Hierarchical Bayesian sparse image reconstruction with application to MRFM.
Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves
2009-09-01
This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.
Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation.
Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun
2016-08-16
Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods.
Robust Pedestrian Classification Based on Hierarchical Kernel Sparse Representation
Sun, Rui; Zhang, Guanghai; Yan, Xiaoxing; Gao, Jun
2016-01-01
Vision-based pedestrian detection has become an active topic in computer vision and autonomous vehicles. It aims at detecting pedestrians appearing ahead of the vehicle using a camera so that autonomous vehicles can assess the danger and take action. Due to varied illumination and appearance, complex background and occlusion pedestrian detection in outdoor environments is a difficult problem. In this paper, we propose a novel hierarchical feature extraction and weighted kernel sparse representation model for pedestrian classification. Initially, hierarchical feature extraction based on a CENTRIST descriptor is used to capture discriminative structures. A max pooling operation is used to enhance the invariance of varying appearance. Then, a kernel sparse representation model is proposed to fully exploit the discrimination information embedded in the hierarchical local features, and a Gaussian weight function as the measure to effectively handle the occlusion in pedestrian images. Extensive experiments are conducted on benchmark databases, including INRIA, Daimler, an artificially generated dataset and a real occluded dataset, demonstrating the more robust performance of the proposed method compared to state-of-the-art pedestrian classification methods. PMID:27537888
Generative models for discovering sparse distributed representations.
Hinton, G E; Ghahramani, Z
1997-01-01
We describe a hierarchical, generative model that can be viewed as a nonlinear generalization of factor analysis and can be implemented in a neural network. The model uses bottom-up, top-down and lateral connections to perform Bayesian perceptual inference correctly. Once perceptual inference has been performed the connection strengths can be updated using a very simple learning rule that only requires locally available information. We demonstrate that the network learns to extract sparse, distributed, hierarchical representations. PMID:9304685
A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.
Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi
2015-12-01
Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.
Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C
2010-09-21
We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.
Bayesian X-ray computed tomography using a three-level hierarchical prior model
NASA Astrophysics Data System (ADS)
Wang, Li; Mohammad-Djafari, Ali; Gac, Nicolas
2017-06-01
In recent decades X-ray Computed Tomography (CT) image reconstruction has been largely developed in both medical and industrial domain. In this paper, we propose using the Bayesian inference approach with a new hierarchical prior model. In the proposed model, a generalised Student-t distribution is used to enforce the Haar transformation of images to be sparse. Comparisons with some state of the art methods are presented. It is shown that by using the proposed model, the sparsity of sparse representation of images is enforced, so that edges of images are preserved. Simulation results are also provided to demonstrate the effectiveness of the new hierarchical model for reconstruction with fewer projections.
Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M
2018-05-07
A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Bustamam, A.; Ulul, E. D.; Hura, H. F. A.; Siswantining, T.
2017-07-01
Hierarchical clustering is one of effective methods in creating a phylogenetic tree based on the distance matrix between DNA (deoxyribonucleic acid) sequences. One of the well-known methods to calculate the distance matrix is k-mer method. Generally, k-mer is more efficient than some distance matrix calculation techniques. The steps of k-mer method are started from creating k-mer sparse matrix, and followed by creating k-mer singular value vectors. The last step is computing the distance amongst vectors. In this paper, we analyze the sequences of MERS-CoV (Middle East Respiratory Syndrome - Coronavirus) DNA by implementing hierarchical clustering using k-mer sparse matrix in order to perform the phylogenetic analysis. Our results show that the ancestor of our MERS-CoV is coming from Egypt. Moreover, we found that the MERS-CoV infection that occurs in one country may not necessarily come from the same country of origin. This suggests that the process of MERS-CoV mutation might not only be influenced by geographical factor.
A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; ...
2015-06-24
This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.
This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less
NASA Astrophysics Data System (ADS)
Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.
2014-03-01
This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.
Teacher and Paraeducator Perceptions of a Hierarchical to Hierarchical-Collaborative Relationship
ERIC Educational Resources Information Center
Dalley, Anna Maria
2017-01-01
This qualitative, descriptive single-case study explored the transition from a hierarchical to a hierarchical-collaborative relationship between special education teachers (SET) and special education paraeducators (SEP). Sixteen participants, including eight veteran SET and eight SEP working in one county located in the Mid-Atlantic region of the…
Bunger, Alicia C; Lengnick-Hall, Rebecca
Collaborative learning models were designed to support quality improvements, such as innovation implementation by promoting communication within organizational teams. Yet the effect of collaborative learning approaches on organizational team communication during implementation is untested. The aim of this study was to explore change in communication patterns within teams from children's mental health organizations during a year-long learning collaborative focused on implementing a new treatment. We adopt a social network perspective to examine intraorganizational communication within each team and assess change in (a) the frequency of communication among team members, (b) communication across organizational hierarchies, and (c) the overall structure of team communication networks. A pretest-posttest design compared communication among 135 participants from 21 organizational teams at the start and end of a learning collaborative. At both time points, participants were asked to list the members of their team and rate the frequency of communication with each along a 7-point Likert scale. Several individual, pair-wise, and team level communication network metrics were calculated and compared over time. At the individual level, participants reported communicating with more team members by the end of the learning collaborative. Cross-hierarchical communication did not change. At the team level, these changes manifested differently depending on team size. In large teams, communication frequency increased, and networks grew denser and slightly less centralized. In small teams, communication frequency declined, growing more sparse and centralized. Results suggest that team communication patterns change minimally but evolve differently depending on size. Learning collaboratives may be more helpful for enhancing communication among larger teams; thus, managers might consider selecting and sending larger staff teams to learning collaboratives. This study highlights key future research directions that can disentangle the relationship between learning collaboratives and team networks.
Jakeman, J. D.; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity. We show that utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchical surplus based strategies. Throughout this papermore » we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.
2015-07-28
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Pouransari, Hadi; Rajamanickam, Sivasankaran
We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by everymore » processor. We also provide various numerical results to demonstrate the versatility and scalability of the parallel algorithm.« less
Social Collaborative Filtering by Trust.
Yang, Bo; Lei, Yu; Liu, Jiming; Li, Wenjie
2017-08-01
Recommender systems are used to accurately and actively provide users with potentially interesting information or services. Collaborative filtering is a widely adopted approach to recommendation, but sparse data and cold-start users are often barriers to providing high quality recommendations. To address such issues, we propose a novel method that works to improve the performance of collaborative filtering recommendations by integrating sparse rating data given by users and sparse social trust network among these same users. This is a model-based method that adopts matrix factorization technique that maps users into low-dimensional latent feature spaces in terms of their trust relationship, and aims to more accurately reflect the users reciprocal influence on the formation of their own opinions and to learn better preferential patterns of users for high-quality recommendations. We use four large-scale datasets to show that the proposed method performs much better, especially for cold start users, than state-of-the-art recommendation algorithms for social collaborative filtering based on trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using amore » combinatorial algorithm.« less
Kim, Jongin; Lee, Boreom
2018-05-07
Different modalities such as structural MRI, FDG-PET, and CSF have complementary information, which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a more effective and accurate AD/MCI automatic diagnosis method by integrating complementary information of different modalities. In this paper, we propose multi-modal sparse hierarchical extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93 regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and Aβ42 as CSF features. In detail, high-level representation was individually extracted from each of MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representation by fusing the high-level representations obtained from each modality. Finally, we classified joint hierarchical feature representation using a kernel-based extreme learning machine (KELM). The results of MSH-ELM were compared with those of conventional ELM, single kernel support vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing methods. In summary, the proposed algorithm exhibits consistently better performance than SK-SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs. HC). © 2018 Wiley Periodicals, Inc.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas. PMID:29163117
Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration
NASA Astrophysics Data System (ADS)
Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim
2015-04-01
In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.
Andersson, Johanna; Wikström, Ewa
2014-01-01
The purpose of this paper is to analyse how accounts of collaboration practice were made and used to construct accountability in the empirical context of coordination associations, a Swedish form of collaboration between four authorities in health and social care. They feature pooled budgets, joint leadership and joint reporting systems, intended to facilitate both collaboration and (shared) accountability. Empirical data were collected in field observations in local, regional and national settings. In addition, the study is based on analysis of local association documents such as evaluations and annual reports, and analysis of national agency reports. Accountability is constructed hierarchically with a narrow focus on performance, and horizontal (shared) accountability as well as outcomes are de-emphasised. Through this narrow construction of accountability the coordination associations are re-created as hierarchical and accountability is delegated rather than shared. Features such as pooled budgets, joint leadership and joint reporting systems can support collaboration but do not necessarily translate into shared accountability if accountability is interpreted and constructed hierarchically. When practice conforms to what is counted and accounted for, using the hierarchical and narrow construction of accountability, the result may be that the associations become an additional authority. That would increase rather than decrease fragmentation in the field. This research derives from first-hand observations of actor-to-actor episodes complemented with the analysis of documents and reports. It provides critical analysis of the construction and evaluation of accounts and accountability related to practice and performance in collaboration. The main contribution is the finding that despite the conditions intended to facilitate inter-organisational collaboration and horizontal accountability, the hierarchical accountability persisted.
Collaborative sparse priors for multi-view ATR
NASA Astrophysics Data System (ADS)
Li, Xuelu; Monga, Vishal
2018-04-01
Recent work has seen a surge of sparse representation based classification (SRC) methods applied to automatic target recognition problems. While traditional SRC approaches used l0 or l1 norm to quantify sparsity, spike and slab priors have established themselves as the gold standard for providing general tunable sparse structures on vectors. In this work, we employ collaborative spike and slab priors that can be applied to matrices to encourage sparsity for the problem of multi-view ATR. That is, target images captured from multiple views are expanded in terms of a training dictionary multiplied with a coefficient matrix. Ideally, for a test image set comprising of multiple views of a target, coefficients corresponding to its identifying class are expected to be active, while others should be zero, i.e. the coefficient matrix is naturally sparse. We develop a new approach to solve the optimization problem that estimates the sparse coefficient matrix jointly with the sparsity inducing parameters in the collaborative prior. ATR problems are investigated on the mid-wave infrared (MWIR) database made available by the US Army Night Vision and Electronic Sensors Directorate, which has a rich collection of views. Experimental results show that the proposed joint prior and coefficient estimation method (JPCEM) can: 1.) enable improved accuracy when multiple views vs. a single one are invoked, and 2.) outperform state of the art alternatives particularly when training imagery is limited.
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.
Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang
2016-09-27
Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.
NASA Astrophysics Data System (ADS)
Zhang, Guannan; Lu, Dan; Ye, Ming; Gunzburger, Max; Webster, Clayton
2013-10-01
Bayesian analysis has become vital to uncertainty quantification in groundwater modeling, but its application has been hindered by the computational cost associated with numerous model executions required by exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, a new approach is developed to improve the computational efficiency of Bayesian inference by constructing a surrogate of the PPDF, using an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, this paper utilizes a compactly supported higher-order hierarchical basis to construct the surrogate system, resulting in a significant reduction in the number of required model executions. In addition, using the hierarchical surplus as an error indicator allows locally adaptive refinement of sparse grids in the parameter space, which further improves computational efficiency. To efficiently build the surrogate system for the PPDF with multiple significant modes, optimization techniques are used to identify the modes, for which high-probability regions are defined and components of the aSG-hSC approximation are constructed. After the surrogate is determined, the PPDF can be evaluated by sampling the surrogate system directly without model execution, resulting in improved efficiency of the surrogate-based MCMC compared with conventional MCMC. The developed method is evaluated using two synthetic groundwater reactive transport models. The first example involves coupled linear reactions and demonstrates the accuracy of our high-order hierarchical basis approach in approximating high-dimensional posteriori distribution. The second example is highly nonlinear because of the reactions of uranium surface complexation, and demonstrates how the iterative aSG-hSC method is able to capture multimodal and non-Gaussian features of PPDF caused by model nonlinearity. Both experiments show that aSG-hSC is an effective and efficient tool for Bayesian inference.
ERIC Educational Resources Information Center
Tivener, Kristin Ann; Gloe, Donna Sue
2015-01-01
Context: While multidisciplinary team approaches to education and practice have been promoted for decades, literature on collaborative efforts in athletic training and nursing remains sparse. Objective: The goal of this article is to provide an example of an interprofessional teaching collaboration in which a simulation scenario was developed…
Improved collaborative filtering recommendation algorithm of similarity measure
NASA Astrophysics Data System (ADS)
Zhang, Baofu; Yuan, Baoping
2017-05-01
The Collaborative filtering recommendation algorithm is one of the most widely used recommendation algorithm in personalized recommender systems. The key is to find the nearest neighbor set of the active user by using similarity measure. However, the methods of traditional similarity measure mainly focus on the similarity of user common rating items, but ignore the relationship between the user common rating items and all items the user rates. And because rating matrix is very sparse, traditional collaborative filtering recommendation algorithm is not high efficiency. In order to obtain better accuracy, based on the consideration of common preference between users, the difference of rating scale and score of common items, this paper presents an improved similarity measure method, and based on this method, a collaborative filtering recommendation algorithm based on similarity improvement is proposed. Experimental results show that the algorithm can effectively improve the quality of recommendation, thus alleviate the impact of data sparseness.
Online Hierarchical Sparse Representation of Multifeature for Robust Object Tracking
Qu, Shiru
2016-01-01
Object tracking based on sparse representation has given promising tracking results in recent years. However, the trackers under the framework of sparse representation always overemphasize the sparse representation and ignore the correlation of visual information. In addition, the sparse coding methods only encode the local region independently and ignore the spatial neighborhood information of the image. In this paper, we propose a robust tracking algorithm. Firstly, multiple complementary features are used to describe the object appearance; the appearance model of the tracked target is modeled by instantaneous and stable appearance features simultaneously. A two-stage sparse-coded method which takes the spatial neighborhood information of the image patch and the computation burden into consideration is used to compute the reconstructed object appearance. Then, the reliability of each tracker is measured by the tracking likelihood function of transient and reconstructed appearance models. Finally, the most reliable tracker is obtained by a well established particle filter framework; the training set and the template library are incrementally updated based on the current tracking results. Experiment results on different challenging video sequences show that the proposed algorithm performs well with superior tracking accuracy and robustness. PMID:27630710
Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection
Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; ...
2016-08-04
This work proposes a hyperspherical sparse approximation framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse approximations of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computationalmore » cost, compared to existing methods. Several approaches are used to approximate the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing approximation. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.« less
ERIC Educational Resources Information Center
Puonti, Anne
2004-01-01
Economic-crime investigation in Finland is in transition from hierarchically organized, sequential collaboration between authorities toward parallel, interorganizational collaboration. This article describes the tools used and developed for managing the new collaborative economic-crime-investigation process. The challenge is to find…
A Bayesian hierarchical diffusion model decomposition of performance in Approach–Avoidance Tasks
Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan
2015-01-01
Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach–Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest. PMID:25491372
ERIC Educational Resources Information Center
Maris, Mariann
The University of Wisconsin-Milwaukee writing program is collaborative, not divisionary, as some, such as Jeanne Gunner, have suggested. Three terms are useful in understanding the relationships and ethics governing operations at Wisconsin-Milwaukee: (1) authority and collaboration; (2) hierarchical difference; (3) professional respect.…
Hardware Acceleration of Sparse Cognitive Algorithms
2016-05-01
Processor in Memory (PiM) extensions and a 65 nm ASIC version. They were compared against a 28 nm GPU baseline using the KTH video action recognition...30 Table 17. Memory Requirement of Proposed ASIC...for improvement of performance per unit of power for customized implementations of the Sparsey and Numenta Hierarchical Temporal Memory (HTM
Reversing Patterns of Control in Australia: Can Schools Be Self-Governing?
ERIC Educational Resources Information Center
Smart, Don
Historically, in sharp contrast with the United States, the Australian state systems of public education have always been extremely centralized and hierarchical in structure. While these highly centralized systems served the sparsely populated Australian states well during the early years of this century in providing universal free education and…
Sampling schemes and parameter estimation for nonlinear Bernoulli-Gaussian sparse models
NASA Astrophysics Data System (ADS)
Boudineau, Mégane; Carfantan, Hervé; Bourguignon, Sébastien; Bazot, Michael
2016-06-01
We address the sparse approximation problem in the case where the data are approximated by the linear combination of a small number of elementary signals, each of these signals depending non-linearly on additional parameters. Sparsity is explicitly expressed through a Bernoulli-Gaussian hierarchical model in a Bayesian framework. Posterior mean estimates are computed using Markov Chain Monte-Carlo algorithms. We generalize the partially marginalized Gibbs sampler proposed in the linear case in [1], and build an hybrid Hastings-within-Gibbs algorithm in order to account for the nonlinear parameters. All model parameters are then estimated in an unsupervised procedure. The resulting method is evaluated on a sparse spectral analysis problem. It is shown to converge more efficiently than the classical joint estimation procedure, with only a slight increase of the computational cost per iteration, consequently reducing the global cost of the estimation procedure.
Summer Proceedings 2016: The Center for Computing Research at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carleton, James Brian; Parks, Michael L.
Solving sparse linear systems from the discretization of elliptic partial differential equations (PDEs) is an important building block in many engineering applications. Sparse direct solvers can solve general linear systems, but are usually slower and use much more memory than effective iterative solvers. To overcome these two disadvantages, a hierarchical solver (LoRaSp) based on H2-matrices was introduced in [22]. Here, we have developed a parallel version of the algorithm in LoRaSp to solve large sparse matrices on distributed memory machines. On a single processor, the factorization time of our parallel solver scales almost linearly with the problem size for three-dimensionalmore » problems, as opposed to the quadratic scalability of many existing sparse direct solvers. Moreover, our solver leads to almost constant numbers of iterations, when used as a preconditioner for Poisson problems. On more than one processor, our algorithm has significant speedups compared to sequential runs. With this parallel algorithm, we are able to solve large problems much faster than many existing packages as demonstrated by the numerical experiments.« less
The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding.
Cui, Yuwei; Ahmad, Subutai; Hawkins, Jeff
2017-01-01
Hierarchical temporal memory (HTM) provides a theoretical framework that models several key computational principles of the neocortex. In this paper, we analyze an important component of HTM, the HTM spatial pooler (SP). The SP models how neurons learn feedforward connections and form efficient representations of the input. It converts arbitrary binary input patterns into sparse distributed representations (SDRs) using a combination of competitive Hebbian learning rules and homeostatic excitability control. We describe a number of key properties of the SP, including fast adaptation to changing input statistics, improved noise robustness through learning, efficient use of cells, and robustness to cell death. In order to quantify these properties we develop a set of metrics that can be directly computed from the SP outputs. We show how the properties are met using these metrics and targeted artificial simulations. We then demonstrate the value of the SP in a complete end-to-end real-world HTM system. We discuss the relationship with neuroscience and previous studies of sparse coding. The HTM spatial pooler represents a neurally inspired algorithm for learning sparse representations from noisy data streams in an online fashion.
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
Krakowski, Claire-Sara; Borst, Grégoire; Vidal, Julie; Houdé, Olivier; Poirel, Nicolas
2018-09-01
Visual environments are composed of global shapes and local details that compete for attentional resources. In adults, the global level is processed more rapidly than the local level, and global information must be inhibited in order to process local information when the local information and global information are in conflict. Compared with adults, children present less of a bias toward global visual information and appear to be more sensitive to the density of local elements that constitute the global level. The current study aimed, for the first time, to investigate the key role of inhibition during global/local processing in children. By including two different conditions of global saliency during a negative priming procedure, the results showed that when the global level was salient (dense hierarchical figures), 7-year-old children and adults needed to inhibit the global level to process the local information. However, when the global level was less salient (sparse hierarchical figures), only children needed to inhibit the local level to process the global information. These results confirm a weaker global bias and the greater impact of saliency in children than in adults. Moreover, the results indicate that, regardless of age, inhibition of the most salient hierarchical level is systematically required to select the less salient but more relevant level. These findings have important implications for future research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.
Miguel-Dasit, A; Martí-Bonmatí, L; Sanfeliu, P; Aleixandre, R; Valderrama, J C
2005-06-01
Analyze the different contribution of hierarchical categories in the papers published by radiologists of hospitals belonging to Comunidad Valenciana along the period 1994-2001, as well as their distribution in the different journals. For the recovery of the papers sample we have designed specific search profiles for EMI and Medline databases. Hierarchical category of the authors was identified through personal interviews. We have analyzed 417 works, with 1,321 authors distributed in the following form: chief of service, 8.8%; chief of section, 12.4%; assistant physician, 50.7%, and resident, 28%. Hierarchical groupings with participation of residents were more consistent for publishing papers along all the study period (1994-2001). Higher percentage of papers (21%) corresponded to
Hierarchical models of animal abundance and occurrence
Royle, J. Andrew; Dorazio, R.M.
2006-01-01
Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.
Motivation To Learn and Perform.
ERIC Educational Resources Information Center
1997
This document contains four papers from a symposium on motivation to learn and perform in the workplace. "Getting It Together: Motivations and Success Characteristics for Interorganizational Collaborations" (Mary Wilson Callahan) presents results of a literature review, a hierarchical framework of motivations for interorganizational collaboration,…
Mohammed, Abdul-Wahid; Xu, Yang; Hu, Haixiao; Agyemang, Brighter
2016-09-21
In novel collaborative systems, cooperative entities collaborate services to achieve local and global objectives. With the growing pervasiveness of cyber-physical systems, however, such collaboration is hampered by differences in the operations of the cyber and physical objects, and the need for the dynamic formation of collaborative functionality given high-level system goals has become practical. In this paper, we propose a cross-layer automation and management model for cyber-physical systems. This models the dynamic formation of collaborative services pursuing laid-down system goals as an ontology-oriented hierarchical task network. Ontological intelligence provides the semantic technology of this model, and through semantic reasoning, primitive tasks can be dynamically composed from high-level system goals. In dealing with uncertainty, we further propose a novel bridge between hierarchical task networks and Markov logic networks, called the Markov task network. This leverages the efficient inference algorithms of Markov logic networks to reduce both computational and inferential loads in task decomposition. From the results of our experiments, high-precision service composition under uncertainty can be achieved using this approach.
Sparsey™: event recognition via deep hierarchical sparse distributed codes
Rinkus, Gerard J.
2014-01-01
The visual cortex's hierarchical, multi-level organization is captured in many biologically inspired computational vision models, the general idea being that progressively larger scale (spatially/temporally) and more complex visual features are represented in progressively higher areas. However, most earlier models use localist representations (codes) in each representational field (which we equate with the cortical macrocolumn, “mac”), at each level. In localism, each represented feature/concept/event (hereinafter “item”) is coded by a single unit. The model we describe, Sparsey, is hierarchical as well but crucially, it uses sparse distributed coding (SDC) in every mac in all levels. In SDC, each represented item is coded by a small subset of the mac's units. The SDCs of different items can overlap and the size of overlap between items can be used to represent their similarity. The difference between localism and SDC is crucial because SDC allows the two essential operations of associative memory, storing a new item and retrieving the best-matching stored item, to be done in fixed time for the life of the model. Since the model's core algorithm, which does both storage and retrieval (inference), makes a single pass over all macs on each time step, the overall model's storage/retrieval operation is also fixed-time, a criterion we consider essential for scalability to the huge (“Big Data”) problems. A 2010 paper described a nonhierarchical version of this model in the context of purely spatial pattern processing. Here, we elaborate a fully hierarchical model (arbitrary numbers of levels and macs per level), describing novel model principles like progressive critical periods, dynamic modulation of principal cells' activation functions based on a mac-level familiarity measure, representation of multiple simultaneously active hypotheses, a novel method of time warp invariant recognition, and we report results showing learning/recognition of spatiotemporal patterns. PMID:25566046
Empowering Change Agents in Hierarchical Organizations: Participatory Action Research in Prisons
Penrod, Janice; Loeb, Susan J.; Ladonne, Robert A.; Martin, Lea M.
2017-01-01
Participatory action research (PAR) approaches harness collaborative partnerships to stimulate change in defined communities. The purpose of this article is to illustrate key methodological strategies used in the application of PAR methods in the particularly challenging environment of a hierarchical organization. A study designed to promote sustainable, insider-generated system-level changes in the provision of end-of-life (EOL) care in the restrictive setting of six state prisons is used as an exemplar of the application of three cardinal principles of PAR. First, development of a collaborative network with active partnership between outsider academic researchers and insider co-researchers began with careful attention to understanding the culture and processes of prisons and gaining the support of organizational leadership, using qualitative data gathering and trust-building. During the implementation phase, promoting co-ownership of change in EOL care through the co-construction of knowledge and systems to enhance sustainable change required carefully-orchestrated strategies to maximize the collaborative spirit of the project. Co-researchers were empowered to examine their worlds and capture opportunities for change using new leadership skills role-modeled by the research team. Third, their local knowledge of the barriers inherent in the contextual reality of prisons was translated into achievable system change by production of a toolkit of formalized and well-rehearsed change strategies that collaborative teams were empowered to enact within their hierarchical prison environment. PMID:27028096
Deep Learning with Hierarchical Convolutional Factor Analysis
Chen, Bo; Polatkan, Gungor; Sapiro, Guillermo; Blei, David; Dunson, David; Carin, Lawrence
2013-01-01
Unsupervised multi-layered (“deep”) models are considered for general data, with a particular focus on imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis, that explicitly exploit the convolutional nature of the expansion. In order to address large-scale and streaming data, an online version of VB is also developed. The number of basis functions or dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature. PMID:23787342
A Subspace Pursuit–based Iterative Greedy Hierarchical Solution to the Neuromagnetic Inverse Problem
Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Hämäläinen, Matti S.; Brown, Emery N.; Purdon, Patrick L.
2013-01-01
Magnetoencephalography (MEG) is an important non-invasive method for studying activity within the human brain. Source localization methods can be used to estimate spatiotemporal activity from MEG measurements with high temporal resolution, but the spatial resolution of these estimates is poor due to the ill-posed nature of the MEG inverse problem. Recent developments in source localization methodology have emphasized temporal as well as spatial constraints to improve source localization accuracy, but these methods can be computationally intense. Solutions emphasizing spatial sparsity hold tremendous promise, since the underlying neurophysiological processes generating MEG signals are often sparse in nature, whether in the form of focal sources, or distributed sources representing large-scale functional networks. Recent developments in the theory of compressed sensing (CS) provide a rigorous framework to estimate signals with sparse structure. In particular, a class of CS algorithms referred to as greedy pursuit algorithms can provide both high recovery accuracy and low computational complexity. Greedy pursuit algorithms are difficult to apply directly to the MEG inverse problem because of the high-dimensional structure of the MEG source space and the high spatial correlation in MEG measurements. In this paper, we develop a novel greedy pursuit algorithm for sparse MEG source localization that overcomes these fundamental problems. This algorithm, which we refer to as the Subspace Pursuit-based Iterative Greedy Hierarchical (SPIGH) inverse solution, exhibits very low computational complexity while achieving very high localization accuracy. We evaluate the performance of the proposed algorithm using comprehensive simulations, as well as the analysis of human MEG data during spontaneous brain activity and somatosensory stimuli. These studies reveal substantial performance gains provided by the SPIGH algorithm in terms of computational complexity, localization accuracy, and robustness. PMID:24055554
A hierarchical wavefront reconstruction algorithm for gradient sensors
NASA Astrophysics Data System (ADS)
Bharmal, Nazim; Bitenc, Urban; Basden, Alastair; Myers, Richard
2013-12-01
ELT-scale extreme adaptive optics systems will require new approaches tocompute the wavefront suitably quickly, when the computational burden ofapplying a MVM is no longer practical. An approach is demonstrated here whichis hierarchical in transforming wavefront slopes from a WFS into a wavefront,and then to actuator values. First, simple integration in 1D is used to create1D-wavefront estimates with unknown starting points at the edges of independentspatial domains. Second, these starting points are estimated globally. By thesestarting points are a sub-set of the overall grid where wavefront values are tobe estimated, sparse representations are produced and numerical complexity canbe chosen by the spacing of the starting point grid relative to the overallgrid. Using a combination of algebraic expressions, sparse representation, anda conjugate gradient solver, the number of non-parallelized operations forreconstruction on a 100x100 sub-aperture sized problem is ~600,000 or O(N^3/2),which is approximately the same as for each thread of a MVM solutionparallelized over 100 threads. To reduce the effects of noise propagationwithin each domain, a noise reduction algorithm can be applied which ensuresthe continuity of the wavefront. To apply this additional step has a cost of~1,200,000 operations. We conclude by briefly discussing how the final step ofconverting from wavefront to actuator values can be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...
2016-06-30
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
A New Adaptive Framework for Collaborative Filtering Prediction
Almosallam, Ibrahim A.; Shang, Yi
2010-01-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix’s system. PMID:21572924
A New Adaptive Framework for Collaborative Filtering Prediction.
Almosallam, Ibrahim A; Shang, Yi
2008-06-01
Collaborative filtering is one of the most successful techniques for recommendation systems and has been used in many commercial services provided by major companies including Amazon, TiVo and Netflix. In this paper we focus on memory-based collaborative filtering (CF). Existing CF techniques work well on dense data but poorly on sparse data. To address this weakness, we propose to use z-scores instead of explicit ratings and introduce a mechanism that adaptively combines global statistics with item-based values based on data density level. We present a new adaptive framework that encapsulates various CF algorithms and the relationships among them. An adaptive CF predictor is developed that can self adapt from user-based to item-based to hybrid methods based on the amount of available ratings. Our experimental results show that the new predictor consistently obtained more accurate predictions than existing CF methods, with the most significant improvement on sparse data sets. When applied to the Netflix Challenge data set, our method performed better than existing CF and singular value decomposition (SVD) methods and achieved 4.67% improvement over Netflix's system.
The Joker: A custom Monte Carlo sampler for binary-star and exoplanet radial velocity data
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Hogg, David W.; Foreman-Mackey, Daniel; Rix, Hans-Walter
2017-01-01
Given sparse or low-quality radial-velocity measurements of a star, there are often many qualitatively different stellar or exoplanet companion orbit models that are consistent with the data. The consequent multimodality of the likelihood function leads to extremely challenging search, optimization, and MCMC posterior sampling over the orbital parameters. The Joker is a custom-built Monte Carlo sampler that can produce a posterior sampling for orbital parameters given sparse or noisy radial-velocity measurements, even when the likelihood function is poorly behaved. The method produces correct samplings in orbital parameters for data that include as few as three epochs. The Joker can therefore be used to produce proper samplings of multimodal pdfs, which are still highly informative and can be used in hierarchical (population) modeling.
A neural network with modular hierarchical learning
NASA Technical Reports Server (NTRS)
Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)
1994-01-01
This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.
Empowering Change Agents in Hierarchical Organizations: Participatory Action Research in Prisons.
Penrod, Janice; Loeb, Susan J; Ladonne, Robert A; Martin, Lea M
2016-06-01
Participatory action research (PAR) approaches harness collaborative partnerships to stimulate change in defined communities. The purpose of this article is to illustrate key methodological strategies used in the application of PAR methods in the particularly challenging environment of a hierarchical organization. A study designed to promote sustainable, insider-generated system-level changes in the provision of end-of-life (EOL) care in the restrictive setting of six state prisons is used as an exemplar of the application of three cardinal principles of PAR. First, development of a collaborative network with active partnership between outsider academic researchers and insider co-researchers began with careful attention to understanding the culture and processes of prisons and gaining the support of organizational leadership, using qualitative data gathering and trust-building. During the implementation phase, promoting co-ownership of change in EOL care through the co-construction of knowledge and systems to enhance sustainable change required carefully-orchestrated strategies to maximize the collaborative spirit of the project. Co-researchers were empowered to examine their worlds and capture opportunities for change using new leadership skills role-modeled by the research team. Third, their local knowledge of the barriers inherent in the contextual reality of prisons was translated into achievable system change by production of a toolkit of formalized and well-rehearsed change strategies that collaborative teams were empowered to enact within their hierarchical prison environment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Multi-channel feature dictionaries for RGB-D object recognition
NASA Astrophysics Data System (ADS)
Lan, Xiaodong; Li, Qiming; Chong, Mina; Song, Jian; Li, Jun
2018-04-01
Hierarchical matching pursuit (HMP) is a popular feature learning method for RGB-D object recognition. However, the feature representation with only one dictionary for RGB channels in HMP does not capture sufficient visual information. In this paper, we propose multi-channel feature dictionaries based feature learning method for RGB-D object recognition. The process of feature extraction in the proposed method consists of two layers. The K-SVD algorithm is used to learn dictionaries in sparse coding of these two layers. In the first-layer, we obtain features by performing max pooling on sparse codes of pixels in a cell. And the obtained features of cells in a patch are concatenated to generate patch jointly features. Then, patch jointly features in the first-layer are used to learn the dictionary and sparse codes in the second-layer. Finally, spatial pyramid pooling can be applied to the patch jointly features of any layer to generate the final object features in our method. Experimental results show that our method with first or second-layer features can obtain a comparable or better performance than some published state-of-the-art methods.
Discriminative Bayesian Dictionary Learning for Classification.
Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal
2016-12-01
We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.
Sparse Event Modeling with Hierarchical Bayesian Kernel Methods
2016-01-05
SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model , is able to model the rate of occurrence of...which adds specificity to the model and can make nonlinear data more manageable. Early results show that the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE
NASA Astrophysics Data System (ADS)
Wang, H. T.; Chen, T. T.; Yan, C.; Pan, H.
2018-05-01
For App recommended areas of mobile phone software, made while using conduct App application recommended combined weighted Slope One algorithm collaborative filtering algorithm items based on further improvement of the traditional collaborative filtering algorithm in cold start, data matrix sparseness and other issues, will recommend Spark stasis parallel algorithm platform, the introduction of real-time streaming streaming real-time computing framework to improve real-time software applications recommended.
Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng
2015-01-09
The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.
Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng
2015-01-01
The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly. PMID:25572661
NASA Astrophysics Data System (ADS)
Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng
2015-01-01
The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langet, Hélène; Laboratoire des Signaux et Systèmes, CentraleSupélec, Gif-sur-Yvette F-91192; Center for Visual Computing, CentraleSupélec, Châtenay-Malabry F-92295
2015-09-15
Purpose: This paper addresses the reconstruction of x-ray cone-beam computed tomography (CBCT) for interventional C-arm systems. Subsampling of CBCT is a significant issue with C-arms due to their slow rotation and to the low frame rate of their flat panel x-ray detectors. The aim of this work is to propose a novel method able to handle the subsampling artifacts generally observed with analytical reconstruction, through a content-driven hierarchical reconstruction based on compressed sensing. Methods: The central idea is to proceed with a hierarchical method where the most salient features (high intensities or gradients) are reconstructed first to reduce the artifactsmore » these features induce. These artifacts are addressed first because their presence contaminates less salient features. Several hierarchical schemes aiming at streak artifacts reduction are introduced for C-arm CBCT: the empirical orthogonal matching pursuit approach with the ℓ{sub 0} pseudonorm for reconstructing sparse vessels; a convex variant using homotopy with the ℓ{sub 1}-norm constraint of compressed sensing, for reconstructing sparse vessels over a nonsparse background; homotopy with total variation (TV); and a novel empirical extension to nonlinear diffusion (NLD). Such principles are implemented with penalized iterative filtered backprojection algorithms. For soft-tissue imaging, the authors compare the use of TV and NLD filters as sparsity constraints, both optimized with the alternating direction method of multipliers, using a threshold for TV and a nonlinear weighting for NLD. Results: The authors show on simulated data that their approach provides fast convergence to good approximations of the solution of the TV-constrained minimization problem introduced by the compressed sensing theory. Using C-arm CBCT clinical data, the authors show that both TV and NLD can deliver improved image quality by reducing streaks. Conclusions: A flexible compressed-sensing-based algorithmic approach is proposed that is able to accommodate for a wide range of constraints. It is successfully applied to C-arm CBCT images that may not be so well approximated by piecewise constant functions.« less
Image denoising by sparse 3-D transform-domain collaborative filtering.
Dabov, Kostadin; Foi, Alessandro; Katkovnik, Vladimir; Egiazarian, Karen
2007-08-01
We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2-D image fragments (e.g., blocks) into 3-D data arrays which we call "groups." Collaborative filtering is a special procedure developed to deal with these 3-D groups. We realize it using the three successive steps: 3-D transformation of a group, shrinkage of the transform spectrum, and inverse 3-D transformation. The result is a 3-D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
Weilnhammer, Veith A; Stuke, Heiner; Sterzer, Philipp; Schmack, Katharina
2018-05-23
Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable. Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimulation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predictions, which significantly biased perceptual decisions under ambiguity. Although "high-level" predictions about the cue-target contingency correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic "low-level" predictions about the conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment. SIGNIFICANCE STATEMENT Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predictions. We show that "high-level" predictions about the strength of dynamic cue-target contingencies during crossmodal associative learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas "low-level" conditional target probabilities were reflected in retinotopic visual cortex. Our findings empirically corroborate theorizations on the role of hierarchical predictions in visual perception and contribute substantially to a longstanding debate on the link between sensory predictions and orbitofrontal or hippocampal activity. Our work fundamentally advances the mechanistic understanding of perceptual inference in the human brain. Copyright © 2018 the authors 0270-6474/18/385008-14$15.00/0.
2016-04-05
applications in wireless networks such as military battlefields, emergency response, mobile commerce , online gaming, and collaborative work are based on the...www.elsevier.com/locate/peva Performance analysis of hierarchical group key management integrated with adaptive intrusion detection in mobile ad hoc...Accepted 19 September 2010 Available online 26 September 2010 Keywords: Mobile ad hoc networks Intrusion detection Group communication systems Group
Liao, Ke; Zhu, Min; Ding, Lei
2013-08-01
The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Rare-event statistics and modular invariance
NASA Astrophysics Data System (ADS)
Nechaev, S. K.; Polovnikov, K.
2018-01-01
Simple geometric arguments based on constructing the Euclid orchard are presented, which explain the equivalence of various types of distributions that result from rare-event statistics. In particular, the spectral density of the exponentially weighted ensemble of linear polymer chains is examined for its number-theoretic properties. It can be shown that the eigenvalue statistics of the corresponding adjacency matrices in the sparse regime show a peculiar hierarchical structure and are described by the popcorn (Thomae) function discontinuous in the dense set of rational numbers. Moreover, the spectral edge density distribution exhibits Lifshitz tails, reminiscent of 1D Anderson localization. Finally, a continuous approximation for the popcorn function is suggested based on the Dedekind η-function, and the hierarchical ultrametric structure of the popcorn-like distributions is demonstrated to be related to hidden SL(2,Z) modular symmetry.
Aligning interprofessional education collaborative sub-competencies to a progression of learning.
Patel Gunaldo, Tina; Brisolara, Kari Fitzmorris; Davis, Alison H; Moore, Robert
2017-05-01
In the United States, the Interprofessional Education Collaborative (IPEC) developed four core competencies for interprofessional collaborative practice. Even though the IPEC competencies and respective sub-competencies were not created in a hierarchal manner, one might reflect upon a logical progression of learning as well as learners accruing skills allowing them to master one level of learning and building on the aggregate of skills before advancing to the next level. The Louisiana State University Health-New Orleans Center for Interprofessional Education and Collaborative Practice (CIPECP) determined the need to align the sub-competencies with the level of behavioural expectations in order to simplify the process of developing an interprofessional education experience targeted to specific learning levels. In order to determine the most effective alignment, CIPECP discussions revolved around current programmatic expectations across the institution. Faculty recognised the need to align sub-competencies with student learning objectives. Simultaneously, a progression of learning existing within each of the four IPEC domains was noted. Ultimately, the faculty and staff team agreed upon categorising the sub-competencies in a hierarchical manner for the four domains into either a "basic, intermediate, or advanced" level of competency.
Sparse Bayesian learning for DOA estimation with mutual coupling.
Dai, Jisheng; Hu, Nan; Xu, Weichao; Chang, Chunqi
2015-10-16
Sparse Bayesian learning (SBL) has given renewed interest to the problem of direction-of-arrival (DOA) estimation. It is generally assumed that the measurement matrix in SBL is precisely known. Unfortunately, this assumption may be invalid in practice due to the imperfect manifold caused by unknown or misspecified mutual coupling. This paper describes a modified SBL method for joint estimation of DOAs and mutual coupling coefficients with uniform linear arrays (ULAs). Unlike the existing method that only uses stationary priors, our new approach utilizes a hierarchical form of the Student t prior to enforce the sparsity of the unknown signal more heavily. We also provide a distinct Bayesian inference for the expectation-maximization (EM) algorithm, which can update the mutual coupling coefficients more efficiently. Another difference is that our method uses an additional singular value decomposition (SVD) to reduce the computational complexity of the signal reconstruction process and the sensitivity to the measurement noise.
Jiang, Yuan; Xu, Jia; Peng, Shi-Bao; Mao, Er-Ke; Long, Teng; Peng, Ying-Ning
2016-11-23
It is known that the identification performance of a multi-aircraft formation (MAF) of narrowband radar mainly depends on the time on target (TOT). To realize the identification task in one rotated scan with limited TOT, the paper proposes a novel identification-while-scanning (IWS) method based on sparse recovery to maintain high rotating speed and super-resolution for MAF identification, simultaneously. First, a multiple chirp signal model is established for MAF in a single scan, where different aircraft may have different Doppler centers and Doppler rates. Second, based on the sparsity of MAF in the Doppler parameter space, a novel hierarchical basis pursuit (HBP) method is proposed to obtain satisfactory sparse recovery performance as well as high computational efficiency. Furthermore, the parameter estimation performance of the proposed IWS identification method is analyzed with respect to recovery condition, signal-to-noise ratio and TOT. It is shown that an MAF can be effectively identified via HBP with a TOT of only about one hundred microseconds for IWS applications. Finally, some numerical experiment results are provided to demonstrate the effectiveness of the proposed method based on both simulated and real measured data.
Robust Spectral Unmixing of Sparse Multispectral Lidar Waveforms using Gamma Markov Random Fields
Altmann, Yoann; Maccarone, Aurora; McCarthy, Aongus; ...
2017-05-10
Here, this paper presents a new Bayesian spectral un-mixing algorithm to analyse remote scenes sensed via sparse multispectral Lidar measurements. To a first approximation, in the presence of a target, each Lidar waveform consists of a main peak, whose position depends on the target distance and whose amplitude depends on the wavelength of the laser source considered (i.e, on the target reflectivity). Besides, these temporal responses are usually assumed to be corrupted by Poisson noise in the low photon count regime. When considering multiple wavelengths, it becomes possible to use spectral information in order to identify and quantify the mainmore » materials in the scene, in addition to estimation of the Lidar-based range profiles. Due to its anomaly detection capability, the proposed hierarchical Bayesian model, coupled with an efficient Markov chain Monte Carlo algorithm, allows robust estimation of depth images together with abundance and outlier maps associated with the observed 3D scene. The proposed methodology is illustrated via experiments conducted with real multispectral Lidar data acquired in a controlled environment. The results demonstrate the possibility to unmix spectral responses constructed from extremely sparse photon counts (less than 10 photons per pixel and band).« less
NASA Astrophysics Data System (ADS)
Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.
2016-12-01
Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).
Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.
Udupa, Jayaram K; Odhner, Dewey; Zhao, Liming; Tong, Yubing; Matsumoto, Monica M S; Ciesielski, Krzysztof C; Falcao, Alexandre X; Vaideeswaran, Pavithra; Ciesielski, Victoria; Saboury, Babak; Mohammadianrasanani, Syedmehrdad; Sin, Sanghun; Arens, Raanan; Torigian, Drew A
2014-07-01
To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major organs in different body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists of five main steps: (a) gathering image data for both building models and testing the AAR algorithms from patient image sets existing in our health system; (b) formulating precise definitions of each body region and organ and delineating them following these definitions; (c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locating organs in given images by employing the hierarchical models; and (e) delineating the organs following the hierarchy. In Step (c), we explicitly encode object size and positional relationships into the hierarchy and subsequently exploit this information in object recognition in Step (d) and delineation in Step (e). Modality-independent and dependent aspects are carefully separated in model encoding. At the model building stage, a learning process is carried out for rehearsing an optimal threshold-based object recognition method. The recognition process in Step (d) starts from large, well-defined objects and proceeds down the hierarchy in a global to local manner. A fuzzy model-based version of the IRFC algorithm is created by naturally integrating the fuzzy model constraints into the delineation algorithm. The AAR system is tested on three body regions - thorax (on CT), abdomen (on CT and MRI), and neck (on MRI and CT) - involving a total of over 35 organs and 130 data sets (the total used for model building and testing). The training and testing data sets are divided into equal size in all cases except for the neck. Overall the AAR method achieves a mean accuracy of about 2 voxels in localizing non-sparse blob-like objects and most sparse tubular objects. The delineation accuracy in terms of mean false positive and negative volume fractions is 2% and 8%, respectively, for non-sparse objects, and 5% and 15%, respectively, for sparse objects. The two object groups achieve mean boundary distance relative to ground truth of 0.9 and 1.5 voxels, respectively. Some sparse objects - venous system (in the thorax on CT), inferior vena cava (in the abdomen on CT), and mandible and naso-pharynx (in neck on MRI, but not on CT) - pose challenges at all levels, leading to poor recognition and/or delineation results. The AAR method fares quite favorably when compared with methods from the recent literature for liver, kidneys, and spleen on CT images. We conclude that separation of modality-independent from dependent aspects, organization of objects in a hierarchy, encoding of object relationship information explicitly into the hierarchy, optimal threshold-based recognition learning, and fuzzy model-based IRFC are effective concepts which allowed us to demonstrate the feasibility of a general AAR system that works in different body regions on a variety of organs and on different modalities. Copyright © 2014 Elsevier B.V. All rights reserved.
Conflicting messages: examining the dynamics of leadership on interprofessional teams.
Lingard, Lorelei; Vanstone, Meredith; Durrant, Michele; Fleming-Carroll, Bonnie; Lowe, Mandy; Rashotte, Judy; Sinclair, Lynne; Tallett, Susan
2012-12-01
Despite the importance of leadership in interprofessional health care teams, little is understood about how it is enacted. The literature emphasizes a collaborative approach of shared leadership, but this may be challenging for clinicians working within the traditionally hierarchical health care system. Using case study methodology, the authors collected observation and interview data from five interprofessional health care teams working at teaching hospitals in urban Ontario, Canada. They interviewed 46 health care providers and conducted 139 hours of observation from January 2008 through June 2009. Although the members of the interprofessional teams agreed about the importance of collaborative leadership and discussed ways in which their teams tried to achieve it, evidence indicated that the actual enactment of collaborative leadership was a challenge. The participating physicians indicated a belief that their teams functioned nonhierarchically, but reports from the nonphysician clinicians and the authors' observation data revealed that hierarchical behaviors persisted, even from those who most vehemently denied the presence of hierarchies on their teams. A collaborative approach to leadership may be challenging for interprofessional teams embedded in traditional health care, education, and medical-legal systems that reinforce the idea that physicians sit at the top of the hierarchy. By openly recognizing and discussing the tensions between traditional and interprofessional discourses of collaborative leadership, it may be possible to help interprofessional teams, physicians and clinicians alike, work together more effectively.
Action recognition using mined hierarchical compound features.
Gilbert, Andrew; Illingworth, John; Bowden, Richard
2011-05-01
The field of Action Recognition has seen a large increase in activity in recent years. Much of the progress has been through incorporating ideas from single-frame object recognition and adapting them for temporal-based action recognition. Inspired by the success of interest points in the 2D spatial domain, their 3D (space-time) counterparts typically form the basic components used to describe actions, and in action recognition the features used are often engineered to fire sparsely. This is to ensure that the problem is tractable; however, this can sacrifice recognition accuracy as it cannot be assumed that the optimum features in terms of class discrimination are obtained from this approach. In contrast, we propose to initially use an overcomplete set of simple 2D corners in both space and time. These are grouped spatially and temporally using a hierarchical process, with an increasing search area. At each stage of the hierarchy, the most distinctive and descriptive features are learned efficiently through data mining. This allows large amounts of data to be searched for frequently reoccurring patterns of features. At each level of the hierarchy, the mined compound features become more complex, discriminative, and sparse. This results in fast, accurate recognition with real-time performance on high-resolution video. As the compound features are constructed and selected based upon their ability to discriminate, their speed and accuracy increase at each level of the hierarchy. The approach is tested on four state-of-the-art data sets, the popular KTH data set to provide a comparison with other state-of-the-art approaches, the Multi-KTH data set to illustrate performance at simultaneous multiaction classification, despite no explicit localization information provided during training. Finally, the recent Hollywood and Hollywood2 data sets provide challenging complex actions taken from commercial movie sequences. For all four data sets, the proposed hierarchical approach outperforms all other methods reported thus far in the literature and can achieve real-time operation.
Tipton, John; Hooten, Mevin B.; Goring, Simon
2017-01-01
Scientific records of temperature and precipitation have been kept for several hundred years, but for many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect measurements of the climate process of interest, making each proxy uniquely challenging to model statistically. We reconstruct spatially explicit temperature surfaces from sparse and noisy measurements recorded at historical United States military forts and other observer stations from 1820 to 1894. One common method for reconstructing the paleoclimate from proxy data is principal component regression (PCR). With PCR, one learns a statistical relationship between the paleoclimate proxy data and a set of climate observations that are used as patterns for potential reconstruction scenarios. We explore PCR in a Bayesian hierarchical framework, extending classical PCR in a variety of ways. First, we model the latent principal components probabilistically, accounting for measurement error in the observational data. Next, we extend our method to better accommodate outliers that occur in the proxy data. Finally, we explore alternatives to the truncation of lower-order principal components using different regularization techniques. One fundamental challenge in paleoclimate reconstruction efforts is the lack of out-of-sample data for predictive validation. Cross-validation is of potential value, but is computationally expensive and potentially sensitive to outliers in sparse data scenarios. To overcome the limitations that a lack of out-of-sample records presents, we test our methods using a simulation study, applying proper scoring rules including a computationally efficient approximation to leave-one-out cross-validation using the log score to validate model performance. The result of our analysis is a spatially explicit reconstruction of spatio-temporal temperature from a very sparse historical record.
Building Hierarchical Representations for Oracle Character and Sketch Recognition.
Jun Guo; Changhu Wang; Roman-Rangel, Edgar; Hongyang Chao; Yong Rui
2016-01-01
In this paper, we study oracle character recognition and general sketch recognition. First, a data set of oracle characters, which are the oldest hieroglyphs in China yet remain a part of modern Chinese characters, is collected for analysis. Second, typical visual representations in shape- and sketch-related works are evaluated. We analyze the problems suffered when addressing these representations and determine several representation design criteria. Based on the analysis, we propose a novel hierarchical representation that combines a Gabor-related low-level representation and a sparse-encoder-related mid-level representation. Extensive experiments show the effectiveness of the proposed representation in both oracle character recognition and general sketch recognition. The proposed representation is also complementary to convolutional neural network (CNN)-based models. We introduce a solution to combine the proposed representation with CNN-based models, and achieve better performances over both approaches. This solution has beaten humans at recognizing general sketches.
Hierarchical Feature Extraction With Local Neural Response for Image Recognition.
Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P
2013-04-01
In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.
Wang, Sheng-Jun; Hilgetag, Claus C.; Zhou, Changsong
2010-01-01
Cerebral cortical brain networks possess a number of conspicuous features of structure and dynamics. First, these networks have an intricate, non-random organization. In particular, they are structured in a hierarchical modular fashion, from large-scale regions of the whole brain, via cortical areas and area subcompartments organized as structural and functional maps to cortical columns, and finally circuits made up of individual neurons. Second, the networks display self-organized sustained activity, which is persistent in the absence of external stimuli. At the systems level, such activity is characterized by complex rhythmical oscillations over a broadband background, while at the cellular level, neuronal discharges have been observed to display avalanches, indicating that cortical networks are at the state of self-organized criticality (SOC). We explored the relationship between hierarchical neural network organization and sustained dynamics using large-scale network modeling. Previously, it was shown that sparse random networks with balanced excitation and inhibition can sustain neural activity without external stimulation. We found that a hierarchical modular architecture can generate sustained activity better than random networks. Moreover, the system can simultaneously support rhythmical oscillations and SOC, which are not present in the respective random networks. The mechanism underlying the sustained activity is that each dense module cannot sustain activity on its own, but displays SOC in the presence of weak perturbations. Therefore, the hierarchical modular networks provide the coupling among subsystems with SOC. These results imply that the hierarchical modular architecture of cortical networks plays an important role in shaping the ongoing spontaneous activity of the brain, potentially allowing the system to take advantage of both the sensitivity of critical states and the predictability and timing of oscillations for efficient information processing. PMID:21852971
Cui, Fen; Huang, Yunpeng; Xu, Le; Zhao, Yan; Lian, Jiabiao; Bao, Jian; Li, Huaming
2018-04-19
A 3D hierarchical NiCo2O4/PANI/MF composite foam with a macroporous 3D skeleton, a conductive PANI coating and highly electrochemically active NiCo2O4 nanosheets is synthesized as a lightweight and low-cost electrode material. Due to the collaborative contribution of all the components, the prepared composite foam exhibits excellent capacitive performances when incorporated into an asymmetric supercapacitor.
Progressive Dictionary Learning with Hierarchical Predictive Structure for Scalable Video Coding.
Dai, Wenrui; Shen, Yangmei; Xiong, Hongkai; Jiang, Xiaoqian; Zou, Junni; Taubman, David
2017-04-12
Dictionary learning has emerged as a promising alternative to the conventional hybrid coding framework. However, the rigid structure of sequential training and prediction degrades its performance in scalable video coding. This paper proposes a progressive dictionary learning framework with hierarchical predictive structure for scalable video coding, especially in low bitrate region. For pyramidal layers, sparse representation based on spatio-temporal dictionary is adopted to improve the coding efficiency of enhancement layers (ELs) with a guarantee of reconstruction performance. The overcomplete dictionary is trained to adaptively capture local structures along motion trajectories as well as exploit the correlations between neighboring layers of resolutions. Furthermore, progressive dictionary learning is developed to enable the scalability in temporal domain and restrict the error propagation in a close-loop predictor. Under the hierarchical predictive structure, online learning is leveraged to guarantee the training and prediction performance with an improved convergence rate. To accommodate with the stateof- the-art scalable extension of H.264/AVC and latest HEVC, standardized codec cores are utilized to encode the base and enhancement layers. Experimental results show that the proposed method outperforms the latest SHVC and HEVC simulcast over extensive test sequences with various resolutions.
Ulrich, Connie M; Wallen, Gwenyth R; Cui, Naixue; Chittams, Jesse; Sweet, Monica; Plemmons, Dena
2015-01-01
Team science is advocated to speed the pace of scientific discovery, yet the goals of collaborative practice in nursing science and the responsibilities of nurse stakeholders are sparse and inconclusive. The purpose of this study was to examine nurse scientists' views on collaborative research as part of a larger study on standards of scientific conduct. Web-based descriptive survey of nurse scientists randomly selected from 50 doctoral graduate programs in the United States. Nearly forty percent of nurse respondents were not able to identify good collaborative practices for the discipline; more than three quarters did not know of any published guidelines available to them. Successful research collaborations were challenged by different expectations of authorship and data ownership, lack of timeliness and communication, poorly defined roles and responsibilities, language barriers, and when they involve junior and senior faculty working together on a project. Individual and organizational standards, practices, and policies for collaborative research needs clarification within the discipline. Copyright © 2015 Elsevier Inc. All rights reserved.
Improved Personalized Recommendation Based on Causal Association Rule and Collaborative Filtering
ERIC Educational Resources Information Center
Lei, Wu; Qing, Fang; Zhou, Jin
2016-01-01
There are usually limited user evaluation of resources on a recommender system, which caused an extremely sparse user rating matrix, and this greatly reduce the accuracy of personalized recommendation, especially for new users or new items. This paper presents a recommendation method based on rating prediction using causal association rules.…
High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics
Carvalho, Carlos M.; Chang, Jeffrey; Lucas, Joseph E.; Nevins, Joseph R.; Wang, Quanli; West, Mike
2010-01-01
We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor and regression models for microarray gene expression data. We discuss breast cancer applications and key aspects of the modeling and computational methodology. Our case studies aim to investigate and characterize heterogeneity of structure related to specific oncogenic pathways, as well as links between aggregate patterns in gene expression profiles and clinical biomarkers. Based on the metaphor of statistically derived “factors” as representing biological “subpathway” structure, we explore the decomposition of fitted sparse factor models into pathway subcomponents and investigate how these components overlay multiple aspects of known biological activity. Our methodology is based on sparsity modeling of multivariate regression, ANOVA, and latent factor models, as well as a class of models that combines all components. Hierarchical sparsity priors address questions of dimension reduction and multiple comparisons, as well as scalability of the methodology. The models include practically relevant non-Gaussian/nonparametric components for latent structure, underlying often quite complex non-Gaussianity in multivariate expression patterns. Model search and fitting are addressed through stochastic simulation and evolutionary stochastic search methods that are exemplified in the oncogenic pathway studies. Supplementary supporting material provides more details of the applications, as well as examples of the use of freely available software tools for implementing the methodology. PMID:21218139
Attitudes of nursing staff toward interprofessional in-patient-centered rounding.
Sharma, Umesh; Klocke, David
2014-09-01
Historically, medicine and nursing has had a hierarchical and patriarchal relationship, with physicians holding monopoly over knowledge-based practice of medical care, thus impeding interprofessional collaboration. Power gradient prevents nurses from demanding cooperative patient rounding. We surveyed attitudes of nursing staff at our tertiary care community hospital, before and after implementation of a patient-centered interprofessional (hospitalist-nurse) rounding process for patients. There was a substantial improvement in nursing staff satisfaction related to the improved communication (7%-54%, p < 0.001) and rounding (3%-49%, p < 0.001) by hospitalist providers. Patient-centered rounding also positively impacted nursing workflow (5%-56%, p < 0.001), nurses' perceptions of value as a team member (26%-56%, p = 0.018) and their job satisfaction (43%-59%, p = 0.010). Patient-centered rounding positively contributed to transforming the hospitalist-nurse hierarchical model to a team-based collaborative model, thus enhancing interprofessional relationships.
Rational and irrational clinical strategies for collaborative medicine.
Hammerly, Milt
2002-01-01
Individual practitioners and health care systems/organizations increasingly understand the rationale for collaborative medicine. An absence of collaboration can compromise the quality and safety of patient care. But having a rationale to provide collaborative medicine without also having a rational clinical strategy can be equally compromising to the quality and safety of patient care. Reasonable evidentiary criteria must be used to determine whether specific therapies merit inclusion or exclusion in a collaborative medicine model. Ranking therapies hierarchically on the basis of their risk-benefit ratio simplifies matching of therapies with the needs of the patient. A unifying taxonomy that categorizes all therapies (complementary/alternative and conventional) on the basis of how we think they work (presumed mechanisms of action) facilitates development of a clinical strategy for collaborative medicine. On the basis of these principles, a rational clinical strategy for collaborative medicine is described to help optimize the quality and safety of patient care.
Data-driven cluster reinforcement and visualization in sparsely-matched self-organizing maps.
Manukyan, Narine; Eppstein, Margaret J; Rizzo, Donna M
2012-05-01
A self-organizing map (SOM) is a self-organized projection of high-dimensional data onto a typically 2-dimensional (2-D) feature map, wherein vector similarity is implicitly translated into topological closeness in the 2-D projection. However, when there are more neurons than input patterns, it can be challenging to interpret the results, due to diffuse cluster boundaries and limitations of current methods for displaying interneuron distances. In this brief, we introduce a new cluster reinforcement (CR) phase for sparsely-matched SOMs. The CR phase amplifies within-cluster similarity in an unsupervised, data-driven manner. Discontinuities in the resulting map correspond to between-cluster distances and are stored in a boundary (B) matrix. We describe a new hierarchical visualization of cluster boundaries displayed directly on feature maps, which requires no further clustering beyond what was implicitly accomplished during self-organization in SOM training. We use a synthetic benchmark problem and previously published microbial community profile data to demonstrate the benefits of the proposed methods.
Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG
Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Iglesias, Juan Eugenio; Hämäläinen, Matti S.; Purdon, Patrick L.
2017-01-01
Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. PMID:29138310
The Joker: A Custom Monte Carlo Sampler for Binary-star and Exoplanet Radial Velocity Data
NASA Astrophysics Data System (ADS)
Price-Whelan, Adrian M.; Hogg, David W.; Foreman-Mackey, Daniel; Rix, Hans-Walter
2017-03-01
Given sparse or low-quality radial velocity measurements of a star, there are often many qualitatively different stellar or exoplanet companion orbit models that are consistent with the data. The consequent multimodality of the likelihood function leads to extremely challenging search, optimization, and Markov chain Monte Carlo (MCMC) posterior sampling over the orbital parameters. Here we create a custom Monte Carlo sampler for sparse or noisy radial velocity measurements of two-body systems that can produce posterior samples for orbital parameters even when the likelihood function is poorly behaved. The six standard orbital parameters for a binary system can be split into four nonlinear parameters (period, eccentricity, argument of pericenter, phase) and two linear parameters (velocity amplitude, barycenter velocity). We capitalize on this by building a sampling method in which we densely sample the prior probability density function (pdf) in the nonlinear parameters and perform rejection sampling using a likelihood function marginalized over the linear parameters. With sparse or uninformative data, the sampling obtained by this rejection sampling is generally multimodal and dense. With informative data, the sampling becomes effectively unimodal but too sparse: in these cases we follow the rejection sampling with standard MCMC. The method produces correct samplings in orbital parameters for data that include as few as three epochs. The Joker can therefore be used to produce proper samplings of multimodal pdfs, which are still informative and can be used in hierarchical (population) modeling. We give some examples that show how the posterior pdf depends sensitively on the number and time coverage of the observations and their uncertainties.
A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)
Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...
NASA Astrophysics Data System (ADS)
Schrodt, Franziska; Shan, Hanhuai; Fazayeli, Farideh; Karpatne, Anuj; Kattge, Jens; Banerjee, Arindam; Reichstein, Markus; Reich, Peter
2013-04-01
With the advent of remotely sensed data and coordinated efforts to create global databases, the ecological community has progressively become more data-intensive. However, in contrast to other disciplines, statistical ways of handling these large data sets, especially the gaps which are inherent to them, are lacking. Widely used theoretical approaches, for example model averaging based on Akaike's information criterion (AIC), are sensitive to missing values. Yet, the most common way of handling sparse matrices - the deletion of cases with missing data (complete case analysis) - is known to severely reduce statistical power as well as inducing biased parameter estimates. In order to address these issues, we present novel approaches to gap filling in large ecological data sets using matrix factorization techniques. Factorization based matrix completion was developed in a recommender system context and has since been widely used to impute missing data in fields outside the ecological community. Here, we evaluate the effectiveness of probabilistic matrix factorization techniques for imputing missing data in ecological matrices using two imputation techniques. Hierarchical Probabilistic Matrix Factorization (HPMF) effectively incorporates hierarchical phylogenetic information (phylogenetic group, family, genus, species and individual plant) into the trait imputation. Advanced Hierarchical Probabilistic Matrix Factorization (aHPMF) on the other hand includes climate and soil information into the matrix factorization by regressing the environmental variables against residuals of the HPMF. One unique opportunity opened up by aHPMF is out-of-sample prediction, where traits can be predicted for specific species at locations different to those sampled in the past. This has potentially far-reaching consequences for the study of global-scale plant functional trait patterns. We test the accuracy and effectiveness of HPMF and aHPMF in filling sparse matrices, using the TRY database of plant functional traits (http://www.try-db.org). TRY is one of the largest global compilations of plant trait databases (750 traits of 1 million plants), encompassing data on morphological, anatomical, biochemical, phenological and physiological features of plants. However, despite of unprecedented coverage, the TRY database is still very sparse, severely limiting joint trait analyses. Plant traits are the key to understanding how plants as primary producers adjust to changes in environmental conditions and in turn influence them. Forming the basis for Dynamic Global Vegetation Models (DGVMs), plant traits are also fundamental in global change studies for predicting future ecosystem changes. It is thus imperative that missing data is imputed in as accurate and precise a way as possible. In this study, we show the advantages and disadvantages of applying probabilistic matrix factorization techniques in incorporating hierarchical and environmental information for the prediction of missing plant traits as compared to conventional imputation techniques such as the complete case and mean approaches. We will discuss the implications of using gap-filled data for global-scale studies of plant functional trait - environment relationship as opposed to the above-mentioned conventional techniques, using examples of out-of-sample predictions of foliar Nitrogen across several species' ranges and biomes.
Web 2.0 and Marketing Education: Explanations and Experiential Applications
ERIC Educational Resources Information Center
Granitz, Neil; Koernig, Stephen K.
2011-01-01
Although both experiential learning and Web 2.0 tools focus on creativity, sharing, and collaboration, sparse research has been published integrating a Web 2.0 paradigm with experiential learning in marketing. In this article, Web 2.0 concepts are explained. Web 2.0 is then positioned as a philosophy that can advance experiential learning through…
ERIC Educational Resources Information Center
Selhorst, Adam L.; Klein, Eric; Harrison, Justin
2017-01-01
Research addressing the effects of cohort size on student success in asynchronous online discussions is sparse. As such, the following study attempted to determine an optimal student cohort size to enhance success and engagement within online discussions in general education courses at a large post-secondary university consisting of predominately…
Lesho, Emil; Okito, Edmond Amisi; Mann, Kelly; McCullough, Michael; Hesse, Elisabeth
2014-01-01
The Democratic Republic of the Congo is the second largest and fourth most populous country in Africa. More than two decades of ongoing conflicts have degraded its healthcare system. A broad range of tropical diseases, along with opportunities for collaborative medical engagements (CMEs), are prevalent. However, reports from such events in this country are sparse. In June 2013, a CME was conducted in the western town of Muanda. Twenty-two hours of didactic sessions were collaboratively presented, and 158 patients were collaboratively evaluated. Durable dental and respiratory equipment, infrastructure improvements, and training opportunities were the top needs identified by the providers. Whether the regional referral hospital received sustainable benefit remains under investigation. However, the approach and needs assessment described herein provide a framework for future engagements or assistance. This CME established a precedence of medical partnership in the region because it led to the largest multidisciplinary joint collaboration in the history of the Democratic Republic of the Congo. PMID:24534813
Lesho, Emil; Okito, Edmond Amisi; Mann, Kelly; McCullough, Michael; Hesse, Elisabeth
2014-04-01
The Democratic Republic of the Congo is the second largest and fourth most populous country in Africa. More than two decades of ongoing conflicts have degraded its healthcare system. A broad range of tropical diseases, along with opportunities for collaborative medical engagements (CMEs), are prevalent. However, reports from such events in this country are sparse. In June 2013, a CME was conducted in the western town of Muanda. Twenty-two hours of didactic sessions were collaboratively presented, and 158 patients were collaboratively evaluated. Durable dental and respiratory equipment, infrastructure improvements, and training opportunities were the top needs identified by the providers. Whether the regional referral hospital received sustainable benefit remains under investigation. However, the approach and needs assessment described herein provide a framework for future engagements or assistance. This CME established a precedence of medical partnership in the region because it led to the largest multidisciplinary joint collaboration in the history of the Democratic Republic of the Congo.
Zabawa, Barbara J
2003-01-01
This paper argues that collaborative governance should be an essential component in any HIFA waiver proposal, due to the fact that the health care system is moving away from a federal and hierarchical program design and implementation towards a more local, collaborative approach. As several current collaborative projects demonstrate, collaboration may overcome barriers to health expansion program success, such as stakeholder buy-in, notice, and state access to private health coverage information. Furthermore, collaboration within the context of the HIFA waiver process may maximize the strengths of current collaborations, such as providing: (a) access to greater and more stable funding sources; (b) access to a facilitator that can collect and distribute data; and (c) an avenue for accountability. Multiple challenges in ensuring collaborative governance are reviewed. Ms. Zabawa argues that these challenges are not insurmountable if states adopt a truly collaborative approach to designing and implementing programs under the HIFA waiver; there may be hope in expanding and improving health coverage, since collaboration is the most appropriate mechanism to address the complexity of health system reform.
Hierarchical patch-based co-registration of differently stained histopathology slides
NASA Astrophysics Data System (ADS)
Yigitsoy, Mehmet; Schmidt, Günter
2017-03-01
Over the past decades, digital pathology has emerged as an alternative way of looking at the tissue at subcellular level. It enables multiplexed analysis of different cell types at micron level. Information about cell types can be extracted by staining sections of a tissue block using different markers. However, robust fusion of structural and functional information from different stains is necessary for reproducible multiplexed analysis. Such a fusion can be obtained via image co-registration by establishing spatial correspondences between tissue sections. Spatial correspondences can then be used to transfer various statistics about cell types between sections. However, the multi-modal nature of images and sparse distribution of interesting cell types pose several challenges for the registration of differently stained tissue sections. In this work, we propose a co-registration framework that efficiently addresses such challenges. We present a hierarchical patch-based registration of intensity normalized tissue sections. Preliminary experiments demonstrate the potential of the proposed technique for the fusion of multi-modal information from differently stained digital histopathology sections.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.
Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O; Gelfand, Alan E
2016-01-01
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online.
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
Datta, Abhirup; Banerjee, Sudipto; Finley, Andrew O.; Gelfand, Alan E.
2018-01-01
Spatial process models for analyzing geostatistical data entail computations that become prohibitive as the number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor Gaussian process (NNGP) models to provide fully model-based inference for large geostatistical datasets. We establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian densities with sparse precision matrices. We embed the NNGP as a sparsity-inducing prior within a rich hierarchical modeling framework and outline how computationally efficient Markov chain Monte Carlo (MCMC) algorithms can be executed without storing or decomposing large matrices. The floating point operations (flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substantial scalability. We illustrate the computational and inferential benefits of the NNGP over competing methods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article are available online. PMID:29720777
Comparing Notes: Collaborative Networks, Breeding Environments, and Organized Crime
NASA Astrophysics Data System (ADS)
Hernández, Alejandro
Collaborative network theory can be useful in refining current understanding of criminal networks and aid in understanding their evolution. Drug trafficking organizations that operate in the region directly north of Colombia’s Valle del Cauca department and the “collection agencies” that operate in the Colombian city of Cali have abandoned hierarchical organizational structures and have become networked-based entities. Through the exposition of Camarinha-Matos and Afsarmanesh’s business networking ideas, this chapter examines the similarities and differences between the application of collaborative networks in licit enterprises, such as small and medium enterprises in Europe, and how the networks might be used by illicit criminal enterprises in Colombia.
DOT National Transportation Integrated Search
2014-01-01
Transportation is one of the leading contributors to greenhouse gas emissions, ground : based air pollution and pollution in waters and streams. Researchers have also linked the : human health issues of obesity and lung disease with automobile use. T...
Wavelet Algorithms for Illumination Computations
NASA Astrophysics Data System (ADS)
Schroder, Peter
One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to O(k^2 + n) versus the usual O(n^2) (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.
High-Dimensional Bayesian Geostatistics
Banerjee, Sudipto
2017-01-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920
High-Dimensional Bayesian Geostatistics.
Banerjee, Sudipto
2017-06-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.
Visual recognition and inference using dynamic overcomplete sparse learning.
Murray, Joseph F; Kreutz-Delgado, Kenneth
2007-09-01
We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.
Co-Constructing Community, School, University Partnerships for Urban School Transformation
ERIC Educational Resources Information Center
Gillenwaters, Jamila Najah
2009-01-01
University-school-community partnerships represent a collaborative model of urban educational reformation inclusive of all the organizations that impact urban education. Co-constructed relationships among communities, schools, and universities have the potential for redistributing hierarchical power, thereby enabling all partners to contribute to…
Methods of Feminist Family Therapy Supervision.
ERIC Educational Resources Information Center
Prouty, Anne M.; Thomas, Volker; Johnson, Scott; Long, Janie K.
2001-01-01
Presents three supervision methods which emerged from a qualitative study of the experiences of feminist family therapy supervisors and the therapists they supervised: the supervision contract, collaborative methods, and hierarchical methods. Provides a description of the participants' experiences of these methods and discusses their fit with…
Collaborative modeling: the missing piece of distributed simulation
NASA Astrophysics Data System (ADS)
Sarjoughian, Hessam S.; Zeigler, Bernard P.
1999-06-01
The Department of Defense overarching goal of performing distributed simulation by overcoming geographic and time constraints has brought the problem of distributed modeling to the forefront. The High Level Architecture standard is primarily intended for simulation interoperability. However, as indicated, the existence of a distributed modeling infrastructure plays a fundamental and central role in supporting the development of distributed simulations. In this paper, we describe some fundamental distributed modeling concepts and their implications for constructing successful distributed simulations. In addition, we discuss the Collaborative DEVS Modeling environment that has been devised to enable graphically dispersed modelers to collaborate and synthesize modular and hierarchical models. We provide an actual example of the use of Collaborative DEVS Modeler in application to a project involving corporate partners developing an HLA-compliant distributed simulation exercise.
Designing attractive gamification features for collaborative storytelling websites.
Hsu, Shang Hwa; Chang, Jen-Wei; Lee, Chun-Chia
2013-06-01
Gamification design is considered as the predictor of collaborative storytelling websites' success. Although aforementioned studies have mentioned a broad range of factors that may influence gamification, they neither depicted the actual design features nor relative attractiveness among them. This study aims to identify attractive gamification features for collaborative storytelling websites. We first constructed a hierarchical system structure of gamification design of collaborative storytelling websites and conducted a focus group interview with eighteen frequent users to identify 35gamification features. After that, this study determined the relative attractiveness of these gamification features by administrating an online survey to 6333 collaborative storytelling websites users. The results indicated that the top 10 most attractive gamification features could account for more than 50% of attractiveness among these 35 gamification features. The feature of unpredictable time pressure is important to website users, yet not revealed in previous relevant studies. Implications of the findings were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry
Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less
Ghysels, Pieter; Li, Xiaoye S.; Rouet, Francois -Henry; ...
2016-10-27
Here, we present a sparse linear system solver that is based on a multifrontal variant of Gaussian elimination and exploits low-rank approximation of the resulting dense frontal matrices. We use hierarchically semiseparable (HSS) matrices, which have low-rank off-diagonal blocks, to approximate the frontal matrices. For HSS matrix construction, a randomized sampling algorithm is used together with interpolative decompositions. The combination of the randomized compression with a fast ULV HSS factoriz ation leads to a solver with lower computational complexity than the standard multifrontal method for many applications, resulting in speedups up to 7 fold for problems in our test suite.more » The implementation targets many-core systems by using task parallelism with dynamic runtime scheduling. Numerical experiments show performance improvements over state-of-the-art sparse direct solvers. The implementation achieves high performance and good scalability on a range of modern shared memory parallel systems, including the Intel Xeon Phi (MIC). The code is part of a software package called STRUMPACK - STRUctured Matrices PACKage, which also has a distributed memory component for dense rank-structured matrices.« less
ERIC Educational Resources Information Center
Koole, Heather; Nelson, Nickola W.; Curtis, Amy B.
2015-01-01
Purpose: This preliminary investigation examined speech-language pathologists' (SLPs') use of contextualized practices (i.e., functional, personally relevant, nonhierarchical, and collaborative) compared with traditional practices (i.e., clinical, generic, hierarchical, and expert driven) with school-age children and adolescents with traumatic…
Centering in on Professional Choices.
ERIC Educational Resources Information Center
Harris, Muriel
2001-01-01
Examines the author's involvement with writing centers as an example of how educators can look at the choices made within their areas of expertise to see why the choices attract them. Notes that in her case, the flexible, collaborative, individualized, non-evaluative, experimental, non-hierarchical, student-centered nature of writing centers is an…
Network Analysis of an Emergent Massively Collaborative Creation on Video Sharing Website
NASA Astrophysics Data System (ADS)
Hamasaki, Masahiro; Takeda, Hideaki; Nishimura, Takuichi
The Web technology enables numerous people to collaborate in creation. We designate it as massively collaborative creation via the Web. As an example of massively collaborative creation, we particularly examine video development on Nico Nico Douga, which is a video sharing website that is popular in Japan. We specifically examine videos on Hatsune Miku, a version of a singing synthesizer application software that has inspired not only song creation but also songwriting, illustration, and video editing. As described herein, creators of interact to create new contents through their social network. In this paper, we analyzed the process of developing thousands of videos based on creators' social networks and investigate relationships among creation activity and social networks. The social network reveals interesting features. Creators generate large and sparse social networks including some centralized communities, and such centralized community's members shared special tags. Different categories of creators have different roles in evolving the network, e.g., songwriters gather more links than other categories, implying that they are triggers to network evolution.
Visualization analysis of author collaborations in schizophrenia research.
Wu, Ying; Duan, Zhiguang
2015-02-19
Schizophrenia is a serious mental illness that levies a heavy medical toll and cost burden throughout the world. Scientific collaborations are necessary for progress in psychiatric research. However, there have been few publications on scientific collaborations in schizophrenia. The aim of this study was to investigate the extent of author collaborations in schizophrenia research. This study used 58,107 records on schizophrenia from 2003 to 2012 which were downloaded from Science Citation Index Expanded (SCI Expanded) via Web of Science. CiteSpace III, an information visualization and analysis software, was used to make a visual analysis. Collaborative author networks within the field of schizophrenia were determined using published documents. We found that external author collaboration networks were more scattered while potential author collaboration networks were more compact. Results from hierarchical clustering analysis showed that the main collaborative field was genetic research in schizophrenia. Based on the results, authors belonging to different institutions and in different countries should be encouraged to collaborate in schizophrenia research. This will help researchers focus their studies on key issues, and allow each other to offer reasonable suggestions for making polices and providing scientific evidence to effectively diagnose, prevent, and cure schizophrenia.
An Adaptive Complex Network Model for Brain Functional Networks
Gomez Portillo, Ignacio J.; Gleiser, Pablo M.
2009-01-01
Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902
Wan, Xiaoqing; Zhao, Chunhui
2017-06-01
As a competitive machine learning algorithm, the stacked sparse autoencoder (SSA) has achieved outstanding popularity in exploiting high-level features for classification of hyperspectral images (HSIs). In general, in the SSA architecture, the nodes between adjacent layers are fully connected and need to be iteratively fine-tuned during the pretraining stage; however, the nodes of previous layers further away may be less likely to have a dense correlation to the given node of subsequent layers. Therefore, to reduce the classification error and increase the learning rate, this paper proposes the general framework of locally connected SSA; that is, the biologically inspired local receptive field (LRF) constrained SSA architecture is employed to simultaneously characterize the local correlations of spectral features and extract high-level feature representations of hyperspectral data. In addition, the appropriate receptive field constraint is concurrently updated by measuring the spatial distances from the neighbor nodes to the corresponding node. Finally, the efficient random forest classifier is cascaded to the last hidden layer of the SSA architecture as a benchmark classifier. Experimental results on two real HSI datasets demonstrate that the proposed hierarchical LRF constrained stacked sparse autoencoder and random forest (SSARF) provides encouraging results with respect to other contrastive methods, for instance, the improvements of overall accuracy in a range of 0.72%-10.87% for the Indian Pines dataset and 0.74%-7.90% for the Kennedy Space Center dataset; moreover, it generates lower running time compared with the result provided by similar SSARF based methodology.
Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.
Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen
2016-07-27
Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.
Self-organized Evaluation of Dynamic Hand Gestures for Sign Language Recognition
NASA Astrophysics Data System (ADS)
Buciu, Ioan; Pitas, Ioannis
Two main theories exist with respect to face encoding and representation in the human visual system (HVS). The first one refers to the dense (holistic) representation of the face, where faces have "holon"-like appearance. The second one claims that a more appropriate face representation is given by a sparse code, where only a small fraction of the neural cells corresponding to face encoding is activated. Theoretical and experimental evidence suggest that the HVS performs face analysis (encoding, storing, face recognition, facial expression recognition) in a structured and hierarchical way, where both representations have their own contribution and goal. According to neuropsychological experiments, it seems that encoding for face recognition, relies on holistic image representation, while a sparse image representation is used for facial expression analysis and classification. From the computer vision perspective, the techniques developed for automatic face and facial expression recognition fall into the same two representation types. Like in Neuroscience, the techniques which perform better for face recognition yield a holistic image representation, while those techniques suitable for facial expression recognition use a sparse or local image representation. The proposed mathematical models of image formation and encoding try to simulate the efficient storing, organization and coding of data in the human cortex. This is equivalent with embedding constraints in the model design regarding dimensionality reduction, redundant information minimization, mutual information minimization, non-negativity constraints, class information, etc. The presented techniques are applied as a feature extraction step followed by a classification method, which also heavily influences the recognition results.
High-Stakes Collaborative Testing: Why Not?
Levine, Ruth E; Borges, Nicole J; Roman, Brenda J B; Carchedi, Lisa R; Townsend, Mark H; Cluver, Jeffrey S; Frank, Julia; Morey, Oma; Haidet, Paul; Thompson, Britta M
2018-01-01
Phenomenon: Studies of high-stakes collaborative testing remain sparse, especially in medical education. We explored high-stakes collaborative testing in medical education, looking specifically at the experiences of students in established and newly formed teams. Third-year psychiatry students at 5 medical schools across 6 sites participated, with 4 participating as established team sites and 2 as comparison team sites. For the collaborative test, we used the National Board of Medical Examiners Psychiatry subject test, administering it via a 2-stage process. Students at all sites were randomly selected to participate in a focus group, with 8-10 students per site (N = 49). We also examined quantitative data for additional triangulation. Students described a range of heightened emotions around the collaborative test yet perceived it as valuable regardless if they were in established or newly formed teams. Students described learning about the subject matter, themselves, others, and interpersonal dynamics during collaborative testing. Triangulation of these results via quantitative data supported these themes. Insights: Despite student concerns, high-stakes collaborative tests may be both valuable and feasible. The data suggest that high-stakes tests (tests of learning or summative evaluation) could also become tests for learning or formative evaluation. The paucity of research into this methodology in medical education suggests more research is needed.
Bhardwaj, Nitin; Yan, Koon-Kiu; Gerstein, Mark B.
2010-01-01
Gene regulatory networks have been shown to share some common aspects with commonplace social governance structures. Thus, we can get some intuition into their organization by arranging them into well-known hierarchical layouts. These hierarchies, in turn, can be placed between the extremes of autocracies, with well-defined levels and clear chains of command, and democracies, without such defined levels and with more co-regulatory partnerships between regulators. In general, the presence of partnerships decreases the variation in information flow amongst nodes within a level, more evenly distributing stress. Here we study various regulatory networks (transcriptional, modification, and phosphorylation) for five diverse species, Escherichia coli to human. We specify three levels of regulators—top, middle, and bottom—which collectively govern the non-regulator targets lying in the lowest fourth level. We define quantities for nodes, levels, and entire networks that measure their degree of collaboration and autocratic vs. democratic character. We show individual regulators have a range of partnership tendencies: Some regulate their targets in combination with other regulators in local instantiations of democratic structure, whereas others regulate mostly in isolation, in more autocratic fashion. Overall, we show that in all networks studied the middle level has the highest collaborative propensity and coregulatory partnerships occur most frequently amongst midlevel regulators, an observation that has parallels in corporate settings where middle managers must interact most to ensure organizational effectiveness. There is, however, one notable difference between networks in different species: The amount of collaborative regulation and democratic character increases markedly with overall genomic complexity. PMID:20351254
Finding community structure in very large networks
NASA Astrophysics Data System (ADS)
Clauset, Aaron; Newman, M. E. J.; Moore, Cristopher
2004-12-01
The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O(mdlogn) where d is the depth of the dendrogram describing the community structure. Many real-world networks are sparse and hierarchical, with mtilde n and dtilde logn , in which case our algorithm runs in essentially linear time, O(nlog2n) . As an example of the application of this algorithm we use it to analyze a network of items for sale on the web site of a large on-line retailer, items in the network being linked if they are frequently purchased by the same buyer. The network has more than 400 000 vertices and 2×106 edges. We show that our algorithm can extract meaningful communities from this network, revealing large-scale patterns present in the purchasing habits of customers.
Experience-Driven Formation of Parts-Based Representations in a Model of Layered Visual Memory
Jitsev, Jenia; von der Malsburg, Christoph
2009-01-01
Growing neuropsychological and neurophysiological evidence suggests that the visual cortex uses parts-based representations to encode, store and retrieve relevant objects. In such a scheme, objects are represented as a set of spatially distributed local features, or parts, arranged in stereotypical fashion. To encode the local appearance and to represent the relations between the constituent parts, there has to be an appropriate memory structure formed by previous experience with visual objects. Here, we propose a model how a hierarchical memory structure supporting efficient storage and rapid recall of parts-based representations can be established by an experience-driven process of self-organization. The process is based on the collaboration of slow bidirectional synaptic plasticity and homeostatic unit activity regulation, both running at the top of fast activity dynamics with winner-take-all character modulated by an oscillatory rhythm. These neural mechanisms lay down the basis for cooperation and competition between the distributed units and their synaptic connections. Choosing human face recognition as a test task, we show that, under the condition of open-ended, unsupervised incremental learning, the system is able to form memory traces for individual faces in a parts-based fashion. On a lower memory layer the synaptic structure is developed to represent local facial features and their interrelations, while the identities of different persons are captured explicitly on a higher layer. An additional property of the resulting representations is the sparseness of both the activity during the recall and the synaptic patterns comprising the memory traces. PMID:19862345
Fähnrich, Birte
2017-08-01
Science diplomacy is a widely practiced area of international affairs, but academic research is rather sparse. The role of academia within this field of politics-science interaction has hardly been considered. This article analyzes this scholarly perspective: Based on a literature review, a case study of a German science diplomacy program is used to explore objectives, benefits, and constraints of science diplomacy for participating scholars. While political approaches suggest an ideal world where both sides profit from the collaboration, the findings of the case study point to another conclusion which shows that the interaction of scholars and officials in science diplomacy is far more complex. Thus, the contribution is regarded as both a useful starting point for further research and for a critical reflection of academics and politicians in science diplomacy practice to gauge what can be expected from the collaboration and what cannot.
Supporting Novice Teachers through Mentoring and Induction in the United States
ERIC Educational Resources Information Center
Zembytska, Maryna
2015-01-01
The study focuses on the U.S. system of novice teacher support. The study highlights the evolution of mentoring from a traditional, isolated, hierarchical one-to-one relationship to multiple interactions which comprise a collaborative developmental network. The findings suggest that mentoring and induction support in the United States are…
Discovery of User-Oriented Class Associations for Enriching Library Classification Schemes.
ERIC Educational Resources Information Center
Pu, Hsiao-Tieh
2002-01-01
Presents a user-based approach to exploring the possibility of adding user-oriented class associations to hierarchical library classification schemes. Classes not grouped in the same subject hierarchies yet relevant to users' knowledge are obtained by analyzing a log book of a university library's circulation records, using collaborative filtering…
In Search of Inclusive Non-Dualistic Pedagogies through Collaborative and Affective Learning Events
ERIC Educational Resources Information Center
Done, E.; Murphy, M.; Irving, M.
2013-01-01
Despite growing consensus that dualistic thinking and hierarchically organised binary categorisations must be challenged if inclusion is to be achieved, advice on the design and implementation of non-dualistic pedagogies is less readily available. The role of teacher educators should therefore include: the modelling of possible actions that…
ERIC Educational Resources Information Center
Crick, Ruth Deakin; Knight, Simon; Barr, Steven
2017-01-01
Central to the mission of most educational institutions is the task of preparing the next generation of citizens to contribute to society. Schools, colleges, and universities value a range of outcomes--e.g., problem solving, creativity, collaboration, citizenship, service to community--as well as academic outcomes in traditional subjects. Often…
Azondekon, Roseric; Harper, Zachary James; Agossa, Fiacre Rodrigue; Welzig, Charles Michael; McRoy, Susan
2018-01-01
To sustain the critical progress made, prioritization and a multidisciplinary approach to malaria research remain important to the national malaria control program in Benin. To document the structure of the malaria collaborative research in Benin, we analyze authorship of the scientific documents published on malaria from Benin. We collected bibliographic data from the Web Of Science on malaria research in Benin from January 1996 to December 2016. From the collected data, a mulitigraph co-authorship network with authors representing vertices was generated. An edge was drawn between two authors when they co-author a paper. We computed vertex degree, betweenness, closeness, and eigenvectors among others to identify prolific authors. We further assess the weak points and how information flow in the network. Finally, we perform a hierarchical clustering analysis, and Monte-Carlo simulations. Overall, 427 publications were included in this study. The generated network contained 1792 authors and 116,388 parallel edges which converted in a weighted graph of 1792 vertices and 95,787 edges. Our results suggested that prolific authors with higher degrees tend to collaborate more. The hierarchical clustering revealed 23 clusters, seven of which form a giant component containing 94% of all the vertices in the network. This giant component has all the characteristics of a small-world network with a small shortest path distance between pairs of three, a diameter of 10 and a high clustering coefficient of 0.964. However, Monte-Carlo simulations suggested our observed network is an unusual type of small-world network. Sixteen vertices were identified as weak articulation points within the network. The malaria research collaboration network in Benin is a complex network that seems to display the characteristics of a small-world network. This research reveals the presence of closed research groups where collaborative research likely happens only between members. Interdisciplinary collaboration tends to occur at higher levels between prolific researchers. Continuously supporting, stabilizing the identified key brokers and most productive authors in the Malaria research collaborative network is an urgent need in Benin. It will foster the malaria research network and ensure the promotion of junior scientists in the field.
Susilo, Astrid Pratidina; van den Eertwegh, Valerie; van Dalen, Jan; Scherpbier, Albert
2013-01-01
Although inter-professional collaboration is important for patient safety, effective collaboration can be difficult to achieve, especially in settings with a strong hierarchical or blame culture. Leary's Rose is a model that gives insight into the hierarchical positions people take during a negotiation process. The assumption behind this tool is that the default reaction we intuitively choose is not always the most effective. Becoming aware of this default reaction makes it possible to choose to behave differently, in a more effective way. We propose to use this model to make health professionals more aware of their attitudes and communication styles when negotiating and provide them with a tool to improve communication by modifying their natural responses. Leary's Rose can be used in simulated and authentic work-based educational settings. To train the communication skills of nurses to be the patients' advocates, for example Leary's Rose was used in role plays in which nurses have to negotiate in the patients' interest with the doctor while they have to maintain partnership relationship and avoid opposition with the doctor.
Are LIGO's Black Holes Made From Smaller Black Holes?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-05-01
The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that all the hierarchical mergers are so-called major mergers i.e., the smaller black hole of the pair is at least 70% of the mass of the larger one.Distribution of spins for 4th-generation mergers, with two different mass ratios (q= 0.7 and q= 1) and initial first-generation spins (non-spinning and maximally spinning). [Fishbach et al. 2017]The authors find that hierarchical major mergers result in a distribution of spins with a distinctive shape, peaking at a spin of a 0.7 with relatively low contribution from spins below a 0.5. Intriguingly, this distribution is universal if you include several generations of mergers, the resulting spin distribution converges to the same shape every time. This is true regardless of the details of the hierarchical merger scenario, like the exact black hole mass ratio (as long as only major mergers occur) or the initial spin distributions.Testing the ModelWhat does this tell us? Since the hierarchical merger model predicts a very specific distribution of spins for the black holes detected by LIGO, we can compare future LIGO detections to see if theyre consistent with this model.The authors calculate the statistics to show that after order 100 LIGO detections, we should be able to tell whether these black holes are consistent with a hierarchical merger formation model or not. With luck, this could mean that we will have solved this mystery within a few years of advanced LIGO operations!CitationMaya Fishbach et al 2017 ApJL 840 L24. doi:10.3847/2041-8213/aa7045
Automatic Camera Orientation and Structure Recovery with Samantha
NASA Astrophysics Data System (ADS)
Gherardi, R.; Toldo, R.; Garro, V.; Fusiello, A.
2011-09-01
SAMANTHA is a software capable of computing camera orientation and structure recovery from a sparse block of casual images without human intervention. It can process both calibrated images or uncalibrated, in which case an autocalibration routine is run. Pictures are organized into a hierarchical tree which has single images as leaves and partial reconstructions as internal nodes. The method proceeds bottom up until it reaches the root node, corresponding to the final result. This framework is one order of magnitude faster than sequential approaches, inherently parallel, less sensitive to the error accumulation causing drift. We have verified the quality of our reconstructions both qualitatively producing compelling point clouds and quantitatively, comparing them with laser scans serving as ground truth.
D Reconstruction with a Collaborative Approach Based on Smartphones and a Cloud-Based Server
NASA Astrophysics Data System (ADS)
Nocerino, E.; Poiesi, F.; Locher, A.; Tefera, Y. T.; Remondino, F.; Chippendale, P.; Van Gool, L.
2017-11-01
The paper presents a collaborative image-based 3D reconstruction pipeline to perform image acquisition with a smartphone and geometric 3D reconstruction on a server during concurrent or disjoint acquisition sessions. Images are selected from the video feed of the smartphone's camera based on their quality and novelty. The smartphone's app provides on-the-fly reconstruction feedback to users co-involved in the acquisitions. The server is composed of an incremental SfM algorithm that processes the received images by seamlessly merging them into a single sparse point cloud using bundle adjustment. Dense image matching algorithm can be lunched to derive denser point clouds. The reconstruction details, experiments and performance evaluation are presented and discussed.
Cure fraction model with random effects for regional variation in cancer survival.
Seppä, Karri; Hakulinen, Timo; Kim, Hyon-Jung; Läärä, Esa
2010-11-30
Assessing regional differences in the survival of cancer patients is important but difficult when separate regions are small or sparsely populated. In this paper, we apply a mixture cure fraction model with random effects to cause-specific survival data of female breast cancer patients collected by the population-based Finnish Cancer Registry. Two sets of random effects were used to capture the regional variation in the cure fraction and in the survival of the non-cured patients, respectively. This hierarchical model was implemented in a Bayesian framework using a Metropolis-within-Gibbs algorithm. To avoid poor mixing of the Markov chain, when the variance of either set of random effects was close to zero, posterior simulations were based on a parameter-expanded model with tailor-made proposal distributions in Metropolis steps. The random effects allowed the fitting of the cure fraction model to the sparse regional data and the estimation of the regional variation in 10-year cause-specific breast cancer survival with a parsimonious number of parameters. Before 1986, the capital of Finland clearly stood out from the rest, but since then all the 21 hospital districts have achieved approximately the same level of survival. Copyright © 2010 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmann, Yoann; Maccarone, Aurora; McCarthy, Aongus
Here, this paper presents a new Bayesian spectral un-mixing algorithm to analyse remote scenes sensed via sparse multispectral Lidar measurements. To a first approximation, in the presence of a target, each Lidar waveform consists of a main peak, whose position depends on the target distance and whose amplitude depends on the wavelength of the laser source considered (i.e, on the target reflectivity). Besides, these temporal responses are usually assumed to be corrupted by Poisson noise in the low photon count regime. When considering multiple wavelengths, it becomes possible to use spectral information in order to identify and quantify the mainmore » materials in the scene, in addition to estimation of the Lidar-based range profiles. Due to its anomaly detection capability, the proposed hierarchical Bayesian model, coupled with an efficient Markov chain Monte Carlo algorithm, allows robust estimation of depth images together with abundance and outlier maps associated with the observed 3D scene. The proposed methodology is illustrated via experiments conducted with real multispectral Lidar data acquired in a controlled environment. The results demonstrate the possibility to unmix spectral responses constructed from extremely sparse photon counts (less than 10 photons per pixel and band).« less
Shi, Jun; Liu, Xiao; Li, Yan; Zhang, Qi; Li, Yingjie; Ying, Shihui
2015-10-30
Electroencephalography (EEG) based sleep staging is commonly used in clinical routine. Feature extraction and representation plays a crucial role in EEG-based automatic classification of sleep stages. Sparse representation (SR) is a state-of-the-art unsupervised feature learning method suitable for EEG feature representation. Collaborative representation (CR) is an effective data coding method used as a classifier. Here we use CR as a data representation method to learn features from the EEG signal. A joint collaboration model is established to develop a multi-view learning algorithm, and generate joint CR (JCR) codes to fuse and represent multi-channel EEG signals. A two-stage multi-view learning-based sleep staging framework is then constructed, in which JCR and joint sparse representation (JSR) algorithms first fuse and learning the feature representation from multi-channel EEG signals, respectively. Multi-view JCR and JSR features are then integrated and sleep stages recognized by a multiple kernel extreme learning machine (MK-ELM) algorithm with grid search. The proposed two-stage multi-view learning algorithm achieves superior performance for sleep staging. With a K-means clustering based dictionary, the mean classification accuracy, sensitivity and specificity are 81.10 ± 0.15%, 71.42 ± 0.66% and 94.57 ± 0.07%, respectively; while with the dictionary learned using the submodular optimization method, they are 80.29 ± 0.22%, 71.26 ± 0.78% and 94.38 ± 0.10%, respectively. The two-stage multi-view learning based sleep staging framework outperforms all other classification methods compared in this work, while JCR is superior to JSR. The proposed multi-view learning framework has the potential for sleep staging based on multi-channel or multi-modality polysomnography signals. Copyright © 2015 Elsevier B.V. All rights reserved.
2017-01-01
Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT) cortex. We developed a hierarchical network that constructed a mixture of two sparse coding submodels on top of a simple Gabor analysis. The submodels were each trained with face or non-face object images, which resulted in separate representations of facial parts and object parts. Importantly, evoked neural activities were modeled by Bayesian inference, which had a top-down explaining-away effect that enabled recognition of an individual part to depend strongly on the category of the whole input. We show that this explaining-away effect was indeed crucial for the units in the face submodel to exhibit significant selectivity to face images over object images in a similar way to actual face-selective neurons in the macaque IT cortex. Furthermore, the model explained, qualitatively and quantitatively, several tuning properties to facial features found in the middle patch of face processing in IT as documented by Freiwald, Tsao, and Livingstone (2009). These included, in particular, tuning to only a small number of facial features that were often related to geometrically large parts like face outline and hair, preference and anti-preference of extreme facial features (e.g., very large/small inter-eye distance), and reduction of the gain of feature tuning for partial face stimuli compared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features in the middle patch of face processing in the macaque IT cortex may be closely related to mixture of sparse coding models. PMID:28742816
Hosoya, Haruo; Hyvärinen, Aapo
2017-07-01
Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT) cortex. We developed a hierarchical network that constructed a mixture of two sparse coding submodels on top of a simple Gabor analysis. The submodels were each trained with face or non-face object images, which resulted in separate representations of facial parts and object parts. Importantly, evoked neural activities were modeled by Bayesian inference, which had a top-down explaining-away effect that enabled recognition of an individual part to depend strongly on the category of the whole input. We show that this explaining-away effect was indeed crucial for the units in the face submodel to exhibit significant selectivity to face images over object images in a similar way to actual face-selective neurons in the macaque IT cortex. Furthermore, the model explained, qualitatively and quantitatively, several tuning properties to facial features found in the middle patch of face processing in IT as documented by Freiwald, Tsao, and Livingstone (2009). These included, in particular, tuning to only a small number of facial features that were often related to geometrically large parts like face outline and hair, preference and anti-preference of extreme facial features (e.g., very large/small inter-eye distance), and reduction of the gain of feature tuning for partial face stimuli compared to whole face stimuli. Thus, we hypothesize that the coding principle of facial features in the middle patch of face processing in the macaque IT cortex may be closely related to mixture of sparse coding models.
ERIC Educational Resources Information Center
Herrera, Oriel A.; Fuller, David A.
2011-01-01
Remote experimentation laboratories (REL) are systems based on real equipment that allow students to carry out a laboratory practice through the Internet on the computer. In engineering, there have been numerous initiatives to implement REL over recent years, given the fundamental role of laboratory activities. However, in the past efforts have…
ERIC Educational Resources Information Center
Jones, Sandra; Lefoe, Geraldine; Harvey, Marina; Ryland, Kevin
2012-01-01
New models of leadership are needed for the higher education sector to continue to graduate students with leading edge capabilities. While multiple theories of leadership exist, the higher education sector requires a less hierarchical approach that takes account of its specialised and professional context. Over the last decade the sector has…
Visual tracking based on the sparse representation of the PCA subspace
NASA Astrophysics Data System (ADS)
Chen, Dian-bing; Zhu, Ming; Wang, Hui-li
2017-09-01
We construct a collaborative model of the sparse representation and the subspace representation. First, we represent the tracking target in the principle component analysis (PCA) subspace, and then we employ an L 1 regularization to restrict the sparsity of the residual term, an L 2 regularization term to restrict the sparsity of the representation coefficients, and an L 2 norm to restrict the distance between the reconstruction and the target. Then we implement the algorithm in the particle filter framework. Furthermore, an iterative method is presented to get the global minimum of the residual and the coefficients. Finally, an alternative template update scheme is adopted to avoid the tracking drift which is caused by the inaccurate update. In the experiment, we test the algorithm on 9 sequences, and compare the results with 5 state-of-art methods. According to the results, we can conclude that our algorithm is more robust than the other methods.
Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O
2018-05-01
Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.
EHR-based phenotyping: Bulk learning and evaluation.
Chiu, Po-Hsiang; Hripcsak, George
2017-06-01
In data-driven phenotyping, a core computational task is to identify medical concepts and their variations from sources of electronic health records (EHR) to stratify phenotypic cohorts. A conventional analytic framework for phenotyping largely uses a manual knowledge engineering approach or a supervised learning approach where clinical cases are represented by variables encompassing diagnoses, medicinal treatments and laboratory tests, among others. In such a framework, tasks associated with feature engineering and data annotation remain a tedious and expensive exercise, resulting in poor scalability. In addition, certain clinical conditions, such as those that are rare and acute in nature, may never accumulate sufficient data over time, which poses a challenge to establishing accurate and informative statistical models. In this paper, we use infectious diseases as the domain of study to demonstrate a hierarchical learning method based on ensemble learning that attempts to address these issues through feature abstraction. We use a sparse annotation set to train and evaluate many phenotypes at once, which we call bulk learning. In this batch-phenotyping framework, disease cohort definitions can be learned from within the abstract feature space established by using multiple diseases as a substrate and diagnostic codes as surrogates. In particular, using surrogate labels for model training renders possible its subsequent evaluation using only a sparse annotated sample. Moreover, statistical models can be trained and evaluated, using the same sparse annotation, from within the abstract feature space of low dimensionality that encapsulates the shared clinical traits of these target diseases, collectively referred to as the bulk learning set. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini
2018-07-01
This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.
Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
Omernik, James M.; Griffith, Glenn E.
2014-01-01
A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.
Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework
NASA Astrophysics Data System (ADS)
Omernik, James M.; Griffith, Glenn E.
2014-12-01
A map of ecological regions of the conterminous United States, first published in 1987, has been greatly refined and expanded into a hierarchical spatial framework in response to user needs, particularly by state resource management agencies. In collaboration with scientists and resource managers from numerous agencies and institutions in the United States, Mexico, and Canada, the framework has been expanded to cover North America, and the original ecoregions (now termed Level III) have been refined, subdivided, and aggregated to identify coarser as well as more detailed spatial units. The most generalized units (Level I) define 10 ecoregions in the conterminous U.S., while the finest-scale units (Level IV) identify 967 ecoregions. In this paper, we explain the logic underpinning the approach, discuss the evolution of the regional mapping process, and provide examples of how the ecoregions were distinguished at each hierarchical level. The variety of applications of the ecoregion framework illustrates its utility in resource assessment and management.
Hybrid employment recommendation algorithm based on Spark
NASA Astrophysics Data System (ADS)
Li, Zuoquan; Lin, Yubei; Zhang, Xingming
2017-08-01
Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.
Environmental Analytical Measurement Uncertainty Estimation: Nested Hierarchical Approach
2001-01-01
recognized. The International Organization of Standardization ( ISO / IEC 17025 ) standard for the general requirements for competence of testing and...Uncertainty in Measurement” (GUM) was published by the International Organization of Standardization ( ISO ) in collaboration with the seven member...the American National Standards Institute (ANSI) adoption of the ISO GUM. The ANSI adoption of the ISO GUM provides the mathematical model and
ERIC Educational Resources Information Center
Sanchez-Griego, Karen
2010-01-01
Todos Juntos New Mexico was a collaborative made possible through a multimillion dollar grant awarded by the Fellows Foundation to empower the community, students, and educators in New Mexico to affect positive change in our public educational system, leading to increased student success, not just for Hispanics, but for all students. Of particular…
YTPdb: a wiki database of yeast membrane transporters.
Brohée, Sylvain; Barriot, Roland; Moreau, Yves; André, Bruno
2010-10-01
Membrane transporters constitute one of the largest functional categories of proteins in all organisms. In the yeast Saccharomyces cerevisiae, this represents about 300 proteins ( approximately 5% of the proteome). We here present the Yeast Transport Protein database (YTPdb), a user-friendly collaborative resource dedicated to the precise classification and annotation of yeast transporters. YTPdb exploits an evolution of the MediaWiki web engine used for popular collaborative databases like Wikipedia, allowing every registered user to edit the data in a user-friendly manner. Proteins in YTPdb are classified on the basis of functional criteria such as subcellular location or their substrate compounds. These classifications are hierarchical, allowing queries to be performed at various levels, from highly specific (e.g. ammonium as a substrate or the vacuole as a location) to broader (e.g. cation as a substrate or inner membranes as location). Other resources accessible for each transporter via YTPdb include post-translational modifications, K(m) values, a permanently updated bibliography, and a hierarchical classification into families. The YTPdb concept can be extrapolated to other organisms and could even be applied for other functional categories of proteins. YTPdb is accessible at http://homes.esat.kuleuven.be/ytpdb/. Copyright © 2010 Elsevier B.V. All rights reserved.
Bayesian Multiscale Modeling of Closed Curves in Point Clouds
Gu, Kelvin; Pati, Debdeep; Dunson, David B.
2014-01-01
Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model’s latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a ‘central curve’ that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem. PMID:25544786
A massive protocluster of galaxies at a redshift of z ≈ 5.3.
Capak, Peter L; Riechers, Dominik; Scoville, Nick Z; Carilli, Chris; Cox, Pierre; Neri, Roberto; Robertson, Brant; Salvato, Mara; Schinnerer, Eva; Yan, Lin; Wilson, Grant W; Yun, Min; Civano, Francesca; Elvis, Martin; Karim, Alexander; Mobasher, Bahram; Staguhn, Johannes G
2011-02-10
Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'protoclusters'-early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.
Analysis of scientific collaboration in Chinese psychiatry research.
Wu, Ying; Jin, Xing
2016-05-26
In recent decades, China has changed profoundly, becoming the country with the world's second-largest economy. The proportion of the Chinese population suffering from mental disorder has grown in parallel with the rapid economic development, as social stresses have increased. The aim of this study is to shed light on the status of collaborations in the Chinese psychiatry field, of which there is currently limited research. We sampled 16,224 publications (2003-2012) from 10 core psychiatry journals from Chinese National Knowledge Infrastructure (CNKI) and WanFang Database. We used various social network analysis (SNA) methods such as centrality analysis, and Core-Periphery analysis to study collaboration. We also used hierarchical clustering analysis in this study. From 2003-2012, there were increasing collaborations at the level of authors, institutions and regions in the Chinese psychiatry field. Geographically, these collaborations were distributed unevenly. The 100 most prolific authors and institutions and 32 regions were used to construct the collaboration map, from which we detected the core author, institution and region. Collaborative behavior was affected by economic development. We should encourage collaborative behavior in the Chinese psychiatry field, as this facilitates knowledge distribution, resource sharing and information acquisition. Collaboration has also helped the field narrow its current research focus, providing further evidence to inform policymakers to fund research in order to tackle the increase in mental disorder facing modern China.
NASA Astrophysics Data System (ADS)
Sun, Hao; Zou, Huanxin; Zhou, Shilin
2016-03-01
Detection of anomalous targets of various sizes in hyperspectral data has received a lot of attention in reconnaissance and surveillance applications. Many anomaly detectors have been proposed in literature. However, current methods are susceptible to anomalies in the processing window range and often make critical assumptions about the distribution of the background data. Motivated by the fact that anomaly pixels are often distinctive from their local background, in this letter, we proposed a novel hyperspectral anomaly detection framework for real-time remote sensing applications. The proposed framework consists of four major components, sparse feature learning, pyramid grid window selection, joint spatial-spectral collaborative coding and multi-level divergence fusion. It exploits the collaborative representation difference in the feature space to locate potential anomalies and is totally unsupervised without any prior assumptions. Experimental results on airborne recorded hyperspectral data demonstrate that the proposed methods adaptive to anomalies in a large range of sizes and is well suited for parallel processing.
A Distributed Learning Method for ℓ1-Regularized Kernel Machine over Wireless Sensor Networks
Ji, Xinrong; Hou, Cuiqin; Hou, Yibin; Gao, Fang; Wang, Shulong
2016-01-01
In wireless sensor networks, centralized learning methods have very high communication costs and energy consumption. These are caused by the need to transmit scattered training examples from various sensor nodes to the central fusion center where a classifier or a regression machine is trained. To reduce the communication cost, a distributed learning method for a kernel machine that incorporates ℓ1 norm regularization (ℓ1-regularized) is investigated, and a novel distributed learning algorithm for the ℓ1-regularized kernel minimum mean squared error (KMSE) machine is proposed. The proposed algorithm relies on in-network processing and a collaboration that transmits the sparse model only between single-hop neighboring nodes. This paper evaluates the proposed algorithm with respect to the prediction accuracy, the sparse rate of model, the communication cost and the number of iterations on synthetic and real datasets. The simulation results show that the proposed algorithm can obtain approximately the same prediction accuracy as that obtained by the batch learning method. Moreover, it is significantly superior in terms of the sparse rate of model and communication cost, and it can converge with fewer iterations. Finally, an experiment conducted on a wireless sensor network (WSN) test platform further shows the advantages of the proposed algorithm with respect to communication cost. PMID:27376298
The growth of the UniTree mass storage system at the NASA Center for Computational Sciences
NASA Technical Reports Server (NTRS)
Tarshish, Adina; Salmon, Ellen
1993-01-01
In October 1992, the NASA Center for Computational Sciences made its Convex-based UniTree system generally available to users. The ensuing months saw the growth of near-online data from nil to nearly three terabytes, a doubling of the number of CPU's on the facility's Cray YMP (the primary data source for UniTree), and the necessity for an aggressive regimen for repacking sparse tapes and hierarchical 'vaulting' of old files to freestanding tape. Connectivity was enhanced as well with the addition of UltraNet HiPPI. This paper describes the increasing demands placed on the storage system's performance and throughput that resulted from the significant augmentation of compute-server processor power and network speed.
NASA Astrophysics Data System (ADS)
Saunders, Vance M.
1999-06-01
The downsizing of the Department of Defense (DoD) and the associated reduction in budgets has re-emphasized the need for commonality, reuse, and standards with respect to the way DoD does business. DoD has implemented significant changes in how it buys weapon systems. The new emphasis is on concurrent engineering with Integrated Product and Process Development and collaboration with Integrated Product Teams. The new DoD vision includes Simulation Based Acquisition (SBA), a process supported by robust, collaborative use of simulation technology that is integrated across acquisition phases and programs. This paper discusses the Air Force Research Laboratory's efforts to use Modeling and Simulation (M&S) resources within a Collaborative Enterprise Environment to support SBA and other Collaborative Enterprise and Virtual Prototyping (CEVP) applications. The paper will discuss four technology areas: (1) a Processing Ontology that defines a hierarchically nested set of collaboration contexts needed to organize and support multi-disciplinary collaboration using M&S, (2) a partial taxonomy of intelligent agents needed to manage different M&S resource contributions to advancing the state of product development, (3) an agent- based process for interfacing disparate M&S resources into a CEVP framework, and (4) a Model-View-Control based approach to defining `a new way of doing business' for users of CEVP frameworks/systems.
Whitfield, Kyle Y.; Daniels, Jason S.; Flesaker, Keri; Simmons, Doneka
2012-01-01
This paper reports on and synthesizes new research that examines how a collaborative community response can promote successful aging in place for older adults with hoarding behaviour. Through interviews with older adults with hoarding behaviour, who used a particular community support and a focus group interview with members of the community collaborative that directed supports for this population, our findings suggest that there were valuable outcomes for both groups. These older adults with hoarding behaviour were able to remain in their own homes, their safety was enhanced, their sense of isolation was minimized, empowerment was fostered, and they gained valuable insight into their behaviour. The members of the community collaborative were able to access the expertise of other professionals, maximize their own expertise, and they generated an enhanced understanding of the experience of older adults living with hoarding behaviour in Edmonton. This study is a significant addition to the much too sparse literature about the community planning needs of older adults with hoarding behaviour. It offers knowledge that is integral to theories and principles of better aging in place but attempts to translate this into practice. PMID:22013529
Interaction mining and skill-dependent recommendations for multi-objective team composition
Dorn, Christoph; Skopik, Florian; Schall, Daniel; Dustdar, Schahram
2011-01-01
Web-based collaboration and virtual environments supported by various Web 2.0 concepts enable the application of numerous monitoring, mining and analysis tools to study human interactions and team formation processes. The composition of an effective team requires a balance between adequate skill fulfillment and sufficient team connectivity. The underlying interaction structure reflects social behavior and relations of individuals and determines to a large degree how well people can be expected to collaborate. In this paper we address an extended team formation problem that does not only require direct interactions to determine team connectivity but additionally uses implicit recommendations of collaboration partners to support even sparsely connected networks. We provide two heuristics based on Genetic Algorithms and Simulated Annealing for discovering efficient team configurations that yield the best trade-off between skill coverage and team connectivity. Our self-adjusting mechanism aims to discover the best combination of direct interactions and recommendations when deriving connectivity. We evaluate our approach based on multiple configurations of a simulated collaboration network that features close resemblance to real world expert networks. We demonstrate that our algorithm successfully identifies efficient team configurations even when removing up to 40% of experts from various social network configurations. PMID:22298939
Harada, Ryuhei; Nakamura, Tomotake; Shigeta, Yasuteru
2016-03-30
As an extension of the Outlier FLOODing (OFLOOD) method [Harada et al., J. Comput. Chem. 2015, 36, 763], the sparsity of the outliers defined by a hierarchical clustering algorithm, FlexDice, was considered to achieve an efficient conformational search as sparsity-weighted "OFLOOD." In OFLOOD, FlexDice detects areas of sparse distribution as outliers. The outliers are regarded as candidates that have high potential to promote conformational transitions and are employed as initial structures for conformational resampling by restarting molecular dynamics simulations. When detecting outliers, FlexDice defines a rank in the hierarchy for each outlier, which relates to sparsity in the distribution. In this study, we define a lower rank (first ranked), a medium rank (second ranked), and the highest rank (third ranked) outliers, respectively. For instance, the first-ranked outliers are located in a given conformational space away from the clusters (highly sparse distribution), whereas those with the third-ranked outliers are nearby the clusters (a moderately sparse distribution). To achieve the conformational search efficiently, resampling from the outliers with a given rank is performed. As demonstrations, this method was applied to several model systems: Alanine dipeptide, Met-enkephalin, Trp-cage, T4 lysozyme, and glutamine binding protein. In each demonstration, the present method successfully reproduced transitions among metastable states. In particular, the first-ranked OFLOOD highly accelerated the exploration of conformational space by expanding the edges. In contrast, the third-ranked OFLOOD reproduced local transitions among neighboring metastable states intensively. For quantitatively evaluations of sampled snapshots, free energy calculations were performed with a combination of umbrella samplings, providing rigorous landscapes of the biomolecules. © 2015 Wiley Periodicals, Inc.
Receptive Field Inference with Localized Priors
Park, Mijung; Pillow, Jonathan W.
2011-01-01
The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets. PMID:22046110
Sparse source configurations in radio tomography of asteroids
NASA Astrophysics Data System (ADS)
Pursiainen, S.; Kaasalainen, M.
2014-07-01
Our research targets at progress in non-invasive imaging of asteroids to support future planetary research and extra-terrestrial mining activities. This presentation concerns principally radio tomography in which the permittivity distribution inside an asteroid is to be recovered based on the radio frequency signal transmitted from the asteroid's surface and gathered by an orbiter. The focus will be on a sparse distribution (Pursiainen and Kaasalainen, 2013) of signal sources that can be necessary in the challenging in situ environment and within tight payload limits. The general goal in our recent research has been to approximate the minimal number of source positions needed for robust localization of anomalies caused, for example, by an internal void. Characteristic to the localization problem are the large relative changes in signal speed caused by the high permittivity of typical asteroid minerals (e.g. basalt), meaning that a signal path can include strong refractions and reflections. This presentation introduces results of a laboratory experiment in which real travel time data was inverted using a hierarchical Bayesian approach combined with the iterative alternating sequential (IAS) posterior exploration algorithm. Special interest was paid to robustness of the inverse results regarding changes of the prior model and source positioning. According to our results, strongly refractive anomalies can be detected with three or four sources independently of their positioning.
Multi-level discriminative dictionary learning with application to large scale image classification.
Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua
2015-10-01
The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.
Web-Based Collaborative Publications System: R&Tserve
NASA Technical Reports Server (NTRS)
Abrams, Steve
1997-01-01
R&Tserve is a publications system based on 'commercial, off-the-shelf' (COTS) software that provides a persistent, collaborative workspace for authors and editors to support the entire publication development process from initial submission, through iterative editing in a hierarchical approval structure, and on to 'publication' on the WWW. It requires no specific knowledge of the WWW (beyond basic use) or HyperText Markup Language (HTML). Graphics and URLs are automatically supported. The system includes a transaction archive, a comments utility, help functionality, automated graphics conversion, automated table generation, and an email-based notification system. It may be configured and administered via the WWW and can support publications ranging from single page documents to multiple-volume 'tomes'.
Hierarchical Controlled Remote State Preparation by Using a Four-Qubit Cluster State
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-06-01
We propose a scheme for hierarchical controlled remote preparation of an arbitrary single-qubit state via a four-qubit cluster state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. In this process of remote state preparation, the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to reconstruct sender's original state.
A Distributed Multi-Agent System for Collaborative Information Management and Learning
NASA Technical Reports Server (NTRS)
Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.; Koga, Dennis (Technical Monitor)
2000-01-01
In this paper, we present DIAMS, a system of distributed, collaborative agents to help users access, manage, share and exchange information. A DIAMS personal agent helps its owner find information most relevant to current needs. It provides tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Flexible hierarchical display is integrated with indexed query search-to support effective information access. Automatic indexing methods are employed to support user queries and communication between agents. Contents of a repository are kept in object-oriented storage to facilitate information sharing. Collaboration between users is aided by easy sharing utilities as well as automated information exchange. Matchmaker agents are designed to establish connections between users with similar interests and expertise. DIAMS agents provide needed services for users to share and learn information from one another on the World Wide Web.
A range-based predictive localization algorithm for WSID networks
NASA Astrophysics Data System (ADS)
Liu, Yuan; Chen, Junjie; Li, Gang
2017-11-01
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
Wireless Emergency Alerts (WEA) Cybersecurity Risk Management Strategy for Alert Originators
2014-03-01
formerly known as the Commercial Mobile Alert Service ( CMAS ) RDT&E program, is a collaborative partnership that includes the cellular industry, the...Examples illustrate a STRIDE analysis of the generic mission 1 The CMAS Alerting Pipeline Taxonomy describes in detail a hierarchical classification...SEI-2013-SR-018 | 1 1 Introduction The Wireless Emergency Alerts (WEA) service, formerly known as the Commercial Mobile Alert Service ( CMAS ), is a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo
2004-06-01
In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resourcemore » Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.« less
Fragmented Romanian sociology: growth and structure of the collaboration network.
Hâncean, Marian-Gabriel; Perc, Matjaž; Vlăsceanu, Lazăr
2014-01-01
Structural patterns in collaboration networks are essential for understanding how new ideas, research practices, innovation or cooperation circulate and develop within academic communities and between and within university departments. In our research, we explore and investigate the structure of the collaboration network formed by the academics working full-time within all the 17 sociology departments across Romania. We show that the collaboration network is sparse and fragmented, and that it constitutes an environment that does not promote the circulation of new ideas and innovation within the field. Although recent years have witnessed an increase in the productivity of Romanian sociologists, there is still ample room for improvement in terms of the interaction infrastructure that ought to link individuals together so that they could maximize their potentials. We also fail to discern evidence in favor of the Matthew effect governing the growth of the network, which suggests scientific success and productivity are not rewarded. Instead, the structural properties of the collaboration network are partly those of a core-periphery network, where the spread of innovation and change can be explained by structural equivalence rather than by interpersonal influence models. We also provide support for the idea that, within the observed network, collaboration is the product of homophily rather than prestige effects. Further research on the subject based on data from other countries in the region is needed to place our results in a comparative framework, in particular to discern whether the behavior of the Romanian sociologist community is unique or rather common.
Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network
Hâncean, Marian-Gabriel; Perc, Matjaž; Vlăsceanu, Lazăr
2014-01-01
Structural patterns in collaboration networks are essential for understanding how new ideas, research practices, innovation or cooperation circulate and develop within academic communities and between and within university departments. In our research, we explore and investigate the structure of the collaboration network formed by the academics working full-time within all the 17 sociology departments across Romania. We show that the collaboration network is sparse and fragmented, and that it constitutes an environment that does not promote the circulation of new ideas and innovation within the field. Although recent years have witnessed an increase in the productivity of Romanian sociologists, there is still ample room for improvement in terms of the interaction infrastructure that ought to link individuals together so that they could maximize their potentials. We also fail to discern evidence in favor of the Matthew effect governing the growth of the network, which suggests scientific success and productivity are not rewarded. Instead, the structural properties of the collaboration network are partly those of a core-periphery network, where the spread of innovation and change can be explained by structural equivalence rather than by interpersonal influence models. We also provide support for the idea that, within the observed network, collaboration is the product of homophily rather than prestige effects. Further research on the subject based on data from other countries in the region is needed to place our results in a comparative framework, in particular to discern whether the behavior of the Romanian sociologist community is unique or rather common. PMID:25409180
Dainty, Katie N; Scales, Damon C; Sinuff, Tasnim; Zwarenstein, Merrick
2013-04-01
Multiorganisational quality improvement (QI) collaborative networks are promoted for improving quality within healthcare. Recently, several large-scale QI initiatives have been conducted in the intensive care unit (ICU) environment with successful quantitative results. However, the mechanisms through which such networks lead to QI success remain uncertain. We aim to understand ICU staff perspectives on collaborative QI based on involvement in a multiorganisational improvement network and hypothesise about theoretical constructs that might explain the effect of collaboration in such networks. Qualitative study using a modified grounded theory approach. Key informant interviews were conducted with staff from 12 community hospital ICUs that participated in a cluster randomized control trial (RCT) of a QI intervention using a collaborative approach between 2006 and 2008. Data analysis followed the standard procedure for grounded theory using constant comparative methodology. The collaborative network was perceived to promote increased intrateam cooperation over interorganisational cooperation, but friendly competition with other ICUs appeared to be a prominent driver of behaviour change. Bedsides, clinicians reported that belonging to a collaborative network provided recognition for the high-quality patient care that they already provided. However, the existing communication structure was perceived to be ineffective for staff engagement since it was based on a hierarchical approach to knowledge transfer and project awareness. QI collaborative networks may promote behaviour change by improving intrateam communication, fostering competition with other institutions, and increasing recognition for providing high-quality care. Other commonly held assumptions about their potential impact, for instance, increasing interorganisational legitimisation, communication and collaboration, may be less important.
Nian, Rui; Liu, Fang; He, Bo
2013-07-16
Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs).
Nian, Rui; Liu, Fang; He, Bo
2013-01-01
Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs). PMID:23863855
HTM Spatial Pooler With Memristor Crossbar Circuits for Sparse Biometric Recognition.
James, Alex Pappachen; Fedorova, Irina; Ibrayev, Timur; Kudithipudi, Dhireesha
2017-06-01
Hierarchical Temporal Memory (HTM) is an online machine learning algorithm that emulates the neo-cortex. The development of a scalable on-chip HTM architecture is an open research area. The two core substructures of HTM are spatial pooler and temporal memory. In this work, we propose a new Spatial Pooler circuit design with parallel memristive crossbar arrays for the 2D columns. The proposed design was validated on two different benchmark datasets, face recognition, and speech recognition. The circuits are simulated and analyzed using a practical memristor device model and 0.18 μm IBM CMOS technology model. The databases AR, YALE, ORL, and UFI, are used to test the performance of the design in face recognition. TIMIT dataset is used for the speech recognition.
Comments on "Image denoising by sparse 3-D transform-domain collaborative filtering".
Hou, Yingkun; Zhao, Chunxia; Yang, Deyun; Cheng, Yong
2011-01-01
In order to resolve the problem that the denoising performance has a sharp drop when noise standard deviation reaches 40, proposed to replace the wavelet transform by the DCT. In this comment, we argue that this replacement is unnecessary, and that the problem can be solved by adjusting some numerical parameters. We also present this parameter modification approach here. Experimental results demonstrate that the proposed modification achieves better results in terms of both peak signal-to-noise ratio and subjective visual quality than the original method for strong noise.
Road Traffic Anomaly Detection via Collaborative Path Inference from GPS Snippets
Wang, Hongtao; Wen, Hui; Yi, Feng; Zhu, Hongsong; Sun, Limin
2017-01-01
Road traffic anomaly denotes a road segment that is anomalous in terms of traffic flow of vehicles. Detecting road traffic anomalies from GPS (Global Position System) snippets data is becoming critical in urban computing since they often suggest underlying events. However, the noisy and sparse nature of GPS snippets data have ushered multiple problems, which have prompted the detection of road traffic anomalies to be very challenging. To address these issues, we propose a two-stage solution which consists of two components: a Collaborative Path Inference (CPI) model and a Road Anomaly Test (RAT) model. CPI model performs path inference incorporating both static and dynamic features into a Conditional Random Field (CRF). Dynamic context features are learned collaboratively from large GPS snippets via a tensor decomposition technique. Then RAT calculates the anomalous degree for each road segment from the inferred fine-grained trajectories in given time intervals. We evaluated our method using a large scale real world dataset, which includes one-month GPS location data from more than eight thousand taxicabs in Beijing. The evaluation results show the advantages of our method beyond other baseline techniques. PMID:28282948
Hommes, J; Van den Bossche, P; de Grave, W; Bos, G; Schuwirth, L; Scherpbier, A
2014-10-01
Little is known how time influences collaborative learning groups in medical education. Therefore a thorough exploration of the development of learning processes over time was undertaken in an undergraduate PBL curriculum over 18 months. A mixed-methods triangulation design was used. First, the quantitative study measured how various learning processes developed within and over three periods in the first 1,5 study years of an undergraduate curriculum. Next, a qualitative study using semi-structured individual interviews focused on detailed development of group processes driving collaborative learning during one period in seven tutorial groups. The hierarchic multilevel analyses of the quantitative data showed that a varying combination of group processes developed within and over the three observed periods. The qualitative study illustrated development in psychological safety, interdependence, potency, group learning behaviour, social and task cohesion. Two new processes emerged: 'transactive memory' and 'convergence in mental models'. The results indicate that groups are dynamic social systems with numerous contextual influences. Future research should thus include time as an important influence on collaborative learning. Practical implications are discussed.
Delivering team training to medical home staff to impact perceptions of collaboration.
Treadwell, Janet; Binder, Brenda; Symes, Lene; Krepper, Rebecca
2015-01-01
The purpose of this study was to explore whether an evidence-based educational and experiential intervention to develop team skills in medical homes would positively affect team members' perceptions of interprofessional collaboration. The study population consisted of primary care medical home practices associated with the health plan sponsor of this research. All practices were located within the greater Houston region of Texas and had more than 500 patients. A cluster design experimental study was conducted between August 2013 and June 2014. Fifty medical home practices, 25 intervention and 25 attention control, were recruited as study sites. Results indicate that individual team members in the medical homes receiving the intervention were significantly more likely than the individual team members in the attention control groups to report higher levels of positive perception of team collaboration after the 12-week intervention. This research indicates that educating teams about interprofessional collaboration tools and supporting technique use may be an effective strategy to assist medical homes in developing collaborative environments. Case management experience in collaboration supports the role facilitating team training. Transforming culture from hierarchical to team-based care supports the case management approach of collaborative practice. In addition, role satisfaction attained through the respect and communication of team-based care delivery may influence retention within the case management profession. As case managers in primary care settings assume roles of embedded care coordinators, program leaders, and transition facilitators, an understanding of collaboration techniques is needed to support the entire care team to achieve desired outcomes.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2016-01-01
This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.
Ubiquitous Robotic Technology for Smart Manufacturing System.
Wang, Wenshan; Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods.
Ubiquitous Robotic Technology for Smart Manufacturing System
Zhu, Xiaoxiao; Wang, Liyu; Qiu, Qiang; Cao, Qixin
2016-01-01
As the manufacturing tasks become more individualized and more flexible, the machines in smart factory are required to do variable tasks collaboratively without reprogramming. This paper for the first time discusses the similarity between smart manufacturing systems and the ubiquitous robotic systems and makes an effort on deploying ubiquitous robotic technology to the smart factory. Specifically, a component based framework is proposed in order to enable the communication and cooperation of the heterogeneous robotic devices. Further, compared to the service robotic domain, the smart manufacturing systems are often in larger size. So a hierarchical planning method was implemented to improve the planning efficiency. A test bed of smart factory is developed. It demonstrates that the proposed framework is suitable for industrial domain, and the hierarchical planning method is able to solve large problems intractable with flat methods. PMID:27446206
NASA Astrophysics Data System (ADS)
Ma, Peng-Cheng; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang
2018-05-01
In this paper, we present a scheme for Hierarchically controlled remote preparation of an arbitrary single-qubit state via a four-qubit |χ > state as the quantum channel. In this scheme, a sender wishes to help three agents to remotely prepare a quantum state, respectively. The three agents are divided into two grades, that is, an agent is in the upper grade and other two agents are in the lower grade. It is shown that the agent of the upper grade only needs the assistance of any one of the other two agents for recovering the sender's original state, while an agent of the lower grade needs the collaboration of all the other two agents. In other words, the agents of two grades have different authorities to recover sender's original state.
Isaac, Carol A.; Franceschi, Amy
2008-01-01
The purpose of this paper is to explore new perspectives about difficulties academicians may have communicating with clinicians, obtaining subjects, and gaining compliance for their research. Sackett et al1 defined evidence-based medicine (EBM) as an integration of best research evidence, clinical expertise, and patient values. However, Guyatt et al2 places clinical observation and experience last in the evidence hierarchy with the randomized controlled trial held as the standard for clinical intervention. The hierarchical discourse of medical knowledge produces opposition rather than collaboration between researcher, clinician, and patient. Foucault gave new perspectives describing how power circulates through individuals within organizational discourse.3 Drawing on literature and experience, this paper describes how the hierarchical model of power in the research community obstructs new areas of knowledge, and how clinicians create resistance. Alleviating perceptions of dominance and creating connections produces cohesion within medical communities. PMID:19018888
2011-09-01
to their history of interaction and sharing worldviews. Agents respond to both external pressures (from environment or other agents , e.g,. leaders...hierarchically, but rather by interaction among heterogeneous agents and across agent networks. They go on to note that a CAS is comprised of... agents or organizations, who resonate through sharing common interests, knowledge, and goals due to their history of interaction such as in the NRF
Exploring teams of learners becoming "WE" in the Intensive Care Unit--a focused ethnographic study.
Conte, Helen; Scheja, Max; Hjelmqvist, Hans; Jirwe, Maria
2015-08-16
Research about collaboration within teams of learners in intensive care is sparse, as is research on how the learners in a group develop into a team. The aim of this study was to explore the collaboration in teams of learners during a rotation in an interprofessional education unit in intensive care from a sociocultural learning perspective. Focused Ethnographic methods were used to collect data following eight teams of learners in 2009 and 2010. Each team consisted of one resident, one specialist nurse student and their supervisors (n = 28). The material consisted of 100 hours of observations, interviews, and four hours of sound recordings. A qualitative analysis explored changing patterns of interplay through a constant comparative approach. The learners' collaboration progressed along a pattern of participation common to all eight groups with a chronological starting point and an end point. The progress consisted of three main steps where the learners' groups developed into teams during a week's training. The supervisors' guided the progress by gradually stepping back to provide latitude for critical reflection and action. Our main conclusion in training teams of learners how to collaborate in the intensive care is the crucial understanding of how to guide them to act like a team, feel like a team and having the authority to act as a team.
Klann, Jeffrey G; Phillips, Lori C; Turchin, Alexander; Weiler, Sarah; Mandl, Kenneth D; Murphy, Shawn N
2015-12-11
Interoperable phenotyping algorithms, needed to identify patient cohorts meeting eligibility criteria for observational studies or clinical trials, require medical data in a consistent structured, coded format. Data heterogeneity limits such algorithms' applicability. Existing approaches are often: not widely interoperable; or, have low sensitivity due to reliance on the lowest common denominator (ICD-9 diagnoses). In the Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS) we endeavor to use the widely-available Current Procedural Terminology (CPT) procedure codes with ICD-9. Unfortunately, CPT changes drastically year-to-year - codes are retired/replaced. Longitudinal analysis requires grouping retired and current codes. BioPortal provides a navigable CPT hierarchy, which we imported into the Informatics for Integrating Biology and the Bedside (i2b2) data warehouse and analytics platform. However, this hierarchy does not include retired codes. We compared BioPortal's 2014AA CPT hierarchy with Partners Healthcare's SCILHS datamart, comprising three-million patients' data over 15 years. 573 CPT codes were not present in 2014AA (6.5 million occurrences). No existing terminology provided hierarchical linkages for these missing codes, so we developed a method that automatically places missing codes in the most specific "grouper" category, using the numerical similarity of CPT codes. Two informaticians reviewed the results. We incorporated the final table into our i2b2 SCILHS/PCORnet ontology, deployed it at seven sites, and performed a gap analysis and an evaluation against several phenotyping algorithms. The reviewers found the method placed the code correctly with 97 % precision when considering only miscategorizations ("correctness precision") and 52 % precision using a gold-standard of optimal placement ("optimality precision"). High correctness precision meant that codes were placed in a reasonable hierarchal position that a reviewer can quickly validate. Lower optimality precision meant that codes were not often placed in the optimal hierarchical subfolder. The seven sites encountered few occurrences of codes outside our ontology, 93 % of which comprised just four codes. Our hierarchical approach correctly grouped retired and non-retired codes in most cases and extended the temporal reach of several important phenotyping algorithms. We developed a simple, easily-validated, automated method to place retired CPT codes into the BioPortal CPT hierarchy. This complements existing hierarchical terminologies, which do not include retired codes. The approach's utility is confirmed by the high correctness precision and successful grouping of retired with non-retired codes.
Heudtlass, Peter; Guha-Sapir, Debarati; Speybroeck, Niko
2018-05-31
The crude death rate (CDR) is one of the defining indicators of humanitarian emergencies. When data from vital registration systems are not available, it is common practice to estimate the CDR from household surveys with cluster-sampling design. However, sample sizes are often too small to compare mortality estimates to emergency thresholds, at least in a frequentist framework. Several authors have proposed Bayesian methods for health surveys in humanitarian crises. Here, we develop an approach specifically for mortality data and cluster-sampling surveys. We describe a Bayesian hierarchical Poisson-Gamma mixture model with generic (weakly informative) priors that could be used as default in absence of any specific prior knowledge, and compare Bayesian and frequentist CDR estimates using five different mortality datasets. We provide an interpretation of the Bayesian estimates in the context of an emergency threshold and demonstrate how to interpret parameters at the cluster level and ways in which informative priors can be introduced. With the same set of weakly informative priors, Bayesian CDR estimates are equivalent to frequentist estimates, for all practical purposes. The probability that the CDR surpasses the emergency threshold can be derived directly from the posterior of the mean of the mixing distribution. All observation in the datasets contribute to the estimation of cluster-level estimates, through the hierarchical structure of the model. In a context of sparse data, Bayesian mortality assessments have advantages over frequentist ones already when using only weakly informative priors. More informative priors offer a formal and transparent way of combining new data with existing data and expert knowledge and can help to improve decision-making in humanitarian crises by complementing frequentist estimates.
The doctor dilemma in interprofessional education and care: how and why will physicians collaborate?
Whitehead, Cynthia
2007-10-01
Interprofessional educational (IPE) initiatives are seen as a means to engage health care professionals in collaborative patient-centred care. Given the hierarchical nature of many clinical settings, it is important to examine how the aims of formal IPE courses intersect with the socialisation of medical students into roles of responsibility and authority. This article aims to provide an overview of doctor barriers to collaboration and describe aspects of medical education and socialisation that may limit doctor engagement in the goals of interprofessional education. Additionally, the paper examines the nature of team function in the health care system, reviewing different conceptual models to propose a spectrum of collaborative possibilities. Finally, specific suggestions are offered to increase the impact of interprofessional education programmes in medical education. An acknowledgement of power differentials between health care providers is necessary in the development of models for shared responsibility between professions. Conceptual models of teamwork and collaboration must articulate the desired nature of interaction between professionals with different degrees of responsibility and authority. Educational programmes in areas such as professionalism and ethics have shown limited success when formal and informal curricula significantly diverge. The socialisation of medical students into the role of a responsible doctor must be balanced with training to share responsibility appropriately. Doctor collaborative capacity may be enhanced by programmes designed to develop particular skills for which there is evidence of improved patient outcomes.
NASA Technical Reports Server (NTRS)
Braun, R. D.; Kroo, I. M.
1995-01-01
Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.
A data management system for engineering and scientific computing
NASA Technical Reports Server (NTRS)
Elliot, L.; Kunii, H. S.; Browne, J. C.
1978-01-01
Data elements and relationship definition capabilities for this data management system are explicitly tailored to the needs of engineering and scientific computing. System design was based upon studies of data management problems currently being handled through explicit programming. The system-defined data element types include real scalar numbers, vectors, arrays and special classes of arrays such as sparse arrays and triangular arrays. The data model is hierarchical (tree structured). Multiple views of data are provided at two levels. Subschemas provide multiple structural views of the total data base and multiple mappings for individual record types are supported through the use of a REDEFINES capability. The data definition language and the data manipulation language are designed as extensions to FORTRAN. Examples of the coding of real problems taken from existing practice in the data definition language and the data manipulation language are given.
Choi, Kyuwan
2013-01-01
In this study, first the cortical activities over 2240 vertexes on the brain were estimated from 64 channels electroencephalography (EEG) signals using the Hierarchical Bayesian estimation while 5 subjects did continuous arm reaching movements. From the estimated cortical activities, a sparse linear regression method selected only useful features in reconstructing the electromyography (EMG) signals and estimated the EMG signals of 9 arm muscles. Then, a modular artificial neural network was used to estimate four joint angles from the estimated EMG signals of 9 muscles: one for movement control and the other for posture control. The estimated joint angles using this method have the correlation coefficient (CC) of 0.807 (±0.10) and the normalized root-mean-square error (nRMSE) of 0.176 (±0.29) with the actual joint angles. PMID:24167469
NASA Astrophysics Data System (ADS)
Zhiying, Chen; Ping, Zhou
2017-11-01
Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.
Bygbjerg, Ib Christian
2009-03-02
The literature on fake medicaments is sparse, even if approximately 15% of all medicaments are fake, a figure that for antimalarials in particular reaches 50% in parts of Africa and Asia. Sub-standard and fake medicines deplete the public's confidence in health systems, health professionals and in the pharmaceutical industry - and increase the risk that resistance develops. For a traveller coming from a rich Western country, choosing to buy e.g. preventive antimalarials over the internet or in poor malaria-endemic areas, the consequences may be fatal. International trade-, control- and police-collaboration is needed to manage the problem, as is the fight against poverty and poor governance.
Regan, Sandra; Laschinger, Heather K S; Wong, Carol A
2016-01-01
The aim of this study was to examine the influence of structural empowerment, authentic leadership and professional nursing practice environments on experienced nurses' perceptions of interprofessional collaboration. Enhanced interprofessional collaboration (IPC) is seen as one means of transforming the health-care system and addressing concerns about shortages of health-care workers. Organizational supports and resources are suggested as key to promoting IPC. A predictive non-experimental design was used to test the effects of structural empowerment, authentic leadership and professional nursing practice environments on perceived interprofessional collaboration. A random sample of experienced registered nurses (n = 220) in Ontario, Canada completed a mailed questionnaire. Hierarchical multiple regression analysis was used. Higher perceived structural empowerment, authentic leadership, and professional practice environments explained 45% of the variance in perceived IPC (Adj. R² = 0.452, F = 59.40, P < 0.001). Results suggest that structural empowerment, authentic leadership and a professional nursing practice environment may enhance IPC. Nurse leaders who ensure access to resources such as knowledge of IPC, embody authenticity and build trust among nurses, and support the presence of a professional nursing practice environment can contribute to enhanced IPC. © 2015 John Wiley & Sons Ltd.
Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling
Zipkin, Elise F.; DeWan, Amielle; Royle, J. Andrew
2009-01-01
1. Species richness is often used as a tool for prioritizing conservation action. One method for predicting richness and other summaries of community structure is to develop species-specific models of occurrence probability based on habitat or landscape characteristics. However, this approach can be challenging for rare or elusive species for which survey data are often sparse. 2. Recent developments have allowed for improved inference about community structure based on species-specific models of occurrence probability, integrated within a hierarchical modelling framework. This framework offers advantages to inference about species richness over typical approaches by accounting for both species-level effects and the aggregated effects of landscape composition on a community as a whole, thus leading to increased precision in estimates of species richness by improving occupancy estimates for all species, including those that were observed infrequently. 3. We developed a hierarchical model to assess the community response of breeding birds in the Hudson River Valley, New York, to habitat fragmentation and analysed the model using a Bayesian approach. 4. The model was designed to estimate species-specific occurrence and the effects of fragment area and edge (as measured through the perimeter and the perimeter/area ratio, P/A), while accounting for imperfect detection of species. 5. We used the fitted model to make predictions of species richness within forest fragments of variable morphology. The model revealed that species richness of the observed bird community was maximized in small forest fragments with a high P/A. However, the number of forest interior species, a subset of the community with high conservation value, was maximized in large fragments with low P/A. 6. Synthesis and applications. Our results demonstrate the importance of understanding the responses of both individual, and groups of species, to environmental heterogeneity while illustrating the utility of hierarchical models for inference about species richness for conservation. This framework can be used to investigate the impacts of land-use change and fragmentation on species or assemblage richness, and to further understand trade-offs in species-specific occupancy probabilities associated with landscape variability.
Relaxations to Sparse Optimization Problems and Applications
NASA Astrophysics Data System (ADS)
Skau, Erik West
Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we apply a maximum entropy model, guided by the social media data, to estimate the flooded regions during a 2013 flood in Boulder, CO and show that the results are comparable to those obtained using expert information.
Benefit Sharing in a Global Context: Working Towards Solutions for Implementation.
Hurst, Daniel J
2017-08-01
Due to the state of globalized clinical research, questions have been raised as to what, if any, benefits those who contribute to research should receive. One model for compensating research participants is "benefit sharing," and the basic premise is that, as a matter of justice, those who contribute to scientific research should share in its benefits. While incorporated into several international documents for over two decades, benefit sharing has only been sparsely implemented. This analysis begins by addressing the concept of benefit sharing, its historical development, and how it has been applied in the context of virus sharing for influenza research. The second portion of this analysis presents recommendations for ensuring benefit sharing. These recommendations are threefold: 1) an emphasis on social pressure, 2) the revision of international documents as means to ensure benefit sharing, and 3) greater collaboration between sponsor IRB and host country IRB. Because clinical research is a globalized industry, a global model will be proposed in the second that focuses on collaboration between the sponsor and host country. This collaboration is vital in order to ensure that proper forms of benefit sharing are accomplished as a matter of justice. © 2016 John Wiley & Sons Ltd.
Iris Image Classification Based on Hierarchical Visual Codebook.
Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang
2014-06-01
Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.
Methods of feminist family therapy supervision.
Prouty, A M; Thomas, V; Johnson, S; Long, J K
2001-01-01
Although feminist family therapy has been studied and practiced for more than 20 years, writing about feminist supervision in family therapy has been limited. Three supervision methods emerged from a qualitative study of the experiences of feminist family therapy supervisors and the therapists they supervised: The supervision contract, collaborative methods, and hierarchical methods. In addition to a description of the participants' experiences of these methods, we discuss their fit with previous theoretical descriptions of feminist supervision and offer suggestions for future research.
Collaborative Wideband Compressed Signal Detection in Interplanetary Internet
NASA Astrophysics Data System (ADS)
Wang, Yulin; Zhang, Gengxin; Bian, Dongming; Gou, Liang; Zhang, Wei
2014-07-01
As the development of autonomous radio in deep space network, it is possible to actualize communication between explorers, aircrafts, rovers and satellites, e.g. from different countries, adopting different signal modes. The first mission to enforce the autonomous radio is to detect signals of the explorer autonomously without disturbing the original communication. This paper develops a collaborative wideband compressed signal detection approach for InterPlaNetary (IPN) Internet where there exist sparse active signals in the deep space environment. Compressed sensing (CS) can be utilized by exploiting the sparsity of IPN Internet communication signal, whose useful frequency support occupies only a small portion of an entirely wide spectrum. An estimate of the signal spectrum can be obtained by using reconstruction algorithms. Against deep space shadowing and channel fading, multiple satellites collaboratively sense and make a final decision according to certain fusion rule to gain spatial diversity. A couple of novel discrete cosine transform (DCT) and walsh-hadamard transform (WHT) based compressed spectrum detection methods are proposed which significantly improve the performance of spectrum recovery and signal detection. Finally, extensive simulation results are presented to show the effectiveness of our proposed collaborative scheme for signal detection in IPN Internet. Compared with the conventional discrete fourier transform (DFT) based method, our DCT and WHT based methods reduce computational complexity, decrease processing time, save energy and enhance probability of detection.
Robust multi-atlas label propagation by deep sparse representation
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong
2016-01-01
Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer (label-specific dictionaries) consists of groups of representative atlas patches and the subsequent layers (residual dictionaries) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared to other counterpart label fusion methods. PMID:27942077
Robust multi-atlas label propagation by deep sparse representation.
Zu, Chen; Wang, Zhengxia; Zhang, Daoqiang; Liang, Peipeng; Shi, Yonghong; Shen, Dinggang; Wu, Guorong
2017-03-01
Recently, multi-atlas patch-based label fusion has achieved many successes in medical imaging area. The basic assumption in the current state-of-the-art approaches is that the image patch at the target image point can be represented by a patch dictionary consisting of atlas patches from registered atlas images. Therefore, the label at the target image point can be determined by fusing labels of atlas image patches with similar anatomical structures. However, such assumption on image patch representation does not always hold in label fusion since (1) the image content within the patch may be corrupted due to noise and artifact; and (2) the distribution of morphometric patterns among atlas patches might be unbalanced such that the majority patterns can dominate label fusion result over other minority patterns. The violation of the above basic assumptions could significantly undermine the label fusion accuracy. To overcome these issues, we first consider forming label-specific group for the atlas patches with the same label. Then, we alter the conventional flat and shallow dictionary to a deep multi-layer structure, where the top layer ( label-specific dictionaries ) consists of groups of representative atlas patches and the subsequent layers ( residual dictionaries ) hierarchically encode the patchwise residual information in different scales. Thus, the label fusion follows the representation consensus across representative dictionaries. However, the representation of target patch in each group is iteratively optimized by using the representative atlas patches in each label-specific dictionary exclusively to match the principal patterns and also using all residual patterns across groups collaboratively to overcome the issue that some groups might be absent of certain variation patterns presented in the target image patch. Promising segmentation results have been achieved in labeling hippocampus on ADNI dataset, as well as basal ganglia and brainstem structures, compared to other counterpart label fusion methods.
Huang, Lei; Goldsmith, Jeff; Reiss, Philip T.; Reich, Daniel S.; Crainiceanu, Ciprian M.
2013-01-01
Diffusion tensor imaging (DTI) measures water diffusion within white matter, allowing for in vivo quantification of brain pathways. These pathways often subserve specific functions, and impairment of those functions is often associated with imaging abnormalities. As a method for predicting clinical disability from DTI images, we propose a hierarchical Bayesian “scalar-on-image” regression procedure. Our procedure introduces a latent binary map that estimates the locations of predictive voxels and penalizes the magnitude of effect sizes in these voxels, thereby resolving the ill-posed nature of the problem. By inducing a spatial prior structure, the procedure yields a sparse association map that also maintains spatial continuity of predictive regions. The method is demonstrated on a simulation study and on a study of association between fractional anisotropy and cognitive disability in a cross-sectional sample of 135 multiple sclerosis patients. PMID:23792220
Montoro, Pedro R; Luna, Dolores
2009-10-01
Previous studies on the processing of hierarchical patterns (Luna & Montoro, 2008) have shown that altering the spatial relationships between the local elements affected processing dominance by decreasing global advantage. In the present article, the authors examine whether heterogeneity or a sparse distribution of the local elements was the responsible factor for this effect. In Experiments 1 and 2, the distance between the local elements was increased in a similar way, but between-element distance was homogeneous in Experiment 1 and heterogeneous in Experiment 2. In Experiment 3, local elements' size was varied by presenting global patterns composed of similar large or small local elements and of different large and small sizes. The results of the present research showed that, instead of element sparsity, spatial heterogeneity that could change the appearance of the global form as well as the salience of the local elements was the main determiner of impairing global processing.
Compression-based integral curve data reuse framework for flow visualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Fan; Bi, Chongke; Guo, Hanqi
Currently, by default, integral curves are repeatedly re-computed in different flow visualization applications, such as FTLE field computation, source-destination queries, etc., leading to unnecessary resource cost. We present a compression-based data reuse framework for integral curves, to greatly reduce their retrieval cost, especially in a resource-limited environment. In our design, a hierarchical and hybrid compression scheme is proposed to balance three objectives, including high compression ratio, controllable error, and low decompression cost. Specifically, we use and combine digitized curve sparse representation, floating-point data compression, and octree space partitioning to adaptively achieve the objectives. Results have shown that our data reusemore » framework could acquire tens of times acceleration in the resource-limited environment compared to on-the-fly particle tracing, and keep controllable information loss. Moreover, our method could provide fast integral curve retrieval for more complex data, such as unstructured mesh data.« less
Polcicová, Gabriela; Tino, Peter
2004-01-01
We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distributions with varying independence assumptions. In the first stage of topographic LCM construction, self-organizing maps with neural field organized according to the LCM topology are employed. We apply our system to a large collection of user ratings for films. The system can provide useful visualization plots unveiling user preference patterns buried in the data, without loosing potential to be a good recommender model. It appears that multinomial distribution is most adequate if the model is regularized by tight grid topologies. Since we deal with probabilistic models of the data, we can readily use tools from probability and information theories to interpret and visualize information extracted by our system.
Human service delivery in a multi-tier system: the subtleties of collaboration among partners.
Mayhew, Fred
2012-01-01
This article examines the nature of interorganizational relationships that are formed within a multi-tier human service delivery system. Taking into account the hierarchical structure of a statewide initiative to support early childhood education, the study investigates the differences in the relationships between organizations at the service and administrative levels of the system. Forty-nine administrative level and 146 service delivery level relationships are evaluated. Findings indicate that organizations involved in direct service delivery form more collaborative relationships. Thus, when government provides funding for human services, policymakers must seek to balance public accountability with the advantages believed to be inherent in devolved service delivery. Furthermore, practitioners who appreciate the importance and nuances of interorganizational relationships will be in a position to better manage their organizations in an environment of increased collaborative activity and joint delivery of services. Going forward, human service systems will continue to involve organizations from the public, nonprofit, and private sector. A better understanding of how these organizations work together is crucial to the effective delivery of these essential services.
Williams, Laverne; Gorman, Robyn; Hankerson, Sidney
2014-01-01
Social workers have successfully collaborated with African-American faith-based organizations to improve health outcomes for numerous medical conditions. However, the literature on Faith-Based Health Promotion for major depression is sparse. Thus, the authors describe a program used to implement a Mental Health Ministry Committee in African-American churches. Program goals are to educate clergy, reduce stigma, and promote treatment seeking for depression. Key lessons learned are to initially form partnerships with church staff if there is not a preexisting relationship with the lead pastor, to utilize a community-based participatory approach, and to have flexibility in program implementation.
Hierarchical spatial models of abundance and occurrence from imperfect survey data
Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans
2007-01-01
Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.
Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition
Ong, Frank; Lustig, Michael
2016-01-01
We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978
NASA Astrophysics Data System (ADS)
Kermish-Allen, Ruth
Traditional citizen science projects have been based on the scientific communities need to gather vast quantities of high quality data, neglecting to ask what the project participants get in return. How can participants be seen more as collaborative partners in citizen science projects? Online communities for citizen science are expanding rapidly, giving participants the opportunity to take part in a wide range of activities, from monitoring invasive species to identifying far-off galaxies. These communities can bring together the virtual and physical worlds in new ways that are egalitarian, collaborative, applied, localized and globalized to solve real environmental problems. There are a small number of citizen science projects that leverage the affordances of an online community to connect, engage, and empower participants to make local change happen. This multiple case study applies a conceptual framework rooted in sociocultural learning theory, Non-Hierarchical Online Learning Communities (NHOLCs), to three online citizen communities that have successfully fostered online collaboration and on-the-ground environmental actions. The purpose of the study is to identify the range and variation of the online and programmatic functions available in each project. The findings lead to recommendations for designing these innovative communities, specifically the technological and programmatic components of online citizen science communities that support environmental actions in our backyards.
The Mass of the Milky Way via HST Proper Motions of Satellite Objects
NASA Astrophysics Data System (ADS)
Sohn, Sangmo Tony; van der Marel, Roeland
2018-01-01
The Universe evolves hierarchically with small structures merging and falling in to form bigger structures. Due to its proximity, the Milky Way (MW) is the best place to witness and study these hierarchical processes in action as evidenced by e.g., the many stellar streams found in MW halo. Stellar systems in the MW halo have therefore become the benchmark for testing many aspects of cosmological theories. Despite the advances in both observational and theoretical areas in the last decade or so, the total mass and mass profile of the MW still remain poorly constrained, mainly due to the limited information on the transverse motions of satellite objects in the MW halo. As part of our HSTPROMO collaboration, we have been measuring proper motions of stars, globular clusters, and satellite galaxies in the MW halo to remedy this situation. In this contribution, I will present results from our recent studies, and report our progress of ongoing projects.
NASA Astrophysics Data System (ADS)
Pata, Kai; Sarapuu, Tago
2006-09-01
This study investigated the possible activation of different types of model-based reasoning processes in two learning settings, and the influence of various terms of reasoning on the learners’ problem representation development. Changes in 53 students’ problem representations about genetic issue were analysed while they worked with different modelling tools in a synchronous network-based environment. The discussion log-files were used for the “microgenetic” analysis of reasoning types. For studying the stages of students’ problem representation development, individual pre-essays and post-essays and their utterances during two reasoning phases were used. An approach for mapping problem representations was developed. Characterizing the elements of mental models and their reasoning level enabled the description of five hierarchical categories of problem representations. Learning in exploratory and experimental settings was registered as the shift towards more complex stages of problem representations in genetics. The effect of different types of reasoning could be observed as the divergent development of problem representations within hierarchical categories.
Rafii-Tari, Hedyeh; Liu, Jindong; Payne, Christopher J; Bicknell, Colin; Yang, Guang-Zhong
2014-01-01
Despite increased use of remote-controlled steerable catheter navigation systems for endovascular intervention, most current designs are based on master configurations which tend to alter natural operator tool interactions. This introduces problems to both ergonomics and shared human-robot control. This paper proposes a novel cooperative robotic catheterization system based on learning-from-demonstration. By encoding the higher-level structure of a catheterization task as a sequence of primitive motions, we demonstrate how to achieve prospective learning for complex tasks whilst incorporating subject-specific variations. A hierarchical Hidden Markov Model is used to model each movement primitive as well as their sequential relationship. This model is applied to generation of motion sequences, recognition of operator input, and prediction of future movements for the robot. The framework is validated by comparing catheter tip motions against the manual approach, showing significant improvements in the quality of catheterization. The results motivate the design of collaborative robotic systems that are intuitive to use, while reducing the cognitive workload of the operator.
Advancing Collaboration through Hydrologic Data and Model Sharing
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.
2015-12-01
HydroShare is an online, collaborative system for open sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined primarily by standardized metadata, content data models for each resource type, and an overarching resource data model based on the Open Archives Initiative's Object Reuse and Exchange (OAI-ORE) standard and a hierarchical file packaging system called "BagIt". HydroShare expands the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated to include geospatial and multidimensional space-time datasets commonly used in hydrology. HydroShare also includes new capability for sharing models, model components, and analytical tools and will take advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. It also supports web services and server/cloud based computation operating on resources for the execution of hydrologic models and analysis and visualization of hydrologic data. HydroShare uses iRODS as a network file system for underlying storage of datasets and models. Collaboration is enabled by casting datasets and models as "social objects". Social functions include both private and public sharing, formation of collaborative groups of users, and value-added annotation of shared datasets and models. The HydroShare web interface and social media functions were developed using the Django web application framework coupled to iRODS. Data visualization and analysis is supported through the Tethys Platform web GIS software stack. Links to external systems are supported by RESTful web service interfaces to HydroShare's content. This presentation will introduce the HydroShare functionality developed to date and describe ongoing development of functionality to support collaboration and integration of data and models.
Handel, Colleen M.; Sauer, John
2017-01-01
Management interest in North American birds has increasingly focused on species that breed in Alaska, USA, and Canada, where habitats are changing rapidly in response to climatic and anthropogenic factors. We used a series of hierarchical models to estimate rates of population change in 2 forested Bird Conservation Regions (BCRs) in Alaska based on data from the roadside North American Breeding Bird Survey (BBS) and the Alaska Landbird Monitoring Survey, which samples off-road areas on public resource lands. We estimated long-term (1993–2015) population trends for 84 bird species from the BBS and short-term (2003–2015) trends for 31 species from both surveys. Among the 84 species with long-term estimates, 11 had positive trends and 17 had negative trends in 1 or both BCRs; negative trends were primarily found among aerial insectivores and wetland-associated species, confirming range-wide negative continental trends for many of these birds. Three species with negative trends in the contiguous United States and southern Canada had positive trends in Alaska, suggesting different population dynamics at the northern edges of their ranges. Regional population trends within Alaska differed for several species, particularly those represented by different subspecies in the 2 BCRs, which are separated by rugged, glaciated mountain ranges. Analysis of the roadside and off-road data in a joint hierarchical model with shared parameters resulted in improved precision of trend estimates and suggested a roadside-related difference in underlying population trends for several species, particularly within the Northwestern Interior Forest BCR. The combined analysis highlights the importance of considering population structure, physiographic barriers, and spatial heterogeneity in habitat change when assessing patterns of population change across a landscape as broad as Alaska. Combined analysis of roadside and off-road survey data in a hierarchical framework may be particularly useful for evaluating patterns of population change in relatively undeveloped regions with sparse roadside BBS coverage.
High- and low-level hierarchical classification algorithm based on source separation process
NASA Astrophysics Data System (ADS)
Loghmari, Mohamed Anis; Karray, Emna; Naceur, Mohamed Saber
2016-10-01
High-dimensional data applications have earned great attention in recent years. We focus on remote sensing data analysis on high-dimensional space like hyperspectral data. From a methodological viewpoint, remote sensing data analysis is not a trivial task. Its complexity is caused by many factors, such as large spectral or spatial variability as well as the curse of dimensionality. The latter describes the problem of data sparseness. In this particular ill-posed problem, a reliable classification approach requires appropriate modeling of the classification process. The proposed approach is based on a hierarchical clustering algorithm in order to deal with remote sensing data in high-dimensional space. Indeed, one obvious method to perform dimensionality reduction is to use the independent component analysis process as a preprocessing step. The first particularity of our method is the special structure of its cluster tree. Most of the hierarchical algorithms associate leaves to individual clusters, and start from a large number of individual classes equal to the number of pixels; however, in our approach, leaves are associated with the most relevant sources which are represented according to mutually independent axes to specifically represent some land covers associated with a limited number of clusters. These sources contribute to the refinement of the clustering by providing complementary rather than redundant information. The second particularity of our approach is that at each level of the cluster tree, we combine both a high-level divisive clustering and a low-level agglomerative clustering. This approach reduces the computational cost since the high-level divisive clustering is controlled by a simple Boolean operator, and optimizes the clustering results since the low-level agglomerative clustering is guided by the most relevant independent sources. Then at each new step we obtain a new finer partition that will participate in the clustering process to enhance semantic capabilities and give good identification rates.
Berdej, Samantha M; Armitage, Derek R
2016-01-01
This study empirically investigates the influence of bridging organizations on governance outcomes for marine conservation in Indonesia. Conservation challenges require ways of governing that are collaborative and adaptive across boundaries, and where conservation actions are better coordinated, information flows improved, and knowledge better integrated and mobilized. We combine quantitative social network analysis and qualitative data to analyze bridging organizations and their networks, and to understand their contributions and constraints in two case studies in Bali, Indonesia. The analysis shows 1) bridging organizations help to navigate the 'messiness' inherent in conservation settings by compensating for sparse linkages, 2) the particular structure and function of bridging organizations influence governing processes (i.e., collaboration, knowledge sharing) and subsequent conservation outcomes, 3) 'bridging' is accomplished using different strategies and platforms for collaboration and social learning, and 4) bridging organizations enhance flexibility to adjust to changing marine conservation contexts and needs. Understanding the organizations that occupy bridging positions, and how they utilize their positionality in a governance network is emerging as an important determinant of successful conservation outcomes. Our findings contribute to a relatively new body of literature on bridging organizations in marine conservation contexts, and add needed empirical investigation into their value to governance and conservation in Coral Triangle nations and beyond.
Berdej, Samantha M.; Armitage, Derek R.
2016-01-01
This study empirically investigates the influence of bridging organizations on governance outcomes for marine conservation in Indonesia. Conservation challenges require ways of governing that are collaborative and adaptive across boundaries, and where conservation actions are better coordinated, information flows improved, and knowledge better integrated and mobilized. We combine quantitative social network analysis and qualitative data to analyze bridging organizations and their networks, and to understand their contributions and constraints in two case studies in Bali, Indonesia. The analysis shows 1) bridging organizations help to navigate the ‘messiness’ inherent in conservation settings by compensating for sparse linkages, 2) the particular structure and function of bridging organizations influence governing processes (i.e., collaboration, knowledge sharing) and subsequent conservation outcomes, 3) ‘bridging’ is accomplished using different strategies and platforms for collaboration and social learning, and 4) bridging organizations enhance flexibility to adjust to changing marine conservation contexts and needs. Understanding the organizations that occupy bridging positions, and how they utilize their positionality in a governance network is emerging as an important determinant of successful conservation outcomes. Our findings contribute to a relatively new body of literature on bridging organizations in marine conservation contexts, and add needed empirical investigation into their value to governance and conservation in Coral Triangle nations and beyond. PMID:26794003
Jatrana, Santosh; Richardson, Ken; Blakely, Tony; Dayal, Saira
2014-01-01
The aim of this paper was to see whether all-cause and cause-specific mortality rates vary between Asian ethnic subgroups, and whether overseas born Asian subgroup mortality rate ratios varied by nativity and duration of residence. We used hierarchical Bayesian methods to allow for sparse data in the analysis of linked census-mortality data for 25–75 year old New Zealanders. We found directly standardised posterior all-cause and cardiovascular mortality rates were highest for the Indian ethnic group, significantly so when compared with those of Chinese ethnicity. In contrast, cancer mortality rates were lowest for ethnic Indians. Asian overseas born subgroups have about 70% of the mortality rate of their New Zealand born Asian counterparts, a result that showed little variation by Asian subgroup or cause of death. Within the overseas born population, all-cause mortality rates for migrants living 0–9 years in New Zealand were about 60% of the mortality rate of those living more than 25 years in New Zealand regardless of ethnicity. The corresponding figure for cardiovascular mortality rates was 50%. However, while Chinese cancer mortality rates increased with duration of residence, Indian and Other Asian cancer mortality rates did not. Future research on the mechanisms of worsening of health with increased time spent in the host country is required to improve the understanding of the process, and would assist the policy-makers and health planners. PMID:25140523
Hierarchical random walks in trace fossils and the origin of optimal search behavior
Sims, David W.; Reynolds, Andrew M.; Humphries, Nicolas E.; Southall, Emily J.; Wearmouth, Victoria J.; Metcalfe, Brett; Twitchett, Richard J.
2014-01-01
Efficient searching is crucial for timely location of food and other resources. Recent studies show that diverse living animals use a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behavior and the search strategies of extinct organisms. Here, using simulations of self-avoiding trace fossil trails, we show that randomly introduced strophotaxis (U-turns)—initiated by obstructions such as self-trail avoidance or innate cueing—leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts that optimal Lévy searches may emerge from simple behaviors observed in fossil trails. We then analyzed fossilized trails of benthic marine organisms by using a novel path analysis technique and find the first evidence, to our knowledge, of Lévy-like search strategies in extinct animals. Our results show that simple search behaviors of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterizing mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest that Lévy-like behavior has been used by foragers since at least the Eocene but may have a more ancient origin, which might explain recent widespread observations of such patterns among modern taxa. PMID:25024221
Williams, Laverne; Gorman, Robyn; Hankerson, Sidney
2014-01-01
Social workers have successfully collaborated with African American faith-based organizations to improve health outcomes for numerous medical conditions. However, the literature on Faith-Based Health Promotion for major depression is sparse. Thus, the authors describe a program used to implement a Mental Health Ministry Committee in African American churches. Program goals are to educate clergy, reduce stigma, and promote treatment seeking for depression. Key lessons learned are to initially form partnerships with church staff if there is not a pre-existing relationship with the lead pastor, to utilize a community-based participatory approach, and to have flexibility in program implementation. PMID:24717187
Revealing the Hidden Water Budget of an Alpine Volcanic Watershed Using a Bayesian Mixing Model
NASA Astrophysics Data System (ADS)
Markovich, K. H.; Arumi, J. L.; Dahlke, H. E.; Fogg, G. E.
2017-12-01
Climate change is altering alpine water budgets in observable ways, such as snow melting sooner or falling as rain, but also in hidden ways, such as shifting recharge timing and increased evapotranspiration demand leading to diminished summer low flows. The combination of complex hydrogeology and sparse availability of data make it difficult to predict the direction or magnitude of shifts in alpine water budgets, and thus difficult to inform decision-making. We present a data sparse watershed in the Andes Mountains of central Chile in which complex geology, interbasin flows, and surface water-groundwater interactions impede our ability to fully describe the water budget. We collected water samples for stable isotopes and major anions and cations, over the course of water year 2016-17 to characterize the spatial and temporal variability in endmember signatures (snow, rain, and groundwater). We use a Bayesian Hierarchical Model (BHM) to explicitly incorporate uncertainty and prior information into a mixing model, and predict the proportional contribution of snow, rain, and groundwater to streamflow throughout the year for the full catchment as well as its two sub-catchments. Preliminary results suggest that streamflow is likely more rainfall-dominated than previously thought, which not only alters our projections of climate change impacts, but make this watershed a potential example for other watersheds undergoing a snow to rain transition. Understanding how these proportions vary in space and time will help us elucidate key information on stores, fluxes, and timescales of water flow for improved current and future water resource management.
Młynarski, Wiktor
2015-05-01
In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a "panoramic" code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding.
OntoBrowser: a collaborative tool for curation of ontologies by subject matter experts.
Ravagli, Carlo; Pognan, Francois; Marc, Philippe
2017-01-01
The lack of controlled terminology and ontology usage leads to incomplete search results and poor interoperability between databases. One of the major underlying challenges of data integration is curating data to adhere to controlled terminologies and/or ontologies. Finding subject matter experts with the time and skills required to perform data curation is often problematic. In addition, existing tools are not designed for continuous data integration and collaborative curation. This results in time-consuming curation workflows that often become unsustainable. The primary objective of OntoBrowser is to provide an easy-to-use online collaborative solution for subject matter experts to map reported terms to preferred ontology (or code list) terms and facilitate ontology evolution. Additional features include web service access to data, visualization of ontologies in hierarchical/graph format and a peer review/approval workflow with alerting. The source code is freely available under the Apache v2.0 license. Source code and installation instructions are available at http://opensource.nibr.com This software is designed to run on a Java EE application server and store data in a relational database. philippe.marc@novartis.com. © The Author 2016. Published by Oxford University Press.
OntoBrowser: a collaborative tool for curation of ontologies by subject matter experts
Ravagli, Carlo; Pognan, Francois
2017-01-01
Summary: The lack of controlled terminology and ontology usage leads to incomplete search results and poor interoperability between databases. One of the major underlying challenges of data integration is curating data to adhere to controlled terminologies and/or ontologies. Finding subject matter experts with the time and skills required to perform data curation is often problematic. In addition, existing tools are not designed for continuous data integration and collaborative curation. This results in time-consuming curation workflows that often become unsustainable. The primary objective of OntoBrowser is to provide an easy-to-use online collaborative solution for subject matter experts to map reported terms to preferred ontology (or code list) terms and facilitate ontology evolution. Additional features include web service access to data, visualization of ontologies in hierarchical/graph format and a peer review/approval workflow with alerting. Availability and implementation: The source code is freely available under the Apache v2.0 license. Source code and installation instructions are available at http://opensource.nibr.com. This software is designed to run on a Java EE application server and store data in a relational database. Contact: philippe.marc@novartis.com PMID:27605099
Developing collaborative classifiers using an expert-based model
Mountrakis, G.; Watts, R.; Luo, L.; Wang, Jingyuan
2009-01-01
This paper presents a hierarchical, multi-stage adaptive strategy for image classification. We iteratively apply various classification methods (e.g., decision trees, neural networks), identify regions of parametric and geographic space where accuracy is low, and in these regions, test and apply alternate methods repeating the process until the entire image is classified. Currently, classifiers are evaluated through human input using an expert-based system; therefore, this paper acts as the proof of concept for collaborative classifiers. Because we decompose the problem into smaller, more manageable sub-tasks, our classification exhibits increased flexibility compared to existing methods since classification methods are tailored to the idiosyncrasies of specific regions. A major benefit of our approach is its scalability and collaborative support since selected low-accuracy classifiers can be easily replaced with others without affecting classification accuracy in high accuracy areas. At each stage, we develop spatially explicit accuracy metrics that provide straightforward assessment of results by non-experts and point to areas that need algorithmic improvement or ancillary data. Our approach is demonstrated in the task of detecting impervious surface areas, an important indicator for human-induced alterations to the environment, using a 2001 Landsat scene from Las Vegas, Nevada. ?? 2009 American Society for Photogrammetry and Remote Sensing.
Song, Minsun; Jung, Kyujin
2015-01-01
To examine the gap between disaster preparedness and response networks following the 2013 Seoul Floods in which the rapid transmission of disaster information and resources was impeded by severe changes of interorganizational collaboration networks. This research uses the 2013 Seoul Emergency Management Survey data that were collected before and after the floods, and total 94 organizations involving in coping with the floods were analyzed in bootstrap independent-sample t-test and social network analysis through UCINET 6 and STATA 12. The findings show that despite the primary network form that is more hierarchical, horizontal collaboration has been relatively invigorated in actual response. Also, interorganizational collaboration networks for response operations seem to be more flexible grounded on improvisation to coping with unexpected victims and damages. Local organizations under urban emergency management are recommended to tightly build a strong commitment for joint response operations through full-size exercises at the metropolitan level before a catastrophic event. Also, interorganizational emergency management networks need to be restructured by reflecting the actual response networks to reduce collaboration risk during a disaster. This research presents a critical insight into inverse thinking of the view designing urban emergency management networks and provides original evidences for filling the gap between previously coordinated networks for disaster preparedness and practical response operations after a disaster.
PeerShield: determining control and resilience criticality of collaborative cyber assets in networks
NASA Astrophysics Data System (ADS)
Cam, Hasan
2012-06-01
As attackers get more coordinated and advanced in cyber attacks, cyber assets are required to have much more resilience, control effectiveness, and collaboration in networks. Such a requirement makes it essential to take a comprehensive and objective approach for measuring the individual and relative performances of cyber security assets in network nodes. To this end, this paper presents four techniques as to how the relative importance of cyber assets can be measured more comprehensively and objectively by considering together the main variables of risk assessment (e.g., threats, vulnerabilities), multiple attributes (e.g., resilience, control, and influence), network connectivity and controllability among collaborative cyber assets in networks. In the first technique, a Bayesian network is used to include the random variables for control, recovery, and resilience attributes of nodes, in addition to the random variables of threats, vulnerabilities, and risk. The second technique shows how graph matching and coloring can be utilized to form collaborative pairs of nodes to shield together against threats and vulnerabilities. The third technique ranks the security assets of nodes by incorporating multiple weights and thresholds of attributes into a decision-making algorithm. In the fourth technique, the hierarchically well-separated tree is enhanced to first identify critical nodes of a network with respect to their attributes and network connectivity, and then selecting some nodes as driver nodes for network controllability.
NASA Astrophysics Data System (ADS)
Zhang, Qian-Ming; Shang, Ming-Sheng; Zeng, Wei; Chen, Yong; Lü, Linyuan
2010-08-01
Collaborative filtering is one of the most successful recommendation techniques, which can effectively predict the possible future likes of users based on their past preferences. The key problem of this method is how to define the similarity between users. A standard approach is using the correlation between the ratings that two users give to a set of objects, such as Cosine index and Pearson correlation coefficient. However, the costs of computing this kind of indices are relatively high, and thus it is impossible to be applied in the huge-size systems. To solve this problem, in this paper, we introduce six local-structure-based similarity indices and compare their performances with the above two benchmark indices. Experimental results on two data sets demonstrate that the structure-based similarity indices overall outperform the Pearson correlation coefficient. When the data is dense, the structure-based indices can perform competitively good as Cosine index, while with lower computational complexity. Furthermore, when the data is sparse, the structure-based indices give even better results than Cosine index.
Geospatial considerations for a multiorganizational, landscape-scale program
O'Donnell, Michael S.; Assal, Timothy J.; Anderson, Patrick J.; Bowen, Zachary H.
2013-01-01
Geospatial data play an increasingly important role in natural resources management, conservation, and science-based projects. The management and effective use of spatial data becomes significantly more complex when the efforts involve a myriad of landscape-scale projects combined with a multiorganizational collaboration. There is sparse literature to guide users on this daunting subject; therefore, we present a framework of considerations for working with geospatial data that will provide direction to data stewards, scientists, collaborators, and managers for developing geospatial management plans. The concepts we present apply to a variety of geospatial programs or projects, which we describe as a “scalable framework” of processes for integrating geospatial efforts with management, science, and conservation initiatives. Our framework includes five tenets of geospatial data management: (1) the importance of investing in data management and standardization, (2) the scalability of content/efforts addressed in geospatial management plans, (3) the lifecycle of a geospatial effort, (4) a framework for the integration of geographic information systems (GIS) in a landscape-scale conservation or management program, and (5) the major geospatial considerations prior to data acquisition. We conclude with a discussion of future considerations and challenges.
NASA Astrophysics Data System (ADS)
De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan
2016-11-01
A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths.
NASA Astrophysics Data System (ADS)
Schlueter-Kuck, Kristy L.; Dabiri, John O.
2017-09-01
We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.
Fryer, Craig S.; Reed, Ernestine A.; Thomas, Stephen B.
2014-01-01
BACKGROUND Insufficient attention has been paid to the process of conducting the Centers for Disease Control and Prevention’s School Health Index (SHI) to promote collaboration between universities and urban school districts when developing adolescent health promotion initiatives. This article provides an overview of the real world contextual challenges and opportunities this type of collaboration can pose. METHODS The SHI and selected collaboration principles were used to facilitate partnership and increase stakeholder buy-in, which led to developing and implementing an eight year health promotion campaign, The Healthy Class of 2010 (HC 2010). RESULTS The focus on planning brought together key stakeholders and allowed for HC 2010 programming to take place despite the competing demands on the schools. The SHI allowed for input from stakeholders to develop campaign activities and inform school- and district-wide policy. Universities and school districts desiring to develop and implement school-based, adolescent health promotion programs should: 1) identify the hierarchical structure of the school district; 2) establish credibility for the program and the university staff; 3) emphasize the benefits to all partners; 4) maintain a cooperative partnership with teachers and administrators; 5) appreciate the need for planning; and, 6) provide as many resources as possible to on an already overburdened school system. CONCLUSIONS Promoting healthy behaviors among students is an important part of the fundamental mission of schools. HC 2010 underscored the significance of collaboration using the SHI in the development and implementation of this health promotion campaign with input from students, teachers, administrators and university partners. PMID:22070509
Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data
Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...
2016-10-02
Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less
Dysfunctional health service conflict: causes and accelerants.
Nelson, H Wayne
2012-01-01
This article examines the causes and accelerants of dysfunctional health service conflict and how it emerges from the health system's core hierarchical structures, specialized roles, participant psychodynamics, culture, and values. This article sets out to answer whether health care conflict is more widespread and intense than in other settings and if it is, why? To this end, health care power, gender, and educational status gaps are examined with an eye to how they undermine open communication, teamwork, and collaborative forms of conflict and spark a range of dysfunctions, including a pervasive culture of fear; the deny-and-defend lawsuit response; widespread patterns of hierarchical, generational, and lateral bullying; overly avoidant conflict styles among non-elite groups; and a range of other behaviors that lead to numerous human resource problems, including burnout, higher staff turnover, increased errors, poor employee citizenship behavior, patient dissatisfaction, increased patient complaints, and lawsuits. Bad patient outcomes include decreased compliance and increased morbidity and mortality. Health care managers must understand the root causes of these problems to treat them at the source and implement solutions that avoid negative conflict spirals that undermine organizational morale and efficiency.
Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret
2018-01-01
Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.
Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology
NASA Astrophysics Data System (ADS)
Mohanty, B.; Kathuria, D.; Katzfuss, M.
2016-12-01
Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.
Zhang, Yaogong; Liu, Jiahui; Liu, Xiaohu; Hong, Yuxiang; Fan, Xin; Huang, Yalou; Wang, Yuan; Xie, Maoqiang
2018-04-24
Gene-phenotype association prediction can be applied to reveal the inherited basis of human diseases and facilitate drug development. Gene-phenotype associations are related to complex biological processes and influenced by various factors, such as relationship between phenotypes and that among genes. While due to sparseness of curated gene-phenotype associations and lack of integrated analysis of the joint effect of multiple factors, existing applications are limited to prediction accuracy and potential gene-phenotype association detection. In this paper, we propose a novel method by exploiting weighted graph constraint learned from hierarchical structures of phenotype data and group prior information among genes by inheriting advantages of Non-negative Matrix Factorization (NMF), called Weighted Graph Constraint and Group Centric Non-negative Matrix Factorization (GC[Formula: see text]NMF). Specifically, first we introduce the depth of parent-child relationships between two adjacent phenotypes in hierarchical phenotypic data as weighted graph constraint for a better phenotype understanding. Second, we utilize intra-group correlation among genes in a gene group as group constraint for gene understanding. Such information provides us with the intuition that genes in a group probably result in similar phenotypes. The model not only allows us to achieve a high-grade prediction performance, but also helps us to learn interpretable representation of genes and phenotypes simultaneously to facilitate future biological analysis. Experimental results on biological gene-phenotype association datasets of mouse and human demonstrate that GC[Formula: see text]NMF can obtain superior prediction accuracy and good understandability for biological explanation over other state-of-the-arts methods.
NASA Technical Reports Server (NTRS)
Afjeh, Abdollah A.; Reed, John A.
2003-01-01
This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.
Crossover of exhaustion between dentists and dental nurses.
Hakanen, Jari J; Perhoniemi, Riku; Bakker, Arnold B
2014-04-01
The aim of this study was to investigate the conditions under which job-related exhaustion may transmit (cross over) from dentists to dental nurses and vice versa. We conducted a cross-sectional survey study among 470 Finnish dentist-dental nurse dyads and used moderated structural equation modelling analyses. We found no support for the direct crossover of exhaustion from one work partner to the other. Instead, we found that exhaustion transferred from dentists to dental nurses only when collaboration was frequent and dental nurses perceived the collaboration as friendly or consisting of mutual feedback. In contrast, dentists were not affected by dental nurses' exhaustion. These results indicate that exhaustion can be contagious in work dyads and may be fuelled by positive and frequent interpersonal relationships when the partner who is higher in the hierarchy has high (versus low) levels of exhaustion. Thus, interpersonal and hierarchical relationships among work partners may play an important role in the crossover process. Limitations and implications are mentioned. © 2013 John Wiley & Sons, Ltd.
Midway, Stephen R.; Wagner, Tyler; Zydlewski, Joseph D.; Irwin, Brian J.; Paukert, Craig P.
2016-01-01
Managing inland fisheries in the 21st century presents several obstacles, including the need to view fisheries from multiple spatial and temporal scales, which usually involves populations and resources spanning sociopolitical boundaries. Though collaboration is not new to fisheries science, inland aquatic systems have historically been managed at local scales and present different challenges than in marine or large freshwater systems like the Laurentian Great Lakes. Therefore, we outline a flexible strategy that highlights organization, cooperation, analytics, and implementation as building blocks toward effectively addressing transboundary fisheries issues. Additionally, we discuss the use of Bayesian hierarchical models (within the analytical stage), due to their flexibility in dealing with the variability present in data from multiple scales. With growing recognition of both ecological drivers that span spatial and temporal scales and the subsequent need for collaboration to effectively manage heterogeneous resources, we expect implementation of transboundary approaches to become increasingly critical for effective inland fisheries management.
Node Deployment Algorithm Based on Connected Tree for Underwater Sensor Networks
Jiang, Peng; Wang, Xingmin; Jiang, Lurong
2015-01-01
Designing an efficient deployment method to guarantee optimal monitoring quality is one of the key topics in underwater sensor networks. At present, a realistic approach of deployment involves adjusting the depths of nodes in water. One of the typical algorithms used in such process is the self-deployment depth adjustment algorithm (SDDA). This algorithm mainly focuses on maximizing network coverage by constantly adjusting node depths to reduce coverage overlaps between two neighboring nodes, and thus, achieves good performance. However, the connectivity performance of SDDA is irresolute. In this paper, we propose a depth adjustment algorithm based on connected tree (CTDA). In CTDA, the sink node is used as the first root node to start building a connected tree. Finally, the network can be organized as a forest to maintain network connectivity. Coverage overlaps between the parent node and the child node are then reduced within each sub-tree to optimize coverage. The hierarchical strategy is used to adjust the distance between the parent node and the child node to reduce node movement. Furthermore, the silent mode is adopted to reduce communication cost. Simulations show that compared with SDDA, CTDA can achieve high connectivity with various communication ranges and different numbers of nodes. Moreover, it can realize coverage as high as that of SDDA with various sensing ranges and numbers of nodes but with less energy consumption. Simulations under sparse environments show that the connectivity and energy consumption performances of CTDA are considerably better than those of SDDA. Meanwhile, the connectivity and coverage performances of CTDA are close to those depth adjustment algorithms base on connected dominating set (CDA), which is an algorithm similar to CTDA. However, the energy consumption of CTDA is less than that of CDA, particularly in sparse underwater environments. PMID:26184209
Młynarski, Wiktor
2015-01-01
In mammalian auditory cortex, sound source position is represented by a population of broadly tuned neurons whose firing is modulated by sounds located at all positions surrounding the animal. Peaks of their tuning curves are concentrated at lateral position, while their slopes are steepest at the interaural midline, allowing for the maximum localization accuracy in that area. These experimental observations contradict initial assumptions that the auditory space is represented as a topographic cortical map. It has been suggested that a “panoramic” code has evolved to match specific demands of the sound localization task. This work provides evidence suggesting that properties of spatial auditory neurons identified experimentally follow from a general design principle- learning a sparse, efficient representation of natural stimuli. Natural binaural sounds were recorded and served as input to a hierarchical sparse-coding model. In the first layer, left and right ear sounds were separately encoded by a population of complex-valued basis functions which separated phase and amplitude. Both parameters are known to carry information relevant for spatial hearing. Monaural input converged in the second layer, which learned a joint representation of amplitude and interaural phase difference. Spatial selectivity of each second-layer unit was measured by exposing the model to natural sound sources recorded at different positions. Obtained tuning curves match well tuning characteristics of neurons in the mammalian auditory cortex. This study connects neuronal coding of the auditory space with natural stimulus statistics and generates new experimental predictions. Moreover, results presented here suggest that cortical regions with seemingly different functions may implement the same computational strategy-efficient coding. PMID:25996373
Variational Bayesian Learning for Wavelet Independent Component Analysis
NASA Astrophysics Data System (ADS)
Roussos, E.; Roberts, S.; Daubechies, I.
2005-11-01
In an exploratory approach to data analysis, it is often useful to consider the observations as generated from a set of latent generators or "sources" via a generally unknown mapping. For the noisy overcomplete case, where we have more sources than observations, the problem becomes extremely ill-posed. Solutions to such inverse problems can, in many cases, be achieved by incorporating prior knowledge about the problem, captured in the form of constraints. This setting is a natural candidate for the application of the Bayesian methodology, allowing us to incorporate "soft" constraints in a natural manner. The work described in this paper is mainly driven by problems in functional magnetic resonance imaging of the brain, for the neuro-scientific goal of extracting relevant "maps" from the data. This can be stated as a `blind' source separation problem. Recent experiments in the field of neuroscience show that these maps are sparse, in some appropriate sense. The separation problem can be solved by independent component analysis (ICA), viewed as a technique for seeking sparse components, assuming appropriate distributions for the sources. We derive a hybrid wavelet-ICA model, transforming the signals into a domain where the modeling assumption of sparsity of the coefficients with respect to a dictionary is natural. We follow a graphical modeling formalism, viewing ICA as a probabilistic generative model. We use hierarchical source and mixing models and apply Bayesian inference to the problem. This allows us to perform model selection in order to infer the complexity of the representation, as well as automatic denoising. Since exact inference and learning in such a model is intractable, we follow a variational Bayesian mean-field approach in the conjugate-exponential family of distributions, for efficient unsupervised learning in multi-dimensional settings. The performance of the proposed algorithm is demonstrated on some representative experiments.
Analysis of composition-based metagenomic classification.
Higashi, Susan; Barreto, André da Motta Salles; Cantão, Maurício Egidio; de Vasconcelos, Ana Tereza Ribeiro
2012-01-01
An essential step of a metagenomic study is the taxonomic classification, that is, the identification of the taxonomic lineage of the organisms in a given sample. The taxonomic classification process involves a series of decisions. Currently, in the context of metagenomics, such decisions are usually based on empirical studies that consider one specific type of classifier. In this study we propose a general framework for analyzing the impact that several decisions can have on the classification problem. Instead of focusing on any specific classifier, we define a generic score function that provides a measure of the difficulty of the classification task. Using this framework, we analyze the impact of the following parameters on the taxonomic classification problem: (i) the length of n-mers used to encode the metagenomic sequences, (ii) the similarity measure used to compare sequences, and (iii) the type of taxonomic classification, which can be conventional or hierarchical, depending on whether the classification process occurs in a single shot or in several steps according to the taxonomic tree. We defined a score function that measures the degree of separability of the taxonomic classes under a given configuration induced by the parameters above. We conducted an extensive computational experiment and found out that reasonable values for the parameters of interest could be (i) intermediate values of n, the length of the n-mers; (ii) any similarity measure, because all of them resulted in similar scores; and (iii) the hierarchical strategy, which performed better in all of the cases. As expected, short n-mers generate lower configuration scores because they give rise to frequency vectors that represent distinct sequences in a similar way. On the other hand, large values for n result in sparse frequency vectors that represent differently metagenomic fragments that are in fact similar, also leading to low configuration scores. Regarding the similarity measure, in contrast to our expectations, the variation of the measures did not change the configuration scores significantly. Finally, the hierarchical strategy was more effective than the conventional strategy, which suggests that, instead of using a single classifier, one should adopt multiple classifiers organized as a hierarchy.
Nik, Jah; Lai, Pauline Siew Mei; Ng, Chirk Jenn; Emmerton, Lynne
2016-08-30
Osteoporosis has significant impact on healthcare costs and quality of life. Amongst the models for collaborative disease state management services published internationally, there is sparse evidence regarding the role of community pharmacists in the provision of osteoporosis care. Hence, the aim of our study was to explore community pharmacists' opinions (including the barriers and facilitators) and scope of osteoporosis disease state management services by community pharmacists in Malaysia, informing a vision for developing these services. Semi-structured individual interviews and focus groups discussions were conducted with community pharmacists from October 2013 to July 2014. Three trained researchers interviewed the participants. Interviews were recorded and transcribed verbatim. Data were analyzed thematically using an interpretative description approach. Nineteen community pharmacists with 1-23 years of experience were recruited (in depth interviews: n = 9; focus group discussions: n = 10). These participants reflected on their experience with osteoporosis-related enquiries, which included medication counseling, bone density screening and referral of at-risk patients. Key barriers were the lack of numerous factors: public awareness of osteoporosis, accurate osteoporosis screening tools for community pharmacists, pharmacists' knowledge on osteoporosis disease and medications, time to counsel patients about bone health, collaboration between pharmacists and doctors, and support from the government and professional body. The pharmacists wanted more continuing education on osteoporosis, osteoporosis awareness campaigns, a simple, unbiased osteoporosis education material, and inter-professional collaboration practices with doctors, and pharmacists' reimbursement for osteoporosis care. The involvement of community pharmacists in the provision of osteoporosis disease state management was minimal. Only ad-hoc counseling on osteoporosis prevention was performed by community pharmacists. Development and trial of collaborative osteoporosis disease state management services in community pharmacy could be facilitated by training, support and remuneration.
PATHFINDER: Probing Atmospheric Flows in an Integrated and Distributed Environment
NASA Technical Reports Server (NTRS)
Wilhelmson, R. B.; Wojtowicz, D. P.; Shaw, C.; Hagedorn, J.; Koch, S.
1995-01-01
PATHFINDER is a software effort to create a flexible, modular, collaborative, and distributed environment for studying atmospheric, astrophysical, and other fluid flows in the evolving networked metacomputer environment of the 1990s. It uses existing software, such as HDF (Hierarchical Data Format), DTM (Data Transfer Mechanism), GEMPAK (General Meteorological Package), AVS, SGI Explorer, and Inventor to provide the researcher with the ability to harness the latest in desktop to teraflop computing. Software modules developed during the project are available in the public domain via anonymous FTP from the National Center for Supercomputing Applications (NCSA). The address is ftp.ncsa.uiuc.edu, and the directory is /SGI/PATHFINDER.
Religiousness and prostate cancer screening in African American men.
Abernethy, Alexis D; Houston, Tina R; Bjorck, Jeffrey P; Gorsuch, Richard L; Arnold, Harold L
2009-01-01
This study was designed to examine the relationship between religiousness (organized, nonorganized, and intrinsic) and religious problem solving (collaborative, deferring, and self-directing) in prostate cancer screening (PCS) attitudes and behavior. Men (N = 481) of African descent between the ages of 40 and 70 participated. Hierarchical regression analyses revealed that religiousness and self-directed problem solving were associated with PCS attitudes. Intrinsic religiousness was associated with PCS attitudes after controlling for health and organized religiousness. Religiousness was not associated with PCS behavior. Intrinsic religiousness may be an important dimension of religiousness to be considered in tailoring cancer interventions for individuals from faith-based communities.
ITrace: An implicit trust inference method for trust-aware collaborative filtering
NASA Astrophysics Data System (ADS)
He, Xu; Liu, Bin; Chen, Kejia
2018-04-01
The growth of Internet commerce has stimulated the use of collaborative filtering (CF) algorithms as recommender systems. A CF algorithm recommends items of interest to the target user by leveraging the votes given by other similar users. In a standard CF framework, it is assumed that the credibility of every voting user is exactly the same with respect to the target user. This assumption is not satisfied and thus may lead to misleading recommendations in many practical applications. A natural countermeasure is to design a trust-aware CF (TaCF) algorithm, which can take account of the difference in the credibilities of the voting users when performing CF. To this end, this paper presents a trust inference approach, which can predict the implicit trust of the target user on every voting user from a sparse explicit trust matrix. Then an improved CF algorithm termed iTrace is proposed, which takes advantage of both the explicit and the predicted implicit trust to provide recommendations with the CF framework. An empirical evaluation on a public dataset demonstrates that the proposed algorithm provides a significant improvement in recommendation quality in terms of mean absolute error.
Wain, Karen E; Riggs, Erin; Hanson, Karen; Savage, Melissa; Riethmaier, Darlene; Muirhead, Andrea; Mitchell, Elyse; Packard, Bethanny Smith; Faucett, W Andrew
2012-10-01
The International Standards for Cytogenomic Arrays (ISCA) Consortium is a worldwide collaborative effort dedicated to optimizing patient care by improving the quality of chromosomal microarray testing. The primary effort of the ISCA Consortium has been the development of a database of copy number variants (CNVs) identified during the course of clinical microarray testing. This database is a powerful resource for clinicians, laboratories, and researchers, and can be utilized for a variety of applications, such as facilitating standardized interpretations of certain CNVs across laboratories or providing phenotypic information for counseling purposes when published data is sparse. A recognized limitation to the clinical utility of this database, however, is the quality of clinical information available for each patient. Clinical genetic counselors are uniquely suited to facilitate the communication of this information to the laboratory by virtue of their existing clinical responsibilities, case management skills, and appreciation of the evolving nature of scientific knowledge. We intend to highlight the critical role that genetic counselors play in ensuring optimal patient care through contributing to the clinical utility of the ISCA Consortium's database, as well as the quality of individual patient microarray reports provided by contributing laboratories. Current tools, paper and electronic forms, created to maximize this collaboration are shared. In addition to making a professional commitment to providing complete clinical information, genetic counselors are invited to become ISCA members and to become involved in the discussions and initiatives within the Consortium.
Ho, Tung Manh; Nguyen, Ha Viet; Vuong, Thu-Trang; Dam, Quang-Minh; Pham, Hiep-Hung; Vuong, Quan-Hoang
2017-01-01
Background: Collaboration is a common occurrence among Vietnamese scientists; however, insights into Vietnamese scientific collaborations have been scarce. On the other hand, the application of social network analysis in studying science collaboration has gained much attention all over the world. The technique could be employed to explore Vietnam's scientific community. Methods: This paper employs network theory to explore characteristics of a network of 412 Vietnamese social scientists whose papers can be found indexed in the Scopus database. Two basic network measures, density and clustering coefficient, were taken, and the entire network was studied in comparison with two of its largest components. Results: The networks connections are very sparse, with a density of only 0.47%, while the clustering coefficient is very high (58.64%). This suggests an inefficient dissemination of information, knowledge, and expertise in the network. Secondly, the disparity in levels of connection among individuals indicates that the network would easily fall apart if a few highly-connected nodes are removed. Finally, the two largest components of the network were found to differ from the entire networks in terms of measures and were both led by the most productive and well-connected researchers. Conclusions: High clustering and low density seems to be tied to inefficient dissemination of expertise among Vietnamese social scientists, and consequently low scientific output. Also low in robustness, the network shows the potential of an intellectual elite composed of well-connected, productive, and socially significant individuals.
Ho, Tung Manh; Nguyen, Ha Viet; Vuong, Thu-Trang; Dam, Quang-Minh; Pham, Hiep-Hung; Vuong, Quan-Hoang
2017-01-01
Background: Collaboration is a common occurrence among Vietnamese scientists; however, insights into Vietnamese scientific collaborations have been scarce. On the other hand, the application of social network analysis in studying science collaboration has gained much attention all over the world. The technique could be employed to explore Vietnam’s scientific community. Methods: This paper employs network theory to explore characteristics of a network of 412 Vietnamese social scientists whose papers can be found indexed in the Scopus database. Two basic network measures, density and clustering coefficient, were taken, and the entire network was studied in comparison with two of its largest components. Results: The networks connections are very sparse, with a density of only 0.47%, while the clustering coefficient is very high (58.64%). This suggests an inefficient dissemination of information, knowledge, and expertise in the network. Secondly, the disparity in levels of connection among individuals indicates that the network would easily fall apart if a few highly-connected nodes are removed. Finally, the two largest components of the network were found to differ from the entire networks in terms of measures and were both led by the most productive and well-connected researchers. Conclusions: High clustering and low density seems to be tied to inefficient dissemination of expertise among Vietnamese social scientists, and consequently low scientific output. Also low in robustness, the network shows the potential of an intellectual elite composed of well-connected, productive, and socially significant individuals. PMID:28928958
Expanding the catalog of binary black-hole simulations: aligned-spin configurations
NASA Astrophysics Data System (ADS)
Chu, Tony; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2015-04-01
A major goal of numerical relativity is to model the inspiral and merger of binary black holes through sufficiently accurate and long simulations, to enable the successful detection of gravitational waves. However, covering the full parameter space of binary configurations is a computationally daunting task. The SXS Collaboration has made important progress in this direction recently, with a catalog of 174 publicly available binary black-hole simulations [black-holes.org/waveforms]. Nevertheless, the parameter-space coverage remains sparse, even for non-precessing binaries. In this talk, I will describe an addition to the SXS catalog to improve its coverage, consisting of 95 new simulations of aligned-spin binaries with moderate mass ratios and dimensionless spins as high as 0.9. Some applications of these new simulations will also be mentioned.
Implementation and Early Utilization of a Suicide Hotline for Veterans
Kemp, Janet; McKeon, Richard; Katz, Ira R.
2012-01-01
Suicide crisis lines have a respected history as a strategy for reducing deaths from suicide and suicidal behaviors. Until recently, however, evidence of the effectiveness of these crisis lines has been sparse. Studies published during the past decade suggest that crisis lines offer an alternative to populations who may not be willing to engage in treatment through traditional mental health settings. Given this promising evidence, in 2007, the Department of Veterans Affairs in collaboration with the Department of Health and Human Services’ Substance Abuse and Mental Health Administration implemented a National Suicide Hotline that is staffed 24 hours a day, 7 days a week, by Veterans Affairs clinical staff. We report here on the implementation of this suicide hotline and our early observations of its utilization in a largely male population. PMID:22390596
Implementation and early utilization of a Suicide Hotline for veterans.
Knox, Kerry L; Kemp, Janet; McKeon, Richard; Katz, Ira R
2012-03-01
Suicide crisis lines have a respected history as a strategy for reducing deaths from suicide and suicidal behaviors. Until recently, however, evidence of the effectiveness of these crisis lines has been sparse. Studies published during the past decade suggest that crisis lines offer an alternative to populations who may not be willing to engage in treatment through traditional mental health settings. Given this promising evidence, in 2007, the Department of Veterans Affairs in collaboration with the Department of Health and Human Services' Substance Abuse and Mental Health Administration implemented a National Suicide Hotline that is staffed 24 hours a day, 7 days a week, by Veterans Affairs clinical staff. We report here on the implementation of this suicide hotline and our early observations of its utilization in a largely male population.
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
A Higher Level Classification of All Living Organisms
Ruggiero, Michael A.; Gordon, Dennis P.; Orrell, Thomas M.; Bailly, Nicolas; Bourgoin, Thierry; Brusca, Richard C.; Cavalier-Smith, Thomas; Guiry, Michael D.; Kirk, Paul M.
2015-01-01
We present a consensus classification of life to embrace the more than 1.6 million species already provided by more than 3,000 taxonomists’ expert opinions in a unified and coherent, hierarchically ranked system known as the Catalogue of Life (CoL). The intent of this collaborative effort is to provide a hierarchical classification serving not only the needs of the CoL’s database providers but also the diverse public-domain user community, most of whom are familiar with the Linnaean conceptual system of ordering taxon relationships. This classification is neither phylogenetic nor evolutionary but instead represents a consensus view that accommodates taxonomic choices and practical compromises among diverse expert opinions, public usages, and conflicting evidence about the boundaries between taxa and the ranks of major taxa, including kingdoms. Certain key issues, some not fully resolved, are addressed in particular. Beyond its immediate use as a management tool for the CoL and ITIS (Integrated Taxonomic Information System), it is immediately valuable as a reference for taxonomic and biodiversity research, as a tool for societal communication, and as a classificatory “backbone” for biodiversity databases, museum collections, libraries, and textbooks. Such a modern comprehensive hierarchy has not previously existed at this level of specificity. PMID:25923521
Robert, Cyrille; Pasquier, Laurent; Cohen, David; Fradin, Mélanie; Canitano, Roberto; Damaj, Léna; Odent, Sylvie; Tordjman, Sylvie
2017-01-01
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling. PMID:28287497
Robert, Cyrille; Pasquier, Laurent; Cohen, David; Fradin, Mélanie; Canitano, Roberto; Damaj, Léna; Odent, Sylvie; Tordjman, Sylvie
2017-03-12
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.
NASA Astrophysics Data System (ADS)
Ma, Fei; Su, Jing; Hao, Yongxing; Yao, Bing; Yan, Guanghui
2018-02-01
The problem of uncovering the internal operating function of network models is intriguing, demanded and attractive in researches of complex networks. Notice that, in the past two decades, a great number of artificial models are built to try to answer the above mentioned task. Based on the different growth ways, these previous models can be divided into two categories, one type, possessing the preferential attachment, follows a power-law P(k) ∼k-γ, 2 < γ < 3. The other has exponential-scaling feature, P(k) ∼α-k. However, there are no models containing above two kinds of growth ways to be presented, even the study of interconnection between these two growth manners in the same model is lacking. Hence, in this paper, we construct a class of planar and self-similar graphs motivated from a new attachment way, vertex-edge-growth network-operation, more precisely, the couple of both them. We report that this model is sparse, small world and hierarchical. And then, not only is scale-free feature in our model, but also lies the degree parameter γ(≈ 3 . 242) out the typical range. Note that, we suggest that the coexistence of multiple vertex growth ways will have a prominent effect on the power-law parameter γ, and the preferential attachment plays a dominate role on the development of networks over time. At the end of this paper, we obtain an exact analytical expression for the total number of spanning trees of models and also capture spanning trees entropy which we have compared with those of their corresponding component elements.
Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model
NASA Astrophysics Data System (ADS)
Kathuria, D.; Mohanty, B.; Katzfuss, M.
2017-12-01
Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.
Storage of sparse files using parallel log-structured file system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Grider, Gary
A sparse file is stored without holes by storing a data portion of the sparse file using a parallel log-structured file system; and generating an index entry for the data portion, the index entry comprising a logical offset, physical offset and length of the data portion. The holes can be restored to the sparse file upon a reading of the sparse file. The data portion can be stored at a logical end of the sparse file. Additional storage efficiency can optionally be achieved by (i) detecting a write pattern for a plurality of the data portions and generating a singlemore » patterned index entry for the plurality of the patterned data portions; and/or (ii) storing the patterned index entries for a plurality of the sparse files in a single directory, wherein each entry in the single directory comprises an identifier of a corresponding sparse file.« less
Learning Sparse Feature Representations using Probabilistic Quadtrees and Deep Belief Nets
2015-04-24
Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Learning sparse feature representations is a useful instru- ment for solving an...novel framework for the classifi cation of handwritten digits that learns sparse representations using probabilistic quadtrees and Deep Belief Nets... Learning Sparse Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Report Title Learning sparse feature representations is a useful
User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.
NASA Technical Reports Server (NTRS)
Reddy, C. J.
2000-01-01
PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.
Scalable Static and Dynamic Community Detection Using Grappolo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halappanavar, Mahantesh; Lu, Hao; Kalyanaraman, Anantharaman
Graph clustering, popularly known as community detection, is a fundamental kernel for several applications of relevance to the Defense Advanced Research Projects Agency’s (DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro- gram. Clusters or communities represent natural divisions within a network that are densely connected within a cluster and sparsely connected to the rest of the network. The need to compute clustering on large scale data necessitates the development of efficient algorithms that can exploit modern architectures that are fundamentally parallel in nature. How- ever, due to their irregular and inherently sequential nature, many of the current algorithms for community detectionmore » are challenging to parallelize. In response to the HIVE Graph Challenge, we present several parallelization heuristics for fast community detection using the Louvain method as the serial template. We implement all the heuristics in a software library called Grappolo. Using the inputs from the HIVE Challenge, we demonstrate superior performance and high quality solutions based on four parallelization heuristics. We use Grappolo on static graphs as the first step towards community detection on streaming graphs.« less
RaptorX-Property: a web server for protein structure property prediction.
Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo
2016-07-08
RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos
2017-11-09
Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-01
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space (H, L, and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved. PMID:28106806
Wang, Xiaohua; Li, Xi; Rong, Mingzhe; Xie, Dingli; Ding, Dan; Wang, Zhixiang
2017-01-18
The ultra-high frequency (UHF) method is widely used in insulation condition assessment. However, UHF signal processing algorithms are complicated and the size of the result is large, which hinders extracting features and recognizing partial discharge (PD) patterns. This article investigated the chromatic methodology that is novel in PD detection. The principle of chromatic methodologies in color science are introduced. The chromatic processing represents UHF signals sparsely. The UHF signals obtained from PD experiments were processed using chromatic methodology and characterized by three parameters in chromatic space ( H , L , and S representing dominant wavelength, signal strength, and saturation, respectively). The features of the UHF signals were studied hierarchically. The results showed that the chromatic parameters were consistent with conventional frequency domain parameters. The global chromatic parameters can be used to distinguish UHF signals acquired by different sensors, and they reveal the propagation properties of the UHF signal in the L-shaped gas-insulated switchgear (GIS). Finally, typical PD defect patterns had been recognized by using novel chromatic parameters in an actual GIS tank and good performance of recognition was achieved.
Peculiar spectral statistics of ensembles of trees and star-like graphs
NASA Astrophysics Data System (ADS)
Kovaleva, V.; Maximov, Yu; Nechaev, S.; Valba, O.
2017-07-01
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the ‘Lifshitz singularity’ emerging in the one-dimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However, the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, reflecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of an ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.
Population influences on tornado reports in the United States
Anderson, C.J.; Wikle, C.K.; Zhou, Q.; Royle, J. Andrew
2007-01-01
The number of tornadoes reported in the United States is believed to be less than the actual incidence of tornadoes, especially prior to the 1990s, because tornadoes may be undetectable by human witnesses in sparsely populated areas and areas in which obstructions limit the line of sight. A hierarchical Bayesian model is used to simultaneously correct for population-based sampling bias and estimate tornado density using historical tornado report data. The expected result is that F2-F5 compared with F0-F1 tornado reports would vary less with population density. The results agree with this hypothesis for the following population centers: Atlanta, Georgia; Champaign, Illinois; and Des Moines, Iowa. However, the results indicated just the opposite in Oklahoma. It is hypothesized that the result is explained by the misclassification of tornadoes that were worthy of F2-F5 rating but were classified as F0-F1 tornadoes, thereby artificially decreasing the number of F2-F5 and increasing the number of F0-F1 reports in rural Oklahoma.
Peculiar spectral statistics of ensembles of trees and star-like graphs
Kovaleva, V.; Maximov, Yu; Nechaev, S.; ...
2017-07-11
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos
Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less
Learning Midlevel Auditory Codes from Natural Sound Statistics.
Młynarski, Wiktor; McDermott, Josh H
2018-03-01
Interaction with the world requires an organism to transform sensory signals into representations in which behaviorally meaningful properties of the environment are made explicit. These representations are derived through cascades of neuronal processing stages in which neurons at each stage recode the output of preceding stages. Explanations of sensory coding may thus involve understanding how low-level patterns are combined into more complex structures. To gain insight into such midlevel representations for sound, we designed a hierarchical generative model of natural sounds that learns combinations of spectrotemporal features from natural stimulus statistics. In the first layer, the model forms a sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal kernels. To generalize from specific kernel activation patterns, the second layer encodes patterns of time-varying magnitude of multiple first-layer coefficients. When trained on corpora of speech and environmental sounds, some second-layer units learned to group similar spectrotemporal features. Others instantiate opponency between distinct sets of features. Such groupings might be instantiated by neurons in the auditory cortex, providing a hypothesis for midlevel neuronal computation.
Estimation of river and stream temperature trends under haphazard sampling
Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao
2015-01-01
Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.
Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data
Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.
2017-01-01
Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564
NASA Astrophysics Data System (ADS)
Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad
2013-12-01
High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.
Peculiar spectral statistics of ensembles of trees and star-like graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovaleva, V.; Maximov, Yu; Nechaev, S.
In this paper we investigate the eigenvalue statistics of exponentially weighted ensembles of full binary trees and p-branching star graphs. We show that spectral densities of corresponding adjacency matrices demonstrate peculiar ultrametric structure inherent to sparse systems. In particular, the tails of the distribution for binary trees share the \\Lifshitz singularity" emerging in the onedimensional localization, while the spectral statistics of p-branching star-like graphs is less universal, being strongly dependent on p. The hierarchical structure of spectra of adjacency matrices is interpreted as sets of resonance frequencies, that emerge in ensembles of fully branched tree-like systems, known as dendrimers. However,more » the relaxational spectrum is not determined by the cluster topology, but has rather the number-theoretic origin, re ecting the peculiarities of the rare-event statistics typical for one-dimensional systems with a quenched structural disorder. The similarity of spectral densities of an individual dendrimer and of ensemble of linear chains with exponential distribution in lengths, demonstrates that dendrimers could be served as simple disorder-less toy models of one-dimensional systems with quenched disorder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter
Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature.more » Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.« less
Local structure preserving sparse coding for infrared target recognition
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2017-01-01
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286
NASA Astrophysics Data System (ADS)
Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.
2018-04-01
The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.
Crossmaps: Visualization of overlapping relationships in collections of journal papers
Morris, Steven A.; Yen, Gary G.
2004-01-01
A crossmapping technique is introduced for visualizing multiple and overlapping relations among entity types in collections of journal articles. Groups of entities from two entity types are crossplotted to show correspondence of relations. For example, author collaboration groups are plotted on the x axis against groups of papers (research fronts) on the y axis. At the intersection of each pair of author group/research front pairs a circular symbol is plotted whose size is proportional to the number of times that authors in the group appear as authors in papers in the research front. Entity groups are found by agglomerative hierarchical clustering using conventional similarity measures. Crossmaps comprise a simple technique that is particularly suited to showing overlap in relations among entity groups. Particularly useful crossmaps are: research fronts against base reference clusters, research fronts against author collaboration groups, and research fronts against term co-occurrence clusters. When exploring the knowledge domain of a collection of journal papers, it is useful to have several crossmaps of different entity pairs, complemented by research front timelines and base reference cluster timelines. PMID:14762168
Sparse Reconstruction Techniques in MRI: Methods, Applications, and Challenges to Clinical Adoption
Yang, Alice Chieh-Yu; Kretzler, Madison; Sudarski, Sonja; Gulani, Vikas; Seiberlich, Nicole
2016-01-01
The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in Magnetic Resonance Imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be employed to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MR imaging, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold-standards, are discussed. PMID:27003227
NASA Astrophysics Data System (ADS)
Gleiser, Pablo M.
2007-09-01
We analyze a collaboration network based on the Marvel Universe comic books. First, we consider the system as a binary network, where two characters are connected if they appear in the same publication. The analysis of degree correlations reveals that, in contrast to most real social networks, the Marvel Universe presents a disassortative mixing on the degree. Then, we use a weight measure to study the system as a weighted network. This allows us to find and characterize well defined communities. Through the analysis of the community structure and the clustering as a function of the degree we show that the network presents a hierarchical structure. Finally, we comment on possible mechanisms responsible for the particular motifs observed.
Prades, Joan; Morando, Verdiana; Tozzi, Valeria D; Verhoeven, Didier; Germà, Jose R; Borras, Josep M
2017-01-01
Background The study examines two meso-strategic cancer networks, exploring to what extent collaboration can strengthen or hamper network effectiveness. Unlike macro-strategic networks, meso-strategic networks have no hierarchical governance structures nor are they institutionalised within healthcare services' delivery systems. This study aims to analyse the models of professional cooperation and the tools developed for managing clinical practice within two meso-strategic, European cancer networks. Methods Multiple case study design based on the comparative analysis of two cancer networks: Iridium, in Antwerp, Belgium and the Institut Català d'Oncologia in Catalonia, Spain. The case studies applied mixed methods, with qualitative research based on semi-structured interviews ( n = 35) together with case-site observation and material collection. Results The analysis identified four levels of collaborative intensity within medical specialties as well as in multidisciplinary settings, which became both platforms for crosscutting clinical work between hubs' experts and local care teams and the levers for network-based tools development. The organisation of clinical practice relied on professional-based cooperative processes and tiers, lacking vertical integration mechanisms. Conclusions The intensity of professional linkages largely shaped the potential of meso-strategic cancer networks to influence clinical practice organisation. Conversely, the introduction of managerial techniques or network governance structures, without introducing vertical hierarchies, was found to be critical solutions.
Strahl, Stefan; Mertins, Alfred
2008-07-18
Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.
Moody, Daniela; Wohlberg, Brendt
2018-01-02
An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.
Reconstruction of 7T-Like Images From 3T MRI
Bahrami, Khosro; Shi, Feng; Zong, Xiaopeng; Shin, Hae Won; An, Hongyu
2016-01-01
In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous methods and is able to recover better structural details. Also, to place our proposed method in a medical application context, we evaluated the influence of post-processing methods such as brain tissue segmentation on the reconstructed 7T-like MR images. Results show that our 7T-like images lead to higher accuracy in segmentation of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and skull, compared to segmentation of 3T MR images. PMID:27046894
NASA Technical Reports Server (NTRS)
Rogers, David
1988-01-01
The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, J.D., E-mail: jdjakem@sandia.gov; Wildey, T.
2015-01-01
In this paper we present an algorithm for adaptive sparse grid approximations of quantities of interest computed from discretized partial differential equations. We use adjoint-based a posteriori error estimates of the physical discretization error and the interpolation error in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the sparse grid. Utilizing these error estimates provides significantly more accurate functional values for random samples of the sparse grid approximation. We also demonstrate that alternative refinement strategies based upon a posteriori error estimates can lead to further increases in accuracy in the approximation over traditional hierarchicalmore » surplus based strategies. Throughout this paper we also provide and test a framework for balancing the physical discretization error with the stochastic interpolation error of the enhanced sparse grid approximation.« less
Precession missile feature extraction using sparse component analysis of radar measurements
NASA Astrophysics Data System (ADS)
Liu, Lihua; Du, Xiaoyong; Ghogho, Mounir; Hu, Weidong; McLernon, Des
2012-12-01
According to the working mode of the ballistic missile warning radar (BMWR), the radar return from the BMWR is usually sparse. To recognize and identify the warhead, it is necessary to extract the precession frequency and the locations of the scattering centers of the missile. This article first analyzes the radar signal model of the precessing conical missile during flight and develops the sparse dictionary which is parameterized by the unknown precession frequency. Based on the sparse dictionary, the sparse signal model is then established. A nonlinear least square estimation is first applied to roughly extract the precession frequency in the sparse dictionary. Based on the time segmented radar signal, a sparse component analysis method using the orthogonal matching pursuit algorithm is then proposed to jointly estimate the precession frequency and the scattering centers of the missile. Simulation results illustrate the validity of the proposed method.
Kim, Hyunsoo; Park, Haesun
2007-06-15
Many practical pattern recognition problems require non-negativity constraints. For example, pixels in digital images and chemical concentrations in bioinformatics are non-negative. Sparse non-negative matrix factorizations (NMFs) are useful when the degree of sparseness in the non-negative basis matrix or the non-negative coefficient matrix in an NMF needs to be controlled in approximating high-dimensional data in a lower dimensional space. In this article, we introduce a novel formulation of sparse NMF and show how the new formulation leads to a convergent sparse NMF algorithm via alternating non-negativity-constrained least squares. We apply our sparse NMF algorithm to cancer-class discovery and gene expression data analysis and offer biological analysis of the results obtained. Our experimental results illustrate that the proposed sparse NMF algorithm often achieves better clustering performance with shorter computing time compared to other existing NMF algorithms. The software is available as supplementary material.
Feasibility of Very Large Sparse Aperture Deployable Antennas
2014-03-27
FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Jason C. Heller, Captain...States. AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Presented to the Faculty...UNLIMITED AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS Jason C. Heller, B.S., Aerospace
NASA Astrophysics Data System (ADS)
Stoykov, S.; Atanassov, E.; Margenov, S.
2016-10-01
Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.
Immersive volume rendering of blood vessels
NASA Astrophysics Data System (ADS)
Long, Gregory; Kim, Han Suk; Marsden, Alison; Bazilevs, Yuri; Schulze, Jürgen P.
2012-03-01
In this paper, we present a novel method of visualizing flow in blood vessels. Our approach reads unstructured tetrahedral data, resamples it, and uses slice based 3D texture volume rendering. Due to the sparse structure of blood vessels, we utilize an octree to efficiently store the resampled data by discarding empty regions of the volume. We use animation to convey time series data, wireframe surface to give structure, and utilize the StarCAVE, a 3D virtual reality environment, to add a fully immersive element to the visualization. Our tool has great value in interdisciplinary work, helping scientists collaborate with clinicians, by improving the understanding of blood flow simulations. Full immersion in the flow field allows for a more intuitive understanding of the flow phenomena, and can be a great help to medical experts for treatment planning.
Karawajczyk, Anna; Giordanetto, Fabrizio; Benningshof, Jorg; Hamza, Daniel; Kalliokoski, Tuomo; Pouwer, Kees; Morgentin, Remy; Nelson, Adam; Müller, Gerhard; Piechot, Alexander; Tzalis, Dimitrios
2015-11-01
High-throughput screening (HTS) represents a major cornerstone of drug discovery. The availability of an innovative, relevant and high-quality compound collection to be screened often dictates the final fate of a drug discovery campaign. Given that the chemical space to be sampled in research programs is practically infinite and sparsely populated, significant efforts and resources need to be invested in the generation and maintenance of a competitive compound collection. The European Lead Factory (ELF) project is addressing this challenge by leveraging the diverse experience and know-how of academic groups and small and medium enterprises (SMEs) engaged in synthetic and/or medicinal chemistry. Here, we describe the novelty, diversity, structural complexity, physicochemical characteristics and overall attractiveness of this first batch of ELF compounds for HTS purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Fizeau Interferometer Testbed
NASA Technical Reports Server (NTRS)
Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G,; Huet, Hubert; Marzouk, Joe; Solyar, Gregory
2003-01-01
The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.
NASA Astrophysics Data System (ADS)
Roest, W. R.; Herzer, R.; Barker, D. H.; Lafoy, Y.
2005-12-01
The UN Convention on the Law of the Sea allows coastal states to claim a legal continental shelf beyond the 200 nautical miles that constitutes the Exclusive Economic Zone. One of the opportunities presented by UNCLOS article 76 is to align essential - and expensive - data acquisition in poorly mapped shelf regions with scientific research interests, thus maximising data value. The Noucaplac-1 survey that took place in August 2004 in the South Fiji Basin is an example of collaboration between neighboring states aiming to address both UNCLOS article 76 requirements and scientific objectives. The Noucaplac-1 survey was designed by the French EXTRAPLAC (reasoned extension of the continental shelf) program to identify the natural prolongation of the New Caledonian territory along the Loyalty Ridge. At the same time, the environs of the potential extended continental shelf claim was identified by the New Zealand collaborators as a key region for study to improve understanding of the regional tectonic evolution and the survey scope was modified accordingly. This contribution describes the data acquired on board the French RV L'Atalante during the Noucaplac-1 cruise. In addition to the multibeam bathymetric data collected with the EM-12 multibeam echo sounder and showing basement tectonic fabric at the sea floor, high-speed seismic data are of particular interest, as they allow the interpretation of basement morphology in this area that is covered by relatively sparse sediments. Regional magnetic data provide additional evidence for distinct morphotectonic regions that may help a New Caledonian extended continental shelf claim
Liver segmentation from CT images using a sparse priori statistical shape model (SP-SSM).
Wang, Xuehu; Zheng, Yongchang; Gan, Lan; Wang, Xuan; Sang, Xinting; Kong, Xiangfeng; Zhao, Jie
2017-01-01
This study proposes a new liver segmentation method based on a sparse a priori statistical shape model (SP-SSM). First, mark points are selected in the liver a priori model and the original image. Then, the a priori shape and its mark points are used to obtain a dictionary for the liver boundary information. Second, the sparse coefficient is calculated based on the correspondence between mark points in the original image and those in the a priori model, and then the sparse statistical model is established by combining the sparse coefficients and the dictionary. Finally, the intensity energy and boundary energy models are built based on the intensity information and the specific boundary information of the original image. Then, the sparse matching constraint model is established based on the sparse coding theory. These models jointly drive the iterative deformation of the sparse statistical model to approximate and accurately extract the liver boundaries. This method can solve the problems of deformation model initialization and a priori method accuracy using the sparse dictionary. The SP-SSM can achieve a mean overlap error of 4.8% and a mean volume difference of 1.8%, whereas the average symmetric surface distance and the root mean square symmetric surface distance can reach 0.8 mm and 1.4 mm, respectively.
Feature Selection and Pedestrian Detection Based on Sparse Representation.
Yao, Shihong; Wang, Tao; Shen, Weiming; Pan, Shaoming; Chong, Yanwen; Ding, Fei
2015-01-01
Pedestrian detection have been currently devoted to the extraction of effective pedestrian features, which has become one of the obstacles in pedestrian detection application according to the variety of pedestrian features and their large dimension. Based on the theoretical analysis of six frequently-used features, SIFT, SURF, Haar, HOG, LBP and LSS, and their comparison with experimental results, this paper screens out the sparse feature subsets via sparse representation to investigate whether the sparse subsets have the same description abilities and the most stable features. When any two of the six features are fused, the fusion feature is sparsely represented to obtain its important components. Sparse subsets of the fusion features can be rapidly generated by avoiding calculation of the corresponding index of dimension numbers of these feature descriptors; thus, the calculation speed of the feature dimension reduction is improved and the pedestrian detection time is reduced. Experimental results show that sparse feature subsets are capable of keeping the important components of these six feature descriptors. The sparse features of HOG and LSS possess the same description ability and consume less time compared with their full features. The ratios of the sparse feature subsets of HOG and LSS to their full sets are the highest among the six, and thus these two features can be used to best describe the characteristics of the pedestrian and the sparse feature subsets of the combination of HOG-LSS show better distinguishing ability and parsimony.
A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities
Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro
2017-01-01
The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds. PMID:29099745
A Middleware Solution for Wireless IoT Applications in Sparse Smart Cities.
Bellavista, Paolo; Giannelli, Carlo; Lanzone, Stefano; Riberto, Giulio; Stefanelli, Cesare; Tortonesi, Mauro
2017-11-03
The spread of off-the-shelf mobile devices equipped with multiple wireless interfaces together with sophisticated sensors is paving the way to novel wireless Internet of Things (IoT) environments, characterized by multi-hop infrastructure-less wireless networks where devices carried by users act as sensors/actuators as well as network nodes. In particular, the paper presents Real Ad-hoc Multi-hop Peer-to peer-Wireless IoT Application (RAMP-WIA), a novel solution that facilitates the development, deployment, and management of applications in sparse Smart City environments, characterized by users willing to collaborate by allowing new applications to be deployed on their smartphones to remotely monitor and control fixed/mobile devices. RAMP-WIA allows users to dynamically configure single-hop wireless links, to manage opportunistically multi-hop packet dispatching considering that the network topology (together with the availability of sensors and actuators) may abruptly change, to actuate reliably sensor nodes specifically considering that only part of them could be actually reachable in a timely manner, and to upgrade dynamically the nodes through over-the-air distribution of new software components. The paper also reports the performance of RAMP-WIA on simple but realistic cases of small-scale deployment scenarios with off-the-shelf Android smartphones and Raspberry Pi devices; these results show not only the feasibility and soundness of the proposed approach, but also the efficiency of the middleware implemented when deployed on real testbeds.
Low complexity feature extraction for classification of harmonic signals
NASA Astrophysics Data System (ADS)
William, Peter E.
In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.
A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging.
Zhou, Ning; Cheung, William K; Qiu, Guoping; Xue, Xiangyang
2011-07-01
The increasing availability of large quantities of user contributed images with labels has provided opportunities to develop automatic tools to tag images to facilitate image search and retrieval. In this paper, we present a novel hybrid probabilistic model (HPM) which integrates low-level image features and high-level user provided tags to automatically tag images. For images without any tags, HPM predicts new tags based solely on the low-level image features. For images with user provided tags, HPM jointly exploits both the image features and the tags in a unified probabilistic framework to recommend additional tags to label the images. The HPM framework makes use of the tag-image association matrix (TIAM). However, since the number of images is usually very large and user-provided tags are diverse, TIAM is very sparse, thus making it difficult to reliably estimate tag-to-tag co-occurrence probabilities. We developed a collaborative filtering method based on nonnegative matrix factorization (NMF) for tackling this data sparsity issue. Also, an L1 norm kernel method is used to estimate the correlations between image features and semantic concepts. The effectiveness of the proposed approach has been evaluated using three databases containing 5,000 images with 371 tags, 31,695 images with 5,587 tags, and 269,648 images with 5,018 tags, respectively.
Silverstein, Jonathan C; Dech, Fred; Kouchoukos, Philip L
2004-01-01
Radiological volumes are typically reviewed by surgeons using cross-sections and iso-surface reconstructions. Applications that combine collaborative stereo volume visualization with symbolic anatomic information and data fusions would expand surgeons' capabilities in interpretation of data and in planning treatment. Such an application has not been seen clinically. We are developing methods to systematically combine symbolic anatomy (term hierarchies and iso-surface atlases) with patient data using data fusion. We describe our progress toward integrating these methods into our collaborative virtual reality application. The fully combined application will be a feature-rich stereo collaborative volume visualization environment for use by surgeons in which DICOM datasets will self-report underlying anatomy with visual feedback. Using hierarchical navigation of SNOMED-CT anatomic terms integrated with our existing Tele-immersive DICOM-based volumetric rendering application, we will display polygonal representations of anatomic systems on the fly from menus that query a database. The methods and tools involved in this application development are SNOMED-CT, DICOM, VISIBLE HUMAN, volumetric fusion and C++ on a Tele-immersive platform. This application will allow us to identify structures and display polygonal representations from atlas data overlaid with the volume rendering. First, atlas data is automatically translated, rotated, and scaled to the patient data during loading using a public domain volumetric fusion algorithm. This generates a modified symbolic representation of the underlying canonical anatomy. Then, through the use of collision detection or intersection testing of various transparent polygonal representations, the polygonal structures are highlighted into the volumetric representation while the SNOMED names are displayed. Thus, structural names and polygonal models are associated with the visualized DICOM data. This novel juxtaposition of information promises to expand surgeons' abilities to interpret images and plan treatment.
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
Zhang, Jie; Fan, Shangang; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki
2017-01-01
Both L1/2 and L2/3 are two typical non-convex regularizations of Lp (0
Li, Yunyi; Zhang, Jie; Fan, Shangang; Yang, Jie; Xiong, Jian; Cheng, Xiefeng; Sari, Hikmet; Adachi, Fumiyuki; Gui, Guan
2017-12-15
Both L 1/2 and L 2/3 are two typical non-convex regularizations of L p (0
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.
Lin, Andrew C; Bygrave, Alexei M; de Calignon, Alix; Lee, Tzumin; Miesenböck, Gero
2014-04-01
Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.
Stanton, Neville A; Walker, Guy H; Sorensen, Linda J
2012-01-01
This article presents the rationale behind an important enhancement to a socio-technical model of organisations and teams derived from military research. It combines this with empirical results which take advantage of these enhancements. In Part 1, a new theoretical legacy for the model is developed based on Ergonomics theories and insights. This allows team communications data to be plotted into the model and for it to demonstrate discriminate validity between alternative team structures. Part 2 presents multinational data from the Experimental Laboratory for Investigating Collaboration, Information-sharing, and Trust (ELICIT) community. It was surprising to see that teams in both traditional hierarchical command and control and networked 'peer-to-peer' organisations operate in broadly the same area of the model, a region occupied by networks of communication exhibiting 'small world' properties. Small world networks may be of considerable importance for the Ergonomics analysis of team organisation and performance. This article is themed around macro and systems Ergonomics, and examines the effects of command and control structures. Despite some differences in behaviour and measures of agility, when given the freedom to do so, participants organised themselves into a small world network. This network type has important and interesting implications for the Ergonomics design of teams and organisations.
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Yanfei
2018-04-01
We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.
A performance study of sparse Cholesky factorization on INTEL iPSC/860
NASA Technical Reports Server (NTRS)
Zubair, M.; Ghose, M.
1992-01-01
The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices. However, there is a lack of such efficient codes on parallel machines in general, and distributed machines in particular. Some of the issues that are critical to the implementation of sparse Cholesky factorization on a distributed memory parallel machine are ordering, partitioning and mapping, load balancing, and ordering of various tasks within a processor. Here, we focus on the effect of various partitioning schemes on the performance of sparse Cholesky factorization on the Intel iPSC/860. Also, a new partitioning heuristic for structured as well as unstructured sparse matrices is proposed, and its performance is compared with other schemes.
Image fusion using sparse overcomplete feature dictionaries
Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt
2015-10-06
Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.
MMI: Increasing Community Collaboration
NASA Astrophysics Data System (ADS)
Galbraith, N. R.; Stocks, K.; Neiswender, C.; Maffei, A.; Bermudez, L.
2007-12-01
Building community requires a collaborative environment and guidance to help move members towards a common goal. An effective environment for community collaboration is a workspace that fosters participation and cooperation; effective guidance furthers common understanding and promotes best practices. The Marine Metadata Interoperability (MMI) project has developed a community web site to provide a collaborative environment for scientists, technologists, and data managers from around the world to learn about metadata and exchange ideas. Workshops, demonstration projects, and presentations also provide community-building opportunities for MMI. MMI has developed comprehensive online guides to help users understand and work with metadata standards, ontologies, and other controlled vocabularies. Documents such as "The Importance of Metadata Standards", "Usage vs. Discovery Vocabularies" and "Developing Controlled Vocabularies" guide scientists and data managers through a variety of metadata-related concepts. Members from eight organizations involved in marine science and informatics collaborated on this effort. The MMI web site has moved from Plone to Drupal, two content management systems which provide different opportunities for community-based work. Drupal's "organic groups" feature will be used to provide workspace for future teams tasked with content development, outreach, and other MMI mission-critical work. The new site is designed to enable members to easily create working areas, to build communities dedicated to developing consensus on metadata and other interoperability issues. Controlled-vocabulary-driven menus, integrated mailing-lists, member-based content creation and review tools are facets of the new web site architecture. This move provided the challenge of developing a hierarchical vocabulary to describe the resources presented on the site; consistent and logical tagging of web pages is the basis of Drupal site navigation. The new MMI web site presents enhanced opportunities for electronic discussions, focused collaborative work, and even greater community participation. The MMI project is beginning a new initiative to comprehensively catalog and document tools for marine metadata. The new MMI community-based web site will be used to support this work and to support the work of other ad-hoc teams in the future. We are seeking broad input from the community on this effort.
ABA-Cloud: support for collaborative breath research
Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton
2016-01-01
This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research. PMID:23619467
ABA-Cloud: support for collaborative breath research.
Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton
2013-06-01
This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.
Databases for multilevel biophysiology research available at Physiome.jp.
Asai, Yoshiyuki; Abe, Takeshi; Li, Li; Oka, Hideki; Nomura, Taishin; Kitano, Hiroaki
2015-01-01
Physiome.jp (http://physiome.jp) is a portal site inaugurated in 2007 to support model-based research in physiome and systems biology. At Physiome.jp, several tools and databases are available to support construction of physiological, multi-hierarchical, large-scale models. There are three databases in Physiome.jp, housing mathematical models, morphological data, and time-series data. In late 2013, the site was fully renovated, and in May 2015, new functions were implemented to provide information infrastructure to support collaborative activities for developing models and performing simulations within the database framework. This article describes updates to the databases implemented since 2013, including cooperation among the three databases, interactive model browsing, user management, version management of models, management of parameter sets, and interoperability with applications.
Three skills every 21st-century manager needs.
2012-01-01
Over the past decade companies have become more global and employee groups more diverse than ever before. Organizations are less hierarchical and more collaborative. And today's offices are full of once unimaginable technological distractions. We asked experts in cross-cultural communication, information networks, and the science of attention what skills executives should cultivate to tackle these new challenges. Molinsky thinks that managers must overcome psychological barriers in order to act in ways that other cultures find appropriate. Davenport and Iyer explain why the devolution of hierarchy has increased the value of building and wielding influence through digital networks and offer tips for how to do it. And Davidson tells managers to get over their fears about distraction and embrace the brain's natural tendency to divide attention.
Contracting in the National Health Service (NHS): recognizing the need for co-operation.
Joslyn, E
1997-05-01
Within the reorganized National Health Service hierarchical relationships between Health Authorities and Trusts have been replaced by functional differentiation. However, differentiation of function cannot be seen as an end in itself and management of the relationship between purchasers and providers must include managing the differentiation as well as the function. This paper suggests that collaborative and administrative activities have a distinct role to play in health service management. The paper suggests that in health service management market strategies are likely to dominate in relation to resource allocation activities. The paper also argues that administrative strategies are likely to be necessary within the internal market system--to bridge the gap resulting from the differentiation of function.
ERIC Educational Resources Information Center
Sadler, Peter G.
The Institute for the Study of Sparsely Populated Areas is a multidisciplinary research unit which acts to coordinate, further, and initiate studies of the economic and social conditions of sparsely populated areas. Short summaries of the eight studies completed in the session of 1977-78 indicate work in such areas as the study of political life…
Disentangling giant component and finite cluster contributions in sparse random matrix spectra.
Kühn, Reimer
2016-04-01
We describe a method for disentangling giant component and finite cluster contributions to sparse random matrix spectra, using sparse symmetric random matrices defined on Erdős-Rényi graphs as an example and test bed. Our methods apply to sparse matrices defined in terms of arbitrary graphs in the configuration model class, as long as they have finite mean degree.
NASA Astrophysics Data System (ADS)
Babcock, C. R.; Finley, A. O.; Andersen, H. E.; Moskal, L. M.; Morton, D. C.; Cook, B.; Nelson, R.
2017-12-01
Upcoming satellite lidar missions, such as GEDI and IceSat-2, are designed to collect laser altimetry data from space for narrow bands along orbital tracts. As a result lidar metric sets derived from these sources will not be of complete spatial coverage. This lack of complete coverage, or sparsity, means traditional regression approaches that consider lidar metrics as explanatory variables (without error) cannot be used to generate wall-to-wall maps of forest inventory variables. We implement a coregionalization framework to jointly model sparsely sampled lidar information and point-referenced forest variable measurements to create wall-to-wall maps with full probabilistic uncertainty quantification of all inputs. We inform the model with USFS Forest Inventory and Analysis (FIA) in-situ forest measurements and GLAS lidar data to spatially predict aboveground forest biomass (AGB) across the contiguous US. We cast our model within a Bayesian hierarchical framework to better model complex space-varying correlation structures among the lidar metrics and FIA data, which yields improved prediction and uncertainty assessment. To circumvent computational difficulties that arise when fitting complex geostatistical models to massive datasets, we use a Nearest Neighbor Gaussian process (NNGP) prior. Results indicate that a coregionalization modeling approach to leveraging sampled lidar data to improve AGB estimation is effective. Further, fitting the coregionalization model within a Bayesian mode of inference allows for AGB quantification across scales ranging from individual pixel estimates of AGB density to total AGB for the continental US with uncertainty. The coregionalization framework examined here is directly applicable to future spaceborne lidar acquisitions from GEDI and IceSat-2. Pairing these lidar sources with the extensive FIA forest monitoring plot network using a joint prediction framework, such as the coregionalization model explored here, offers the potential to improve forest AGB accounting certainty and provide maps for post-model fitting analysis of the spatial distribution of AGB.
Pure endmember extraction using robust kernel archetypoid analysis for hyperspectral imagery
NASA Astrophysics Data System (ADS)
Sun, Weiwei; Yang, Gang; Wu, Ke; Li, Weiyue; Zhang, Dianfa
2017-09-01
A robust kernel archetypoid analysis (RKADA) method is proposed to extract pure endmembers from hyperspectral imagery (HSI). The RKADA assumes that each pixel is a sparse linear mixture of all endmembers and each endmember corresponds to a real pixel in the image scene. First, it improves the re8gular archetypal analysis with a new binary sparse constraint, and the adoption of the kernel function constructs the principal convex hull in an infinite Hilbert space and enlarges the divergences between pairwise pixels. Second, the RKADA transfers the pure endmember extraction problem into an optimization problem by minimizing residual errors with the Huber loss function. The Huber loss function reduces the effects from big noises and outliers in the convergence procedure of RKADA and enhances the robustness of the optimization function. Third, the random kernel sinks for fast kernel matrix approximation and the two-stage algorithm for optimizing initial pure endmembers are utilized to improve its computational efficiency in realistic implementations of RKADA, respectively. The optimization equation of RKADA is solved by using the block coordinate descend scheme and the desired pure endmembers are finally obtained. Six state-of-the-art pure endmember extraction methods are employed to make comparisons with the RKADA on both synthetic and real Cuprite HSI datasets, including three geometrical algorithms vertex component analysis (VCA), alternative volume maximization (AVMAX) and orthogonal subspace projection (OSP), and three matrix factorization algorithms the preconditioning for successive projection algorithm (PreSPA), hierarchical clustering based on rank-two nonnegative matrix factorization (H2NMF) and self-dictionary multiple measurement vector (SDMMV). Experimental results show that the RKADA outperforms all the six methods in terms of spectral angle distance (SAD) and root-mean-square-error (RMSE). Moreover, the RKADA has short computational times in offline operations and shows significant improvement in identifying pure endmembers for ground objects with smaller spectrum differences. Therefore, the RKADA could be an alternative for pure endmember extraction from hyperspectral images.
Thomas, D.L.; Johnson, D.; Griffith, B.
2006-01-01
Modeling the probability of use of land units characterized by discrete and continuous measures, we present a Bayesian random-effects model to assess resource selection. This model provides simultaneous estimation of both individual- and population-level selection. Deviance information criterion (DIC), a Bayesian alternative to AIC that is sample-size specific, is used for model selection. Aerial radiolocation data from 76 adult female caribou (Rangifer tarandus) and calf pairs during 1 year on an Arctic coastal plain calving ground were used to illustrate models and assess population-level selection of landscape attributes, as well as individual heterogeneity of selection. Landscape attributes included elevation, NDVI (a measure of forage greenness), and land cover-type classification. Results from the first of a 2-stage model-selection procedure indicated that there is substantial heterogeneity among cow-calf pairs with respect to selection of the landscape attributes. In the second stage, selection of models with heterogeneity included indicated that at the population-level, NDVI and land cover class were significant attributes for selection of different landscapes by pairs on the calving ground. Population-level selection coefficients indicate that the pairs generally select landscapes with higher levels of NDVI, but the relationship is quadratic. The highest rate of selection occurs at values of NDVI less than the maximum observed. Results for land cover-class selections coefficients indicate that wet sedge, moist sedge, herbaceous tussock tundra, and shrub tussock tundra are selected at approximately the same rate, while alpine and sparsely vegetated landscapes are selected at a lower rate. Furthermore, the variability in selection by individual caribou for moist sedge and sparsely vegetated landscapes is large relative to the variability in selection of other land cover types. The example analysis illustrates that, while sometimes computationally intense, a Bayesian hierarchical discrete-choice model for resource selection can provide managers with 2 components of population-level inference: average population selection and variability of selection. Both components are necessary to make sound management decisions based on animal selection.
Chantler, Tracey; Lwembe, Saumu; Saliba, Vanessa; Raj, Thara; Mays, Nicholas; Ramsay, Mary; Mounier-Jack, Sandra
2016-09-15
The English health system experienced a large-scale reorganisation in April 2013. A national tri-partite delivery framework involving the Department of Health, NHS England and Public Health England was agreed and a new local operational model applied. Evidence about how health system re-organisations affect constituent public health programmes is sparse and focused on low and middle income countries. We conducted an in-depth analysis of how the English immunisation programme adapted to the April 2013 health system reorganisation, and what facilitated or hindered the delivery of immunisation services in this context. A qualitative case study methodology involving interviews and observations at national and local level was applied. Three sites were selected to represent different localities, varying levels of immunisation coverage and a range of changes in governance. Study participants included 19 national decision-makers and 56 local implementers. Two rounds of interviews and observations (immunisation board/committee meetings) occurred between December 2014 and June 2015, and September and December 2015. Interviews were audio recorded and transcribed verbatim and written accounts of observed events compiled. Data was imported into NVIVO 10 and analysed thematically. The new immunisation programme in the new health system was described as fragmented, and significant effort was expended to regroup. National tripartite arrangements required joint working and accountability; a shift from the simpler hierarchical pre-reform structure, typical of many public health programmes. New local inter-organisational arrangements resulted in ambiguity about organisational responsibilities and hindered data-sharing. Whilst making immunisation managers responsible for larger areas supported equitable resource distribution and strengthened service commissioning, it also reduced their ability to apply clinical expertise, support and evaluate immunisation providers' performance. Partnership working helped staff adapt, but the complexity of the health system hindered the development of consistent approaches for training and service evaluation. The April 2013 health system reorganisation in England resulted in significant fragmentation in the way the immunisation programme was delivered. Some of this was a temporary by-product of organisational change, other more persistent challenges were intrinsic to the complex architecture of the new health system. Partnership working helped immunisation leaders and implementers reconnect and now the challenge is to assess how inter-agency collaboration can be strengthened.
Optimized Design and Analysis of Sparse-Sampling fMRI Experiments
Perrachione, Tyler K.; Ghosh, Satrajit S.
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power. PMID:23616742
Optimized design and analysis of sparse-sampling FMRI experiments.
Perrachione, Tyler K; Ghosh, Satrajit S
2013-01-01
Sparse-sampling is an important methodological advance in functional magnetic resonance imaging (fMRI), in which silent delays are introduced between MR volume acquisitions, allowing for the presentation of auditory stimuli without contamination by acoustic scanner noise and for overt vocal responses without motion-induced artifacts in the functional time series. As such, the sparse-sampling technique has become a mainstay of principled fMRI research into the cognitive and systems neuroscience of speech, language, hearing, and music. Despite being in use for over a decade, there has been little systematic investigation of the acquisition parameters, experimental design considerations, and statistical analysis approaches that bear on the results and interpretation of sparse-sampling fMRI experiments. In this report, we examined how design and analysis choices related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation rate (an experimental design parameter), and model basis function (an analysis parameter) act independently and interactively to affect the neural activation profiles observed in fMRI. First, we conducted a series of computational simulations to explore the parameter space of sparse design and analysis with respect to these variables; second, we validated the results of these simulations in a series of sparse-sampling fMRI experiments. Overall, these experiments suggest the employment of three methodological approaches that can, in many situations, substantially improve the detection of neurophysiological response in sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incorporates hemodynamic response convolution to reduce model error. (2) The design of sparse fMRI experiments should maintain a high rate of stimulus presentation to maximize effect size. (3) TR delays of short to intermediate length can be used between acquisitions of sparse-sampled functional image volumes to increase the number of samples and improve statistical power.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhu, Linli; Wang, Kaiyun
2015-12-01
Ontology, a model of knowledge representation and storage, has had extensive applications in pharmaceutics, social science, chemistry and biology. In the age of “big data”, the constructed concepts are often represented as higher-dimensional data by scholars, and thus the sparse learning techniques are introduced into ontology algorithms. In this paper, based on the alternating direction augmented Lagrangian method, we present an ontology optimization algorithm for ontological sparse vector learning, and a fast version of such ontology technologies. The optimal sparse vector is obtained by an iterative procedure, and the ontology function is then obtained from the sparse vector. Four simulation experiments show that our ontological sparse vector learning model has a higher precision ratio on plant ontology, humanoid robotics ontology, biology ontology and physics education ontology data for similarity measuring and ontology mapping applications.
Hierarchical Modeling and Robust Synthesis for the Preliminary Design of Large Scale Complex Systems
NASA Technical Reports Server (NTRS)
Koch, Patrick N.
1997-01-01
Large-scale complex systems are characterized by multiple interacting subsystems and the analysis of multiple disciplines. The design and development of such systems inevitably requires the resolution of multiple conflicting objectives. The size of complex systems, however, prohibits the development of comprehensive system models, and thus these systems must be partitioned into their constituent parts. Because simultaneous solution of individual subsystem models is often not manageable iteration is inevitable and often excessive. In this dissertation these issues are addressed through the development of a method for hierarchical robust preliminary design exploration to facilitate concurrent system and subsystem design exploration, for the concurrent generation of robust system and subsystem specifications for the preliminary design of multi-level, multi-objective, large-scale complex systems. This method is developed through the integration and expansion of current design techniques: Hierarchical partitioning and modeling techniques for partitioning large-scale complex systems into more tractable parts, and allowing integration of subproblems for system synthesis; Statistical experimentation and approximation techniques for increasing both the efficiency and the comprehensiveness of preliminary design exploration; and Noise modeling techniques for implementing robust preliminary design when approximate models are employed. Hierarchical partitioning and modeling techniques including intermediate responses, linking variables, and compatibility constraints are incorporated within a hierarchical compromise decision support problem formulation for synthesizing subproblem solutions for a partitioned system. Experimentation and approximation techniques are employed for concurrent investigations and modeling of partitioned subproblems. A modified composite experiment is introduced for fitting better predictive models across the ranges of the factors, and an approach for constructing partitioned response surfaces is developed to reduce the computational expense of experimentation for fitting models in a large number of factors. Noise modeling techniques are compared and recommendations are offered for the implementation of robust design when approximate models are sought. These techniques, approaches, and recommendations are incorporated within the method developed for hierarchical robust preliminary design exploration. This method as well as the associated approaches are illustrated through their application to the preliminary design of a commercial turbofan turbine propulsion system. The case study is developed in collaboration with Allison Engine Company, Rolls Royce Aerospace, and is based on the Allison AE3007 existing engine designed for midsize commercial, regional business jets. For this case study, the turbofan system-level problem is partitioned into engine cycle design and configuration design and a compressor modules integrated for more detailed subsystem-level design exploration, improving system evaluation. The fan and low pressure turbine subsystems are also modeled, but in less detail. Given the defined partitioning, these subproblems are investigated independently and concurrently, and response surface models are constructed to approximate the responses of each. These response models are then incorporated within a commercial turbofan hierarchical compromise decision support problem formulation. Five design scenarios are investigated, and robust solutions are identified. The method and solutions identified are verified by comparison with the AE3007 engine. The solutions obtained are similar to the AE3007 cycle and configuration, but are better with respect to many of the requirements.
Practical Sub-Nyquist Sampling via Array-Based Compressed Sensing Receiver Architecture
2016-07-10
different array ele- ments at different sub-Nyquist sampling rates. Signal processing inspired by the sparse fast Fourier transform allows for signal...reconstruction algorithms can be computationally demanding (REF). The related sparse Fourier transform algorithms aim to reduce the processing time nec- essary to...compute the DFT of frequency-sparse signals [7]. In particular, the sparse fast Fourier transform (sFFT) achieves processing time better than the
Evidence for sparse synergies in grasping actions.
Prevete, Roberto; Donnarumma, Francesco; d'Avella, Andrea; Pezzulo, Giovanni
2018-01-12
Converging evidence shows that hand-actions are controlled at the level of synergies and not single muscles. One intriguing aspect of synergy-based action-representation is that it may be intrinsically sparse and the same synergies can be shared across several distinct types of hand-actions. Here, adopting a normative angle, we consider three hypotheses for hand-action optimal-control: sparse-combination hypothesis (SC) - sparsity in the mapping between synergies and actions - i.e., actions implemented using a sparse combination of synergies; sparse-elements hypothesis (SE) - sparsity in synergy representation - i.e., the mapping between degrees-of-freedom (DoF) and synergies is sparse; double-sparsity hypothesis (DS) - a novel view combining both SC and SE - i.e., both the mapping between DoF and synergies and between synergies and actions are sparse, each action implementing a sparse combination of synergies (as in SC), each using a limited set of DoFs (as in SE). We evaluate these hypotheses using hand kinematic data from six human subjects performing nine different types of reach-to-grasp actions. Our results support DS, suggesting that the best action representation is based on a relatively large set of synergies, each involving a reduced number of degrees-of-freedom, and that distinct sets of synergies may be involved in distinct tasks.
Turbulent flows over sparse canopies
NASA Astrophysics Data System (ADS)
Sharma, Akshath; García-Mayoral, Ricardo
2018-04-01
Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.
NASA Astrophysics Data System (ADS)
Abbasi, Ashkan; Monadjemi, Amirhassan; Fang, Leyuan; Rabbani, Hossein
2018-03-01
We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when the original data were subsampled during acquisition. However, the OCT images suffer from the presence of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed NWSR method merges sparse representations of multiple similar noisy and denoised patches to better estimate a sparse representation for each patch. First, the sparse representation of each patch is independently computed over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by averaging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches, combining noisy and denoised patches' representations is beneficial to obtain a more robust estimate of the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image denoising method and our method provides an efficient way to exploit information from noisy and denoised patches' representations. The experimental results on denoising and interpolation of spectral domain OCT images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.
Effect of collaborative care on cost variation in an intensive care unit.
Garland, Allan
2013-05-01
Improving the cost-effectiveness of health care requires an understanding of the genesis of health care costs and in particular the sources of cost variation. Little is known about how multiple physicians, caring collaboratively for patients, contribute to costs. To explore the effect of collaborative care by physicians on variation in discretionary costs in an intensive care unit (ICU) by determining the contributions of the attending intensivists and ICU fellows. Prospective, observational study using a multivariable model of median discretionary costs for the first day in the ICU, adjusting for confounding variables. Analysis included 3514 patients who spent more than 2 hours in the ICU on the initial day. Impact of the physicians was assessed via variables representing the specific intensivist and ICU fellow responsible on the first ICU day and allowing for interaction terms. On the initial day, patients spent a median of 10.6 hours (interquartile range, 6.3-16.5) in the ICU, with median discretionary costs of $1343 (interquartile range, $788-2208). There was large variation in adjusted costs attributable to both the intensivists ($359; 95% CI, $244-$474) and the fellows ($756; 95% CI, $550-$965). The interaction terms were not significant (P = .12-.79). In an ICU care model with intensivists and subspecialty fellows, both types of physicians contributed significantly to the observed variation in discretionary costs. However, even in the presence of a hierarchical arrangement of clinical responsibilities, the influences on costs of the 2 types of physicians were independent.
Adaptive regulation of sparseness by feedforward inhibition
Assisi, Collins; Stopfer, Mark; Laurent, Gilles; Bazhenov, Maxim
2014-01-01
In the mushroom body of insects, odors are represented by very few spikes in a small number of neurons, a highly efficient strategy known as sparse coding. Physiological studies of these neurons have shown that sparseness is maintained across thousand-fold changes in odor concentration. Using a realistic computational model, we propose that sparseness in the olfactory system is regulated by adaptive feedforward inhibition. When odor concentration changes, feedforward inhibition modulates the duration of the temporal window over which the mushroom body neurons may integrate excitatory presynaptic input. This simple adaptive mechanism could maintain the sparseness of sensory representations across wide ranges of stimulus conditions. PMID:17660812
Exhaustive Search for Sparse Variable Selection in Linear Regression
NASA Astrophysics Data System (ADS)
Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato
2018-04-01
We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.
Two conditions for equivalence of 0-norm solution and 1-norm solution in sparse representation.
Li, Yuanqing; Amari, Shun-Ichi
2010-07-01
In sparse representation, two important sparse solutions, the 0-norm and 1-norm solutions, have been receiving much of attention. The 0-norm solution is the sparsest, however it is not easy to obtain. Although the 1-norm solution may not be the sparsest, it can be easily obtained by the linear programming method. In many cases, the 0-norm solution can be obtained through finding the 1-norm solution. Many discussions exist on the equivalence of the two sparse solutions. This paper analyzes two conditions for the equivalence of the two sparse solutions. The first condition is necessary and sufficient, however, difficult to verify. Although the second is necessary but is not sufficient, it is easy to verify. In this paper, we analyze the second condition within the stochastic framework and propose a variant. We then prove that the equivalence of the two sparse solutions holds with high probability under the variant of the second condition. Furthermore, in the limit case where the 0-norm solution is extremely sparse, the second condition is also a sufficient condition with probability 1.
Sparse representation based SAR vehicle recognition along with aspect angle.
Xing, Xiangwei; Ji, Kefeng; Zou, Huanxin; Sun, Jixiang
2014-01-01
As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle's aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle's aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.
Sediment transport processes in estuaries: An introduction
NASA Astrophysics Data System (ADS)
Perillo, Gerardo M. E.; Lavelle, J. William
1989-10-01
Research on estuarine sediment transport processes has received increasing attention in recent years, attention related to concerns about water clarity, pollutant distribution and transport, dredge spoil disposal, creation and maintenance of channels and basins for navigational purposes, and shoreline erosion. Still, the geophysical community that addresses these concerns and the underlying fundamentals of sediment transport in an estuary is widely but relatively sparsely distributed around the world. The need to draw these researchers together to discuss ideas and outlooks led to the AGU Chapman Conference on Sediment Transport Processes in Estuaries that was held at the Universidad Nacional del Sur in Bahía Bianca, Argentina, from June 13 to June 17, 1988 [Perillo and Lavelle, 1988]. The meeting sought to provide a timely impetus to further progress in sediment transport research in estuaries, promote communication among researchers using different investigatory approaches, and develop collaborations among estuarine scientists in developed and developing nations.
Enclosure Transform for Interest Point Detection From Speckle Imagery.
Yongjian Yu; Jue Wang
2017-03-01
We present a fast enclosure transform (ET) to localize complex objects of interest from speckle imagery. This approach explores the spatial confinement on regional features from a sparse image feature representation. Unrelated, broken ridge features surrounding an object are organized collaboratively, giving rise to the enclosureness of the object. Three enclosure likelihood measures are constructed, consisting of the enclosure force, potential energy, and encloser count. In the transform domain, the local maxima manifest the locations of objects of interest, for which only the intrinsic dimension is known a priori. The discrete ET algorithm is computationally efficient, being on the order of O(MN) using N measuring distances across an image of M ridge pixels. It involves easy and few parameter settings. We demonstrate and assess the performance of ET on the automatic detection of the prostate locations from supra-pubic ultrasound images. ET yields superior results in terms of positive detection rate, accuracy and coverage.
Hilliard, Marisa E; Ernst, Michelle M; Gray, Wendy N; Saeed, Shehzad A; Cortina, Sandra
2012-09-01
Pediatric psychologists are increasingly called upon to treat children from non-Western countries, whose cultures may contrast with a Western medical setting. Research on cultural adaptations of evidence-based treatments (EBTs), particularly for individuals from the Middle East, is sparse. To address this need, we discuss clinical issues encountered when working with patients from the Middle East. Synthesis of the literature regarding culturally adapted EBTs and common themes in Middle Eastern culture. Case vignettes illustrate possible EBT adaptations. Integrating cultural values in treatment is an opportunity to join with patients and families to optimize care. Expectations for medical and psychological treatment vary, and collaborations with cultural liaisons are beneficial. Critical next steps include systematic development, testing, and training in culturally adapting EBTs in pediatric medical settings. Increased dialogue between clinicians, researchers, and cultural liaisons is needed to share knowledge and experiences to enhance patient care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compo, Gilbert P
As an important step toward a coupled data assimilation system for generating reanalysis fields needed to assess climate model projections, the Ocean Atmosphere Coupled Reanalysis for Climate Applications (OARCA) project assesses and improves the longest reanalyses currently available of the atmosphere and ocean: the 20th Century Reanalysis Project (20CR) and the Simple Ocean Data Assimilation with sparse observational input (SODAsi) system, respectively. In this project, we make off-line but coordinated improvements in the 20CR and SODAsi datasets, with improvements in one feeding into improvements of the other through an iterative generation of new versions. These datasets now span from themore » 19th to 21st centuries. We then study the extreme weather and variability from days to decades of the resulting datasets. A total of 24 publications have been produced in this project.« less
Pfaff, Alexander S.P.; Kerr, Suzi; Hughes, R. Flint; Liu, Shuguang; Sanchez-Azofeifa, G. Arturo; Schimel, David; Tosi, Joseph; Watson, Vicente
2000-01-01
Protecting tropical forests under the Clean Development Mechanism (CDM) could reduce the cost of emissions limitations set in Kyoto. However, while society must soon decide whether or not to use tropical forest-based offsets, evidence regarding tropical carbon sinks is sparse. This paper presents a general method for constructing an integrated model (based on detailed historical, remote sensing and field data) that can produce land-use and carbon baselines, predict carbon sequestration supply to a carbon-offsets market and also help to evaluate optimal market rules. Creating such integrated models requires close collaboration between social and natural scientists. Our project combines varied disciplinary expertise (in economics, ecology and geography) with local knowledge in order to create high-quality, empirically grounded, integrated models for Costa Rica.
An in vivo Investigation into Temperature-Controlled Stratification of Sub-Seafloor Populations
NASA Astrophysics Data System (ADS)
McClelland, H. L. O.; Morono, Y.; Fike, D. A.; Bradley, A. S.
2017-12-01
The deep subsurface is characterized by a paucity of carbon substrates and biologically exploitable chemical potential energy. These metabolic challenges can be exacerbated by high temperatures, due to increased costs of cellular maintenance. Though sparse, microbial life persists in such environments, however, the degree to which temperature gradients result in the stratification extremophilic sub-seafloor populations is poorly understood. During Expedition 370, we established a matrix of incubation experiments with sediment samples taken from 8 depths corresponding to in situ temperatures of approximately 37, 50, 60, 70, 80, 90, 100 and 110°C, which were incubated in oxygen-free, acetate- and sulfate- supplemented, artificial seawater at temperatures of 37, 50, 60, 70 and 80°C. Substrates include large isotopic labels. Following separation from the sediment, cells were analyzed using SIMS, allowing estimates of biomass synthesis rates. We are interested in discussing potential future experiments and collaborations using this resource.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Jordan A.
2008-12-24
The Milagro Gamma-Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the overhead sky for sources of TeV gamma rays. The detector's unique design provides for unprecedented sensitivity compared to traditional sparse sampling arrays. As a result, Milagro has made a host of discoveries including the detection of several new gamma-ray sources and the detection of diffuse emission from the Galactic plane. The HAWC detector is a natural extension of the Milagro design. HAWC will be constructed as a joint Mexican-US collaboration on the Sierra Negra Mountain in Mexico at an elevation of 4100 m.more » The design and location of HAWC was optimized using the lessons learned from Milagro and will be 15 times more sensitive than Milagro when completed. In this paper, we briefly review Milagro results and discuss the physics we can do with HAWC.« less
Imaging Techniques for Dense 3D reconstruction of Swimming Aquatic Life using Multi-view Stereo
NASA Astrophysics Data System (ADS)
Daily, David; Kiser, Jillian; McQueen, Sarah
2016-11-01
Understanding the movement characteristics of how various species of fish swim is an important step to uncovering how they propel themselves through the water. Previous methods have focused on profile capture methods or sparse 3D manual feature point tracking. This research uses an array of 30 cameras to automatically track hundreds of points on a fish as they swim in 3D using multi-view stereo. Blacktip sharks, sting rays, puffer fish, turtles and more were imaged in collaboration with the National Aquarium in Baltimore, Maryland using the multi-view stereo technique. The processes for data collection, camera synchronization, feature point extraction, 3D reconstruction, 3D alignment, biological considerations, and lessons learned will be presented. Preliminary results of the 3D reconstructions will be shown and future research into mathematically characterizing various bio-locomotive maneuvers will be discussed.
An Identity Based Key Exchange Protocol in Cloud Computing
NASA Astrophysics Data System (ADS)
Molli, Venkateswara Rao; Tiwary, Omkar Nath
2012-10-01
Workflow systems often use delegation to enhance the flexibility of authorization; delegation transfers privileges among users across different administrative domains and facilitates information sharing. We present an independently verifiable delegation mechanism, where a delegation credential can be verified without the participation of domain administrators. This protocol, called role-based cascaded delegation (RBCD), supports simple and efficient cross-domain delegation of authority. RBCD enables a role member to create delegations based on the dynamic needs of collaboration; in the meantime, a delegation chain canbe verified by anyone without the participation of role administrators. We also propose the Measurable Risk Adaptive decentralized Role-based Delegation framework to address this problem. Describe an efficient realization of RBCD by using aggregate signatures, where the authentication information for an arbitrarily long role-based delegation chain is captured by one short signature of constant size. RBCD enables a role member to create delegations based on the need of collaboration; in the meantime anyone can verify a delegation chain without the participation of role administrators. The protocol is general and can be realized by any signature scheme. We have described a specific realization with a hierarchical certificate-based encryption scheme that gives delegation compact credentials.
Software for Sharing and Management of Information
NASA Technical Reports Server (NTRS)
Chen, James R.; Wolfe, Shawn R.; Wragg, Stephen D.
2003-01-01
DIAMS is a set of computer programs that implements a system of collaborative agents that serve multiple, geographically distributed users communicating via the Internet. DIAMS provides a user interface as a Java applet that runs on each user s computer and that works within the context of the user s Internet-browser software. DIAMS helps all its users to manage, gain access to, share, and exchange information in databases that they maintain on their computers. One of the DIAMS agents is a personal agent that helps its owner find information most relevant to current needs. It provides software tools and utilities for users to manage their information repositories with dynamic organization and virtual views. Capabilities for generating flexible hierarchical displays are integrated with capabilities for indexed- query searching to support effective access to information. Automatic indexing methods are employed to support users queries and communication between agents. The catalog of a repository is kept in object-oriented storage to facilitate sharing of information. Collaboration between users is aided by matchmaker agents and by automated exchange of information. The matchmaker agents are designed to establish connections between users who have similar interests and expertise.
Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie
2017-01-01
The aim of this study was to determine the respective contribution of professional characteristics, team attributes, team processes, and team emergent states on the job satisfaction of 315 mental health professionals from Quebec (Canada). Job satisfaction was measured with the Job Satisfaction Survey. Independent variables were organized into four categories according to a conceptual framework inspired from the Input-Mediator-Outcomes-Input Model. The contribution of each category of variables was assessed using hierarchical regression analysis. Variations in job satisfaction were mostly explained by team processes, with minimal contribution from the other three categories. Among the six variables significantly associated with job satisfaction in the final model, four were team processes: stronger team support, less team conflict, deeper involvement in the decision-making process, and more team collaboration. Job satisfaction was also associated with nursing and, marginally, male gender (professional characteristics) as well as with a stronger affective commitment toward the team (team emergent states). Results confirm the importance for health managers of offering adequate support to mental health professionals, and creating an environment favorable to collaboration and decision-sharing, and likely to reduce conflicts between team members.
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.
Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang
2018-05-06
Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.
Sensitivity analyses for sparse-data problems-using weakly informative bayesian priors.
Hamra, Ghassan B; MacLehose, Richard F; Cole, Stephen R
2013-03-01
Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist.
Sensitivity Analyses for Sparse-Data Problems—Using Weakly Informative Bayesian Priors
Hamra, Ghassan B.; MacLehose, Richard F.; Cole, Stephen R.
2013-01-01
Sparse-data problems are common, and approaches are needed to evaluate the sensitivity of parameter estimates based on sparse data. We propose a Bayesian approach that uses weakly informative priors to quantify sensitivity of parameters to sparse data. The weakly informative prior is based on accumulated evidence regarding the expected magnitude of relationships using relative measures of disease association. We illustrate the use of weakly informative priors with an example of the association of lifetime alcohol consumption and head and neck cancer. When data are sparse and the observed information is weak, a weakly informative prior will shrink parameter estimates toward the prior mean. Additionally, the example shows that when data are not sparse and the observed information is not weak, a weakly informative prior is not influential. Advancements in implementation of Markov Chain Monte Carlo simulation make this sensitivity analysis easily accessible to the practicing epidemiologist. PMID:23337241
Lahiri, A; Roy, Abhijit Guha; Sheet, Debdoot; Biswas, Prabir Kumar
2016-08-01
Automated segmentation of retinal blood vessels in label-free fundus images entails a pivotal role in computed aided diagnosis of ophthalmic pathologies, viz., diabetic retinopathy, hypertensive disorders and cardiovascular diseases. The challenge remains active in medical image analysis research due to varied distribution of blood vessels, which manifest variations in their dimensions of physical appearance against a noisy background. In this paper we formulate the segmentation challenge as a classification task. Specifically, we employ unsupervised hierarchical feature learning using ensemble of two level of sparsely trained denoised stacked autoencoder. First level training with bootstrap samples ensures decoupling and second level ensemble formed by different network architectures ensures architectural revision. We show that ensemble training of auto-encoders fosters diversity in learning dictionary of visual kernels for vessel segmentation. SoftMax classifier is used for fine tuning each member autoencoder and multiple strategies are explored for 2-level fusion of ensemble members. On DRIVE dataset, we achieve maximum average accuracy of 95.33% with an impressively low standard deviation of 0.003 and Kappa agreement coefficient of 0.708. Comparison with other major algorithms substantiates the high efficacy of our model.
Interactive modeling and simulation of peripheral nerve cords in virtual environments
NASA Astrophysics Data System (ADS)
Ullrich, Sebastian; Frommen, Thorsten; Eckert, Jan; Schütz, Astrid; Liao, Wei; Deserno, Thomas M.; Ntouba, Alexandre; Rossaint, Rolf; Prescher, Andreas; Kuhlen, Torsten
2008-03-01
This paper contributes to modeling, simulation and visualization of peripheral nerve cords. Until now, only sparse datasets of nerve cords can be found. In addition, this data has not yet been used in simulators, because it is only static. To build up a more flexible anatomical structure of peripheral nerve cords, we propose a hierarchical tree data structure where each node represents a nerve branch. The shape of the nerve segments itself is approximated by spline curves. Interactive modeling allows for the creation and editing of control points which are used for branching nerve sections, calculating spline curves and editing spline representations via cross sections. Furthermore, the control points can be attached to different anatomic structures. Through this approach, nerve cords deform in accordance to the movement of the connected structures, e.g., muscles or bones. As a result, we have developed an intuitive modeling system that runs on desktop computers and in immersive environments. It allows anatomical experts to create movable peripheral nerve cords for articulated virtual humanoids. Direct feedback of changes induced by movement or deformation is achieved by visualization in real-time. The techniques and the resulting data are already used for medical simulators.
Spatial Learning and Action Planning in a Prefrontal Cortical Network Model
Martinet, Louis-Emmanuel; Sheynikhovich, Denis; Benchenane, Karim; Arleo, Angelo
2011-01-01
The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates. PMID:21625569
Maguire-Jack, Kathryn; Lanier, Paul; Johnson-Motoyama, Michelle; Welch, Hannah; Dineen, Michael
2015-09-01
There are documented disparities in the rates at which black children come into contact with the child welfare system in the United States compared to white children. A great deal of research has proliferated aimed at understanding whether systematic biases or differential rates of risk among different groups drive these disparities (Drake et al., 2011). In the current study, county rates of maltreatment disparity are compared across the United States and examined in relation to rates of poverty disparity as well as population density. Specifically, using hierarchical linear modeling with a spatially lagged dependent variable, the current study examined data from the National Child Abuse and Neglect Data System (NCANDS) and found that poverty disparities were associated with rates of maltreatment disparities, and densely populated metropolitan counties tended to have the greatest levels of maltreatment disparity for both black and Hispanic children. A significant curvilinear relationship was also observed between these variables, such that in addition to the most densely populated counties, the most sparsely populated counties also tended to have higher rates of maltreatment disparity for black and Hispanic children. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paternal occupation and birth defects: findings from the National Birth Defects Prevention Study.
Desrosiers, Tania A; Herring, Amy H; Shapira, Stuart K; Hooiveld, Mariëtte; Luben, Tom J; Herdt-Losavio, Michele L; Lin, Shao; Olshan, Andrew F
2012-08-01
Several epidemiological studies have suggested that certain paternal occupations may be associated with an increased prevalence of birth defects in offspring. Using data from the National Birth Defects Prevention Study, the authors investigated the association between paternal occupation and birth defects in a case-control study of cases comprising over 60 different types of birth defects (n=9998) and non-malformed controls (n=4066) with dates of delivery between 1997 and 2004. Using paternal occupational histories reported by mothers via telephone interview, jobs were systematically classified into 63 groups based on shared exposure profiles within occupation and industry. Data were analysed using bayesian logistic regression with a hierarchical prior for dependent shrinkage to stabilise estimation with sparse data. Several occupations were associated with an increased prevalence of various birth defect categories, including mathematical, physical and computer scientists; artists; photographers and photo processors; food service workers; landscapers and groundskeepers; hairdressers and cosmetologists; office and administrative support workers; sawmill workers; petroleum and gas workers; chemical workers; printers; material moving equipment operators; and motor vehicle operators. Findings from this study might be used to identify specific occupations worthy of further investigation and to generate hypotheses about chemical or physical exposures common to such occupations.
Traffic Behavior Recognition Using the Pachinko Allocation Model
Huynh-The, Thien; Banos, Oresti; Le, Ba-Vui; Bui, Dinh-Mao; Yoon, Yongik; Lee, Sungyoung
2015-01-01
CCTV-based behavior recognition systems have gained considerable attention in recent years in the transportation surveillance domain for identifying unusual patterns, such as traffic jams, accidents, dangerous driving and other abnormal behaviors. In this paper, a novel approach for traffic behavior modeling is presented for video-based road surveillance. The proposed system combines the pachinko allocation model (PAM) and support vector machine (SVM) for a hierarchical representation and identification of traffic behavior. A background subtraction technique using Gaussian mixture models (GMMs) and an object tracking mechanism based on Kalman filters are utilized to firstly construct the object trajectories. Then, the sparse features comprising the locations and directions of the moving objects are modeled by PAM into traffic topics, namely activities and behaviors. As a key innovation, PAM captures not only the correlation among the activities, but also among the behaviors based on the arbitrary directed acyclic graph (DAG). The SVM classifier is then utilized on top to train and recognize the traffic activity and behavior. The proposed model shows more flexibility and greater expressive power than the commonly-used latent Dirichlet allocation (LDA) approach, leading to a higher recognition accuracy in the behavior classification. PMID:26151213
Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.
Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D; Nichols, Thomas E
2018-03-01
Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. © 2017, The International Biometric Society.
Content validation of an interprofessional learning video peer assessment tool.
Nisbet, Gillian; Jorm, Christine; Roberts, Chris; Gordon, Christopher J; Chen, Timothy F
2017-12-16
Large scale models of interprofessional learning (IPL) where outcomes are assessed are rare within health professional curricula. To date, there is sparse research describing robust assessment strategies to support such activities. We describe the development of an IPL assessment task based on peer rating of a student generated video evidencing collaborative interprofessional practice. We provide content validation evidence of an assessment rubric in the context of large scale IPL. Two established approaches to scale development in an educational setting were combined. A literature review was undertaken to develop a conceptual model of the relevant domains and issues pertaining to assessment of student generated videos within IPL. Starting with a prototype rubric developed from the literature, a series of staff and student workshops were undertaken to integrate expert opinion and user perspectives. Participants assessed five-minute videos produced in a prior pilot IPL activity. Outcomes from each workshop informed the next version of the rubric until agreement was reached on anchoring statements and criteria. At this point the rubric was declared fit to be used in the upcoming mandatory large scale IPL activity. The assessment rubric consisted of four domains: patient issues, interprofessional negotiation; interprofessional management plan in action; and effective use of video medium to engage audience. The first three domains reflected topic content relevant to the underlying construct of interprofessional collaborative practice. The fourth domain was consistent with the broader video assessment literature calling for greater emphasis on creativity in education. We have provided evidence for the content validity of a video-based peer assessment task portraying interprofessional collaborative practice in the context of large-scale IPL activities for healthcare professional students. Further research is needed to establish the reliability of such a scale.
1-norm support vector novelty detection and its sparseness.
Zhang, Li; Zhou, WeiDa
2013-12-01
This paper proposes a 1-norm support vector novelty detection (SVND) method and discusses its sparseness. 1-norm SVND is formulated as a linear programming problem and uses two techniques for inducing sparseness, or the 1-norm regularization and the hinge loss function. We also find two upper bounds on the sparseness of 1-norm SVND, or exact support vector (ESV) and kernel Gram matrix rank bounds. The ESV bound indicates that 1-norm SVND has a sparser representation model than SVND. The kernel Gram matrix rank bound can loosely estimate the sparseness of 1-norm SVND. Experimental results show that 1-norm SVND is feasible and effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
A denoising algorithm for CT image using low-rank sparse coding
NASA Astrophysics Data System (ADS)
Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng
2018-03-01
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Designing for Compressive Sensing: Compressive Art, Camouflage, Fonts, and Quick Response Codes
2018-01-01
an example where the signal is non-sparse in the standard basis, but sparse in the discrete cosine basis . The top plot shows the signal from the...previous example, now used as sparse discrete cosine transform (DCT) coefficients . The next plot shows the non-sparse signal in the standard...Romberg JK, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math . 2006;59(8):1207–1223. 3. Donoho DL
Visual saliency detection based on in-depth analysis of sparse representation
NASA Astrophysics Data System (ADS)
Wang, Xin; Shen, Siqiu; Ning, Chen
2018-03-01
Visual saliency detection has been receiving great attention in recent years since it can facilitate a wide range of applications in computer vision. A variety of saliency models have been proposed based on different assumptions within which saliency detection via sparse representation is one of the newly arisen approaches. However, most existing sparse representation-based saliency detection methods utilize partial characteristics of sparse representation, lacking of in-depth analysis. Thus, they may have limited detection performance. Motivated by this, this paper proposes an algorithm for detecting visual saliency based on in-depth analysis of sparse representation. A number of discriminative dictionaries are first learned with randomly sampled image patches by means of inner product-based dictionary atom classification. Then, the input image is partitioned into many image patches, and these patches are classified into salient and nonsalient ones based on the in-depth analysis of sparse coding coefficients. Afterward, sparse reconstruction errors are calculated for the salient and nonsalient patch sets. By investigating the sparse reconstruction errors, the most salient atoms, which tend to be from the most salient region, are screened out and taken away from the discriminative dictionaries. Finally, an effective method is exploited for saliency map generation with the reduced dictionaries. Comprehensive evaluations on publicly available datasets and comparisons with some state-of-the-art approaches demonstrate the effectiveness of the proposed algorithm.
Language Recognition via Sparse Coding
2016-09-08
a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector
DOT National Transportation Integrated Search
2018-02-02
Traffic congestion at arterial intersections and freeway bottlenecks degrades the air quality and threatens the public health. Conventionally, air pollutants are monitored by sparsely-distributed Quality Assurance Air Monitoring Sites. Sparse mobile ...
NASA Astrophysics Data System (ADS)
Vishnukumar, S.; Wilscy, M.
2017-12-01
In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.
Algorithms and Application of Sparse Matrix Assembly and Equation Solvers for Aeroacoustics
NASA Technical Reports Server (NTRS)
Watson, W. R.; Nguyen, D. T.; Reddy, C. J.; Vatsa, V. N.; Tang, W. H.
2001-01-01
An algorithm for symmetric sparse equation solutions on an unstructured grid is described. Efficient, sequential sparse algorithms for degree-of-freedom reordering, supernodes, symbolic/numerical factorization, and forward backward solution phases are reviewed. Three sparse algorithms for the generation and assembly of symmetric systems of matrix equations are presented. The accuracy and numerical performance of the sequential version of the sparse algorithms are evaluated over the frequency range of interest in a three-dimensional aeroacoustics application. Results show that the solver solutions are accurate using a discretization of 12 points per wavelength. Results also show that the first assembly algorithm is impractical for high-frequency noise calculations. The second and third assembly algorithms have nearly equal performance at low values of source frequencies, but at higher values of source frequencies the third algorithm saves CPU time and RAM. The CPU time and the RAM required by the second and third assembly algorithms are two orders of magnitude smaller than that required by the sparse equation solver. A sequential version of these sparse algorithms can, therefore, be conveniently incorporated into a substructuring for domain decomposition formulation to achieve parallel computation, where different substructures are handles by different parallel processors.
Visual Tracking Based on Extreme Learning Machine and Sparse Representation
Wang, Baoxian; Tang, Linbo; Yang, Jinglin; Zhao, Baojun; Wang, Shuigen
2015-01-01
The existing sparse representation-based visual trackers mostly suffer from both being time consuming and having poor robustness problems. To address these issues, a novel tracking method is presented via combining sparse representation and an emerging learning technique, namely extreme learning machine (ELM). Specifically, visual tracking can be divided into two consecutive processes. Firstly, ELM is utilized to find the optimal separate hyperplane between the target observations and background ones. Thus, the trained ELM classification function is able to remove most of the candidate samples related to background contents efficiently, thereby reducing the total computational cost of the following sparse representation. Secondly, to further combine ELM and sparse representation, the resultant confidence values (i.e., probabilities to be a target) of samples on the ELM classification function are used to construct a new manifold learning constraint term of the sparse representation framework, which tends to achieve robuster results. Moreover, the accelerated proximal gradient method is used for deriving the optimal solution (in matrix form) of the constrained sparse tracking model. Additionally, the matrix form solution allows the candidate samples to be calculated in parallel, thereby leading to a higher efficiency. Experiments demonstrate the effectiveness of the proposed tracker. PMID:26506359
Li, Ziyi; Safo, Sandra E; Long, Qi
2017-07-11
Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.
Sparse High Dimensional Models in Economics
Fan, Jianqing; Lv, Jinchi; Qi, Lei
2010-01-01
This paper reviews the literature on sparse high dimensional models and discusses some applications in economics and finance. Recent developments of theory, methods, and implementations in penalized least squares and penalized likelihood methods are highlighted. These variable selection methods are proved to be effective in high dimensional sparse modeling. The limits of dimensionality that regularization methods can handle, the role of penalty functions, and their statistical properties are detailed. Some recent advances in ultra-high dimensional sparse modeling are also briefly discussed. PMID:22022635
Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
Ge, Ruiyang; Wang, Yubao; Zhang, Jipeng; Yao, Li; Zhang, Hang; Long, Zhiying
2016-04-01
As a blind source separation technique, independent component analysis (ICA) has many applications in functional magnetic resonance imaging (fMRI). Although either temporal or spatial prior information has been introduced into the constrained ICA and semi-blind ICA methods to improve the performance of ICA in fMRI data analysis, certain types of additional prior information, such as the sparsity, has seldom been added to the ICA algorithms as constraints. In this study, we proposed a SparseFastICA method by adding the source sparsity as a constraint to the FastICA algorithm to improve the performance of the widely used FastICA. The source sparsity is estimated through a smoothed ℓ0 norm method. We performed experimental tests on both simulated data and real fMRI data to investigate the feasibility and robustness of SparseFastICA and made a performance comparison between SparseFastICA, FastICA and Infomax ICA. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of SparseFastICA for the source separation in fMRI data. Both the simulated and real fMRI experimental results showed that SparseFastICA has better robustness to noise and better spatial detection power than FastICA. Although the spatial detection power of SparseFastICA and Infomax did not show significant difference, SparseFastICA had faster computation speed than Infomax. SparseFastICA was comparable to the Infomax algorithm with a faster computation speed. More importantly, SparseFastICA outperformed FastICA in robustness and spatial detection power and can be used to identify more accurate brain networks than FastICA algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.
A critical analysis of computational protein design with sparse residue interaction graphs
Georgiev, Ivelin S.
2017-01-01
Protein design algorithms enumerate a combinatorial number of candidate structures to compute the Global Minimum Energy Conformation (GMEC). To efficiently find the GMEC, protein design algorithms must methodically reduce the conformational search space. By applying distance and energy cutoffs, the protein system to be designed can thus be represented using a sparse residue interaction graph, where the number of interacting residue pairs is less than all pairs of mutable residues, and the corresponding GMEC is called the sparse GMEC. However, ignoring some pairwise residue interactions can lead to a change in the energy, conformation, or sequence of the sparse GMEC vs. the original or the full GMEC. Despite the widespread use of sparse residue interaction graphs in protein design, the above mentioned effects of their use have not been previously analyzed. To analyze the costs and benefits of designing with sparse residue interaction graphs, we computed the GMECs for 136 different protein design problems both with and without distance and energy cutoffs, and compared their energies, conformations, and sequences. Our analysis shows that the differences between the GMECs depend critically on whether or not the design includes core, boundary, or surface residues. Moreover, neglecting long-range interactions can alter local interactions and introduce large sequence differences, both of which can result in significant structural and functional changes. Designs on proteins with experimentally measured thermostability show it is beneficial to compute both the full and the sparse GMEC accurately and efficiently. To this end, we show that a provable, ensemble-based algorithm can efficiently compute both GMECs by enumerating a small number of conformations, usually fewer than 1000. This provides a novel way to combine sparse residue interaction graphs with provable, ensemble-based algorithms to reap the benefits of sparse residue interaction graphs while avoiding their potential inaccuracies. PMID:28358804
Mejia Tobar, Alejandra; Hyoudou, Rikiya; Kita, Kahori; Nakamura, Tatsuhiro; Kambara, Hiroyuki; Ogata, Yousuke; Hanakawa, Takashi; Koike, Yasuharu; Yoshimura, Natsue
2017-01-01
The classification of ankle movements from non-invasive brain recordings can be applied to a brain-computer interface (BCI) to control exoskeletons, prosthesis, and functional electrical stimulators for the benefit of patients with walking impairments. In this research, ankle flexion and extension tasks at two force levels in both legs, were classified from cortical current sources estimated by a hierarchical variational Bayesian method, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings. The hierarchical prior for the current source estimation from EEG was obtained from activated brain areas and their intensities from an fMRI group (second-level) analysis. The fMRI group analysis was performed on regions of interest defined over the primary motor cortex, the supplementary motor area, and the somatosensory area, which are well-known to contribute to movement control. A sparse logistic regression method was applied for a nine-class classification (eight active tasks and a resting control task) obtaining a mean accuracy of 65.64% for time series of current sources, estimated from the EEG and the fMRI signals using a variational Bayesian method, and a mean accuracy of 22.19% for the classification of the pre-processed of EEG sensor signals, with a chance level of 11.11%. The higher classification accuracy of current sources, when compared to EEG classification accuracy, was attributed to the high number of sources and the different signal patterns obtained in the same vertex for different motor tasks. Since the inverse filter estimation for current sources can be done offline with the present method, the present method is applicable to real-time BCIs. Finally, due to the highly enhanced spatial distribution of current sources over the brain cortex, this method has the potential to identify activation patterns to design BCIs for the control of an affected limb in patients with stroke, or BCIs from motor imagery in patients with spinal cord injury.
Registered nurses views of caring in coronary care--a deductive and inductive content analysis.
Andersson, Ewa K; Sjöström-Strand, Annica; Willman, Ania; Borglin, Gunilla
2015-12-01
To extend nurses' descriptions of how they understood caring, as reflected in the findings of an earlier study (i.e. the hierarchical outcome space) and to gain additional understandings and perspectives of nurses' views of caring in relation to a coronary care patient case. Scientific literature from the 1970s-1990s contains descriptions of caring in nursing. In contrast, the contemporary literature on this topic--particularly in the context of coronary care--is very sparse, and the few studies that do contain descriptions rarely do so from the perspective of nurses. Qualitative descriptive study. Twenty-one nurses were interviewed using the stimulated recall interview technique. The data were analysed using deductive and inductive qualitative content analysis. The results of the iterative and integrated content analysis showed that the data mainly reproduced the content of the hierarchical outcome space describing how nurses could understand caring; however, in the outcome space, the relationship broke up (i.e. flipped). The nurses' views of caring could now also be understood as: person-centredness 'lurking' in the shadows; limited 'potential' for safeguarding patients' best interests; counselling as virtually the 'only' nursing intervention; and caring preceded by the 'almighty' context. Their views offered alternative and, at times, contrasting perspectives of caring, thereby adding to our understanding of it. Caring was described as operating somewhere between the nurses caring values and the contextual conditions in which caring occurred. This challenged their ability to sustain caring in accordance with their values and the patients' preferences. To ensure that the essentials of caring are met at all times, nurses need to plan and deliver caring in a systematic way. The use of systematic structures in caring, as the nursing process, can help nurses to work in a person-centred way, while sustaining their professional values. © 2015 John Wiley & Sons Ltd.
Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar
2016-01-01
Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design. PMID:27958331
Lim, Hansaim; Gray, Paul; Xie, Lei; Poleksic, Aleksandar
2016-12-13
Conventional one-drug-one-gene approach has been of limited success in modern drug discovery. Polypharmacology, which focuses on searching for multi-targeted drugs to perturb disease-causing networks instead of designing selective ligands to target individual proteins, has emerged as a new drug discovery paradigm. Although many methods for single-target virtual screening have been developed to improve the efficiency of drug discovery, few of these algorithms are designed for polypharmacology. Here, we present a novel theoretical framework and a corresponding algorithm for genome-scale multi-target virtual screening based on the one-class collaborative filtering technique. Our method overcomes the sparseness of the protein-chemical interaction data by means of interaction matrix weighting and dual regularization from both chemicals and proteins. While the statistical foundation behind our method is general enough to encompass genome-wide drug off-target prediction, the program is specifically tailored to find protein targets for new chemicals with little to no available interaction data. We extensively evaluate our method using a number of the most widely accepted gene-specific and cross-gene family benchmarks and demonstrate that our method outperforms other state-of-the-art algorithms for predicting the interaction of new chemicals with multiple proteins. Thus, the proposed algorithm may provide a powerful tool for multi-target drug design.
DISTRIBUTION OF DIOXINS, FURANS, AND COPLANAR ...
The United States Environmental Protection Agency (EPA) and the United States Department of Agriculture (USDA) recently collaborated on a statistically-based, national survey of dioxin-like compounds, including dioxins, furans, and coplanar PCBs, in the back fat from slaughtered cattle. Back fat was selected because it was a matrix that could easily be sampled by the veterinarians at the slaughter establishments. Also, since it was a matrix that was very high in fat content (in the range of 60-90% lipid), the ability to measure the dioxin-like compounds with a given sample volume was maximized. A principal use of the results of the national beef survey is to evaluate the exposure of individuals in the United States to these compounds through consumption of beef. In order to use the data for this purpose, an assumption needs to be made regarding the relationship between lipid concentrations of these compounds in back fat compared to the concentrations in meat products. However, data on the concentrations of these compounds in different cattle fat reservoirs to derive the proper assumption are sparse. There is some information on compounds with similar properties (lipophilic, persistent), including residues of HCB, PBB, and DDT, and these data do suggest that their lipid-based concentrations in various fat reservoirs in cattle are similar. In order to evaluate whether the same can be said of the dioxin-like compounds, the EPA and USDA collaborated on a seco
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint
Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Zhai, Ruifang
2018-01-01
Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency. PMID:29734793
Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.
Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen
2015-04-01
In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.
Research on segmentation based on multi-atlas in brain MR image
NASA Astrophysics Data System (ADS)
Qian, Yuejing
2018-03-01
Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.
NASA Astrophysics Data System (ADS)
Biddle, J. C.
2010-12-01
A growing number of governmental organizations at the local, state, and federal level collaborate with nongovernmental organizations and individuals to solve watershed scale problems (Imperial and Koontz, 2007). Such a shift in policy approach from hierarchical regulation to bottom-up collaboration is largely a result of regulator’s recognition of the interdependence of natural and socio-economic systems on a watershed scale (Steelman and Carmin, 2002. Agencies throughout the federal government increasingly favored new governing institutions that encourage cooperation between local actors with conflicting interests, divergent geographic bases, and overlapping administrative jurisdictions to resolve continuing disputes over resource management (Bardach 1998). This favoritism of collaborative over command-and-control approaches for managing nonpoint source pollution led to the development of watershed partnerships and the watershed-based approach (Lubell et al., 2002). This study aims to further collaborative governance scholarship and aid decision-makers in identifying the critical elements of collaborative governance resulting in environmental improvements. To date, this relationship has not been empirically determined, in spite of the fact that collaborative governance is used routinely by the U.S. Environmental Protection Agency in resolving issues related to watershed management and other applications. This gap in the research is largely due to the lack of longitudinal data. In order to determine whether changes have occurred, environmental data must be collected over relatively long time periods (Koontz and Thomas, 2006; Sabatier, et al., 2005). However, collecting these data is often cost prohibitive. Monitoring water quality is expensive and requires technical expertise, and is often the first line item cut in environmental management budgets. This research is interdisciplinary, looking at the physical, chemical, and biological parameters for 44 waterbodies, assessing changes in water quality and the sociological characteristics of a collaborative policy approach. This research relied upon a unique longitudinal water quality data set collected through EPA’s National Nonpoint Source Monitoring Program’s (NNPSMP), simultaneously controlling for confounding effects related to political/institutional, socioeconomic, and physical conditions. These data were coupled with survey data of individuals who participated in this collaborative monitoring program to assess the relationship between programmatic elements of the NNPSMP and changes in water quality. The choice to use the NNPSMP’s data was two-fold. First, the program has conducted long-term monitoring on water quality improvements, which has been the limiting factor in testing causality. Changes in water quality take decades to occur and are not often realized due to the lack of longitudinal data. Second, baseline data exist for each waterbody within the watershed prior to the implementation of the collaborative governance process. These baseline data will serve as pre-intervention data and allow for the attribution of measured outcomes to the watershed initiatives (Thomas, 2008).
'Healthy gums do matter': A case study of clinical leadership within primary dental care.
Moore, D; Saleem, S; Hawthorn, E; Pealing, R; Ashley, M; Bridgman, C
2015-09-25
The Health and Social Care Act 2012 heralded wide reaching reforms intended to place clinicians at the heart of the health service. For NHS general dental practice, the conduits for this clinical leadership are the NHS England local professional networks. In Greater Manchester, the local professional network has developed and piloted a clinician led quality improvement project: 'Healthy Gums DO Matter, a Practitioner's Toolkit'. Used as a case study, the project highlighted the following facilitators to clinical leadership in dentistry: supportive environment; mentoring and transformational leadership; alignment of project goals with national policy; funding allowance; cross-boundary collaboration; determination; altruism; and support from wider academic and specialist colleagues. Barriers to clinical leadership identified were: the hierarchical nature of healthcare, territorialism and competing clinical commitments.
NASA Astrophysics Data System (ADS)
Philen, Michael
2011-04-01
This manuscript is an overview of the research that is currently being performed as part of a 2009 NSF Office of Emerging Frontiers in Research and Innnovation (EFRI) grant on BioSensing and BioActuation (BSBA). The objectives of this multi-university collaborative research are to achieve a greater understanding of the hierarchical organization and structure of the sensory, muscular, and control systems of fish, and to develop advanced biologically-inspired material systems having distributed sensing, actuation, and intelligent control. New experimental apparatus have been developed for performing experiments involving live fish and robotic devices, and new bio-inspired haircell sensors and artificial muscles are being developed using carbonaceous nanomaterials, bio-derived molecules, and composite technology. Results demonstrating flow sensing and actuation are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel
Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less
An exploration of the professional competencies required in engineering asset management
NASA Astrophysics Data System (ADS)
Bish, Adelle J.; Newton, Cameron J.; Browning, Vicky; O'Connor, Peter; Anibaldi, Renata
2014-07-01
Engineering asset management (EAM) is a rapidly growing and developing field. However, efforts to select and develop engineers in this area are complicated by our lack of understanding of the full range of competencies required to perform. This exploratory study sought to clarify and categorise the professional competencies required of individuals at different hierarchical levels within EAM. Data from 14 field interviews, 61 online surveys, and 10 expert panel interviews were used to develop an initial professional competency framework. Overall, nine competency clusters were identified. These clusters indicate that engineers working in this field need to be able to collaborate and influence others, complete objectives within organisational guidelines, and be able to manage themselves effectively. Limitations and potential uses of this framework in engineering education and research are discussed.
Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...
2016-06-01
Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less
NASA Astrophysics Data System (ADS)
Lee, O. A.; Eicken, H.; Weyapuk, W., Jr.; Adams, B.; Mohoney, A. R.
2015-12-01
The significance of highly dispersed, remnant Arctic sea ice as a platform for marine mammals and indigenous hunters in spring and summer may have increased disproportionately with changes in the ice cover. As dispersed remnant ice becomes more common in the future it will be increasingly important to understand its ecological role for upper trophic levels such as marine mammals and its role for supporting primary productivity of ice-associated algae. Potential sparse ice habitat at sea ice concentrations below 15% is difficult to detect using remote sensing data alone. A combination of high resolution satellite imagery (including Synthetic Aperture Radar), data from the Barrow sea ice radar, and local observations from indigenous sea ice experts was used to detect sparse sea ice in the Alaska Arctic. Traditional knowledge on sea ice use by marine mammals was used to delimit the scales where sparse ice could still be used as habitat for seals and walrus. Potential sparse ice habitat was quantified with respect to overall spatial extent, size of ice floes, and density of floes. Sparse ice persistence offshore did not prevent the occurrence of large coastal walrus haul outs, but the lack of sparse ice and early sea ice retreat coincided with local observations of ringed seal pup mortality. Observations from indigenous hunters will continue to be an important source of information for validating remote sensing detections of sparse ice, and improving understanding of marine mammal adaptations to sea ice change.
Seekamp, Erin; Cerveny, Lee K; McCreary, Allie
2011-09-01
Federal land management agencies, such as the USDA Forest Service, have expanded the role of recreation partners reflecting constrained growth in appropriations and broader societal trends towards civic environmental governance. Partnerships with individual volunteers, service groups, commercial outfitters, and other government agencies provide the USDA Forest Service with the resources necessary to complete projects and meet goals under fiscal constraints. Existing partnership typologies typically focus on collaborative or strategic alliances and highlight organizational dimensions (e.g., structure and process) defined by researchers. This paper presents a partner typology constructed from USDA Forest Service partnership practitioners' conceptualizations of 35 common partner types. Multidimensional scaling of data from unconstrained pile sorts identified 3 distinct cultural dimensions of recreation partners--specifically, partnership character, partner impact, and partner motivations--that represent institutional, individual, and socio-cultural cognitive domains. A hierarchical agglomerative cluster analysis provides further insight into the various domains of agency personnel's conceptualizations. While three dimensions with high reliability (RSQ = 0.83) and corresponding hierarchical clusters illustrate commonality between agency personnel's partnership suppositions, this study also reveals variance in personnel's familiarity and affinity for specific partnership types. This real-world perspective on partner types highlights that agency practitioners not only make strategic choices when selecting and cultivating partnerships to accomplish critical task, but also elect to work with partners for the primary purpose of providing public service and fostering land stewardship.
NASA Astrophysics Data System (ADS)
Seekamp, Erin; Cerveny, Lee K.; McCreary, Allie
2011-09-01
Federal land management agencies, such as the USDA Forest Service, have expanded the role of recreation partners reflecting constrained growth in appropriations and broader societal trends towards civic environmental governance. Partnerships with individual volunteers, service groups, commercial outfitters, and other government agencies provide the USDA Forest Service with the resources necessary to complete projects and meet goals under fiscal constraints. Existing partnership typologies typically focus on collaborative or strategic alliances and highlight organizational dimensions (e.g., structure and process) defined by researchers. This paper presents a partner typology constructed from USDA Forest Service partnership practitioners' conceptualizations of 35 common partner types. Multidimensional scaling of data from unconstrained pile sorts identified 3 distinct cultural dimensions of recreation partners—specifically, partnership character, partner impact, and partner motivations—that represent institutional, individual, and socio-cultural cognitive domains. A hierarchical agglomerative cluster analysis provides further insight into the various domains of agency personnel's conceptualizations. While three dimensions with high reliability (RSQ = 0.83) and corresponding hierarchical clusters illustrate commonality between agency personnel's partnership suppositions, this study also reveals variance in personnel's familiarity and affinity for specific partnership types. This real-world perspective on partner types highlights that agency practitioners not only make strategic choices when selecting and cultivating partnerships to accomplish critical task, but also elect to work with partners for the primary purpose of providing public service and fostering land stewardship.
Genomics dataset on unclassified published organism (patent US 7547531).
Khan Shawan, Mohammad Mahfuz Ali; Hasan, Md Ashraful; Hossain, Md Mozammel; Hasan, Md Mahmudul; Parvin, Afroza; Akter, Salina; Uddin, Kazi Rasel; Banik, Subrata; Morshed, Mahbubul; Rahman, Md Nazibur; Rahman, S M Badier
2016-12-01
Nucleotide (DNA) sequence analysis provides important clues regarding the characteristics and taxonomic position of an organism. With the intention that, DNA sequence analysis is very crucial to learn about hierarchical classification of that particular organism. This dataset (patent US 7547531) is chosen to simplify all the complex raw data buried in undisclosed DNA sequences which help to open doors for new collaborations. In this data, a total of 48 unidentified DNA sequences from patent US 7547531 were selected and their complete sequences were retrieved from NCBI BioSample database. Quick response (QR) code of those DNA sequences was constructed by DNA BarID tool. QR code is useful for the identification and comparison of isolates with other organisms. AT/GC content of the DNA sequences was determined using ENDMEMO GC Content Calculator, which indicates their stability at different temperature. The highest GC content was observed in GP445188 (62.5%) which was followed by GP445198 (61.8%) and GP445189 (59.44%), while lowest was in GP445178 (24.39%). In addition, New England BioLabs (NEB) database was used to identify cleavage code indicating the 5, 3 and blunt end and enzyme code indicating the methylation site of the DNA sequences was also shown. These data will be helpful for the construction of the organisms' hierarchical classification, determination of their phylogenetic and taxonomic position and revelation of their molecular characteristics.
SPARSKIT: A basic tool kit for sparse matrix computations
NASA Technical Reports Server (NTRS)
Saad, Youcef
1990-01-01
Presented here are the main features of a tool package for manipulating and working with sparse matrices. One of the goals of the package is to provide basic tools to facilitate the exchange of software and data between researchers in sparse matrix computations. The starting point is the Harwell/Boeing collection of matrices for which the authors provide a number of tools. Among other things, the package provides programs for converting data structures, printing simple statistics on a matrix, plotting a matrix profile, and performing linear algebra operations with sparse matrices.
Estimating the size of an open population using sparse capture-recapture data.
Huggins, Richard; Stoklosa, Jakub; Roach, Cameron; Yip, Paul
2018-03-01
Sparse capture-recapture data from open populations are difficult to analyze using currently available frequentist statistical methods. However, in closed capture-recapture experiments, the Chao sparse estimator (Chao, 1989, Biometrics 45, 427-438) may be used to estimate population sizes when there are few recaptures. Here, we extend the Chao (1989) closed population size estimator to the open population setting by using linear regression and extrapolation techniques. We conduct a small simulation study and apply the models to several sparse capture-recapture data sets. © 2017, The International Biometric Society.
Deep Marginalized Sparse Denoising Auto-Encoder for Image Denoising
NASA Astrophysics Data System (ADS)
Ma, Hongqiang; Ma, Shiping; Xu, Yuelei; Zhu, Mingming
2018-01-01
Stacked Sparse Denoising Auto-Encoder (SSDA) has been successfully applied to image denoising. As a deep network, the SSDA network with powerful data feature learning ability is superior to the traditional image denoising algorithms. However, the algorithm has high computational complexity and slow convergence rate in the training. To address this limitation, we present a method of image denoising based on Deep Marginalized Sparse Denoising Auto-Encoder (DMSDA). The loss function of Sparse Denoising Auto-Encoder is marginalized so that it satisfies both sparseness and marginality. The experimental results show that the proposed algorithm can not only outperform SSDA in the convergence speed and training time, but also has better denoising performance than the current excellent denoising algorithms, including both the subjective and objective evaluation of image denoising.
NASA Astrophysics Data System (ADS)
Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.
2014-03-01
The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.
Group-sparse representation with dictionary learning for medical image denoising and fusion.
Li, Shutao; Yin, Haitao; Fang, Leyuan
2012-12-01
Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.
Fast sparsely synchronized brain rhythms in a scale-free neural network
NASA Astrophysics Data System (ADS)
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D . For small D , full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>
Shen, Lining; Xiong, Bing; Li, Wei; Lan, Fuqiang; Evans, Richard; Zhang, Wei
2018-06-05
In the last few decades, mobile technologies have been widely adopted in the field of health care services to improve the accessibility to and the quality of health services received. Mobile health (mHealth) has emerged as a field of research with increasing attention being paid to it by scientific researchers and a rapid increase in related literature being reported. The purpose of this study was to analyze the current state of research, including publication outputs, in the field of mHealth to uncover in-depth collaboration characteristics and topic burst of international mHealth research. The authors collected literature that has been published in the last 20 years and indexed by Thomson Reuters Web of Science Core Collection (WoSCC). Various statistical techniques and bibliometric measures were employed, including publication growth analysis; journal distribution; and collaboration network analysis at the author, institution, and country collaboration level. The temporal visualization map of burst terms was drawn, and the co-occurrence matrix of these burst terms was analyzed by hierarchical cluster analysis and social network analysis. A total of 2704 bibliographic records on mHealth were collected. The earliest paper centered on mHealth was published in 1997, with the number of papers rising continuously since then. A total of 21.28% (2318/10,895) of authors publishing mHealth research were first author, whereas only 1.29% (141/10,895) of authors had published one paper. The total degree of author collaboration was 4.42 (11,958/2704) and there are 266 core authors who have collectively published 53.07% (1435/2704) of the total number of publications, which means that the core group of authors has fundamentally been formed based on the Law of Price. The University of Michigan published the highest number of mHealth-related publications, but less collaboration among institutions exits. The United States is the most productive country in the field and plays a leading role in collaborative research on mHealth. There are 5543 different identified keywords in the cleaned records. The temporal bar graph clearly presents overall topic evolutionary process over time. There are 12 important research directions identified, which are in the imbalanced development. Moreover, the density of the network was 0.007, a relatively low level. These 12 topics can be categorized into 4 areas: (1) patient engagement and patient intervention, (2) health monitoring and self-care, (3) mobile device and mobile computing, and (4) security and privacy. The collaboration of core authors on mHealth research is not tight and stable. Furthermore, collaboration between institutions mainly occurs in the United States, although country collaboration is seen as relatively scarce. The focus of research topics on mHealth is decentralized. Our study might provide a potential guide for future research in mHealth. ©Lining Shen, Bing Xiong, Wei Li, Fuqiang Lan, Richard Evans, Wei Zhang. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 05.06.2018.
Managing clinical failure: a complex adaptive system perspective.
Matthews, Jean I; Thomas, Paul T
2007-01-01
The purpose of this article is to explore the knowledge capture process at the clinical level. It aims to identify factors that enable or constrain learning. The study applies complex adaptive system thinking principles to reconcile learning within the NHS. The paper uses a qualitative exploratory study with an interpretative methodological stance set in a secondary care NHS Trust. Semi-structured interviews were conducted with healthcare practitioners and managers involved at both strategic and operational risk management processes. A network structure is revealed that exhibits the communication and interdependent working practices to support knowledge capture and adaptive learning. Collaborative multidisciplinary communities, whose values reflect local priorities and promote open dialogue and reflection, are featured. The main concern is that the characteristics of bureaucracy; rational-legal authority, a rule-based culture, hierarchical lines of communication and a centralised governance focus, are hindering clinical learning by generating barriers. Locally emergent collaborative processes are a key strategic resource to capture knowledge, potentially fostering an environment that could learn from failure and translate lessons between contexts. What must be addressed is that reporting mechanisms serve not only the governance objectives, but also supplement learning by highlighting the potential lessons in context. Managers must nurture a collaborative infrastructure using networks in a co-evolutionary manner. Their role is not to direct and design processes but to influence, support and create effective knowledge capture. Although the study only investigated one site the findings and conclusions may well translate to other trusts--such as the risk of not enabling a learning environment at clinical levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de
2015-07-21
In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implementsmore » sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.« less
Pinski, Peter; Riplinger, Christoph; Valeev, Edward F; Neese, Frank
2015-07-21
In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.
Deep ensemble learning of sparse regression models for brain disease diagnosis.
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2017-04-01
Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.
Image super-resolution via sparse representation.
Yang, Jianchao; Wright, John; Huang, Thomas S; Ma, Yi
2010-11-01
This paper presents a new approach to single-image super-resolution, based on sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs, reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle super-resolution with noisy inputs in a more unified framework.
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Deep ensemble learning of sparse regression models for brain disease diagnosis
Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang
2018-01-01
Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer’s disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call ‘ Deep Ensemble Sparse Regression Network.’ To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. PMID:28167394
The resident physician as leader within the healthcare team.
Sonnenberg, Lyn Kathryn; Pritchard-Wiart, Lesley; Busari, Jamiu
2018-05-08
Purpose The purpose of this study was to explore inter-professional clinicians' perspectives on resident leadership in the context of inter-professional teams and to identify a definition for leadership in the clinical context. In 2015, CanMEDS changed the title of one of the core competencies from manager to leader. The shift in language was perceived by some as returning to traditional hierarchical and physician-dominant structures. The resulting uncertainty has resulted in a call to action to not only determine what physician leadership is but to also determine how to teach and assess it. Design/methodology/approach Focus groups and follow-up individual interviews were conducted with 23 inter-professional clinicians from three pediatric clinical service teams at a large, Canadian tertiary-level rehabilitation hospital. Qualitative thematic analysis was used to inductively analyze the data. Findings Data analysis resulted in one overarching theme: leadership is collaborative - and three related subthemes: leadership is shared; leadership is summative; and conceptualizations of leadership are shifting. Research limitations/implications Not all members of the three inter-professional teams were able to attend the focus group sessions because of scheduling conflicts. Participation of additional clinicians could have, therefore, affected the results of this study. The study was conducted locally at a single rehabilitation hospital, among Canadian pediatric clinicians, which highlights the need to explore conceptualization of leadership across different contexts. Practical implications There is an evident need to prepare physicians to be leaders in both their daily clinical and academic practices. Therefore, more concerted efforts are required to develop leadership skills among residents. The authors postulate that continued integration of various inter-professional disciplines during the early phases of training is essential to foster collaborative leadership and trust. Originality/value The results of this study suggest that inter-professional clinicians view clinical leadership as collaborative and fluid and determined by the fit between tasks and team member expertise. Mentorship is important for increasing the ability of resident physicians to develop collaborative leadership roles within teams. The authors propose a collaborative definition of clinical leadership based on the results of this study: a shared responsibility that involves facilitation of dialog; the integration of perspectives and expertise; and collaborative planning for the purpose of exceptional patient care.
Exploring the use of Option Grid™ patient decision aids in a sample of clinics in Poland.
Scalia, Peter; Elwyn, Glyn; Barr, Paul; Song, Julia; Zisman-Ilani, Yaara; Lesniak, Monika; Mullin, Sarah; Kurek, Krzysztof; Bushell, Matt; Durand, Marie-Anne
2018-05-29
Research on the implementation of patient decision aids to facilitate shared decision making in clinical settings has steadily increased across Western countries. A study which implements decision aids and measures their impact on shared decision making has yet to be conducted in the Eastern part of Europe. To study the use of Option Grid TM patient decision aids in a sample of Grupa LUX MED clinics in Warsaw, Poland, and measure their impact on shared decision making. We conducted a pre-post interventional study. Following a three-month period of usual care, clinicians from three Grupa LUX MED clinics received a one-hour training session on how to use three Option Grid TM decision aids and were provided with copies for use for four months. Throughout the study, all eligible patients were asked to complete the three-item CollaboRATE patient-reported measure of shared decision making after their clinical encounter. CollaboRATE enables patients to assess the efforts clinicians make to: (i) inform them about their health issues; (ii) listen to 'what matters most'; (iii) integrate their treatment preference in future plans. A Hierarchical Logistic Regression model was performed to understand which variables had an effect on CollaboRATE. 2,048 patients participated in the baseline phase; 1,889 patients participated in the intervention phase. Five of the thirteen study clinicians had a statistically significant increase in their CollaboRATE scores (p<.05) when comparing baseline phase to intervention phase. All five clinicians were located at the same clinic, the only clinic where an overall increase (non-significant) in the mean CollaboRATE top score percentage occurred from baseline phase (M=60 %, SD=0.49; 95 % CI [57-63 %]) to intervention phase (M=62 %, SD=0.49; 95% CI [59-65%]). Only three of those five clinicians who had a statistically significant increase had a clinically significant difference. The implementation of Option Grid TM helped some clinicians practice shared decision making as reflected in CollaboRATE scores, but most clinicians did not have a significant increase in their scores. Our study indicates that the effect of these interventions may be dependent on clinic contexts and clinician engagement. Copyright © 2018. Published by Elsevier GmbH.
1982-10-27
are buried within * a much larger, special purpose package. We regret such omissions, but to have reached the practi- tioners in each of the diverse...sparse matrix (form PAQ ) 4. Method of solution: Distribution count sort 5. Programming language: FORTRAN g Precision: Single and double precision 7
STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.
Fan, Jianqing; Xue, Lingzhou; Zou, Hui
2014-06-01
Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression.
NASA Astrophysics Data System (ADS)
Wang, Yihan; Lu, Tong; Wan, Wenbo; Liu, Lingling; Zhang, Songhe; Li, Jiao; Zhao, Huijuan; Gao, Feng
2018-02-01
To fully realize the potential of photoacoustic tomography (PAT) in preclinical and clinical applications, rapid measurements and robust reconstructions are needed. Sparse-view measurements have been adopted effectively to accelerate the data acquisition. However, since the reconstruction from the sparse-view sampling data is challenging, both of the effective measurement and the appropriate reconstruction should be taken into account. In this study, we present an iterative sparse-view PAT reconstruction scheme where a virtual parallel-projection concept matching for the proposed measurement condition is introduced to help to achieve the "compressive sensing" procedure of the reconstruction, and meanwhile the spatially adaptive filtering fully considering the a priori information of the mutually similar blocks existing in natural images is introduced to effectively recover the partial unknown coefficients in the transformed domain. Therefore, the sparse-view PAT images can be reconstructed with higher quality compared with the results obtained by the universal back-projection (UBP) algorithm in the same sparse-view cases. The proposed approach has been validated by simulation experiments, which exhibits desirable performances in image fidelity even from a small number of measuring positions.
A modified sparse reconstruction method for three-dimensional synthetic aperture radar image
NASA Astrophysics Data System (ADS)
Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin
2018-03-01
There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.
NASA Astrophysics Data System (ADS)
He, Xingyu; Tong, Ningning; Hu, Xiaowei
2018-01-01
Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.
STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION
Fan, Jianqing; Xue, Lingzhou; Zou, Hui
2014-01-01
Folded concave penalization methods have been shown to enjoy the strong oracle property for high-dimensional sparse estimation. However, a folded concave penalization problem usually has multiple local solutions and the oracle property is established only for one of the unknown local solutions. A challenging fundamental issue still remains that it is not clear whether the local optimum computed by a given optimization algorithm possesses those nice theoretical properties. To close this important theoretical gap in over a decade, we provide a unified theory to show explicitly how to obtain the oracle solution via the local linear approximation algorithm. For a folded concave penalized estimation problem, we show that as long as the problem is localizable and the oracle estimator is well behaved, we can obtain the oracle estimator by using the one-step local linear approximation. In addition, once the oracle estimator is obtained, the local linear approximation algorithm converges, namely it produces the same estimator in the next iteration. The general theory is demonstrated by using four classical sparse estimation problems, i.e., sparse linear regression, sparse logistic regression, sparse precision matrix estimation and sparse quantile regression. PMID:25598560
Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems
Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; ...
2012-01-01
Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less
Tensor Dictionary Learning for Positive Definite Matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2015-11-01
Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.
Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.
Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang
2017-07-01
It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.
A digital repository with an extensible data model for biobanking and genomic analysis management.
Izzo, Massimiliano; Mortola, Francesco; Arnulfo, Gabriele; Fato, Marco M; Varesio, Luigi
2014-01-01
Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management. We developed a novel data model in JSON format to describe heterogeneous data in a generic biomedical science scenario. The model is built on two hierarchical entities: processes and events, roughly corresponding to research studies and analysis steps within a single study. A number of sequential events can be grouped in a process building up a hierarchical structure to track patient and sample history. Each event can produce new data. Data is described by a set of user-defined metadata, and may have one or more associated files. We integrated the model in a web based digital repository with a data grid storage to manage large data sets located in geographically distinct areas. We built a graphical interface that allows authorized users to define new data types dynamically, according to their requirements. Operators compose queries on metadata fields using a flexible search interface and run them on the database and on the grid. We applied the digital repository to the integrated management of samples, patients and medical history in the BIT-Gaslini biobank. The platform currently manages 1800 samples of over 900 patients. Microarray data from 150 analyses are stored on the grid storage and replicated on two physical resources for preservation. The system is equipped with data integration capabilities with other biobanks for worldwide information sharing. Our data model enables users to continuously define flexible, ad hoc, and loosely structured metadata, for information sharing in specific research projects and purposes. This approach can improve sensitively interdisciplinary research collaboration and allows to track patients' clinical records, sample management information, and genomic data. The web interface allows the operators to easily manage, query, and annotate the files, without dealing with the technicalities of the data grid.
2012-01-01
Background In the 21st century, government and industry are supplementing hierarchical, bureaucratic forms of organization with network forms, compatible with principles of devolved governance and decentralization of services. Clinical networks are employed as a key health policy approach to engage clinicians in improving patient care in Australia. With significant investment in such networks in Australia and internationally, it is important to assess their effectiveness and sustainability as implementation mechanisms. Methods In two purposively selected, musculoskeletal clinical networks, members and stakeholders were interviewed to ascertain their perceptions regarding key factors relating to network effectiveness and sustainability. We adopted a three-level approach to evaluating network effectiveness: at the community, network, and member levels, across the network lifecycle. Results Both networks studied are advisory networks displaying characteristics of the ‘enclave’ type of non-hierarchical network. They are hybrids of the mandated and natural network forms. In the short term, at member level, both networks were striving to create connectivity and collaboration of members. Over the short to medium term, at network level, both networks applied multi-disciplinary engagement in successfully developing models of care as key outputs, and disseminating information to stakeholders. In the long term, at both community and network levels, stakeholders would measure effectiveness by the broader statewide influence of the network in changing and improving practice. At community level, in the long term, stakeholders acknowledged both networks had raised the profile, and provided a ‘voice’ for musculoskeletal conditions, evidencing some progress with implementation of the network mission while pursuing additional implementation strategies. Conclusions This research sheds light on stakeholders’ perceptions of assessing clinical network effectiveness at community, network, and member levels during the network’s timeline, and on the role of networks and their contribution. Overall, stakeholders reported positive momentum and useful progress in network growth and development, and saw their networks as providing valuable mechanisms for meeting instrumental goals and pursuing collaborative interests. Network forms can prove their utility in addressing ‘wicked problems,’ and these Australian clinical networks present a practical approach to the difficult issue of clinician engagement in state-level implementation of best practice for improving patient care and outcomes. PMID:23122000
A digital repository with an extensible data model for biobanking and genomic analysis management
2014-01-01
Motivation Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management. Results We developed a novel data model in JSON format to describe heterogeneous data in a generic biomedical science scenario. The model is built on two hierarchical entities: processes and events, roughly corresponding to research studies and analysis steps within a single study. A number of sequential events can be grouped in a process building up a hierarchical structure to track patient and sample history. Each event can produce new data. Data is described by a set of user-defined metadata, and may have one or more associated files. We integrated the model in a web based digital repository with a data grid storage to manage large data sets located in geographically distinct areas. We built a graphical interface that allows authorized users to define new data types dynamically, according to their requirements. Operators compose queries on metadata fields using a flexible search interface and run them on the database and on the grid. We applied the digital repository to the integrated management of samples, patients and medical history in the BIT-Gaslini biobank. The platform currently manages 1800 samples of over 900 patients. Microarray data from 150 analyses are stored on the grid storage and replicated on two physical resources for preservation. The system is equipped with data integration capabilities with other biobanks for worldwide information sharing. Conclusions Our data model enables users to continuously define flexible, ad hoc, and loosely structured metadata, for information sharing in specific research projects and purposes. This approach can improve sensitively interdisciplinary research collaboration and allows to track patients' clinical records, sample management information, and genomic data. The web interface allows the operators to easily manage, query, and annotate the files, without dealing with the technicalities of the data grid. PMID:25077808
Sparsely-synchronized brain rhythm in a small-world neural network
NASA Astrophysics Data System (ADS)
Kim, Sang-Yoon; Lim, Woochang
2013-07-01
Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and wiring cost.
Approximate method of variational Bayesian matrix factorization/completion with sparse prior
NASA Astrophysics Data System (ADS)
Kawasumi, Ryota; Takeda, Koujin
2018-05-01
We derive the analytical expression of a matrix factorization/completion solution by the variational Bayes method, under the assumption that the observed matrix is originally the product of low-rank, dense and sparse matrices with additive noise. We assume the prior of a sparse matrix is a Laplace distribution by taking matrix sparsity into consideration. Then we use several approximations for the derivation of a matrix factorization/completion solution. By our solution, we also numerically evaluate the performance of a sparse matrix reconstruction in matrix factorization, and completion of a missing matrix element in matrix completion.
Overview of Sparse Graph for Multiple Access in Future Mobile Networks
NASA Astrophysics Data System (ADS)
Lei, Jing; Li, Baoguo; Li, Erbao; Gong, Zhenghui
2017-10-01
Multiple access via sparse graph, such as low density signature (LDS) and sparse code multiple access (SCMA), is a promising technique for future wireless communications. This survey presents an overview of the developments in this burgeoning field, including transmitter structures, extrinsic information transform (EXIT) chart analysis and comparisons with existing multiple access techniques. Such technique enables multiple access under overloaded conditions to achieve a satisfactory performance. Message passing algorithm is utilized for multi-user detection in the receiver, and structures of the sparse graph are illustrated in detail. Outlooks and challenges of this technique are also presented.
Representation-Independent Iteration of Sparse Data Arrays
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
An approach is defined that describes a method of iterating over massively large arrays containing sparse data using an approach that is implementation independent of how the contents of the sparse arrays are laid out in memory. What is unique and important here is the decoupling of the iteration over the sparse set of array elements from how they are internally represented in memory. This enables this approach to be backward compatible with existing schemes for representing sparse arrays as well as new approaches. What is novel here is a new approach for efficiently iterating over sparse arrays that is independent of the underlying memory layout representation of the array. A functional interface is defined for implementing sparse arrays in any modern programming language with a particular focus for the Chapel programming language. Examples are provided that show the translation of a loop that computes a matrix vector product into this representation for both the distributed and not-distributed cases. This work is directly applicable to NASA and its High Productivity Computing Systems (HPCS) program that JPL and our current program are engaged in. The goal of this program is to create powerful, scalable, and economically viable high-powered computer systems suitable for use in national security and industry by 2010. This is important to NASA for its computationally intensive requirements for analyzing and understanding the volumes of science data from our returned missions.
Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery.
Feng, Yunlong; Lv, Shao-Gao; Hang, Hanyuan; Suykens, Johan A K
2016-03-01
Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens (2014) showed that KENReg has some nice properties including stability, sparseness, and generalization. In this letter, we continue our study on KENReg by conducting a refined learning theory analysis. This letter makes the following three main contributions. First, we present refined error analysis on the generalization performance of KENReg. The main difficulty of analyzing the generalization error of KENReg lies in characterizing the population version of its empirical target function. We overcome this by introducing a weighted Banach space associated with the elastic net regularization. We are then able to conduct elaborated learning theory analysis and obtain fast convergence rates under proper complexity and regularity assumptions. Second, we study the sparse recovery problem in KENReg with fixed design and show that the kernelization may improve the sparse recovery ability compared to the classical elastic net regularization. Finally, we discuss the interplay among different properties of KENReg that include sparseness, stability, and generalization. We show that the stability of KENReg leads to generalization, and its sparseness confidence can be derived from generalization. Moreover, KENReg is stable and can be simultaneously sparse, which makes it attractive theoretically and practically.
JiTTree: A Just-in-Time Compiled Sparse GPU Volume Data Structure.
Labschütz, Matthias; Bruckner, Stefan; Gröller, M Eduard; Hadwiger, Markus; Rautek, Peter
2016-01-01
Sparse volume data structures enable the efficient representation of large but sparse volumes in GPU memory for computation and visualization. However, the choice of a specific data structure for a given data set depends on several factors, such as the memory budget, the sparsity of the data, and data access patterns. In general, there is no single optimal sparse data structure, but a set of several candidates with individual strengths and drawbacks. One solution to this problem are hybrid data structures which locally adapt themselves to the sparsity. However, they typically suffer from increased traversal overhead which limits their utility in many applications. This paper presents JiTTree, a novel sparse hybrid volume data structure that uses just-in-time compilation to overcome these problems. By combining multiple sparse data structures and reducing traversal overhead we leverage their individual advantages. We demonstrate that hybrid data structures adapt well to a large range of data sets. They are especially superior to other sparse data structures for data sets that locally vary in sparsity. Possible optimization criteria are memory, performance and a combination thereof. Through just-in-time (JIT) compilation, JiTTree reduces the traversal overhead of the resulting optimal data structure. As a result, our hybrid volume data structure enables efficient computations on the GPU, while being superior in terms of memory usage when compared to non-hybrid data structures.
Universal Priors for Sparse Modeling(PREPRINT)
2009-08-01
Ingenierı́a Eléctrica, Universidad de la República J. Herrera y Reissig 565, Montevideo 11300, Uruguay 2fefo@fing.edu.uy Abstract—Sparse data models, where...Aj‖0 = |Aj | as its cardinality . The goal of sparse modeling is to design a dictionary D such that X = DA with ‖Aj‖0 sufficiently small (usually below
Conceptualizing and Communicating River Restoration
NASA Astrophysics Data System (ADS)
Jacobosn, R. B.
2007-12-01
River restoration increasingly involves collaboration with stakeholders having diverse values and varying technical understanding. In cases where river restoration proceeds through collaborative processes, scientists are required to communicate complex understanding about riverine ecosystem processes to broad audiences. Of particular importance is communication of uncertainties in predictions of ecosystem responses to restoration actions, and how those uncertainties affect monitoring and evaluation strategies. I present a relatively simple conceptual model of how riverine ecosystems operate. The model, which has been used to conceptualize and communicate various river-restoration and management processes in the Lower Missouri River, emphasizes a) the interdependencies of driving regimes (for example, flow, sediment, and water quality), b) the filtering effect of management history, c) the typical hierarchical nature of information about how ecosystems operate, and d) how scientific understanding interacts with decision making. I provide an example of how the conceptual model has been used to illustrate the effects of extensive channel re-engineering of the Lower Missouri River which is intended to mitigate the effects of channelization and flow regulation on aquatic and flood-plain ecosystems. The conceptual model illustrates the logic for prioritizing investments in monitoring and evaluation, interactions among ecosystem components, tradeoffs between ecological and social-commercial benefits, and the feedback loop necessary for successful adaptive management.
Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie
2017-01-01
Objectives: The aim of this study was to determine the respective contribution of professional characteristics, team attributes, team processes, and team emergent states on the job satisfaction of 315 mental health professionals from Quebec (Canada). Methods: Job satisfaction was measured with the Job Satisfaction Survey. Independent variables were organized into four categories according to a conceptual framework inspired from the Input-Mediator-Outcomes-Input Model. The contribution of each category of variables was assessed using hierarchical regression analysis. Results: Variations in job satisfaction were mostly explained by team processes, with minimal contribution from the other three categories. Among the six variables significantly associated with job satisfaction in the final model, four were team processes: stronger team support, less team conflict, deeper involvement in the decision-making process, and more team collaboration. Job satisfaction was also associated with nursing and, marginally, male gender (professional characteristics) as well as with a stronger affective commitment toward the team (team emergent states). Discussion and Conclusion: Results confirm the importance for health managers of offering adequate support to mental health professionals, and creating an environment favorable to collaboration and decision-sharing, and likely to reduce conflicts between team members. PMID:29276591
Adaptive clustering procedure for continuous gravitational wave searches
NASA Astrophysics Data System (ADS)
Singh, Avneet; Papa, Maria Alessandra; Eggenstein, Heinz-Bernd; Walsh, Sinéad
2017-10-01
In hierarchical searches for continuous gravitational waves, clustering of candidates is an important post-processing step because it reduces the number of noise candidates that are followed up at successive stages [J. Aasi et al., Phys. Rev. Lett. 88, 102002 (2013), 10.1103/PhysRevD.88.102002; B. Behnke, M. A. Papa, and R. Prix, Phys. Rev. D 91, 064007 (2015), 10.1103/PhysRevD.91.064007; M. A. Papa et al., Phys. Rev. D 94, 122006 (2016), 10.1103/PhysRevD.94.122006]. Previous clustering procedures bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance), based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to the data itself and checks for consistency of such volume with what is expected from a signal. This significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was employed in the first Einstein@Home search on data from the first science run of the advanced LIGO detectors (O1) [LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1707.02669 [Phys. Rev. D (to be published)
Cross-standard user description in mobile, medical oriented virtual collaborative environments
NASA Astrophysics Data System (ADS)
Ganji, Rama Rao; Mitrea, Mihai; Joveski, Bojan; Chammem, Afef
2015-03-01
By combining four different open standards belonging to the ISO/IEC JTC1/SC29 WG11 (a.k.a. MPEG) and W3C, this paper advances an architecture for mobile, medical oriented virtual collaborative environments. The various users are represented according to MPEG-UD (MPEG User Description) while the security issues are dealt with by deploying the WebID principles. On the server side, irrespective of their elementary types (text, image, video, 3D, …), the medical data are aggregated into hierarchical, interactive multimedia scenes which are alternatively represented into MPEG-4 BiFS or HTML5 standards. This way, each type of content can be optimally encoded according to its particular constraints (semantic, medical practice, network conditions, etc.). The mobile device should ensure only the displaying of the content (inside an MPEG player or an HTML5 browser) and the capturing of the user interaction. The overall architecture is implemented and tested under the framework of the MEDUSA European project, in partnership with medical institutions. The testbed considers a server emulated by a PC and heterogeneous user devices (tablets, smartphones, laptops) running under iOS, Android and Windows operating systems. The connection between the users and the server is alternatively ensured by WiFi and 3G/4G networks.
Bioarchitecture: bioinspired art and architecture--a perspective.
Ripley, Renee L; Bhushan, Bharat
2016-08-06
Art and architecture can be an obvious choice to pair with science though historically this has not always been the case. This paper is an attempt to interact across disciplines, define a new genre, bioarchitecture, and present opportunities for further research, collaboration and professional cooperation. Biomimetics, or the copying of living nature, is a field that is highly interdisciplinary, involving the understanding of biological functions, structures and principles of various objects found in nature by scientists. Biomimetics can lead to biologically inspired design, adaptation or derivation from living nature. As applied to engineering, bioinspiration is a more appropriate term, involving interpretation, rather than direct copying. Art involves the creation of discrete visual objects intended by their creators to be appreciated by others. Architecture is a design practice that makes a theoretical argument and contributes to the discourse of the discipline. Bioarchitecture is a blending of art/architecture and biomimetics/bioinspiration, and incorporates a bioinspired design from the outset in all parts of the work at all scales. Herein, we examine various attempts to date of art and architecture to incorporate bioinspired design into their practice, and provide an outlook and provocation to encourage collaboration among scientists and designers, with the aim of achieving bioarchitecture.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).
Fast sparsely synchronized brain rhythms in a scale-free neural network.
Kim, Sang-Yoon; Lim, Woochang
2015-08-01
We consider a directed version of the Barabási-Albert scale-free network model with symmetric preferential attachment with the same in- and out-degrees and study the emergence of sparsely synchronized rhythms for a fixed attachment degree in an inhibitory population of fast-spiking Izhikevich interneurons. Fast sparsely synchronized rhythms with stochastic and intermittent neuronal discharges are found to appear for large values of J (synaptic inhibition strength) and D (noise intensity). For an intensive study we fix J at a sufficiently large value and investigate the population states by increasing D. For small D, full synchronization with the same population-rhythm frequency fp and mean firing rate (MFR) fi of individual neurons occurs, while for large D partial synchronization with fp>〈fi〉 (〈fi〉: ensemble-averaged MFR) appears due to intermittent discharge of individual neurons; in particular, the case of fp>4〈fi〉 is referred to as sparse synchronization. For the case of partial and sparse synchronization, MFRs of individual neurons vary depending on their degrees. As D passes a critical value D* (which is determined by employing an order parameter), a transition to unsynchronization occurs due to the destructive role of noise to spoil the pacing between sparse spikes. For D
Gratz, Marcel; Schlamann, Marc; Goericke, Sophia; Maderwald, Stefan; Quick, Harald H
2017-03-01
To assess the image quality of sparsely sampled contrast-enhanced MR angiography (sparse CE-MRA) providing high spatial resolution and whole-head coverage. Twenty-three patients scheduled for contrast-enhanced MR imaging of the head, (N = 19 with intracranial pathologies, N = 9 with vascular diseases), were included. Sparse CE-MRA at 3 Tesla was conducted using a single dose of contrast agent. Two neuroradiologists independently evaluated the data regarding vascular visibility and diagnostic value of overall 24 parameters and vascular segments on a 5-point ordinary scale (5 = very good, 1 = insufficient vascular visibility). Contrast bolus timing and the resulting arterio-venous overlap was also evaluated. Where available (N = 9), sparse CE-MRA was compared to intracranial Time-of-Flight MRA. The overall rating across all patients for sparse CE-MRA was 3.50 ± 1.07. Direct influence of the contrast bolus timing on the resulting image quality was observed. Overall mean vascular visibility and image quality across different features was rated good to intermediate (3.56 ± 0.95). The average performance of intracranial Time-of-Flight was rated 3.84 ± 0.87 across all patients and 3.54 ± 0.62 across all features. Sparse CE-MRA provides high-quality 3D MRA with high spatial resolution and whole-head coverage within short acquisition time. Accurate contrast bolus timing is mandatory. • Sparse CE-MRA enables fast vascular imaging with full brain coverage. • Volumes with sub-millimetre resolution can be acquired within 10 seconds. • Reader's ratings are good to intermediate and dependent on contrast bolus timing. • The method provides an excellent overview and allows screening for vascular pathologies.
SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics
Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf
2015-01-01
Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O(n6). Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity (≥ quartic time). Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/Software/SPARSE. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25838465
Yao, Jincao; Yu, Huimin; Hu, Roland
2017-01-01
This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.
Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less
Immunogenicity is preferentially induced in sparse dendritic cell cultures.
Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence
2017-03-09
We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation.
Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering.
Sicat, Ronell; Krüger, Jens; Möller, Torsten; Hadwiger, Markus
2014-12-01
This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.
Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning
NASA Astrophysics Data System (ADS)
Li, Jun-Bao; Liu, Jing; Pan, Jeng-Shyang; Yao, Hongxun
2017-06-01
Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.
Tensor Sparse Coding for Positive Definite Matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikos
2013-08-02
In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for e.g., image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.
Tensor sparse coding for positive definite matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2014-03-01
In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for example, image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.
Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-02-22
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.
Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin
2018-01-01
The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406
Categorizing biomedicine images using novel image features and sparse coding representation
2013-01-01
Background Images embedded in biomedical publications carry rich information that often concisely summarize key hypotheses adopted, methods employed, or results obtained in a published study. Therefore, they offer valuable clues for understanding main content in a biomedical publication. Prior studies have pointed out the potential of mining images embedded in biomedical publications for automatically understanding and retrieving such images' associated source documents. Within the broad area of biomedical image processing, categorizing biomedical images is a fundamental step for building many advanced image analysis, retrieval, and mining applications. Similar to any automatic categorization effort, discriminative image features can provide the most crucial aid in the process. Method We observe that many images embedded in biomedical publications carry versatile annotation text. Based on the locations of and the spatial relationships between these text elements in an image, we thus propose some novel image features for image categorization purpose, which quantitatively characterize the spatial positions and distributions of text elements inside a biomedical image. We further adopt a sparse coding representation (SCR) based technique to categorize images embedded in biomedical publications by leveraging our newly proposed image features. Results we randomly selected 990 images of the JPG format for use in our experiments where 310 images were used as training samples and the rest were used as the testing cases. We first segmented 310 sample images following the our proposed procedure. This step produced a total of 1035 sub-images. We then manually labeled all these sub-images according to the two-level hierarchical image taxonomy proposed by [1]. Among our annotation results, 316 are microscopy images, 126 are gel electrophoresis images, 135 are line charts, 156 are bar charts, 52 are spot charts, 25 are tables, 70 are flow charts, and the remaining 155 images are of the type "others". A serial of experimental results are obtained. Firstly, each image categorizing results is presented, and next image categorizing performance indexes such as precision, recall, F-score, are all listed. Different features which include conventional image features and our proposed novel features indicate different categorizing performance, and the results are demonstrated. Thirdly, we conduct an accuracy comparison between support vector machine classification method and our proposed sparse representation classification method. At last, our proposed approach is compared with three peer classification method and experimental results verify our impressively improved performance. Conclusions Compared with conventional image features that do not exploit characteristics regarding text positions and distributions inside images embedded in biomedical publications, our proposed image features coupled with the SR based representation model exhibit superior performance for classifying biomedical images as demonstrated in our comparative benchmark study. PMID:24565470
Long, Yi; Du, Zhi-Jiang; Chen, Chao-Feng; Dong, Wei; Wang, Wei-Dong
2017-07-01
The most important step for lower extremity exoskeleton is to infer human motion intent (HMI), which contributes to achieve human exoskeleton collaboration. Since the user is in the control loop, the relationship between human robot interaction (HRI) information and HMI is nonlinear and complicated, which is difficult to be modeled by using mathematical approaches. The nonlinear approximation can be learned by using machine learning approaches. Gaussian Process (GP) regression is suitable for high-dimensional and small-sample nonlinear regression problems. GP regression is restrictive for large data sets due to its computation complexity. In this paper, an online sparse GP algorithm is constructed to learn the HMI. The original training dataset is collected when the user wears the exoskeleton system with friction compensation to perform unconstrained movement as far as possible. The dataset has two kinds of data, i.e., (1) physical HRI, which is collected by torque sensors placed at the interaction cuffs for the active joints, i.e., knee joints; (2) joint angular position, which is measured by optical position sensors. To reduce the computation complexity of GP, grey relational analysis (GRA) is utilized to specify the original dataset and provide the final training dataset. Those hyper-parameters are optimized offline by maximizing marginal likelihood and will be applied into online GP regression algorithm. The HMI, i.e., angular position of human joints, will be regarded as the reference trajectory for the mechanical legs. To verify the effectiveness of the proposed algorithm, experiments are performed on a subject at a natural speed. The experimental results show the HMI can be obtained in real time, which can be extended and employed in the similar exoskeleton systems.
Beinecke, R H
1999-01-01
An expanded range of oversight mechanisms is being adopted to hold public human service programs more accountable to funding sources as well as consumers, family members, and providers. Most of these approaches are hierarchical in nature. Some involve negotiated agreements and each is designed to meet certain goals and functions. Each utilizes different forms of decision-making. Stakeholders prefer to be part of a shared decision-making process. Understanding these underlying premises can help to assess the strengths and weaknesses of each method and can suggest how to most effectively utilize combinations of approaches to improve program performance. Whether we will move toward a new paradigm emphasizing participation and collaboration rather than more formal structural approaches is yet undetermined but will greatly affect how programs are monitored and evaluated in the future.
Wood, D; Roberts, T; Bradley, P; Lloyd, D; O'Neill, P
1999-12-01
To design a clinical examination of high content validity suitable for use as a formative assessment tool with pre-registration house officers (PRHO'S) towards the end of their first house officer post. A multicentre collaboration between four UK medical schools who offer undergraduate curricula which are problem-based, systems-based, patient-orientated, student-centred, jargon-laden and utterly staff-bewildering. An objective structured clinical examination (OSCE) which is suitable for use with graduates of UK medical schools. It assesses the knowledge, skills and attitudes essential for future careers in a hierarchical system where protecting the senior staff from all forms of irritation is paramount. PRHO'S who excel in this examination get better references. The OSCE format can be used to provide 'real-life' scenarios appropriate to the season.
Exploiting genomics and natural genetic variation to decode macrophage enhancers
Romanoski, Casey E.; Link, Verena M.; Heinz, Sven; Glass, Christopher K.
2015-01-01
The mammalian genome contains on the order of a million enhancer-like regions that are required to establish the identities and functions of specific cell types. Here, we review recent studies in immune cells that have provided insight into the mechanisms that selectively activate certain enhancers in response to cell lineage and environmental signals. We describe a working model wherein distinct classes of transcription factors define the repertoire of active enhancers in macrophages through collaborative and hierarchical interactions, and discuss important challenges to this model, specifically providing examples from T cells. We conclude by discussing the use of natural genetic variation as a powerful approach for decoding transcription factor combinations that play dominant roles in establishing the enhancer landscapes, and the potential that these insights have for advancing our understanding of the molecular causes of human disease. PMID:26298065
Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation
NASA Astrophysics Data System (ADS)
Kim, Sunwoo
This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.
Sparse distributed memory overview
NASA Technical Reports Server (NTRS)
Raugh, Mike
1990-01-01
The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.
Reconstructing cortical current density by exploring sparseness in the transform domain
NASA Astrophysics Data System (ADS)
Ding, Lei
2009-05-01
In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.
Sparse approximation problem: how rapid simulated annealing succeeds and fails
NASA Astrophysics Data System (ADS)
Obuchi, Tomoyuki; Kabashima, Yoshiyuki
2016-03-01
Information processing techniques based on sparseness have been actively studied in several disciplines. Among them, a mathematical framework to approximately express a given dataset by a combination of a small number of basis vectors of an overcomplete basis is termed the sparse approximation. In this paper, we apply simulated annealing, a metaheuristic algorithm for general optimization problems, to sparse approximation in the situation where the given data have a planted sparse representation and noise is present. The result in the noiseless case shows that our simulated annealing works well in a reasonable parameter region: the planted solution is found fairly rapidly. This is true even in the case where a common relaxation of the sparse approximation problem, the G-relaxation, is ineffective. On the other hand, when the dimensionality of the data is close to the number of non-zero components, another metastable state emerges, and our algorithm fails to find the planted solution. This phenomenon is associated with a first-order phase transition. In the case of very strong noise, it is no longer meaningful to search for the planted solution. In this situation, our algorithm determines a solution with close-to-minimum distortion fairly quickly.
Low-count PET image restoration using sparse representation
NASA Astrophysics Data System (ADS)
Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli
2018-04-01
In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.
Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis
Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin
2013-01-01
One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others. PMID:23762457
X-ray computed tomography using curvelet sparse regularization.
Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias
2015-04-01
Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.
Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic
NASA Astrophysics Data System (ADS)
Ayala, Christopher Lawrence
Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using RSFQ logic and prototype chips have been fabricated. As a joint work with HYPRES, a 20 GHz 8-bit Kogge-Stone ALU consisting of 7,950 JJs total has been fabricated using a 1.5 μm 4.5 kA/cm2 process and fully demonstrated. An 8-bit sparse-tree ALU (8,832 JJs total) and a 16-bit sparse-tree adder (12,785 JJs total) have also been fabricated using a 1.0 μm 10 kA/cm 2 process and demonstrated under collaboration with Yokohama National University and Nagoya University (Japan).
Modelling past land use using archaeological and pollen data
NASA Astrophysics Data System (ADS)
Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José
2016-04-01
Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty
Learning a commonsense moral theory.
Kleiman-Weiner, Max; Saxe, Rebecca; Tenenbaum, Joshua B
2017-10-01
We introduce a computational framework for understanding the structure and dynamics of moral learning, with a focus on how people learn to trade off the interests and welfare of different individuals in their social groups and the larger society. We posit a minimal set of cognitive capacities that together can solve this learning problem: (1) an abstract and recursive utility calculus to quantitatively represent welfare trade-offs; (2) hierarchical Bayesian inference to understand the actions and judgments of others; and (3) meta-values for learning by value alignment both externally to the values of others and internally to make moral theories consistent with one's own attachments and feelings. Our model explains how children can build from sparse noisy observations of how a small set of individuals make moral decisions to a broad moral competence, able to support an infinite range of judgments and decisions that generalizes even to people they have never met and situations they have not been in or observed. It also provides insight into the causes and dynamics of moral change across time, including cases when moral change can be rapidly progressive, changing values significantly in just a few generations, and cases when it is likely to move more slowly. Copyright © 2017 Elsevier B.V. All rights reserved.
Bayesian Analysis of High Dimensional Classification
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Subhadeep; Liang, Faming
2009-12-01
Modern data mining and bioinformatics have presented an important playground for statistical learning techniques, where the number of input variables is possibly much larger than the sample size of the training data. In supervised learning, logistic regression or probit regression can be used to model a binary output and form perceptron classification rules based on Bayesian inference. In these cases , there is a lot of interest in searching for sparse model in High Dimensional regression(/classification) setup. we first discuss two common challenges for analyzing high dimensional data. The first one is the curse of dimensionality. The complexity of many existing algorithms scale exponentially with the dimensionality of the space and by virtue of that algorithms soon become computationally intractable and therefore inapplicable in many real applications. secondly, multicollinearities among the predictors which severely slowdown the algorithm. In order to make Bayesian analysis operational in high dimension we propose a novel 'Hierarchical stochastic approximation monte carlo algorithm' (HSAMC), which overcomes the curse of dimensionality, multicollinearity of predictors in high dimension and also it possesses the self-adjusting mechanism to avoid the local minima separated by high energy barriers. Models and methods are illustrated by simulation inspired from from the feild of genomics. Numerical results indicate that HSAMC can work as a general model selection sampler in high dimensional complex model space.
Paternal occupation and birth defects: findings from the National Birth Defects Prevention Study
Desrosiers, Tania A.; Herring, Amy H.; Shapira, Stuart K.; Hooiveld, Mariette; Luben, Tom J.; Herdt-Losavio, Michele L.; Lin, Shao; Olshan, Andrew F.
2013-01-01
Objectives Several epidemiologic studies have suggested that certain paternal occupations may be associated with an increased prevalence of birth defects in offspring. Using data from the National Birth Defects Prevention Study, we investigated the association between paternal occupation and birth defects in a case-control study of cases comprising over 60 different types of birth defects (n = 9998) and non-malformed controls (n = 4066) with dates of delivery between 1997 and 2004. Methods Using paternal occupational histories reported by mothers via telephone interview, jobs were systematically classified into 63 groups based on shared exposure profiles within occupation and industry. Data were analyzed using Bayesian logistic regression with a hierarchical prior for dependent shrinkage to stabilize estimation with sparse data. Results Several occupations were associated with an increased prevalence of various birth defect categories, including: mathematical, physical and computer scientists; artists; photographers and photo processors; food service workers; landscapers and groundskeepers; hairdressers and cosmetologists; office and administrative support workers; sawmill workers; petroleum and gas workers; chemical workers; printers; material moving equipment operators; and motor vehicle operators. Conclusions Findings from this study might be used to identify specific occupations worthy of further investigation, and to generate hypotheses about chemical or physical exposures common to such occupations. PMID:22782864
Machine Learning-based Transient Brokers for Real-time Classification of the LSST Alert Stream
NASA Astrophysics Data System (ADS)
Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika; ANTARES Collaboration
2018-01-01
The number of transient events discovered by wide-field time-domain surveys already far outstrips the combined followup resources of the astronomical community. This number will only increase as we progress towards the commissioning of the Large Synoptic Survey Telescope (LSST), breaking the community's current followup paradigm. Transient brokers - software to sift through, characterize, annotate and prioritize events for followup - will be a critical tool for managing alert streams in the LSST era. Developing the algorithms that underlie the brokers, and obtaining simulated LSST-like datasets prior to LSST commissioning, to train and test these algorithms are formidable, though not insurmountable challenges. The Arizona-NOAO Temporal Analysis and Response to Events System (ANTARES) is a joint project of the National Optical Astronomy Observatory and the Department of Computer Science at the University of Arizona. We have been developing completely automated methods to characterize and classify variable and transient events from their multiband optical photometry. We describe the hierarchical ensemble machine learning algorithm we are developing, and test its performance on sparse, unevenly sampled, heteroskedastic data from various existing observational campaigns, as well as our progress towards incorporating these into a real-time event broker working on live alert streams from time-domain surveys.
Edge co-occurrences can account for rapid categorization of natural versus animal images
NASA Astrophysics Data System (ADS)
Perrinet, Laurent U.; Bednar, James A.
2015-06-01
Making a judgment about the semantic category of a visual scene, such as whether it contains an animal, is typically assumed to involve high-level associative brain areas. Previous explanations require progressively analyzing the scene hierarchically at increasing levels of abstraction, from edge extraction to mid-level object recognition and then object categorization. Here we show that the statistics of edge co-occurrences alone are sufficient to perform a rough yet robust (translation, scale, and rotation invariant) scene categorization. We first extracted the edges from images using a scale-space analysis coupled with a sparse coding algorithm. We then computed the “association field” for different categories (natural, man-made, or containing an animal) by computing the statistics of edge co-occurrences. These differed strongly, with animal images having more curved configurations. We show that this geometry alone is sufficient for categorization, and that the pattern of errors made by humans is consistent with this procedure. Because these statistics could be measured as early as the primary visual cortex, the results challenge widely held assumptions about the flow of computations in the visual system. The results also suggest new algorithms for image classification and signal processing that exploit correlations between low-level structure and the underlying semantic category.
Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J. Andrew
2010-01-01
We develop a hierarchical capture–recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture–recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture–recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.
Gardner, Beth; Reppucci, Juan; Lucherini, Mauro; Royle, J Andrew
2010-11-01
We develop a hierarchical capture-recapture model for demographically open populations when auxiliary spatial information about location of capture is obtained. Such spatial capture-recapture data arise from studies based on camera trapping, DNA sampling, and other situations in which a spatial array of devices records encounters of unique individuals. We integrate an individual-based formulation of a Jolly-Seber type model with recently developed spatially explicit capture-recapture models to estimate density and demographic parameters for survival and recruitment. We adopt a Bayesian framework for inference under this model using the method of data augmentation which is implemented in the software program WinBUGS. The model was motivated by a camera trapping study of Pampas cats Leopardus colocolo from Argentina, which we present as an illustration of the model in this paper. We provide estimates of density and the first quantitative assessment of vital rates for the Pampas cat in the High Andes. The precision of these estimates is poor due likely to the sparse data set. Unlike conventional inference methods which usually rely on asymptotic arguments, Bayesian inferences are valid in arbitrary sample sizes, and thus the method is ideal for the study of rare or endangered species for which small data sets are typical.
Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar
Sen, Satyabrata
2015-08-04
We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positivemore » semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.« less
Sparse regularization for force identification using dictionaries
NASA Astrophysics Data System (ADS)
Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng
2016-04-01
The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.
Alternatively Constrained Dictionary Learning For Image Superresolution.
Lu, Xiaoqiang; Yuan, Yuan; Yan, Pingkun
2014-03-01
Dictionaries are crucial in sparse coding-based algorithm for image superresolution. Sparse coding is a typical unsupervised learning method to study the relationship between the patches of high-and low-resolution images. However, most of the sparse coding methods for image superresolution fail to simultaneously consider the geometrical structure of the dictionary and the corresponding coefficients, which may result in noticeable superresolution reconstruction artifacts. In other words, when a low-resolution image and its corresponding high-resolution image are represented in their feature spaces, the two sets of dictionaries and the obtained coefficients have intrinsic links, which has not yet been well studied. Motivated by the development on nonlocal self-similarity and manifold learning, a novel sparse coding method is reported to preserve the geometrical structure of the dictionary and the sparse coefficients of the data. Moreover, the proposed method can preserve the incoherence of dictionary entries and provide the sparse coefficients and learned dictionary from a new perspective, which have both reconstruction and discrimination properties to enhance the learning performance. Furthermore, to utilize the model of the proposed method more effectively for single-image superresolution, this paper also proposes a novel dictionary-pair learning method, which is named as two-stage dictionary training. Extensive experiments are carried out on a large set of images comparing with other popular algorithms for the same purpose, and the results clearly demonstrate the effectiveness of the proposed sparse representation model and the corresponding dictionary learning algorithm.
Enhanced decision making through neuroscience
NASA Astrophysics Data System (ADS)
Szu, Harold; Jung, TP; Makeig, Scott
2012-06-01
We propose to enhance the decision making of pilot, co-pilot teams, over a range of vehicle platforms, with the aid of neuroscience. The goal is to optimize this collaborative decision making interplay in time-critical, stressful situations. We will research and measure human facial expressions, personality typing, and brainwave measurements to help answer questions related to optimum decision-making in group situations. Further, we propose to examine the nature of intuition in this decision making process. The brainwave measurements will be facilitated by a University of California, San Diego (UCSD) developed wireless Electroencephalography (EEG) sensing cap. We propose to measure brainwaves covering the whole head area with an electrode density of N=256, and yet keep within the limiting wireless bandwidth capability of m=32 readouts. This is possible because solving Independent Component Analysis (ICA) and finding the hidden brainwave sources allow us to concentrate selective measurements with an organized sparse source -->s sensing matrix [Φs], rather than the traditional purely random compressive sensing (CS) matrix[Φ].
Making structures for cell engineering.
Wilkinson, C D W
2004-10-22
This is a mainly historical account of the events, methods and artifacts arising from my collaboration with Adam Curtis over the past twenty years to make exercise grounds for biological cells. Initially the structures were made in fused silica by photo-lithography and dry etching. The need to make micron-sized features in biodegradable polymers, led to the development of embossing techniques. Some cells response to grooves only a few tens of nanometers deep--this led to a desire to find the response of cells to features of nanometric size overall. Regular arrays of such features were made using electron beam lithography for definition of the pattern. Improvements were made in the lithographic techniques to allow arrays to be defined over areas bigger than 1 cm2. Structures with microelectrodes arranged inside guiding grooves to allow the formation of sparse predetermined networks of neurons were made. It is concluded that the creation of pattern, as in vivo, in assemblies of regrown cells in scaffolds may well be necessary in advanced cell engineering applications.
Pulsating stars and the distance scale
NASA Astrophysics Data System (ADS)
Macri, Lucas
2017-09-01
I present an overview of the latest results from the SH0ES project, which obtained homogeneous Hubble Space Telescope (HST) photometry in the optical and near-infrared for ˜ 3500 and ˜ 2300 Cepheids, respectively, across 19 supernova hosts and 4 calibrators to determine the value of H0 with a total uncertainty of 2.4%. I discuss the current 3.4σ "tension" between this local measurement and predictions of H0 based on observations of the CMB and the assumption of "standard" ΛCDM. I review ongoing efforts to reach σ(H0) = 1%, including recent advances on the absolute calibration of Milky Way Cepheid period-luminosity relations (PLRs) using a novel astrometric technique with HST. Lastly, I highlight recent results from another collaboration on the development of new statistical techniques to detect, classify and phase extragalactic Miras using noisy and sparsely-sampled observations. I present preliminary Mira PLRs at various wavelengths based on the application of these techniques to a survey of M33.
Multimodal Sparse Coding for Event Detection
2015-10-13
classification tasks based on single modality. We present multimodal sparse coding for learning feature representations shared across multiple modalities...The shared representa- tions are applied to multimedia event detection (MED) and evaluated in compar- ison to unimodal counterparts, as well as other...and video tracks from the same multimedia clip, we can force the two modalities to share a similar sparse representation whose benefit includes robust
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan; Han, Chang Wan; Venkatakrishnan, Singanallur V.; Bouman, Charles A.; Ortalan, Volkan
2017-04-01
Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials, the results obtained in our experiments demonstrate the sparse acquisition STEM imaging is potentially capable of reducing the electron dose by at least 20 times expanding the frontiers of our characterization capabilities for investigation of biological/organic molecules, polymers, soft materials and nanostructures in general.
Disconnected Diagrams in Lattice QCD
NASA Astrophysics Data System (ADS)
Gambhir, Arjun Singh
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements of the nucleon at two different values of the lattice spacing. Finally, we employ these algorithms to do a high-precision study of strange sigma terms in light nuclei; to our knowledge this is the first calculation of its kind from Lattice QCD.
Disconnected Diagrams in Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambhir, Arjun
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagramsmore » is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements of the nucleon at two different values of the lattice spacing. Finally, we employ these algorithms to do a high-precision study of strange sigma terms in light nuclei; to our knowledge this is the first calculation of its kind from Lattice QCD.« less
Modular and scalable RESTful API to sustain STAR collaboration's record keeping
NASA Astrophysics Data System (ADS)
Arkhipkin, D.; Lauret, J.; Shanmuganathan, P. V.
2015-12-01
STAR collaboration's record system is a collection of heterogeneous and sparse information associated to each members and institutions. In its original incarnation, only flat information was stored revealing many restrictions such as the lack of historical change information, the inability to keep track of members leaving and re-joining STAR, or the ability to easily extend the saved information as new requirements appeared. In mid-2013, a new project was launched covering an extensive set of revisited requirements. The requirements led us to a design based on a RESTful API, back-end storage engine relying on key/value pair data representation model coupled with a tiered architecture design. This design was motivated by the fact that unifying many STAR tools, relying on the same business logic and storage engine, was a key and central feature for the maintainability and presentation of records. This central service API would leave no ambiguities and provide easy service integration between STAR tools. The new design stores the changes in records dynamically and allows tracking the changes chronologically. The storage engine is extensible as new field of information emerges (member specific or general) without affecting the presentation or the business logic layers. The new record system features a convenient administrative interface, fuzzy algorithms for data entry and search, and provides basic statistics and graphs. Finally, this modular approach is supplemented with access control, allowing private information and administrative operations to be hidden away from public eyes.
Development of a remote proton radiation therapy solution over internet2.
Belard, Arnaud; Tinnel, Brent; Wilson, Steve; Ferro, Ralph; O'Connell, John
2009-12-01
Through our existing partnership, our research program has leveraged the benefits of proton radiation therapy through the development a robust telemedicine solution for remote proton therapy planning. Our proof-of-concept system provides a cost-effective and functional videoconferencing desktop platform for both ad-hoc and scheduled communication, as well as a robust interface for data collaboration (application-sharing of a commercial radiation treatment planning package). Over a 2-year period, our evaluation of this model has highlighted the inherent benefits of this affordable remote treatment planning solution, i.e., (1) giving physicians the ability to remotely participate in refining and generating proton therapy plans via a secure and robust Internet2 VPN tunnel to the University of Pennsylvania's commercial proton treatment planning package; (2) allowing cancer-care providers sending patients to a proton treatment facility to participate in treatment planning decisions by enabling referring or accepting providers to initiate ad-hoc, point-to-point communication with their counterparts to clarify and resolve issues arising before or during patient treatment; and thus (3) allowing stewards of an otherwise highly centralized resource the ability to encourage wider participation with and referrals to sparsely located proton treatment centers by adapting telemedicine techniques that allow sharing of proton therapy planning services. We believe that our elegant and very affordable approach to remote proton treatment planning opens the door to greater worldwide referrals to the scarce resource of proton treatment units and wide-ranging scientific collaboration, both nationally and internationally.
Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...
2017-03-05
Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.
Barron, Martin; Zhang, Siyuan
2018-01-01
Abstract Cell types in cell populations change as the condition changes: some cell types die out, new cell types may emerge and surviving cell types evolve to adapt to the new condition. Using single-cell RNA-sequencing data that measure the gene expression of cells before and after the condition change, we propose an algorithm, SparseDC, which identifies cell types, traces their changes across conditions and identifies genes which are marker genes for these changes. By solving a unified optimization problem, SparseDC completes all three tasks simultaneously. SparseDC is highly computationally efficient and demonstrates its accuracy on both simulated and real data. PMID:29140455
Normalization for sparse encoding of odors by a wide-field interneuron.
Papadopoulou, Maria; Cassenaer, Stijn; Nowotny, Thomas; Laurent, Gilles
2011-05-06
Sparse coding presents practical advantages for sensory representations and memory storage. In the insect olfactory system, the representation of general odors is dense in the antennal lobes but sparse in the mushroom bodies, only one synapse downstream. In locusts, this transformation relies on the oscillatory structure of antennal lobe output, feed-forward inhibitory circuits, intrinsic properties of mushroom body neurons, and connectivity between antennal lobe and mushroom bodies. Here we show the existence of a normalizing negative-feedback loop within the mushroom body to maintain sparse output over a wide range of input conditions. This loop consists of an identifiable "giant" nonspiking inhibitory interneuron with ubiquitous connectivity and graded release properties.
Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays
NASA Technical Reports Server (NTRS)
Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.
2004-01-01
Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.
Sparse dictionary learning of resting state fMRI networks.
Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C
2012-07-02
Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.
BI-sparsity pursuit for robust subspace recovery
Bian, Xiao; Krim, Hamid
2015-09-01
Here, the success of sparse models in computer vision and machine learning in many real-world applications, may be attributed in large part, to the fact that many high dimensional data are distributed in a union of low dimensional subspaces. The underlying structure may, however, be adversely affected by sparse errors, thus inducing additional complexity in recovering it. In this paper, we propose a bi-sparse model as a framework to investigate and analyze this problem, and provide as a result , a novel algorithm to recover the union of subspaces in presence of sparse corruptions. We additionally demonstrate the effectiveness ofmore » our method by experiments on real-world vision data.« less
An adaptable XML based approach for scientific data management and integration
NASA Astrophysics Data System (ADS)
Wang, Fusheng; Thiel, Florian; Furrer, Daniel; Vergara-Niedermayr, Cristobal; Qin, Chen; Hackenberg, Georg; Bourgue, Pierre-Emmanuel; Kaltschmidt, David; Wang, Mo
2008-03-01
Increased complexity of scientific research poses new challenges to scientific data management. Meanwhile, scientific collaboration is becoming increasing important, which relies on integrating and sharing data from distributed institutions. We develop SciPort, a Web-based platform on supporting scientific data management and integration based on a central server based distributed architecture, where researchers can easily collect, publish, and share their complex scientific data across multi-institutions. SciPort provides an XML based general approach to model complex scientific data by representing them as XML documents. The documents capture not only hierarchical structured data, but also images and raw data through references. In addition, SciPort provides an XML based hierarchical organization of the overall data space to make it convenient for quick browsing. To provide generalization, schemas and hierarchies are customizable with XML-based definitions, thus it is possible to quickly adapt the system to different applications. While each institution can manage documents on a Local SciPort Server independently, selected documents can be published to a Central Server to form a global view of shared data across all sites. By storing documents in a native XML database, SciPort provides high schema extensibility and supports comprehensive queries through XQuery. By providing a unified and effective means for data modeling, data access and customization with XML, SciPort provides a flexible and powerful platform for sharing scientific data for scientific research communities, and has been successfully used in both biomedical research and clinical trials.
An Adaptable XML Based Approach for Scientific Data Management and Integration.
Wang, Fusheng; Thiel, Florian; Furrer, Daniel; Vergara-Niedermayr, Cristobal; Qin, Chen; Hackenberg, Georg; Bourgue, Pierre-Emmanuel; Kaltschmidt, David; Wang, Mo
2008-02-20
Increased complexity of scientific research poses new challenges to scientific data management. Meanwhile, scientific collaboration is becoming increasing important, which relies on integrating and sharing data from distributed institutions. We develop SciPort, a Web-based platform on supporting scientific data management and integration based on a central server based distributed architecture, where researchers can easily collect, publish, and share their complex scientific data across multi-institutions. SciPort provides an XML based general approach to model complex scientific data by representing them as XML documents. The documents capture not only hierarchical structured data, but also images and raw data through references. In addition, SciPort provides an XML based hierarchical organization of the overall data space to make it convenient for quick browsing. To provide generalization, schemas and hierarchies are customizable with XML-based definitions, thus it is possible to quickly adapt the system to different applications. While each institution can manage documents on a Local SciPort Server independently, selected documents can be published to a Central Server to form a global view of shared data across all sites. By storing documents in a native XML database, SciPort provides high schema extensibility and supports comprehensive queries through XQuery. By providing a unified and effective means for data modeling, data access and customization with XML, SciPort provides a flexible and powerful platform for sharing scientific data for scientific research communities, and has been successfully used in both biomedical research and clinical trials.
The Advantages of Hierarchical Linear Modeling. ERIC/AE Digest.
ERIC Educational Resources Information Center
Osborne, Jason W.
This digest introduces hierarchical data structure, describes how hierarchical models work, and presents three approaches to analyzing hierarchical data. Hierarchical, or nested data, present several problems for analysis. People or creatures that exist within hierarchies tend to be more similar to each other than people randomly sampled from the…
NASA Astrophysics Data System (ADS)
Perotti, Juan Ignacio; Tessone, Claudio Juan; Caldarelli, Guido
2015-12-01
The quest for a quantitative characterization of community and modular structure of complex networks produced a variety of methods and algorithms to classify different networks. However, it is not clear if such methods provide consistent, robust, and meaningful results when considering hierarchies as a whole. Part of the problem is the lack of a similarity measure for the comparison of hierarchical community structures. In this work we give a contribution by introducing the hierarchical mutual information, which is a generalization of the traditional mutual information and makes it possible to compare hierarchical partitions and hierarchical community structures. The normalized version of the hierarchical mutual information should behave analogously to the traditional normalized mutual information. Here the correct behavior of the hierarchical mutual information is corroborated on an extensive battery of numerical experiments. The experiments are performed on artificial hierarchies and on the hierarchical community structure of artificial and empirical networks. Furthermore, the experiments illustrate some of the practical applications of the hierarchical mutual information, namely the comparison of different community detection methods and the study of the consistency, robustness, and temporal evolution of the hierarchical modular structure of networks.
NASA Astrophysics Data System (ADS)
Patej, A.; Eisenstein, D. J.
2018-07-01
We develop a formalism for measuring the cosmological distance scale from baryon acoustic oscillations (BAO) using the cross-correlation of a sparse redshift survey with a denser photometric sample. This reduces the shot noise that would otherwise affect the autocorrelation of the sparse spectroscopic map. As a proof of principle, we make the first on-sky application of this method to a sparse sample defined as the z > 0.6 tail of the Sloan Digital Sky Survey's (SDSS) BOSS/CMASS sample of galaxies and a dense photometric sample from SDSS DR9. We find a 2.8σ preference for the BAO peak in the cross-correlation at an effective z = 0.64, from which we measure the angular diameter distance DM(z = 0.64) = (2418 ± 73 Mpc)(rs/rs, fid). Accordingly, we expect that using this method to combine sparse spectroscopy with the deep, high-quality imaging that is just now becoming available will enable higher precision BAO measurements than possible with the spectroscopy alone.
NASA Astrophysics Data System (ADS)
Patej, Anna; Eisenstein, Daniel J.
2018-04-01
We develop a formalism for measuring the cosmological distance scale from baryon acoustic oscillations (BAO) using the cross-correlation of a sparse redshift survey with a denser photometric sample. This reduces the shot noise that would otherwise affect the auto-correlation of the sparse spectroscopic map. As a proof of principle, we make the first on-sky application of this method to a sparse sample defined as the z > 0.6 tail of the Sloan Digital Sky Survey's (SDSS) BOSS/CMASS sample of galaxies and a dense photometric sample from SDSS DR9. We find a 2.8σ preference for the BAO peak in the cross-correlation at an effective z = 0.64, from which we measure the angular diameter distance DM(z = 0.64) = (2418 ± 73 Mpc)(rs/rs, fid). Accordingly, we expect that using this method to combine sparse spectroscopy with the deep, high quality imaging that is just now becoming available will enable higher precision BAO measurements than possible with the spectroscopy alone.
Joseph, John; Sharif, Hatim O; Sunil, Thankam; Alamgir, Hasanat
2013-07-01
The adverse health effects of high concentrations of ground-level ozone are well-known, but estimating exposure is difficult due to the sparseness of urban monitoring networks. This sparseness discourages the reservation of a portion of the monitoring stations for validation of interpolation techniques precisely when the risk of overfitting is greatest. In this study, we test a variety of simple spatial interpolation techniques for 8-h ozone with thousands of randomly selected subsets of data from two urban areas with monitoring stations sufficiently numerous to allow for true validation. Results indicate that ordinary kriging with only the range parameter calibrated in an exponential variogram is the generally superior method, and yields reliable confidence intervals. Sparse data sets may contain sufficient information for calibration of the range parameter even if the Moran I p-value is close to unity. R script is made available to apply the methodology to other sparsely monitored constituents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Immunogenicity is preferentially induced in sparse dendritic cell cultures
Nasi, Aikaterini; Bollampalli, Vishnu Priya; Sun, Meng; Chen, Yang; Amu, Sylvie; Nylén, Susanne; Eidsmo, Liv; Rothfuchs, Antonio Gigliotti; Réthi, Bence
2017-01-01
We have previously shown that human monocyte-derived dendritic cells (DCs) acquired different characteristics in dense or sparse cell cultures. Sparsity promoted the development of IL-12 producing migratory DCs, whereas dense cultures increased IL-10 production. Here we analysed whether the density-dependent endogenous breaks could modulate DC-based vaccines. Using murine bone marrow-derived DC models we show that sparse cultures were essential to achieve several key functions required for immunogenic DC vaccines, including mobility to draining lymph nodes, recruitment and massive proliferation of antigen-specific CD4+ T cells, in addition to their TH1 polarization. Transcription analyses confirmed higher commitment in sparse cultures towards T cell activation, whereas DCs obtained from dense cultures up-regulated immunosuppressive pathway components and genes suggesting higher differentiation plasticity towards osteoclasts. Interestingly, we detected a striking up-regulation of fatty acid and cholesterol biosynthesis pathways in sparse cultures, suggesting an important link between DC immunogenicity and lipid homeostasis regulation. PMID:28276533