, Francesco
The paper presents a Project-Based Learning (shortly, PBL) approach in a collaborative educational environment aimed to develop design ability and creativity of students coming from different engineering disciplines. Three collaborative learning experiences in product design were conducted in order to study their impact on preferred thinking styles of students. Using a thinking style inventory, pre- and post-survey data was collected and successively analyzed through ANOVA techniques. Statistically significant results showed students successfully developed empathy and an openness to multiple perspectives. Furthermore, data analysis confirms that the proposed collaborative learning experience positively contributes to increase awareness in students' thinking styles.
ERIC Educational Resources Information Center
Emery, Steven B.; Franks, Jeremy R.
2012-01-01
There is increasing recognition that whilst agri-environment schemes in England have had discernable benefits, their success in relation to certain species and resources has been inhibited by the piecemeal implementation of Environmental Stewardship (ES) on the basis of single farm agreements. In this paper we examine the receptivity of farmers to…
Implementation of a Web-Based Collaborative Process Planning System
NASA Astrophysics Data System (ADS)
Wang, Huifen; Liu, Tingting; Qiao, Li; Huang, Shuangxi
Under the networked manufacturing environment, all phases of product manufacturing involving design, process planning, machining and assembling may be accomplished collaboratively by different enterprises, even different manufacturing stages of the same part may be finished collaboratively by different enterprises. Based on the self-developed networked manufacturing platform eCWS(e-Cooperative Work System), a multi-agent-based system framework for collaborative process planning is proposed. In accordance with requirements of collaborative process planning, share resources provided by cooperative enterprises in the course of collaboration are classified into seven classes. Then a reconfigurable and extendable resource object model is built. Decision-making strategy is also studied in this paper. Finally a collaborative process planning system e-CAPP is developed and applied. It provides strong support for distributed designers to collaboratively plan and optimize product process though network.
NASA Astrophysics Data System (ADS)
Berland, Matthew W.
As scientists use the tools of computational and complex systems theory to broaden science perspectives (e.g., Bar-Yam, 1997; Holland, 1995; Wolfram, 2002), so can middle-school students broaden their perspectives using appropriate tools. The goals of this dissertation project are to build, study, evaluate, and compare activities designed to foster both computational and complex systems fluencies through collaborative constructionist virtual and physical robotics. In these activities, each student builds an agent (e.g., a robot-bird) that must interact with fellow students' agents to generate a complex aggregate (e.g., a flock of robot-birds) in a participatory simulation environment (Wilensky & Stroup, 1999a). In a participatory simulation, students collaborate by acting in a common space, teaching each other, and discussing content with one another. As a result, the students improve both their computational fluency and their complex systems fluency, where fluency is defined as the ability to both consume and produce relevant content (DiSessa, 2000). To date, several systems have been designed to foster computational and complex systems fluencies through computer programming and collaborative play (e.g., Hancock, 2003; Wilensky & Stroup, 1999b); this study suggests that, by supporting the relevant fluencies through collaborative play, they become mutually reinforcing. In this work, I will present both the design of the VBOT virtual/physical constructionist robotics learning environment and a comparative study of student interaction with the virtual and physical environments across four middle-school classrooms, focusing on the contrast in systems perspectives differently afforded by the two environments. In particular, I found that while performance gains were similar overall, the physical environment supported agent perspectives on aggregate behavior, and the virtual environment supported aggregate perspectives on agent behavior. The primary research questions are: (1) What are the relative affordances of virtual and physical constructionist robotics systems towards computational and complex systems fluencies? (2) What can middle school students learn using computational/complex systems learning environments in a collaborative setting? (3) In what ways are these environments and activities effective in teaching students computational and complex systems fluencies?
Mars mission science operations facilities design
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.
2002-01-01
A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.
From Assumptions to Practice: Creating and Supporting Robust Online Collaborative Learning
ERIC Educational Resources Information Center
Lock, Jennifer; Johnson, Carol
2017-01-01
Collaboration is more than an activity. In the contemporary online learning environment, collaboration needs to be conceived as an overarching way of learning that fosters continued knowledge building. For this to occur, design of a learning task goes beyond students working together. There are integral nuances that give rise to: how the task is…
ERIC Educational Resources Information Center
Nitta, Takuya; Takaoka, Ryo; Ahama, Shigeki; Shimokawa, Masayuki
2014-01-01
The competency and curriculum for human resource development in knowledge based society are proposed in each country. We think the keywords are "collaborative problem solving" and "effective use of ICT". In particular, the competency to perform the collaborative problem solving and learning with others on the network is…
ERIC Educational Resources Information Center
Botev, Jean
2016-01-01
The CollaTrEx framework for collaborative context-aware mobile training and exploration is designed for the in-situ collaboration within groups of learners performing together diverse educational activities to explore their environment in a fun and intuitive way. It employs both absolute and relative spatio-temporal context for determining…
Evaluating Two Models of Collaborative Tests in an Online Introductory Statistics Course
ERIC Educational Resources Information Center
Björnsdóttir, Auðbjörg; Garfield, Joan; Everson, Michelle
2015-01-01
This study explored the use of two different types of collaborative tests in an online introductory statistics course. A study was designed and carried out to investigate three research questions: (1) What is the difference in students' learning between using consensus and non-consensus collaborative tests in the online environment?, (2) What is…
Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2013-01-01
The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…
ERIC Educational Resources Information Center
Li, Yanyan; Dong, Mingkai; Huang, Ronghuai
2011-01-01
The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…
Virtual collaboration in the online educational setting: a concept analysis.
Breen, Henny
2013-01-01
This study was designed to explore the concept of virtual collaboration within the context of an online learning environment in an academic setting. Rodgers' method of evolutionary concept analysis was used to provide a contextual view of the concept to identify attributes, antecedents, and consequences of virtual collaboration. Commonly used terms to describe virtual collaboration are collaborative and cooperative learning, group work, group interaction, group learning, and teamwork. A constructivist pedagogy, group-based process with a shared purpose, support, and web-based technology is required for virtual collaboration to take place. Consequences of virtual collaboration are higher order thinking and learning to work with others. A comprehensive definition of virtual collaboration is offered as an outcome of this analysis. Clarification of virtual collaboration prior to using it as a pedagogical tool in the online learning environment will enhance nursing education with the changes in nursing curriculum being implemented today. Further research is recommended to describe the developmental stages of the collaborative process among nursing students in online education and how virtual collaboration facilitates collaboration in practice. © 2013 Wiley Periodicals, Inc.
Supporting tactical intelligence using collaborative environments and social networking
NASA Astrophysics Data System (ADS)
Wollocko, Arthur B.; Farry, Michael P.; Stark, Robert F.
2013-05-01
Modern military environments place an increased emphasis on the collection and analysis of intelligence at the tactical level. The deployment of analytical tools at the tactical level helps support the Warfighter's need for rapid collection, analysis, and dissemination of intelligence. However, given the lack of experience and staffing at the tactical level, most of the available intelligence is not exploited. Tactical environments are staffed by a new generation of intelligence analysts who are well-versed in modern collaboration environments and social networking. An opportunity exists to enhance tactical intelligence analysis by exploiting these personnel strengths, but is dependent on appropriately designed information sharing technologies. Existing social information sharing technologies enable users to publish information quickly, but do not unite or organize information in a manner that effectively supports intelligence analysis. In this paper, we present an alternative approach to structuring and supporting tactical intelligence analysis that combines the benefits of existing concepts, and provide detail on a prototype system embodying that approach. Since this approach employs familiar collaboration support concepts from social media, it enables new-generation analysts to identify the decision-relevant data scattered among databases and the mental models of other personnel, increasing the timeliness of collaborative analysis. Also, the approach enables analysts to collaborate visually to associate heterogeneous and uncertain data within the intelligence analysis process, increasing the robustness of collaborative analyses. Utilizing this familiar dynamic collaboration environment, we hope to achieve a significant reduction of time and skill required to glean actionable intelligence in these challenging operational environments.
Robertson, Michelle M; Huang, Yueng-Hsiang
2006-01-01
The effects of a workplace design and training intervention and the relationships between perceived satisfaction of office workplace design factors (layout and storage) and work performance measures (individual performance, group collaboration and effectiveness) were studied with 120 office workers using the Workplace Environment Questionnaire. Further, we examined whether environmental control had a direct effect on work performance, and then explored whether environmental control mediated or moderated the relationship between workplace design factors and work performance. Results showed a significant, positive impact of the intervention on environmental satisfaction for workstation layout. Satisfaction with workstation layout had a significant relationship with individual performance, group collaboration and effectiveness; and satisfaction with workstation storage had a significant relationship with individual performance and group collaboration. Environmental control had a direct impact on individual performance and group collaboration; whereas, the mediating and moderating effects of environmental control on the relationship between workplace design factors and outcome variables were not significant.
NASA Astrophysics Data System (ADS)
Marconi, S.; Conti, E.; Christiansen, J.; Placidi, P.
2018-05-01
The operating conditions of the High Luminosity upgrade of the Large Hadron Collider are very demanding for the design of next generation hybrid pixel readout chips in terms of particle rate, radiation level and data bandwidth. To this purpose, the RD53 Collaboration has developed for the ATLAS and CMS experiments a dedicated simulation and verification environment using industry-consolidated tools and methodologies, such as SystemVerilog and the Universal Verification Methodology (UVM). This paper presents how the so-called VEPIX53 environment has first guided the design of digital architectures, optimized for processing and buffering very high particle rates, and secondly how it has been reused for the functional verification of the first large scale demonstrator chip designed by the collaboration, which has recently been submitted.
D3: A Collaborative Infrastructure for Aerospace Design
NASA Technical Reports Server (NTRS)
Walton, Joan; Filman, Robert E.; Knight, Chris; Korsmeyer, David J.; Lee, Diana D.; Clancy, Daniel (Technical Monitor)
2001-01-01
DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid dynamics) model executions. DARWIN captures, stores and indexes data, manages derived knowledge (such as visualizations across multiple data sets) and provides an environment for designers to collaborate in the analysis of the results of testing. DARWIN is an interesting application because it supports high volumes of data, integrates multiple modalities of data display (e.g. images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and view of data.
Communication Behaviors and Trust in Collaborative Online Teams
ERIC Educational Resources Information Center
Bulu, Saniye Tugba; Yildirim, Zahide
2008-01-01
This study investigates preservice teachers' trust levels and collaborative communication behaviors namely leadership, feedback, social interaction, enthusiasm, task and technical uncertainties, and task-oriented interactions in online learning environment. A case study design involving qualitative and quantitative data collection and analysis was…
The CompreHensive collaborativE Framework (CHEF)
NASA Astrophysics Data System (ADS)
Knoop, P. A.; Hardin, J.; Killeen, T.; Middleton, D.
2002-12-01
Data integration, publication, and archiving have become important considerations in most fields of science as experiments and models increase in complexity, and the collaborations necessary to conduct the research grow broader. The development of well thought out strategies and standards for such data handling, however, only goes part way in supporting the scientific process. A primary driving force for such efforts is the need of scientists to access and work with data in a timely, reasonable, and often collaborative fashion. Internet-based collaborative environments are one way to help complete this picture, linking scientists to the data they seek and to one another (e.g., Towards a Robust, Agile, and Comprehensive Information Infrastructure for the Geosciences: A Strategic Plan For High Performance Simulation, NCAR, 2000, http://www.ncar.ucar.edu/Director/plan.pdf). The CompreHensive collaborativE Framework (CHEF, http://chefproject.org) is a generic, extensible, web-based, open-source environment for collaboration. CHEF's goal is to provide the basic building blocks from which a community can assemble a collaborative environment that fits their needs. The design of CHEF has been influenced by our experience developing the Space Physics and Aeronomy Research Collaboratory (SPARC, http://www.si.umich.edu/SPARC), which provides integrated access to a wide variety of heterogeneous data sources, including community-standardized data bases. The design has also been heavily influenced by our involvement with an effort to extract and codify the broad underlying technical and social elements that lead to successful collaboratories (http://www.scienceofcollaboratories.org). A collaborative environment is in itself also not the complete answer to data handling, rather, it provides a facilitating environment in which community efforts to integrate, publish, archive, and share data using standard formats and practices can be taken advantage of by the end-users, the scientists. We present examples of how CHEF and its predecessors are utilized in a wide variety of scientific communities, including engineering, chemistry, and the geosciences. In particular, we focus on CHEF's utilization by the earthquake engineering community, whose Network for Earthquake Engineering Simulation (NEES, http://www.nees.org) involves a community effort to develop data standards and practices. In this context NEES is using CHEF as the "integration" environment in which to place the "tools" that bring together scientists and data; this includes data browsers, meta-data search engines, real-time and archival data viewers, etc. By developing these tools within the CHEF framework and exposing the community-developed data standards to the framework, they automatically gain the features, functionality, and capabilities offered by the collaborative environment. We also explore how a collaborative environment, in conjunction with community developed standards and practices for data integration, publishing, and archiving, could benefit the ocean science community.
Designing a New Urban Internet.
ERIC Educational Resources Information Center
Burke, Lauren
2002-01-01
Discusses Web site design and information architecture in light of principles of New Urbanism that are being applied in urban planning situations. Topics include networked electronic environment design; user-centered network design; multidisciplinary approaches; knowledge access and collaboration; and the Global Information Infrastructure…
Formal Assurance for Cognitive Architecture Based Autonomous Agent
NASA Technical Reports Server (NTRS)
Bhattacharyya, Siddhartha; Eskridge, Thomas; Neogi, Natasha; Carvalho, Marco
2017-01-01
Autonomous systems are designed and deployed in different modeling paradigms. These environments focus on specific concepts in designing the system. We focus our effort in the use of cognitive architectures to design autonomous agents to collaborate with humans to accomplish tasks in a mission. Our research focuses on introducing formal assurance methods to verify the behavior of agents designed in Soar, by translating the agent to the formal verification environment Uppaal.
Facilitating Argumentative Knowledge Construction through a Transactive Discussion Script in CSCL
ERIC Educational Resources Information Center
Noroozi, Omid; Weinberger, Armin; Biemans, Harm J. A.; Mulder, Martin; Chizari, Mohammad
2013-01-01
Learning to argue is prerequisite to solving complex problems in groups, especially when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) can be designed to facilitate argumentative knowledge construction. This study investigates how argumentative knowledge construction in…
Multiagent Modeling and Simulation in Human-Robot Mission Operations Work System Design
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Clancey, William J.; Sims, Michael H.; Shafto, Michael (Technical Monitor)
2001-01-01
This paper describes a collaborative multiagent modeling and simulation approach for designing work systems. The Brahms environment is used to model mission operations for a semi-autonomous robot mission to the Moon at the work practice level. It shows the impact of human-decision making on the activities and energy consumption of a robot. A collaborative work systems design methodology is described that allows informal models, created with users and stakeholders, to be used as input to the development of formal computational models.
Triangulating Assessment of Online Collaborative Learning
ERIC Educational Resources Information Center
Lock, Jennifer; Johnson, Carol
2015-01-01
Collaboration plays an integral role in the construction of knowledge in online learning environments. A supportive foundation for learning can be created through the intentional design of formative and summative assessments that embrace self-, peer-, and instructor assessment practices. The purpose of this article is to: (1) examine current…
Taradi, Suncana Kukolja; Taradi, Milan; Radic, Kresimir; Pokrajac, Niksa
2005-03-01
World Wide Web (Web)-based learning (WBL), problem-based learning (PBL), and collaborative learning are at present the most powerful educational options in higher education. A blended (hybrid) course combines traditional face-to-face and WBL approaches in an educational environment that is nonspecific as to time and place. To provide educational services for an undergraduate second-year elective course in acid-base physiology, a rich, student-centered educational Web-environment designed to support PBL was created by using Web Course Tools courseware. The course is designed to require students to work in small collaborative groups using problem solving activities to develop topic understanding. The aim of the study was to identify the impact of the blended WBL-PBL-collaborative learning environment on student learning outcomes. Student test scores and satisfaction survey results from a blended WBL-PBL-based test group (n = 37) were compared with a control group whose instructional opportunities were from a traditional in-class PBL model (n = 84). WBL students scored significantly (t = 3.3952; P = 0.0009) better on the final acid-base physiology examination and expressed a positive attitude to the new learning environment in the satisfaction survey. Expressed in terms of a difference effect, the mean of the treated group (WBL) is at the 76th percentile of the untreated (face-to-face) group, which stands for a "medium" effect size. Thus student progress in the blended WBL-PBL collaborative environment was positively affected by the use of technology.
Regan, Sandra; Laschinger, Heather K S; Wong, Carol A
2016-01-01
The aim of this study was to examine the influence of structural empowerment, authentic leadership and professional nursing practice environments on experienced nurses' perceptions of interprofessional collaboration. Enhanced interprofessional collaboration (IPC) is seen as one means of transforming the health-care system and addressing concerns about shortages of health-care workers. Organizational supports and resources are suggested as key to promoting IPC. A predictive non-experimental design was used to test the effects of structural empowerment, authentic leadership and professional nursing practice environments on perceived interprofessional collaboration. A random sample of experienced registered nurses (n = 220) in Ontario, Canada completed a mailed questionnaire. Hierarchical multiple regression analysis was used. Higher perceived structural empowerment, authentic leadership, and professional practice environments explained 45% of the variance in perceived IPC (Adj. R² = 0.452, F = 59.40, P < 0.001). Results suggest that structural empowerment, authentic leadership and a professional nursing practice environment may enhance IPC. Nurse leaders who ensure access to resources such as knowledge of IPC, embody authenticity and build trust among nurses, and support the presence of a professional nursing practice environment can contribute to enhanced IPC. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sherwood, Carrie-Anne
At this pivotal moment in time, when the proliferation of mobile technologies in our daily lives is influencing the relatively fast integration of these technologies into classrooms, there is little known about the process of student learning, and the role of collaboration, with app-based learning environments on mobile devices. To address this gap, this dissertation, comprised of three manuscripts, investigated three pairs of sixth grade students' synchronous collaborative use of a tablet-based science app called WeInvestigate . The first paper illustrated the methodological decisions necessary to conduct the study of student synchronous and face-to-face collaboration and knowledge building within the complex WeInvestigate and classroom learning environments. The second paper provided the theory of collaboration that guided the design of supports in WeInvestigate, and described its subsequent development. The third paper detailed the interactions between pairs of students as they engaged collaboratively in model construction and explanation tasks using WeInvestigate, hypothesizing connections between these interactions and the designed supports for collaboration. Together, these manuscripts provide encouraging evidence regarding the potential of teaching and learning with WeInvestigate. Findings demonstrated that the students in this study learned science through WeInvestigate , and were supported by the app - particularly the collabrification - to engage in collaborative modeling of phenomena. The findings also highlight the potential of the multiple methods used in this study to understand students' face-to-face and technology-based interactions within the "messy" context of an app-based learning environment and a traditional K-12 classroom. However, as the third manuscript most clearly illustrates, there are still a number of modifications to be made to the WeInvestigate technology before it can be optimally used in classrooms to support students' collaborative science endeavors. The findings presented in this dissertation contribute in theoretical, methodological, and applied ways to the fields of science education, educational technology, and the learning sciences, and point to exciting possibilities for future research on students' collaborations using future iterations of WeInvestigate with more embedded supports; comparative studies of students' use of synchronous collaboration; and studies focused on elucidating the role of the teacher using WeInvestigate - and similar mobile platforms - for teaching and learning.
Kiesewetter, Jan; Kollar, Ingo; Fernandez, Nicolas; Lubarsky, Stuart; Kiessling, Claudia; Fischer, Martin R; Charlin, Bernard
2016-09-01
Clinical work occurs in a context which is heavily influenced by social interactions. The absence of theoretical frameworks underpinning the design of collaborative learning has become a roadblock for interprofessional education (IPE). This article proposes a script-based framework for the design of IPE. This framework provides suggestions for designing learning environments intended to foster competences we feel are fundamental to successful interprofessional care. The current literature describes two script concepts: "illness scripts" and "internal/external collaboration scripts". Illness scripts are specific knowledge structures that link general disease categories and specific examples of diseases. "Internal collaboration scripts" refer to an individual's knowledge about how to interact with others in a social situation. "External collaboration scripts" are instructional scaffolds designed to help groups collaborate. Instructional research relating to illness scripts and internal collaboration scripts supports (a) putting learners in authentic situations in which they need to engage in clinical reasoning, and (b) scaffolding their interaction with others with "external collaboration scripts". Thus, well-established experiential instructional approaches should be combined with more fine-grained script-based scaffolding approaches. The resulting script-based framework offers instructional designers insights into how students can be supported to develop the necessary skills to master complex interprofessional clinical situations.
NASA Astrophysics Data System (ADS)
Kaleva Oikarinen, Juho; Järvelä, Sanna; Kaasila, Raimo
2014-04-01
This design-based research project focuses on documenting statistical learning among 16-17-year-old Finnish upper secondary school students (N = 78) in a computer-supported collaborative learning (CSCL) environment. One novel value of this study is in reporting the shift from teacher-led mathematical teaching to autonomous small-group learning in statistics. The main aim of this study is to examine how student collaboration occurs in learning statistics in a CSCL environment. The data include material from videotaped classroom observations and the researcher's notes. In this paper, the inter-subjective phenomena of students' interactions in a CSCL environment are analysed by using a contact summary sheet (CSS). The development of the multi-dimensional coding procedure of the CSS instrument is presented. Aptly selected video episodes were transcribed and coded in terms of conversational acts, which were divided into non-task-related and task-related categories to depict students' levels of collaboration. The results show that collaborative learning (CL) can facilitate cohesion and responsibility and reduce students' feelings of detachment in our classless, periodic school system. The interactive .pdf material and collaboration in small groups enable statistical learning. It is concluded that CSCL is one possible method of promoting statistical teaching. CL using interactive materials seems to foster and facilitate statistical learning processes.
U.S. Trade and Investment Policy Making Process
Overall, EPA’s trade and environment policy organization is designed to create a flexible and collaborative mechanism so that EPA can participate fully and effectively in the development and implementation of U.S. trade and environment policy.
Analysis of Cross-Cultural Online Collaborative Learning with Social Software
ERIC Educational Resources Information Center
Law, Effie Lai-Chong; Nguyen-Ngoc, Anh Vu
2010-01-01
Purpose: The rising popularity of social software poses challenges to the design and evaluation of pedagogically sound cross-cultural online collaborative learning environments (OCLEs). In the literature of computer-mediated communications, there exist only a limited number of related empirical studies, indicating that it is still an emergent…
Modeling Learner Situation Awareness in Collaborative Mobile Web 2.0 Learning
ERIC Educational Resources Information Center
Norman, Helmi; Nordin, Norazah; Din, Rosseni; Ally, Mohamed
2016-01-01
The concept of situation awareness is essential in enhancing collaborative learning. Learners require information from different awareness aspects to deduce a learning situation for decision-making. Designing learning environments that assist learners to understand situation awareness via monitoring actions and reaction of other learners has been…
2011-03-01
cited by the Director of Land Concepts and Designs as an important enabler for the Army of Tomorrow operating concept of adaptive dispersed operations...2010). La partie 1.3 porte sur l’influence du pouvoir sur la collaboration. Étant donné l’ampleur des FC comparativement à celle de la plupart des...Multinational Public (JIMP) operating environment, the capacity to be "JIMP-capable" is now cited by the Director of Land Concepts and Designs as an important
Designing Communication and Learning Environments.
ERIC Educational Resources Information Center
Gayeski, Diane M., Ed.
Designing and remodeling educational facilities are becoming more complex with options that include computer-based collaboration, classrooms with multimedia podiums, conference centers, and workplaces with desktop communication systems. This book provides a collection of articles that address educational facility design categorized in the…
The social computing room: a multi-purpose collaborative visualization environment
NASA Astrophysics Data System (ADS)
Borland, David; Conway, Michael; Coposky, Jason; Ginn, Warren; Idaszak, Ray
2010-01-01
The Social Computing Room (SCR) is a novel collaborative visualization environment for viewing and interacting with large amounts of visual data. The SCR consists of a square room with 12 projectors (3 per wall) used to display a single 360-degree desktop environment that provides a large physical real estate for arranging visual information. The SCR was designed to be cost-effective, collaborative, configurable, widely applicable, and approachable for naive users. Because the SCR displays a single desktop, a wide range of applications is easily supported, making it possible for a variety of disciplines to take advantage of the room. We provide a technical overview of the room and highlight its application to scientific visualization, arts and humanities projects, research group meetings, and virtual worlds, among other uses.
Netbook - A Toolset in Support of a Collaborative Learning.
1997-01-30
As part of its collaborative efforts on the project Netbook - A Toolset in Support of a Collaborative and Cooperative Learning Environment, the...Interactive Multimedia Group (IMG) at Cornell University conducted a usability test of the latest version of Netbook , developed by Odyssey Research...Associates (ORA) in Ithaca, New York. Cornell’s goal was to test the concepts and current functionality of the Netbook software, which is designed to help
Current limitations into the application of virtual reality to mental health research.
Huang, M P; Alessi, N E
1998-01-01
Virtual Reality (VR) environments have significant potential as a tool in mental health research, but are limited by technical factors and by mental health research factors. Technical difficulties include cost and complexity of virtual environment creation. Mental health research difficulties include current inadequacy of standards to specify needed details for virtual environment design. Technical difficulties are disappearing with technological advances, but the mental health research difficulties will take a concerted effort to overcome. Some of this effort will need to be directed at the formation of collaborative projects and standards for how such collaborations should proceed.
Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science
NASA Astrophysics Data System (ADS)
Lui, Michelle Mei Yee
This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective visualizations in the activity. Discrete findings demonstrate how the above variables, through their design as inquiry components (i.e., activity, room, scripts and scaffolds on devices, collective visualizations), can mediate the students' interactions with one another, with their teacher, and impact the outcomes of their inquiry. A set of design recommendations is drawn from the results of this research to guide future design or research efforts.
OMOGENIA: A Semantically Driven Collaborative Environment
NASA Astrophysics Data System (ADS)
Liapis, Aggelos
Ontology creation can be thought of as a social procedure. Indeed the concepts involved in general need to be elicited from communities of domain experts and end-users by teams of knowledge engineers. Many problems in ontology creation appear to resemble certain problems in software design, particularly with respect to the setup of collaborative systems. For instance, the resolution of conceptual conflicts between formalized ontologies is a major engineering problem as ontologies move into widespread use on the semantic web. Such conflict resolution often requires human collaboration and cannot be achieved by automated methods with the exception of simple cases. In this chapter we discuss research in the field of computer-supported cooperative work (CSCW) that focuses on classification and which throws light on ontology building. Furthermore, we present a semantically driven collaborative environment called OMOGENIA as a natural way to display and examine the structure of an evolving ontology in a collaborative setting.
Collaborative environments for capability-based planning
NASA Astrophysics Data System (ADS)
McQuay, William K.
2005-05-01
Distributed collaboration is an emerging technology for the 21st century that will significantly change how business is conducted in the defense and commercial sectors. Collaboration involves two or more geographically dispersed entities working together to create a "product" by sharing and exchanging data, information, and knowledge. A product is defined broadly to include, for example, writing a report, creating software, designing hardware, or implementing robust systems engineering and capability planning processes in an organization. Collaborative environments provide the framework and integrate models, simulations, domain specific tools, and virtual test beds to facilitate collaboration between the multiple disciplines needed in the enterprise. The Air Force Research Laboratory (AFRL) is conducting a leading edge program in developing distributed collaborative technologies targeted to the Air Force's implementation of systems engineering for a simulation-aided acquisition and capability-based planning. The research is focusing on the open systems agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. In past four years, two live assessment events have been conducted to demonstrate the technology in support of research for the Air Force Agile Acquisition initiatives. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities conduct business.
ERIC Educational Resources Information Center
Zheng, Dongping; Schmidt, Matthew; Hu, Ying; Liu, Min; Hsu, Jesse
2017-01-01
The purpose of this research was to explore the relationships between design, learning, and translanguaging in a 3D collaborative virtual learning environment for adolescent learners of Chinese and English. We designed an open-ended space congruent with ecological and dialogical perspectives on second language acquisition. In such a space,…
The Affordance of Online Multiuser Virtual Environments (MUVE) for Creative Collaboration
ERIC Educational Resources Information Center
Hong, Seung Wan
2013-01-01
Creativity is an important criterion for evaluating conceptual and design abilities of architects and their praxis. However, in recent years, the world has grown more complex. New problems have emerged that are often outside the architect's capacity. Given this challenge, architects collaborate with colleagues from architecture and other related…
ERIC Educational Resources Information Center
Marsh, Michael T.; Taylor, Ronald; Holoviak, Stephen J.
2008-01-01
Integral components of today's successful business models frequently include information technology, effective collaboration, and participative teamwork among employees. It is in the best interest of students for educators to provide classrooms that reflect a profitable practitioner's environment. Students studying for careers in business should…
Layout and Design in "Real Life"
ERIC Educational Resources Information Center
Bremer, Janet; Stocker, Donald
2004-01-01
Educators are required to combine their expertise and allow students to explore the different areas by using the method of collaboration in which teachers from different disciplines will create an environment where each will use their expert skills. The collaboration of a computer teacher with an art teacher resulted in the creation of Layout and…
Instructional Design for Online Learning Environments and the Problem of Collaboration in the Cloud
ERIC Educational Resources Information Center
Mehlenbacher, Brad; Kelly, Ashley Rose; Kampe, Christopher; Kittle Autry, Meagan
2018-01-01
To investigate how college students understand and use cloud technology for collaborative writing, the authors studied two asynchronous online courses, on science communication and on technical communication. Students worked on a group assignment (3-4 per group) using Google Docs and individually reflected on their experience writing…
Learner Perceptions of Biophilia and the Learning Environment: A Phenomenological Study
ERIC Educational Resources Information Center
Matteson, Donna
2013-01-01
The purpose of this study was to address a local university's need to promote learner-centered instruction and collaboration through classroom design. Learner-centered collaborative experiences were proposed by the local university to enhance student satisfaction and build social connections and appreciation of diversity. This study builds on…
ICT Support for Collaborative Learning--A Tale of Two Cities
ERIC Educational Resources Information Center
Consiglio, Teresa; van der Veer, Gerrit C.
2013-01-01
Based on experiences in teaching service design in a blended learning context, we developed an electronic learning environment (ELE) including features that turned out to be suitable for learners from different cultures. We used this ELE in Italy and in China. Students were guided through collaborative learning and mutual teaching. Students were…
de Carvalho, Elias César Araujo; Batilana, Adelia Portero; Simkins, Julie; Martins, Henrique; Shah, Jatin; Rajgor, Dimple; Shah, Anand; Rockart, Scott; Pietrobon, Ricardo
2010-02-19
Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.
A Collaborative Extensible User Environment for Simulation and Knowledge Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.
2015-06-01
In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less
Network-based collaborative research environment LDRD final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, B.R.; McDonald, M.J.
1997-09-01
The Virtual Collaborative Environment (VCE) and Distributed Collaborative Workbench (DCW) are new technologies that make it possible for diverse users to synthesize and share mechatronic, sensor, and information resources. Using these technologies, university researchers, manufacturers, design firms, and others can directly access and reconfigure systems located throughout the world. The architecture for implementing VCE and DCW has been developed based on the proposed National Information Infrastructure or Information Highway and a tool kit of Sandia-developed software. Further enhancements to the VCE and DCW technologies will facilitate access to other mechatronic resources. This report describes characteristics of VCE and DCW andmore » also includes background information about the evolution of these technologies.« less
The Doubtful Guest? A Virtual Research Environment for Education
ERIC Educational Resources Information Center
Laterza, Vito; Carmichael, Patrick; Procter, Richard
2007-01-01
In this paper the authors describe a novel "Virtual Research Environment" (VRE) based on the Sakai Virtual Collaboration Environment and designed to support education research. This VRE has been used for the past two years by projects of the UK Economic and Social Research Council's Teaching and Learning Research Programme, 10 of which…
A Framework for Designing Collaborative Learning Environments Using Mobile AR
ERIC Educational Resources Information Center
Cochrane, Thomas; Narayan, Vickel; Antonczak, Laurent
2016-01-01
Smartphones provide a powerful platform for augmented reality (AR). Using a smartphone's camera together with the built in GPS, compass, gyroscope, and touch screen enables the real world environment to be overlaid with contextual digital information. The creation of mobile AR environments is relatively simple, with the development of mobile AR…
GLobal Integrated Design Environment
NASA Technical Reports Server (NTRS)
Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.
2011-01-01
The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.
Ntasis, Efthymios; Maniatis, Theofanis A; Nikita, Konstantina S
2003-01-01
A secure framework is described for real-time tele-collaboration on Virtual Simulation procedure of Radiation Treatment Planning. An integrated approach is followed clustering the security issues faced by the system into organizational issues, security issues over the LAN and security issues over the LAN-to-LAN connection. The design and the implementation of the security services are performed according to the identified security requirements, along with the need for real time communication between the collaborating health care professionals. A detailed description of the implementation is given, presenting a solution, which can directly be tailored to other tele-collaboration services in the field of health care. The pilot study of the proposed security components proves the feasibility of the secure environment, and the consistency with the high performance demands of the application.
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2011-01-01
This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.
ERIC Educational Resources Information Center
Randall, Daniel L.; Johnson, Jacquelyn C.; West, Richard E.; Wiley, David A.
2013-01-01
In this article, the authors present an example of a project-based course within a studio environment that taught collaborative innovation skills and produced an open-source project management textbook for the field of instructional design and technology. While innovation plays an important role in our economy, and many have studied how to teach…
ERIC Educational Resources Information Center
Plešec Gasparic, Romina; Pecar, Mojca
2016-01-01
Professional development of future teachers is based on connecting theory and practice with the aim of supporting and developing critical, independent, responsible decision-making and active teaching. With this aim we designed a blended learning environment with an asynchronous online discussion, enabling collaboration and reflection even when…
ERIC Educational Resources Information Center
Ornellas, Adriana; Muñoz Carril, Pablo César
2014-01-01
This article outlines a methodological approach to the creation, production and dissemination of online collaborative audio-visual projects, using new social learning technologies and open-source video tools, which can be applied to any e-learning environment in higher education. The methodology was developed and used to design a course in the…
ERIC Educational Resources Information Center
Tsai, Chia-Wen
2013-01-01
In modern business environments, work and tasks have become more complex and require more interdisciplinary skills to complete, including collaborative and computing skills for website design. However, the computing education in Taiwan can hardly be recognised as effective in developing and transforming students into competitive employees. In this…
The Impact of Computer Supported Collaborative Learning on Internship Outcomes of Pharmacy Students
ERIC Educational Resources Information Center
Timmers, S.; Valcke, M.; de Mil, K.; Baeyens, W. R. G.
2008-01-01
This article focuses on an evaluation of the impact of an innovative instructional design of internships in view of a new integrated pharmaceutical curriculum. A key innovative element was the implementation of a computer-supported collaborative learning environment. Students were, as part of their formal curriculum, expected to work in a…
Yu, Eizadora T; Hawkins, Arie; Kuntz, Irwin D; Rahn, Larry A; Rothfuss, Andrew; Sale, Kenneth; Young, Malin M; Yang, Christine L; Pancerella, Carmen M; Fabris, Daniele
2008-11-01
Modern biomedical research is evolving with the rapid growth of diverse data types, biophysical characterization methods, computational tools and extensive collaboration among researchers spanning various communities and having complementary backgrounds and expertise. Collaborating researchers are increasingly dependent on shared data and tools made available by other investigators with common interests, thus forming communities that transcend the traditional boundaries of the single research laboratory or institution. Barriers, however, remain to the formation of these virtual communities, usually due to the steep learning curve associated with becoming familiar with new tools, or with the difficulties associated with transferring data between tools. Recognizing the need for shared reference data and analysis tools, we are developing an integrated knowledge environment that supports productive interactions among researchers. Here we report on our current collaborative environment, which focuses on bringing together structural biologists working in the area of mass spectrometric based methods for the analysis of tertiary and quaternary macromolecular structures (MS3D) called the Collaboratory for MS3D (C-MS3D). C-MS3D is a Web-portal designed to provide collaborators with a shared work environment that integrates data storage and management with data analysis tools. Files are stored and archived along with pertinent meta data in such a way as to allow file handling to be tracked (data provenance) and data files to be searched using keywords and modification dates. While at this time the portal is designed around a specific application, the shared work environment is a general approach to building collaborative work groups. The goal of this is to not only provide a common data sharing and archiving system, but also to assist in the building of new collaborations and to spur the development of new tools and technologies.
Stimulating Students' Use of External Representations for a Distance Education Time Machine Design
ERIC Educational Resources Information Center
Baaki, John; Luo, Tian
2017-01-01
As faculty members in an instructional design and technology (IDT) program, we wanted to help our graduate students better understand and experience how designers design in the real world. We aimed to design a reflective and collaborative learning environment where we sparked students to engage in reflection, ideation, and the iterative process of…
Shopping For Danger: E-commerce techniques applied to collaboration in cyber security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce, Joseph R.; Fink, Glenn A.
Collaboration among cyber security analysts is essential to a successful protection strategy on the Internet today, but it is uncommonly practiced or encouraged in operating environments. Barriers to productive collaboration often include data sensitivity, time and effort to communicate, institutional policy, and protection of domain knowledge. We propose an ambient collaboration framework, Vulcan, designed to remove the barriers of time and effort and mitigate the others. Vulcan automated data collection, collaborative filtering, and asynchronous dissemination, eliminating the effort implied by explicit collaboration among peers. We instrumented two analytic applications and performed a mock analysis session to build a dataset andmore » test the output of the system.« less
NASA Astrophysics Data System (ADS)
Kersting, Magdalena; Henriksen, Ellen Karoline; Bøe, Maria Vetleseter; Angell, Carl
2018-06-01
Because of its abstract nature, Albert Einstein's theory of general relativity is rarely present in school physics curricula. Although the educational community has started to investigate ways of bringing general relativity to classrooms, field-tested educational material is rare. Employing the model of educational reconstruction, we present a collaborative online learning environment that was introduced to final year students (18-19 years old) in six Norwegian upper secondary physics classrooms. Design-based research methods guided the development of the learning resources, which were based on a sociocultural view of learning and a historical-philosophical approach to teaching general relativity. To characterize students' learning from and interaction with the learning environment we analyzed focus group interviews and students' oral and written responses to assigned problems and discussion tasks. Our findings show how design choices on different levels can support or hinder understanding of general relativity, leading to the formulation of design principles that help to foster qualitative understanding and encourage collaborative learning. The results indicate that upper secondary students can obtain a qualitative understanding of general relativity when provided with appropriately designed learning resources and sufficient scaffolding of learning through interaction with teacher and peers.
Effective Task Design for the TBL Classroom
ERIC Educational Resources Information Center
Roberson, Bill; Franchini, Billie
2014-01-01
Group and team tasks are the culminating outputs of student learning in team and collaborative learning environments. How they are conceived and designed, therefore, can directly determine the success of the pedagogical strategy. A key design issue for creating effective tasks is how best to focus student knowledge, observation, and analysis…
The Impact of New Learning Environments in an Engineering Design Course
ERIC Educational Resources Information Center
Dinsmore, Daniel L.; Alexander, Patricia A.; Loughlin, Sandra M.
2008-01-01
In this study, we investigated the effects of students' participation in a collaborative, project-based engineering design course on their domain knowledge, interests, and strategic processing. Participants were 70 college seniors working in teams on a design project of their choosing. Their declarative, procedural, and principled knowledge, along…
Strategic Teaching: Student Learning through Working the Process
ERIC Educational Resources Information Center
Spanbroek, Nancy
2010-01-01
The designers of our future built environment must possess intellectual tools which will allow them to be disciplined, flexible and analytical thinkers, able to address and resolve new and complex problems. In response, an experimental and collaborative design studio was designed to inspire and build on students' knowledge and their creative…
ClassCompass: A Software Design Mentoring System
ERIC Educational Resources Information Center
Coelho, Wesley; Murphy, Gail
2007-01-01
Becoming a quality software developer requires practice under the guidance of an expert mentor. Unfortunately, in most academic environments, there are not enough experts to provide any significant design mentoring for software engineering students. To address this problem, we present a collaborative software design tool intended to maximize an…
Sanda, M-A; Johansson, J; Johansson, B; Abrahamsson, L
2011-10-01
The purpose of this article is to develop knowledge and learning on the best way to automate organisational activities in deep mines that could lead to the creation of harmony between the human, technical and the social system, towards increased productivity. The findings showed that though the introduction of high-level technological tools in the work environment disrupted the social relations developed over time amongst the employees in most situations, the technological tools themselves became substitute social collaborative partners to the employees. It is concluded that, in developing a digitised mining production system, knowledge of the social collaboration between the humans (miners) and the technology they use for their work must be developed. By implication, knowledge of the human's subject-oriented and object-oriented activities should be considered as an important integral resource for developing a better technological, organisational and human interactive subsystem when designing the intelligent automation and digitisation systems for deep mines. STATEMENT OF RELEVANCE: This study focused on understanding the social collaboration between humans and the technologies they use to work in underground mines. The learning provides an added knowledge in designing technologies and work organisations that could better enhance the human-technology interactive and collaborative system in the automation and digitisation of underground mines.
The Role of Scaffolding in CSCL in General and in Specific Environments
ERIC Educational Resources Information Center
Verdú, N.; Sanuy, J.
2014-01-01
This paper aims to analyse if virtual forums set up in an environment specifically designed to improve collaborative learning can effectively influence students' discourse quality and learning when compared with those forums set up in a general environment. Following a coding schema based upon the set of scaffolds offered in the Knowledge…
NASA Technical Reports Server (NTRS)
2008-01-01
NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.
Simulation Environment for Orion Launch Abort System Control Design Studies
NASA Technical Reports Server (NTRS)
McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.
2007-01-01
The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.
Wireless Handhelds to Support Clinical Nursing Practicum
ERIC Educational Resources Information Center
Wu, Cheng-Chih; Lai, Chin-Yuan
2009-01-01
This paper reports our implementation and evaluation of a wireless handheld learning environment used to support a clinical nursing practicum course. The learning environment was designed so that nursing students could use handhelds for recording information, organizing ideas, assessing patients, and also for interaction and collaboration with…
Designing Digital Environments for Art Education/Exploration.
ERIC Educational Resources Information Center
Milekic, Slavko
2000-01-01
Examines the role of digital technology in the context of art education and art exploration. Discusses the development of digital environments as the next step in the evolution of traditional computers, whose main characteristic is support for simultaneous multiple-user interactions and for social and collaborative activities. (LRW)
Lost in Interaction in IMS Learning Design Runtime Environments
ERIC Educational Resources Information Center
Derntl, Michael; Neumann, Susanne; Oberhuemer, Petra
2014-01-01
Educators are exploiting the advantages of advanced web-based collaboration technologies and massive online interactions. Interactions between learners and human or nonhuman resources therefore play an increasingly important pedagogical role, and the way these interactions are expressed in the user interface of virtual learning environments is…
PC-Based Virtual Reality for CAD Model Viewing
ERIC Educational Resources Information Center
Seth, Abhishek; Smith, Shana S.-F.
2004-01-01
Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…
ERIC Educational Resources Information Center
Gregg, Dawn G.
2007-01-01
Purpose: The purpose of this paper is to illustrate the advantages of using intelligent agents to facilitate the location and customization of appropriate e-learning resources and to foster collaboration in e-learning environments. Design/methodology/approach: This paper proposes an e-learning environment that can be used to provide customized…
(Re)Designing Learning Environments.
ERIC Educational Resources Information Center
Edutopia, 2002
2002-01-01
This 20-page issue explores the opportunity for creating 21st century learning environments that not only focus on different kinds of educational architecture but also emphasize how time is used, teacher-student relationships, collaboration, the benefits of real-world projects, and community involvement. In Minnesota, high school juniors and…
An Australian Approach to School Design
ERIC Educational Resources Information Center
Robinson, Leigh; Robinson, Taylor
2009-01-01
Contemporary education design strongly emphasises stimulating, adaptable learning environments, with spaces able to support various styles of teaching and learning. Delivering successful school buildings requires a close collaborative relationship between the architect and all key stakeholders from initial briefing through to project handover. The…
Computational Tools and Facilities for the Next-Generation Analysis and Design Environment
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)
1997-01-01
This document contains presentations from the joint UVA/NASA Workshop on Computational Tools and Facilities for the Next-Generation Analysis and Design Environment held at the Virginia Consortium of Engineering and Science Universities in Hampton, Virginia on September 17-18, 1996. The presentations focused on the computational tools and facilities for analysis and design of engineering systems, including, real-time simulations, immersive systems, collaborative engineering environment, Web-based tools and interactive media for technical training. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the level of maturity of a number of computational tools and facilities and their potential for application to the next-generation integrated design environment.
The Study on Collaborative Manufacturing Platform Based on Agent
NASA Astrophysics Data System (ADS)
Zhang, Xiao-yan; Qu, Zheng-geng
To fulfill the trends of knowledge-intensive in collaborative manufacturing development, we have described multi agent architecture supporting knowledge-based platform of collaborative manufacturing development platform. In virtue of wrapper service and communication capacity agents provided, the proposed architecture facilitates organization and collaboration of multi-disciplinary individuals and tools. By effectively supporting the formal representation, capture, retrieval and reuse of manufacturing knowledge, the generalized knowledge repository based on ontology library enable engineers to meaningfully exchange information and pass knowledge across boundaries. Intelligent agent technology increases traditional KBE systems efficiency and interoperability and provides comprehensive design environments for engineers.
User evaluation of an innovative digital reading room.
Hugine, Akilah; Guerlain, Stephanie; Hedge, Alan
2012-06-01
Reading room design can have a major impact on radiologists' health, productivity, and accuracy in reading. Several factors must be taken into account in order to optimize the work environment for radiologists. Further, with the advancement in imaging technology, clinicians now have the ability to view and see digital exams without having to interact with radiologists. However, it is important to design components that encourage and enhance interactions between clinicians and radiologists to increase patient safety, and to combine physician and radiologist expertise. The present study evaluates alternative workstations in a real-world testbed space, using qualitative data (users' perspectives) to measure satisfaction with the lighting, ergonomics, furniture, collaborative spaces, and radiologist workstations. In addition, we consider the impact of the added collaboration components of the future reading room design, by utilizing user evaluation surveys to devise baseline satisfaction data regarding the innovative reading room environment.
Effective collaborative learning in biomedical education using a web-based infrastructure.
Wu, Yunfeng; Zheng, Fang; Cai, Suxian; Xiang, Ning; Zhong, Zhangting; He, Jia; Xu, Fang
2012-01-01
This paper presents a feature-rich web-based system used for biomedical education at the undergraduate level. With the powerful groupware features provided by the wiki system, the instructors are able to establish a community-centered mentoring environment that capitalizes on local expertise to create a sense of online collaborative learning among students. The web-based infrastructure can help the instructors effectively organize and coordinate student research projects, and the groupware features may support the interactive activities, such as interpersonal communications and data sharing. The groupware features also provide the web-based system with a wide range of additional ways of organizing collaboratively developed materials, which makes it become an effective tool for online active learning. Students are able to learn the ability to work effectively in teams, with an improvement of project management, design collaboration, and technical writing skills. With the fruitful outcomes in recent years, it is positively thought that the web-based collaborative learning environment can perform an excellent shift away from the conventional instructor-centered teaching to community- centered collaborative learning in the undergraduate education.
ERIC Educational Resources Information Center
Tang, Kok-Sing; Tan, Seng-Chee
2017-01-01
The study in this article examines and illustrates the intertextual meanings made by a group of high school science students as they embarked on a knowledge building discourse to solve a physics problem. This study is situated in a computer-supported collaborative learning (CSCL) environment designed to support student learning through a science…
Design of Scalable and Effective Earth Science Collaboration Tool
NASA Astrophysics Data System (ADS)
Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.
2014-12-01
Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation Suite (NEOS3).
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2003-01-01
In this paper, we present a new approach to clinical workplace computerization that departs from the window-based user interface paradigm. NOSTOS is an experimental computer-augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk-up displays, headsets, a smart desk, and sensors to enhance an existing paper-based practice with computer power. The physical interfaces allow clinicians to retain mobile paper-based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper-based clinical work environment.
Bång, Magnus; Larsson, Anders; Eriksson, Henrik
2003-01-01
In this paper, we present a new approach to clinical workplace computerization that departs from the window–based user interface paradigm. NOSTOS is an experimental computer–augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk–up displays, headsets, a smart desk, and sensors to enhance an existing paper–based practice with computer power. The physical interfaces allow clinicians to retain mobile paper–based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper–based clinical work environment. PMID:14728131
Improving Language Production Using Subtitled Similar Task Videos
ERIC Educational Resources Information Center
Arslanyilmaz, Abdurrahman; Pedersen, Susan
2010-01-01
This study examines the effects of subtitled similar task videos on language production by nonnative speakers (NNSs) in an online task-based language learning (TBLL) environment. Ten NNS-NNS dyads collaboratively completed four communicative tasks, using an online TBLL environment specifically designed for this study and a chat tool in…
Social Knowledge Awareness Map for Computer Supported Ubiquitous Learning Environment
ERIC Educational Resources Information Center
El-Bishouty, Moushir M.; Ogata, Hiroaki; Rahman, Samia; Yano, Yoneo
2010-01-01
Social networks are helpful for people to solve problems by providing useful information. Therefore, the importance of mobile social software for learning has been supported by many researches. In this research, a model of personalized collaborative ubiquitous learning environment is designed and implemented in order to support learners doing…
The Scratch Programming Language and Environment
ERIC Educational Resources Information Center
Maloney, John; Resnick, Mitchel; Rusk, Natalie; Silverman, Brian; Eastmond, Evelyn
2010-01-01
Scratch is a visual programming environment that allows users (primarily ages 8 to 16) to learn computer programming while working on personally meaningful projects such as animated stories and games. A key design goal of Scratch is to support self-directed learning through tinkering and collaboration with peers. This article explores how the…
Bang, Magnus; Timpka, Toomas
2007-06-01
Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.
CopperCore Service Integration
ERIC Educational Resources Information Center
Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob
2007-01-01
In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will…
Legerton, Graham
2013-09-01
The refurbishment and extension of existing university buildings is a critical consideration for many universities. This article details an architect's perspective of an innovative and collaborative design approach to transforming an existing library into a futuristic and student-centric interactive learning environment. The design is responsive to people, place, the community and the environment, due, in part, to the enhanced physical permeability of the building. Associated user-group forums comprised the end user client, the university's facilities body, the builder, lead architectural consultants, the Centre for Indigenous Students (Gumurrii Centre) and architectural sub-consultants. This article discusses five key design moves--"triangulate", "unique geometries and spaces", "learning aviary", "sky lounge" and "understanding flexibility". It goes on to discuss these elements in relation to designing spaces to enhance interprofessional education and collaboration. In summary, this article identifies how it is possible to maximise the value and characteristics of an existing library whilst creating a series of innovative spaces that offer choice, encourage serendipity and embrace experimentation.
Building partnerships for healthy environments: research, leadership and education.
Thompson, Susan; Kent, Jennifer; Lyons, Claudine
2014-12-01
As populations across the globe face an increasing health burden from rising rates of obesity, diabetes and other lifestyle-related diseases, health professionals are collaborating with urban planners to influence city design that supports healthy ways of living. This paper details the establishment and operation of an innovative, interdisciplinary collaboration that brings together urban planning and health. Situated in a built environment faculty at one of Australia's most prestigious universities, the Healthy Built Environments Program (HBEP) partners planning academics, a health non-government organisation, local councils and private planning consultants in a state government health department funded consortium. The HBEP focuses on three strategic areas: research, workforce development and education, and leadership and advocacy. Interdisciplinary research includes a comprehensive literature review that establishes Australian-based evidence to support the development, prioritisation and implementation of healthy built environment policies and practices. Another ongoing study examines the design features, social interventions and locational qualities that positively benefit human health. Formal courses, workshops, public lectures and e-learning develop professional capacity, as well as skills in interdisciplinary practice to support productive collaborations between health professionals and planners. The third area involves working with government and non-government agencies, and the private sector and the community, to advocate closer links between health and the built environment. Our paper presents an overview of the HBEP's major achievements. We conclude with a critical review of the challenges, revealing lessons in bringing health and planning closer together to create health-supportive cities for the 21st century.
Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Korte, John J.
2003-01-01
NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.
Municipal Officials' Participation in Built Environment Policy Development in the United States.
Lemon, Stephenie C; Goins, Karin Valentine; Schneider, Kristin L; Brownson, Ross C; Valko, Cheryl A; Evenson, Kelly R; Eyler, Amy A; Heinrich, Katie M; Litt, Jill; Lyn, Rodney; Reed, Hannah L; Tompkins, Nancy O'Hara; Maddock, Jay
2015-01-01
This study examined municipal officials' participation in built environment policy initiatives focused on land use design, transportation, and parks and recreation. Web-based cross-sectional survey. Eighty-three municipalities with 50,000 or more residents in eight states. Four hundred fifty-three elected and appointed municipal officials. Outcomes included self-reported participation in land use design, transportation, and parks and recreation policy to increase physical activity. Independent variables included respondent position; perceptions of importance, barriers, and beliefs regarding physical activity and community design and layout; and physical activity partnership participation. Multivariable logistic regression models. Compared to other positions, public health officials had lower participation in land use design (78.3% vs. 29.0%), transportation (78.1% vs. 42.1%), and parks and recreation (67.1% vs. 26.3%) policy. Perceived limited staff was negatively associated with participation in each policy initiative. Perceptions of the extent to which physical activity was considered in community design and physical activity partnership participation were positively associated with participation in each. Perceived lack of collaboration was associated with less land use design and transportation policy participation, and awareness that community design affects physical activity was associated with more participation. Perceived lack of political will was associated with less parks and recreation policy participation. Public health officials are underrepresented in built environment policy initiatives. Improving collaborations may improve municipal officials' policy participation.
Thinking Style Diversity and Collaborative Design Learning
NASA Astrophysics Data System (ADS)
Volpentesta, Antonio P.; Ammirato, Salvatore; Sofo, Francesco
The paper explores the impact of structured learning experiences that were designed to challenge students’ ways of thinking and promote creativity. The aim was to develop the ability of students, coming from different engineering disciplines and characterized by particular thinking style profiles, to collaboratively work on a project-based learning experience in an educational environment. Three project-based learning experiences were structured using critical thinking methods to stimulate creativity. Pre and post-survey data using a specially modified thinking style inventory for 202 design students indicated a thinking style profile of preferences with a focus on exploring and questioning. Statistically significant results showed students successfully developed empathy and openness to multiple perspectives.
Collaboration space division in collaborative product development based on a genetic algorithm
NASA Astrophysics Data System (ADS)
Qian, Xueming; Ma, Yanqiao; Feng, Huan
2018-02-01
The advance in the global environment, rapidly changing markets, and information technology has created a new stage for design. In such an environment, one strategy for success is the Collaborative Product Development (CPD). Organizing people effectively is the goal of Collaborative Product Development, and it solves the problem with certain foreseeability. The development group activities are influenced not only by the methods and decisions available, but also by correlation among personnel. Grouping the personnel according to their correlation intensity is defined as collaboration space division (CSD). Upon establishment of a correlation matrix (CM) of personnel and an analysis of the collaboration space, the genetic algorithm (GA) and minimum description length (MDL) principle may be used as tools in optimizing collaboration space. The MDL principle is used in setting up an object function, and the GA is used as a methodology. The algorithm encodes spatial information as a chromosome in binary. After repetitious crossover, mutation, selection and multiplication, a robust chromosome is found, which can be decoded into an optimal collaboration space. This new method can calculate the members in sub-spaces and individual groupings within the staff. Furthermore, the intersection of sub-spaces and public persons belonging to all sub-spaces can be determined simultaneously.
Collaboration and Synergy among Government, Industry and Academia in M&S Domain: Turkey’s Approach
2009-10-01
Analysis, Decision Support System Design and Implementation, Simulation Output Analysis, Statistical Data Analysis, Virtual Reality , Artificial... virtual and constructive visual simulation systems as well as integrated advanced analytical models. Collaboration and Synergy among Government...simulation systems that are ready to use, credible, integrated with C4ISR systems. Creating synthetic environments and/or virtual prototypes of concepts
Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises
NASA Astrophysics Data System (ADS)
Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara
Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.
Henderson, Amanda; Heel, Alison; Twentyman, Michelle; Lloyd, Belinda
2006-01-01
This study investigated the impact of a collaborative clinical education model on students' perception of the psycho-social learning environment. A pre-test and post-test quasi experimental design. A tertiary referral centre. Second and third year undergraduate nursing students were asked to rate their perceptions of the psycho-social learning environment at the completion of the clinical practicum. TOOL: The tool used to measure psycho-social perceptions of the clinical learning environment was the Clinical Learning Environment Inventory previously validated in Australian health care contexts. A collaborative arrangement with the university and ward staff where eight students are placed on a ward and a ward staff member is paid by the university to be 'off-line' from a clinical workload to supervise the students. This is in contrast to the standard facilitation model where students are placed with registered nurses in different localities under the supervision of a 'roving' registered nurse paid by the university. No significant differences were found in pre-test mean scores when comparing wards. Significant differences in post-test scores for the intervention group were identified in the sub scales of Student Involvement, Satisfaction, Personalisation and Task Orientation. The adoption of a collaborative clinical education model where students are integrated into the ward team and the team is responsible for student learning can positively enhance capacity for student learning during their clinical practicum.
An Approach to Scoring Collaboration in Online Game Environments
ERIC Educational Resources Information Center
Scoular, Claire; Care, Esther; Awwal, Nafisa
2017-01-01
With technological advances, it is now possible to use games to capture information-rich behaviours that reveal processes by which players interact and solve problems. Recent problem-based games have been designed to assess and record detailed interactions between the problem solver and the game environment, and thereby capture salient solution…
Development of L2 Interactional Resources for Online Collaborative Task Accomplishment
ERIC Educational Resources Information Center
Balaman, Ufuk; Sert, Olcay
2017-01-01
Technology-mediated task environments have long been considered integral parts of L2 learning and teaching processes. However, the interactional resources that the learners deploy to complete tasks in these environments have remained largely unexplored due to an overall focus on task design and outcomes rather than task engagement processes. With…
The Effects of Integrating Social Learning Environment with Online Learning
ERIC Educational Resources Information Center
Raspopovic, Miroslava; Cvetanovic, Svetlana; Medan, Ivana; Ljubojevic, Danijela
2017-01-01
The aim of this paper is to present the learning and teaching styles using the Social Learning Environment (SLE), which was developed based on the computer supported collaborative learning approach. To avoid burdening learners with multiple platforms and tools, SLE was designed and developed in order to integrate existing systems, institutional…
ERIC Educational Resources Information Center
Dillenbourg, Pierre
1996-01-01
Maintains that diagnosis, explanation, and tutoring, the functions of an interactive learning environment, are collaborative processes. Examines how human-computer interaction can be improved using a distributed cognition framework. Discusses situational and distributed knowledge theories and provides a model on how they can be used to redesign…
ERIC Educational Resources Information Center
Sanborn, Mark
2011-01-01
Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…
A Cloud Based Real-Time Collaborative Platform for eHealth.
Ionescu, Bogdan; Gadea, Cristian; Solomon, Bogdan; Ionescu, Dan; Stoicu-Tivadar, Vasile; Trifan, Mircea
2015-01-01
For more than a decade, the eHealth initiative has been a government concern of many countries. In an Electronic Health Record (EHR) System, there is a need for sharing the data with a group of specialists simultaneously. Collaborative platforms alone are just a part of a solution, while a collaborative platform with parallel editing capabilities and with synchronized data streaming are stringently needed. In this paper, the design and implementation of a collaborative platform used in healthcare is introduced by describing the high level architecture and its implementation. A series of eHealth services are identified and usage examples in a healthcare environment are given.
Yovcheva, Zornitza; van Elzakker, Corné P J M; Köbben, Barend
2013-11-01
Web-based tools developed in the last couple of years offer unique opportunities to effectively support scientists in their effort to collaborate. Communication among environmental researchers often involves not only work with geographical (spatial), but also with temporal data and information. Literature still provides limited documentation when it comes to user requirements for effective geo-collaborative work with spatio-temporal data. To start filling this gap, our study adopted a User-Centered Design approach and first explored the user requirements of environmental researchers working on distributed research projects for collaborative dissemination, exchange and work with spatio-temporal data. Our results show that system design will be mainly influenced by the nature and type of data users work with. From the end-users' perspective, optimal conversion of huge files of spatio-temporal data for further dissemination, accuracy of conversion, organization of content and security have a key role for effective geo-collaboration. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Design Considerations for Enhancing Confidence and Participation in Web Based Courses.
ERIC Educational Resources Information Center
Winfield, William; Mealy, Martha; Scheibel, Pamela
The University of Wisconsin Learning Innovations Center's instructional design model for World Wide Web delivered courses incorporates a range of collaborative discussions and interactive experiences for the learner. In addition, these courses capitalize on the multimedia learning environment that the web offers to accommodate many kinds of…
Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu
2010-01-01
Purpose Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. Methods A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. Results The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. Conclusion A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users. PMID:20714933
Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu
2011-07-01
Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.
Workplace empowerment, collaborative work relationships, and job strain in nurse practitioners.
Almost, Joan; Laschinger, Heather K Spence
2002-09-01
To test a theoretical model linking nurse practitioners' (NPs) perceptions of workplace empowerment, collaboration with physicians and managers, and job strain. A predictive, nonexperimental design was used to test a model in a sample of 63 acute care NPs and 54 primary care NPs working in Ontario, Canada. The Conditions of Work Effectiveness Questionnaire, the Collaborative Behaviour Scale--Parts A (physicians) and B (managers), and the Job Content Questionnaire were used to measure the major study variables. The results of this study support the proposition that the extent to which NPs have access to information, support, resources, and opportunities in their work environment has an impact on the extent of collaboration with physicians and managers, and ultimately, the degree of job strain experienced in the work setting. Primary care NPs have significantly higher levels of workplace empowerment, collaboration with managers, and lower levels of job strain than acute care NPs. These findings will benefit NPs and nursing leaders in their efforts to create empowering work environments that enable NPs to provide excellent quality patient care and achieve organizational outcomes.
Communication and cooperation in networked environments: an experimental analysis.
Galimberti, C; Ignazi, S; Vercesi, P; Riva, G
2001-02-01
Interpersonal communication and cooperation do not happen exclusively face to face. In work contexts, as in private life, there are more and more situations of mediated communication and cooperation in which new online tools are used. However, understanding how to use the Internet to support collaborative interaction presents a substantial challenge for the designers and users of this emerging technology. First, collaborative Internet environments are designed to serve a purpose, so must be designed with intended users' tasks and goals explicitly considered. Second, in cooperative activities the key content of communication is the interpretation of the situations in which actors are involved. So, the most effective way of clarifying the meaning of messages is to connect them to a shared context of meaning. However, this is more difficult in the Internet than in other computer-based activities. This paper tries to understand the characteristics of cooperative activities in networked environments--shared 3D virtual worlds--through two different studies. The first used the analysis of conversations to explore the characteristics of the interaction during the cooperative task; the second analyzed whether and how the level of immersion in the networked environments influenced the performance and the interactional process. The results are analyzed to identify the psychosocial roots used to support cooperation in a digital interactive communication.
Zhou, Y; Murata, T; Defanti, T A
2000-01-01
Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement, and test due to the concurrency, real-time and networking features in these systems. Net-VEs demand high quality-of-service (QoS) requirements on the network to maintain natural and real-time interactions among users. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE-NICE (narrative immersive constructionist/collaborative environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called the CAVE-(CAVE automatic virtual environment). First, we introduce extended fuzzy-timing Petri net (EFTN) modeling and analysis techniques. Then, we present EFTN models of the CAVE, NICE, and transport layer protocol used in NICE: transmission control protocol (TCP). We show the possibility analysis based on the EFTN model for the CAVE. Then, by using these models and design/CPN as the simulation tool, we conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.
Enforcing compatibility and constraint conditions and information retrieval at the design action
NASA Technical Reports Server (NTRS)
Woodruff, George W.
1990-01-01
The design of complex entities is a multidisciplinary process involving several interacting groups and disciplines. There is a need to integrate the data in such environments to enhance the collaboration between these groups and to enforce compatibility between dependent data entities. This paper discusses the implementation of a workstation based CAD system that is integrated with a DBMS and an expert system, CLIPS, (both implemented on a mini computer) to provide such collaborative and compatibility enforcement capabilities. The current implementation allows for a three way link between the CAD system, the DBMS and CLIPS. The engineering design process associated with the design and fabrication of sheet metal housing for computers in a large computer manufacturing facility provides the basis for this prototype system.
NASA Astrophysics Data System (ADS)
Liu, Lei
The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to successful convergent understanding. The results of the study imply that the collaborative scientific conceptual change model is an effective framework to study conceptual change and the simulation environment may mediate the development of successful collaborative interactions (including collaborative discourse and epistemic practices) that lead to collaborative scientific conceptual change.
Price, David; Howard, Michelle; Hilts, Linda; Dolovich, Lisa; McCarthy, Lisa; Walsh, Allyn E; Dykeman, Lynn
2009-09-01
The new family health teams (FHTs) in Ontario were designed to enable interprofessional collaborative practice in primary care; however, many health professionals have not been trained in an interprofessional environment. To provide health professional learners with an interprofessional practice experience in primary care that models teamwork and collaborative practice skills. The 2 academic teaching units of the FHT at McMaster University in Hamilton, Ont, employ 6 types of health professionals and provide learning environments for family medicine residents and students in a variety of health care professions. Learners engage in formal interprofessional education activities and mixed professional and learner clinical consultations. They are immersed in an established interprofessional practice environment, where all team members are valued and contribute collaboratively to patient care and clinic administration. Other contributors to the success of the program include the physical layout of the clinics, the electronic medical record communications system, and support from leadership for the additional clinical time commitment of delivering interprofessional education. This academic FHT has developed a program of interprofessional education based partly on planned activities and logistic enablers, and largely on immersing learners in a culture of long-standing interprofessional collaboration.
Kuziemsky, Craig E; Varpio, Lara
2011-08-01
As more healthcare delivery is provided by collaborative teams there is a need for enhanced design of health information systems (HISs) to support collaborative care delivery. The purpose of this study was to develop a model of the different types of awareness that exist in interprofessional collaborative care (ICC) delivery to inform HIS design to support ICC. Qualitative data collection and analysis was done. The data sources consisted of 90 h of non-participant observations and 30 interviews with nurses, physicians, medical residents, volunteers, and personal support workers. Many of the macro-level ICC activities (e.g. morning rounds, shift change) were constituted by micro-level activities that involved different types of awareness. We identified four primary types of ICC awareness: patient, team member, decision making, and environment. Each type of awareness is discussed and supported by study data. We also discuss implication of our findings for enhanced design of existing HISs as well as providing insight on how HISs could be better designed to support ICC awareness. Awareness is a complex yet crucial piece of successful ICC. The information sources that provided and supported ICC awareness were varied. The different types of awareness from the model can help us understand the explicit details of how care providers communicate and exchange information with one another. Increased understanding of ICC awareness can assist with the design and evaluation of HISs to support collaborative activities. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Collaborative Supercomputing for Global Change Science
NASA Astrophysics Data System (ADS)
Nemani, R.; Votava, P.; Michaelis, A.; Melton, F.; Milesi, C.
2011-03-01
There is increasing pressure on the science community not only to understand how recent and projected changes in climate will affect Earth's global environment and the natural resources on which society depends but also to design solutions to mitigate or cope with the likely impacts. Responding to this multidimensional challenge requires new tools and research frameworks that assist scientists in collaborating to rapidly investigate complex interdisciplinary science questions of critical societal importance. One such collaborative research framework, within the NASA Earth sciences program, is the NASA Earth Exchange (NEX). NEX combines state-of-the-art supercomputing, Earth system modeling, remote sensing data from NASA and other agencies, and a scientific social networking platform to deliver a complete work environment. In this platform, users can explore and analyze large Earth science data sets, run modeling codes, collaborate on new or existing projects, and share results within or among communities (see Figure S1 in the online supplement to this Eos issue (http://www.agu.org/eos_elec)).
ERIC Educational Resources Information Center
deNoyelles, Aimee; Seo, Kay Kyeong-Ju
2012-01-01
A 3D multi-user virtual environment holds promise to support and enhance student online learning communities due to its ability to promote global synchronous interaction and collaboration, rich multisensory experience and expression, and elaborate design capabilities. Second Life[R], a multi-user virtual environment intended for adult users 18 and…
The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments
NASA Astrophysics Data System (ADS)
Goldstein, Jessica; Puntambekar, Sadhana
2004-12-01
This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students' attitudes towards using computers and working in groups during scientific inquiry. Students' attitudes towards technology and group work were analyzed using questionnaires. To add depth to the findings from the survey research, the role of gender was also investigated through the analysis of student conversations in the context of two activities: exploring science information on a hypertext text and conducting hands-on investigations. The data suggest that not only are girls and boys are similar with regard to attitudes about computers and group work, but that during collaborative learning activities, girls may actually participate more actively and persistently regardless of the nature of the task.
SciEthics Interactive: Science and Ethics Learning in a Virtual Environment
ERIC Educational Resources Information Center
Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth
2013-01-01
Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…
ERIC Educational Resources Information Center
Er, Erkan; Kopcha, Theodore J.; Orey, Michael
2015-01-01
Today's generation often seeks help from each other in online environments; however, only a few investigated the role of Internet technologies and the nature of online help-seeking behavior in collaborative learning environments. This paper presents an educational design research project that examines college students' online help-seeking…
ERIC Educational Resources Information Center
Secret, Mary; Bryant, Nita L.; Cummings, Cory R.
2017-01-01
Our paper describes the design and delivery of an online interdisciplinary social science research methods course (ISRM) for graduate students in sociology, education, social work, and public administration. Collaborative activities and learning took place in two types of computer-mediated learning environments: a closed Blackboard course…
The Collaboratory Notebook: A Networked Knowledge-Building Environment for Project Learning.
ERIC Educational Resources Information Center
O'Neill, D. Kevin; Gomez, Louis M.
The Collaboratory Notebook, developed as part of the Learning Through Collaborative Visualization Project (CoVis), is a networked, multimedia knowledge-building environment which has been designed to help students, teachers and scientists share inquiry over the boundaries of time and space. CoVis is an attempt to change the way that science is…
The Future of the Physical Learning Environment: School Facilities that Support the User
ERIC Educational Resources Information Center
Kuuskorpi, Marko; Gonzalez, Nuria Cabellos
2011-01-01
This paper presents the conclusions of a study, carried out in collaboration with schools in six European countries, which focused on tomorrow's physical learning environments. The study, which stemmed from a project entitled Forum for the Future and which was funded by the Finnish National Board of Education (FNBE), was designed to contribute to…
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2012-01-01
This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.
Cranial implant design using augmented reality immersive system.
Ai, Zhuming; Evenhouse, Ray; Leigh, Jason; Charbel, Fady; Rasmussen, Mary
2007-01-01
Software tools that utilize haptics for sculpting precise fitting cranial implants are utilized in an augmented reality immersive system to create a virtual working environment for the modelers. The virtual environment is designed to mimic the traditional working environment as closely as possible, providing more functionality for the users. The implant design process uses patient CT data of a defective area. This volumetric data is displayed in an implant modeling tele-immersive augmented reality system where the modeler can build a patient specific implant that precisely fits the defect. To mimic the traditional sculpting workspace, the implant modeling augmented reality system includes stereo vision, viewer centered perspective, sense of touch, and collaboration. To achieve optimized performance, this system includes a dual-processor PC, fast volume rendering with three-dimensional texture mapping, the fast haptic rendering algorithm, and a multi-threading architecture. The system replaces the expensive and time consuming traditional sculpting steps such as physical sculpting, mold making, and defect stereolithography. This augmented reality system is part of a comprehensive tele-immersive system that includes a conference-room-sized system for tele-immersive small group consultation and an inexpensive, easily deployable networked desktop virtual reality system for surgical consultation, evaluation and collaboration. This system has been used to design patient-specific cranial implants with precise fit.
Exploring nurses' perceptions of organizational factors of collaborative relationships.
Smith, Kevin; Lavoie-Tremblay, Melanie; Richer, Marie-Claire; Lanctot, Suzanne
2010-01-01
Collaborative relationships are influenced by the context of the organization in which health professionals work. There is limited knowledge concerning the influence that organizational factors have on this process. A descriptive study design using semistructured interviews was used to explore nurses' perceptions of the organizational factors that influence the development of collaborative relationships in health care teams. Eight nurses from a university-affiliated teaching hospital in Montreal participated in this study. Nurses described a variety of experiences where effective collaboration took place. One common theme emerged from the participants: Being Available for Collaboration. Nurses perceived that 2 particular organizational factors-time and workday scheduling-influenced the development of collaborative relationships. This study supports the need for health care managers to promote and invest in alternative means of communication technology and to structure clinical care environments to help promote the development of collaborative relationships within health care teams.
Laschinger, Heather K S; Smith, Lesley Marie
2013-01-01
The aim of this study was to examine new-graduate nurses' perceptions of the influence of authentic leadership and structural empowerment on the quality of interprofessional collaboration in healthcare work environments. Although the challenges associated with true interprofessional collaboration are well documented, new-graduate nurses may feel particularly challenged in becoming contributing members. Little research exists to inform nurse leaders' efforts to facilitate effective collaboration in acute care settings. A predictive nonexperimental design was used to test a model integrating authentic leadership and workplace empowerment as resources that support interprofessional collaboration. Multiple regression analysis revealed that 24% of the variance in perceived interprofessional collaboration was explained by unit-leader authentic leadership and structural empowerment (R = 0.24, F = 29.55, P = .001). Authentic leadership (β = .294) and structural empowerment (β = .288) were significant independent predictors. Results suggest that authentic leadership and structural empowerment may promote interprofessional collaborative practice in new nurses.
ERIC Educational Resources Information Center
Lee, Fong-Lok; Liang, Steven; Chan, Tak-Wai
1999-01-01
Describes the design, implementation, and preliminary evaluation of three synchronous distributed learning prototype systems: Co-Working System, Working Along System, and Hybrid System. Each supports a particular style of interaction, referred to a socio-activity learning model, between members of student dyads (pairs). All systems were…
ERIC Educational Resources Information Center
Rodriguez, Carolina; Hudson, Roland; Niblock, Chantelle
2018-01-01
Combinations of Conventional Studio and Virtual Design Studio (VDS) have created valuable learning environments that take advantage of different instruments of communication and interaction. However, past experiences have reported limitations in regards to student engagement and motivation, especially when the studio projects encourage abstraction…
New Learning Design in Distance Education: The Impact on Student Perception and Motivation
ERIC Educational Resources Information Center
Martens, Rob; Bastiaens, Theo; Kirschner, Paul A.
2007-01-01
Many forms of e-learning (such as online courses with authentic tasks and computer-supported collaborative learning) have become important in distance education. Very often, such e-learning courses or tasks are set up following constructivist design principles. Often, this leads to learning environments with authentic problems in ill-structured…
ERIC Educational Resources Information Center
Levy, Sharona T.; Peleg, Ran; Ofeck, Eyal; Tabor, Naamit; Dubovi, Ilana; Bluestein, Shiri; Ben-Zur, Hadar
2018-01-01
We propose and evaluate a framework supporting collaborative discovery learning of complex systems. The framework blends five design principles: (1) individual action: amidst (2) social interactions; challenged with (3) multiple tasks; set in (4) a constrained interactive learning environment that draws attention to (5) highlighted target…
Using BIM Technology to Optimize the Traditional Interior Design Work Mode
NASA Astrophysics Data System (ADS)
Zhu, Ning Ke
2018-06-01
the development of BIM technology and application in the field of architecture design has produced results, but BIM technology and application in the field of interior design is still immaturity because of construction and decoration engineering separation. The article analyzes the problems that BIM technology lead to the interior design work mode optimization, from the 3D visualization work environment, real-time collaborative design mode, physical analysis design mode, information integration design mode state the application in interior design.
SO-QT: Collaborative Tool to Project the Future Space Object Population
NASA Technical Reports Server (NTRS)
Stupl, Jan
2017-01-01
Earth orbit gets increasingly congested, a challenge to space operators, both in governments and industry. We present a web tool that provides: 1) data on todays and the historic space object environments, by aggregating object-specific tracking data; and 2) future trends through a collaboration platform to collect information on planed launches. The collaborative platform enables experts to pool and compare their data in order to generate future launch scenarios. The tool is intended to support decision makers and mission designers while they investigate future missions and scholars as they develop strategies for space traffic management.
Collaborative Mission Design at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.
2005-01-01
NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.
A virtual environment for medical radiation collaborative learning.
Bridge, Pete; Trapp, Jamie V; Kastanis, Lazaros; Pack, Darren; Parker, Jacqui C
2015-06-01
A software-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students' understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 % of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of "invisible" physical principles and increased opportunity for experimentation and collaborative problem-based learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.
Conceptual Design of Environmentally Friendly Rotorcraft - A Comparison of NASA and ONERA Approaches
NASA Technical Reports Server (NTRS)
Russell, Carl; Basset, Pierre-Marie
2015-01-01
In 2011, a task was initiated under the US-French Project Agreement on rotorcraft studies to collaborate on design methodologies for environmentally friendly rotorcraft. This paper summarizes the efforts of that collaboration. The French and US aerospace agencies, ONERA and NASA, have their own software toolsets and approaches to rotorcraft design. The first step of this research effort was to understand how rotorcraft impact the environment, with the initial focus on air pollution. Second, similar baseline helicopters were developed for a passenger transport mission, using NASA and ONERA rotorcraft design software tools. Comparisons were made between the designs generated by the two tools. Finally, rotorcraft designs were generated targeting reduced environmental impact. The results show that a rotorcraft design that targets reduced environmental impact can be significantly different than one that targets traditional cost drivers, such as fuel burn and empty weight.
Education and training column: the learning collaborative.
MacDonald-Wilson, Kim L; Nemec, Patricia B
2015-03-01
This column describes the key components of a learning collaborative, with examples from the experience of 1 organization. A learning collaborative is a method for management, learning, and improvement of products or processes, and is a useful approach to implementation of a new service design or approach. This description draws from published material on learning collaboratives and the authors' experiences. The learning collaborative approach offers an effective method to improve service provider skills, provide support, and structure environments to result in lasting change for people using behavioral health services. This approach is consistent with psychiatric rehabilitation principles and practices, and serves to increase the overall capacity of the mental health system by structuring a process for discovering and sharing knowledge and expertise across provider agencies. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
CHANS-Net: Opportunities in the Bigger Picture
NASA Astrophysics Data System (ADS)
Depolo, J. M.
2012-12-01
CHANS-Net: International Network of Research on Coupled Human and Natural Systems is an NSF-funded effort that facilitates communication and collaboration among scholars from around the world who are interested in coupled human and natural systems (CHANS) (e.g., coupled human-environment systems, social-ecological systems, ecological-economic systems, population-environment systems) and who strive to find sustainable solutions that both benefit the environment and enable people to thrive. Reaching across research boundaries to study coupled human and natural systems has been documented to put genuine sustainability in reach. But the design also is more challenging as a researcher ventures into unfamiliar disciplines. The network is striving to build a supportive community of researchers to enhance collaboration and partnerships and offer examples of best practices. CHANS-Net researchers have found that seemingly unconnected issues, divorce and the environment for example, are interrelated and affect each other in ways that we are only just beginning to understand.
CHANS-Net: Opportunities for the bigger picture in hydrology
NASA Astrophysics Data System (ADS)
Nichols, S.
2012-12-01
CHANS-Net: International Network of Research on Coupled Human and Natural Systems is an NSF-funded effort that facilitates communication and collaboration among scholars from around the world who are interested in coupled human and natural systems (CHANS) (e.g., coupled human-environment systems, social-ecological systems, ecological-economic systems, population-environment systems) and who strive to find sustainable solutions that both benefit the environment and enable people to thrive. Reaching across research boundaries to study coupled human and natural systems has been documented to put genuine sustainability in reach. But the design also is more challenging as a researcher ventures into unfamiliar disciplines. The network is striving to build a supportive community of researchers to enhance collaboration and partnerships and offer examples of best practices. CHANS-Net researchers have found that seemingly unconnected issues, divorce and the environment for example, are interrelated and affect each other in ways that we are only just beginning to understand.
Joint Services Electronics Program.
1983-09-30
environment. The research is under three interrelated heads: (1) algebraic Methodologies for Control Systems design , both linear and non -linear, (2) robust...properties of the device. After study of these experimental results, we plan to design a millimeter- wave version of the Gunn device. This will...appropriate dose discretization level for an adju- stable width beam. 2) Experimental Device Fabrication In a collaborative effort with the IC design group
ERIC Educational Resources Information Center
White, Tobin
2009-01-01
This paper introduces an applied problem-solving task, set in the context of cryptography and embedded in a network of computer-based tools. This designed learning environment engaged students in a series of collaborative problem-solving activities intended to introduce the topic of functions through a set of linked representations. In a…
Advanced Collaborative Environments Supporting Systems Integration and Design
2003-03-01
concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future
ERIC Educational Resources Information Center
Samur, Yavuz
2011-01-01
In computer-supported collaborative learning (CSCL) environments, there are many researches done on collaborative learning activities; however, in game-based learning environments, more research and literature on collaborative learning activities are required. Actually, both game-based learning environments and wikis enable us to use new chances…
Blake, Nancy; Leach, Linda Searle; Robbins, Wendy; Pike, Nancy; Needleman, Jack
2013-01-01
A healthy work environment can improve patient outcomes and registered nurse (RN) turnover. Creating cultures of retention and fostering healthy work environments are 2 major challenges facing nurse leaders today. Examine the effects of the healthy work environment (communication, collaboration, and leadership) on RN turnover from data collected from a research study. Descriptive, cross-sectional, correlational design. Pediatric critical care RNs from 10 pediatric intensive care units (PICU) completed the Practice Environment Scale of the Nursing Work Index Revised and a subscale of the Intensive Care Unit Nurse-Physician Communication Questionnaire. These staff nurses were asked whether they intend to leave their current job in the next 6 months. Statistical analysis included correlations, multiple linear regression, t tests (2-tailed), and 1-way analysis of variance. A total of 415 RNs completed the survey. There was a statistically significant relationship between leadership and the intent to leave (P < .05). There was also an inverse relationship between years of experience and intent to leave. None of the communication variables between RNs and among RNs and MDs or collaboration were significantly associated with PICU nurses' intention to leave. Effective leadership in the PICU is important to PICU RNs and significantly influences their decisions about staying in their current job.
ERIC Educational Resources Information Center
Misfeldt, Morten; Zacho, Lis
2016-01-01
In this article, we address how the design of educational scenarios can support teachers' adoption of both technology and open-ended projects indorsing creativity and innovation. We do that by describing how groups of teachers develop digital learning environments supporting using a combination of GeoGebra and Google sites. Both teachers and…
ERIC Educational Resources Information Center
Grenier, Michelle; Miller, Nancy; Black, Ken
2017-01-01
General physical education (GPE) affords many opportunities for students with and without disabilities to interact and develop positive peer relationships. This case study describes one teacher's use of collaborative practices, universal design for learning (UDL), and the inclusion spectrum to create an accessible learning environment in which the…
ERIC Educational Resources Information Center
Baghaei, Nilufar; Mitrovic, Antonija; Irwin, Warwick
2007-01-01
We present COLLECT-UML, a constraint-based intelligent tutoring system (ITS) that teaches object-oriented analysis and design using Unified Modelling Language (UML). UML is easily the most popular object-oriented modelling technology in current practice. While teaching how to design UML class diagrams, COLLECT-UML also provides feedback on…
Designing Interactive and Collaborative Learning Tasks in a 3-D Virtual Environment
ERIC Educational Resources Information Center
Berns, Anke; Palomo-Duarte, Manuel; Fernández, David Camacho
2012-01-01
The aim of our study is to explore several possibilities to use virtual worlds (VWs) and game-applications with learners of the A1 level (CEFR) of German as a foreign language. Our interest focuses especially on designing those learning tools which increase firstly, learner motivation towards online-learning and secondly, enhance autonomous…
Silicon-Germanium Voltage-Controlled Oscillator at 105 GHz
NASA Technical Reports Server (NTRS)
Wong, Alden; Larocca, Tim; Chang, M. Frank; Samoska, Lorene A.
2011-01-01
A group at UCLA, in collaboration with the Jet Propulsion Laboratory, has designed a voltage-controlled oscillator (VCO) created specifically for a compact, integrated, electronically tunable frequency generator useable for submillimeter- wave science instruments operating in extreme cold environments.
MULTI-MEDIA MODELING : RESEARCH AND DEVELOPMENT
Developed by ORD in collaboration with OSW, the Multimedia, Multi-pathway, Multi-receptor Risk Assessment (3MRA) national risk assessment methodology is designed to assess risks at sites containing source(s) of contamination that may release contaminants to the environment. Or...
ERIC Educational Resources Information Center
Buzzi, Marina, Ed.
2010-01-01
E-Learning is a vast and complex research topic that poses many challenges in every aspect: educational and pedagogical strategies and techniques and the tools for achieving them; usability, accessibility and user interface design; knowledge sharing and collaborative environments; technologies, architectures, and protocols; user activity…
Maturing Pump Technology for EVA Applications in a Collaborative Environment
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian
2012-01-01
The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.
Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?
NASA Technical Reports Server (NTRS)
Moore, Greg; Chainyk, Mike; Schiermeier, John
2004-01-01
The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.
Chalil Madathil, Kapil; Greenstein, Joel S
2017-11-01
Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Collaborative workbench for cyberinfrastructure to accelerate science algorithm development
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Maskey, M.; Kuo, K.; Lynnes, C.
2013-12-01
There are significant untapped resources for information and knowledge creation within the Earth Science community in the form of data, algorithms, services, analysis workflows or scripts, and the related knowledge about these resources. Despite the huge growth in social networking and collaboration platforms, these resources often reside on an investigator's workstation or laboratory and are rarely shared. A major reason for this is that there are very few scientific collaboration platforms, and those that exist typically require the use of a new set of analysis tools and paradigms to leverage the shared infrastructure. As a result, adoption of these collaborative platforms for science research is inhibited by the high cost to an individual scientist of switching from his or her own familiar environment and set of tools to a new environment and tool set. This presentation will describe an ongoing project developing an Earth Science Collaborative Workbench (CWB). The CWB approach will eliminate this barrier by augmenting a scientist's current research environment and tool set to allow him or her to easily share diverse data and algorithms. The CWB will leverage evolving technologies such as commodity computing and social networking to design an architecture for scalable collaboration that will support the emerging vision of an Earth Science Collaboratory. The CWB is being implemented on the robust and open source Eclipse framework and will be compatible with widely used scientific analysis tools such as IDL. The myScience Catalog built into CWB will capture and track metadata and provenance about data and algorithms for the researchers in a non-intrusive manner with minimal overhead. Seamless interfaces to multiple Cloud services will support sharing algorithms, data, and analysis results, as well as access to storage and computer resources. A Community Catalog will track the use of shared science artifacts and manage collaborations among researchers.
A Web Based Collaborative Design Environment for Spacecraft
NASA Technical Reports Server (NTRS)
Dunphy, Julia
1998-01-01
In this era of shrinking federal budgets in the USA we need to dramatically improve our efficiency in the spacecraft engineering design process. We have come up with a method which captures much of the experts' expertise in a dataflow design graph: Seamlessly connectable set of local and remote design tools; Seamlessly connectable web based design tools; and Web browser interface to the developing spacecraft design. We have recently completed our first web browser interface and demonstrated its utility in the design of an aeroshell using design tools located at web sites at three NASA facilities. Multiple design engineers and managers are now able to interrogate the design engine simultaneously and find out what the design looks like at any point in the design cycle, what its parameters are, and how it reacts to adverse space environments.
C3: A Collaborative Web Framework for NASA Earth Exchange
NASA Astrophysics Data System (ADS)
Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.
2010-12-01
The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.
Determining sociability, social space, and social presence in (a)synchronous collaborative groups.
Kreijns, Karel; Kirschner, Paul A; Jochems, Wim; Van Buuren, Hans
2004-04-01
The effectiveness of group learning in asynchronous distributed learning groups depends on the social interaction that takes place. This social interaction affects both cognitive and socioemotional processes that take place during learning, group forming, establishment of group structures, and group dynamics. Though now known to be important, this aspect is often ignored, denied or forgotten by educators and researchers who tend to concentrate on cognitive processes and on-task contexts. This "one-sided" educational focus largely determines the set of requirements in the design of computer-supported collaborative learning (CSCL) environments resulting in functional CSCL environments. In contrast, our research is aimed at the design and implementation of sociable CSCL environments which may increase the likelihood that a sound social space will emerge. We use a theoretical framework that is based upon an ecological approach to social interaction, centering on the concept of social affordances, the concept of the sociability of CSCL environments, and social presence theory. The hypothesis is that the higher the sociability, the more likely that social interaction will take place or will increase, and the more likely that this will result in an emerging sound social space. In the present research, the variables of interest are sociability, social space, and social presence. This study deals with the construction and validation of three instruments to determine sociability, social space, and social presence in (a)synchronous collaborating groups. The findings suggest that the instruments have potential to be useful as measures for the respective variables. However, it must be realized that these measures are "first steps."
Why do these issues constitute problems? Pathogen indicators
The Water Environment Research Foundation funded a collaborative effort designed to better understand the factors affecting regrowth, odors and the sudden increase of bacterial indicators in heat treated biosolids. As part of this effort the Principal Investigators developed a w...
NASA Technical Reports Server (NTRS)
Russell, Daniel M.; Trimble, Jay; Wales, Roxana; Clancy, Daniel (Technical Monitor)
2003-01-01
This is the tale of two different implementations of a collaborative information tool, that started from the same design source. The Blueboard, developed at IBM Research, is a tool for groups to use in exchanging information in a lightweight, informal collaborative way. It began as a large display surface for walk-by use in a corporate setting and has evolved in response to task demands and user needs. At NASA, the MERBoard is being designed to support surface operations for the upcoming Mars Exploration Rover Missions. The MERBoard is a tool that was inspired by the Blueboard design, extending this design to support the collaboration requirements for viewing, annotating, linking and distributing information for the science and engineering teams that will operate two rovers on the surface of Mars. The ways in which each group transformed the system reflects not only technical requirements, but also the needs of users in each setting and embedding of the system within the larger socio-technical environment. Lessons about how task requirements, information flow requirements and work practice drive the evolution of a system are illustrated.
Cloud-based Jupyter Notebooks for Water Data Analysis
NASA Astrophysics Data System (ADS)
Castronova, A. M.; Brazil, L.; Seul, M.
2017-12-01
The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.
The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. M. Pancerella; L. A. Rahn; C. Yang
2000-02-01
The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of themore » collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.« less
Enroute flight planning: The design of cooperative planning systems
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Layton, Chuck; Mccoy, Elaine
1990-01-01
Design concepts and principles to guide in the building of cooperative problem solving systems are being developed and evaluated. In particular, the design of cooperative systems for enroute flight planning is being studied. The investigation involves a three stage process, modeling human performance in existing environments, building cognitive artifacts, and studying the performance of people working in collaboration with these artifacts. The most significant design concepts and principles identified thus far are the principle focus.
Healthy eating design guidelines for school architecture.
Huang, Terry T-K; Sorensen, Dina; Davis, Steven; Frerichs, Leah; Brittin, Jeri; Celentano, Joseph; Callahan, Kelly; Trowbridge, Matthew J
2013-01-01
We developed a new tool, Healthy Eating Design Guidelines for School Architecture, to provide practitioners in architecture and public health with a practical set of spatially organized and theory-based strategies for making school environments more conducive to learning about and practicing healthy eating by optimizing physical resources and learning spaces. The design guidelines, developed through multidisciplinary collaboration, cover 10 domains of the school food environment (eg, cafeteria, kitchen, garden) and 5 core healthy eating design principles. A school redesign project in Dillwyn, Virginia, used the tool to improve the schools' ability to adopt a healthy nutrition curriculum and promote healthy eating. The new tool, now in a pilot version, is expected to evolve as its components are tested and evaluated through public health and design research.
ERIC Educational Resources Information Center
Fisher, Mercedes; Baird, Derek E.
2007-01-01
The convergence of mobile technologies into student-centered learning environments requires academic institutions to design new and more effective learning, teaching, and user experience strategies. In this article we share results from an mLearning design experiment and analysis from a student survey conducted at the National College of Ireland.…
Adventure Learning: Theory and Implementation of Hybrid Learning
NASA Astrophysics Data System (ADS)
Doering, A.
2008-12-01
Adventure Learning (AL), a hybrid distance education approach, provides students and teachers with the opportunity to learn about authentic curricular content areas while interacting with adventurers, students, and content experts at various locations throughout the world within an online learning environment (Doering, 2006). An AL curriculum and online environment provides collaborative community spaces where traditional hierarchical classroom roles are blurred and learning is transformed. AL has most recently become popular in K-12 classrooms nationally and internationally with millions of students participating online. However, in the literature, the term "adventure learning" many times gets confused with phrases such as "virtual fieldtrip" and activities where someone "exploring" is posting photos and text. This type of "adventure learning" is not "Adventure Learning" (AL), but merely a slideshow of their activities. The learning environment may not have any curricular and/or social goals, and if it does, the environment design many times does not support these objectives. AL, on the other hand, is designed so that both teachers and students understand that their online and curriculum activities are in synch and supportive of the curricular goals. In AL environments, there are no disparate activities as the design considers the educational, social, and technological affordances (Kirschner, Strijbos, Kreijns, & Beers, 2004); in other words, the artifacts of the learning environment encourage and support the instructional goals, social interactions, collaborative efforts, and ultimately learning. AL is grounded in two major theoretical approaches to learning - experiential and inquiry-based learning. As Kolb (1984) noted, in experiential learning, a learner creates meaning from direct experiences and reflections. Such is the goal of AL within the classroom. Additionally, AL affords learners a real-time authentic online learning experience concurrently as they study the AL curriculum. AL is also grounded in an inquiry- based approach to learning where learners are pursuing answers to questions they have posed rather than focusing on memorizing and regurgitating isolated, irrelevant facts. Both the curriculum and the online classroom are developed to foster students' abilities to inquire via "identifying and posing questions, designing and conducting investigations, analyzing data and evidence, using models and explanations, and communicating findings" (Keys and Bryan, 2001, p 121). The union of experiential and inquiry-based learning is the foundation of AL, guiding and supporting authentic learning endeavors. Based on these theoretical foundations, the design of the adventure learning experiences follows seven interdependent principles that further operationalize AL: researched curriculum grounded in inquiry; collaboration and interaction opportunities between students, experts, peers, and content; utilization of the Internet for curriculum and learning environment delivery; enhancement of curriculum with media and text from the field delivered in a timely manner; synched learning opportunities with the AL curriculum; pedagogical guidelines of the curriculum and the online learning environment; and adventure-based education. (Doering, 2006).
2009-03-20
involved the development of an environment within the Multiverse virtual world, oriented toward allowing individuals to acquire and reinforce skills via...PetBrain software G2: Creation of a scavenger hunt scenario in the Multiverse virtual world, in which humans and AIs can collaboratively play scavenger...carried out by Novamente LLC for AOARD during June 2008 ? February 2009. It involved the development of an environment within the Multiverse virtual world
Virtual day of the midwife: a global 'pyjama party'.
Stewart, Sarah
2014-06-01
The Virtual International Day of the Midwife (VIDM) (www.vidm.org) is an annual online conference designed to break down traditional barriers to continuing professional development (CPD); provide online opportunities for international midwifery networking; and model open access communication and collaboration practices. Whilst the VIDM is designed to reach midwives all around the world, issues of access to the Internet, language and cultural differences prevent some midwives from attending, especially those who live in resource-poor countries. Nevertheless, the VIDM has successfully demonstrated how CPD can be delivered to midwives in a flexible and cost-effective way, as well as bring them together in a truly global open and collaborative environment.
ERIC Educational Resources Information Center
Osler, James Edward, II; Wright, Mark Anthony
2016-01-01
This paper is part two of the article entitled, "Dynamic Neuroscientific Systemology: Using Tri-Squared Meta-Analysis and Innovative Instructional Design to Develop a Novel Distance Education Model for the Systemic Creation of Engaging Online Learning Environments" published in the July-September 2015 issue of i-manager's "Journal…
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2013-01-01
This report documents the work performed during the period from May 2011 - October 2012 on the Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML). This report will focus on describing the work done in the areas of: (1) Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to perform trajectory analysis; (2) Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for tank resizing when multiple fuels and/or oxidizer are part of the configuration; and (3) Vehicle scaling and closure strategies.
Whole Person Learning: Embedding Ethical Enterprise Leadership in Business Education
ERIC Educational Resources Information Center
Carter, E. Vincent; Donohue, Mary
2012-01-01
This study introduces a collaborative business education curricular design known as "whole person learning." The post-financial crisis market environment requires business education to encompass curricular, commercial and community skills. Drawing on the Toronto based National Mentoring Program (NMP), "whole person learning"…
Networked Learning: Design Considerations for Online Instructors
ERIC Educational Resources Information Center
Czerkawski, Betul C.
2016-01-01
The considerable increase in web-based knowledge networks in the past two decades is strongly influencing learning environments. Learning entails information retrieval, use, communication, and production, and is strongly enriched by socially mediated discussions, debates, and collaborative activities. It is becoming critical for educators to…
NASA Astrophysics Data System (ADS)
Cortes Arevalo, Juliette; den Haan, Robert-Jan; van der Voort, Mascha; Hulscher, Suzanne
2016-04-01
Effective communication strategies are necessary between different scientific disciplines, practitioners and non-experts for a shared understanding and better implementation of river management measures. In that context, the RiverCare program aims to get a better understanding of riverine measures that are being implemented towards self-sustaining multifunctional rivers in the Netherlands. During the RiverCare program, user committees are organized between the researchers and practitioners to discuss the aim and value of RiverCare outputs, related assumptions and uncertainties behind scientific results. Beyond the RiverCare program end, knowledge about river interventions, integrated effects, management and self-sustaining applications will be available to experts and non-experts by means of River Care communication tools: A web-collaborative platform and a serious gaming environment. As part of the communication project of RiverCare, we are designing the RiverCare web-collaborative platform and the knowledge-base behind that platform. We aim at promoting collaborative efforts and knowledge exchange in river management. However, knowledge exchange does not magically happen. Consultation and discussion of RiverCare outputs as well as elicitation of perspectives and preferences from different actors about the effects of riverine measures has to be facilitated. During the RiverCare research activities, the platform will support the user committees or collaborative sessions that are regularly held with the organizations directly benefiting from our research, at project level or in study areas. The design process of the collaborative platform follows an user centred approach to identify user requirements, co-create a conceptual design and iterative develop and evaluate prototypes of the platform. The envisioned web-collaborative platform opens with an explanation and visualisation of the RiverCare outputs that are available in the knowledge base. Collaborative sessions are initiated by one facilitator that invites other users to contribute by agreeing on an objective for the session and ways and period of collaboration. Upon login, users can join the different sessions that they are invited or will be willing to participate. Within these sessions, users collaboratively engage on the topic at hand, acquiring knowledge about the ongoing results of RiverCare, sharing knowledge between actors and co-constructing new knowledge in the process as input for RiverCare research activities. An overview of each session will be presented to registered and non-registered users to document collaboration efforts and promote interaction with actors outside RiverCare. At the user requirements analysis stage of the collaborative platform, a questionnaire and workshop session was launched to uncover the end user's preferences and expectations about the tool to be designed. Results comprised insights about design criteria of the collaborative platform. The user requirements will be followed by interview sessions with RiverCare researchers and user committee members to identify considerations for data management, objectives of collaboration, expected outputs and indicators to evaluate the collaborative platform. On one side, considerations of intended users are important for co-designing tools that effectively communicate and promote a shared understanding of scientific outputs. On the other one, active involvement of end-users is important for the establishment of measurable indicators to evaluate the tool and the collaborative process.
University students' emotions, interest and activities in a web-based learning environment.
Nummenmaa, Minna; Nummenmaa, Lauri
2008-03-01
Within academic settings, students experience varied emotions and interest towards learning. Although both emotions and interest can increase students' likelihood to engage in traditional learning, little is known about the influence of emotions and interest in learning activities in a web-based learning environment (WBLE). This study examined how emotions experienced while using a WBLE, students' interest towards the course topic and interest towards web-based learning are associated with collaborative visible and non-collaborative invisible activities and 'lurking' in the WBLE. Participants were 99 Finnish university students from five web-based courses. All the students enrolled in the courses filled out pre- and post-test questionnaires of interest, and repeatedly completed an on-line questionnaire on emotions experienced while using the WBLE during the courses. The fluctuation of emotional reactions was positively associated with both visible collaborative and invisible non-collaborative activities in the WBLE. Further, interest towards the web-based learning was positively associated with invisible activity. The results also demonstrated that students not actively participating in the collaborative activities (i.e. lurkers) had more negative emotional experiences during the courses than other students. The results highlight the distinct impacts that emotions and interest have on different web-based learning activities and that they should be considered when designing web-based courses.
ERIC Educational Resources Information Center
Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos
2014-01-01
Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…
Research and Development of Collaborative Environments for Command and Control
2011-05-01
at any state of building. The viewer tool presents the designed model with 360-degree perspective views even after regeneration of the design, which...and it shows the following prompt. GUM > APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...11 First initialize the microSD card by typing GUM > mmcinit Then erase the old Linux kernel and the root file system on the flash memory
ERIC Educational Resources Information Center
Akhtar, S.; Warburton, S.; Xu, W.
2017-01-01
In this paper we report on the use of a purpose built Computer Support Collaborative learning environment designed to support lab-based CAD teaching through the monitoring of student participation and identified predictors of success. This was carried out by analysing data from the interactive learning system and correlating student behaviour with…
ERIC Educational Resources Information Center
Ben-Horin, Oded; Chappell, Kerry A.; Halstead, Jill; Espeland, Magne
2017-01-01
The goal of this qualitative study is to provide theoretical knowledge and design principles for a creative educational environment characterized by simultaneous study and exploration of science or math, and the arts: Write a Science Opera (WASO). To do so, we used a theory of creativity in education which links collaborative co-creation in…
Locating Elementary Teachers' Professional Communities in a Structured Collaboration Environment
ERIC Educational Resources Information Center
Chu, Szu Yang
2016-01-01
As teacher collaboration becomes an increasingly common goal in school organization, teachers' experiences and perspectives in a Structured Collaboration Environment remain under-examined. This qualitative case study explored how teachers participated in collaborative work, the outcomes of collaboration, and supports and obstacles to productive…
Informatics for the Modern Intensive Care Unit.
Anderson, Diana C; Jackson, Ashley A; Halpern, Neil A
Advanced informatics systems can help improve health care delivery and the environment of care for critically ill patients. However, identifying, testing, and deploying advanced informatics systems can be quite challenging. These processes often require involvement from a collaborative group of health care professionals of varied disciplines with knowledge of the complexities related to designing the modern and "smart" intensive care unit (ICU). In this article, we explore the connectivity environment within the ICU, middleware technologies to address a host of patient care initiatives, and the core informatics concepts necessary for both the design and implementation of advanced informatics systems.
A DICOM Based Collaborative Platform for Real-Time Medical Teleconsultation on Medical Images.
Maglogiannis, Ilias; Andrikos, Christos; Rassias, Georgios; Tsanakas, Panayiotis
2017-01-01
The paper deals with the design of a Web-based platform for real-time medical teleconsultation on medical images. The proposed platform combines the principles of heterogeneous Workflow Management Systems (WfMSs), the peer-to-peer networking architecture and the SPA (Single-Page Application) concept, to facilitate medical collaboration among healthcare professionals geographically distributed. The presented work leverages state-of-the-art features of the web to support peer-to-peer communication using the WebRTC (Web Real Time Communication) protocol and client-side data processing for creating an integrated collaboration environment. The paper discusses the technical details of implementation and presents the operation of the platform in practice along with some initial results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsoi, Kei Nam; Rahman, S.M.
1996-12-31
Undoubtedly, multimedia electronic mail has many advantages in exchanging information electronically in a collaborative work. The existing design of e-mail systems architecture is inefficient in exchanging multimedia message which has much larger volume, and requires more bandwidth and storage space than the text-only messages. This paper presents an innovative method for exchanging multimedia mail messages in a heterogeneous environment to support collaborative work over YAW on the Internet. We propose a {open_quotes}Parcel Collection{close_quotes} approach for exchanging multimedia electronic mail messages. This approach for exchanging multimedia electronic mail messages integrates the current WWW technologies with the existing electronic mail systems.
The Collaborative Heliophysics Events Knowledgebase
NASA Astrophysics Data System (ADS)
Hurlburt, N. E.; Schuler, D.; Cheung, C.
2010-12-01
The Collaborative Heliophysics Events Knowledgebase (CHEK) leverages and integrates the existing resources developed by HEK for SDO (Hurlburt et al. 2010) to provide a collaborative framework for heliophysics researchers. This framework will enable an environment were researches can not only identify and locate relevant data, but can deploy a social network for sharing and expanding knowledge about heliophysical events. CHEK will expand the HEK and key HEK clients into the heliosphere and geospace, and create a heliophysics social network. We describe our design and goals of the CHEK project and discuss its relation to Citizen Science in the heliosphere. Hurlburt, N et al. 2010, “A Heliophysics Event Knowledgebase for Solar Dynamics Observatory,” Sol Phys., in press
Healthy Eating Design Guidelines for School Architecture
Huang, Terry T-K; Sorensen, Dina; Davis, Steven; Frerichs, Leah; Brittin, Jeri; Celentano, Joseph; Callahan, Kelly
2013-01-01
We developed a new tool, Healthy Eating Design Guidelines for School Architecture, to provide practitioners in architecture and public health with a practical set of spatially organized and theory-based strategies for making school environments more conducive to learning about and practicing healthy eating by optimizing physical resources and learning spaces. The design guidelines, developed through multidisciplinary collaboration, cover 10 domains of the school food environment (eg, cafeteria, kitchen, garden) and 5 core healthy eating design principles. A school redesign project in Dillwyn, Virginia, used the tool to improve the schools’ ability to adopt a healthy nutrition curriculum and promote healthy eating. The new tool, now in a pilot version, is expected to evolve as its components are tested and evaluated through public health and design research. PMID:23449281
Collaborative WorkBench for Researchers - Work Smarter, Not Harder
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Kuo, Kwo-sen; Maskey, Manil; Lynnes, Christopher
2014-01-01
It is important to define some commonly used terminology related to collaboration to facilitate clarity in later discussions. We define provisioning as infrastructure capabilities such as computation, storage, data, and tools provided by some agency or similarly trusted institution. Sharing is defined as the process of exchanging data, programs, and knowledge among individuals (often strangers) and groups. Collaboration is a specialized case of sharing. In collaboration, sharing with others (usually known colleagues) is done in pursuit of a common scientific goal or objective. Collaboration entails more dynamic and frequent interactions and can occur at different speeds. Synchronous collaboration occurs in real time such as editing a shared document on the fly, chatting, video conference, etc., and typically requires a peer-to-peer connection. Asynchronous collaboration is episodic in nature based on a push-pull model. Examples of asynchronous collaboration include email exchanges, blogging, repositories, etc. The purpose of a workbench is to provide a customizable framework for different applications. Since the workbench will be common to all the customized tools, it promotes building modular functionality that can be used and reused by multiple tools. The objective of our Collaborative Workbench (CWB) is thus to create such an open and extensible framework for the Earth Science community via a set of plug-ins. Our CWB is based on the Eclipse [2] Integrated Development Environment (IDE), which is designed as a small kernel containing a plug-in loader for hundreds of plug-ins. The kernel itself is an implementation of a known specification to provide an environment for the plug-ins to execute. This design enables modularity, where discrete chunks of functionality can be reused to build new applications. The minimal set of plug-ins necessary to create a client application is called the Eclipse Rich Client Platform (RCP) [3]; The Eclipse RCP also supports thousands of community-contributed plug-ins, making it a popular development platform for many diverse applications including the Science Activity Planner developed at JPL for the Mars rovers [4] and the scientific experiment tool Gumtree [5]. By leveraging the Eclipse RCP to provide an open, extensible framework, a CWB supports customizations via plug-ins to build rich user applications specific for Earth Science. More importantly, CWB plug-ins can be used by existing science tools built off Eclipse such as IDL or PyDev to provide seamless collaboration functionalities.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.
NASA Astrophysics Data System (ADS)
de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik
2018-04-01
While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The professional development was grounded in a set of mathematical tasks that each had one right answer, but multiple solution paths. The facilitator engaged participants in problem solving and encouraged participants to work collaboratively to explore different solution paths. Through analysis of this collaborative learning environment, we identified five design features for supporting teacher learning of important mathematics and pedagogy in a problem-solving setting. We discuss these design features in depth and illustrate them by presenting an elaborated example from the professional development. This study extends the existing guidance for the design of professional development by examining and operationalizing the relationships among research-based features of effective professional development and the enacted features of a particular design.
Impact of Process Protocol Design on Virtual Team Effectiveness
ERIC Educational Resources Information Center
Cordes, Christofer Sean
2013-01-01
This dissertation examined the influence of action process dimensions on team decision performance, and attitudes toward team work environment and procedures given different degrees of collaborative technology affordance. Process models were used to provide context for understanding team behavior in the experimental task, and clarify understanding…
Variations on an Historical Case Study
ERIC Educational Resources Information Center
Field, Patrick
2006-01-01
The National Inquiry Standard for Science Education Preparation requires science teachers to introduce students to scientific inquiry to solve problems by various methods, including active learning in a collaborative environment. In order for science teachers to comply with this inquiry standard, activities must be designed for students to…
ERIC Educational Resources Information Center
Kim Hassell,
2011-01-01
Classroom design for the 21st-century learning environment should accommodate a variety of learning skills and needs. The space should be large enough so it can be configured to accommodate a number of learning activities. This also includes furniture that provides flexibility and accommodates collaboration and interactive work among students and…
Development of the Modes of Collaboration Framework
ERIC Educational Resources Information Center
Pawlak, Alanna; Irving, Paul W.; Caballero, Marcos D.
2018-01-01
Group work is becoming increasingly common in introductory physics classrooms. Understanding how students engage in these group learning environments is important for designing and facilitating productive learning opportunities for students. We conducted a study in which we collected video of groups of students working on conceptual electricity…
Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet
2006-01-01
A viewgraph presentation to demonstrate collaborative scheduling using Java Message Service (JMS) in a mixed Java and .Net environment is given. The topics include: 1) NASA Deep Space Network scheduling; 2) Collaborative scheduling concept; 3) Distributed computing environment; 4) Platform concerns in a distributed environment; 5) Messaging and data synchronization; and 6) The prototype.
Shared decision making in designing new healthcare environments-time to begin improving quality.
Elf, Marie; Fröst, Peter; Lindahl, Göran; Wijk, Helle
2015-03-21
Successful implementation of new methods and models of healthcare to achieve better patient outcomes and safe, person-centered care is dependent on the physical environment of the healthcare architecture in which the healthcare is provided. Thus, decisions concerning healthcare architecture are critical because it affects people and work processes for many years and requires a long-term financial commitment from society. In this paper, we describe and suggest several strategies (critical factors) to promote shared-decision making when planning and designing new healthcare environments. This paper discusses challenges and hindrances observed in the literature and from the authors extensive experiences in the field of planning and designing healthcare environments. An overview is presented of the challenges and new approaches for a process that involves the mutual exchange of knowledge among various stakeholders. Additionally, design approaches that balance the influence of specific and local requirements with general knowledge and evidence that should be encouraged are discussed. We suggest a shared-decision making and collaborative planning and design process between representatives from healthcare, construction sector and architecture based on evidence and end-users' perspectives. If carefully and systematically applied, this approach will support and develop a framework for creating high quality healthcare environments.
E-Center: A Collaborative Platform for Wide Area Network Users
NASA Astrophysics Data System (ADS)
Grigoriev, M.; DeMar, P.; Tierney, B.; Lake, A.; Metzger, J.; Frey, M.; Calyam, P.
2012-12-01
The E-Center is a social collaborative web-based platform for assisting network users in understanding network conditions across network paths of interest to them. It is designed to give a user the necessary tools to isolate, identify, and resolve network performance-related problems. E-Center provides network path information on a link-by-link level, as well as from an end-to-end perspective. In addition to providing current and recent network path data, E-Center is intended to provide a social media environment for them to share issues, ideas, concerns, and problems. The product has a modular design that accommodates integration of other network services that make use of the same network path and performance data.
ERIC Educational Resources Information Center
Fisher, Kenn; Newton, Clare
2014-01-01
The twenty-first century has seen the rapid emergence of wireless broadband and mobile communications devices which are inexorably changing the way people communicate, collaborate, create and transfer knowledge. Yet many higher education campus learning environments were designed and built in the nineteenth and twentieth centuries prior to…
Interactive Simulated Patient: Experiences with Collaborative E-Learning in Medicine
ERIC Educational Resources Information Center
Bergin, Rolf; Youngblood, Patricia; Ayers, Mary K.; Boberg, Jonas; Bolander, Klara; Courteille, Olivier; Dev, Parvati; Hindbeck, Hans; Edward, Leonard E., II; Stringer, Jennifer R.; Thalme, Anders; Fors, Uno G. H.
2003-01-01
Interactive Simulated Patient (ISP) is a computer-based simulation tool designed to provide medical students with the opportunity to practice their clinical problem solving skills. The ISP system allows students to perform most clinical decision-making procedures in a simulated environment, including history taking in natural language, many…
Development of Course Material in a Multi-Author Environment
ERIC Educational Resources Information Center
Schlotter, Michael
2009-01-01
Software for text processing and presentation design is becoming increasingly sophisticated. Nevertheless, it is difficult to find a good solution for collaborative writing of technical course material, allowing the creation of high quality lecture notes and presentation slides from a single source. This article presents a new editing framework…
ERIC Educational Resources Information Center
Conlin, Luke D.
2012-01-01
Collaborative inquiry learning environments, such as "The Tutorials in Physics Sensemaking," are designed to provide students with opportunities to partake in the authentic disciplinary practices of argumentation and sensemaking. Through these practices, groups of students in tutorial can build shared conceptual understandings of the…
Preparing Psychiatric Residents for the "Real World": A Practice Management Curriculum
ERIC Educational Resources Information Center
Wichman, Christina L.; Netzel, Pamela J.; Menaker, Ronald
2009-01-01
Objective: The authors describe a course designed for residents to develop the knowledge and skills necessary to collaborate and successfully compete in today's complex health care environment and to achieve competency in systems-based practice. Methods: Postgraduation surveys demonstrated a need for improvement in preparing residents for practice…
Designing a Mobile-App-Based Collaborative Learning System
ERIC Educational Resources Information Center
Cheong, Christopher; Bruno, Vince; Cheong, France
2012-01-01
An important aspect of education is to promote higher-order thinking skills to learners. However, in the lecture environment, learners are passively engaged and it is unlikely for higher-order thinking to occur. Although interventions such as "clickers" can be used to increase engagement in lectures, this does not necessarily promote…
Building a Virtual Learning Network for Teachers in a Suburban School District
ERIC Educational Resources Information Center
Kurtzworth-Keen, Kristin A.
2011-01-01
Emerging research indicates that learning management systems such as Moodle can function as virtual, collaborative environments, where collegial interactions promote professional learning opportunities. This study deployed a mixed methods design in order to describe and analyze teacher participation in a virtual learning network (VLN) that was…
Building a Shared Virtual Learning Culture: An International Classroom Partnership
ERIC Educational Resources Information Center
Starke-Meyerring, Doreen; Andrews, Deborah
2006-01-01
Business professionals increasingly use digital tools to collaborate across multiple cultures, locations, and time zones. Success in this complex environment depends on a shared culture that facilitates the making of knowledge and the best contributions of all team members. To prepare managers for such communication, the authors designed and…
Field/Work, Site, and Other Matters: Exploring Design Practice across Disciplines
ERIC Educational Resources Information Center
Pirrie, Anne; Brown, James Benedict
2011-01-01
This article explores educational research and theory in the area of the built environment by reflecting on the challenges of interdisciplinary enquiry and the prerequisites for successful interdisciplinary practice. The genesis of a particular example of interdisciplinary collaboration is explored, and the authors come to the deceptively simple…
Study Design to Evaluate Mobile Source Emissions in the Near-Roadway Environment
In 2007, the U.S. Federal Highway Administration and U.S. Environmental Protection Agency entered into a collaborative agreement to study the near-road concentration and dispersion properties of several mobile source air toxics (MSATs) identified by the EP A 2001 Mobile Source Ai...
Dancing in Place: Site-Specific Work
ERIC Educational Resources Information Center
Metal-Corbin, Josie
2012-01-01
In her lecture the 2012 NDA Scholar/Artist, Josie Metal-Corbin, chronicles four decades of working with artists, educators, librarians, and scientists. The kinetic language of dance and the visual impact of specific environments provide provocative opportunities for collaboration, wherein the site becomes the framework or map for the dance design.…
Exploring Collaborative Learning Effect in Blended Learning Environments
ERIC Educational Resources Information Center
Sun, Z.; Liu, R.; Luo, L.; Wu, M.; Shi, C.
2017-01-01
The use of new technology encouraged exploration of the effectiveness and difference of collaborative learning in blended learning environments. This study investigated the social interactive network of students, level of knowledge building and perception level on usefulness in online and mobile collaborative learning environments in higher…
ERIC Educational Resources Information Center
Muuro, Maina Elizaphan; Oboko, Robert; Wagacha, Waiganjo Peter
2016-01-01
In this paper we explore the impact of an intelligent grouping algorithm based on learners' collaborative competency when compared with (a) instructor based Grade Point Average (GPA) method level and (b) random method, on group outcomes and group collaboration problems in an online collaborative learning environment. An intelligent grouping…
Smith, Heather A; Reade, Maurianne; Marr, Marion; Jeeves, Nicholas
2017-01-01
Interprofessional collaboration is a complex process that has the potential to transform patient care for the better in urban, rural and remote healthcare settings. Simulation has been found to improve participants' interprofessional competencies, but the mechanisms by which interprofessionalism is learned have yet to be understood. A rural wilderness medicine conference (WildER Med) in northern Ontario, Canada with simulated medical scenarios has been demonstrated to be effective in improving participants' collaboration without formal interprofessional education (IPE) curriculum. Interprofessionalism may be taught through rural and remote medical simulation, as done in WildER Med where participants' interprofessional competencies improved without any formal IPE curriculum. This learning may be attributed to the informal and hidden curriculum. Understanding the mechanism by which this rural educational experience contributed to participants' learning to collaborate requires insight into the events before, during and after the simulations. The authors drew upon feedback from facilitators and patient actors in one-on-one interviews to develop a grounded theory for how collaboration is taught and learned. Sharing emerged as the core concept of a grounded theory to explain how team members acquired interprofessional collaboration competencies. Sharing was enacted through the strategies of developing common goals, sharing leadership, and developing mutual respect and understanding. Further analysis of the data and literature suggests that the social wilderness environment was foundational in enabling sharing to occur. Medical simulations in other rural and remote settings may offer an environment conducive to collaboration and be effective in teaching collaboration. When designing interprofessional education, health educators should consider using emergency response teams or rural community health teams to optimize the informal and hidden curriculum contributing to interprofessional learning.
1998-01-01
including the surface they lie on and the edge curves that bind them. Also stored is topological information indicating how all these elements are connected...microchip. This technology researched by Texas Instruments is referred to as a Digital Micromirror Device (DMD) (Burdea & Coiffet, 1994). It has the...stereoscopic imaging system designed to resemble traditional designer drafting boards. The Visionarium uses a 180 degree curved screen providing users with
NASA Astrophysics Data System (ADS)
Herbert, B. E.; Schroeder, C.; Brody, S.; Cahill, T.; Kenimer, A.; Loving, C.; Schielack, J.
2003-12-01
The ITS Center for Teaching and Learning is a five-year NSF-funded collaborative effort to engage scientists and university and school or district-based science educators in the use of information technology to improve science teaching and learning at all levels. One assumption is that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology in science classrooms has been shown to help achieve this objective. As a design study that is -working toward a greater understanding of a -learning ecology", the research related to the creation and refinement of the ITS Centeres collaborative environment for professional development is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. This presentation will discuss the results of the formative evaluation process that has moved the ITS Centeres collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). In particular, we will focus on the development of the ITS Centeres Project Teams, which create learning experiences over two summers focused on the exploration of science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the K-16 curriculum. Ongoing formative assessment of the Cohort I project teams led to a greater emphasis on participant exploration of authentic scientific questions and tighter integration of scientific explorations and development of participant inquiry projects.
A study on haptic collaborative game in shared virtual environment
NASA Astrophysics Data System (ADS)
Lu, Keke; Liu, Guanyang; Liu, Lingzhi
2013-03-01
A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.
A collaborative molecular modeling environment using a virtual tunneling service.
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.
Indiva: a middleware for managing distributed media environment
NASA Astrophysics Data System (ADS)
Ooi, Wei-Tsang; Pletcher, Peter; Rowe, Lawrence A.
2003-12-01
This paper presents a unified set of abstractions and operations for hardware devices, software processes, and media data in a distributed audio and video environment. These abstractions, which are provided through a middleware layer called Indiva, use a file system metaphor to access resources and high-level commands to simplify the development of Internet webcast and distributed collaboration control applications. The design and implementation of Indiva are described and examples are presented to illustrate the usefulness of the abstractions.
Holos: A collaborative environment for similarity-based holistic approaches.
Lê, Tâm Minh; Brard, Margot; Lê, Sébastien
2017-10-01
Through this article, we aim to introduce Holos-a new collaborative environment that allows researchers to carry out experiments based on similarity assessments between stimuli, such as in projective-mapping and sorting tasks. An important feature of Holos is its capacity to assess real-time individual processes during the task. Within the Holos environment, researchers can design experiments on its platform, which can handle four kinds of stimuli: concepts, images, sounds, and videos. In addition, researchers can share their study resources within the scientific community, including stimuli, experimental protocols, and/or the data collected. With a dedicated Android application combined with a tactile human-machine interface, subjects can perform experiments using a tablet to obtain similarity measures between stimuli. On the tablet, the stimuli are displayed as icons that can be dragged with one finger to position them, depending on the ways they are perceived. By recording the x,y coordinates of the stimuli while subjects move the icons, the obtained data can reveal the cognitive processes of the subjects during the experiment. Such data, named digit-tracking data, can be analyzed with the SensoMineR package. In this article, we describe how researchers can design an experiment, how subjects can perform the experiment, and how digit-tracking data can be statistically analyzed within the Holos environment. At the end of the article, a short exemplary experiment is presented.
NASA Astrophysics Data System (ADS)
Martin, P.; Tseu, A.; Férey, N.; Touraine, D.; Bourdot, P.
2014-02-01
Most advanced immersive devices provide collaborative environment within several users have their distinct head-tracked stereoscopic point of view. Combining with common used interactive features such as voice and gesture recognition, 3D mouse, haptic feedback, and spatialized audio rendering, these environments should faithfully reproduce a real context. However, even if many studies have been carried out on multimodal systems, we are far to definitively solve the issue of multimodal fusion, which consists in merging multimodal events coming from users and devices, into interpretable commands performed by the application. Multimodality and collaboration was often studied separately, despite of the fact that these two aspects share interesting similarities. We discuss how we address this problem, thought the design and implementation of a supervisor that is able to deal with both multimodal fusion and collaborative aspects. The aim of this supervisor is to ensure the merge of user's input from virtual reality devices in order to control immersive multi-user applications. We deal with this problem according to a practical point of view, because the main requirements of this supervisor was defined according to a industrial task proposed by our automotive partner, that as to be performed with multimodal and collaborative interactions in a co-located multi-user environment. In this task, two co-located workers of a virtual assembly chain has to cooperate to insert a seat into the bodywork of a car, using haptic devices to feel collision and to manipulate objects, combining speech recognition and two hands gesture recognition as multimodal instructions. Besides the architectural aspect of this supervisor, we described how we ensure the modularity of our solution that could apply on different virtual reality platforms, interactive contexts and virtual contents. A virtual context observer included in this supervisor in was especially designed to be independent to the content of the virtual scene of targeted application, and is use to report high-level interactive and collaborative events. This context observer allows the supervisor to merge these interactive and collaborative events, but is also used to deal with new issues coming from our observation of two co-located users in an immersive device performing this assembly task. We highlight the fact that when speech recognition features are provided to the two users, it is required to automatically detect according to the interactive context, whether the vocal instructions must be translated into commands that have to be performed by the machine, or whether they take a part of the natural communication necessary for collaboration. Information coming from this context observer that indicates a user is looking at its collaborator, is important to detect if the user is talking to its partner. Moreover, as the users are physically co-localised and head-tracking is used to provide high fidelity stereoscopic rendering, and natural walking navigation in the virtual scene, we have to deals with collision and screen occlusion between the co-located users in the physical work space. Working area and focus of each user, computed and reported by the context observer is necessary to prevent or avoid these situations.
Supporting Awareness for Augmenting Participation in Collaborative Learning.
ERIC Educational Resources Information Center
Ogata, Hiroaki; Yano, Yoneo
This paper describes Coconuts (Concurrent Collaborative Learning Environment Supported by Awareness), a proposed module of Sharlok (Sharing, Linking and Looking-for Knowledge), an open-ended and collaborative learning environment that integrates a knowledge building tool with a collaborative interface tool. Coconuts was developed in order to…
NASA Technical Reports Server (NTRS)
Alexander, Reginald A.; Stanley, Thomas Troy
1999-01-01
Presented is a design tool and process that connects several disciplines which are needed in the complex and integrated design of high performance reusable single stage to orbit (SSTO) vehicles. Every system is linked to every other system and in the case of SSTO vehicles with air breathing propulsion, which is currently being studied by the National Aeronautics and Space Administration (NASA); the thermal protection system (TPS) is linked directly to almost every major system. The propulsion system pushes the vehicle to velocities on the order of 15 times the speed of sound in the atmosphere before pulling up to go to orbit which results high temperatures on the external surfaces of the vehicle. Thermal protection systems to maintain the structural integrity of the vehicle must be able to mitigate the heat transfer to the structure and be lightweight. Herein lies the interdependency, in that as the vehicle's speed increases, the TPS requirements are increased. And as TPS masses increase the effect on the propulsion system and all other systems is compounded. To adequately determine insulation masses for a vehicle such as the one described above, the aeroheating loads must be calculated and the TPS thicknesses must be calculated for the entire vehicle. To accomplish this an ascent or reentry trajectory is obtained using the computer code Program to Optimize Simulated Trajectories (POST). The trajectory is then used to calculate the convective heat rates on several locations on the vehicles using the Miniature Version of the JA70 Aerodynamic Heating Computer Program (MINIVER). Once the heat rates are defined for each body point on the vehicle, then insulation thicknesses that are required to maintain the vehicle within structural limits are calculated using Systems Improved Numerical Differencing Analyzer (SINDA) models. If the TPS masses are too heavy for the performance of the vehicle the process may be repeated altering the trajectory or some other input to reduce the TPS mass. The problem described is an example of the need for collaborative design and analysis. Analysis tools are being developed to facilitate these collaborative efforts. RECIPE is a cross-platform application capable of hosting a number of engineers and designers across the Internet for distributed and collaborative engineering environments. Such integrated system design environments allow for collaborative team design analysis for performing individual or reduced team studies. The analysis tools mentioned earlier are commonly run on different platforms and are usually run by different people. To facilitate the larger number of potential runs that may need to be made, RECIPE connects the computer codes that calculate the trajectory data, heat rate data, and TPS masses so that the output from each tool is easily transferred to the model input files that need it. This methodology is being applied to solve launch vehicle thermal design problems to shorten the design cycle, and enable the project team to evaluate design options. Results will be presented indicating the effectiveness of this as a collaborative design tool.
Earth System Science Education for the 21st Century: Progress and Plans
NASA Astrophysics Data System (ADS)
Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.
2005-12-01
Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.
A National Virtual Specimen Database for Early Cancer Detection
NASA Technical Reports Server (NTRS)
Crichton, Daniel; Kincaid, Heather; Kelly, Sean; Thornquist, Mark; Johnsey, Donald; Winget, Marcy
2003-01-01
Access to biospecimens is essential for enabling cancer biomarker discovery. The National Cancer Institute's (NCI) Early Detection Research Network (EDRN) comprises and integrates a large number of laboratories into a network in order to establish a collaborative scientific environment to discover and validate disease markers. The diversity of both the institutions and the collaborative focus has created the need for establishing cross-disciplinary teams focused on integrating expertise in biomedical research, computational and biostatistics, and computer science. Given the collaborative design of the network, the EDRN needed an informatics infrastructure. The Fred Hutchinson Cancer Research Center, the National Cancer Institute,and NASA's Jet Propulsion Laboratory (JPL) teamed up to build an informatics infrastructure creating a collaborative, science-driven research environment despite the geographic and morphology differences of the information systems that existed within the diverse network. EDRN investigators identified the need to share biospecimen data captured across the country managed in disparate databases. As a result, the informatics team initiated an effort to create a virtual tissue database whereby scientists could search and locate details about specimens located at collaborating laboratories. Each database, however, was locally implemented and integrated into collection processes and methods unique to each institution. This meant that efforts to integrate databases needed to be done in a manner that did not require redesign or re-implementation of existing system
NASA Astrophysics Data System (ADS)
Mease, L.; Gibbs, T.; Adiseshan, T.
2014-12-01
The 2010 Deepwater Horizon disaster required unprecedented engagement and collaboration with scientists from multiple disciplines across government, academia, and industry. Although this spurred the rapid advancement of valuable new scientific knowledge and tools, it also exposed weaknesses in the system of information dissemination and exchange among the scientists from those three sectors. Limited government communication with the broader scientific community complicated the rapid mobilization of the scientific community to assist with spill response, evaluation of impact, and public perceptions of the crisis. The lessons and new laws produced from prior spills such as Exxon Valdez were helpful, but ultimately did not lead to the actions necessary to prepare a suitable infrastructure that would support collaboration with non-governmental scientists. As oil demand pushes drilling into increasingly extreme environments, addressing the challenge of effective, science-based disaster response is an imperative. Our study employs a user-centered design process to 1) understand the obstacles to and opportunity spaces for effective scientific collaboration during environmental crises such as large oil spills, 2) identify possible tools and strategies to enable rapid information exchange between government responders and non-governmental scientists from multiple relevant disciplines, and 3) build a network of key influencers to secure sufficient buy-in for scaled implementation of appropriate tools and strategies. Our methods include user ethnography, complex system mapping, individual and system behavioral analysis, and large-scale system design to identify and prototype a solution to this crisis collaboration challenge. In this talk, we will present out insights gleaned from existing analogs of successful scientific collaboration during crises and our initial findings from the 60 targeted interviews we conducted that highlight key collaboration challenges that government agencies, academic research institutions, and industry scientists face during oil spill crises. We will also present a synthesis of leverage points in the system that may amplify the impact of an improved collaboration strategy among scientific stakeholders.
NASA Astrophysics Data System (ADS)
Haubt, R.
2016-06-01
This paper explores a Radical Collaborative Approach in the global and centralized Rock-Art Database project to find new ways to look at rock-art by making information more accessible and more visible through public contributions. It looks at rock-art through the Key Performance Indicator (KPI), identified with the latest Australian State of the Environment Reports to help develop a better understanding of rock-art within a broader Cultural and Indigenous Heritage context. Using a practice-led approach the project develops a conceptual collaborative model that is deployed within the RADB Management System. Exploring learning theory, human-based computation and participant motivation the paper develops a procedure for deploying collaborative functions within the interface design of the RADB Management System. The paper presents the results of the collaborative model implementation and discusses considerations for the next iteration of the RADB Universe within an Agile Development Approach.
Developing Distributed Collaboration Systems at NASA: A Report from the Field
NASA Technical Reports Server (NTRS)
Becerra-Fernandez, Irma; Stewart, Helen; Knight, Chris; Norvig, Peter (Technical Monitor)
2001-01-01
Web-based collaborative systems have assumed a pivotal role in the information systems development arena. While business to customers (B-to-C) and business to business (B-to-B) electronic commerce systems, search engines, and chat sites are the focus of attention, web-based systems span the gamut of information systems that were traditionally confined to internal organizational client server networks. For example, the Domino Application Server allows Lotus Notes (trademarked) uses to build collaborative intranet applications and mySAP.com (trademarked) enables web portals and e-commerce applications for SAP users. This paper presents the experiences in the development of one such system: Postdoc, a government off-the-shelf web-based collaborative environment. Issues related to the design of web-based collaborative information systems, including lessons learned from the development and deployment of the system as well as measured performance, are presented in this paper. Finally, the limitations of the implementation approach as well as future plans are presented as well.
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-01-01
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-09-14
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.
Architecture for distributed design and fabrication
NASA Astrophysics Data System (ADS)
McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.
1997-01-01
We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.
Collaborative, Sequential and Isolated Decisions in Design
NASA Technical Reports Server (NTRS)
Lewis, Kemper; Mistree, Farrokh
1997-01-01
The Massachusetts Institute of Technology (MIT) Commission on Industrial Productivity, in their report Made in America, found that six recurring weaknesses were hampering American manufacturing industries. The two weaknesses most relevant to product development were 1) technological weakness in development and production, and 2) failures in cooperation. The remedies to these weaknesses are considered the essential twin pillars of CE: 1) improved development process, and 2) closer cooperation. In the MIT report, it is recognized that total cooperation among teams in a CE environment is rare in American industry, while the majority of the design research in mathematically modeling CE has assumed total cooperation. In this paper, we present mathematical constructs, based on game theoretic principles, to model degrees of collaboration characterized by approximate cooperation, sequential decision making and isolation. The design of a pressure vessel and a passenger aircraft are included as illustrative examples.
Large public display boards: a case study of an OR board and design implications.
Lasome, C E; Xiao, Y
2001-01-01
A compelling reason for studying artifacts in collaborative work is to inform design. We present a case study of a public display board (12 ft by 4 ft) in a Level-I trauma center operating room (OR) unit. The board has evolved into a sophisticated coordination tool for clinicians and supporting personnel. This paper draws on study findings about how the OR board is used and organizes the findings into three areas: (1) visual and physical properties of the board that are exploited for collaboration, (2) purposes the board was configured to serve, and (3) types of physical and perceptual interaction with the board. Findings and implications related to layout, size, flexibility, task management, problem-solving, resourcing, shared awareness, and communication are discussed in an effort to propose guidelines to facilitate the design of electronic, computer driven display boards in the OR environment.
NASA Astrophysics Data System (ADS)
Musil, Juergen; Schweda, Angelika; Winkler, Dietmar; Biffl, Stefan
Based on our observations of Austrian video game software development (VGSD) practices we identified a lack of systematic processes/method support and inefficient collaboration between various involved disciplines, i.e. engineers and artists. VGSD includes heterogeneous disciplines, e.g. creative arts, game/content design, and software. Nevertheless, improving team collaboration and process support is an ongoing challenge to enable a comprehensive view on game development projects. Lessons learned from software engineering practices can help game developers to increase game development processes within a heterogeneous environment. Based on a state of the practice survey in the Austrian games industry, this paper presents (a) first results with focus on process/method support and (b) suggests a candidate flexible process approach based on Scrum to improve VGSD and team collaboration. Results showed (a) a trend to highly flexible software processes involving various disciplines and (b) identified the suggested flexible process approach as feasible and useful for project application.
From Sketch to Screen, from Scratch to Competence
ERIC Educational Resources Information Center
Lee, Hyun-Kyung
2017-01-01
This article is about nature artists, design researchers and scientists collaborating in a research lab with scarce resources, where communication is doubled by an art installation of drawings. It aims to identify how drawings can be used in academically different environments in order to improve co-work processes. Data was collected in a South…
Effects of 3D Printing and Design Software on Students' Overall Performance
ERIC Educational Resources Information Center
Kwon, Hyunkyung
2017-01-01
Researchers found that student-centered, technology-integrated learning environments help to produce students who are better able to think critically, solve problems, collaborate with others, and engage deeply in the learning process. Understanding the impact of technology and finding the best ways to integrate technology into the classroom is…
Fostering Reflective Learning in Confucian Heritage Culture Environments
ERIC Educational Resources Information Center
De Vita, Glauco; Bernard, Mohan J.
2011-01-01
This paper reports on two tutors' efforts to foster reflective learning in the context of a business synoptic module delivered as part of a programme of collaborative provision at City University of Hong Kong. In assessing what the design and implementation of processes aimed at fostering reflective learning have accomplished, evaluatory evidence…
Design, Implementation, and Evaluation of a Flipped Format General Chemistry Course
ERIC Educational Resources Information Center
Weaver, Gabriela C.; SturtevantHannah G.
2015-01-01
Research has consistently shown that active problem-solving in a collaborative environment supports more effective learning than the traditional lecture approach. In this study, a flipped classroom format was implemented and evaluated in the chemistry majors' sequence at Purdue University over a period of three years. What was formerly lecture…
ERIC Educational Resources Information Center
Lima, Marcos; Koehler, Matthew J.; Spiro, Rand J.
2004-01-01
In this article, we discuss how the Harvard Method of case study, Interactive Communication Technologies, and Cognitive Flexibility Theory may contribute to case-based learning about business decision-making. In particular, we are interested in designing learning environments that foster critical thinking, creativity, and reasoning that entertains…
ERIC Educational Resources Information Center
Deng, Yi-Chan; Lin, Taiyu; Kinshuk; Chan, Tak-Wai
2006-01-01
"One-to-one" technology enhanced learning research refers to the design and investigation of learning environments and learning activities where every learner is equipped with at least one portable computing device enabled by wireless capability. G1:1 is an international research community coordinated by a network of laboratories conducting…
An Investigation of Coopetitive Pedagogic Design for Knowledge Creation in Web-Based Learning
ERIC Educational Resources Information Center
Fu, Fong-Ling; Wu, Ya-Ling; Ho, Hsi-Chuan
2009-01-01
Information and communication technologies (ICTs) have created a supportive environment for collaborative learning at the expense of student motivation and engagement. This study attempts to explore the development of a productive learning atmosphere in the context of Web-based learning. An experiment is conducted with university-level students…
ERIC Educational Resources Information Center
Caceffo, Ricardo; Azevedo, Rodolfo
2014-01-01
The constructivist theory indicates that knowledge is not something finished and complete. However, the individuals must construct it through the interaction with the physical and social environment. The Active Learning is a methodology designed to support the constructivism through the involvement of students in their learning process, allowing…
E-Learning in Engineering Education: Design of a Collaborative Advanced Remote Access Laboratory
ERIC Educational Resources Information Center
Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker
2010-01-01
Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…
NMobTec-EnvEdu: M-Learning System for Environmental Education
ERIC Educational Resources Information Center
Cavus, Nadire
2008-01-01
This paper introduced the implementation of a New Mobile Technologies and Environmental Education System (NMobTec-EnvEdu) designed for m-learning environments. The NMobTec-EnvEdu system has been developed to provide environmental education in a collaborative framework to undergraduate students through the Internet using mobile phones. The study…
Innovation Education Enabled through a Collaborative Virtual Reality Learning Environment
ERIC Educational Resources Information Center
Thorsteinsson, Gisli; Page, Tom; Lehtonen, Miika; Ha, Joong Gyu
2006-01-01
This article provides a descriptive account of the development of an approach to the support of design and technology education with 3D Virtual Reality (VR) technologies on an open and distance learning basis. This work promotes an understanding of the implications and possibilities of advanced virtual learning technologies in education for…
A Collaborative Virtual Environment for Situated Language Learning Using VEC3D
ERIC Educational Resources Information Center
Shih, Ya-Chun; Yang, Mau-Tsuen
2008-01-01
A 3D virtually synchronous communication architecture for situated language learning has been designed to foster communicative competence among undergraduate students who have studied English as a foreign language (EFL). We present an innovative approach that offers better e-learning than the previous virtual reality educational applications. The…
ERIC Educational Resources Information Center
Wdowik, Steven
2014-01-01
Purpose: The purpose of this paper is to create a synchronous online learning community through the use of "Blackboard Collaborate!" to promote and enhance transactional engagement outside the classroom. Design/methodology/approach: This paper employs a quantitative and qualitative approach where data were sourced from a third year…
ERIC Educational Resources Information Center
Sharp, Laurie A.
2018-01-01
Technology has transformed learning at the postsecondary level and significantly increased the prevalence of digital learning environments. As adult educators approach instructional design, they must consider how to apply research-based practices that preserve the quality of instruction and provide adult learners with technology-based instruction…
Ownership, Risk-Taking, and Collaboration in an Elementary Language Arts Classroom.
ERIC Educational Resources Information Center
Sturdivant, Cynthia
1992-01-01
A teacher of fourth-, fifth-, and sixth-grade students with deafness in a residential school shares methods and activities found to be effective. The methods stress the importance of expectations for learners, ways that design of the learning environment can encourage student ownership, risk taking, and responsibility. (Author/DB)
Combining Technology and Narrative in a Learning Environment for Workplace Training.
ERIC Educational Resources Information Center
Nelson, Wayne A.; Wellings, Paula; Palumbo, David; Gupton, Christine
In a project designed to provide training for entry-level job skills in high tech industries, a combination of narrative and technology was employed to aid learners in developing the necessary soft skills (dependability, responsibility, listening comprehension, collaboration, et cetera) sought by employers. The EnterTech Project brought together a…
Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs
Chen, You; Malin, Bradley
2014-01-01
Collaborative information systems (CIS) are deployed within a diverse array of environments, ranging from the Internet to intelligence agencies to healthcare. It is increasingly the case that such systems are applied to manage sensitive information, making them targets for malicious insiders. While sophisticated security mechanisms have been developed to detect insider threats in various file systems, they are neither designed to model nor to monitor collaborative environments in which users function in dynamic teams with complex behavior. In this paper, we introduce a community-based anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on information recorded in the access logs of collaborative environments. CADS is based on the observation that typical users tend to form community structures, such that users with low a nity to such communities are indicative of anomalous and potentially illicit behavior. The model consists of two primary components: relational pattern extraction and anomaly detection. For relational pattern extraction, CADS infers community structures from CIS access logs, and subsequently derives communities, which serve as the CADS pattern core. CADS then uses a formal statistical model to measure the deviation of users from the inferred communities to predict which users are anomalies. To empirically evaluate the threat detection model, we perform an analysis with six months of access logs from a real electronic health record system in a large medical center, as well as a publicly-available dataset for replication purposes. The results illustrate that CADS can distinguish simulated anomalous users in the context of real user behavior with a high degree of certainty and with significant performance gains in comparison to several competing anomaly detection models. PMID:25485309
Multidisciplinary analysis and design of printed wiring boards
NASA Astrophysics Data System (ADS)
Fulton, Robert E.; Hughes, Joseph L.; Scott, Waymond R., Jr.; Umeagukwu, Charles; Yeh, Chao-Pin
1991-04-01
Modern printed wiring board design depends on electronic prototyping using computer-based simulation and design tools. Existing electrical computer-aided design (ECAD) tools emphasize circuit connectivity with only rudimentary analysis capabilities. This paper describes a prototype integrated PWB design environment denoted Thermal Structural Electromagnetic Testability (TSET) being developed at Georgia Tech in collaboration with companies in the electronics industry. TSET provides design guidance based on enhanced electrical and mechanical CAD capabilities including electromagnetic modeling testability analysis thermal management and solid mechanics analysis. TSET development is based on a strong analytical and theoretical science base and incorporates an integrated information framework and a common database design based on a systematic structured methodology.
A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service
Lee, Jun; Kim, Jee-In; Kang, Lin-Woo
2012-01-01
Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721
Local health department leadership strategies for healthy built environments.
Kuiper, Heather; Jackson, Richard J; Barna, Stefi; Satariano, William A
2012-01-01
The built environment is an important but less-recognized health determinant, and local health departments need expanded guidance to address it. In such situations, leadership is particularly relevant. To assess whether and how local public and environmental health leaders increase their departments' health-promoting impact on built environment design, and what pitfalls they should avoid. Mixed-methods employing cross-sectional surveys and a comparative case study. Local public and environmental health departments. PARTICIPANTS SURVEY: A total of 159 (89%) health officers, health directors, and environmental health directors from all 62 local jurisdictions in California. Case-Study: Three departments, 12 cases, 36 health and land-use professionals, and 30 key informants. The study measured the influence of leadership practices on health departments' built environment-related collaborations, land use activities, policy developments, and contributions to physical changes. Quantitative multivariate linear and logistic regression were used. Case-study content analysis and pattern-matching, which related strong and weak leadership practices to outcomes, were also employed. Departments having highly innovative leaders with positive attitudes had greater odds of achieving physical changes to the built environment (OR: 4.5, 3.4, respectively). Leadership that most prepared their departments for built environment work (by updating staffing, structure, and strategy) tripled interagency and cross-sector collaboration (OR: 3.4). Leadership of successful departments consistently (1) established and managed a healthy built environment vision, (2) cultivated innovation, (3) supported, empowered and protected staff, (4) directly engaged in land use and transportation processes, (5) established direct contacts with directors in other departments, and (6) leveraged their professional reputation. Inconsistency in these practices was twice as common among failure as success cases (80%, 43%). Local health leadership underlies public and environmental health departments' community design efforts and should receive technical support and targeted resources to do so effectively.
A Multi-Collaborative Ambient Assisted Living Service Description Tool
Falcó, Jorge L.; Vaquerizo, Esteban; Artigas, José Ignacio
2014-01-01
Collaboration among different stakeholders is a key factor in the design of Ambient Assisted Living (AAL) environments and services. Throughout several AAL projects we have found repeated difficulties in this collaboration and have learned lessons by the experience of solving real situations. This paper highlights identified critical items for collaboration among technicians, users, company and institutional stakeholders and proposes as a communication tool for a project steering committee a service description tool which includes information from the different fields in comprehensible format for the others. It was first generated in the MonAMI project to promote understanding among different workgroups, proven useful there, and further tested later in some other smaller AAL projects. The concept of scalable service description has proven useful for understanding of different disciplines and for participatory decision making throughout the projects to adapt to singularities and partial successes or faults of each action. This paper introduces such tool, relates with existing methodologies in cooperation in AAL and describes it with a example to offer to AAL community. Further work on this tool will significantly improve results in user-centered design of sustainable services in AAL. PMID:24897409
Study on Collaborative Object Manipulation in Virtual Environment
NASA Astrophysics Data System (ADS)
Mayangsari, Maria Niken; Yong-Moo, Kwon
This paper presents comparative study on network collaboration performance in different immersion. Especially, the relationship between user collaboration performance and degree of immersion provided by the system is addressed and compared based on several experiments. The user tests on our system include several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments.
ERIC Educational Resources Information Center
Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min
2015-01-01
This study investigated three aspects: how project-based collaborative learning facilitates cross-cultural understanding; how students perceive project-based collaborative learning implementation in a collaborative cyber community (3C) online environment; and what types of communication among students are used. A qualitative case study approach…
ERIC Educational Resources Information Center
Fakomogbon, Michael Ayodele; Bolaji, Hameed Olalekan
2017-01-01
Collaborative learning is an approach employed by instructors to facilitate learning and improve learner's performance. Mobile learning can accommodate a variety of learning approaches. This study, therefore, investigated the effects of collaborative learning styles on performance of students in a mobile learning environment. The specific purposes…
Carroll, Cathryn A; Rychlewski, Walt; Teat, Marty; Clawson, Darrin
2004-01-01
This report describes an innovative training program designed to foster entrepreneurship and professionalism in students interested in the field of medical informatics. The course was developed through a private-public interinstitutional collaboration involving four academic institutions, one private firm specializing in health care information management systems, and a philanthropic organization. The program challenged students to serve in multiple roles on multidisciplinary teams and develop an innovative hand-held solution for drug information retrieval. Although the course was technically and behaviorally rigorous and required extensive hands-on experience in a nontraditional learning environment, both students and faculty responded positively.
Humanizing outer space: architecture, habitability, and behavioral health
NASA Astrophysics Data System (ADS)
Harrison, Albert A.
2010-03-01
Space architecture is the theory and practice of designing and building environments for humans in outer space. In our present century professional astronauts and cosmonauts will remain a focus for space architects, but new designs must better accommodate passengers (tourists and industrial workers) and settlers who set forth to establish off-world societies. Psychologists and architects can work together to assure good spaceflight behavioral health, defined by a lack of neuropsychiatric dysfunction, and the presence of high levels of personal adjustment, cordial interpersonal relations, and positive interactions with the physical and social environments. By designing and constructing facilities that are occupant centered and activity oriented, architects increase habitability thereby decreasing environmental challenges to behavioral health. Simulators and spaceflight-analogous environments make it possible to test design solutions prior to their deployment in space. This paper concludes with suggestions for increasing collaboration between architects and psychologists. These include increased sharing of hypotheses and data, articulating complementary research styles, and mutual advocacy for early, potent, and sustained involvement in mission planning and execution.
Navy Collaborative Integrated Information Technology Initiative
2000-01-11
investigating the development and application of collaborative multimedia conferencing software for education and other groupwork activities. We are extending...an alternative environment for place-based synchronous groupwork . The new environment is based on the same collaborative infrastructure as the...alternative environment for place- based synchronous groupwork . This information is being used as an initial user profile, requirements analysis
Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor
One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.
ARL Collaborative Research Alliance Materials in Extreme Dynamic Environments (MEDE)
2010-11-19
Program Internal to the CRA Staff Rotation Lectures, Workshops, and Research Reviews Education Opportunities for Government Personnel Student ... Engagement with ARL Research Environment Industry Partnership + Collaboration Other Collaboration Opportunities High Performance Computing DoD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesler, Elissa J; Branstetter, Lisa R; Churchill, Gary A
2008-01-01
Complex traits and disease co-morbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of the resources needed to investigate biomolecular networks and ultimately systems level phenotypes, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis. Its novel and important features include high levels of genetic diversity, a large population size to ensure sufficient power in high-dimensional studies, and high mapping precision through accumulation of independentmore » recombination events. Implementation of the Collaborative Cross has been in progress at the Oak Ridge National Laboratory (ORNL) since May 2005. This is achieved through a software assisted breeding program with fully traceable lineages, performed in a uniform environment. Currently, there are 650 lines in production with almost 200 lines over seven generations of inbreeding. Retired breeders enter a high-throughput phenotyping protocol and DNA samples are banked for analysis of recombination history, allele loss, and population structure. Herein we present a progress report of the Collaborative Cross breeding program at ORNL and a description of the kinds of investigations that this resource will support.« less
Using a NIATx based local learning collaborative for performance improvement
Roosa, Mathew; Scripa, Joseph S.; Zastowny, Thomas R.; Ford, James H.
2012-01-01
Local governments play an important role in improving substance abuse and mental health services. The structure of the local learning collaborative requires careful attention to old relationships and challenges local governmental leaders to help move participants from a competitive to collaborative environment. This study describes one county’s experience applying the NIATx process improvement model via a local learning collaborative. Local substance abuse and mental health agencies participated in two local learning collaboratives designed to improve client retention in substance abuse treatment and client access to mental health services. Results of changes implemented at the provider level on access and retention are outlined. The process of implementing evidence-based practices by using the Plan-Do-Study-Act rapid-cycle change is a powerful combination for change at the local level. Key lessons include: creating a clear plan and shared vision, recognizing that one size does not fit all, using data can help fuel participant engagement, a long collaborative may benefit from breaking it into smaller segments, and paying providers to offset costs of participation enhances their engagement. The experience gained in Onondaga County, New York, offers insights that serve as a foundation for using the local learning collaborative in other community-based organizations. PMID:21371751
Yim, Eugene S; Choi, Ricky Y; VanRooyen, Michael
2009-01-01
Humanitarian agencies in North Korea operate within a complex sociopolitical environment historically characterized by a baseline of mistrust. As a result of operating within such a heated environment, health sector collaborations between such agencies and the North Korean government have followed unpredictable courses. The factors that have contributed to successful programmatic collaborations, as perceived by United States non-governmental organizations (NGOs) and North Korean officials were investigated. A qualitative, multi-case, comparative, research design using semistructured interviews was used. Expert North Korean informants were interviewed to generate a list of factors contributing to programmatic success, defined as fulfilling mutually established objectives through collaboration. The North Korean informants were asked to identify US NGOs that fulfill these criteria ("mission-compatible NGOs"). Representatives from all of the mission compatible NGOs were interviewed. All informants provided their perspectives on the factors that contributed to successful programmatic collaborations. The interviews were recorded, transcribed, and analyzed for thematic content. North Korean informants identified six mission-compatible US NGOs. The North Korean and US NGO informants provided a number of factors that contributed to successful programs. These factors were grouped into the following themes: (1) responsiveness to North Korean requests; (2) resident status; (3) program monitoring; (4) sincerity (apolitical objectives); (5) information gathering; and (6) interagency collaboration. Some US NGOs have devised innovative measures to work within a unique set of parameters in North Korea. Both US NGOs and North Korean authorities have made significant concessions to maintain their programmatic partnerships. In this manner, seasoned collaborators have employed creative strategies and a form of health diplomacy to facilitate programmatic success in North Korea by building trust within a complex sociopolitical space.
2013-09-01
AND COLLABORATION IN THE HOMELAND SECURITY ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Andrew J. Phelps 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S...collaboration is important, but we are not told how to collaborate. Improvisational theater, on the other hand, is built on collaboration among performers to
Collaborating with Youth to Inform and Develop Tools for Psychotropic Decision Making
Murphy, Andrea; Gardner, David; Kutcher, Stan; Davidson, Simon; Manion, Ian
2010-01-01
Introduction: Youth oriented and informed resources designed to support psychopharmacotherapeutic decision-making are essentially unavailable. This article outlines the approach taken to design such resources, the product that resulted from the approach taken, and the lessons learned from the process. Methods: A project team with psychopharmacology expertise was assembled. The project team reviewed best practices regarding medication educational materials and related tools to support decisions. Collaboration with key stakeholders who were thought of as primary end-users and target groups occurred. A graphic designer and a plain language consultant were also retained. Results: Through an iterative and collaborative process over approximately 6 months, Med Ed and Med Ed Passport were developed. Literature and input from key stakeholders, in particular youth, was instrumental to the development of the tools and materials within Med Ed. A training program utilizing a train-the-trainer model was developed to facilitate the implementation of Med Ed in Ontario, which is currently ongoing. Conclusion: An evidence-informed process that includes youth and key stakeholder engagement is required for developing tools to support in psychopharmacotherapeutic decision-making. The development process fostered an environment of reciprocity between the project team and key stakeholders. PMID:21037916
Collaborative gaming and competition for CS-STEM education using SPHERES Zero Robotics
NASA Astrophysics Data System (ADS)
Nag, Sreeja; Katz, Jacob G.; Saenz-Otero, Alvar
2013-02-01
There is widespread investment of resources in the fields of Computer Science, Science, Technology, Engineering, Mathematics (CS-STEM) education to improve STEM interests and skills. This paper addresses the goal of revolutionizing student education using collaborative gaming and competition, both in virtual simulation environments and on real hardware in space. The concept is demonstrated using the SPHERES Zero Robotics (ZR) Program which is a robotics programming competition. The robots are miniature satellites called SPHERES—an experimental test bed developed by the MIT SSL on the International Space Station (ISS) to test navigation, formation flight and control algorithms in microgravity. The participants compete to win a technically challenging game by programming their strategies into the SPHERES satellites, completely from a web browser. The programs are demonstrated in simulation, on ground hardware and then in a final competition when an astronaut runs the student software aboard the ISS. ZR had a pilot event in 2009 with 10 High School (HS) students, a nationwide pilot tournament in 2010 with over 200 HS students from 19 US states, a summer tournament in 2010 with ˜150 middle school students and an open-registration tournament in 2011 with over 1000 HS students from USA and Europe. The influence of collaboration was investigated by (1) building new web infrastructure and an Integrated Development Environment where intensive inter-participant collaboration is possible, (2) designing and programming a game to solve a relevant formation flight problem, collaborative in nature—and (3) structuring a tournament such that inter-team collaboration is mandated. This paper introduces the ZR web tools, assesses the educational value delivered by the program using space and games and evaluates the utility of collaborative gaming within this framework. There were three types of collaborations as variables—within matches (to achieve game objectives), inter-team alliances and unstructured communication on online forums. Simulation competition scores, website usage statistics and post-competition surveys are used to evaluate educational impact and the effect of collaboration.
Learning and Teaching in a Synchronous Collaborative Environment.
ERIC Educational Resources Information Center
Marjanovic, Olivera
1999-01-01
Describes a new synchronous collaborative environment that combines interactive learning and Group Support Systems for computer-mediated collaboration. Illustrates its potential to improve critical thinking, problem solving, and communication skills, and describes how teachers' roles are changed. (Author/LRW)
Efficacy beliefs predict collaborative practice among intensive care unit nurses.
Le Blanc, Pascale M; Schaufeli, Wilmar B; Salanova, Marisa; Llorens, Susana; Nap, Raoul E
2010-03-01
This paper is a report of an investigation of whether intensive care nurses' efficacy beliefs predict future collaborative practice, and to test the potential mediating role of team commitment in this relationship. Recent empirical studies in the field of work and organizational psychology have demonstrated that (professional) efficacy beliefs are reciprocally related to workers' resources and well-being over time, resulting in a positive gain spiral. Moreover, there is ample evidence that workers' affective commitment to their organization or work-team is related to desirable work behaviours such as citizenship behaviour. A longitudinal design was applied to questionnaire data from the EURICUS-project. Structural Equation Modelling was used to analyse the data. The sample consisted of 372 nurses working in 29 different European intensive care units. Data were collected in 1997 and 1998. However, our research model deals with fundamental psychosocial processes that are not time-dependent. Moreover, recent empirical literature shows that there is still room for improvement in ICU collaborative practice. The hypotheses that (i) the relationship between efficacy beliefs and collaborative practice is mediated by team commitment and (ii) efficacy beliefs, team commitment and collaborative practice are reciprocally related were supported, suggesting a potential positive gain spiral of efficacy beliefs. Healthcare organizations should create working environments that provide intensive care unit nurses with sufficient resources to perform their job well. Further research is needed to design and evaluate interventions for the enhancement of collaborative practice in intensive care units.
The Self-Formation of Collaborative Groups in a Problem Based Learning Environment
ERIC Educational Resources Information Center
Raiyn, Jamal; Tilchin, Oleg
2016-01-01
The aim of this paper is to present "the three steps method" of the self-formation of collaborative groups in a problem-based learning environment. The self-formation of collaborative groups is based on sharing of accountability among students for solving instructional problems. The steps of the method are planning collaborative problem…
ERIC Educational Resources Information Center
Namdar, Bahadir
2017-01-01
The purpose of this study was to investigate preservice science teachers' collaborative knowledge building through socioscientific argumentation on healthy eating in a multiple representation-rich computer supported collaborative learning (CSCL) environment. This study was conducted with a group of preservice science teachers (n = 18) enrolled in…
What People Talk About in Virtual Worlds
NASA Astrophysics Data System (ADS)
Maher, Mary Lou
This chapter examines what people talk about in virtual worlds, employing protocol analysis. Each of two scenario studies was developed to assess the impact of virtual worlds as a collaborative environment for a specific purpose: one for learning and one for designing. The first designed a place in Active Worlds for a course on Web Site Design, having group learning spaces surrounded by individual student galleries. Student text chat was analyzed through a coding scheme with four major categories: control, technology, learning, and place. The second studied expert architects in a Second Life environment called DesignWorld that combined 3D modeling and sketching tools. Video and audio recordings were coded in terms of four categories of communication content (designing, representation of the model, awareness of each other, and software features), and in terms of synthesis comparing alternative designs versus analysis of how well the proposed solution satisfies the given design task. Both studies found that people talk about their avatars, identity, and location in the virtual world. However, the discussion is chiefly about the task and not about the virtual world, implying that virtual worlds provide a viable environment for learning and designing that does not distract people from their task.
A proto-Data Processing Center for LISA
NASA Astrophysics Data System (ADS)
Cavet, Cécile; Petiteau, Antoine; Le Jeune, Maude; Plagnol, Eric; Marin-Martholaz, Etienne; Bayle, Jean-Baptiste
2017-05-01
The LISA project preparation requires to study and define a new data analysis framework, capable of dealing with highly heterogeneous CPU needs and of exploiting the emergent information technologies. In this context, a prototype of the mission’s Data Processing Center (DPC) has been initiated. The DPC is designed to efficiently manage computing constraints and to offer a common infrastructure where the whole collaboration can contribute to development work. Several tools such as continuous integration (CI) have already been delivered to the collaboration and are presently used for simulations and performance studies. This article presents the progress made regarding this collaborative environment and discusses also the possible next steps towards an on-demand computing infrastructure. This activity is supported by CNES as part of the French contribution to LISA.
Politis, Christopher E; Mowat, David L; Keen, Deb
2017-06-16
The Canadian Partnership Against Cancer funded 12 large-scale knowledge to action cancer and chronic disease prevention projects between 2009 and 2016 through the Coalitions Linking Action and Science for Prevention (CLASP) initiative. Two projects, Healthy Canada by Design (HCBD) and Children's Mobility, Health and Happiness (CMHH), developed policies to address physical activity and the built environment through a multisectoral approach. A qualitative analysis involving a review of 183 knowledge products and 8 key informant interviews was conducted to understand what policy changes occurred, and the underlying critical success factors, through these projects. Both projects worked at the local level to change physical activity and built environment policy in 203 sites, including municipalities and schools. Both projects brought multisectoral expertise (e.g., public health, land use planning, transportation engineering, education, etc.) together to inform the development of local healthy public policy in the areas of land use, transportation and school travel planning. Through the qualitative analysis of the knowledge products and key informant interviews, 163 policies were attributed to HCBD and CMHH work. Fourteen "pathways to policy" were identified as critical success factors facilitating and accelerating the development and implementation of physical activity and built environment policy. Of the 14 pathways to policy, 8 had a focus on multisectoral collaboration. The lessons learned from the CLASP experience could support enhanced multisectoral collaborations to accelerate the development and implementation of physical activity and built environment policy in new jurisdictions across Canada and internationally.
Co-creation and Co-innovation in a Collaborative Networked Environment
NASA Astrophysics Data System (ADS)
Klen, Edmilson Rampazzo
Leveraged by the advances in communication and information Technologies, producers and consumers are developing a new behavior. Together with the new emerging collaborative manifestations this behavior may directly impact the way products are developed. This powerful combination indicates that consumers will be involved in a very early stage in product development processes supporting even more the creation and innovation of products. This new way of collaboration gives rise to a new collaborative networked environment based on co-creation and co-innovation. This work will present some evolutionary steps that point to the development of this environment where prosumer communities and virtual organizations interact and collaborate.
Sensor Networking Testbed with IEEE 1451 Compatibility and Network Performance Monitoring
NASA Technical Reports Server (NTRS)
Gurkan, Deniz; Yuan, X.; Benhaddou, D.; Figueroa, F.; Morris, Jonathan
2007-01-01
Design and implementation of a testbed for testing and verifying IEEE 1451-compatible sensor systems with network performance monitoring is of significant importance. The performance parameters measurement as well as decision support systems implementation will enhance the understanding of sensor systems with plug-and-play capabilities. The paper will present the design aspects for such a testbed environment under development at University of Houston in collaboration with NASA Stennis Space Center - SSST (Smart Sensor System Testbed).
ERIC Educational Resources Information Center
Colomar, M. Pilar Alberola; Guzman, Eva Gil
2009-01-01
We are presenting a methodological approach that aims to increase students' motivation by asking them to develop tasks based on professional settings. In order to meet this objective a collaborative methodology was designed and applied to two multidisciplinary projects: MARKETOUR and ICT-SUSTOUR. Both projects made students face real workplace…
ERIC Educational Resources Information Center
Liu, Chen-Chung; Kao, L.-C.
2007-01-01
One-to-one computing environments change and improve classroom dynamics as individual students can bring handheld devices fitted with wireless communication capabilities into the classrooms. However, the screens of handheld devices, being designed for individual-user mobile application, limit promotion of interaction among groups of learners. This…
The National Cancer Institute's Surgery Branch is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize a potential cancer therapeutic based on T cells genetically engineered to express the human interleukin 12 (IL-12) cytokine only in the tumor environment.
Investigating the Limitations of Advanced Design Methods through Real World Application
2016-03-31
36 War Room Laptop Display ( MySQL , JMP 9 Pro, 64-bit Windows) Georgia Tech Secure Collaborative Visualization Environment ( MySQL , JMP 9 Pro...investigate expanding the EA for VC3ATS • Would like to consider both an expansion of the use of current Java -based BPM approach and other potential EA
ERIC Educational Resources Information Center
Ruiz-Molina, Maria-Eugenia; Cuadrado-Garcia, Manuel
2008-01-01
Purpose: The purpose of this paper is to discuss the use of virtual learning environments in multicultural higher education of two different subjects: foreign language and marketing. Design/methodology/approach: The paper describes the aims, development and results of an interdisciplinary collaboration project was held between two European…
ERIC Educational Resources Information Center
Farias, Cláudio; Hastie, Peter Andrew; Mesquita, Isabel
2017-01-01
This study was designed to examine and intervene into student behaviours to promote a democratic, inclusive and participatory focus within Sport Education. To achieve an increased understanding of and changes within student behaviours, a collaborative participatory action research methodology was applied to provide voice to students as agents of…
Developing an Environment for Exploring Distributed Operations: A Wargaming Example
2005-05-01
a basis for performance standards. At the same time, the design tried to provide an acceptable mix of structured versus free - play activity in...participants’ free - play discussion and collaboration during Counteraction. Scripting allowed the research team to embed potential problems or measurement...Learned - Structured Exercises ......................................................................... 24 Scripted and Free - Play Wargaming Phases
Strategies of Collaborative Work in the Classroom through the Design of Video Games
ERIC Educational Resources Information Center
Muñoz González, Juan Manuel; Rubio García, Sebastián; Cruz Pichardo, Ivanovna M.
2015-01-01
At the present time, the use of video games goes beyond mere amusement or entertainment due to its potential for developing capacities, dexterity and skills. Thus, video games have extended to environments like that of education, serving as didactic resources within dynamics that respond to the interests and necessities of the 21st century…
ERIC Educational Resources Information Center
Olesova, Larisa A.; Melville, Anne Driscoll
2017-01-01
The online environment presents a unique challenge to higher education. Shifting from the face-to-face format to online not only involves rethinking course design, but requires careful consideration of when and how to teach students, how to find and evaluate information needed to successfully complete coursework. One solution is faculty teaming…
Stimulating Collaboration and Discussion in Online Learning Environments.
ERIC Educational Resources Information Center
Clark, Jim
2001-01-01
Discussion of the advantages of online learning environments (OLEs) for distance education focuses on the importance of collaboration and discussion to make the students feel more central to the learning process. Presents methods to stimulate collaboration and discussion in OLEs. (Author/LRW)
ERIC Educational Resources Information Center
Harrison, Jason
2013-01-01
Problem: Leaders today need a new set of knowledge and skills to be effective in collaborative environments. The focus of this study was to investigate how collaborative environments can contribute to leadership development. The purpose of this study was to describe how the collaborative environment of summer camp helped shape emerging adults as…
Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet
2006-01-01
A collaborative framework/environment was proto-typed to prove the feasibility of scheduling space flight missions on NASA's Deep Space Network (DSN) in a distributed fashion. In this environment, effective collaboration relies on efficient communications among all flight mission and DSN scheduling users. There-fore, messaging becomes critical to timely event notification and data synchronization. In the prototype, a rapid messaging system using Java Message Service (JMS) in a mixed Java and .NET environment is established. This scheme allows both Java and .NET applications to communicate with each other for data synchronization and schedule negotiation. The JMS approach we used is based on a centralized messaging scheme. With proper use of a high speed messaging system, all users in this collaborative framework can communicate with each other to generate a schedule collaboratively to meet DSN and projects tracking needs.
Improving the Aircraft Design Process Using Web-Based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)
2000-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Improving the Aircraft Design Process Using Web-based Modeling and Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.
2003-01-01
Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.
Development of an evolutionary simulator and an overall control system for intelligent wheelchair
NASA Astrophysics Data System (ADS)
Imai, Makoto; Kawato, Koji; Hamagami, Tomoki; Hirata, Hironori
The goal of this research is to develop an intelligent wheelchair (IWC) system which aids an indoor safe mobility for elderly and disabled people with a new conceptual architecture which realizes autonomy, cooperativeness, and a collaboration behavior. In order to develop the IWC system in real environment, we need design-tools and flexible architecture. In particular, as more significant ones, this paper describes two key techniques which are an evolutionary simulation and an overall control mechanism. The evolutionary simulation technique corrects the error between the virtual environment in a simulator and real one in during the learning of an IWC agent, and coevolves with the agent. The overall control mechanism is implemented with subsumption architecture which is employed in an autonomous robot controller. By using these techniques in both simulations and experiments, we confirm that our IWC system acquires autonomy, cooperativeness, and a collaboration behavior efficiently.
Elearn: A Collaborative Educational Virtual Environment.
ERIC Educational Resources Information Center
Michailidou, Anna; Economides, Anastasios A.
Virtual Learning Environments (VLEs) that support collaboration are one of the new technologies that have attracted great interest. VLEs are learning management software systems composed of computer-mediated communication software and online methods of delivering course material. This paper presents ELearn, a collaborative VLE for teaching…
Supporting Dynamic Ad hoc Collaboration Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Deborah A.; Berket, Karlo
2003-07-14
Modern HENP experiments such as CMS and Atlas involve as many as 2000 collaborators around the world. Collaborations this large will be unable to meet often enough to support working closely together. Many of the tools currently available for collaboration focus on heavy-weight applications such as videoconferencing tools. While these are important, there is a more basic need for tools that support connecting physicists to work together on an ad hoc or continuous basis. Tools that support the day-to-day connectivity and underlying needs of a group of collaborators are important for providing light-weight, non-intrusive, and flexible ways to work collaboratively.more » Some example tools include messaging, file-sharing, and shared plot viewers. An important component of the environment is a scalable underlying communication framework. In this paper we will describe our current progress on building a dynamic and ad hoc collaboration environment and our vision for its evolution into a HENP collaboration environment.« less
Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai
2009-01-01
Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.
Peer Collaboration: The Relation of Regulatory Behaviors to Learning with Hypermedia
ERIC Educational Resources Information Center
Winters, Fielding I.; Alexander, Patricia A.
2011-01-01
Peer collaboration is a pedagogical method currently used to facilitate learning in classrooms. Similarly, computer-learning environments (CLEs) are often used to promote student learning in science classrooms, in particular. However, students often have difficulty utilizing these environments effectively. Does peer collaboration help students…
NASA Astrophysics Data System (ADS)
Schielack, J. F.; Herbert, B. E.
2004-12-01
The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative evaluation process that has moved the ITS Center's collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). Phase II highlighted learning experiences over two summers focused on the exploration of environmentally-related science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum.
Carroll, Cathryn A.; Rychlewski, Walt; Teat, Marty; Clawson, Darrin
2004-01-01
This report describes an innovative training program designed to foster entrepreneurship and professionalism in students interested in the field of medical informatics. The course was developed through a private–public interinstitutional collaboration involving four academic institutions, one private firm specializing in health care information management systems, and a philanthropic organization. The program challenged students to serve in multiple roles on multidisciplinary teams and develop an innovative hand-held solution for drug information retrieval. Although the course was technically and behaviorally rigorous and required extensive hands-on experience in a nontraditional learning environment, both students and faculty responded positively. PMID:15064292
Collaboration in River Basin Management: The Great Rivers Project
NASA Astrophysics Data System (ADS)
Crowther, S.; Vridhachalam, M.; Tomala-Reyes, A.; Guerra, A.; Chu, H.; Eckman, B.
2008-12-01
The health of the world's freshwater ecosystems is fundamental to the health of people, plants and animals around the world. The sustainable use of the world's freshwater resources is recognized as one of the most urgent challenges facing society today. An estimated 1.3 billion people currently lack access to safe drinking water, an issue the United Nations specifically includes in its recently published Millennium Development Goals. IBM is collaborating with The Nature Conservancy and the Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin, Madison to build a Modeling Collaboration Framework and Decision Support System (DSS) designed to help policy makers and a variety of stakeholders (farmers, fish and wildlife managers, hydropower operators, et al.) to assess, come to consensus, and act on land use decisions representing effective compromises between human use and ecosystem preservation/restoration efforts. Initially focused on Brazil's Paraguay-Parana, China's Yangtze, and the Mississippi Basin in the US, the DSS integrates data and models from a wide variety of environmental sectors, including water balance, water quality, carbon balance, crop production, hydropower, and biodiversity. In this presentation we focus on the collaboration aspects of the DSS. The DSS is an open environment tool that allows scientists, policy makers, politicians, land owners, and anyone who desires to take ownership of their actions in support of the environment to work together to that end. The DSS supports a range of features that empower such a community to collaboratively work together. Supported collaboration mediums include peer reviews, live chat, static comments, and Web 2.0 functionality such as tagging. In addition, we are building a 3-D virtual world component which will allow users to experience and share system results, first-hand. Models and simulation results may be annotated with free-text comments and tags, whether unique or chosen from a predefined tag taxonomy. These comments and tag clouds may be used by the community to filter results and identify models or simulations of interest, e.g, by region, modeling approach, spatiotemporal resolution, etc. Users may discuss methods or results in real-time with a built-in chat feature. Separate user groups may be defined for logical groups of collaboration partners, e.g., expert modelers, land managers, policy makers, school children, or the general public, to optimize the collaboration signal-to-noise ratio for all.
Collaboration in academic medicine: reflections on gender and advancement.
Carr, Phyllis L; Pololi, Linda; Knight, Sharon; Conrad, Peter
2009-10-01
Collaboration in academic medicine is encouraged, yet no one has studied the environment in which faculty collaborate. The authors investigated how faculty experienced collaboration and the institutional atmosphere for collaboration. In 2007, as part of a qualitative study of faculty in five disparate U.S. medical schools, the authors interviewed 96 medical faculty at different career stages and in diverse specialties, with an oversampling of women, minorities, and generalists, regarding their perceptions and experiences of collaboration in academic medicine. Data analysis was inductive and driven by the grounded theory tradition. Female faculty expressed enthusiasm about the potential and process of collaboration; male faculty were more likely to focus on outcomes. Senior faculty experienced a more collaborative environment than early career faculty, who faced numerous barriers to collaboration: the hierarchy of medical academe, advancement criteria, and the lack of infrastructure supportive of collaboration. Research faculty appreciated shared ideas, knowledge, resources, and the increased productivity that could result from collaboration, but they were acutely aware that advancement requires an independent body of work, which was a major deterrent to collaboration among early career faculty. Academic medicine faculty have differing views on the impact and benefits of collaboration. Early career faculty face concerning obstacles to collaboration. Female faculty seemed more appreciative of the process of collaboration, which may be of importance for transitioning to a more collaborative academic environment. A reevaluation of effective benchmarks for promotion of faculty is warranted to address the often exclusive reliance on individualistic achievement.
A collaborative interaction and visualization multi-modal environment for surgical planning.
Foo, Jung Leng; Martinez-Escobar, Marisol; Peloquin, Catherine; Lobe, Thom; Winer, Eliot
2009-01-01
The proliferation of virtual reality visualization and interaction technologies has changed the way medical image data is analyzed and processed. This paper presents a multi-modal environment that combines a virtual reality application with a desktop application for collaborative surgical planning. Both visualization applications can function independently but can also be synced over a network connection for collaborative work. Any changes to either application is immediately synced and updated to the other. This is an efficient collaboration tool that allows multiple teams of doctors with only an internet connection to visualize and interact with the same patient data simultaneously. With this multi-modal environment framework, one team working in the VR environment and another team from a remote location working on a desktop machine can both collaborate in the examination and discussion for procedures such as diagnosis, surgical planning, teaching and tele-mentoring.
Telearch - Integrated visual simulation environment for collaborative virtual archaeology.
NASA Astrophysics Data System (ADS)
Kurillo, Gregorij; Forte, Maurizio
Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.
Lo, Vivian; Rossos, Peter; Kuziemsky, Craig; O’Leary, Kevin J; Cafazzo, Joseph A; Reeves, Scott; Wong, Brian M; Morra, Dante
2012-01-01
Background Communication and collaboration failures can have negative impacts on the efficiency of both individual clinicians and health care system delivery as well as on the quality of patient care. Recognizing the problems associated with clinical and collaboration communication, health care professionals and organizations alike have begun to look at alternative communication technologies to address some of these inefficiencies and to improve interprofessional collaboration. Objective To develop recommendations that assist health care organizations in improving communication and collaboration in order to develop effective methods for evaluation. Methods An interprofessional meeting was held in a large urban city in Canada with 19 nationally and internationally renowned experts to discuss suitable recommendations for an ideal communication and collaboration system as well as a research framework for general internal medicine (GIM) environments. Results In designing an ideal GIM communication and collaboration system, attendees believed that the new system should possess attributes that aim to: a) improve workflow through prioritization of information and detection of individuals’ contextual situations; b) promote stronger interprofessional relationships with adequate exchange of information; c) enhance patient-centered care by allowing greater patient autonomy over their health care information; d) enable interoperability and scalability between and within institutions; and e) function across different platforms. In terms of evaluating the effects of technology in GIM settings, participants championed the use of rigorous scientific methods that span multiple perspectives and disciplines. Specifically, participants recommended that consistent measures and definitions need to be established so that these impacts can be examined across individual, group, and organizational levels. Conclusions Discussions from our meeting demonstrated the complexities of technological implementations in GIM settings. Recommendations on the design principles and research paradigms for an improved communication system are described. PMID:23612055
Foley, Barbara Jo; Kee, Carolyn C; Minick, Ptlene; Harvey, Susan S; Jennings, Bonnie M
2002-05-01
The purpose of this aspect of a larger study was to describe characteristics of nurses and their work environment at two military hospitals. Few studies have explored characteristics among nurses who practice in military hospitals. There is reason to believe that differences exist between nurses who work in military and civilian hospitals, some of which are required educational level, leadership experience, officer status, and career development opportunities. A descriptive design was used to address how military and civilian nurses who work in military hospitals describe their autonomy, control over practice, nurse-physician collaboration, and clinical expertise and what relationships exist among these variables. Scores on autonomy, control over practice, and nurse-physician relationships all were above midpoint for all respondents as a group, indicating positive work environments in both of the military hospitals studied. Scores from the clinical expertise instrument were well above midpoint, indicating a desirable level of clinical expertise. These findings all reflect favorably on the military hospital work environment. This information will help to make a case for instituting or preserving those nursing processes that are effective and for identifying and working to change nursing processes that are not effective. Nurses will benefit by having a more collaborative work environment.
Monitoring Collaborative Activities in Computer Supported Collaborative Learning
ERIC Educational Resources Information Center
Persico, Donatella; Pozzi, Francesca; Sarti, Luigi
2010-01-01
Monitoring the learning process in computer supported collaborative learning (CSCL) environments is a key element for supporting the efficacy of tutor actions. This article proposes an approach for analysing learning processes in a CSCL environment to support tutors in their monitoring tasks. The approach entails tracking the interactions within…
Peer Interaction in Three Collaborative Learning Environments
ERIC Educational Resources Information Center
Staarman, Judith Kleine; Krol, Karen; Meijden, Henny van der
2005-01-01
The aim of the study was to gain insight into the occurrence of different types of peer interaction and particularly the types of interaction beneficial for learning in different collaborative learning environments. Based on theoretical notions related to collaborative learning and peer interaction, a coding scheme was developed to analyze the…
Assessing a Collaborative Online Environment for Music Composition
ERIC Educational Resources Information Center
Biasutti, Michele
2015-01-01
The current pilot study tested the effectiveness of an e-learning environment built to enable students to compose music collaboratively. The participants interacted online by using synchronous and asynchronous resources to develop a project in which they composed a new music piece in collaboration. After the learning sessions, individual…
The Design of Collaborative Learning for Teaching Physics in Vocational Secondary School
NASA Astrophysics Data System (ADS)
Ismayati, Euis
2018-04-01
Vocational secondary school (Sekolah Menengah Kejuruan or SMK) is a vocational education that is based on the principle of human resource investment (human capital investment) referring to the quality of education and productivity to compete in the global job market. Therefore, vocational education relates directly to business world/industry which fulfills the needs of the skilled worker. According to the results of some researches, the work ethics of vocational graduates are still unsatisfying. Most of them are less able to perform their works, to adapt to the changes and development of technology and science, to be retrained, to develop themselves, to collaborate, and to argue. Meanwhile, the employers in the world of work and industries require their employees to have abilities to think creatively and working collaboratively. In addition, the students’ abilities to adapt to the technology in working environment are greatly influenced by the learning process in their schools, especially in science learning. The process of science learning which can help the students to think and act scientifically should be implemented by teachers using a learning approach which is appropriate to the students’ need and the material taught to the students. To master technology and industry needs science mastery. Physics, as a part of science, has an important role in the development of technology since the products of technology strongly support further development of science. In order to develop the abilities to think critically and working collaboratively, education should be given to the students through the learning process using learning model which refers to a collaborative group discussion system called Collaborative Learning. Moreover, Collaborative learning for teaching Physics in vocational secondary school should be designed in such a way that the goal of teaching and learning can be achieved. Collaborative Learning is advantageous to improve the students’ creative thinking and collaborative working.
Collaboration and patient safety at an emergency department - a qualitative case study.
Pedersen, Anna Helene Meldgaard; Rasmussen, Kurt; Grytnes, Regine; Nielsen, Kent Jacob
2018-03-19
Purpose The purpose of this paper is to examine how conflicts about collaboration between staff at different departments arose during the establishment of a new emergency department and how these conflicts affected the daily work and ultimately patient safety at the emergency department. Design/methodology/approach This qualitative single case study draws on qualitative semi-structured interviews and participant observation. The theoretical concepts "availability" and "receptiveness" as antecedents for collaboration will be applied in the analysis. Findings Close collaboration between departments was an essential precondition for the functioning of the new emergency department. The study shows how a lack of antecedents for collaboration affected the working relation and communication between employees and departments, which spurred negative feelings and reproduced conflicts. This situation was seen as a potential threat for the safety of the emergency patients. Research limitations/implications This study presents a single case study, at a specific point in time, and should be used as an illustrative example of how contextual and situational factors affect the working environment and through that patient safety. Originality/value Few studies provide an in-depth investigation of what actually takes place when collaboration between professional groups goes wrong and escalates, and how problems in collaboration may affect patient safety.
Using a NIATx based local learning collaborative for performance improvement.
Roosa, Mathew; Scripa, Joseph S; Zastowny, Thomas R; Ford, James H
2011-11-01
Local governments play an important role in improving substance abuse and mental health services. The structure of the local learning collaborative requires careful attention to old relationships and challenges local governmental leaders to help move participants from a competitive to collaborative environment. This study describes one county's experience applying the NIATx process improvement model via a local learning collaborative. Local substance abuse and mental health agencies participated in two local learning collaboratives designed to improve client retention in substance abuse treatment and client access to mental health services. Results of changes implemented at the provider level on access and retention are outlined. The process of implementing evidence-based practices by using the Plan-Do-Study-Act rapid-cycle change is a powerful combination for change at the local level. Key lessons include: creating a clear plan and shared vision, recognizing that one size does not fit all, using data can help fuel participant engagement, a long collaborative may benefit from breaking it into smaller segments, and paying providers to offset costs of participation enhances their engagement. The experience gained in Onondaga County, New York, offers insights that serve as a foundation for using the local learning collaborative in other community-based organizations. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chi, Michelene T H; Roy, Marguerite; Hausmann, Robert G M
2008-03-01
The goals of this study are to evaluate a relatively novel learning environment, as well as to seek greater understanding of why human tutoring is so effective. This alternative learning environment consists of pairs of students collaboratively observing a videotape of another student being tutored. Comparing this collaboratively observing environment to four other instructional methods-one-on-one human tutoring, observing tutoring individually, collaborating without observing, and studying alone-the results showed that students learned to solve physics problems just as effectively from observing tutoring collaboratively as the tutees who were being tutored individually. We explain the effectiveness of this learning environment by postulating that such a situation encourages learners to become active and constructive observers through interactions with a peer. In essence, collaboratively observing combines the benefit of tutoring with the benefit of collaborating. The learning outcomes of the tutees and the collaborative observers, along with the tutoring dialogues, were used to further evaluate three hypotheses explaining why human tutoring is an effective learning method. Detailed analyses of the protocols at several grain sizes suggest that tutoring is effective when tutees are independently or jointly constructing knowledge: with the tutor, but not when the tutor independently conveys knowledge. 2008 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Motzo, Anna; Quattrocchi, Debora
2015-01-01
In recent years, universities have been involved in developing new strategies to promote widening participation in higher education, and consequently they have been focusing on increasing the variety of support offered to students with disabilities for a more inclusive and widely accessible learning environment. However, there is a common feeling…
NASA Technical Reports Server (NTRS)
2000-01-01
Reality Capture Technologies, Inc. is a spinoff company from Ames Research Center. Offering e-business solutions for optimizing management, design and production processes, RCT uses visual collaboration environments (VCEs) such as those used to prepare the Mars Pathfinder mission.The product, 4-D Reality Framework, allows multiple users from different locations to manage and share data. The insurance industry is one targeted commercial application for this technology.
ERIC Educational Resources Information Center
Costello, Gabriel J.
2017-01-01
The purpose of this work is to contribute to the debate on the best pedagogical approach to developing undergraduate mechanical engineering skills to meet the requirements of contemporary complex working environments. The paper provides an example of using student-entrepreneur collaboration in the teaching of modules to Mechanical Engineering…
ERIC Educational Resources Information Center
Ting, Yu-Liang; Tai, Yaming; Chen, Jun-Horng
2017-01-01
Telepresence has been playing an important role in a mediated learning environment. However, the current design of telepresence seems to be dominated by the emulation of physical human presence. With reference to social constructivism learning and the recognition of individuals as intelligent entities, this study explored the transformation of…
ERIC Educational Resources Information Center
Harris, Robert J.
2008-01-01
Purpose: The purpose of this paper is to report on the development of a knowledge transfer project, part funded through TE3, designed to encourage innovation and improve the capability of SMEs in the West Midlands region of the UK. Knowledge is critical to developing competency within small businesses and managers that understand how their…
ERIC Educational Resources Information Center
Askim-Lovseth, Mary K.; O'Keefe, Timothy P.
2012-01-01
Businesses function within a cross-functional, integrative setting, and this necessitates providing a learning environment for students that is comparable to real-life work projects. Two upper-level university classes in marketing and information systems worked collaboratively with a snack food business to design and build a Web site based on a…
ERIC Educational Resources Information Center
Titova, Svetlana; Talmo, Tord
2014-01-01
Mobile devices can enhance learning and teaching by providing instant feedback and better diagnosis of learning problems, helping design new assessment models, enhancing learner autonomy and creating new formats of enquiry-based activities. The objective of this paper is to investigate the pedagogical impact of mobile voting tools. The authors'…
ERIC Educational Resources Information Center
Wilson, Andrew; Kim, Wonsun
2016-01-01
The purpose of the study is to investigate the effects of concept mapping on mastery goal orientation and academic self-efficacy in a collaborative learning environment. The current study employed a randomized controlled pretest-posttest group design to examine if learning strategies such as concept mapping can help students with both reading…
ERIC Educational Resources Information Center
Hafner, Christoph A.; Miller, Lindsay
2011-01-01
This paper reports on the syllabus design and implementation of an English for Science and Technology (EST) course at an English-medium university in Hong Kong. The course combined elements of project-based learning and a "pedagogy for multiliteracies" (New London Group, 1996) to produce a strong learner autonomy focus. A major component…
Ubiquitous Mobile Knowledge Construction in Collaborative Learning Environments
Baloian, Nelson; Zurita, Gustavo
2012-01-01
Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs). PMID:22969333
Ubiquitous mobile knowledge construction in collaborative learning environments.
Baloian, Nelson; Zurita, Gustavo
2012-01-01
Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs).
Empowering Change Agents in Hierarchical Organizations: Participatory Action Research in Prisons
Penrod, Janice; Loeb, Susan J.; Ladonne, Robert A.; Martin, Lea M.
2017-01-01
Participatory action research (PAR) approaches harness collaborative partnerships to stimulate change in defined communities. The purpose of this article is to illustrate key methodological strategies used in the application of PAR methods in the particularly challenging environment of a hierarchical organization. A study designed to promote sustainable, insider-generated system-level changes in the provision of end-of-life (EOL) care in the restrictive setting of six state prisons is used as an exemplar of the application of three cardinal principles of PAR. First, development of a collaborative network with active partnership between outsider academic researchers and insider co-researchers began with careful attention to understanding the culture and processes of prisons and gaining the support of organizational leadership, using qualitative data gathering and trust-building. During the implementation phase, promoting co-ownership of change in EOL care through the co-construction of knowledge and systems to enhance sustainable change required carefully-orchestrated strategies to maximize the collaborative spirit of the project. Co-researchers were empowered to examine their worlds and capture opportunities for change using new leadership skills role-modeled by the research team. Third, their local knowledge of the barriers inherent in the contextual reality of prisons was translated into achievable system change by production of a toolkit of formalized and well-rehearsed change strategies that collaborative teams were empowered to enact within their hierarchical prison environment. PMID:27028096
Design and Development of a Flight Route Modification, Logging, and Communication Network
NASA Technical Reports Server (NTRS)
Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.
2016-01-01
There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.
ERIC Educational Resources Information Center
Du, Jianxia; Xu, Jianzhong; Fan, Xitao
2015-01-01
The present study examines empirical models of students' management of the learning environment in the context of online collaborative groupwork. Such environment management is an important component of students' overall self-regulated learning strategy for effective learning. Student- and group-level predictors for study environment management in…
Additive manufacturing integrated energy—enabling innovative solutions for buildings of the future
Biswas, Kaushik; Rose, James; Eikevik, Leif; ...
2016-11-10
Here, the AMIE (Additive Manufacturing Integrated Energy) demonstration utilized 3D printing as an enabling technology in the pursuit of construction methods that use less material, create less waste, and require less energy to build and operate. It was developed by Oak Ridge National Laboratory (ORNL) in collaboration with the Governor's Chair for Energy and Urbanism, a research partnership of the University of Tennessee (UT) and ORNL led by Skidmore, Owings & Merrill LLP (SOM), AMIE embodies a suite of innovations demonstrating a transformative future for designing, constructing and operating buildings. Subsequent, blind UT College of Architecture and Design studios taughtmore » in collaboration with SOM professionals also explored forms and shapes based on biological systems that naturally integrate structure and enclosure. AMIE, a compact micro-dwelling developed by ORNL research scientists and SOM designers, incorporates next-generation modified atmosphere insulation, self-shading windows, and the ability to produce, store and share solar power with a paired hybrid vehicle. It establishes for the first time, a platform for investigating solutions integrating the energy systems in buildings, vehicles, and the power grid. The project was built with broad-based support from local industry and national material suppliers. Designed and constructed in a span of only nine months, AMIE 1.0 serves as an example of the rapid innovation that can be accomplished when research, design, academic and industrial partners work in collaboration toward the common goal of a more sustainable and resilient built environment.« less
Group Modeling in Social Learning Environments
ERIC Educational Resources Information Center
Stankov, Slavomir; Glavinic, Vlado; Krpan, Divna
2012-01-01
Students' collaboration while learning could provide better learning environments. Collaboration assumes social interactions which occur in student groups. Social theories emphasize positive influence of such interactions on learning. In order to create an appropriate learning environment that enables social interactions, it is important to…
Web-Based Integrated Research Environment for Aerodynamic Analyses and Design
NASA Astrophysics Data System (ADS)
Ahn, Jae Wan; Kim, Jin-Ho; Kim, Chongam; Cho, Jung-Hyun; Hur, Cinyoung; Kim, Yoonhee; Kang, Sang-Hyun; Kim, Byungsoo; Moon, Jong Bae; Cho, Kum Won
e-AIRS[1,2], an abbreviation of ‘e-Science Aerospace Integrated Research System,' is a virtual organization designed to support aerodynamic flow analyses in aerospace engineering using the e-Science environment. As the first step toward a virtual aerospace engineering organization, e-AIRS intends to give a full support of aerodynamic research process. Currently, e-AIRS can handle both the computational and experimental aerodynamic research on the e-Science infrastructure. In detail, users can conduct a full CFD (Computational Fluid Dynamics) research process, request wind tunnel experiment, perform comparative analysis between computational prediction and experimental measurement, and finally, collaborate with other researchers using the web portal. The present paper describes those services and the internal architecture of the e-AIRS system.
Silver, Pamela
2018-02-13
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.
A Multi-Agent Question-Answering System for E-Learning and Collaborative Learning Environment
ERIC Educational Resources Information Center
Alinaghi, Tannaz; Bahreininejad, Ardeshir
2011-01-01
The increasing advances of new Internet technologies in all application domains have changed life styles and interactions. E-learning and collaborative learning environment systems are originated through such changes and aim at providing facilities for people in different times and geographical locations to cooperate, collaborate, learn and work…
Comparison of 1:1 and 1:m CSCL Environment for Collaborative Concept Mapping
ERIC Educational Resources Information Center
Lin, C.-P.; Wong, L.-H.; Shao, Y.-J.
2012-01-01
This paper reports an investigation into the effects of collaborative concept mapping in a digital learning environment, in terms of students' overall learning gains, knowledge retention, quality of student artefacts (the collaboratively created concept maps), interactive patterns, and learning perceptions. Sixty-four 12-year-old students from two…
Online Teacher Development: Collaborating in a Virtual Learning Environment
ERIC Educational Resources Information Center
Ernest, Pauline; Guitert Catasús, Montse; Hampel, Regine; Heiser, Sarah; Hopkins, Joseph; Murphy, Linda; Stickler, Ursula
2013-01-01
Over recent years, educational institutions have been making increasing use of virtual environments to set up collaborative activities for learners. While it is recognized that teachers play an important role in facilitating learner collaboration online, they may not have the necessary skills to do so successfully. Thus, a small-scale professional…
NASA Astrophysics Data System (ADS)
Cencetti, Michele
2016-07-01
European space exploration missions have produced huge data sets of potentially immense value for research as well as for planning and operating future missions. For instance, Mars Exploration programs comprise a series of missions with launches ranging from the past to beyond present, which are anticipated to produce exceptional volumes of data which provide prospects for research breakthroughs and advancing further activities in space. These collected data include a variety of information, such as imagery, topography, atmospheric, geochemical datasets and more, which has resulted in and still demands, databases, versatile visualisation tools and data reduction methods. Such rate of valuable data acquisition requires the scientists, researchers and computer scientists to coordinate their storage, processing and relevant tools to enable efficient data analysis. However, the current position is that expert teams from various disciplines, the databases and tools are fragmented, leaving little scope for unlocking its value through collaborative activities. The benefits of collaborative virtual environments have been implemented in various industrial fields allowing real-time multi-user collaborative work among people from different disciplines. Exploiting the benefits of advanced immersive virtual environments (IVE) has been recognized as an important interaction paradigm to facilitate future space exploration. The current work is mainly aimed towards the presentation of the preliminary results coming from the CROSS DRIVE project. This research received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 607177 and is mainly aimed towards the implementation of a distributed virtual workspace for collaborative scientific discovery, mission planning and operations. The purpose of the CROSS DRIVE project is to lay foundations of collaborative European workspaces for space science. It will demonstrate the feasibility and begin to standardize the integration of space datasets, simulators, analytical modules, remote scientific centers and experts to work together to conduct space science activities as well as support the planning and operations of space missions. The development of this collaborative workspace infrastructure will be focused through preparation of the ExoMars 2016 TGO and 2018 rover missions. Three use case scenarios with increasing levels of complexities has been considered to exercise the remote and Collaborative Workspace as it would happen during science mission design or real-time operations: rover landing site characterization; Mars atmospheric data analysis and comparison among datasets; rover target selection and motion planning during real-time operations. A brief overview of the traditional approaches used in the operations domains is provided in the first part of the paper, mainly focusing on the main drawbacks that arise during actual missions. Examples of design, execution and management of the operational activities are introduced in this section, highlighting the main issues and tools that are currently used. The current needs and the possible solutions are introduced in the following section, providing details on how CROSS DRIVE environment can be used to improve space operations. The developed prototype and the related approach are assessed to show the improvements that can be achieved with respect to data exchange and users' interactions. The project results are also intended to show how the same operational philosophy can be extended from robotic exploration to human-rated ones missions.
Fox, Mary T; Sidani, Souraya; Butler, Jeffrey I; Tregunno, Deborah
2017-06-01
Background Cultivating hospital environments that support older people's care is a national priority. Evidence on geriatric nursing practice environments, obtained from studies of registered nurses (RNs) in American teaching hospitals, may have limited applicability to Canada, where RNs and registered practical nurses (RPNs) care for older people in predominantly nonteaching hospitals. Purpose This study describes nurses' perceptions of the overall quality of care for older people and the geriatric nursing practice environment (geriatric resources, interprofessional collaboration, and organizational value of older people's care) and examines if these perceptions differ by professional designation and hospital teaching status. Methods A cross-sectional survey, using Dillman's tailored design, that included Geriatric Institutional Assessment Profile subscales, was completed by 2005 Ontario RNs and registered practical nurses to assess their perceptions of the quality of care and geriatric nursing practice environment. Results Scores on the Geriatric Institutional Assessment Profile subscales averaged slightly above the midpoint except for geriatric resources which was slightly below. Registered practical nurses rated the quality of care and geriatric nursing practice environment higher than RNs; no significant differences were found by hospital teaching status. Conclusions Nurses' perceptions of older people's care and the geriatric nursing practice environment differ by professional designation but not hospital teaching status. Teaching and nonteaching hospitals should both be targeted for geriatric nursing practice environment improvement initiatives.
NASA Astrophysics Data System (ADS)
Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish
2016-06-01
Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.
Spreading DIRT with Web Services
NASA Astrophysics Data System (ADS)
Pound, M. W.; Wolfire, M. G.; Amarnath, N. S.; Plante, R. L.
2005-12-01
Most of the systems currently used to analyze astronomical data were designed and implemented more than a decade ago. Although they still are very useful for analysis, one often would like a better interface to newer concepts like archives, Virtual Observatories and GRID. Further, incompatibilities between most of the current systems with respect to control language and semantics make it cumbersome to mix applications from different origins. An OPTICON Network, funded by the Sixth Framework Programme of the European Commission, started this year to discuss high-level needs for an astronomical data analysis environment which could provide a flexible access to both legacy applications and new astronomical resources. The main objective of the Network is to establish widely accepted requirements and basic design recommendations for such an environment. The hope is that this effort will help other projects, which consider to implement such systems, in collaborating and achieving a common environment.
Day, Eric Anthony; Boatman, Paul R; Kowollik, Vanessa; Espejo, Jazmine; McEntire, Lauren E; Sherwin, Rachel E
2007-12-01
This study examined the effectiveness of collaborative training for individuals with low pretraining self-efficacy versus individuals with high pretraining self-efficacy regarding the acquisition of a complex skill that involved strong cognitive and psychomotor demands. Despite support for collaborative learning from the educational literature and the similarities between collaborative learning and interventions designed to remediate low self-efficacy, no research has addressed how self-efficacy and collaborative learning interact in contexts concerning complex skills and human-machine interactions. One hundred fifty-five young male adults trained either individually or collaboratively with a more experienced partner on a complex computer task that simulated the demands of a dynamic aviation environment. Participants also completed a task-specific measure of self-efficacy before, during, and after training. Collaborative training enhanced skill acquisition significantly more for individuals with low pretraining self-efficacy than for individuals with high pretraining self-efficacy. However, collaborative training did not bring the skill acquisition levels of those persons with low pretraining self-efficacy to the levels found for persons with high pretraining self-efficacy. Moreover, tests of mediation suggested that collaborative training may have enhanced appropriate skill development strategies without actually raising self-efficacy. Although collaborative training can facilitate the skill acquisition process for trainees with low self-efficacy, future research is needed that examines how the negative effects of low pretraining self-efficacy on complex skill acquisition can be more fully remediated. The differential effects of collaborative training as a function of self-efficacy highlight the importance of person analysis and tailoring training to meet differing trainee needs.
NASA Astrophysics Data System (ADS)
Mirvis, E.; Iredell, M.
2015-12-01
The operational (OPS) NOAA National Centers for Environmental Prediction (NCEP) suite, traditionally, consist of a large set of multi- scale HPC models, workflows, scripts, tools and utilities, which are very much depending on the variety of the additional components. Namely, this suite utilizes a unique collection of the in-house developed 20+ shared libraries (NCEPLIBS), certain versions of the 3-rd party libraries (like netcdf, HDF, ESMF, jasper, xml etc.), HPC workflow tool within dedicated (sometimes even vendors' customized) HPC system homogeneous environment. This domain and site specific, accompanied with NCEP's product- driven large scale real-time data operations complicates NCEP collaborative development tremendously by reducing chances to replicate this OPS environment anywhere else. The NOAA/NCEP's Environmental Modeling Center (EMC) missions to develop and improve numerical weather, climate, hydrological and ocean prediction through the partnership with the research community. Realizing said difficulties, lately, EMC has been taken an innovative approach to improve flexibility of the HPC environment by building the elements and a foundation for NCEP OPS functionally equivalent environment (FEE), which can be used to ease the external interface constructs as well. Aiming to reduce turnaround time of the community code enhancements via Research-to-Operations (R2O) cycle, EMC developed and deployed several project sub-set standards that already paved the road to NCEP OPS implementation standards. In this topic we will discuss the EMC FEE for O2R requirements and approaches in collaborative standardization, including NCEPLIBS FEE and models code version control paired with the models' derived customized HPC modules and FEE footprints. We will share NCEP/EMC experience and potential in the refactoring of EMC development processes, legacy codes and in securing model source code quality standards by using combination of the Eclipse IDE, integrated with the reverse engineering tools/APIs. We will also inform on collaborative efforts in the restructuring of the NOAA Environmental Modeling System (NEMS) - the multi- model and coupling framework, and transitioning FEE verification methodology.
An Overview of the Smart Sensor Inter-Agency Reference Testbench (SSIART)
NASA Technical Reports Server (NTRS)
Wagner, Raymond S.; Braham, Stephen P.; Dufour, Jean-Francois; Barton, Richard J.
2012-01-01
In this paper, we present an overview of a proposed collaboration between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA), which is designed to facilitate the introduction of commercial-off-the-shelf (COTS) radios for smart-sensing applications into international spaceflight programs and projects. The proposed work will produce test hardware reference designs, test software reference architectures and example implementations, test plans in reference test environments, and test results, all of which will be shared between the agencies and documented for future use by mission planners. The proposed collaborative structure together with all of the anticipated tools and results produced under the effort is collectively referred to as the Smart Sensor Inter-agency Reference Testbench or SSIART. It is intended to provide guidance in technology selection and in increasing the related readiness levels of projects and missions as well as the space industry.
NASA Astrophysics Data System (ADS)
Crippen, Kent J.; Ellis, Shari; Dunckel, Betty A.; Hendy, Austin J. W.; MacFadden, Bruce J.
2016-10-01
This study sought to define the attributes and practices of organized fossil groups (e.g., clubs, paleontological societies) as amateur paleontologists, as well as those of professional paleontologists, and explore the potential for these two groups to work collaboratively as a formalized community. Such an investigation is necessary to develop design principles for an online environment that supports this community and encourages communication and shared practice among individuals with different backgrounds in paleontology and who are geographically isolated. A national survey of fossil group representatives and professional paleontologists was used to address the research questions. The results provide a rich description of the attributes and activities of both groups and are discussed in terms of three design principles for supporting the two groups in a form of collaboration and fellowship via a coherent shared practice within an online learning community.
The Science DMZ: A Network Design Pattern for Data-Intensive Science
Dart, Eli; Rotman, Lauren; Tierney, Brian; ...
2014-01-01
The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less
Manufacturing process and material selection in concurrent collaborative design of MEMS devices
NASA Astrophysics Data System (ADS)
Zha, Xuan F.; Du, H.
2003-09-01
In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.
MMI: Increasing Community Collaboration
NASA Astrophysics Data System (ADS)
Galbraith, N. R.; Stocks, K.; Neiswender, C.; Maffei, A.; Bermudez, L.
2007-12-01
Building community requires a collaborative environment and guidance to help move members towards a common goal. An effective environment for community collaboration is a workspace that fosters participation and cooperation; effective guidance furthers common understanding and promotes best practices. The Marine Metadata Interoperability (MMI) project has developed a community web site to provide a collaborative environment for scientists, technologists, and data managers from around the world to learn about metadata and exchange ideas. Workshops, demonstration projects, and presentations also provide community-building opportunities for MMI. MMI has developed comprehensive online guides to help users understand and work with metadata standards, ontologies, and other controlled vocabularies. Documents such as "The Importance of Metadata Standards", "Usage vs. Discovery Vocabularies" and "Developing Controlled Vocabularies" guide scientists and data managers through a variety of metadata-related concepts. Members from eight organizations involved in marine science and informatics collaborated on this effort. The MMI web site has moved from Plone to Drupal, two content management systems which provide different opportunities for community-based work. Drupal's "organic groups" feature will be used to provide workspace for future teams tasked with content development, outreach, and other MMI mission-critical work. The new site is designed to enable members to easily create working areas, to build communities dedicated to developing consensus on metadata and other interoperability issues. Controlled-vocabulary-driven menus, integrated mailing-lists, member-based content creation and review tools are facets of the new web site architecture. This move provided the challenge of developing a hierarchical vocabulary to describe the resources presented on the site; consistent and logical tagging of web pages is the basis of Drupal site navigation. The new MMI web site presents enhanced opportunities for electronic discussions, focused collaborative work, and even greater community participation. The MMI project is beginning a new initiative to comprehensively catalog and document tools for marine metadata. The new MMI community-based web site will be used to support this work and to support the work of other ad-hoc teams in the future. We are seeking broad input from the community on this effort.
ERIC Educational Resources Information Center
Tirado, Ramon; Aguaded, Ignacio; Hernando, Angel
2011-01-01
This article analyses an experience in collaborative learning in an asynchronous writing environment through discussion forums on a WebCt platform of the University of Huelva's virtual campus, and was part of an innovative teaching project in 2007-08. The main objectives are to describe the processes of collaborative knowledge construction and the…
ERIC Educational Resources Information Center
Prata, David Nadler; Baker, Ryan S. J. d.; Costa, Evandro d. B.; Rose, Carolyn P.; Cui, Yue; de Carvalho, Adriana M. J. B.
2009-01-01
This paper presents a model which can automatically detect a variety of student speech acts as students collaborate within a computer supported collaborative learning environment. In addition, an analysis is presented which gives substantial insight as to how students' learning is associated with students' speech acts, knowledge that will…
ERIC Educational Resources Information Center
Gogoulou, Agoritsa; Gouli, Evangelia; Grigoriadou, Maria; Samarakou, Maria; Chinou, Dionisia
2007-01-01
In this paper, we present a web-based educational setting, referred to as SCALE (Supporting Collaboration and Adaptation in a Learning Environment), which aims to serve learning and assessment. SCALE enables learners to (i) work on individual and collaborative activities proposed by the environment with respect to learners' knowledge level, (ii)…
Intelligent Assistance for Teachers in Collaborative E-Learning Environments
ERIC Educational Resources Information Center
Casamayor, Agustin; Amandi, Analia; Campo, Marcelo
2009-01-01
Collaborative learning environments provide a set of tools for students acting in groups to interact and accomplish an assigned task. In this kind of systems, students are free to express and communicate with each other, which usually lead to collaboration and communication problems that may require the intervention of a teacher. In this article,…
Wikis and Collaborative Learning in Higher Education
ERIC Educational Resources Information Center
Zheng, Binbin; Niiya, Melissa; Warschauer, Mark
2015-01-01
While collaborative learning and collaborative writing can be of great value to student learning, the implementation of a technology-supported collaborative learning environment is a challenge. With their built-in features for supporting collaborative writing and social communication, wikis are a promising platform for collaborative learning;…
Supporting Collaborative Health Tracking in the Hospital: Patients’ Perspectives
Mishra, Sonali R.; Miller, Andrew D.; Haldar, Shefali; Khelifi, Maher; Eschler, Jordan; Elera, Rashmi G.; Pollack, Ari H; Pratt, Wanda
2018-01-01
The hospital setting creates a high-stakes environment where patients’ lives depend on accurate tracking of health data. Despite recent work emphasizing the importance of patients’ engagement in their own health care, less is known about how patients track their health and care in the hospital. Through interviews and design probes, we investigated hospitalized patients’ tracking activity and analyzed our results using the stage-based personal informatics model. We used this model to understand how to support the tracking needs of hospitalized patients at each stage. In this paper, we discuss hospitalized patients’ needs for collaboratively tracking their health with their care team. We suggest future extensions of the stage-based model to accommodate collaborative tracking situations, such as hospitals, where data is collected, analyzed, and acted on by multiple people. Our findings uncover new directions for HCI research and highlight ways to support patients in tracking their care and improving patient safety. PMID:29721554
Scandurra, Isabella; Hägglund, Maria; Koch, Sabine
2008-01-01
A significant problem with current health information technologies is that they poorly support collaborative work of healthcare professionals, sometimes leading to a fragmentation of workflow and disruption of healthcare processes. This paper presents two homecare cases, both applying multi-disciplinary thematic seminars (MdTS) as a collaborative method for user needs elicitation and requirements specification. This study describes the MdTS application to elicit user needs from different perspectives to coincide with collaborative professions' work practices in two cases. Despite different objectives, the two cases validated that MdTS emphasized the "points of intersection" in cooperative work. Different user groups with similar, yet distinct needs reached a common understanding of the entire work process, agreed upon requirements and participated in the design of prototypes supporting cooperative work. MdTS was applicable in both exploratory and normative studies aiming to elicit the specific requirements in a cooperative environment.
Mahendra, A; Vo, T; Einstoss, C; Weppler, J; Gillen, P; Ryan, L; Haley, K
2017-01-01
Land use planning is a complex field comprised of legislation, policies, processes and tools. A growing body of evidence supports the relationship between land use planning decisions, community design and health. The built environment has been shown to be associated with physical inactivity, obesity, cardiovascular disease, respiratory disease and mental illness. Consequently, there is a growing interest within public health to work with planners on land use planning initiatives such as official plans and transportation master plans. Two surveys were developed: one for public health professionals and the other for planning professionals (survey questions available upon request to the corresponding author). The surveys were pilot tested in two separate focus group sessions with public health and planning professionals. Focus group volunteers helped to validate the surveys by verifying survey questions, design and overall flow. In early 2012, 304 public health professionals and 301 planning professionals completed the two separate surveys, comprising the total survey respondents for each respective profession used to calculate proportions. The survey results represent a convenience sample and are not generalizable to the entire population of public health and planning professionals in Ontario. Results compare survey responses from both groups where appropriate. Most respondents worked either as public health staff (78%) or planners/senior planners (58%). A smaller percentage of public health and planning professionals worked either as managers (15% and 11%, respectively) or directors (5% and 9%, respectively). Health is associated with how communities are planned and built, and the services and resources provided within them. Inspired by the results of our survey and based on user feedback from the pilot tests, a free online training program entitled "Public Health and Planning 101: An Online Course for Public Health and Planning Professionals to Create Healthier Built Environments" was launched in 2016 by OPHA as a collaborative project with OPPI and PHAC. This course is designed to bridge the gaps between the two professions, as well as provide greater opportunities for developing collaborative partnerships to help create and foster healthy built environments.
Replacing revolving door: a collaborative approach to treating individuals in crisis.
Lauer, Michelle; Brownstein, Rose
2008-06-01
The Crisis Assessment and Psychiatric Emergency Services (CAPES) unit was designed to improve the quality of psychiatric treatment, contain costs, and provide relief to overburdened psychiatric inpatient and emergency services in Delaware. This innovative program is the result of collaboration between public and private agencies to treat individuals in crisis. The myriad factors that contributed to a broken system and instigated Delaware's search for a solution are discussed in this article. The CAPES unit has resulted in improved communication among providers, decreased committal rates, better linkage to appropriate levels of care, increased safety, and improved coordination of services. Clinical implications for nursing practice include providing more holistic care in a safer environment.
NASA Astrophysics Data System (ADS)
Drexler, Wendy
This design-based research case study applied a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted emerging Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. The personal learning environments constructed used Application Programming Interface (API) widgets to access, organize, and synthesize content from a number of educational Internet resources and social network connections. This study examined the nature of personal learning environments; the processes students go through during construction, and patterns that emerged. The project was documented from both an instructional and student-design perspective. Findings revealed that students applied the processes of: practicing digital responsibility; practicing digital literacy; organizing content; collaborating and socializing; and synthesizing and creating. These processes informed a model of the networked student that will serve as a framework for future instructional designs. A networked learning approach that incorporates these processes into future designs has implications for student learning, teacher roles, professional development, administrative policies, and delivery. This work is significant in that it shifts the focus from technology innovations based on tools to student empowerment based on the processes required to support learning. It affirms the need for greater attention to digital literacy and responsibility in K12 schools as well as consideration for those skills students will need to achieve success in the 21st century. The design-based research case study provides a set of design principles for teachers to follow when facilitating student construction of personal learning environments.
Co-Regulation of Learning in Computer-Supported Collaborative Learning Environments: A Discussion
ERIC Educational Resources Information Center
Chan, Carol K. K.
2012-01-01
This discussion paper for this special issue examines co-regulation of learning in computer-supported collaborative learning (CSCL) environments extending research on self-regulated learning in computer-based environments. The discussion employs a socio-cognitive perspective focusing on social and collective views of learning to examine how…
EVA: Collaborative Distributed Learning Environment Based in Agents.
ERIC Educational Resources Information Center
Sheremetov, Leonid; Tellez, Rolando Quintero
In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…
EVA: An Interactive Web-Based Collaborative Learning Environment
ERIC Educational Resources Information Center
Sheremetov, Leonid; Arenas, Adolfo Guzman
2002-01-01
In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…
The Undergraduate ALFALFA Groups Project: Development of a Galaxy Environment Index
NASA Astrophysics Data System (ADS)
Crone, Mary; Turner, J.; ALFALFA Team
2010-01-01
The Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team Groups Project is a collaborative undertaking of faculty and undergraduates at 8 institutions, aimed at investigating properties of galaxy groups surveyed by the ALFALFA blind HI survey. We present a galaxy environment index designed to reflect local density in the regions surrounding galaxy groups. These regions typically include hundreds of galaxies with optical and HI properties that can be compared with environment. For example, an 8x10 degree region surrounding the group MKW 11 includes 535 galaxies at the group redshift of 0.02, 139 of which are detected in HI. This work has been supported by NSF grants AST-0724918, AST-0725267, and AST-0725380.
ERIC Educational Resources Information Center
Alzahrani, Ibraheem; Woollard, John
2013-01-01
This paper seeks to discover the relationship between both the social constructivist learning theory and the collaborative learning environment. This relationship can be identified by giving an example of the learning environment. Due to wiki characteristics, Wiki technology is one of the most famous learning environments that can show the…
ASC Tri-lab Co-design Level 2 Milestone Report 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornung, Rich; Jones, Holger; Keasler, Jeff
2015-09-23
In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Sci- enti c Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored performance portability programming environments in the context of several ASC co-design proxy applica- tions as part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming environments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stan- ford University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. These programming models and proxy-apps are described herein. Each lab focused on amore » particular combination of abstractions and proxy apps, with the goal of assessing performance portability using those. Performance portability was determined by: a) the ability to run a single application source code on multiple advanced architectures, b) comparing runtime performance between \
Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam
2016-03-08
There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.
Patterson, Tamatha A.; Grundel, Ralph
2014-01-01
Conservation Action Planning (CAP) is an adaptive management planning process refined by The Nature Conservancy (TNC) and embraced worldwide as the Open Standards for the Practice of Conservation. The CAP process facilitates open, multi-institutional collaboration on a common conservation agenda through organized actions and quantified results. While specifically designed for conservation efforts, the framework is adaptable and flexible to multiple scales and can be used for any collaborative planning effort. The CAP framework addresses inception; design and development of goals, measures, and strategies; and plan implementation and evaluation. The specific components of the CAP include defining the project scope and conservation targets; assessing the ecological viability; ascertaining threats and surrounding situation; identifying opportunities and designing strategies for action; and implementing actions and monitoring results. In 2007, TNC and a multidisciplinary graduate student team from the University of Michigan's School of Natural Resources and Environment initiated a CAP for the St. Marys River, the connecting channel between Lake Superior and Lake Huron, and its local watershed. The students not only gained experience in conservation planning, but also learned lessons that notably benefited the CAP process and were valuable for any successful collaborative effort—a dedicated core team improved product quality, accelerated the timeline, and provided necessary support for ongoing efforts; an academic approach in preparation for engagement in the planning process brought applicable scientific research to the forefront, enhanced workshop facilitation, and improved stakeholder participation; and early and continuous interactions with regional stakeholders improved cooperation and built a supportive network for collaboration.
Scandurra, Isabella; Hägglund, Maria
2009-01-01
Introduction Integrated care involves different professionals, belonging to different care provider organizations and requires immediate and ubiquitous access to patient-oriented information, supporting an integrated view on the care process [1]. Purpose To present a method for development of usable and work process-oriented information and communication technology (ICT) systems for integrated care. Theory and method Based on Human-computer Interaction Science and in particular Participatory Design [2], we present a new collaborative design method in the context of health information systems (HIS) development [3]. This method implies a thorough analysis of the entire interdisciplinary cooperative work and a transformation of the results into technical specifications, via user validated scenarios, prototypes and use cases, ultimately leading to the development of appropriate ICT for the variety of occurring work situations for different user groups, or professions, in integrated care. Results and conclusions Application of the method in homecare of the elderly resulted in an HIS that was well adapted to the intended user groups. Conducted in multi-disciplinary seminars, the method captured and validated user needs and system requirements for different professionals, work situations, and environments not only for current work; it also aimed to improve collaboration in future (ICT supported) work processes. A holistic view of the entire care process was obtained and supported through different views of the HIS for different user groups, resulting in improved work in the entire care process as well as for each collaborating profession [4].
ERIC Educational Resources Information Center
Lu, Jie; Churchill, Daniel
2014-01-01
This paper reports a study that investigated the social interaction pattern of collaborative learning and the factors affecting the effectiveness of collaborative learning in a social networking environment (SNE). A class of 55 undergraduate students enrolled in an elective course at a Chinese university was recruited for the study. The…
Achieving Innovation and Affordability Through Standardization of Materials Development and Testing
NASA Technical Reports Server (NTRS)
Bray, M. H.; Zook, L. M.; Raley, R. E.; Chapman, C.
2011-01-01
The successful expansion of development, innovation, and production within the aeronautics industry during the 20th century was facilitated by collaboration of government agencies with the commercial aviation companies. One of the initial products conceived from the collaboration was the ANC-5 Bulletin, first published in 1937. The ANC-5 Bulletin had intended to standardize the requirements of various government agencies in the design of aircraft structure. The national space policy shift in priority for NASA with an emphasis on transferring the travel to low earth orbit to commercial space providers highlights an opportunity and a need for the national and global space industries. The same collaboration and standardization that is documented and maintained by the industry within MIL-HDBK-5 (MMPDS-01) and MIL-HBDK-17 (nonmetallic mechanical properties) can also be exploited to standardize the thermal performance properties, processing methods, test methods, and analytical methods for use in aircraft and spacecraft design and associated propulsion systems. In addition to the definition of thermal performance description and standardization, the standardization for test methods and analysis for extreme environments (high temperature, cryogenics, deep space radiation, etc) would also be highly valuable to the industry. Its subsequent revisions and conversion to MIL-HDBK-5 and then MMPDS-01 established and then expanded to contain standardized mechanical property design values and other related design information for metallic materials used in aircraft, missiles, and space vehicles. It also includes guidance on standardization of composition, processing, and analytical methods for presentation and inclusion into the handbook. This standardization enabled an expansion of the technologies to provide efficiency and reliability to the consumers. It can be established that many individual programs within the government agencies have been overcome with development costs generated from these nonstandard requirements. Without industry standardization and acceptance, the programs are driven to shoulder the costs of determining design requirements, performance criteria, and then material qualification and certification. A significant investment that the industry could make to both reduce individual program development costs and schedules while expanding commercial space flight capabilities would be to invest in standardizing material performance properties for high temperature, cryogenic, and deep space environments for both metallic and nonmetallic materials.
Cognitive Collaboration Found in Cardiac Physiology: Study in Classroom Environment
Cowley, Benjamin; Torniainen, Jari; Ukkonen, Antti; Vihavainen, Arto; Puolamäki, Kai
2016-01-01
It is known that periods of intense social interaction result in shared patterns in collaborators’ physiological signals. However, applied quantitative research on collaboration is hindered due to scarcity of objective metrics of teamwork effectiveness. Indeed, especially in the domain of productive, ecologically-valid activity such as programming, there is a lack of evidence for the most effective, affordable and reliable measures of collaboration quality. In this study we investigate synchrony in physiological signals between collaborating computer science students performing pair-programming exercises in a class room environment. We recorded electrocardiography over the course of a 60 minute programming session, using lightweight physiological sensors. We employ correlation of heart-rate variability features to study social psychophysiological compliance of the collaborating students. We found evident physiological compliance in collaborating dyads’ heart-rate variability signals. Furthermore, dyads’ self-reported workload was associated with the physiological compliance. Our results show viability of a novel approach to field measurement using lightweight devices in an uncontrolled environment, and suggest that self-reported collaboration quality can be assessed via physiological signals. PMID:27416036
Collaborative Resource Allocation
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Wax, Allan; Lam, Raymond; Baldwin, John; Borden, Chester
2007-01-01
Collaborative Resource Allocation Networking Environment (CRANE) Version 0.5 is a prototype created to prove the newest concept of using a distributed environment to schedule Deep Space Network (DSN) antenna times in a collaborative fashion. This program is for all space-flight and terrestrial science project users and DSN schedulers to perform scheduling activities and conflict resolution, both synchronously and asynchronously. Project schedulers can, for the first time, participate directly in scheduling their tracking times into the official DSN schedule, and negotiate directly with other projects in an integrated scheduling system. A master schedule covers long-range, mid-range, near-real-time, and real-time scheduling time frames all in one, rather than the current method of separate functions that are supported by different processes and tools. CRANE also provides private workspaces (both dynamic and static), data sharing, scenario management, user control, rapid messaging (based on Java Message Service), data/time synchronization, workflow management, notification (including emails), conflict checking, and a linkage to a schedule generation engine. The data structure with corresponding database design combines object trees with multiple associated mortal instances and relational database to provide unprecedented traceability and simplify the existing DSN XML schedule representation. These technologies are used to provide traceability, schedule negotiation, conflict resolution, and load forecasting from real-time operations to long-range loading analysis up to 20 years in the future. CRANE includes a database, a stored procedure layer, an agent-based middle tier, a Web service wrapper, a Windows Integrated Analysis Environment (IAE), a Java application, and a Web page interface.
Smith, Louise Hardman; Hviid, Kirsten; Frydendall, Karen Bo; Flyvholm, Mari-Ann
2013-10-14
Global labour migration has increased in recent years and immigrant workers are often recruited into low status and low paid jobs such as cleaning. Research in a Danish context shows that immigrants working in the cleaning industry often form social networks based on shared languages and backgrounds, and that conflict between different ethnic groups may occur. This paper evaluates the impact of a multi-component intervention on the psychosocial work environment at a multi-ethnic Danish workplace in the cleaning sector. The intervention included Danish lessons, vocational training courses, and activities to improve collaboration across different groups of cleaners. Interviews about the outcome of the intervention were conducted with the cleaners and their supervisor. The Copenhagen Psychosocial Questionnaire was used as a supplement to the interviews. The results suggest that the psychosocial work environment had improved after the intervention. According to the interviews with the cleaners, the intervention had led to improved communication, trust, and collaboration. These findings are supported by the questionnaire where social support from supervisor and colleagues, social community, trust, and teamwork seem to have improved together with meaning of work, rewards, and emotional demands. The design of the intervention may provide inspiration for future psychosocial work environment interventions at multi-ethnic work places.
Distributed computing testbed for a remote experimental environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butner, D.N.; Casper, T.A.; Howard, B.C.
1995-09-18
Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on themore » DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.« less
Smith, Louise Hardman; Hviid, Kirsten; Frydendall, Karen Bo; Flyvholm, Mari-Ann
2013-01-01
Global labour migration has increased in recent years and immigrant workers are often recruited into low status and low paid jobs such as cleaning. Research in a Danish context shows that immigrants working in the cleaning industry often form social networks based on shared languages and backgrounds, and that conflict between different ethnic groups may occur. This paper evaluates the impact of a multi-component intervention on the psychosocial work environment at a multi-ethnic Danish workplace in the cleaning sector. The intervention included Danish lessons, vocational training courses, and activities to improve collaboration across different groups of cleaners. Interviews about the outcome of the intervention were conducted with the cleaners and their supervisor. The Copenhagen Psychosocial Questionnaire was used as a supplement to the interviews. The results suggest that the psychosocial work environment had improved after the intervention. According to the interviews with the cleaners, the intervention had led to improved communication, trust, and collaboration. These findings are supported by the questionnaire where social support from supervisor and colleagues, social community, trust, and teamwork seem to have improved together with meaning of work, rewards, and emotional demands. The design of the intervention may provide inspiration for future psychosocial work environment interventions at multi-ethnic work places. PMID:24129115
NASA Astrophysics Data System (ADS)
Wagner, Glenn
2017-03-01
Student-generated questions and ideas about our universe are the start of a rich and highly motivating learning environment. Using their curiosity-driven questions and ideas, students form Knowledge Building groups or ‘communities’ where they plan, set goals, design questions for research, and assess the progress of their work, tasks that were once under the control of the teacher. With the understanding that all knowledge and ideas are treated as improvable, students work collaboratively at their level of competency to share their knowledge, ideas and understandings gained from authoritative sources and laboratory activities. Over time, students work collectively to improve the knowledge and ideas of others that result in advances in understanding that benefit not only the individual but the community as a whole. Learning outcomes reported in this paper demonstrate that a Knowledge Building environment applied to introductory cosmology produced similar gains in knowledge and understanding surrounding foundational concepts compared to teacher-centred learning environments. Aside from new knowledge and understanding, students develop important skills and competencies such as question-asking, idea development, communication, collaboration that are becoming ever more important for 21st century living and working. Finally, the process of planning and initiating a Knowledge Building environment that produced the results reported in this paper is outlined.
Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session
ERIC Educational Resources Information Center
Ding, Suining
2008-01-01
This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…
A case study of collaborative facilities use in engineering design
NASA Astrophysics Data System (ADS)
Monroe, Laura; Pugmire, David
2010-01-01
In this paper we describe the use of visualization tools and facilities in the collaborative design of a replacement weapons system, the Reliable Replacement Warhead (RRW). We used not only standard collaboration methods but also a range of visualization software and facilities to bring together domain specialists from laboratories across the country to collaborate on the design and integrate this disparate input early in the design. This was the first time in U.S. weapons history that a weapon had been designed in this collaborative manner. Benefits included projected cost savings, design improvements and increased understanding across the project.
Agent Collaborative Target Localization and Classification in Wireless Sensor Networks
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.
FY17 Status Report: Research on Stress Corrosion Cracking of SNF Interim Storage Canisters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindelholz, Eric John; Bryan, Charles R.; Alexander, Christopher L.
This progress report describes work done in FY17 at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. Work in FY17 refined our understanding of the chemical and physical environment on canister surfaces, and evaluated the relationship between chemical and physical environment and the form and extent of corrosion that occurs. The SNL corrosionmore » work focused predominantly on pitting corrosion, a necessary precursor for SCC, and process of pit-to-crack transition; it has been carried out in collaboration with university partners. SNL is collaborating with several university partners to investigate SCC crack growth experimentally, providing guidance for design and interpretation of experiments.« less
NASA Astrophysics Data System (ADS)
Liljeström, Anu; Enkenberg, Jorma; Pöllänen, Sinikka
2013-03-01
This design experiment aimed to answer the question of how to mediate the practices of authentic science inquiries in primary education. An instructional approach based on activity theory was designed and carried out with multi-age students in a small village school. An open-ended learning task was offered to the older students. Their task was to design and implement instruction about the Ice Age to their younger fellows. The objective was collaborative learning among students, the teacher, and outside domain experts. Mobile phones and GPS technologies were applied as the main technological mediators in the learning process. Technology provided an opportunity to expand the learning environment outside the classroom, including the natural environment. Empirically, the goal was to answer the following questions: What kind of learning project emerged? How did the students' knowledge develop? What kinds of science learning processes, activities, and practices were represented? Multiple and parallel data were collected to achieve this aim. The data analysis revealed that the learning project both challenged the students to develop explanations for the phenomena and generated high quality conceptual and physical models in question. During the learning project, the roles of the community members were shaped, mixed, and integrated. The teacher also repeatedly evaluated and adjusted her behavior. The confidence of the learners in their abilities raised the quality of their learning outcomes. The findings showed that this instructional approach can not only mediate the kind of authentic practices that scientists apply but also make learning more holistic than it has been. Thus, it can be concluded that nature of the task, the tool-integrated collaborative inquiries in the natural environment, and the multiage setting can make learning whole.
NASA Technical Reports Server (NTRS)
Conroy, Michael; Mazzone, Rebecca; Little, William; Elfrey, Priscilla; Mann, David; Mabie, Kevin; Cuddy, Thomas; Loundermon, Mario; Spiker, Stephen; McArthur, Frank;
2010-01-01
The Distributed Observer network (DON) is a NASA-collaborative environment that leverages game technology to bring three-dimensional simulations to conventional desktop and laptop computers in order to allow teams of engineers working on design and operations, either individually or in groups, to view and collaborate on 3D representations of data generated by authoritative tools such as Delmia Envision, Pro/Engineer, or Maya. The DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3D visual environment. DON has been designed to enhance accessibility and user ability to observe and analyze visual simulations in real time. A variety of NASA mission segment simulations [Synergistic Engineering Environment (SEE) data, NASA Enterprise Visualization Analysis (NEVA) ground processing simulations, the DSS simulation for lunar operations, and the Johnson Space Center (JSC) TRICK tool for guidance, navigation, and control analysis] were experimented with. Desired functionalities, [i.e. Tivo-like functions, the capability to communicate textually or via Voice-over-Internet Protocol (VoIP) among team members, and the ability to write and save notes to be accessed later] were targeted. The resulting DON application was slated for early 2008 release to support simulation use for the Constellation Program and its teams. Those using the DON connect through a client that runs on their PC or Mac. This enables them to observe and analyze the simulation data as their schedule allows, and to review it as frequently as desired. DON team members can move freely within the virtual world. Preset camera points can be established, enabling team members to jump to specific views. This improves opportunities for shared analysis of options, design reviews, tests, operations, training, and evaluations, and improves prospects for verification of requirements, issues, and approaches among dispersed teams.
Empowering Change Agents in Hierarchical Organizations: Participatory Action Research in Prisons.
Penrod, Janice; Loeb, Susan J; Ladonne, Robert A; Martin, Lea M
2016-06-01
Participatory action research (PAR) approaches harness collaborative partnerships to stimulate change in defined communities. The purpose of this article is to illustrate key methodological strategies used in the application of PAR methods in the particularly challenging environment of a hierarchical organization. A study designed to promote sustainable, insider-generated system-level changes in the provision of end-of-life (EOL) care in the restrictive setting of six state prisons is used as an exemplar of the application of three cardinal principles of PAR. First, development of a collaborative network with active partnership between outsider academic researchers and insider co-researchers began with careful attention to understanding the culture and processes of prisons and gaining the support of organizational leadership, using qualitative data gathering and trust-building. During the implementation phase, promoting co-ownership of change in EOL care through the co-construction of knowledge and systems to enhance sustainable change required carefully-orchestrated strategies to maximize the collaborative spirit of the project. Co-researchers were empowered to examine their worlds and capture opportunities for change using new leadership skills role-modeled by the research team. Third, their local knowledge of the barriers inherent in the contextual reality of prisons was translated into achievable system change by production of a toolkit of formalized and well-rehearsed change strategies that collaborative teams were empowered to enact within their hierarchical prison environment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Pirkkalainen, Henri; Jokinen, Jussi P. P.; Pawlowski, Jan M.
2014-01-01
Social software environments are increasingly used for open education: teachers and learners share and collaborate in these environments. While there are various possibilities for the inclusion of such social functionalities for OER, many organizational, individual and technological challenges can hinder the motivation of teachers to share and…
ERIC Educational Resources Information Center
Symons, Duncan; Pierce, Robyn
2015-01-01
In this study we examine the use of cumulative and exploratory talk types in a year 5 computer supported collaborative learning environment. The focus for students in this environment was to participate in mathematical problem solving, with the intention of developing the proficiencies of problem solving and reasoning. Findings suggest that…
EdMOO: One Approach to a Multimedia Collaborative Environment.
ERIC Educational Resources Information Center
Holkner, Bernard
The nature of the multiuser object oriented (MOO) environment lends itself to flexible and rich interactive collaboration space providing interactive discussion, mail, mailing list, and news features to its virtual denizens. EdMOO (HREF1) was created in mid-1995 as an environment for teachers to experience the text based virtual reality…
Development and Testing of the Collaboration in the Clinical Learning Environment (CCLE) Tool
ERIC Educational Resources Information Center
Hooven, Katie J.
2016-01-01
The purpose of this study was to develop and psychometrically test the Collaboration in the Clinical Learning Environment (CCLE) Tool. The researcher acknowledged two distinct populations that required input into this particular tool development: staff nurses who work on floors that are considered clinical learning environments for students, and…
Research on rebuilding the data information environment for aeronautical manufacturing enterprise
NASA Astrophysics Data System (ADS)
Feng, Xilan; Jiang, Zhiqiang; Zong, Xuewen; Shi, Jinfa
2005-12-01
The data environment on integrated information system and the basic standard on information resource management are the key effectively of the remote collaborative designing and manufacturing for complex product. A study project on rebuilding the data information environment for aeronautical manufacturing enterprise (Aero-ME) is put forwarded. Firstly, the data environment on integrated information system, the basic standard on information resource management, the basic establishment on corporation's information, the development on integrated information system, and the information education are discussed profoundly based on the practical requirement of information resource and technique for contemporary Aero-ME. Then, the idea and method with the data environment rebuilding based on I-CASE in the corporation is put forward, and the effective method and implement approach for manufacturing enterprise information is brought forwards. It will also the foundation and assurance that rebuilding the corporation data-environment and promoting standardizing information resource management for the development of Aero-ME information engineering.
Overview of NASA's Integrated Design and Engineering Analysis (IDEA)Environment
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Martin John G.
2008-01-01
Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures) each of which performs their design and analysis in relative isolation from others. This is possible in most cases either because the amount of interdisciplinary coupling is minimal or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA s X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design & Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary launch vehicle configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, configuration, propulsion, aerodynamics, aerothermodynamics, trajectory, closure and structural analysis into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine based combined cycle (TBCC) first stage and reusable rocket second stage. This paper provides an overview of the development of the IDEA environment, a description of the current status and detail of future plans.
Delivering team training to medical home staff to impact perceptions of collaboration.
Treadwell, Janet; Binder, Brenda; Symes, Lene; Krepper, Rebecca
2015-01-01
The purpose of this study was to explore whether an evidence-based educational and experiential intervention to develop team skills in medical homes would positively affect team members' perceptions of interprofessional collaboration. The study population consisted of primary care medical home practices associated with the health plan sponsor of this research. All practices were located within the greater Houston region of Texas and had more than 500 patients. A cluster design experimental study was conducted between August 2013 and June 2014. Fifty medical home practices, 25 intervention and 25 attention control, were recruited as study sites. Results indicate that individual team members in the medical homes receiving the intervention were significantly more likely than the individual team members in the attention control groups to report higher levels of positive perception of team collaboration after the 12-week intervention. This research indicates that educating teams about interprofessional collaboration tools and supporting technique use may be an effective strategy to assist medical homes in developing collaborative environments. Case management experience in collaboration supports the role facilitating team training. Transforming culture from hierarchical to team-based care supports the case management approach of collaborative practice. In addition, role satisfaction attained through the respect and communication of team-based care delivery may influence retention within the case management profession. As case managers in primary care settings assume roles of embedded care coordinators, program leaders, and transition facilitators, an understanding of collaboration techniques is needed to support the entire care team to achieve desired outcomes.
Hunter, Adam; Dayalan, Saravanan; De Souza, David; Power, Brad; Lorrimar, Rodney; Szabo, Tamas; Nguyen, Thu; O'Callaghan, Sean; Hack, Jeremy; Pyke, James; Nahid, Amsha; Barrero, Roberto; Roessner, Ute; Likic, Vladimir; Tull, Dedreia; Bacic, Antony; McConville, Malcolm; Bellgard, Matthew
2017-01-01
An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/.
CaveCAD: a tool for architectural design in immersive virtual environments
NASA Astrophysics Data System (ADS)
Schulze, Jürgen P.; Hughes, Cathleen E.; Zhang, Lelin; Edelstein, Eve; Macagno, Eduardo
2014-02-01
Existing 3D modeling tools were designed to run on desktop computers with monitor, keyboard and mouse. To make 3D modeling possible with mouse and keyboard, many 3D interactions, such as point placement or translations of geometry, had to be mapped to the 2D parameter space of the mouse, possibly supported by mouse buttons or keyboard keys. We hypothesize that had the designers of these existing systems had been able to assume immersive virtual reality systems as their target platforms, they would have been able to design 3D interactions much more intuitively. In collaboration with professional architects, we created a simple, but complete 3D modeling tool for virtual environments from the ground up and use direct 3D interaction wherever possible and adequate. In this publication, we present our approaches for interactions for typical 3D modeling functions, such as geometry creation, modification of existing geometry, and assignment of surface materials. We also discuss preliminary user experiences with this system.
Terp, Malene; Laursen, Birgitte Schantz; Jørgensen, Rikke; Mainz, Jan; Bjørnes, Charlotte D
2016-12-01
Smartphone technology is being increasingly viewed as key to engaging young adults with schizophrenia in their own mental health care. In an attempt to use smartphones as an engagement tool, we conducted a participatory design process, where young adults with schizophrenia (n = 4), healthcare providers (n = 7), software designers (n = 3), graphic designer (n = 1), graphic recorder (n = 1), and team leader (n = 1) co-designed a smartphone application for use in early phase schizophrenia care. This paper reports the co-design process. Based on a variety of written data-sources, the paper describes if, and how, participatory design can help construct a physical and relational environment that enables young adults with schizophrenia to become active participants in the design of a more participatory mental health practice. Guided by Etienne Wenger's construct of Community of Practice, three major categories of characteristics and construction of a physical and relational environment supporting and inspiring participation and engagement were identified: (i) a pre-narrative about a community of practice, (ii) the room for design is a community of practice and (iii) the community of practice as a practice of special qualities. It is concluded that participatory design can support and inspire participation and engagement in the development of mental health care with young adults with schizophrenia, given that the environment in which participatory design unfolds is transparent, flexible, secure and informal. © 2016 Australian College of Mental Health Nurses Inc.
Collaboration within Student Design Teams Participating in Architectural Design Competitions
ERIC Educational Resources Information Center
Erbil, Livanur; Dogan, Fehmi
2012-01-01
This paper investigates design collaboration with reference to convergent and divergent idea generation processes in architectural design teams entering a design competition. Study of design teams offer a unique opportunity to investigate how creativity is fostered through collaborative work. While views of creativity often relate creativity to…
NASA Astrophysics Data System (ADS)
West, Ruth G.; Margolis, Todd; Prudhomme, Andrew; Schulze, Jürgen P.; Mostafavi, Iman; Lewis, J. P.; Gossmann, Joachim; Singh, Rajvikram
2014-02-01
Scalable Metadata Environments (MDEs) are an artistic approach for designing immersive environments for large scale data exploration in which users interact with data by forming multiscale patterns that they alternatively disrupt and reform. Developed and prototyped as part of an art-science research collaboration, we define an MDE as a 4D virtual environment structured by quantitative and qualitative metadata describing multidimensional data collections. Entire data sets (e.g.10s of millions of records) can be visualized and sonified at multiple scales and at different levels of detail so they can be explored interactively in real-time within MDEs. They are designed to reflect similarities and differences in the underlying data or metadata such that patterns can be visually/aurally sorted in an exploratory fashion by an observer who is not familiar with the details of the mapping from data to visual, auditory or dynamic attributes. While many approaches for visual and auditory data mining exist, MDEs are distinct in that they utilize qualitative and quantitative data and metadata to construct multiple interrelated conceptual coordinate systems. These "regions" function as conceptual lattices for scalable auditory and visual representations within virtual environments computationally driven by multi-GPU CUDA-enabled fluid dyamics systems.
NASA Technical Reports Server (NTRS)
Wang, Yeou-Fang; Schrock, Mitchell; Baldwin, John R.; Borden, Charles S.
2010-01-01
The Ground Resource Allocation and Planning Environment (GRAPE 1.0) is a Web-based, collaborative team environment based on the Microsoft SharePoint platform, which provides Deep Space Network (DSN) resource planners tools and services for sharing information and performing analysis.
Collaboration with the United Kingdom on Air Quality Research
To initiate research collaboration among the United States Environmental Protection Agency (EPA), the Unitd Kingdom's (UK) Department for Environment, Food and Rural Affairs (Defra), and the Environment Agency for England and Wales (EA) on exposure science
NASA Astrophysics Data System (ADS)
Vartiainen, Tero
This study determines a social contract for a form of university-industry collaboration to a project-based learning environment in close collaboration with industry. The author's previous studies on moral conflicts in a project-based learning (PjBL) environment and his 5-year engagement in the PjBL environment are used as background knowledge, and John Rawls' veil of ignorance is used as a method in the contract formulation. Fair and impartial treatment of actors is strived for with the contract which constitutes of sets of obligations for each party, students, clients, and university (instructors) in the chosen project course. With the contract fair and impartial treatment of actors is strived for and the most dilemmatic moral conflicts are tried to be avoided. The forming of the social contract is evaluated, and implications for research and collaborations in practice are offered.
Collaborative Visualization Project: shared-technology learning environments for science learning
NASA Astrophysics Data System (ADS)
Pea, Roy D.; Gomez, Louis M.
1993-01-01
Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.
Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error
Sahoo, Prasan Kumar; Hwang, I-Shyan
2011-01-01
Localization is an important research issue in Wireless Sensor Networks (WSNs). Though Global Positioning System (GPS) can be used to locate the position of the sensors, unfortunately it is limited to outdoor applications and is costly and power consuming. In order to find location of sensor nodes without help of GPS, collaboration among nodes is highly essential so that localization can be accomplished efficiently. In this paper, novel localization algorithms are proposed to find out possible location information of the normal nodes in a collaborative manner for an outdoor environment with help of few beacons and anchor nodes. In our localization scheme, at most three beacon nodes should be collaborated to find out the accurate location information of any normal node. Besides, analytical methods are designed to calculate and reduce the localization error using probability distribution function. Performance evaluation of our algorithm shows that there is a tradeoff between deployed number of beacon nodes and localization error, and average localization time of the network can be increased with increase in the number of normal nodes deployed over a region. PMID:22163738
NASA Astrophysics Data System (ADS)
Seber, D.; Baru, C.
2007-05-01
The Geosciences Network (GEON) project is a collaboration among multiple institutions to develop a cyberinfrastructure (CI) platform in support of integrative geoscience research activities. Taking advantage of the state-of-the-art information technology resources GEON researchers are building a cyberinfrastructure designed to enable data sharing, resource discovery, semantic data integration, high-end computations and 4D visualization in an easy-to-use web-based environment. The cyberinfrastructure in GEON is required to support an inherently distributed system, since the scientists, who are users as well as providers of resources, are themselves distributed. International collaborations are a natural extension of GEON; the geoscience research requires strong international collaborations. The goals of the i-GEON activities are to collaborate with international partners and jointly build a cyberinfrastructure for the geosciences to enable collaborative work environments. International partners can participate in GEON efforts, establish GEON nodes at their universities, institutes, or agencies and also contribute data and tools to the network. Via jointly run cyberinfrastructure workshops, the GEON team also introduces students, scientists, and research professionals to the concepts of IT-based geoscience research and education. Currently, joint activities are underway with the Chinese Academy of Sciences in China, the GEO Grid project at AIST in Japan, and the University of Hyderabad in India (where the activity is funded by the Indo-US Science and Technology Forum). Several other potential international partnerships are under consideration. iGEON is open to all international partners who are interested in working towards the goal of data sharing, managing and integration via IT-based platforms. Information about GEON and its international activities can be found at http:www.geongrid.org/
Designers workbench: toward real-time immersive modeling
NASA Astrophysics Data System (ADS)
Kuester, Falko; Duchaineau, Mark A.; Hamann, Bernd; Joy, Kenneth I.; Ma, Kwan-Liu
2000-05-01
This paper introduces the Designers Workbench, a semi- immersive virtual environment for two-handed modeling, sculpting and analysis tasks. The paper outlines the fundamental tools, design metaphors and hardware components required for an intuitive real-time modeling system. As companies focus on streamlining productivity to cope with global competition, the migration to computer-aided design (CAD), computer-aided manufacturing, and computer-aided engineering systems has established a new backbone of modern industrial product development. However, traditionally a product design frequently originates form a clay model that, after digitization, forms the basis for the numerical description of CAD primitives. The Designers Workbench aims at closing this technology or 'digital gap' experienced by design and CAD engineers by transforming the classical design paradigm into its fully integrate digital and virtual analog allowing collaborative development in a semi- immersive virtual environment. This project emphasizes two key components form the classical product design cycle: freeform modeling and analysis. In the freedom modeling stage, content creation in the form of two-handed sculpting of arbitrary objects using polygonal, volumetric or mathematically defined primitives is emphasized, whereas the analysis component provides the tools required for pre- and post-processing steps for finite element analysis tasks applied to the created models.
Health Maintenance System (HMS) Hardware Research, Design, and Collaboration
NASA Technical Reports Server (NTRS)
Gonzalez, Stefanie M.
2010-01-01
The Space Life Sciences division (SLSD) concentrates on optimizing a crew member's health. Developments are translated into innovative engineering solutions, research growth, and community awareness. This internship incorporates all those areas by targeting various projects. The main project focuses on integrating clinical and biomedical engineering principles to design, develop, and test new medical kits scheduled for launch in the Spring of 2011. Additionally, items will be tagged with Radio Frequency Interference Devices (RFID) to keep track of the inventory. The tags will then be tested to optimize Radio Frequency feed and feed placement. Research growth will occur with ground based experiments designed to measure calcium encrusted deposits in the International Space Station (ISS). The tests will assess the urine calcium levels with Portable Clinical Blood Analyzer (PCBA) technology. If effective then a model for urine calcium will be developed and expanded to microgravity environments. To support collaboration amongst the subdivisions of SLSD the architecture of the Crew Healthcare Systems (CHeCS) SharePoint site has been redesigned for maximum efficiency. Community collaboration has also been established with the University of Southern California, Dept. of Aeronautical Engineering and the Food and Drug Administration (FDA). Hardware disbursements will transpire within these communities to support planetary surface exploration and to serve as an educational tool demonstrating how ground based medicine influenced the technological development of space hardware.
A web-based online collaboration platform for formulating engineering design projects
NASA Astrophysics Data System (ADS)
Varikuti, Sainath
Effective communication and collaboration among students, faculty and industrial sponsors play a vital role while formulating and solving engineering design projects. With the advent in the web technology, online platforms and systems have been proposed to facilitate interactions and collaboration among different stakeholders in the context of senior design projects. However, there are noticeable gaps in the literature with respect to understanding the effects of online collaboration platforms for formulating engineering design projects. Most of the existing literature is focused on exploring the utility of online platforms on activities after the problem is defined and teams are formed. Also, there is a lack of mechanisms and tools to guide the project formation phase in senior design projects, which makes it challenging for students and faculty to collaboratively develop and refine project ideas and to establish appropriate teams. In this thesis a web-based online collaboration platform is designed and implemented to share, discuss and obtain feedback on project ideas and to facilitate collaboration among students and faculty prior to the start of the semester. The goal of this thesis is to understand the impact of an online collaboration platform for formulating engineering design projects, and how a web-based online collaboration platform affects the amount of interactions among stakeholders during the early phases of design process. A survey measuring the amount of interactions among students and faculty is administered. Initial findings show a marked improvement in the students' ability to share project ideas and form teams with other students and faculty. Students found the online platform simple to use. The suggestions for improving the tool generally included features that were not necessarily design specific, indicating that the underlying concept of this collaborative platform provides a strong basis and can be extended for future online platforms. Although the platform was designed to promote collaboration, adoption of the collaborative platform by students and faculty has been slow. While the platform appears to be very useful for collaboration, more time is required for it to be widely used by all the stakeholders and to fully convert from email communication to the use of the online collaboration platform.
Augmenting the access grid using augmented reality
NASA Astrophysics Data System (ADS)
Li, Ying
2012-01-01
The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.
User-Centered Design Guidelines for Collaborative Software for Intelligence Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean; Endert, Alexander
In this position paper we discuss the necessity of using User-Centered Design (UCD) methods in order to design collaborative software for the intelligence community. We discuss a number of studies of collaboration in the intelligence community and use this information to provide some guidelines for collaboration software.
On-Line Critiques in Collaborative Design Studio
ERIC Educational Resources Information Center
Sagun, Aysu; Demirkan, Halime
2009-01-01
In this study, the Design Collaboration Model (DCM) was developed to provide a medium for the on-line collaboration of the design courses. The model was based on the situated and reflective practice characteristics of the design process. The segmentation method was used to analyse the design process observed both in the design diaries and the…
Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals
ERIC Educational Resources Information Center
Burton, Brian G.; Martin, Barbara N.
2010-01-01
The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…
The Role of Outdoor Art in Urban Environmental Education
NASA Astrophysics Data System (ADS)
Filippelli, G. M.; Kesling, M.; Ryan, T.; Fraser, J.; McDonald, F.; Rollings, A.; Miss, M.; Kanpetch, B.; Trueblood, M.
2015-12-01
Finding ways to engage youth in inadvertent learning about nature and the environment is challenging, particularly in urban areas where environmental literacy is profoundly limited by access to safe and representative spaces. Termed the Nature Deficit Disorder, the lack of contact and connection between people and their environment leads to a less than holistic approach to environmental management at the personal and governmental levels. One of the challenges is developing ways to engage youth in science learning not by bringing them indoors to a science museum but rather by taking the science museum outdoors. Funded by the NSF Informal Science Learning program, we launched a collaborative between scientists and artists to understand the nature and impact of environmental learning through outdoor art and science programming, called StreamLines. Launched in 2014 and now near full deployment, the program is part of a bigger initiative in Indianapolis (Reconnecting to Our Waterways) to embrace the multiple waterways that traverse the city as a valuable community and health resource. This collaborative is designed to function on multiple levels. An Artist and Scientists Roundtable engages practitioners in regular conversations supplemented by external readings to share how practitioners use concepts and tools from the "opposite" side to inform their work and scholarship. Physical installations of iconic art at individual sites reflect the environmental conditions at individual sites are designed as tools for explicit and implicit learning and exploration about the environment. Music, poetry, and dance programming developed for individual sites portray cogent characteristics of place and are meant to allow visitors to see how artists engage with and draw from the environment for inspiration. A research approach unpins all of these efforts, utilizing a set of different sample populations to explore environmental education and potential advocacy after interactions with components of StreamLines.
NASA Astrophysics Data System (ADS)
Overoye, D.; Lewis, C.
2016-12-01
The Global Learning and Observations to Benefit the Environment (GLOBE) Program is a worldwide hands-on, primary and secondary school-based science and education program founded on Earth Day 1995. Implemented in 117 countries, GLOBE promotes the teaching and learning of science, supporting students, teachers and scientists worldwide to collaborate with each other on inquiry-based investigations of the Earth system. As an international platform supporting a large number and variety of stakeholders, the GLOBE Data Information System (DIS) was re-built with the goal of providing users the support needed to foster and develop collaboration between teachers, students and scientists while supporting the collection and visualization of over 50 different earth science investigations (protocols). There have been many challenges to consider as we have worked to prototype and build various tools to support collaboration across the GLOBE community - language, security, time zones, user roles and the Child Online Protection Act (COPA) to name a few. During the last 3 years the re-built DIS has been in operation we have supported user to user collaboration, school to school collaboration, project/campaign to user collaboration and scientist to scientist collaboration. We have built search tools to facilitate finding collaboration partners. The tools and direction continue to evolve based on feedback, evolving needs and changes in technology. With this paper we discuss our approach for dealing with some of the collaboration challenges, review tools built to encourage and support collaboration, and analyze which tools have been successful and which have not. We will review new ideas for collaboration in the GLOBE community that are guiding upcoming development.
ARTEMIS: a collaborative framework for health care.
Reddy, R; Jagannathan, V; Srinivas, K; Karinthi, R; Reddy, S M; Gollapudy, C; Friedman, S
1993-01-01
Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system.
ERIC Educational Resources Information Center
Ortiz Navarrete, Mabel; Ferreira Cabrera, Anita
2014-01-01
This paper aims at proposing a technique for students learning English as a foreign language when they collaboratively write an argumentative essay in a wiki environment. A wiki environment and collaborative work play an important role within the academic writing task. Nevertheless, an appropriate and systematic work assignment is required in…
Enhancement of collaboration activities utilizing 21st century learning design rubric
NASA Astrophysics Data System (ADS)
Cubero, Dave D.; Gargar, Clare V., Lady; Nallano, Gerlett Grace D.; Magsayo, Joy R.; Guarin, Rica Mae B.; Lahoylahoy, Myrna E.
2018-01-01
Twenty first century learners have incredibly diverse learning interests, needs, and aspirations. Engaging middle school students and sculpting successful, confident, and creative learners is a constant endeavor for educators [4]. In the 21st century classroom environments in which students can develop the skills they need in workplace. Collaboration occurs when students work together to create, discuss challenge and develop deeper critical thinking. In today's workplace, collaboration is essential as only few tasks are completed alone (Calgary and Park, 2016). The collaborative project-based curriculum used in this classroom develops the higher order thinking skills, effective communication skills, and knowledge of technology that students will need in the 21st century workplace. The study therefore aims to promote collaboration skills among learners as it is deemed as one of the top 21st century skills. Collaborative learning unleashes a unique intellectual and social synergy. This study aims to enhance the collaborative skills of students through conducting collaboration activities in learning the Ecosystem. This research utilizes pretest-posttest and employs descriptive research designs. It uses modified activities about the lesson on Ecosystem and utilizes a Collaboration Rubric to rate the modified activities. The activities were rated by ten In-Service teachers and there are 105 students who participated in doing the activities. The paired t-test is then used to analyze the data. The In-Service teachers evaluated the 1st and 2nd adapted activity and are rated as fair. Thus, the modified activities were enhanced since the ratings of each activity did not meet the criterion of the collaboration rubric. As for the 3rd adapted activity is rated as excellent and is ready for implementation. The evaluators provided comments and suggestions such as producing colored pictures on the activities, omitting some questions, and making the words simpler to enhance the activities. The findings of the study shows the students' performance in the posttest is higher than the pretest which indicates that there is a significant difference between the two tests given. The students' conceptual understanding was also improved after conducting the activities. Some students' outputs were Outstanding, Satisfactory, Fairly Satisfactory and Did Not Meet the Expectation. These results indicate that the students learned and developed their collaborative skills. The students found the activity interesting, enjoyable and useful. Furthermore, they understood the concept behind the activity.
Heckle, Rosa R; Lutters, Wayne G
2011-08-01
Healthcare providers and their IT staff, working in an effort to balance appropriate accessibility with stricter security mandates, are considering the use of a single network sign-on approach for authentication and password management. Single sign-on (SSO) promises to improve usability of authentication for multiple-system users, increase compliance, and help curb system maintenance costs. However, complexities are introduced when SSO is placed within a collaborative environment. These complexities include unanticipated workflow implications that introduce greater security vulnerability for the individual user. OBJECTIVES AND METHODOLOGY: In this work, we examine the challenges of implementing a single sign-on authentication technology in a hospital environment. The aim of the study was to document the factors that affected SSO adoption within the context of use. The ultimate goal is to better inform the design of usable authentication systems within collaborative healthcare work sites. The primary data collection techniques used are ethnographically informed - observation, contextual interviews, and document review. The study included a cross-section of individuals from various departments and varying rolls. These participants were a mix of both clinical and administrative staff, as well as the Information Technology group. The field work revealed fundamental mis-matches between the technology and routine work practices that will significantly impact its effective adoption. While single sign-on was effective in the administrative offices, SSO was not a good fit for collaborative areas. The collaborative needs of the clinical staff unearthed tensions in its implementation. An analysis of the findings revealed that the workflow, activities, and physical environment of the clinical areas create increased security vulnerabilities for the individual user. The clinical users were cognizant of these vulnerabilities and this created resistance to the implementation due to a concern for privacy. From a preliminary analysis of our on-going field study at a community hospital, there appears to be a number of mismatches between the SSO vision and the realities of routine work. While we cannot conclusively say if a SSO adoption will be effective in meeting its goals in a hospital environment, we do know that it will affect the work practice and that will make the management of the SSO system problematic. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Learning Bridge Tool to Improve Student Learning, Preceptor Training, and Faculty Teamwork
Cawley, Pauline; Arendt, Cassandra S.
2011-01-01
Objectives To implement a Learning Bridge tool to improve educational outcomes for pharmacy students as well as for preceptors and faculty members. Design Pharmacy faculty members collaborated to write 9 case-based assignments that first-year pharmacy (P1) students worked with preceptors to complete while at experiential sites. Assessment Students, faculty members, and preceptors were surveyed about their perceptions of the Learning Bridge process. As in our pilot study,1 the Learning Bridge process promoted student learning. Additionally, the Learning Bridge assignments familiarized preceptors with the school's P1 curriculum and its content. Faculty teamwork also was increased through collaborating on the assignments. Conclusions The Learning Bridge assignments provided a compelling learning environment and benefited students, preceptors, and faculty members. PMID:21655400
NASA Technical Reports Server (NTRS)
1997-01-01
I-FORCE, a computer peripheral from Immersion Corporation, was derived from virtual environment and human factors research at the Advanced Displays and Spatial Perception Laboratory at Ames Research Center in collaboration with Stanford University Center for Design Research. Entrepreneur Louis Rosenberg, a former Stanford researcher, now president of Immersion, collaborated with Dr. Bernard Adelstein at Ames on studies of perception in virtual reality. The result was an inexpensive way to incorporate motors and a sophisticated microprocessor into joysticks and other game controllers. These devices can emulate the feel of a car on the skid, a crashing plane, the bounce of a ball, compressed springs, or other physical phenomenon. The first products incorporating I-FORCE technology include CH- Products' line of FlightStick and CombatStick controllers.
NASA Astrophysics Data System (ADS)
Wollocko, Arthur; Danczyk, Jennifer; Farry, Michael; Jenkins, Michael; Voshell, Martin
2015-05-01
The proliferation of sensor technologies continues to impact Intelligence Analysis (IA) work domains. Historical procurement focus on sensor platform development and acquisition has resulted in increasingly advanced collection systems; however, such systems often demonstrate classic data overload conditions by placing increased burdens on already overtaxed human operators and analysts. Support technologies and improved interfaces have begun to emerge to ease that burden, but these often focus on single modalities or sensor platforms rather than underlying operator and analyst support needs, resulting in systems that do not adequately leverage their natural human attentional competencies, unique skills, and training. One particular reason why emerging support tools often fail is due to the gap between military applications and their functions, and the functions and capabilities afforded by cutting edge technology employed daily by modern knowledge workers who are increasingly "digitally native." With the entry of Generation Y into these workplaces, "net generation" analysts, who are familiar with socially driven platforms that excel at giving users insight into large data sets while keeping cognitive burdens at a minimum, are creating opportunities for enhanced workflows. By using these ubiquitous platforms, net generation analysts have trained skills in discovering new information socially, tracking trends among affinity groups, and disseminating information. However, these functions are currently under-supported by existing tools. In this paper, we describe how socially driven techniques can be contextualized to frame complex analytical threads throughout the IA process. This paper focuses specifically on collaborative support technology development efforts for a team of operators and analysts. Our work focuses on under-supported functions in current working environments, and identifies opportunities to improve a team's ability to discover new information and disseminate insightful analytic findings. We describe our Cognitive Systems Engineering approach to developing a novel collaborative enterprise IA system that combines modern collaboration tools with familiar contemporary social technologies. Our current findings detail specific cognitive and collaborative work support functions that defined the design requirements for a prototype analyst collaborative support environment.
NASA Astrophysics Data System (ADS)
McKenna, Ann Frances
2001-07-01
Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated on post-test measures. Specifically, female students scored significantly lower than males on the overall pre-tests but scored as well as males on the same post-test measures. MESA students also scored significantly lower than ATDP students on pre-test measures but both populations scored equally well on the post-tests. This dissertation has therefore shown the SIMALE to support a collaborative, reflective, and generative learning environment. Furthermore, the SIMALE clearly contributes to students' mechanical reasoning and understanding of simple machines concepts for a diverse population of students.
Distributed collaborative environments for virtual capability-based planning
NASA Astrophysics Data System (ADS)
McQuay, William K.
2003-09-01
Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.
Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research
NASA Astrophysics Data System (ADS)
Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.
2011-12-01
Today, the principal investigators of NASA Earth Science missions develop their own software to manipulate, visualize, and analyze the data collected from Earth, space, and airborne observation instruments. There is very little, if any, collaboration among these principal investigators due to the lack of collaborative tools, which would allow these scientists to share data and results. At NASA's Jet Propulsion Laboratory (JPL), under the Lunar Mapping and Modeling Project (LMMP), we have built a web portal that exposes a set of common services to users to allow search, visualization, subset, and download lunar science data. Users also have access to a set of tools that visualize, analyze and annotate the data. These services are developed according to industry standards for data access and manipulation, such REST and Open Geospatial Consortium (OGC) web services. As a result, users can access the datasets through custom written applications or off-the-shelf applications such as Google Earth. Even though it's currently used to store and process lunar data, this web portal infrastructure has been designed to support other solar system bodies such as asteroids and planets, including Earth. The infrastructure uses a combination of custom, commercial, and open-source software as well as off-the-shelf hardware and pay-by-use cloud computing services. The use of standardized web service interfaces facilitates platform and application-independent access to the services and data. For instance, we have software clients for the LMMP portal that provide a rich browsing and analysis experience from a variety of platforms including iOS and Android mobile platforms and large screen multi-touch displays with 3-D terrain viewing functions. The service-oriented architecture and design principles utilized in the implementation of the portal lends itself to be reusable and scalable and could naturally be extended to include a collaborative environment that enables scientists and principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.
ERIC Educational Resources Information Center
Popov, Vitaliy; Biemans, Harm J. A.; Kuznetsov, Andrei N.; Mulder, Martin
2014-01-01
In this exploratory study, the authors introduced an interculturally enriched collaboration script (IECS) for working in culturally diverse groups within a computer-supported collaborative learning (CSCL) environment and then assessed student online collaborative behaviour, learning performance and experiences. The question was if and how these…
Online Collaboration and Cooperation: The Recurring Importance of Evidence, Rationale and Viability
ERIC Educational Resources Information Center
Hammond, Michael
2017-01-01
This paper investigates collaboration in teaching and learning and draws out implications for the promotion of collaboration within online environments. It is divided into four sections. First the case for collaboration, including specifically cooperative approaches, is explored. This case revolves around the impact of collaboration on the quality…
ERIC Educational Resources Information Center
Anaya, Antonio R.; Boticario, Jesus G.
2009-01-01
Data mining methods are successful in educational environments to discover new knowledge or learner skills or features. Unfortunately, they have not been used in depth with collaboration. We have developed a scalable data mining method, whose objective is to infer information on the collaboration during the collaboration process in a…
Comparative study on collaborative interaction in non-immersive and immersive systems
NASA Astrophysics Data System (ADS)
Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki
2007-09-01
This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.
ERIC Educational Resources Information Center
Dreamson, Neal
2017-01-01
The features of collaboration in design education include effective and efficient communication and reflection, and feasible manipulation of design objects. For collaborative design, information and communication technology offers educators the possibility to change design pedagogy. However, there is a paucity of literature on relative advantages…