Department of Chemistry and Biochemistry - University of Maryland,
Access Analytical Facilities? New Labs Catalyze Chemistry Learning Inclusive & Interdisciplinary New Collaborative Research New Labs Catalyze Chemistry Learning Inclusive & Interdisciplinary New Molecule Shows Author's profile esj-lab New Labs Catalyze Chemistry Learning The Edward St. John Learning and Teaching
Using collaborative technologies in remote lab delivery systems for topics in automation
NASA Astrophysics Data System (ADS)
Ashby, Joe E.
Lab exercises are a pedagogically essential component of engineering and technology education. Distance education remote labs are being developed which enable students to access lab facilities via the Internet. Collaboration, students working in teams, enhances learning activity through the development of communication skills, sharing observations and problem solving. Web meeting communication tools are currently used in remote labs. The problem identified for investigation was that no standards of practice or paradigms exist to guide remote lab designers in the selection of collaboration tools that best support learning achievement. The goal of this work was to add to the body of knowledge involving the selection and use of remote lab collaboration tools. Experimental research was conducted where the participants were randomly assigned to three communication treatments and learning achievement was measured via assessments at the completion of each of six remote lab based lessons. Quantitative instruments used for assessing learning achievement were implemented, along with a survey to correlate user preference with collaboration treatments. A total of 53 undergraduate technology students worked in two-person teams, where each team was assigned one of the treatments, namely (a) text messaging chat, (b) voice chat, or (c) webcam video with voice chat. Each had little experience with the subject matter involving automation, but possessed the necessary technical background. Analysis of the assessment score data included mean and standard deviation, confirmation of the homogeneity of variance, a one-way ANOVA test and post hoc comparisons. The quantitative and qualitative data indicated that text messaging chat negatively impacted learning achievement and that text messaging chat was not preferred. The data also suggested that the subjects were equally divided on preference to voice chat verses webcam video with voice chat. To the end of designing collaborative communication tools for remote labs involving automation equipment, the results of this work points to making voice chat the default method of communication; but the webcam video with voice chat option should be included. Standards are only beginning to be developed for the design of remote lab systems. Research, design and innovation involving collaboration and presence should be included.
NASA Astrophysics Data System (ADS)
Shibley, Ivan A., Jr.; Zimmaro, Dawn M.
2002-06-01
This study was designed to determine the effect of collaborative learning on student attitudes and performance in an introductory chemistry laboratory. Two sections per semester for three semesters were randomly designated as either a control section or an experimental section. Students in the control section performed most labs individually, while those in the experimental section performed all labs in groups of four. Both quantitative and qualitative measures were used to evaluate the impact of collaborative learning on student achievement and attitudes. Grades did not differ between the two sections, indicating that collaborative learning did not affect short-term student achievement. Students seemed to develop a more positive attitude about the laboratory and about chemistry in the collaborative learning sections as judged from their classroom evaluations of the teacher, the course, and the collaborative learning experience. The use of collaborative learning in the laboratory as described in this paper therefore may provide a means of improving student attitudes toward chemistry.
L Hall, Mona; Vardar-Ulu, Didem
2014-01-01
The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students through their laboratory work at a steady pace that encourages them to focus on quality observations, careful data collection and thought processes surrounding the chemistry involved. It motivates students to work in a collaborative manner with frequent opportunities for feedback, reflection, and modification of their ideas. Each laboratory activity has four stages to keep the students' efforts on track: pre-lab work, an in-lab discussion, in-lab work, and a post-lab assignment. Students are guided at each stage by an instructor created template that directs their learning while giving them the opportunity and flexibility to explore new information, ideas, and questions. These templates are easily transferred into an electronic journal (termed the E-notebook) and form the basic structural framework of the final lab reports the students submit electronically, via a learning management system. The guided-inquiry based approach presented here uses a single laboratory activity for undergraduate Introductory Biochemistry as an example. After implementation of this guided learning approach student surveys reported a higher level of course satisfaction and there was a statistically significant improvement in the quality of the student work. Therefore we firmly believe the described format to be highly effective in promoting student learning and engagement. © 2013 by The International Union of Biochemistry and Molecular Biology.
NASA Astrophysics Data System (ADS)
Baumgarten, Kristyne A.
This study investigated the possible relationship between collaborative learning strategies and the learning of core concepts. This study examined the differences between two groups of nursing students enrolled in an introductory microbiology laboratory course. The control group consisted of students enrolled in sections taught in the traditional method. The experimental group consisted of those students enrolled in the sections using collaborative learning strategies. The groups were assessed on their degrees of learning core concepts using a pre-test/post-test method. Scores from the groups' laboratory reports were also analyzed. There was no difference in the two group's pre-test scores. The post-test scores of the experimental group averaged 11 points higher than the scores of the control group. The lab report scores of the experimental group averaged 15 points higher than those scores of the control group. The data generated from this study demonstrated that collaborative learning strategies can be used to increase students learning of core concepts in microbiology labs.
Weisman, David
2010-01-01
Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a face-to-face lecture course with a web-based virtual laboratory presents new opportunities for collaborative learning of the conceptual material, and for fostering peer support of technical bioinformatics questions. To explore this combination, an in-person lecture-only undergraduate bioinformatics course was augmented with a remote web-based laboratory, and tested with a large class. This study hypothesized that the collaborative virtual lab would foster active learning and peer support, and tested this hypothesis by conducting a student survey near the end of the semester. Respondents broadly reported strong benefits from the online laboratory, and strong benefits from peer-provided technical support. In comparison with traditional in-person teaching labs, students preferred the virtual lab by a factor of two. Key aspects of the course architecture and design are described to encourage further experimentation in teaching collaborative online bioinformatics laboratories. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.
E-Labs - Learning with Authentic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardeen, Marjorie G.; Wayne, Mitchell
the success teachers have had providing an opportunity for students to: • Organize and conduct authentic research. • Experience the environment of scientific collaborations. • Possibly make real contributions to a burgeoning scientific field. We've created projects that are problem-based, student driven and technology dependent. Students reach beyond classroom walls to explore data with other students and experts and share results, publishing original work to a worldwide audience. Students can discover and extend the research of other students, modeling the processes of modern, large-scale research projects. From start to finish e-Labs are student-led, teacher-guided projects. Students need only a Webmore » browser to access computing techniques employed by professional researchers. A Project Map with milestones allows students to set the research plan rather than follow a step-by-step process common in other online projects. Most importantly, e-Labs build the learning experience around the students' own questions and let them use the very tools that scientists use. Students contribute to and access shared data, most derived from professional research databases. They use common analysis tools, store their work and use metadata to discover, replicate and confirm the research of others. This is where real scientific collaboration begins. Using online tools, students correspond with other research groups, post comments and questions, prepare summary reports, and in general participate in the part of scientific research that is often left out of classroom experiments. Teaching tools such as student and teacher logbooks, pre- and post-tests and an assessment rubric aligned with learner outcomes help teachers guide student work. Constraints on interface designs and administrative tools such as registration databases give teachers the "one-stop-shopping" they seek for multiple e-Labs. Teaching and administrative tools also allow us to track usage and assess the impact on student learning.« less
Using SimCPU in Cooperative Learning Laboratories.
ERIC Educational Resources Information Center
Lin, Janet Mei-Chuen; Wu, Cheng-Chih; Liu, Hsi-Jen
1999-01-01
Reports research findings of an experimental design in which cooperative-learning strategies were applied to closed-lab instruction of computing concepts. SimCPU, a software package specially designed for closed-lab usage was used by 171 high school students of four classes. Results showed that collaboration enhanced learning and that blending…
ERIC Educational Resources Information Center
Furberg, Anniken
2016-01-01
This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…
The Online Writing Lab (OWL) and the Forum: A Tool for Writers in Distance Education Environments.
ERIC Educational Resources Information Center
Terryberry, Karl
2002-01-01
Demonstrates how to integrate static web pages with the dynamic forum for an effective learning experience on the online writing lab (OWL). Explains why asynchronous feedback provides effective, individualized writing instruction to students with various learning styles and how collaborative learning is fostered through threaded discussion groups.…
Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks
ERIC Educational Resources Information Center
Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita
2017-01-01
More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…
Designing for Problem-Based Learning in a Collaborative STEM Lab: A Case Study
ERIC Educational Resources Information Center
Estes, Michele D.; Liu, Juhong; Zha, Shenghua; Reedy, Kim
2014-01-01
Higher education institutions are using virtual telepresence systems to engage in collaborative course redesign and research projects. These systems hold promise and challenge for inter-institutional work in STEM areas. This paper describes a case study involving two universities in the 4-VA consortium, and the redesign of a shared STEM lab. The…
ERIC Educational Resources Information Center
Overlock, Terrence H., Sr.
To determine the effect of collaborative learning methods on the success rate of physics students at Northern Maine Technical College (NMTC), a study was undertaken to compare the mean final exam scores of a students in a physics course taught by traditional lecture/lab methods to those in a group taught by collaborative techniques. The…
Creating a Collaborative Learning Community in the CIS Sandbox
ERIC Educational Resources Information Center
Frydenberg, Mark
2013-01-01
Purpose: The purpose of this paper is to investigate the impact of transforming a traditional university computer lab to create a collaborative learning community known as the CIS Sandbox, by remodeling a physical space and supporting it with a virtual presence through the use of social media tools. The discussion applies Selander's "designs for…
NASA Astrophysics Data System (ADS)
Kurtz, N.; Marks, N.; Cooper, S. K.
2014-12-01
Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.
When Everyone Is a Probe, Everyone Is a Learner
ERIC Educational Resources Information Center
Berenfeld, Boris; Krupa, Tatiana; Lebedev, Arseny; Stafeev, Sergey
2014-01-01
Most students globally have mobile devices and the Global Students Laboratory (GlobalLab) project is integrating mobility into learning. First launched in 1991, GlobalLab builds a community of learners engaged in collaborative, distributed investigations. Long relying on stationary desktop computers, or students inputting their observations by…
Dunne, James R; McDonald, Claudia L
2010-07-01
Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.
Learning by Creating and Exchanging Objects: The SCY Experience
ERIC Educational Resources Information Center
De Jong, Ton; Van Joolingen, Wouter R.; Giemza, Adam; Girault, Isabelle; Hoppe, Ulrich; Kindermann, Jorg; Kluge, Anders; Lazonder, Ard W.; Vold, Vibeke; Weinberger, Armin; Weinbrenner, Stefan; Wichmann, Astrid; Anjewierden, Anjo; Bodin, Marjolaine; Bollen, Lars; D'Ham, Cedric; Dolonen, Jan; Engler, Jan; Geraedts, Caspar; Grosskreutz, Henrik; Hovardas, Tasos; Julien, Rachel; Lechner, Judith; Ludvigsen, Sten; Matteman, Yuri; Meistadt, Oyvind; Naess, Bjorge; Ney, Muriel; Pedaste, Margus; Perritano, Anthony; Rinket, Marieke; Von Schlanbusch, Henrik; Sarapuu, Tago; Schulz, Florian; Sikken, Jakob; Slotta, Jim; Toussaint, Jeremy; Verkade, Alex; Wajeman, Claire; Wasson, Barbara; Zacharia, Zacharias C.; Van Der Zanden, Martine
2010-01-01
Science Created by You (SCY) is a project on learning in science and technology domains. SCY uses a pedagogical approach that centres around products, called "emerging learning objects" (ELOs) that are created by students. Students work individually and collaboratively in SCY-Lab (the general SCY learning environment) on "missions" that are guided…
Revitalization of clinical skills training at the University of the Western Cape.
Jeggels, J D; Traut, A; Kwast, M
2010-06-01
Most educational institutions that offer health related qualifications make use of clinical skills laboratories. These spaces are generally used for the demonstration and assessment of clinical skills. The purpose of this paper is to share our experiences related to the revitalization of skills training by introducing the skills lab method at the School of Nursing (SoN), University of the Western Cape (UWC). To accommodate the contextual changes as a result of the restructuring of the higher education landscape in 2003, the clinical skills training programme at UWC had to be reviewed. With a dramatic increase in the student numbers and a reduction in hospital beds, the skills lab method provided students with an opportunity to develop clinical skills prior to their placement in real service settings. The design phase centred on adopting a skills training methodology that articulates with the case-based approach used by the SoN. Kolb's, experiential learning cycle provided the theoretical underpinning for the methodology. The planning phase was spent on the development of resources. Eight staff members were trained by our international higher education collaborators who also facilitated the training of clinical supervisors and simulated patients. The physical space had to be redesigned to accommodate audio visual and information technology to support the phases of the skills lab method. The implementation of the skills lab method was phased in from the first-year level. An interactive seminar held after the first year of implementation provided feedback from all the role players and was mostly positive. The results of introducing the skills lab method include: a move by students towards self-directed clinical skills development, clinical supervisors adopting the role of facilitators of learning and experiential clinical learning being based on, amongst others, the students' engagement with simulated patients. Finally, the recommendations relate to tailor-making clinical skills training by using various aspects of teaching and learning principles, i.e. case-based teaching, experiential learning and the skills lab method.
Lessons Learned From a Living Lab on the Broad Adoption of eHealth in Primary Health Care
Huygens, Martine Wilhelmina Johanna; Schoenmakers, Tim M; Oude Nijeweme-D'Hollosy, Wendy; van Velsen, Lex; Vermeulen, Joan; Schoone-Harmsen, Marian; Jansen, Yvonne JFM; van Schayck, Onno CP; Friele, Roland; de Witte, Luc
2018-01-01
Background Electronic health (eHealth) solutions are considered to relieve current and future pressure on the sustainability of primary health care systems. However, evidence of the effectiveness of eHealth in daily practice is missing. Furthermore, eHealth solutions are often not implemented structurally after a pilot phase, even if successful during this phase. Although many studies on barriers and facilitators were published in recent years, eHealth implementation still progresses only slowly. To further unravel the slow implementation process in primary health care and accelerate the implementation of eHealth, a 3-year Living Lab project was set up. In the Living Lab, called eLabEL, patients, health care professionals, small- and medium-sized enterprises (SMEs), and research institutes collaborated to select and integrate fully mature eHealth technologies for implementation in primary health care. Seven primary health care centers, 10 SMEs, and 4 research institutes participated. Objective This viewpoint paper aims to show the process of adoption of eHealth in primary care from the perspective of different stakeholders in a qualitative way. We provide a real-world view on how such a process occurs, including successes and failures related to the different perspectives. Methods Reflective and process-based notes from all meetings of the project partners, interview data, and data of focus groups were analyzed systematically using four theoretical models to study the adoption of eHealth in primary care. Results The results showed that large-scale implementation of eHealth depends on the efforts of and interaction and collaboration among 4 groups of stakeholders: patients, health care professionals, SMEs, and those responsible for health care policy (health care insurers and policy makers). These stakeholders are all acting within their own contexts and with their own values and expectations. We experienced that patients reported expected benefits regarding the use of eHealth for self-management purposes, and health care professionals stressed the potential benefits of eHealth and were interested in using eHealth to distinguish themselves from other care organizations. In addition, eHealth entrepreneurs valued the collaboration among SMEs as they were not big enough to enter the health care market on their own and valued the collaboration with research institutes. Furthermore, health care insurers and policy makers shared the ambition and need for the development and implementation of an integrated eHealth infrastructure. Conclusions For optimal and sustainable use of eHealth, patients should be actively involved, primary health care professionals need to be reinforced in their management, entrepreneurs should work closely with health care professionals and patients, and the government needs to focus on new health care models stimulating innovations. Only when all these parties act together, starting in local communities with a small range of eHealth tools, the potential of eHealth will be enforced. PMID:29599108
Issues on machine learning for prediction of classes among molecular sequences of plants and animals
NASA Astrophysics Data System (ADS)
Stehlik, Milan; Pant, Bhasker; Pant, Kumud; Pardasani, K. R.
2012-09-01
Nowadays major laboratories of the world are turning towards in-silico experimentation due to their ease, reproducibility and accuracy. The ethical issues concerning wet lab experimentations are also minimal in in-silico experimentations. But before we turn fully towards dry lab simulations it is necessary to understand the discrepancies and bottle necks involved with dry lab experimentations. It is necessary before reporting any result using dry lab simulations to perform in-depth statistical analysis of the data. Keeping same in mind here we are presenting a collaborative effort to correlate findings and results of various machine learning algorithms and checking underlying regressions and mutual dependencies so as to develop an optimal classifier and predictors.
ERIC Educational Resources Information Center
Nolan, Joy
2016-01-01
In June 2016, the Mastery Collaborative completed its first year as an official program, working with more than 40 public middle and high schools across the five boroughs of New York City to improve, document, and advocate for mastery-based teaching and learning. The collaborative has eight Living Lab schools that practice schoolwide mastery; most…
Schuurbiers, Daan
2011-12-01
In response to widespread policy prescriptions for responsible innovation, social scientists and engineering ethicists, among others, have sought to engage natural scientists and engineers at the 'midstream': building interdisciplinary collaborations to integrate social and ethical considerations with research and development processes. Two 'laboratory engagement studies' have explored how applying the framework of midstream modulation could enhance the reflections of natural scientists on the socio-ethical context of their work. The results of these interdisciplinary collaborations confirm the utility of midstream modulation in encouraging both first- and second-order reflective learning. The potential for second-order reflective learning, in which underlying value systems become the object of reflection, is particularly significant with respect to addressing social responsibility in research practices. Midstream modulation served to render the socio-ethical context of research visible in the laboratory and helped enable research participants to more critically reflect on this broader context. While lab-based collaborations would benefit from being carried out in concert with activities at institutional and policy levels, midstream modulation could prove a valuable asset in the toolbox of interdisciplinary methods aimed at responsible innovation.
We Are the Game Changers: An Open Gaming Literacy Programme
ERIC Educational Resources Information Center
Arnab, Sylvester; Morini, Luca; Green, Kate; Masters, Alex; Bellamy-Woods, Tyrone
2017-01-01
This paper discusses the first iteration of Game Changers Programme hosted by Coventry University's Disruptive Media Learning Lab (DMLL), an open game design initiative. The Programme had the goal of facilitating new models of teaching and learning, new practices in cross-faculty learning/ collaboration to make game design and development more…
ERIC Educational Resources Information Center
El Mhouti, Abderrahim; Nasseh, Azeddine; Erradi, Mohamed; Vasquèz, José Marfa
2017-01-01
Today, the implication of Web 2.0 technologies in e-learning allows envisaging new teaching and learning forms, advocating an important place to the collaboration and social interaction. However, in e-learning systems, learn in a collaborative way is not always so easy because one of the difficulties when arranging e-learning courses can be that…
KNMI DataLab experiences in serving data-driven innovations
NASA Astrophysics Data System (ADS)
Noteboom, Jan Willem; Sluiter, Raymond
2016-04-01
Climate change research and innovations in weather forecasting rely more and more on (Big) data. Besides increasing data from traditional sources (such as observation networks, radars and satellites), the use of open data, crowd sourced data and the Internet of Things (IoT) is emerging. To deploy these sources of data optimally in our services and products, KNMI has established a DataLab to serve data-driven innovations in collaboration with public and private sector partners. Big data management, data integration, data analytics including machine learning and data visualization techniques are playing an important role in the DataLab. Cross-domain data-driven innovations that arise from public-private collaborative projects and research programmes can be explored, experimented and/or piloted by the KNMI DataLab. Furthermore, advice can be requested on (Big) data techniques and data sources. In support of collaborative (Big) data science activities, scalable environments are offered with facilities for data integration, data analysis and visualization. In addition, Data Science expertise is provided directly or from a pool of internal and external experts. At the EGU conference, gained experiences and best practices are presented in operating the KNMI DataLab to serve data-driven innovations for weather and climate applications optimally.
Mobile e-Learning for Next Generation Communication Environment
ERIC Educational Resources Information Center
Wu, Tin-Yu; Chao, Han-Chieh
2008-01-01
This article develops an environment for mobile e-learning that includes an interactive course, virtual online labs, an interactive online test, and lab-exercise training platform on the fourth generation mobile communication system. The Next Generation Learning Environment (NeGL) promotes the term "knowledge economy." Inter-networking…
Web-based e-learning and virtual lab of human-artificial immune system.
Gong, Tao; Ding, Yongsheng; Xiong, Qin
2014-05-01
Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.
ERIC Educational Resources Information Center
Goacher, Robyn E.; Kline, Cynthia M.; Targus, Alexis; Vermette, Paul J.
2017-01-01
We describe how a practical instructional development process helped a first-year assistant professor rapidly develop, implement, and assess the impact on her Analytical Chemistry course caused by three changes: (a) moving the lab into the same semester as the lecture, (b) developing a more collaborative classroom environment, and (c) increasing…
Lessons Learned From a Living Lab on the Broad Adoption of eHealth in Primary Health Care.
Swinkels, Ilse Catharina Sophia; Huygens, Martine Wilhelmina Johanna; Schoenmakers, Tim M; Oude Nijeweme-D'Hollosy, Wendy; van Velsen, Lex; Vermeulen, Joan; Schoone-Harmsen, Marian; Jansen, Yvonne Jfm; van Schayck, Onno Cp; Friele, Roland; de Witte, Luc
2018-03-29
Electronic health (eHealth) solutions are considered to relieve current and future pressure on the sustainability of primary health care systems. However, evidence of the effectiveness of eHealth in daily practice is missing. Furthermore, eHealth solutions are often not implemented structurally after a pilot phase, even if successful during this phase. Although many studies on barriers and facilitators were published in recent years, eHealth implementation still progresses only slowly. To further unravel the slow implementation process in primary health care and accelerate the implementation of eHealth, a 3-year Living Lab project was set up. In the Living Lab, called eLabEL, patients, health care professionals, small- and medium-sized enterprises (SMEs), and research institutes collaborated to select and integrate fully mature eHealth technologies for implementation in primary health care. Seven primary health care centers, 10 SMEs, and 4 research institutes participated. This viewpoint paper aims to show the process of adoption of eHealth in primary care from the perspective of different stakeholders in a qualitative way. We provide a real-world view on how such a process occurs, including successes and failures related to the different perspectives. Reflective and process-based notes from all meetings of the project partners, interview data, and data of focus groups were analyzed systematically using four theoretical models to study the adoption of eHealth in primary care. The results showed that large-scale implementation of eHealth depends on the efforts of and interaction and collaboration among 4 groups of stakeholders: patients, health care professionals, SMEs, and those responsible for health care policy (health care insurers and policy makers). These stakeholders are all acting within their own contexts and with their own values and expectations. We experienced that patients reported expected benefits regarding the use of eHealth for self-management purposes, and health care professionals stressed the potential benefits of eHealth and were interested in using eHealth to distinguish themselves from other care organizations. In addition, eHealth entrepreneurs valued the collaboration among SMEs as they were not big enough to enter the health care market on their own and valued the collaboration with research institutes. Furthermore, health care insurers and policy makers shared the ambition and need for the development and implementation of an integrated eHealth infrastructure. For optimal and sustainable use of eHealth, patients should be actively involved, primary health care professionals need to be reinforced in their management, entrepreneurs should work closely with health care professionals and patients, and the government needs to focus on new health care models stimulating innovations. Only when all these parties act together, starting in local communities with a small range of eHealth tools, the potential of eHealth will be enforced. ©Ilse Catharina Sophia Swinkels, Martine Wilhelmina Johanna Huygens, Tim M Schoenmakers, Wendy Oude Nijeweme-D'Hollosy, Lex van Velsen, Joan Vermeulen, Marian Schoone-Harmsen, Yvonne JFM Jansen, Onno CP van Schayck, Roland Friele, Luc de Witte. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 29.03.2018.
Learning with Technology: Fifth Graders Go to College.
ERIC Educational Resources Information Center
Fowler, Rachel; Walsh, Joe; Avery, Jenny
2000-01-01
Describes a collaborative project between preservice teachers and fifth graders that provided the fifth graders with a university computer lab to learn about the American Revolution with the help of preservice teachers who were gaining practical experience in using technology with students. Discusses Web research, using HyperStudio, and creating…
Designing a Children's Water Garden as an Outdoor Learning Lab for Environmental Education
ERIC Educational Resources Information Center
Byrd, Renee K.; Haque, Mary Taylor; Tai, Lolly; McLellan, Gina K.; Knight, Erin Jordan
2007-01-01
A Clemson University introductory landscape design class collaborated with South Carolina Botanical Gardens (SCBG) staff and coordinators of Sprouting Wings to design an exploratory Children's Garden within the SCBG. Service learning provides students with invaluable real-world experiences solving problems and interacting with clients while…
Social Play at the Computer: Preschoolers Scaffold and Support Peers' Computer Competence.
ERIC Educational Resources Information Center
Freeman, Nancy K.; Somerindyke, Jennifer
2001-01-01
Describes preschoolers' collaboration during free play in a computer lab, focusing on the computer's contribution to active, peer-mediated learning. Discusses these observations in terms of Parten's insights on children's social play and Vygotsky's socio-cultural learning theory, noting that the children scaffolded each other's growing computer…
Speaking Personally--With John "Pathfinder" Lester
ERIC Educational Resources Information Center
Beaubois, Terry
2013-01-01
John Lester is currently the chief learning officer at ReactionGrid, a software company developing 3-D simulations and multiuser virtual world platforms. Lester's background includes working with Linden Lab on Second Life's education activities and neuroscience research. His primary focus is on collaborative learning and instructional…
Cosmic collaboration in an undergraduate astrophysics laboratory
NASA Astrophysics Data System (ADS)
Gunter, Ramona; Spiczak, Glenn; Madsen, James
2010-10-01
Lessons learned during the first offering of a lab component of an intermediate astrophysics course at the University of Wisconsin-River Falls are discussed. The course enrolled students from a variety of majors. Students worked in mixed-gender, mixed-major collaborative groups. They explored cosmic rays through hands-on, inquiry-based activities that took them from classic, fundamental discoveries to open-ended questions of their own design. We find that students divided their labor and brought the various parts of their research project together with little or no discussion regarding the various pieces and how they inform each other. Aspects of the lab design helped disrupt some typical gender dynamics in that men did not dominate group discussions. However, men did dominate the hands-on activities of the lab.
Examining the Real Merits of the Virtual Microscope
NASA Astrophysics Data System (ADS)
Hennessy, Ronan; Meere, Pat; Ho, Timsie; Menuge, Julian; Tyrrell, Shane; Kamber, Balz; Higgs, Bettie; Kelley, Simon
2017-04-01
The Geoscience e-Laboratory (GeoLAB) project is a cooperative digital petrological microscopy technology enhanced learning (TEL) resource development project involving the four main university geoscience teaching centres in Ireland. Collaborating with the Open University (UK), a new digital library of petrographic thin sections has been added to the Virtual Microscope for Earth Sciences (VMfES) online repository. The collection was compiled with a view to introducing high-quality samples to teaching programmes in a manner that hitherto was limited by sample and microscope availability and cost and the temporal limits of laboratory access. The project has proceeded to explore the pedagogical implications of using the Virtual Microscope in teaching programmes. Online assessments and self-guided exercises developed using applications such as Google Forms have been introduced into programmes at each centre, and complimented by tutorial and interactive videos designed to support self-guided learning. The GeoLab project is reporting on the pedagogical implications of providing students with unimpeded access to high-quality petrographic learning resources during the term of semester and in advance of student assessments. Additionally, the project is collating data on the perceptions of both teachers and learners to using online learning media in mineralogy and petrology programmes, and if there are benefits therein to the more traditional styles of petrology and microscopy teaching and learning.
ERIC Educational Resources Information Center
Alozie, Nonye M.; Grueber, David J.; Dereski, Mary O.
2012-01-01
How can science instruction engage students in 21st-century skills and inquiry-based learning, even when doing simple labs in the classroom? We collaborated with teachers in professional development workshops to transform "cookbook" activities into engaging laboratory experiences. We show how to change the common classroom activity of DNA…
NASA Astrophysics Data System (ADS)
Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian
2017-08-01
The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.
The "Learning Games Design Model": Immersion, Collaboration, and Outcomes-Driven Development
ERIC Educational Resources Information Center
Chamberlin, Barbara; Trespalacios, Jesús; Gallagher, Rachel
2012-01-01
Instructional designers in the Learning Games Lab at New Mexico State University have developed a specific approach for the creation of educational games, one that has been used successfully in over 20 instructional design projects and is extensible to other developers. Using this approach, game developers and content experts (a) work…
Swipe In, Tap Out: Advancing Student Entrepreneurship in the CIS Sandbox
ERIC Educational Resources Information Center
Charlebois, Conner; Hentschel, Nicholas; Frydenberg, Mark
2014-01-01
The Computer Information Systems Learning and Technology Sandbox (CIS Sandbox) opened as a collaborative learning lab during the fall 2011 semester at a New England business university. The facility employs 24 student workers, who, in addition to providing core tutoring services, are encouraged to explore new technologies and take on special…
Extending the Marine Microcosm Laboratory
ERIC Educational Resources Information Center
Ryswyk, Hal Van; Hall, Eric W.; Petesch, Steven J.; Wiedeman, Alice E.
2007-01-01
The traditional range of marine microcosm laboratory experiments is presented as an ideal environment to teach the entire analysis process. The microcosm lab provides student-centered approach with opportunities for collaborative learning and to develop critical communication skills.
Custovic, Adnan; Ainsworth, John; Arshad, Hasan; Bishop, Christopher; Buchan, Iain; Cullinan, Paul; Devereux, Graham; Henderson, John; Holloway, John; Roberts, Graham; Turner, Steve; Woodcock, Ashley; Simpson, Angela
2015-01-01
We created Asthma e-Lab, a secure web-based research environment to support consistent recording, description and sharing of data, computational/statistical methods and emerging findings across the five UK birth cohorts. The e-Lab serves as a data repository for our unified dataset and provides the computational resources and a scientific social network to support collaborative research. All activities are transparent, and emerging findings are shared via the e-Lab, linked to explanations of analytical methods, thus enabling knowledge transfer. eLab facilitates the iterative interdisciplinary dialogue between clinicians, statisticians, computer scientists, mathematicians, geneticists and basic scientists, capturing collective thought behind the interpretations of findings. PMID:25805205
Saylor, Catherine D; Keselyak, Nancy T; Simmer-Beck, Melanie; Tira, Daniel
2011-02-01
The purpose of this study was to evaluate the impact of collaborative learning on the development of social interaction, task management, and trust in dental hygiene students. These three traits were assessed with the Teamwork Assessment Scale in two different learning environments (traditional lecture/lab and collaborative learning environment). A convenience sample of fifty-six entry-level dental hygiene students taking an introductory/preclinic course at two metropolitan area dental hygiene programs provided comparable experimental and control groups. Factor scores were computed for the three traits, and comparisons were conducted using the Ryan-Einot-Gabriel-Welsh multiple comparison procedure among specific cell comparisons generated from a two-factor repeated measures ANOVA. The results indicate that the collaborative learning environment influenced dental hygiene students positively regarding the traits of social interaction, task management, and trust. However, comparing dental hygiene students to undergraduate students overall indicates that dental hygiene students already possess somewhat higher levels of these traits. Future studies on active learning strategies should examine factors such as student achievement and explore other possible active learning methodologies.
Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs
NASA Astrophysics Data System (ADS)
Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy
2010-10-01
With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.
ERIC Educational Resources Information Center
Akhtar, S.; Warburton, S.; Xu, W.
2017-01-01
In this paper we report on the use of a purpose built Computer Support Collaborative learning environment designed to support lab-based CAD teaching through the monitoring of student participation and identified predictors of success. This was carried out by analysing data from the interactive learning system and correlating student behaviour with…
ERIC Educational Resources Information Center
Fleischmann, Katja
2014-01-01
Technology has not only changed the work practice of designers but also how design is taught and learned. The emergence of digital technology has made computer labs a central learning space for design students. Since this change, studio-based learning in its traditional sense appears to be in decline in higher education institutions. This is in…
Internet-Based Laboratory Immersion: When The Real Deal is Not Available
NASA Astrophysics Data System (ADS)
Meisner, Gerald; Hoffman, Harol
2004-11-01
Do you want all of your students to investigate equilibrium conditions in the physics lab, but don't have time for lab investigations? Do your under-prepared students need basic, careful and detailed remedial work to help them succeed? LAAPhysics provides an answer to these questions by means of robust online physics courseware based on: (1) a sound, research-based pedagogy (2) a rich laboratory environment with skills and operational knowledge transferable to the wet lab' and (3) a paradigm which is economically scalable. LAAPhysics provides both synchronous and asynchronous learning experiences for an introductory, algebra-based course for students (undergraduate, AP High School, seekers of a second degree), those seeking career changes, and pre-service and in-service teachers. We have developed a simulated physics laboratory comprised of virtual lab equipment and instruments, associated curriculum modules and virtual guidance for real time feedback, formative assessment and collaborative learning.
Virtual Labs and Virtual Worlds
NASA Astrophysics Data System (ADS)
Boehler, Ted
2006-12-01
Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner
Group Selection and Learning for a Lab-Based Construction Management Course
ERIC Educational Resources Information Center
Solanki, Pranshoo; Kothari, Nidhi
2014-01-01
In construction industries' projects, working in groups is a normal practice. Group work in a classroom is defined as students working collaboratively in a group so that everyone can participate on a collective task. The results from literature review indicate that group work is more effective method of learning as compared to individual work.…
NASA Astrophysics Data System (ADS)
Barreto-Marrero, Luz N.
This case study presents the experiences of three public school chemistry teachers in the transformation of their teaching processes with the use of ICT. The processes' characteristics are documented, what knowledge and skills were learned, and how it changed their organization, planning and teaching. D. H. Jonassen's (1999) ideas on learning strategies for the integration of ICT, from a constructivism and critical thinking perspective guide this study. MacFarlane and Sakellariou's (2002) ideas on the use of ICT in science teaching are also considered. The relationship between ICT, mind tools, learning strategies and teaching methods is studied. The information was collected by semi-structured interviews, classroom observations and document analysis. The results were analyzed according to Wolcott's qualitative analysis model (1994), along with the QRS NVivo (2002) computer program. The teachers learned to use several new ICT equipment and materials that facilitated their teaching and evaluation processes. Among these are the use of lab simulators, various software, CBL sensors, graphic calculators, electronic blackboards, and the Internet. They used teaching strategies for active, authentic, collaborative, constructive and reflective learning according to Jonassen. Their science teaching methods corresponds to the three types, according to MacFarlane and Sakellariou, which fosters scientific method skills and scientific reasoning for science literacy. The teachers, as facilitators and mediators, were inquirers of their students needs; investigators of their curricula, strategists as they organize their teaching skills and methods; experimenters with what they had learned; and collaborators as they fostered cooperative learning. Teachers' developed better lessons, lab exercises and assessment tools, such as rubrics, concept maps, comic strips, and others. They also affirmed that their students demonstrated more motivation, participation, collaboration and learning; developed scientific and technological skills; worked real situations in a collaborative way guided by science standards; and that parents participated in their children's learning. The conditions that facilitated these processes were the availability of technological resources, practical and continuous professional development, colleague communication and collaboration, the paradigmatic change towards constructivism with changes in assessment, school texts, curriculum and educational software, and a new generation of students and teachers open towards ICT, and pre-service teachers with technological skills.
Enhancing Collaborative Learning through Group Intelligence Software
NASA Astrophysics Data System (ADS)
Tan, Yin Leng; Macaulay, Linda A.
Employers increasingly demand not only academic excellence from graduates but also excellent interpersonal skills and the ability to work collaboratively in teams. This paper discusses the role of Group Intelligence software in helping to develop these higher order skills in the context of an enquiry based learning (EBL) project. The software supports teams in generating ideas, categorizing, prioritizing, voting and multi-criteria decision making and automatically generates a report of each team session. Students worked in a Group Intelligence lab designed to support both face to face and computer-mediated communication and employers provided feedback at two key points in the year long team project. Evaluation of the effectiveness of Group Intelligence software in collaborative learning was based on five key concepts of creativity, participation, productivity, engagement and understanding.
Current Capabilities, Issues, and Trends in LMSs and Authoring Tools
2009-08-18
architecture Embedded best-practice design principles Support for immersive learning technologies Support for social media 8 LMSs LMS Functionality is... Learning System Multimedia content Application demos VOIP Real-time Collaboration technologies from Adobe Connect Pro, WebEx, LiveMeeting, & Centra...ORGANIZATION NAME(S) AND ADDRESS(ES) Advanced Decision Learning (ADL),ADL Co-Lab,1901 N. Beauregard Street Suite 600,Alexandria,VA,22311 8
Implementing Collaborative Design in the Next Series of eLearning Platforms
ERIC Educational Resources Information Center
Kropf, Dorothy
2013-01-01
Collaborative design empowers learning management system (LMS) providers and end users (online students) to develop a vibrant teaching and learning community. Successful periodic collaborations utilizing collaborative web tools between these two pivotal groups can produce the next series of eLearning platforms that are fertile grounds for…
Collaborative E-Learning Using Semantic Course Blog
ERIC Educational Resources Information Center
Lu, Lai-Chen; Yeh, Ching-Long
2008-01-01
Collaborative e-learning delivers many enhancements to e-learning technology; it enables students to collaborate with each other and improves their learning efficiency. Semantic blog combines semantic Web and blog technology that users can import, export, view, navigate, and query the blog. We developed a semantic course blog for collaborative…
Online access and motivation of tutors of health professions higher education.
Monaco, Federico; Sarli, Leopoldo; Guasconi, Massimo; Alfieri, Emanuela
2016-11-22
The case study of PUNTOZERO as an open web lab for activities, research and support to 5 Master's courses for the health professions is described. A virtual learning environment integrated in a much wider network including social networks and open resources was experimented on for five Master's Courses for the health professions at the University of Parma. A social learning approach might be applied by the engagement of motivated and skilled tutors. This is not only needed for the improvement and integration of the digital and collaborative dimension in higher education, but it aims to introduce issues and biases of emerging e-health and online networking dimensions for future healthcare professionals. Elements of e-readiness to train tutors and improve their digital skills and e-moderation approaches are evident. This emerged during an online and asynchronous interview with two tutors out of the four that were involved, by the use of a wiki where interviewer and informants could both read and add contents and comments.
ERIC Educational Resources Information Center
van der Meij, Marjoleine G.; Kupper, Frank; Beers, Pieter J.; Broerse, Jacqueline E. W.
2016-01-01
E-learning and storytelling approaches can support informal vicarious learning within geographically widely distributed multi-stakeholder collaboration networks. This case study evaluates hybrid e-learning and video-storytelling approach "TransLearning" by investigation into how its storytelling e-tool supported informal vicarious…
Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo
2014-01-01
Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.
Maalej, N; Al-Karmi, A; Al-Sadah, J; Abdel-Rahman, W
2012-06-01
The first medical physics Master's program in the Arabian Gulf region was started in 2002 at King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia. After consulting with national and international representatives from the AAPM, IOMP, the University of Wisconsin-Madison and King Faisal Specialist Hospital and Research Center (KFSHRC) we constructed a versatile and rigorous curriculum. The program requires the completion of 7 core courses, 7 required labs, a minimum of 3 elective courses, a research project, a four-month clinical rotation and passing and a comprehensive examination. The success of the program required very close collaboration with national hospitals such as King Fahad Specialist Hospital in Dammam (KFSH-D), KFSHRC, and Riyadh Military Hospital. We cemented the collaboration with a formal agreement between KFUPM and KFSH-D, whereby the clinical medical physicists are actively involved in teaching lectures and labs, evaluating students' performance and co-supervising their clinical rotation and research projects. In order to prepare our graduates for their medical physics careers, we emphasize innovative learning methods such as students centered learning, execution of course projects, experiential learning and acquiring research skills and tools such as Monte Carlo simulations. Our graduates have succeeded in securing clinical positions in some of the best hospitals in the region and achieved high employer satisfaction. Some students have gone to pursue their PhD's in North America and Europe. Many of our students succeeded in publishing their projects in international journals and international conferences. One of our students was instrumental in obtaining a US patent (US Patent # 785298) for an innovative x-ray tube design. We have achieved national recognition through the excellence of our graduates. In order to maintain high education quality standards and achieve international recognition, we are presently working to acquire IAEA approval and CAMPEP accreditation. © 2012 American Association of Physicists in Medicine.
ERIC Educational Resources Information Center
Ngai, E. W. T.; Lam, S. S.; Poon, J. K. L.
2013-01-01
This paper describes the successful application of a computer-supported collaborative learning system in teaching e-commerce. The authors created a teaching and learning environment for 39 local secondary schools to introduce e-commerce using a computer-supported collaborative learning system. This system is designed to equip students with…
NASA Astrophysics Data System (ADS)
Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.
2014-12-01
EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of how learners can engage in authentic research experiences using real data in the secondary science classroom. In this session you will receive a brief overview of the EarthLabs project, learn more about IODP Expedition 341, and see some of the resources that the module makes available to students to help them analyze the data.
Asynchronous Cooperative e-Learning System and Its Evaluation
NASA Astrophysics Data System (ADS)
Eto, Kazuhiro; Miyoshi, Takumi
Much attention has been attracted to collaborative learning on an e-learning system. However, it is difficult to implement the collaborative environment to an asynchronous e-learning system since collaboration would be realized only when learners join the system at the same time. On the other hand, cooperative learning has been proposed. In this method, learners can study on their own pace without making mutual agreement but with receiving cognitive information from others. In this paper, the authors have developed the asynchronous cooperative e-learning system that provides learners' attendance and studying progress as the cognitive information. The subjective evaluation experiments show that our system is slightly inferior to the synchronous collaborative e-learning system, but it can motivate the learners more than the conventional system.
E-Collaboration Technologies in Teaching/Learning Activity
ERIC Educational Resources Information Center
Zascerinska, Jelena; Ahrens, Andreas
2009-01-01
A proper use of e-collaboration technologies in the teaching/learning process is provided by varied cooperative networks, which penetrate teachers' and students' activity more thoroughly with the availability of broadband services. However, the successful use of e-collaboration technologies in teaching/learning activity within a multicultural…
NASA Astrophysics Data System (ADS)
Moldwin, M.; Mexicotte, D.
2017-12-01
A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their experience in the residency. This talk will describe the program, the inaugural year's outcomes, and plans to expand the program to other research labs.
E-Learning Systems Support of Collaborative Agreements: A Theoretical Model
ERIC Educational Resources Information Center
Aguirre, Sandra; Quemada, Juan
2012-01-01
This paper introduces a theoretical model for developing integrated degree programmes through e-learning systems as stipulated by a collaboration agreement signed by two universities. We have analysed several collaboration agreements between universities at the national, European, and transatlantic level as well as various e-learning frameworks. A…
A Multi-Agent Question-Answering System for E-Learning and Collaborative Learning Environment
ERIC Educational Resources Information Center
Alinaghi, Tannaz; Bahreininejad, Ardeshir
2011-01-01
The increasing advances of new Internet technologies in all application domains have changed life styles and interactions. E-learning and collaborative learning environment systems are originated through such changes and aim at providing facilities for people in different times and geographical locations to cooperate, collaborate, learn and work…
NASA Astrophysics Data System (ADS)
Oien, R. P.; Anders, A. M.; Long, A.
2014-12-01
We present the initial results of transitioning laboratory activities in an introductory physical geology course from passive to active learning. Educational research demonstrates that student-driven investigations promote increased engagement and better retention of material. Surveys of students in introductory physical geology helped us identify lab activities which do not engage students. We designed new lab activities to be more collaborative, open-ended and "hands-on". Student feedback was most negative for lab activities which are computer-based. In response, we have removed computers from the lab space and increased the length and number of activities involving physical manipulation of samples and models. These changes required investment in lab equipment and supplies. New lab activities also include student-driven exploration of data with open-ended responses. Student-evaluations of the new lab activities will be compiled during Fall 2014 and Spring 2015 to allow us to measure the impact of the changes on student satisfaction and we will report on our findings to date. Modification of this course has been sponsored by NSF's Widening Implementation & Demonstration of Evidence Based Reforms (WIDER) program through grant #1347722 to the University of Illinois. The overall goal of the grant is to increase retention and satisfaction of STEM students in introductory courses.
ICCE/ICCAI 2000 Full & Short Papers (Virtual Lab/Classroom/School).
ERIC Educational Resources Information Center
2000
This document contains the following full and short papers on virtual laboratories, classrooms, and schools from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "A Collaborative Learning Support System Based on Virtual Environment Server for Multiple…
Creating a Classroom Makerspace
ERIC Educational Resources Information Center
Rivas, Luz
2014-01-01
What is a makerspace? Makerspaces are community-operated physical spaces where people (makers) create do-it-yourself projects together. These membership spaces serve as community labs where people learn together and collaborate on projects. Makerspaces often have tools and equipment like 3-D printers, laser cutters, and soldering irons.…
ERIC Educational Resources Information Center
Borrero, A. Mejias; Marquez, J. M. Andujar
2012-01-01
Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…
Virtual Labs in proteomics: new E-learning tools.
Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva
2012-05-17
Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Jameson, Jill; Ferrell, Gill; Kelly, Jacquie; Walker, Simon; Ryan, Malcolm
2006-01-01
Trust and collective learning are useful features that are enabled by effective collaborative leadership of e-learning projects across higher and further education (HE/FE) institutions promoting lifelong learning. These features contribute effectively to the development of design for learning in communities of e-learning practice. For this,…
Introductory labs; what they don't, should, and can teach (and why)
NASA Astrophysics Data System (ADS)
Wieman, Carl
2016-03-01
Introductory physics labs are widely used and expensive. They have a wide variety of potential learning goals, but these are seldom specified and less often measured if they are achieved. We cover three different research projects on introductory labs: 1) We have done cognitive task analyses of both experimental research in physics and instructional labs. The striking differences explain much of the unhappiness expressed by students with labs: 2) We have measured the effectiveness of two introductory physics lab courses specifically intended to teach the physics content covered in standard introductory courses on mechanics and E & M. As measured by course exams, the benefit is 0 +/-2% for both. 3) We show how it is possible to use lab courses to teach students to correctly evaluate physical models with uncertain data. Such quantitative critical thinking is an important skill that is not learned in typical lab courses, but is well learned by our modified lab instruction.
Incorporating a Collaborative Web-Based Virtual Laboratory in an Undergraduate Bioinformatics Course
ERIC Educational Resources Information Center
Weisman, David
2010-01-01
Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a…
Safety Teams: An Approach to Engage Students in Laboratory Safety
ERIC Educational Resources Information Center
Alaimo, Peter J.; Langenhan, Joseph M.; Tanner, Martha J.; Ferrenberg, Scott M.
2010-01-01
We developed and implemented a yearlong safety program into our organic chemistry lab courses that aims to enhance student attitudes toward safety and to ensure students learn to recognize, demonstrate, and assess safe laboratory practices. This active, collaborative program involves the use of student "safety teams" and includes…
ERIC Educational Resources Information Center
Van De Bogart, Kevin L.; Dounas-Frazer, Dimitri R.; Lewandowski, H. J.; Stetzer, MacKenzie R.
2017-01-01
Developing students' ability to troubleshoot is an important learning outcome for many undergraduate physics lab courses, especially electronics courses. In other work, metacognition has been identified as an important feature of troubleshooting. However, that work has focused primarily on "individual" students' metacognitive processes…
Frederick National Lab Collaboration Success Stories | FNLCR Staging
IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to eval
Innovation in engineering education through computer assisted learning and virtual university model
NASA Astrophysics Data System (ADS)
Raicu, A.; Raicu, G.
2015-11-01
The paper presents the most important aspects of innovation in Engineering Education using Computer Assisted Learning. The authors propose to increase the quality of Engineering Education programs of study at European standards. The use of computer assisted learning methodologies in all studies is becoming an important resource in Higher Education. We intend to improve the concept of e-Learning using virtual terminals, online support and assisting special training through live seminars and interactive labs to develop a virtual university model. We intend to encourage computer assisted learning and innovation as sources of competitive advantage, to permit vision and learning analysis, identifies new sources of technology and ideas. Our work is based on our university datasets collected during last fifteen years using several e-Learning systems. In Constanta Maritime University (CMU), using eLearning and Knowledge Management Services (KMS) is very important and we apply it effectively to achieve strategic objectives, such as collaboration, sharing and good practice. We have experience in this field since 2000 year using Moodle as KMS in our university. The term KMS can be associated to Open Source Software, Open Standards, Open Protocols and Open Knowledge licenses, initiatives and policies. In CMU Virtual Campus we have today over 12500 active users. Another experience of the authors is the implementation of MariTrainer Wiki educational platform based on Dokeos and DekiWiki under MARICOMP and MEP Leonardo da Vinci Project. We'll also present in this paper a case study under EU funded project POSDRU, where the authors implemented other educational platform in Technological High Schools from Romania used over 1000 teachers. Based on large datasets the study tries to improve the concept of e-Learning teaching using the revolutionary technologies. The new concept present in this paper is that the teaching and learning will be interactive and live. The new and modern techniques are the flexible learning courses, the production of learning demonstrators and testing. All the information from the virtual educational platform remain open space, communication between participants and continued after graduation, so we can talk about creating and maintaining a community of graduates, a partnership with them. Every European University must have a department which aims to provide computer assisted learning using knowledge creation through learning, capture and explication, sharing and collaborative communication, access, use and reuse and knowledge archiving.
Optum Labs: building a novel node in the learning health care system.
Wallace, Paul J; Shah, Nilay D; Dennen, Taylor; Bleicher, Paul A; Bleicher, Paul D; Crown, William H
2014-07-01
Unprecedented change in the US health care system is being driven by the rapid uptake of health information technology and national investments in multi-institution research networks comprising academic centers, health care delivery systems, and other health system components. An example of this changing landscape is Optum Labs, a novel network "node" that is bringing together new partners, data, and analytic techniques to implement research findings in health care practice. Optum Labs was founded in early 2013 by Mayo Clinic and Optum, a commercial data, infrastructure services, and care organization that is part of UnitedHealth Group. Optum Labs now has eleven collaborators and a database of deidentified information on more than 150 million people that is compliant with the Health Insurance Portability and Accountability Act (HIPAA) of 1996. This article describes the early progress of Optum Labs. The combination of the diverse collaborator perspectives with rich data, including deep patient and provider information, is intended to reveal new insights about diseases, treatments, and patients' behavior to guide changes in practice. Practitioners' involvement in agenda setting and translation of findings into practical care innovations accelerates the implementation of research results. Furthermore, feedback loops from the clinic help Optum Labs expand on successes and give quick attention to challenges as they emerge. Project HOPE—The People-to-People Health Foundation, Inc.
Rutherford, Stephen
2015-12-01
Collaborative learning, where students work together towards a shared understanding of a concept, is a well-established pedagogy, and one which has great potential for higher education (HE). Through discussion and challenging each other's ideas, learners gain a richer appreciation for a subject than with solitary study or didactic teaching methods. However, collaborative learning does require some scaffolding by the teacher in order to be successful. Collaborative learning can be augmented by the use of Web 2.0 collaborative technologies, such as wikis, blogs and social media. This article reviews some of the uses of collaborative learning strategies in Microbiology teaching in HE. Despite the great potential of collaborative learning, evidence of its use in Microbiology teaching is, to date, limited. But the potential for collaborative learning approaches to develop self-regulated, deep learners is considerable, and so collaborative learning should be considered strongly as a viable pedagogy for HE. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
eLearning, knowledge brokering, and nursing: strengthening collaborative practice in long-term care.
Halabisky, Brenda; Humbert, Jennie; Stodel, Emma J; MacDonald, Colla J; Chambers, Larry W; Doucette, Suzanne; Dalziel, William B; Conklin, James
2010-01-01
Interprofessional collaboration is vital to the delivery of quality care in long-term care settings; however, caregivers in long-term care face barriers to participating in training programs to improve collaborative practices. Consequently, eLearning can be used to create an environment that combines convenient, individual learning with collaborative experiential learning. Findings of this study revealed that learners enjoyed the flexibility of the Working Together learning resource. They acquired new knowledge and skills that they were able to use in their practice setting to achieve higher levels of collaborative practice. Nurses were identified as team leaders because of their pivotal role in the long-term care home and collaboration with all patient care providers. Nurses are ideal as knowledge brokers for the collaborative practice team. Quantitative findings showed no change in learner's attitudes regarding collaborative practice; however, interviews provided examples of positive changes experienced. Face-to-face collaboration was found to be a challenge, and changes to organizations, systems, and technology need to be made to facilitate this process. The Working Together learning resource is an important first step toward strengthening collaboration in long-term care, and the pilot implementation provides insights that further our understanding of both interprofessional collaboration and effective eLearning.
Teaching Environmental Geochemistry as a Service-Learning Course (Invited)
NASA Astrophysics Data System (ADS)
Ku, T. C.
2010-12-01
Service-learning courses seek to broaden students’ understanding of class content through activities, which are, at the same time, of service to the community. At Wesleyan University, I have taught an Environmental Geochemistry and Laboratory course three times as a service-learning course. The course meets for two 80-minute lecture periods and one 3-hour lab period each week and class sizes have been 19-27 students. The lectures cover traditional geochemistry topics such as equilibrium thermodynamics, acid-base equilibria, oxidation-reduction reactions, and isotope geochemistry, while the lab periods focus on a semester-long environmental project in collaboration with a community organization. Problem sets and class exercises are chosen to demonstrate how theoretical concepts are applied to topics relevant to the service-learning project. The three service-learning projects and associated community partners were entitled 1) “An Initial Assessment of the North End Middletown Landfill as a Renewable Energy Sources” in collaboration with The Johan Center for Earth and Art, 2) “The Water and Sediment Geochemistry of Beseck Lake, CT: Implications for Cultural Eutrophication” in collaboration with the Beseck Lake Association, and 3) “Geochemistry and Hydrology of Jobs Pond, CT” with the Jobs Pond Water Quality Commission. Initial contact with the community partner was made through Wesleyan’s Center for Community Partnerships or through the Connecticut Department of Environmental Protection. At the start of each semester, the lead member(s) of the community organization present their environmental problem to the class. This initial meeting allows the students to hear about the problem from the community’s perspective. The faculty member collaborates with the community organization to design 5-8 mini-projects and the students are assigned group projects (2-5 students) through a ranking system. Throughout the semester each group works on their project, but several lab periods involve the entire class when the activity is beneficial to multiple groups or for educational purposes. For example, during lake projects, all students learn how to collect water column samples and piston and freeze sediment cores. The course culminates with a written report for each group and student oral presentations to the public usually held at an off-campus site and covered by the local media. The public presentations can be very successful and especially rewarding for the students, the faculty member, and the community organization. This type of service-learning class requires more faculty preparation time, additional funds or supplies, and a cooperative community organization. The result though, is that approximately one-third of the student evaluations specifically mentioned that the service-learning project was one of the most enjoyable or educational experiences of the course.
Using multimedia and peer assessment to promote collaborative e-learning
NASA Astrophysics Data System (ADS)
Barra, Enrique; Aguirre Herrera, Sandra; Ygnacio Pastor Caño, Jose; Quemada Vives, Juan
2014-04-01
Collaborative e-learning is increasingly appealing as a pedagogical approach that can positively affect student learning. We propose a didactical model that integrates multimedia with collaborative tools and peer assessment to foster collaborative e-learning. In this paper, we explain it and present the results of its application to the "International Seminars on Materials Science" online course. The proposed didactical model consists of five educational activities. In the first three, students review the multimedia resources proposed by the teacher in collaboration with their classmates. Then, in the last two activities, they create their own multimedia resources and assess those created by their classmates. These activities foster communication and collaboration among students and their ability to use and create multimedia resources. Our purpose is to encourage the creativity, motivation, and dynamism of the learning process for both teachers and students.
The Biggs and Moore Model in E-Learning: The Role of Motivation and Collaboration as Moderators
ERIC Educational Resources Information Center
Haverila, Matti J.
2012-01-01
The purpose of this paper is to report the findings of a research conducted to evaluate the effect of e-learning experience on students' perceived learning outcomes, and more specifically the role of motivation and collaboration as moderators between the e-learning experience and the learning outcome. The perceived learning outcome was measured…
Student Collaboration and Standards-Based Music Learning: A Literature Review
ERIC Educational Resources Information Center
Cangro, Richard
2016-01-01
This article is a review of relevant literature on collaborative, standards-based music learning. The review is organized as follows: (a) historical perspective, (b) collaborative music learning, (c) collaboration and creating, (d) collaboration and performing, (e) collaboration and responding, and (f) conclusions. In an effort to bridge the gap…
U.S. Army’s Ground Vehicle Energy Storage R&D Programs & Goals
2010-11-10
STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Briefing to ARPA-E BEEST Meeting 14. ABSTRACT NA 15...Program Collaboration & DOD Customers DOE Material Developers Battery Developers ANL USABC National Labs Universities Industrial Developers...qualification for military lead acid batteries; 6 water baths, 31 circuits, 1 thermal chamber • Electrochemical Research & Analysis Lab (EARL
ERIC Educational Resources Information Center
Bradford, Jane T.; And Others
1996-01-01
Academic Computing Services staff and University librarians at Stetson University (DeLand, Florida) designed and implemented a three-day Internet workshop for interested faculty. The workshop included both hands-on lab sessions and discussions covering e-mail, telnet, ftp, Gopher, and World Wide Web. The planning, preparation of the lab and…
A Festival of Contemporary Science for Science Teachers
ERIC Educational Resources Information Center
Harrison, Tim; Berry, Bryan; Shallcross, Dudley
2010-01-01
In this article, the authors describe the first Festival of Contemporary Science for Science Teachers which was held in January 2010. Focusing on a number of leading-edge science topics, this new festival was organised by Bristol ChemLabS, in collaboration with the Science Learning Centre South West, and involved academics from several departments…
ERIC Educational Resources Information Center
Zhu, Chang; Valcke, Martin; Schellens, Tammy; Li, Yifei
2009-01-01
This study was set up in a Chinese university in Beijing by implementing a Flemish e-learning course in a Chinese setting. A main feature of the e-learning environment is the asynchronous "task-based" online group discussion. The purpose of the study is to understand Chinese students' perceptions of a collaborative e-learning environment…
Experiences with lab-centric instruction
NASA Astrophysics Data System (ADS)
Titterton, Nathaniel; Lewis, Colleen M.; Clancy, Michael J.
2010-06-01
Lab-centric instruction emphasizes supervised, hands-on activities by substituting lab for lecture time. It combines a multitude of pedagogical techniques into the format of an extended, structured closed lab. We discuss the range of benefits for students, including increased staff interaction, frequent and varied self-assessments, integrated collaborative activities, and a systematic sequence of activities that gradually increases in difficulty. Instructors also benefit from a deeper window into student progress and understanding. We follow with discussion of our experiences in courses at U.C. Berkeley, and using data from some of these investigate the effects of lab-centric instruction on student learning, procrastination, and course pacing. We observe that the lab-centric format helped students on exams but hurt them on extended programming assignments, counter to our hypothesis. Additionally, we see no difference in self-ratings of procrastination and limited differences in ratings of course pace. We do find evidence that the students who choose to attend lab-centric courses are different in several important ways from students who choose to attend the same course in a non-lab-centric format.
ERIC Educational Resources Information Center
Asanok, M.; Kitrakan, P.; Brahmawong, C.
2008-01-01
With newly developing multimedia and web-based technologies have provided opportunities of developing a multimedia-based collaborative eLearning systems. The development of eLearning systems has started a revolution for instructional content delivering, learning activities and social communication. Based on various positions on this issue have…
ERIC Educational Resources Information Center
Kopp, Birgitta; Matteucci, Maria Cristina; Tomasetto, Carlo
2012-01-01
The e-tutor plays a major role in supporting virtual collaborative learning, as he/she supervises learners in collaboratively solving tasks, acquiring new skills, and applying new knowledge. This study is aimed at gaining further insights into the daily support practices of e-tutors. Seventy-six e-tutors from 17 different European countries were…
Implementation of a Framework for Collaborative Social Networks in E-Learning
ERIC Educational Resources Information Center
Maglajlic, Seid
2016-01-01
This paper describes the implementation of a framework for the construction and utilization of social networks in ELearning. These social networks aim to enhance collaboration between all E-Learning participants (i.e. both traineeto-trainee and trainee-to-tutor communication are targeted). E-Learning systems that include a so-called "social…
Collaborative e-Learning: e-Portfolios for Assessment, Teaching and Learning
ERIC Educational Resources Information Center
Luchoomun, Dharmadeo; McLuckie, Joe; van Wesel, Maarten
2010-01-01
This paper presents an innovative approach to e-learning by exploring a number of initiatives where there is a move towards collaborative use of Personal Development Plans (PDPs) integrated with e-portfolios as mechanisms for delivering such plans. It considers whether such a move towards more product orientated assessment might enhance student…
Ramirez, Jasmine; Pinedo, Catalina Arango; Forster, Brian M
2015-12-01
Today's science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors' and majors' answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines.
The Student Experience of a Collaborative E-Learning University Module
ERIC Educational Resources Information Center
Biasutti, Michele
2011-01-01
The aim of this paper is to present a picture of student experience of a collaborative e-learning module in an asynchronous e-learning environment. A distance learning module on music education worth five credit points for a bachelor online degree for primary school educating teachers was assessed using a self-evaluation questionnaire that…
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2016-12-01
Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a national data set of student responses to the E-CLASS, we find that the inclusion of some open-ended lab activities in a lab course correlates with more expertlike postinstruction responses relative to courses that include only traditional guided lab activities. This finding holds when examining postinstruction E-CLASS scores while controlling for the variance associated with preinstruction scores, course level, student major, and student gender.
Situated peer coaching and unfolding cases in the fundamentals skills laboratory.
Himes, Deborah O; Ravert, Patricia K
2012-09-03
Using unfolding case studies and situated peer coaching for the Fundamentals Skills Laboratory provides students with individualized feedback and creates a realistic clinical learning experience. A quasi-experimental design with pre- and post-intervention data was used to evaluate changes in student ratings of the course. An instrument was used to examine students' self-ratings and student comments about each lab. We found that students' ratings of the lab remained high with the new method and self-evaluations of their performance were higher as the semester progressed. Students appreciated the personalized feedback associated with peer coaching and demonstrated strong motivation and self-regulation in learning. By participating in unfolding case studies with situated peer coaching, students focus on safety issues, practice collaborative communication, and critical thinking in addition to performing psychomotor skills.
Curriculum Alignment with Vision and Change Improves Student Scientific Literacy.
Auerbach, Anna Jo; Schussler, Elisabeth E
2017-01-01
The Vision and Change in Undergraduate Biology Education final report challenged institutions to reform their biology courses to focus on process skills and student active learning, among other recommendations. A large southeastern university implemented curricular changes to its majors' introductory biology sequence in alignment with these recommendations. Discussion sections focused on developing student process skills were added to both lectures and a lab, and one semester of lab was removed. This curriculum was implemented using active-learning techniques paired with student collaboration. This study determined whether these changes resulted in a higher gain of student scientific literacy by conducting pre/posttesting of scientific literacy for two cohorts: students experiencing the unreformed curriculum and students experiencing the reformed curriculum. Retention of student scientific literacy for each cohort was also assessed 4 months later. At the end of the academic year, scientific literacy gains were significantly higher for students in the reformed curriculum ( p = 0.005), with those students having double the scientific literacy gains of the cohort in the unreformed curriculum. Retention of scientific literacy did not differ between the cohorts. © 2017 A. J. Auerbach and E. E. Schussler. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Development of a virtual lab for practical eLearning in eHealth.
Herzog, Juliane; Forjan, Mathias; Sauermann, Stefan; Mense, Alexander; Urbauer, Philipp
2015-01-01
In recent years an ongoing development in educational offers for professionals working in the field of eHealth has been observed. This education is increasingly offered in the form of eLearning courses. Furthermore, it can be seen that simulations are a valuable part to support the knowledge transfer. Based on the knowledge profiles defined for eHealth courses a virtual lab should be developed. For this purpose, a subset of skills and a use case is determined. After searching and evaluating appropriate simulating and testing tools six tools were chosen to implement the use case practically. Within an UML use case diagram the interaction between the tools and the user is represented. Initially tests have shown good results of the tools' feasibility. After an extensive testing phase the tools should be integrated in the eHealth eLearning courses.
Technology transfer program of Microlabsat
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Hashimoto, H.
2004-11-01
A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.
InstanceCollage: A Tool for the Particularization of Collaborative IMS-LD Scripts
ERIC Educational Resources Information Center
Villasclaras-Fernandez, Eloy D.; Hernandez-Gonzalo, Julio A.; Hernandez-Leo, Davinia; Asensio-Perez, Juan I.; Dimitriadis, Yannis; Martinez-Mones, Alejandra
2009-01-01
Current research work in e-learning and more specifically in the field of CSCL (Computer Supported Collaborative Learning) deals with design of collaborative activities, according to computer-interpretable specifications, such as IMS Learning Design, and their posterior enactment using LMSs (Learning Management Systems). A script that describes…
Promoting Collaboration in a Project-Based E-Learning Context
ERIC Educational Resources Information Center
Papanikolaou, Kyparisia; Boubouka, Maria
2011-01-01
In this paper we investigate the value of collaboration scripts for promoting metacognitive knowledge in a project-based e-learning context. In an empirical study, 82 students worked individually and in groups on a project using the e-learning environment MyProject, in which the life cycle of a project is inherent. Students followed a particular…
ERIC Educational Resources Information Center
Alves, Paulo; Uhomoibhi, James
2010-01-01
Purpose: This paper seeks to investigate and report on the status of identity management systems and e-learning standards across Europe for promoting mobility, collaboration and the sharing of contents and services in higher education institutions. Design/methodology/approach: The present research work examines existing e-learning standards and…
ERIC Educational Resources Information Center
Rohleder, Poul; Bozalek, Vivienne; Carolissen, Ronelle; Leibowitz, Brenda; Swartz, Leslie
2008-01-01
Online learning is increasingly being used in Higher Education, with a number of advantages to online learning being identified. One of these advantages is the suggestion that online learning provides for equality of opportunity. This article reports on students' evaluations of the use of e-learning in a collaborative project between two South…
Finocchario-Kessler, S; Odera, I; Okoth, V; Bawcom, C; Gautney, B; Khamadi, S; Clark, K; Goggin, K
2015-12-01
Guided by the RE-AIM model, we describe preliminary data and lessons learned from multiple serial implementations of an eHealth intervention to improve early infant diagnosis (EID) of HIV in Kenya. We describe the reach, effectiveness, adoption, implementation and maintenance of the HITSystem, an eHealth intervention that links key stakeholders to improve retention and outcomes in EID. Our target community includes mother-infant pairs utilizing EID services and government health care providers and lab personnel. We also explore our own role as program and research personnel supporting the dissemination and scale up of the HITSystem in Kenya. Key findings illustrate the importance of continual adaptation of the HITSystem interface to accommodate varied stakeholders' workflows in different settings. Surprisingly, technology capacity and internet connectivity posed minimal short-term challenges. Early and sustained ownership of the HITSystem among stakeholders proved critical to reach, effectiveness and successful adoption, implementation and maintenance. Preliminary data support the ability of the HITSystem to improve EID outcomes in Kenya. Strong and sustained collaborations with stakeholders improve the quality and reach of eHealth public health interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
Do medical students watch video clips in eLearning and do these facilitate learning?
Romanov, Kalle; Nevgi, Anne
2007-06-01
There is controversial evidence of the impact of individual learning style on students' performance in computer-aided learning. We assessed the association between the use of multimedia materials, such as video clips, and collaborative communication tools with learning outcome among medical students. One hundred and twenty-one third-year medical students attended a course in medical informatics (0.7 credits) consisting of lectures, small group sessions and eLearning material. The eLearning material contained six learning modules with integrated video clips and collaborative learning tools in WebCT. Learning outcome was measured with a course exam. Approximately two-thirds of students (68.6%) viewed two or more videos. Female students were significantly more active video-watchers. No significant associations were found between video-watching and self-test scores or the time used in eLearning. Video-watchers were more active in WebCT; they loaded more pages and more actively participated in discussion forums. Video-watching was associated with a better course grade. Students who watched video clips were more active in using collaborative eLearning tools and achieved higher course grades.
NASA Astrophysics Data System (ADS)
Gallagher, L.; Morse, M.; Maxwell, R. M.; Cottrell, S.; Mattor, K.
2016-12-01
An ongoing NSF-WSC project was used as a launchpad for implementing a collaborative honors course at the Colorado School of Mines (CSM) and Colorado State University (CSU). The course examined current physical and social science research on the effects of the Mountain Pine Beetle (MPB) on regional social and hydro-ecological systems in the Rocky Mountain West. In addition to general classroom content delivery, community outreach experience and development for the participating undergraduate students was integrated into the course. Upon learning about ongoing MPB research from project PIs and researchers, students were guided to develop their own methodology to educate students and the community about the main project findings. Participants at CSM and CSU worked together to this end in a synchronous remote classroom environment. Students at both universities practiced their methods and activities with various audiences, including local elementary students, other undergraduate and graduate peers, and delivered their activities to sixth-grade students at a local outdoor lab program (Windy Peak Outdoor Lab, Jefferson County, CO). Windy Peak Outdoor Lab has integrated the student-developed content into their curriculum, which reaches approximately 6,000 students in the Jefferson County, CO school district each year. This experiential learning course will be used as a template for future Honors STEM education course development at CSM and was a unique vessel for conveying the studied effects of the MPB to a K-12 audience.
ERIC Educational Resources Information Center
Cela, Karina L.; Sicilia, Miguel Ángel; Sánchez, Salvador
2015-01-01
Teachers and instructional designers frequently incorporate collaborative learning approaches into their e-learning environments. A key factor of collaborative learning that may affect learner outcomes is whether the collaborative groups are assigned project topics randomly or based on a shared interest in the topic. This is a particularly…
Edouard, Guévart; Dominique, Billot; Moussiliou, Paraïso Noël; Francis, Guillemin; Khaled, Bessaoud; Serge, Briançon
2009-10-14
Distance learning (e-learning) can facilitate access to training. Yet few public health E-learning experiments have been reported; institutes in developing countries experience difficulties in establishing on-line curricula, while developed countries struggle with adapting existing curricula to realities on the ground. In 2005, two schools of public health, one in France and one in Benin, began collaborating through contact sessions organised for Nancy University distance-learning students. This experience gave rise to a partnership aimed at developing training materials for e-Learning for African students. The distance-learning public health course at Nancy teaches public health professionals through a module entitled "Health and Development." The module is specifically tailored for professionals from developing countries. To promote student-teacher exchanges, clarify content and supervise dissertations, contact sessions are organized in centres proximate and accessible to African students. The Benin Institute's main feature is residential team learning; distance-learning courses are currently being prepared. The two collaborating institutions have developed a joint distance-learning module geared toward developing countries. The collaboration provides for the development, diffusion, and joint delivery of teaching modules featuring issues that are familiar to African staff, gives the French Institute credibility in assessing research work produced, and enables modules on specific African issues and approaches to be put online. While E-learning is a viable educational option for public health professionals, periodic contact can be advantageous. Our analysis showed that the benefit of the collaboration between the two institutions is mutual; the French Institute extends its geographical, cultural and contextual reach and expands its pool of teaching staff. The Benin Institute benefits from the technical partnership and expertise, which allow it to offer distance learning for Africa-specific contexts and applications.
ERIC Educational Resources Information Center
Karakostas, A.; Demetriadis, S.
2011-01-01
Research on computer-supported collaborative learning (CSCL) has strongly emphasized the value of providing student support of either fixed (e.g. collaboration scripts) or dynamic form (e.g. adaptive supportive interventions). Currently, however, there is not sufficient evidence corroborating the potential of adaptive support methods to improve…
ERIC Educational Resources Information Center
Jameson, Jill
2008-01-01
A nomadic collaborative partnership model for a community of practice (CoP) in Design for Learning (D4L) can facilitate successful innovation and continuing appraisals of effective professional practice, stimulated by a "critical friend" assigned to the project. This paper reports on e-learning case studies collected by the UK JISC eLIDA…
An Integrated Toolset for Agile Systems Engineering Requirements Analysis
2011-05-19
Tool STDUse Cases Collaboration Tool Data Mgmt T l 1 e a a managemen oo Run the test in the test lab, redline the STD Update the collaboration...Boeing Defense, Space & Security Lean-Agile Software A I t t d T l t fn n egra e oo se or Agile Systems Engineering Requirements Analysis Phyllis...Regulations (ITAR) and the Export Administration R l ti (EAR) h i l bl b t h th i th BOEING is a trademark of Boeing Management Company. Copyright © 2010
ERIC Educational Resources Information Center
Murray, Jo-Anne; Boyd, Sharon
2015-01-01
Collaborative assessment has well-recognised benefits in higher education and, in online distance learning, this type of assessment may be integral to collaborative e-learning and may have a strong influence on the student's relationship with learning. While there are known benefits associated with collaborative assessment, the main drawback is…
Assessment of Collaborative Learning Experiences by Graphical Analysis of Wiki Contributions
ERIC Educational Resources Information Center
Palomo-Duarte, Manuel; Dodero, Juan Manuel; Medina-Bulo, Inmaculada; Rodríguez-Posada, Emilio J.; Ruiz-Rube, Iván
2014-01-01
The widespread adoption of computers and Internet in our life has reached the classrooms, where computer-supported collaborative learning (CSCL) based on wikis offers new ways of collaboration and encourages student participation. When the number of contributions from students increases, traditional assessment procedures of e-learning settings…
(Re)inventing Government-Industry R and D Collaboration
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.
1996-01-01
This paper describes the lessons learned in developing and operating a large-scale strategic alliance whose organization and coordination is U.S. Government-led using new means for R&D collaboration. Consortia in the United States counter a century of 1884 Sherman Anti-Trust Law-based governmental and legal policy and a longstanding business tradition of unfettered competition. Success in public-private collaboration in America requires compelling vision and motivation by both partners to reinvent our ways of doing business. The foundations for reinventing government and alliance building were laid in 1994 with Vice President Al Gore's mandates for Federal Lab Reviews and other examinations of the roles and missions for the nation's more than 700 government labs. In addition, the 1984 National Cooperative Research Act (NCRA) set in motion the abilities for U.S. companies to collaborate in pre-competitive technology development. The budget realities of the 1990's for NASA and other government agencies demand that government discover the means to accomplish its mission by leveraging resources through streamlining as well as alliances. Federal R&D investments can be significantly leveraged for greater national benefit through strategic alliances with industry and university partners. This paper presents early results from one of NASA's first large-scale public/private joint R&D ventures.
Threshold-Switchable Particles (TSP) to Control Internal Hemorrhage
2012-12-01
the Liu lab (in collaboration with the Morrissey lab): Citrate gold nanoparticle synthesis (toward Task 3, Milestone 4) Gold nanoparticles with an...dimethylamino) propyl ]carbodiimide). Different pH conditions were used to test the conjugation efficiency between PAAc and cystamine. An excess amount of...Studies from the Stucky lab (in collaboration with the Morrissey lab): Silica Nanoparticle (SNP) synthesis (toward Task 3, Milestone 4) In our
High-Fidelity e-Learning: SEI’s Virtual Training Environment (VTE)
2009-01-01
Assessment 2.4 Collaboration 2.4.1 Peer-Student Collaboration 2.4.2 Instructor Support 2.5 Accessibility 2.6 Modularity 2.6.1 Design for Re-Use 2.6.2 Design ...ing Environment as an implementation of a high-fidelity e-Ieaming system. This report does not cover concepts of pedagogy or instructional design in e...pedagogical agents. This is the basis for Clark and Mayer’s Personalization principle for designing media for e-learning [Clark & Mayer 2003]. E-learning
NASA Astrophysics Data System (ADS)
Mohottala, Hashini
2014-03-01
The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.
FameLab: A Communication Skills-Building Program Disguised as an International Competition
NASA Astrophysics Data System (ADS)
Scalice, D.
2015-12-01
One of the key pieces of training missing from most graduate studies in science is skills-building in communication. Beyond the responsibility to share their work with the public, good communication skills enhance a scientist's career path, facilitating comprehension of their work by stakeholders and funders, as well as increasing the ability to collaborate interdisciplinarily. FameLab, an American Idol-style communication competition for early career scientists, helps fill this void, and provides an opportunity to pratice communication skills, with the coaching of professionals, in a safe space. The focus is on training and networking with like-minded scientists. NASA's Astrobiology Program has been implementing FameLab in the US since 2011, but over 25 countries take part globally. Come learn about this innovative program, what impact it's had on participants, and how you can get involved.
Booth, Christine; Cheluvappa, Rajkumar; Bellinson, Zack; Maguire, Danni; Zimitat, Craig; Abraham, Joyce; Eri, Rajaraman
2016-06-01
Personalised instruction is increasingly recognised as crucial for efficacious learning today. Our seminal work delineates and elaborates on the principles, development and implementation of a specially-designed adaptive, virtual laboratory. We strived to teach laboratory skills associated with lactate dehydrogenase (LDH) enzyme kinetics to 2nd-year biochemistry students using our adaptive learning platform. Pertinent specific aims were to:(1)design/implement a web-based lesson to teach lactate dehydrogenase(LDH) enzyme kinetics to 2nd-year biochemistry students(2)determine its efficacious in improving students' comprehension of enzyme kinetics(3)assess their perception of its usefulness/manageability(vLab versus Conventional Tutorial). Our tools were designed using HTML5 technology. We hosted the program on an adaptive e-learning platform (AeLP). Provisions were made to interactively impart informed laboratory skills associated with measuring LDH enzyme kinetics. A series of e-learning methods were created. Tutorials were generated for interactive teaching and assessment. The learning outcomes herein were on par with that from a conventional classroom tutorial. Student feedback showed that the majority of students found the vLab learning experience "valuable"; and the vLab format/interface "well-designed". However, there were a few technical issues with the 1st roll-out of the platform. Our pioneering effort resulted in productive learning with the vLab, with parity with that from a conventional tutorial. Our contingent discussion emphasises not only the cornerstone advantages, but also the shortcomings of the AeLP method utilised. We conclude with an astute analysis of possible extensions and applications of our methodology.
ERIC Educational Resources Information Center
Ornellas, Adriana; Muñoz Carril, Pablo César
2014-01-01
This article outlines a methodological approach to the creation, production and dissemination of online collaborative audio-visual projects, using new social learning technologies and open-source video tools, which can be applied to any e-learning environment in higher education. The methodology was developed and used to design a course in the…
ERIC Educational Resources Information Center
Phung, Dan; Valetto, Giuseppe; Kaiser, Gail E.; Liu, Tiecheng; Kender, John R.
2007-01-01
The increasing popularity of online courses has highlighted the need for collaborative learning tools for student groups. In this article, we present an e-Learning architecture and adaptation model called AI2TV (Adaptive Interactive Internet Team Video), which allows groups of students to collaboratively view instructional videos in synchrony.…
The use of concept maps for knowledge management: from classrooms to research labs.
Correia, Paulo Rogério Miranda
2012-02-01
Our contemporary society asks for new strategies to manage knowledge. The main activities developed by academics involve knowledge transmission (teaching) and production (research). Creativity and collaboration are valuable assets for establishing learning organizations in classrooms and research labs. Concept mapping is a useful graphical technique to foster some of the disciplines required to create and develop high-performance teams. The need for a linking phrase to clearly state conceptual relationships makes concept maps (Cmaps) very useful for organizing our own ideas (externalization), as well as, sharing them with other people (elicitation and consensus building). The collaborative knowledge construction (CKC) is supported by Cmaps because they improve the communication signal-to-noise ratio among participants with high information asymmetry. In other words, we can identify knowledge gaps and insightful ideas in our own Cmaps when discussing them with our counterparts. Collaboration involving low and high information asymmetry can also be explored through peer review and student-professor/advisor interactions, respectively. In conclusion, when it is used properly, concept mapping can provide a competitive advantage to produce and share knowledge in our contemporary society. To map is to know, as stated by Wandersee in 1990.
Short Distance of Nuclei - Mining the Wealth of Existing Jefferson Lab Data - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, Lawrence; Kuhn, Sebastian
Over the last fifteen years of operation, the Jefferson Lab CLAS Collaboration has performed many experiments using nuclear targets. Because the CLAS detector has a very large acceptance and because it used a very open (i.e., nonspecific) trigger, there is a vast amount of data on many different reaction channels yet to be analyzed. The goal of the Jefferson Lab Nuclear Data Mining grant was to (1) collect the data from nuclear target experiments using the CLAS detector, (2) collect the associated cuts and corrections used to analyze that data, (3) provide non-expert users with a software environment for easymore » analysis of the data, and (4) to search for interesting reaction signatures in the data. We formed the Jefferson Lab Nuclear Data Mining collaboration under the auspices of this grant. The collaboration successfully carried out all of our goals. Dr. Gavalian, the data mining scientist, created a remarkably user-friendly web-based interface to enable easy analysis of the nuclear-target data by non-experts. Data from many of the CLAS nuclear target experiments has been made available on servers at Old Dominion University. Many of the associated cuts and corrections have been incorporated into the data mining software. The data mining collaboration was extraordinarily successful in finding interesting reaction signatures in the data. Our paper Momentum sharing in imbalanced Fermi systems was published in Science. Several analyses of CLAS data are continuing and will result in papers after the end of the grant period. We have held several analysis workshops and have given many invited talks at international conferences and workshops related to the data mining initiative. Our initiative to maximize the impact of data collected with CLAS in the 6-GeV era was very successful. During the hiatus between the end of 6-GeV experiments and the beginning of 12-GeV experiments, our collaboration and the physics community at large benefited tremendously from the Jefferson Lab Nuclear Data Mining effort.« less
Kiteley, Robin J; Ormrod, Graham
2009-08-01
E-learning approaches are incorporated in many undergraduate nursing programmes but there is evidence to suggest that these are often piecemeal and have little impact on the wider, nurse education curriculum. This is consistent with a broader view of e-learning within the higher education (HE) sector, which suggests that higher education institutions (HEIs) are struggling to make e-learning a part of their mainstream delivery [HEFCE, 2005. HEFCE Strategy for E-Learning 2005/12. Bristol, UK, Higher Education Funding Council for England (HEFCE). [online] Available at:
NASA Astrophysics Data System (ADS)
Bykov, Tikhon
2010-03-01
In recent years McMurry University's introductory physics curriculum has gone through a series of significant changes to achieve better integration of traditional course components (lecture/lab/discussion) by means of instructional design and technology. A system of flexible curriculum modules with emphasis on inquiry-based teaching and collaborative active learning has been introduced. To unify module elements, a technology suite has been used that consists of Tablet PC's and software applications including Physlets, tablet-adapted personal response system, PASCO data acquisition systems, and MS One-note collaborative writing software. Adoption of the new teaching model resulted in reevaluation of existing instructional spaces. The new teaching space will be created during the renovation of the McMurry Science Building. This space will allow for easy transitions between lecture and laboratory modes. Movable partitions will be used to accommodate student groups of different sizes. The space will be supportive of small peer-group activities with easy-to-reconfigure furniture, multiple white and black board surfaces and multiple projection screens. The new space will be highly flexible to account for different teaching functions, different teaching modes and learning styles.
Building a Course on Global Sustainability using the grand challenges of Energy-Water-Climate
NASA Astrophysics Data System (ADS)
Myers, J. D.
2012-12-01
GEOL1600: Global Sustainability: Managing the Earth's Resources is a lower division integrated science course at the University of Wyoming that fulfills the university's science requirement. Course content and context has been developed using the grand challenge nexus of energy-water-and climate (EWC). The interconnection of these issues, their social relevance and timeliness has provided a framework that gives students an opportunity to recognize why STEM is relevant to their lives regardless of their ultimate professional career choices. The EWC nexus provides the filter to sieve the course's STEM content. It also provides an ideal mechanism by which the non-STEM perspectives important in grand challenge solutions can be seamlessly incorporated in the course. Through a combination of content and context, the relevance of these issues engage students in their own learning. Development of the course followed the Grand Challenge Scientific Literacy (GCSL) model independently developed by the author and two colleagues at the University of Wyoming. This course model stresses science principles centered on the nature of science (e.g., fundamental premises, habits of mind, critical thinking) and unifying scientific concepts (e.g., methods and tools, experimentation, modeling). Grand challenge principles identify the STEM and non-STEM concepts needed to understand the grand challenges, drawing on multiple STEM and non-STEM disciplines and subjects (i.e., economics, politics, unintended consequences, roles of stakeholders). Using the EWC nexus filter and building on the Grand Challenge Principles, specific content included in the course is selected is that most relevant to understanding the Grand Challenges, thereby stressing content depth over breadth. Because quantitative data and reasoning is critical to effectively evaluating challenge solutions, QR is a component of nearly all class activities, while engineering and technology aspects of grand challenges are explicitly stressed. Running concurrently through the course is a consideration of personal perspectives and their influence on student learning, particularly for controversial subjects. Organizationally, the course consists of three one hour lectures and a two hour lab each week. The lectures are used to introduce content and prepare the knowledge base students need for lab. Complementing traditional lectures are lecture worksheets (short activities applying topics previously presented in lecture) and lecture activities (more involved exercises that present a problem the students need to solve using previously learned scientific content and QR skills and tools). Labs focus on case studies set in global social contexts that are timely and relevant. Labs stress scientific skills (modeling groundwater flow) and also consider political and environmental issues, e.g. developing a policy to manage SO2 emissions from copper smelting. The ideas, concepts, educational materials and content developed in this course have been used as the basis for two Math Science Partnerships that have provided professional development for middle and high school science and math teachers and K-12 social, math and science teachers. These programs have worked with teachers to break down the barriers between disciplines and foster collaborative learning centered on socially relevant grand challenges.
NASA Astrophysics Data System (ADS)
Mote, A. S.; Ellins, K. K.; Haddad, N.
2011-12-01
Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions. Collaboration and discussion among members of the EarthLabs team and partner teachers was instrumental to improving the quality of the EarthLabs modules and the professional development workshop. Furthermore, leading the workshop alongside other partner teachers gave me the confidence and experience to deliver professional development to my colleagues and introduce the newly developed EarthLabs modules to other teachers. In this session I will share my experiences and report on the successes, challenges, and lessons learned from being a part of the EarthLabs curriculum and professional development process.
Collaborative Recommendation of E-Learning Resources: An Experimental Investigation
ERIC Educational Resources Information Center
Manouselis, N.; Vuorikari, R.; Van Assche, F.
2010-01-01
Repositories with educational resources can support the formation of online learning communities by providing a platform for collaboration. Users (e.g. teachers, tutors and learners) access repositories, search for interesting resources to access and use, and in many cases, also exchange experiences and opinions. A particular class of online…
A summary of research-based assessment of students' beliefs about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2018-03-01
Within the undergraduate physics curriculum, students' primary exposure to experimental physics comes from laboratory courses. Thus, as experimentation is a core component of physics as a discipline, lab courses can be gateways in terms of both recruiting and retaining students within the physics major. Physics lab courses have a wide variety of explicit and/or implicit goals for lab courses, including helping students to develop expert-like beliefs about the nature and importance of experimental physics. To assess students' beliefs, attitudes, and expectations about the nature of experimental physics, there is currently one research-based assessment instrument available—the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Since its development, the E-CLASS has been the subject of multiple research studies aimed at understanding and evaluating the effectiveness of various laboratory learning environments. This paper presents a description of the E-CLASS assessment and a summary of the research that has been done using E-CLASS data with a particular emphasis on the aspects of this work that are most relevant for instructors.
Analysing a Web-Based E-Commerce Learning Community: A Case Study in Brazil.
ERIC Educational Resources Information Center
Joia, Luiz Antonio
2002-01-01
Demonstrates the use of a Web-based participative virtual learning environment for graduate students in Brazil enrolled in an electronic commerce course in a Masters in Business Administration program. Discusses learning communities; computer-supported collaborative work and collaborative learning; influences on student participation; the role of…
Collaborative Learning: Students' Perspectives on How Learning Happens
ERIC Educational Resources Information Center
Almajed, Abdulaziz; Skinner, Vicki; Peterson, Ray; Winning, Tracey
2016-01-01
Collaborative learning (CL), a core component of inquiry-based learning approaches, aims to support students' development of key skills (e.g., working in multidisciplinary teams). To design effective CL activities, we need to understand students' perceptions about CL. However, few studies have examined students' understandings of CL. This…
COLLAGE: A Collaborative Learning Design Editor Based on Patterns
ERIC Educational Resources Information Center
Hernandez-Leo, Davinia; Villasclaras-Fernandez, Eloy D.; Asensio-Perez, Juan I.; Dimitriadis, Yannis; Jorrin-Abellan, Ivan M.; Ruiz-Requies, Ines; Rubia-Avi, Bartolome
2006-01-01
This paper introduces "Collage", a high-level IMS-LD compliant authoring tool that is specialized for CSCL (Computer-Supported Collaborative Learning). Nowadays CSCL is a key trend in e-learning since it highlights the importance of social interactions as an essential element of learning. CSCL is an interdisciplinary domain, which…
ERIC Educational Resources Information Center
Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos
2014-01-01
Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…
Riley, Erin M; Hattaway, Holly Z; Felse, P Arthur
2017-01-01
Electronic lab notebooks (ELNs) are better equipped than paper lab notebooks (PLNs) to handle present-day life science and engineering experiments that generate large data sets and require high levels of data integrity. But limited training and a lack of workforce with ELN knowledge have restricted the use of ELN in academic and industry research laboratories which still rely on cumbersome PLNs for recordkeeping. We used LabArchives, a cloud-based ELN in our bioprocess engineering lab course to train students in electronic record keeping, good documentation practices (GDPs), and data integrity. Implementation of ELN in the bioprocess engineering lab course, an analysis of user experiences, and our development actions to improve ELN training are presented here. ELN improved pedagogy and learning outcomes of the lab course through stream lined workflow, quick data recording and archiving, and enhanced data sharing and collaboration. It also enabled superior data integrity, simplified information exchange, and allowed real-time and remote monitoring of experiments. Several attributes related to positive user experiences of ELN improved between the two subsequent years in which ELN was offered. Student responses also indicate that ELN is better than PLN for compliance. We demonstrated that ELN can be successfully implemented in a lab course with significant benefits to pedagogy, GDP training, and data integrity. The methods and processes presented here for ELN implementation can be adapted to many types of laboratory experiments.
NASA Astrophysics Data System (ADS)
Pohlman, Nicholas A.; Hynes, Eric; Kutz, April
2015-11-01
Lectures in introductory fluid mechanics at NIU are a combination of students with standard enrollment and students seeking honors credit for an enriching experience. Most honors students dread the additional homework problems or an extra paper assigned by the instructor. During the past three years, honors students of my class have instead collaborated to design wet-lab experiments for their peers to predict variable volume flow rates of open reservoirs driven by gravity. Rather than learn extra, the honors students learn the Bernoulli head-loss equation earlier to design appropriate systems for an experimental wet lab. Prior designs incorporated minor loss features such as sudden contraction or multiple unions and valves. The honors students from Spring 2015 expanded the repertoire of available options by developing large scale set-ups with multiple pipe networks that could be combined together to test the flexibility of the student team's computational programs. The engagement of bridging the theory with practice was appreciated by all of the students such that multiple teams were able to predict performance within 4% accuracy. The challenges, schedules, and cost estimates of incorporating the experimental lab into an introductory fluid mechanics course will be reported.
Implementing Inclusive Design for Learning in an introductory geology laboratory
NASA Astrophysics Data System (ADS)
Robert, G.; Merriman, J. D.; Ceylan, G. M.
2013-12-01
As an expansion of universal design for learning, IDL provides a framework for opening up and adapting classroom interaction systems, minimizing barriers through promoting perception, engagement, expression, and accommodation for diverse learners. We implemented an introductory-level laboratory for communicating the concept of magma viscosity using the guidelines and principles of IDL. We developed the lab as a mini-implementation project for an IDL course offered by the University of Missouri (MU) Graduate School. The laboratory was subsequently taught during the summer session of Principles of Geology in our Department of Geological Sciences. Traditional geology laboratories rely heavily on visual aids, either physical (rocks and minerals) or representative (idealized cartoons of processes, videos), with very few alternative representations and descriptions made available to the students. Our main focus for this new lab was to diversify the means of representation available to the students (and instructor) to make the lab as equitable and flexible as possible. We considered potential barriers to learning arising from the physical lab environment, from the means of representation, engagement and expression, and tried to minimize them upfront. We centred the laboratory on the link between volcano shape and viscosity as an applied way to convey that viscosity is the resistance to flow. The learning goal was to have the students observe that more viscous eruptives resulted in steeper-sided volcanoes through experimentation. Students built their own volcanoes by erupting lava (foods of various viscosities) onto the Earth's surface (a piece of sturdy cardboard with a hole for the 'vent') through a conduit (pastry bag). Such a hands on lab exercise allows students to gain a tactile and visual, i.e., physical representation of an abstract concept. This specific exercise was supported by other, more traditional, means of representation (e.g., lecture, videos, cartoons, 3D models, online resources, textbook) in lecture and lab. We will discuss the details of the design, the implementation experience, and the insights for lab improvement in future iterations. This exercise represents the initial steps toward (re)designing introductory geoscience labs to more effectively include diverse learners.
Developing an e-pedagogy for interprofessional learning: Lecturers' thinking on curriculum design.
Gordon, Frances; Booth, Karen; Bywater, Helen
2010-09-01
E-learning is seen as offering possible solutions to the barriers of large scale interprofessional education. This paper discusses a study that explored the underlying pedagogical thinking employed by lecturers when planning e-learning materials for interprofessional education. The themes uncovered in the data were: "reflective spaces for creativity"; "from logistics to learner autonomy"; "authentic"; "constructivist approaches"; "inter-active learning to promote collaboration" and "bringing the patient/service user into the classroom". Discussions about e-learning can focus on the technological aspects of design and delivery. However the findings of this study revealed that technology was not a consideration for the lecturers who saw e-learning as a vehicle to promote interactive learning. Their prime focus was revealed as the application of learning theory to the design of materials that would support students' acquisition of collaborative skills and the generation of new interprofessional knowledge.
ERIC Educational Resources Information Center
Gregg, Dawn G.
2007-01-01
Purpose: The purpose of this paper is to illustrate the advantages of using intelligent agents to facilitate the location and customization of appropriate e-learning resources and to foster collaboration in e-learning environments. Design/methodology/approach: This paper proposes an e-learning environment that can be used to provide customized…
Potentials of E-Learning as a Study Tool in Business Education in Nigerian Schools
ERIC Educational Resources Information Center
Ojeaga, I. J.; Igbinedion, V. I.
2012-01-01
With advancement in information technology in the 21st century, e-learning has become an invaluable technology for teaching, learning and research in education. E-learning involves the use of technology to enhance learning including digital collaboration, satellite broadcasting, CD-ROMs amongst others. E-learning has so many advantages over the…
Using Chem-Wiki to Increase Student Collaboration through Online Lab Reporting
ERIC Educational Resources Information Center
Elliott, Edward W., III; Fraiman, Ana
2010-01-01
The nature of laboratory work has changed in the past decade. One example is a shift from working individually or in pairs on single traditional verification experiments to working collaboratively in larger groups in inquiry and research-based laboratories, over extended periods in and outside of the lab. In this increased era of collaboration, we…
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-06-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing laboratory skills, and promoting expertlike beliefs about the nature of experimental physics. However, there is little consensus among instructors and researchers interested in the laboratory learning environment as to the relative importance of these various learning goals. Here, we contribute data to this debate through the analysis of students' responses to the laboratory-focused assessment known as the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a large, national data set of students' responses, we compare students' E-CLASS performance in classes in which the instructor self-reported focusing on developing skills, reinforcing concepts, or both. As the classification of courses was based on instructor self-report, we also provide additional description of these courses with respect to how often students engage in particular activities in the lab. We find that courses that focus specifically on developing lab skills have more expertlike postinstruction E-CLASS responses than courses that focus either on reinforcing physics concepts or on both goals. Within first-year courses, this effect is larger for women. Moreover, these findings hold when controlling for the variance in postinstruction scores that is associated with preinstruction E-CLASS scores, student major, and student gender.
Towards the Reconciliation of Knowledge Management and e-Collaboration Systems
ERIC Educational Resources Information Center
Le Dinh, Thang; Rinfret, Louis; Raymond, Louis; Dong Thi, Bich-Thuy
2013-01-01
Purpose: The purpose of this paper is to propose an intelligent infrastructure for the reconciliation of knowledge management and e-collaboration systems. Design/Methodology/Approach:Literature on e-collaboration, information management, knowledge management, learning process, and intellectual capital is mobilised in order to build the conceptual…
Assessing a Collaborative Online Environment for Music Composition
ERIC Educational Resources Information Center
Biasutti, Michele
2015-01-01
The current pilot study tested the effectiveness of an e-learning environment built to enable students to compose music collaboratively. The participants interacted online by using synchronous and asynchronous resources to develop a project in which they composed a new music piece in collaboration. After the learning sessions, individual…
Can a Hypermedia Cooperative e-Learning Environment Stimulate Constructive Collaboration?
ERIC Educational Resources Information Center
Pragnell, Mary Victoria; Roselli, Teresa; Rossano, Veronica
2006-01-01
The growing use of the Internet in learning environments has led to new models being created addressing specific learning domains, as well as more general educational goals. In particular, in recent years considerable attention has been paid to collaborative learning supported by technology, because this mode can enhance peer interaction and group…
Challenges in Educational Modelling: Expressiveness of IMS Learning Design
ERIC Educational Resources Information Center
Caeiro-Rodriguez, Manuel; Anido-Rifon, Luis; Llamas-Nistal, Martin
2010-01-01
Educational Modelling Languages (EMLs) have been proposed to enable the authoring of models of "learning units" (e.g., courses, lessons, lab practices, seminars) covering the broad variety of pedagogical approaches. In addition, some EMLs have been proposed as computational languages that support the processing of learning unit models by…
ERIC Educational Resources Information Center
Aleksic-Maslac, Karmela; Magzan, Masha; Juric, Visnja
2009-01-01
Digital interaction in e-learning offers great opportunities for education quality improvement in both--the classical teaching combined with e-learning, and distance learning. Zagreb School of Economics & Management (ZSEM) is one of the few higher education institutions in Croatia that systematically uses e-learning in teaching. Systematically…
An Instructional and Collaborative Learning System with Content Recommendation
ERIC Educational Resources Information Center
Zheng, Xiang-wei; Ma, Hong-wei; Li, Yan
2013-01-01
With the rapid development of Internet, e-learning has become a new teaching and learning mode. However, lots of e-learning systems deployed on Internet are just electronic learning materials with very limited interactivity and diagnostic capability. This paper presents an integrated e-learning environment named iCLSR. Firstly, iCLSR provides an…
ERIC Educational Resources Information Center
Macias, J. A.
2012-01-01
Project-based learning is one of the main successful student-centered pedagogies broadly used in computing science courses. However, this approach can be insufficient when dealing with practical subjects that implicitly require many deliverables and a great deal of feedback and organizational resources. In this paper, a worked e-portfolio is…
The Frederick National Lab and Moffitt Cancer Center have established a collaboration to research antibody responses against the human papillomavirus (HPV) in males following administration of the Gardasil vaccine. The vaccine prevents HPV infections
MatLab Script and Functional Programming
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.
E-Learning 3.0 = E-Learning 2.0 + Web 3.0?
ERIC Educational Resources Information Center
Hussain, Fehmida
2012-01-01
Web 3.0, termed as the semantic web or the web of data is the transformed version of Web 2.0 with technologies and functionalities such as intelligent collaborative filtering, cloud computing, big data, linked data, openness, interoperability and smart mobility. If Web 2.0 is about social networking and mass collaboration between the creator and…
ERIC Educational Resources Information Center
Kahai, Surinder; Jestire, Rebecca; Huang, Rui
2013-01-01
Computer-supported collaborative learning is a common e-learning activity. Instructors have to create appropriate social and instructional interventions in order to promote effective learning. We performed a study that examined the effects of two popular leadership interventions, transformational and transactional, on cognitive effort and outcomes…
ERIC Educational Resources Information Center
Barson, John; And Others
1993-01-01
Describes collaborations of college French classes using electronic mail. Suggests that this type of task-oriented learning through distance-communication is applicable at many different course levels and has considerable merit as an approach to teaching and learning. (PR)
Collaborative distance learning: Developing an online learning community
NASA Astrophysics Data System (ADS)
Stoytcheva, Maria
2017-12-01
The method of collaborative distance learning has been applied for years in a number of distance learning courses, but they are relatively few in foreign language learning. The context of this research is a hybrid distance learning of French for specific purposes, delivered through the platform UNIV-RcT (Strasbourg University), which combines collaborative activities for the realization of a common problem-solving task online. The study focuses on a couple of aspects: on-line interactions carried out in small, tutored groups and the process of community building online. By analyzing the learner's perceptions of community and collaborative learning, we have tried to understand the process of building and maintenance of online learning community and to see to what extent the collaborative distance learning contribute to the development of the competence expectations at the end of the course. The analysis of the results allows us to distinguish the advantages and limitations of this type of e-learning and thus evaluate their pertinence.
NASA Astrophysics Data System (ADS)
Laws, Priscilla
2010-02-01
In June 1986 Ronald Thornton (at the Tufts University Center for Science and Mathematics Teaching) and Priscilla Laws (at Dickinson College) applied independently for grants to develop curricular materials based on both the outcomes of Physics Education Research and the use of Microcomputer Based Laboratory Tools (MBL) developed by Robert Tinker, Ron Thornton and others at Technical Education Research Centers (TERC). Thornton proposed to develop a series of Tools for Scientific Thinking (TST) laboratory exercises to address known learning difficulties using carefully sequenced MBL observations. These TST laboratories were to be beta tested at several types of institutions. Laws proposed to develop a Workshop Physics Activity Guide for a 2 semester calculus-based introductory course sequence centering on MBL-based guided inquiry. Workshop Physics was to be designed to replace traditional lectures and separate labs in relatively small classes and was to be tested at Dickinson College. In September 1986 a project officer at the Fund for Post-Secondary Education (FIPSE) awarded grants to Laws and Thornton provided that they would collaborate. David Sokoloff (at the University of Oregon) joined Thornton to develop and test the TST laboratories. This talk will describe the 23 year collaboration between Thornton, Laws, and Sokoloff that led to the development of a suite of Activity Based Physics curricular materials, new apparatus and enhanced computer tools for real time graphing, data collection and mathematical modeling. The Suite includes TST Labs, the Workshop Physics Activity Guide, RealTime Physics Laboratory Modules, and a series of Interactive Lecture Demonstrations. A textbook and a guide to using the Suite were also developed. The vital importance of obtaining continued grant support, doing continuous research on student learning, collaborating with instructors at other institutions, and forging relationships with vendors and publishers will be described. )
Collaboration in E-Learning: A Study Using the Flexible E-Learning Framework
ERIC Educational Resources Information Center
Vandenhouten, C.; Gallagher-Lepak, S.; Reilly, J.; Ralston-Berg, P.
2014-01-01
E-Learning remains a new frontier for many faculty. When compared to the traditional classroom, E- Learning requires the talents of many team members from a variety of departments as well as the use of different teaching and learning strategies. Pedagogy as well as team configurations must change when moving to the online environment. As a result,…
Comulang: towards a collaborative e-learning system that supports student group modeling.
Troussas, Christos; Virvou, Maria; Alepis, Efthimios
2013-01-01
This paper describes an e-learning system that is expected to further enhance the educational process in computer-based tutoring systems by incorporating collaboration between students and work in groups. The resulting system is called "Comulang" while as a test bed for its effectiveness a multiple language learning system is used. Collaboration is supported by a user modeling module that is responsible for the initial creation of student clusters, where, as a next step, working groups of students are created. A machine learning clustering algorithm works towards group formatting, so that co-operations between students from different clusters are attained. One of the resulting system's basic aims is to provide efficient student groups whose limitations and capabilities are well balanced.
Increasing Interactivity in Blended Classrooms through a Cutting-Edge Mobile Learning System
ERIC Educational Resources Information Center
Shen, Ruimin; Wang, Minjuan; Pan, Xiaoyan
2008-01-01
Chinese classrooms, whether on school grounds or online, have long suffered from a lack of interactivity. Many online classes simply provide recorded lectures to which students listen after downloading. This format only reinforces the negative effects of passive non-participatory learning. At the e-Learning Lab of Shanghai Jiaotong University…
The Frederick National Lab and Moffitt Cancer Center have established a collaboration to research antibody responses against the human papillomavirus (HPV) in males following administration of the Gardasil vaccine. The vaccine prevents HPV infections
IBBR and Frederick National Lab Collaborate to Study Vaccine-Boosting Compounds | FNLCR Staging
The Frederick National Lab and the University of Maryland’s Institute for Bioscience and Biotechnology Research (IBBR) will work under a formal collaboration to evaluate the effectiveness of new compounds that might be used to enhance the immune re
Pervasive Knowledge, Social Networks, and Cloud Computing: E-Learning 2.0
ERIC Educational Resources Information Center
Anshari, Muhammad; Alas, Yabit; Guan, Lim Sei
2015-01-01
Embedding Web 2.0 in learning processes has extended learning from traditional based learning-centred to a collaborative based learning-centred institution that emphasises learning anywhere and anytime. While deploying Semantic Web into e-learning offers a broader spectrum of pervasive knowledge acquisition to enrich users' experience in learning.…
Terrorism Prevention and Firefighters: Where are the Information-Sharing Boundaries
2009-03-01
necessary. Another example of a potential terrorist-related incident involved a stolen van containing a radiation source for x - raying bridge structures... x E. COLLABORATION......................................................................................46 F. INTELLIGENCE GATHERING...notice a potential methamphetamine lab in the bedroom, the police department will be contacted. If children are present, the Department of Human
Polite Web-Based Intelligent Tutors: Can They Improve Learning in Classrooms?
ERIC Educational Resources Information Center
McLaren, Bruce M.; DeLeeuw, Krista E.; Mayer, Richard E.
2011-01-01
Should an intelligent software tutor be polite, in an effort to motivate and cajole students to learn, or should it use more direct language? If it should be polite, under what conditions? In a series of studies in different contexts (e.g., lab versus classroom) with a variety of students (e.g., low prior knowledge versus high prior knowledge),…
ERIC Educational Resources Information Center
Togawa, Satoshi; Kanenishi, Kazuhide
2014-01-01
In this research, we have built a framework of disaster recovery such as against earthquake, tsunami disaster and a heavy floods for e-Learning environment. Especially, our proposed framework is based on private cloud collaboration. We build a prototype system based on IaaS architecture, and this prototype system is constructed by several private…
Synchronous and Asynchronous E-Language Learning: A Case Study of Virtual University of Pakistan
ERIC Educational Resources Information Center
Perveen, Ayesha
2016-01-01
This case study evaluated the impact of synchronous and asynchronous E-Language Learning activities (ELL-ivities) in an E-Language Learning Environment (ELLE) at Virtual University of Pakistan. The purpose of the study was to assess e-language learning analytics based on the constructivist approach of collaborative construction of knowledge. The…
Applications of "Integrated Data Viewer'' (IDV) in the classroom
NASA Astrophysics Data System (ADS)
Nogueira, R.; Cutrim, E. M.
2006-06-01
Conventionally, weather products utilized in synoptic meteorology reduce phenomena occurring in four dimensions to a 2-dimensional form. This constitutes a road-block for non-atmospheric-science majors who need to take meteorology as a non-mathematical and complementary course to their major programs. This research examines the use of Integrated Data Viewer-IDV as a teaching tool, as it allows a 4-dimensional representation of weather products. IDV was tested in the teaching of synoptic meteorology, weather analysis, and weather map interpretation to non-science students in the laboratory sessions of an introductory meteorology class at Western Michigan University. Comparison of student exam scores according to the laboratory teaching techniques, i.e., traditional lab manual and IDV was performed for short- and long-term learning. Results of the statistical analysis show that the Fall 2004 students in the IDV-based lab session retained learning. However, in the Spring 2005 the exam scores did not reflect retention in learning when compared with IDV-based and MANUAL-based lab scores (short term learning, i.e., exam taken one week after the lab exercise). Testing the long-term learning, seven weeks between the two exams in the Spring 2005, show no statistically significant difference between IDV-based group scores and MANUAL-based group scores. However, the IDV group obtained exam score average slightly higher than the MANUAL group. Statistical testing of the principal hypothesis in this study, leads to the conclusion that the IDV-based method did not prove to be a better teaching tool than the traditional paper-based method. Future studies could potentially find significant differences in the effectiveness of both manual and IDV methods if the conditions had been more controlled. That is, students in the control group should not be exposed to the weather analysis using IDV during lecture.
Intelligent Assistance for Teachers in Collaborative E-Learning Environments
ERIC Educational Resources Information Center
Casamayor, Agustin; Amandi, Analia; Campo, Marcelo
2009-01-01
Collaborative learning environments provide a set of tools for students acting in groups to interact and accomplish an assigned task. In this kind of systems, students are free to express and communicate with each other, which usually lead to collaboration and communication problems that may require the intervention of a teacher. In this article,…
ERIC Educational Resources Information Center
Cheung, Ronnie; Vogel, Doug
2013-01-01
Collaborative technologies support group work in project-based environments. In this study, we enhance the technology acceptance model to explain the factors that influence the acceptance of Google Applications for collaborative learning. The enhanced model was empirically evaluated using survey data collected from 136 students enrolled in a…
Virtual Reality for Collaborative E-Learning
ERIC Educational Resources Information Center
Monahan, Teresa; McArdle, Gavin; Bertolotto, Michela
2008-01-01
In the past, the term e-learning referred to any method of learning that used electronic delivery methods. With the advent of the Internet however, e-learning has evolved and the term is now most commonly used to refer to online courses. A multitude of systems are now available to manage and deliver learning content online. While these have proved…
Unifying Heterogeneous E-Learning Modalities in a Single Platform: CADI, a Case Study
ERIC Educational Resources Information Center
Cabrera-Lozoya, Andres; Cerdan, Fernando; Cano, Maria-Dolores; Garcia-Sanchez, Diego; Lujan, Sergio
2012-01-01
Current e-learning forms are commonly based on improving the learning process through the enhancement of certain skills in students, such as collaborative, competitive or problem-based learning. However, it seems that there is still no e-learning "formula" that gathers the implementation of a number of more generic educational principles in a…
NASA Astrophysics Data System (ADS)
Mejías Borrero, A.; Andújar Márquez, J. M.
2012-10-01
Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real world, which can generate specific problems in laboratory classes. Current proposals of virtual labs (VL) and remote labs (RL) do not either cover new needs properly or contribute remarkable improvement to traditional labs—except that they favor distance training. Therefore, online teaching and learning in lab practices demand a further step beyond current VL and RL. This paper poses a new reality and new teaching/learning concepts in the field of lab practices in engineering. The developed augmented reality-based lab system (augmented remote lab, ARL) enables teachers and students to work remotely (Internet/intranet) in current CL, including virtual elements which interact with real ones. An educational experience was conducted to assess the developed ARL with the participation of a group of 10 teachers and another group of 20 students. Both groups have completed lab practices of the contents in the subjects Digital Systems and Robotics and Industrial Automation, which belong to the second year of the new degree in Electronic Engineering (adapted to the European Space for Higher Education). The labs were carried out by means of three different possibilities: CL, VL and ARL. After completion, both groups were asked to fill in some questionnaires aimed at measuring the improvement contributed by ARL relative to CL and VL. Except in some specific questions, the opinion of teachers and students was rather similar and positive regarding the use and possibilities of ARL. Although the results are still preliminary and need further study, seems to conclude that ARL remarkably improves the possibilities of current VL and RL. Furthermore, ARL can be concluded to allow further possibilities when used online than traditional laboratory lessons completed in CL.
LMS Projects: A Platform for Intergenerational E-Learning Collaboration
ERIC Educational Resources Information Center
Lyashenko, Maria Sergeyevna; Frolova, Natalja Hidarovna
2014-01-01
Intergenerational learning (IGL) is the process of bringing seniors and juniors together in a collaborative space. Universities have been known to create a stimulating context for generations to share and acquire skills. The purpose of this paper is to present the results of research in the field of intergenerational learning and skills sharing.…
Learning to Program in KPL through Guided Collaboration
ERIC Educational Resources Information Center
Hsiao, Sheng-Che; Lin, Janet Mei-Chuen; Kang, Jiin-Cherng
2011-01-01
A quasi-experiment was conducted at an elementary school to investigate if guided collaboration would facilitate programming learning of 6 graders. Sixty-six students of two intact classes learned to program in KPL (kid's programming language) for 18 weeks during the experiment. One class was randomly assigned to the control group (i.e.,…
ERIC Educational Resources Information Center
Gosper, Maree Veroncia; McNeill, Margot Anne; Woo, Karen
2010-01-01
"The impact of web-based lecture technologies on current and future practice in learning and teaching" was a collaborative project across four Australian universities, funded by the Australian Learning and Teaching Council (ALTC). The project was both exploratory and developmental in nature and according to the project's external…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel, Glory Ruth; Silva, Austin Ray
Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460.more » Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.« less
[Virtual microscopy in pathology teaching and postgraduate training (continuing education)].
Sinn, H P; Andrulis, M; Mogler, C; Schirmacher, P
2008-11-01
As with conventional microscopy, virtual microscopy permits histological tissue sections to be viewed on a computer screen with a free choice of viewing areas and a wide range of magnifications. This, combined with the possibility of linking virtual microscopy to E-Learning courses, make virtual microscopy an ideal tool for teaching and postgraduate training in pathology. Uses of virtual microscopy in pathology teaching include blended learning with the presentation of digital teaching slides in the internet parallel to presentation in the histology lab, extending student access to histology slides beyond the lab. Other uses are student self-learning in the Internet, as well as the presentation of virtual slides in the classroom with or without replacing real microscopes. Successful integration of virtual microscopy depends on its embedding in the virtual classroom and the creation of interactive E-learning content. Applications derived from this include the use of virtual microscopy in video clips, podcasts, SCORM modules and the presentation of virtual microscopy using interactive whiteboards in the classroom.
Promoting Effective E-Learning Practices through the Constructivist Pedagogy
ERIC Educational Resources Information Center
Keengwe, Jared; Onchwari, Grace; Agamba, Joachim
2014-01-01
Although rapid advances in technology has allowed for the growth of collaborative e-learning experiences unconstrained by time and space, technology has not been heavily infused in the activities of teaching and learning. This article examines the theory of constructivism as well as the design of e-learning activities using constructivist…
ERIC Educational Resources Information Center
Albatayneh, Naji Ahmad; Ghauth, Khairil Imran; Chua, Fang-Fang
2018-01-01
Nowadays, most of e-learning systems embody online discussion forums as a medium for collaborative learning that supports knowledge sharing and information exchanging between learners. The exponential growth of the available shared information in e-learning online discussion forums has caused a difficulty for learners in discovering interesting…
Enhancing Collaborative and Meaningful Language Learning Through Concept Mapping
NASA Astrophysics Data System (ADS)
Marriott, Rita De Cássia Veiga; Torres, Patrícia Lupion
This chapter aims to investigate new ways of foreign-language teaching/learning via a study of how concept mapping can help develop a student's reading, writing and oral skills as part of a blended methodology for language teaching known as LAPLI (Laboratorio de Aprendizagem de LInguas: The Language Learning Lab). LAPLI is a student-centred and collaborative methodology which encourages students to challenge their limitations and expand their current knowledge whilst developing their linguistic and interpersonal skills. We explore the theories that underpin LAPLI and detail the 12 activities comprising its programme with specify reference to the use of "concept mapping". An innovative table enabling a formative and summative assessment of the concept maps is formulated. Also presented are some of the qualitative and quantitative results achieved when this methodology was first implemented with a group of pre-service students studying for a degree in English and Portuguese languages at the Catholic University of Parana (PUCPR) in Brazil. The contribution of concept mapping and LAPLI to an under standing of language learning along with a consideration of the difficulties encountered in its implementation with student groups is discussed and suggestions made for future research.
Enhancing Collaborative and Meaningful Language Learning through Concept Mapping
NASA Astrophysics Data System (ADS)
de Cássia Veiga Marriott, Rita; Torres, Patrícia Lupion
This chapter aims to investigate new ways of foreign-language teaching/learning via a study of how concept mapping can help develop a student's reading, writing and oral skills as part of a blended methodology for language teaching known as LAPLI (Laboratorio de Aprendizagem de LInguas: The Language Learning Lab). LAPLI is a student-centred and collaborative methodology which encourages students to challenge their limitations and expand their current knowledge whilst developing their linguistic and interpersonal skills. We explore the theories that underpin LAPLI and detail the 12 activities comprising its programme with specify reference to the use of “concept mapping”. An innovative table enabling a formative and summative assessment of the concept maps is formulated. Also presented are some of the qualitative and quantitative results achieved when this methodology was first implemented with a group of pre-service students studying for a degree in English and Portuguese languages at the Catholic University of Parana (PUCPR) in Brazil. The contribution of concept mapping and LAPLI to an understanding of language learning along with a consideration of the difficulties encountered in its implementation with student groups is discussed and suggestions made for future research.
Simulation-Based e-Learning Tools for Science,Engineering, and Technology Education(SimBeLT)
NASA Astrophysics Data System (ADS)
Davis, Doyle V.; Cherner, Y.
2006-12-01
The focus of Project SimBeLT is the research, development, testing, and dissemination of a new type of simulation-based integrated e-learning set of modules for two-year college technical and engineering curricula in the areas of thermodynamics, fluid physics, and fiber optics that can also be used in secondary schools and four-year colleges. A collection of sophisticated virtual labs is the core component of the SimBeLT modules. These labs will be designed to enhance the understanding of technical concepts and underlying fundamental principles of these topics, as well as to master certain performance based skills online. SimBeLT software will help educators to meet the National Science Education Standard that "learning science and technology is something that students do, not something that is done to them". A major component of Project SimBeLT is the development of multi-layered technology-oriented virtual labs that realistically mimic workplace-like environments. Dynamic data exchange between simulations will be implemented and links with instant instructional messages and data handling tools will be realized. A second important goal of Project SimBeLT labs is to bridge technical skills and scientific knowledge by enhancing the teaching and learning of specific scientific or engineering subjects. SimBeLT builds upon research and outcomes of interactive teaching strategies and tools developed through prior NSF funding (http://webphysics.nhctc.edu/compact/index.html) (Project SimBeLT is partially supported by a grant from the National Science Foundation DUE-0603277)
Beyond Classroom, Lab, Studio and Field
NASA Astrophysics Data System (ADS)
Waller, J. L.; Brey, J. A.; DeMuynck, E.; Weglarz, T. C.
2017-12-01
When the arts work in tandem with the sciences, the insights of these disciplines can be easily shared and teaching and learning are enriched. Our shared experiences in classroom/lab/studio instruction and in art and science based exhibitions reward all involved. Our individual disciplines cover a wide range of content- Art, Biology, Geography, Geology- yet we connect on aspects that link to the others'. We easily move from lab to studio and back again as we teach—as do our students as they learn! Art and science education can take place outside labs and studios through study abroad, international workshops, museum or gallery spaces, and in forums like the National Academies' programs. We can reach our neighbors at local public gatherings, nature centers and libraries. Our reach is extended in printed publications and in conferences. We will describe some of our activities listed above, with special focus on exhibitions: "Layers: Places in Peril"; "small problems, BIG TROUBLE" and the in-progress "River Bookends: Headwaters, Delta and the Volume of Stories In Between". Through these, learning and edification take place between the show and gallery visitors and is extended via class visits and related assignments, field trips for child and adult learners, interviews, films and panel presentations. These exhibitions offer the important opportunities for exhibit- participating scientists to find common ground with each other about their varied work. We will highlight a recent collaborative show opening a new university-based environmental research center and the rewarding activities there with art and science students and professors. We will talk about the learning enhancement added through a project that brought together a physical geography and a painting class. We will explore how students shared the form and content of their research projects with each other and then, became the educators through paintings and text of their geoscience topics on gallery walls.
ERIC Educational Resources Information Center
Singer-Freeman, Karen; Bastone, Linda; Skrivanek, Joseph
2016-01-01
We evaluate the extent to which ePortfolios can be used to assess applied and collaborative learning and academic identity among community college students from underrepresented minority groups who participated in a summer research program. Thirty-eight students were evaluated by their research sponsor and two or three naïve faculty evaluators.…
ERIC Educational Resources Information Center
Suddaby, Gordon; Milne, John
2008-01-01
Purpose: The paper aims to discusses two complementary initiatives focussed on developing and implementing e-learning guidelines to support good pedagogy in e-learning practice. Design/methodology/approach: The first initiative is the development of a coherent set of open access e-learning guidelines for the New Zealand tertiary sector. The second…
A New Pathway for E-Learning: From Distribution to Collaboration and Competence in E-Learning
ERIC Educational Resources Information Center
Ehlers, Ulf-Daniel
2008-01-01
The article describes the current challenge for e-learning in higher education, which is to support development of competence. This poses great challenges to e-learning in higher education, mainly because the way it has been designed, in many cases, does not fit with supporting competence development. Rather, it facilitates the mere transfer of…
Cautions: Implementing Interpersonal Interaction in Workplace E-Learning
ERIC Educational Resources Information Center
Githens, Rod P.
2006-01-01
E-learning programs in workplaces have been slow to incorporate social and collaborative methods. Although these programs provide flexibility and cost savings, poor learning outcomes and low completion rates have caused some organizations to transition to approaches that include interpersonal interaction. In reviewing studies of e-learning…
ThinkSpace: Spatial Thinking in Middle School Astronomy Labs
NASA Astrophysics Data System (ADS)
Udomprasert, Patricia S.; Goodman, Alyssa A.; Plummer, Julia; Sadler, Philip M.; Johnson, Erin; Sunbury, Susan; Zhang, Helen; Dussault, Mary E.
2016-01-01
Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. Mounting evidence also shows that spatial skills are malleable, i.e., they can be improved through training. We report early work from a new project that will build on this research to create a series of middle schools science labs called "Thinking Spatially about the Universe" (ThinkSpace), in which students will use a blend of physical and virtual models (in WorldWide Telescope) to explore complex 3-dimensional phenomena in space science. In the three-year ThinkSpace labs project, astronomers, technologists, and education researchers are collaborating to create and test a suite of three labs designed to improve learners' spatial abilities through studies of: 1) Moon phases and eclipses; 2) planetary systems around stars other than the Sun; and 3.) celestial motions within the broader universe. The research program will determine which elements in the labs will best promote improvement of spatial skills within activities that emphasize disciplinary core ideas; and how best to optimize interactive dynamic visualizations to maximize student understanding.
NASA Astrophysics Data System (ADS)
Zuckerman, Nathaniel Benjamin
1. Compound NSC-670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), a widely utilized breast cancer drug. The structure of NSC-670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated in conjunction with the UCSC Chemical Screening Center. The synthesis of a biotinylated affinity probe was also completed in order to extract the protein target(s) of NSC-670224 from yeast and human cell lines in collaboration with the Hartzog lab (UCSC MCD Biology) 2. Stabilization of ruthenium nanoparticles (Ru NPs) through carbene bound ligands has led to a simple and effective means to generate new materials with unique optoelectronic properties. The affinity of freshly prepared Ru NPs to diazo compounds, specifically octyl diazoacetate (ODA), provides a robust nanostructure that can be further functionalized via metathesis of terminal olefins to generate these unique materials. Carbene-stabilized Ru NPs have provided insights into the nature of extended conjugation and intraparticle charge delocalization through covalently bound probes (e.g., ferrocene and pyrene). The growing interest to study electronic communication through Ru NPs has lead to collaborative, multidisciplinary efforts between analytical (Shaowei Chen lab, UCSC), theoretical (Haobin Wang Lab, NMSU), and synthetic organic chemists (Konopelski Lab, UCSC). With this powerful collaboration, new methods to generate stabilized Ru NPs, testing theory with experiment, and efficient means to functionalize NPs have been investigated. The syntheses of custom ligands and their applications to nanoparticle-mediated electronic communication are reported.
Learning in the "Café": Pilot Testing the Collaborative Application for Education in Facebook
ERIC Educational Resources Information Center
McCarthy, Josh
2015-01-01
This paper reports on a pilot study using the "Café," the collaborative application for education as an online learning environment within the Facebook framework, for first-year tertiary design students. The "Café," a new e-learning application, has been designed based on five principles of user interface design--visibility,…
On my association with Bell Labs
NASA Astrophysics Data System (ADS)
Sondhi, M. Mohan
2004-05-01
I joined the Acoustics Research department at Bell Labs in 1962, just eight days before AT&T launched the first communications satellite, Telstar. During the 39 years between 1962 and my retirement in 2001, I worked on several problems related in one way or another to the processing of speech signals. Schroeder and Flanagan are presenting talks from a broad perspective in this session, so I will confine this talk to just my own contributions and collaborations for some of the topics on which I worked, e.g., echo cancellation, inverse problems in acoustics, speech analysis, synthesis, and recognition. I will tell you about one of these contributions that fortunately turned out to yield considerable profits to AT&T. To give you a flavor of the spirit of free inquiry at Bell Labs during that period, I will tell you about the contribution that I am most proud of (which was supported for several years even though it had no monetary value). And I will also mention the contribution that is most often cited of all my papers (which was in collaboration with two mathematicians, and had nothing at all to do with acoustics).
E-Learning in Art Education: Collaborative Meaning Making through Digital Art Production
ERIC Educational Resources Information Center
Quinn, Robert D.
2011-01-01
E-learning has seen incredible growth in the first decade of the 21st century. This growth is particularly noticeable in institutions of higher education. Even though distance learning has long been the method by which remote students have obtained course credit through correspondence study, e-learning is popular even among traditional on-campus…
An e-learning application on electrochemotherapy
Corovic, Selma; Bester, Janez; Miklavcic, Damijan
2009-01-01
Background Electrochemotherapy is an effective approach in local tumour treatment employing locally applied high-voltage electric pulses in combination with chemotherapeutic drugs. In planning and performing electrochemotherapy a multidisciplinary expertise is required and collaboration, knowledge and experience exchange among the experts from different scientific fields such as medicine, biology and biomedical engineering is needed. The objective of this study was to develop an e-learning application in order to provide the educational content on electrochemotherapy and its underlying principles and to support collaboration, knowledge and experience exchange among the experts involved in the research and clinics. Methods The educational content on electrochemotherapy and cell and tissue electroporation was based on previously published studies from molecular dynamics, lipid bilayers, single cell level and simplified tissue models to complex biological tissues and research and clinical results of electrochemotherapy treatment. We used computer graphics such as model-based visualization (i.e. 3D numerical modelling using finite element method) and 3D computer animations and graphical illustrations to facilitate the representation of complex biological and physical aspects in electrochemotherapy. The e-learning application is integrated into an interactive e-learning environment developed at our institution, enabling collaboration and knowledge exchange among the users. We evaluated the designed e-learning application at the International Scientific workshop and postgraduate course (Electroporation Based Technologies and Treatments). The evaluation was carried out by testing the pedagogical efficiency of the presented educational content and by performing the usability study of the application. Results The e-learning content presents three different levels of knowledge on cell and tissue electroporation. In the first part of the e-learning application we explain basic principles of electroporation process. The second part provides educational content about importance of modelling and visualization of local electric field in electroporation-based treatments. In the third part we developed an interactive module for visualization of local electric field distribution in 3D tissue models of cutaneous tumors for different parameters such as voltage applied, distance between electrodes, electrode dimension and shape, tissue geometry and electric conductivity. The pedagogical efficiency assessment showed that the participants improved their level of knowledge. The results of usability evaluation revealed that participants found the application simple to learn, use and navigate. The participants also found the information provided by the application easy to understand. Conclusion The e-learning application we present in this article provides educational material on electrochemotherapy and its underlying principles such as cell and tissue electroporation. The e-learning application is developed to provide an interactive educational content in order to simulate the "hands-on" learning approach about the parameters being important for successful therapy. The e-learning application together with the interactive e-learning environment is available to the users to provide collaborative and flexible learning in order to facilitate knowledge exchange among the experts from different scientific fields that are involved in electrochemotherapy. The modular structure of the application allows for upgrade with new educational content collected from the clinics and research, and can be easily adapted to serve as a collaborative e-learning tool also in other electroporation-based treatments such as gene electrotransfer, gene vaccination, irreversible tissue ablation and transdermal gene and drug delivery. The presented e-learning application provides an easy and rapid approach for information, knowledge and experience exchange among the experts from different scientific fields, which can facilitate development and optimisation of electroporation-based treatments. PMID:19843322
An e-learning application on electrochemotherapy.
Corovic, Selma; Bester, Janez; Miklavcic, Damijan
2009-10-20
Electrochemotherapy is an effective approach in local tumour treatment employing locally applied high-voltage electric pulses in combination with chemotherapeutic drugs. In planning and performing electrochemotherapy a multidisciplinary expertise is required and collaboration, knowledge and experience exchange among the experts from different scientific fields such as medicine, biology and biomedical engineering is needed. The objective of this study was to develop an e-learning application in order to provide the educational content on electrochemotherapy and its underlying principles and to support collaboration, knowledge and experience exchange among the experts involved in the research and clinics. The educational content on electrochemotherapy and cell and tissue electroporation was based on previously published studies from molecular dynamics, lipid bilayers, single cell level and simplified tissue models to complex biological tissues and research and clinical results of electrochemotherapy treatment. We used computer graphics such as model-based visualization (i.e. 3D numerical modelling using finite element method) and 3D computer animations and graphical illustrations to facilitate the representation of complex biological and physical aspects in electrochemotherapy. The e-learning application is integrated into an interactive e-learning environment developed at our institution, enabling collaboration and knowledge exchange among the users. We evaluated the designed e-learning application at the International Scientific workshop and postgraduate course (Electroporation Based Technologies and Treatments). The evaluation was carried out by testing the pedagogical efficiency of the presented educational content and by performing the usability study of the application. The e-learning content presents three different levels of knowledge on cell and tissue electroporation. In the first part of the e-learning application we explain basic principles of electroporation process. The second part provides educational content about importance of modelling and visualization of local electric field in electroporation-based treatments. In the third part we developed an interactive module for visualization of local electric field distribution in 3D tissue models of cutaneous tumors for different parameters such as voltage applied, distance between electrodes, electrode dimension and shape, tissue geometry and electric conductivity. The pedagogical efficiency assessment showed that the participants improved their level of knowledge. The results of usability evaluation revealed that participants found the application simple to learn, use and navigate. The participants also found the information provided by the application easy to understand. The e-learning application we present in this article provides educational material on electrochemotherapy and its underlying principles such as cell and tissue electroporation. The e-learning application is developed to provide an interactive educational content in order to simulate the "hands-on" learning approach about the parameters being important for successful therapy. The e-learning application together with the interactive e-learning environment is available to the users to provide collaborative and flexible learning in order to facilitate knowledge exchange among the experts from different scientific fields that are involved in electrochemotherapy. The modular structure of the application allows for upgrade with new educational content collected from the clinics and research, and can be easily adapted to serve as a collaborative e-learning tool also in other electroporation-based treatments such as gene electrotransfer, gene vaccination, irreversible tissue ablation and transdermal gene and drug delivery. The presented e-learning application provides an easy and rapid approach for information, knowledge and experience exchange among the experts from different scientific fields, which can facilitate development and optimisation of electroporation-based treatments.
ERIC Educational Resources Information Center
Albert, Angeline Sheba; Navaraj, A. Johnson
2006-01-01
The present paper gives a brief introduction about E-collections. It discusses the e-books, e-journals, utility, features, advantages and issues for the development of e-collections. E-books will offer a rich learning experience, reinforced with audio, video, 3D animation and collaborative learning tools. E-journals on the other hand are…
ERIC Educational Resources Information Center
Son, Barbara
2016-01-01
There is a constant challenge for online programs, instructional designers and instructors to tailor eLearning materials for different learning styles. We examined this issue by closely looking at the innovative interactive learning models at the previous AACE Conferences (Son & Goldstone, 2011, Son & Goldstone, 2012, Son & Simonian,…
New Learning Design in Distance Education: The Impact on Student Perception and Motivation
ERIC Educational Resources Information Center
Martens, Rob; Bastiaens, Theo; Kirschner, Paul A.
2007-01-01
Many forms of e-learning (such as online courses with authentic tasks and computer-supported collaborative learning) have become important in distance education. Very often, such e-learning courses or tasks are set up following constructivist design principles. Often, this leads to learning environments with authentic problems in ill-structured…
Web 2.0--E-Learning 2.0--Quality 2.0? Quality for New Learning Cultures
ERIC Educational Resources Information Center
Ehlers, Ulf Daniel
2009-01-01
Purpose: The purpose of this paper is to analyse the changes taking place when learning moves from a transmissive learning model to a collaborative and reflective learning model and proposes consequences for quality development. Design/methodology/approach: The paper summarises relevant research in the field of e-learning to outline the…
The Undergraduate Research Resources at the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Cline, J. Donald; Castelaz, Michael W.
2016-01-01
Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.
Effects of an eHealth Literacy Intervention for Older Adults
2011-01-01
Background Older adults generally have low health and computer literacies, making it challenging for them to function well in the eHealth era where technology is increasingly being used in health care. Little is known about effective interventions and strategies for improving the eHealth literacy of the older population. Objective The objective of this study was to examine the effects of a theory-driven eHealth literacy intervention for older adults. Methods The experimental design was a 2 × 2 mixed factorial design with learning method (collaborative; individualistic) as the between-participants variable and time of measurement (pre; post) as the within-participants variable. A total of 146 older adults aged 56–91 (mean 69.99, SD 8.12) participated in this study during February to May 2011. The intervention involved 2 weeks of learning about using the National Institutes of Health’s SeniorHealth.gov website to access reliable health information. The intervention took place at public libraries. Participants were randomly assigned to either experimental condition (collaborative: n = 72; individualistic: n = 74). Results Overall, participants’ knowledge, skills, and eHealth literacy efficacy all improved significantly from pre to post intervention (P < .001 in all cases; effect sizes were >0.8 with statistical power of 1.00 even at the .01 level in all cases). When controlling for baseline differences, no significant main effect of the learning method was found on computer/Web knowledge, skills, or eHealth literacy efficacy. Thus, collaborative learning did not differ from individualistic learning in affecting the learning outcomes. No significant interaction effect of learning method and time of measurement was found. Group composition based on gender, familiarity with peers, or prior computer experience had no significant main or interaction effect on the learning outcomes. Regardless of the specific learning method used, participants had overwhelmingly positive attitudes toward the intervention and reported positive changes in participation in their own health care as a result of the intervention. Conclusions The findings provide strong evidence that the eHealth literacy intervention tested in this study, regardless of the specific learning method used, significantly improved knowledge, skills, and eHealth literacy efficacy from pre to post intervention, was positively perceived by participants, and led to positive changes in their own health care. Collaborative learning did not differ from individualistic learning in affecting the learning outcomes, suggesting the previously widely reported advantages of collaborative over individualistic learning may not be easily applied to the older population in informal settings, though several confounding factors might have contributed to this finding (ie, the largely inexperienced computer user composition of the study sample, potential instructor effect, and ceiling effect). Further research is necessary before a more firm conclusion can be drawn. These findings contribute to the literatures on adult learning, social interdependence theory, and health literacy. PMID:22052161
Curriculum Alignment with Vision and Change Improves Student Scientific Literacy
Auerbach, Anna Jo; Schussler, Elisabeth E.
2017-01-01
The Vision and Change in Undergraduate Biology Education final report challenged institutions to reform their biology courses to focus on process skills and student active learning, among other recommendations. A large southeastern university implemented curricular changes to its majors’ introductory biology sequence in alignment with these recommendations. Discussion sections focused on developing student process skills were added to both lectures and a lab, and one semester of lab was removed. This curriculum was implemented using active-learning techniques paired with student collaboration. This study determined whether these changes resulted in a higher gain of student scientific literacy by conducting pre/posttesting of scientific literacy for two cohorts: students experiencing the unreformed curriculum and students experiencing the reformed curriculum. Retention of student scientific literacy for each cohort was also assessed 4 months later. At the end of the academic year, scientific literacy gains were significantly higher for students in the reformed curriculum (p = 0.005), with those students having double the scientific literacy gains of the cohort in the unreformed curriculum. Retention of scientific literacy did not differ between the cohorts. PMID:28495933
Learner Perspectives on Task Design for Oral-Visual eTandem Language Learning
ERIC Educational Resources Information Center
El-Hariri, Yasmin
2016-01-01
Constituting a more specific form of online collaboration, eTandem Language Learning (eTLL) shows great potential for non-formal, self-directed language learning. Research in this field, particularly regarding task design, is still scarce. Focusing on their beliefs and attitudes, this article examines what learners think about how…
Personalisation for All: Making Adaptive Course Composition Easy
ERIC Educational Resources Information Center
Dagger, Declan; Wade, Vincent; Conlan, Owen
2005-01-01
The goal of personalised eLearning is to support e-learning content, activities and collaboration, adapted to the specific needs and influenced by specific preferences of the learner and built on sound pedagogic strategies. One of the major challenges to the mainstream adoption of personalised eLearning is the complexity and time involved in…
Supporting Social Constructivist Learning through the KEEP SLS ePortfolio System
ERIC Educational Resources Information Center
Zhang, Xuesong; Olfman, Lorne; Firpo, Daniel
2010-01-01
Traditional ePortfolio systems are usually used as an individual learning unit, or an assessment tool in education. However, these systems often lack social constructivist learning features such as sharing, peer review, and group collaboration. This paper describes a new ePortfolio system that supports both personal and social constructivist…
NASA Astrophysics Data System (ADS)
Spencer, V. K.; Solie, D. J.
2010-12-01
Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.
ERIC Educational Resources Information Center
Mohammadi, Aeen; Asadzandi, Shadi; Malgard, Shiva
2017-01-01
Partnership is one of the mechanisms of scientific development, and scientific collaboration or co-authorship is considered a key element in the progress of science. This study is a survey with a scientometric approach focusing on the field of e-learning products over 10 years. In an Advanced Search of the Web of Science, the following search…
Politeness Strategies in Collaborative E-Mail Exchanges
ERIC Educational Resources Information Center
Vinagre, Margarita
2008-01-01
Computer-supported collaborative learning (CSCL) has been the subject of a wide range of studies over the last twenty years. Previous research suggests that CSCL exchanges can facilitate group-based learning and knowledge construction among learners who are in different geographical locations [Littleton, K. & Whitelock, D. (2004). "Guiding the…
Online Learner Satisfaction and Collaborative Learning: Evidence from Saudi Arabia
ERIC Educational Resources Information Center
Alkhalaf, Salem; Nguyen, Jeremy; Nguyen, Anne; Drew, Steve
2013-01-01
Despite the considerable potential for e-learning to improve learning outcomes, particularly for female students and students who need to rely on distance learning, feedback from current users of e-learning systems in the Kingdom of Saudi Arabia (KSA) suggests a relatively low level of satisfaction. This study adopts a mixed-methods approach in…
ERIC Educational Resources Information Center
Al-hawari, Maen; Al-halabi, Sanaa
2010-01-01
Creativity and high performance in learning processes are the main concerns of educational institutions. E-learning contributes to the creativity and performance of these institutions and reproduces a traditional learning model based primarily on knowledge transfer into more innovative models based on collaborative learning. In this paper, the…
Facilitating learning through an international virtual collaborative practice: A case study.
Wihlborg, Monne; Friberg, Elizabeth E; Rose, Karen M; Eastham, Linda
2018-02-01
Internationalisation of higher education involving information and communication technology such as e-learning opens opportunities for innovative learning approaches across nations and cultures. Describe a case in practice of collaborative and transformative learning in relation to 'internationalisation on home grounds' with the broader learning objective of 'becoming aware and knowledgeable'. A mutually developed project established a virtual international collaborative exchange for faculty and students using a course management software (MOODLE) and open access technology (Adobe CONNECT). Two research universities in Sweden and the United States. Approximately 90 nursing students from each university per semester over several semesters. A collaborative process to develop a joint learning community to construct a virtual module and learning activity involving academics and nursing students in two countries using principles of meaning construction and negotiated learning. Developed possibilities for dealing with the challenges and finding strategies for a future higher education system that opens dialogues worldwide. Virtual international exchanges open innovative communication and learning contexts across nations and cultures. Internationalisation is so much more than students and teachers' mobility. 'Internationalisation on home grounds' (internationalisation for all) should receive more attention to support faculty and student collaboration, learning, and professional development. Copyright © 2017 Elsevier Ltd. All rights reserved.
GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.
2015-01-01
NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.
CopperCore Service Integration
ERIC Educational Resources Information Center
Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob
2007-01-01
In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will…
Saterbak, Ann; Moturu, Anoosha; Volz, Tracy
2018-03-01
Rice University's bioengineering department incorporates written, oral, and visual communication instruction into its undergraduate curriculum to aid student learning and to prepare students to communicate their knowledge and discoveries precisely and persuasively. In a tissue culture lab course, we used a self- and peer-review tool called Calibrated Peer Review™ (CPR) to diagnose student learning gaps in visual communication skills on a poster assignment. We then designed an active learning intervention that required students to practice the visual communication skills that needed improvement and used CPR to measure the changes. After the intervention, we observed that students performed significantly better in their ability to develop high quality graphs and tables that represent experimental data. Based on these outcomes, we conclude that guided task practice, collaborative learning, and calibrated peer review can be used to improve engineering students' visual communication skills.
Creative Networks of Practice Using Web 2.0 Tools
ERIC Educational Resources Information Center
Orava, Jukka; Worrall, Pete
2011-01-01
This paper examines the professional implications for teachers and managers in new and evolving forms of professional development using Web 2.0 tools in a European context. Research findings are presented from the "Creative Use of Media" learning event developed through a European eTwinning Learning Lab initiative in spring of 2009. The…
A Technology Enhanced Learning Model for Quality Education
NASA Astrophysics Data System (ADS)
Sherly, Elizabeth; Uddin, Md. Meraj
Technology Enhanced Learning and Teaching (TELT) Model provides learning through collaborations and interactions with a framework for content development and collaborative knowledge sharing system as a supplementary for learning to improve the quality of education system. TELT deals with a unique pedagogy model for Technology Enhanced Learning System which includes course management system, digital library, multimedia enriched contents and video lectures, open content management system and collaboration and knowledge sharing systems. Open sources like Moodle and Wiki for content development, video on demand solution with a low cost mid range system, an exhaustive digital library are provided in a portal system. The paper depicts a case study of e-learning initiatives with TELT model at IIITM-K and how effectively implemented.
Research on Intelligent Synthesis Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Lobeck, William E.
2002-01-01
Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.
Research on Intelligent Synthesis Environments
NASA Astrophysics Data System (ADS)
Noor, Ahmed K.; Loftin, R. Bowen
2002-12-01
Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.
Ziman, Melanie E; Bui, Hien T; Smith, Craig S; Tsukiji, Lori A; Asmatey, Veda M; Chu, Steven B; Miano, John S
2012-04-01
This single-center retrospective pilot program's objective was to utilize outpatient pharmacists to improve laboratory test adherence in chronic heart failure (CHF) patients overdue for thyroid function testing, thereby demonstrating the value of the outpatient pharmacist and justifying possible clinical role expansion. Thyroid disorders may contribute to CHF development, progression, and exacerbation. Testing is the standard of care in CHF patients per American Heart Association's 2009 Guidelines. Delinquency was defined as labs not conducted within 1 year in patients with euthyroid history, within 6 months in patients with thyroid dysfunction, abnormal labs at any time without follow-up, or lab absence after thyroid medication initiation, adjustment, or discontinuation. Targeted 80 nonpregnant adult CHF patients with delinquent thyroid function tests were counseled to get thyroid labs at point of sale, via telephone, e-mail, or letter. In collaboration with physicians, pharmacists ordered thyroid-stimulating hormone (TSH) and free T4 (FT4) labs. For patients with abnormal laboratory results, pharmacists coordinated drug therapy and follow-up labs. Data were collected from November 1, 2009 to March 30, 2010. Seventy-two patients (90%) previously delinquent for thyroid function testing received relevant thyroid labs. Ten patients (12.5%) with abnormal thyroid function tests not on prior drug therapy received treatment.
CHEMICAL AND TOXICOLOGICAL EVALUATION OF CHLORINATED AND OZONATED-CHLORINATED DRINKING WATER: A COLLABORATION OF THE FOUR NATIONAL LABS OF THE U.S. EPA
Susan D. Richardson1, Linda K. Teuschler2, Alfred D. Thruston, Jr.,1 Thomas Speth3, Richard J. Miltner3, Glenn Rice2, Kathle...
Revitalizing the Physics Department: The Use of Interactive Technologies to Improve Student Learning
NASA Astrophysics Data System (ADS)
Sheldon, Peter; Groover, Holly
2002-04-01
The Physics Department at Randolph-Macon Woman's College, a liberal arts women's college of 720, has traditionally turned out approximately 0.6 majors/year. We have invigorated the program by adding community (e.g. SPS, physical space, organized activities), adding a significant technical component (e.g. web-assisted and computerized labs and more technology in the classes [1]), and incorporating new learning techniques (JITT, Physlets, Peer Instruction and Cooperative Learning [2]). Students have responded well as evidenced by significant increases in enrollments as well as strong scores on the FCI. We have seen mixed results in the lab, but increased performance in the class, which is attributed to the interactive learning techniques that are being implemented through new technologies. In this presentation, we will discuss the implementation of the new curricular developments and the specific changes we have seen in student learning. [1] This work is supported in part by the NSF CCLI Program under grant DUE-9980890. Additional support has been from the Virginia Foundation of Private Colleges and AT&T. [2] See, for example, the project Galileo website http://galileo.harvard.edu for a description of all of these techniques.
NASA Astrophysics Data System (ADS)
Maloney, A.; Walsh, E.
2012-12-01
A solid understanding of timescales is crucial for any climate change discussion. This hands-on lab was designed as part of a dual-credit climate change course in which high school students can receive college credit. Using homemade ice cores, students have the opportunity to participate in scientific practices associated with collecting, processing, and interpreting temperature and CO2 data. Exploring millennial-scale cycles in ice core data and extending the CO2 record to the present allows students to discover timescales from an investigators perspective. The Ice Core Lab has been piloted in two high school classrooms and student engagement, and epistemological and conceptual understanding was evaluated using quantitative pre and post assessment surveys. The process of creating this lab involved a partnership between an education assessment professional, high school teachers, and University of Washington professors and graduate students in Oceanography, Earth and Space Sciences, Atmospheric Sciences and the Learning Sciences as part of the NASA Global Climate Change University of Washington in the High School program. This interdisciplinary collaboration led to the inception of the lab and was necessary to ensure that the lesson plan was pedagogically appropriate and scientifically accurate. The lab fits into a unit about natural variability and is paired with additional hands-on activities created by other graduate students that explore short-timescale temperature variations, Milankovitch cycles, isotopes, and other proxies. While the Ice Core Lab is intended to follow units that review the scientific process, global energy budget, and transport, it can be modified to fit any teaching platform.
Measuring Learner's Performance in E-Learning Recommender Systems
ERIC Educational Resources Information Center
Ghauth, Khairil Imran; Abdullah, Nor Aniza
2010-01-01
A recommender system is a piece of software that helps users to identify the most interesting and relevant learning items from a large number of items. Recommender systems may be based on collaborative filtering (by user ratings), content-based filtering (by keywords), and hybrid filtering (by both collaborative and content-based filtering).…
A Multi-Channel Approach for Collaborative Web-Based Learning
ERIC Educational Resources Information Center
Azeta, A. A.
2008-01-01
This paper describes an architectural framework and a prototype implementation of a web-based multi-channel e-Learning application that allows students, lecturers and the research communities to collaborate irrespective of the communication device a user is carrying. The application was developed based on the concept of "right once run on any…
Technology: Catalyst for Enhancing Chemical Education for Pre-service Teachers
NASA Astrophysics Data System (ADS)
Kumar, Vinay; Bedell, Julia Yang; Seed, Allen H.
1999-05-01
A DOE/KYEPSCoR-funded project enabled us to introduce a new curricular initiative aimed at improving the chemical education of pre-service elementary teachers. The new curriculum was developed in collaboration with the School of Education faculty. A new course for the pre-service teachers, "Discovering Chemistry with Lab" (CHE 105), was developed. The integrated lecture and lab course covers basic principles of chemistry and their applications in daily life. The course promotes reasoning and problem-solving skills and utilizes hands-on, discovery/guided-inquiry, and cooperative learning approaches. This paper describes the implementation of technology (computer-interfacing and simulation experiments) in the lab. Results of two assessment surveys conducted in the laboratory are also discussed. The key features of the lab course are eight new experiments, including four computer-interfacing/simulation experiments involving the use of Macintosh Power PCs, temperature and pH probes, and a serial box interface, and use of household materials. Several experiments and the midterm and final lab practical exams emphasize the discovery/guided-inquiry approach. The results of pre- and post-surveys showed very significant positive changes in students' attitude toward the relevancy of chemistry, use of technology (computers) in elementary school classrooms, and designing and teaching discovery-based units. Most students indicated that they would be very interested (52%) or interested (36%) in using computers in their science teaching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, James; Camino, Fernando; Irwin, Edward
Brookhaven Lab and a local school district collaborated to develop a nanotechnology program that brings students “into” labs at Brookhaven’s Center for Functional Nanomaterials through a portable videoconferencing system.
NASA Astrophysics Data System (ADS)
Kinard, Melissa Grass
Scientific communities have established social mechanisms for proposing explanations, questioning evidence, and validating claims. Opportunities like these are often not a given in science classrooms (Vellom, Anderson, & Palincsar, 1993) even though the National Science Education Standards (NSES, 1996) state that a scientifically literate person should be able to "engage intelligently in public discourse and debate about important issues in science and technology" (National Research Council [NRC], 1996). Research further documents that students' science conceptions undergo little modification with the traditional teaching experienced in many high school science classrooms (Duit, 2003, Dykstra, 2005). This case study is an examination of the discourse that occurred as four high school physics students collaborated on solutions to three physics lab problems during which the students made predictions and experimentally generated data to support their predictions. The discourse patterns were initially examined for instances of concept negotiations. Selected instances were further examined using Toulmin's (2003) pattern for characterizing argumentation in order to understand the students' scientific reasoning strategies and to document the role of collaboration in facilitating conceptual modifications and changes. Audio recordings of the students' conversations during the labs, written problems turned in to the teacher, interviews of the students, and observations and field notes taken during student collaboration were used to document and describe the students' challenges and successes encountered during their collaborative work. The findings of the study indicate that collaboration engaged the students and generated two types of productive science discourse: concept negotiations and procedure negotiations. Further analysis of the conceptual and procedure negotiations revealed that the students viewed science as sensible and plausible but not as a tool they could employ to answer their questions. The students' conceptual growth was inhibited by their allegiance to the authority of the science laws as learned in their school classroom. Thus, collaboration did not insure conceptual change. Describing student discourse in situ contributes to science education research about teaching practices that facilitate conceptual understandings in the science classroom.
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
ERIC Educational Resources Information Center
Louws, Monika L.; Meirink, Jacobiene A.; van Veen, Klaas; van Driel, Jan H.
2017-01-01
Schools' structural workplace conditions (e.g. learning resources and professional development policies) and cultural workplace conditions (e.g. school leadership, teachers' collaborative culture) have been found to affect the way teachers learn. It is not so much the objective conditions that support or impede professional learning but the way…
An E-Learning Collaborative Environment: Learning within a Masters in Education Programme
ERIC Educational Resources Information Center
Hendricks, Natheem
2012-01-01
This article contributes to the debate about e-learning as a form of adult education. It is based on the experiences of South African students, describes and analyses group interaction in an intercontinental Masters in Adult Education Programme which uses a computer electronic platform as the primary medium for learning and teaching. The article…
A Novel Wiki-Based Remote Laboratory Platform for Engineering Education
ERIC Educational Resources Information Center
Wang, Ning; Chen, Xuemin; Lan, Qianlong; Song, Gangbing; Parsaei, Hamid R.; Ho, Siu-Chun
2017-01-01
With the unprecedented growth of e-learning, more and more new IT technologies are used to develop e-learning tools. As one of the most common forms of social computing, Wiki technology has been used to develop the collaborative and cooperative learning platform to support multiple users learning online effectively. In this paper, we propose a new…
An Evaluation of Two Hands-On Lab Styles for Plant Biodiversity in Undergraduate Biology
ERIC Educational Resources Information Center
Basey, John M.; Maines, Anastasia P.; Francis, Clinton D.; Melbourne, Brett
2014-01-01
We compared learning cycle and expository formats for teaching about plant biodiversity in an inquiry-oriented university biology lab class (n = 465). Both formats had preparatory lab activities, a hands-on lab, and a postlab with reflection and argumentation. Learning was assessed with a lab report, a practical quiz in lab, and a multiple-choice…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.W.; Zimm, C.B.
1994-07-29
This presentation/paper gives an overview of the Oak Ridge National Lab`s collaboration with private industry in developing electric power applications for magnetic refrigeraters which use high temperature superconductors. Highlighted is the lab`s general approach and technical progress towards advancing magnetic refrigeration technology in the 20-80 K range by specifically developing a prototype magnetic cryocooler with could provide 50 W cooling at 40 K. Included is magnet schematics; a listing of the basic components; load points; magnet charge and cooldown; vendor for induction alloying elements; and performance testing. The projects are in collaboration with Astronautics Corporation of America and included aremore » the proposed projects for FY 1995, key personnel, and the fiscal 1994 budgets.« less
Is LabTutor a helpful component of the blended learning approach to biosciences?
Swift, Amelia; Efstathiou, Nikolaos; Lameu, Paula
2016-09-01
To evaluate the use of LabTutor (a physiological data capture and e-learning package) in bioscience education for student nurses. Knowledge of biosciences is important for nurses the world over, who have to monitor and assess their patient's clinical condition, and interpret that information to determine the most appropriate course of action. Nursing students have long been known to find acquiring useable bioscience knowledge challenging. Blended learning strategies are common in bioscience teaching to address the difficulties students have. Student nurses have a preference for hands-on learning, small group sessions and are helped by close juxtaposition of theory and practice. An evaluation of a new teaching method using in-classroom voluntary questionnaire. A structured survey instrument including statements and visual analogue response format and open questions was given to students who participated in Labtutor sessions. The students provided feedback in about the equipment, the learning and the session itself. First year (n = 93) and third year (n = 36) students completed the evaluation forms. The majority of students were confident about the equipment and using it to learn although a few felt anxious about computer-based learning. They all found the equipment helpful as part of their bioscience education and they all enjoyed the sessions. This equipment provides a helpful way to encourage guided independent learning through practice and discovery and because each session is case study based and the relationship of the data to the patient is made clear. Our students helped to evaluate our initial use of LabTutor and found the sessions enjoyable and helpful. LabTutor provides an effective learning tool as part of a blended learning strategy for biosciences teaching. Improving bioscience knowledge will lead to a greater understanding of pathophysiology, treatments and interventions and monitoring. © 2016 John Wiley & Sons Ltd.
1.2 million kids and counting-Mobile science laboratories drive student interest in STEM.
Jones, Amanda L; Stapleton, Mary K
2017-05-01
In today's increasingly technological society, a workforce proficient in science, technology, engineering, and mathematics (STEM) skills is essential. Research has shown that active engagement by K-12 students in hands-on science activities that use authentic science tools promotes student learning and retention. Mobile laboratory programs provide this type of learning in schools and communities across the United States and internationally. Many programs are members of the Mobile Lab Coalition (MLC), a nonprofit organization of mobile and other laboratory-based education programs built on scientist and educator collaborations. A recent survey of the member programs revealed that they provide an impressive variety of programming and have collectively served over 1.2 million students across the US.
Personal Adult Learning Lab (Pall). Implications for Practice.
ERIC Educational Resources Information Center
Klippel, Judith A.; And Others
The Personal Adult Learning Lab was establsiehd at the Georgia Center for Continuing Education (GCCE) at the University of Georgia to serve self-directed adult learners and conduct research on self-directed learning. The lab allows adult learners to design, conduct, and evaluate their personal learning experiences while proceeding at their own…
Spontaneous Group Learning in Ambient Learning Environments
NASA Astrophysics Data System (ADS)
Bick, Markus; Jughardt, Achim; Pawlowski, Jan M.; Veith, Patrick
Spontaneous Group Learning is a concept to form and facilitate face-to-face, ad-hoc learning groups in collaborative settings. We show how to use Ambient Intelligence to identify, support, and initiate group processes. Learners' positions are determined by widely used technologies, e.g., Bluetooth and WLAN. As a second step, learners' positions, tasks, and interests are visualized. Finally, a group process is initiated supported by relevant documents and services. Our solution is a starting point to develop new didactical solutions for collaborative processes.
Do Students' Topic Interest and Tutors' Instructional Style Matter in Problem-Based Learning?
ERIC Educational Resources Information Center
Wijnia, Lisette; Loyens, Sofie M. M.; Derous, Eva; Schmidt, Henk G.
2014-01-01
Two studies investigated the importance of initial topic interest (i.e., expectation of interest) and tutors' autonomy-supportive or controlling instructional styles for students' motivation and performance in problem-based learning (PBL). In Study 1 (N = 93, a lab experiment), each student participated in a simulated group discussion in…
ERIC Educational Resources Information Center
Mangina, Eleni; Kilbride, John
2008-01-01
The research presented in this paper is an examination of the applicability of IUI techniques in an online e-learning environment. In particular we make use of user modeling techniques, information retrieval and extraction mechanisms and collaborative filtering methods. The domains of e-learning, web-based training and instruction and intelligent…
Learning Needs Analysis of Collaborative E-Classes in Semi-Formal Settings: The REVIT Example
ERIC Educational Resources Information Center
Mavroudi, Anna; Hadzilacos, Thanasis
2013-01-01
Analysis, the first phase of the typical instructional design process, is often downplayed. This paper focuses on the analysis concerning a series of e-courses for collaborative adult education in semi-formal settings by reporting and generalizing results from the REVIT project. REVIT, an EU-funded research project, offered custom e-courses to…
The Senior Living Lab: an example of nursing leadership
Riva-Mossman, Susie; Kampel, Thomas; Cohen, Christine; Verloo, Henk
2016-01-01
The Senior Living Lab (SLL) is dedicated to the care of older adults and exemplifies how nursing leadership can influence clinical practice by designing research models capable of configuring interdisciplinary partnerships with the potential of generating innovative practices and better older patient outcomes. Demographic change resulting in growing numbers of older adults requires a societal approach, uniting stakeholders in social innovation processes. The LL approach is an innovative research method that values user perceptions and participation in the cocreation of new products and services. The SLL is crafting a platform responsive to change. It is a learning organization facilitating community-based participatory research methods in the field. Advanced nurse practitioners are well positioned to lead the way forward, fostering interdisciplinary academic collaborations dedicated to healthy aging at home. The SLL demonstrates how nursing science is taking the lead in the field of social innovation. PMID:27013869
The Senior Living Lab: an example of nursing leadership.
Riva-Mossman, Susie; Kampel, Thomas; Cohen, Christine; Verloo, Henk
2016-01-01
The Senior Living Lab (SLL) is dedicated to the care of older adults and exemplifies how nursing leadership can influence clinical practice by designing research models capable of configuring interdisciplinary partnerships with the potential of generating innovative practices and better older patient outcomes. Demographic change resulting in growing numbers of older adults requires a societal approach, uniting stakeholders in social innovation processes. The LL approach is an innovative research method that values user perceptions and participation in the cocreation of new products and services. The SLL is crafting a platform responsive to change. It is a learning organization facilitating community-based participatory research methods in the field. Advanced nurse practitioners are well positioned to lead the way forward, fostering interdisciplinary academic collaborations dedicated to healthy aging at home. The SLL demonstrates how nursing science is taking the lead in the field of social innovation.
ERIC Educational Resources Information Center
Buzzi, Marina, Ed.
2010-01-01
E-Learning is a vast and complex research topic that poses many challenges in every aspect: educational and pedagogical strategies and techniques and the tools for achieving them; usability, accessibility and user interface design; knowledge sharing and collaborative environments; technologies, architectures, and protocols; user activity…
LabKey Server: an open source platform for scientific data integration, analysis and collaboration.
Nelson, Elizabeth K; Piehler, Britt; Eckels, Josh; Rauch, Adam; Bellew, Matthew; Hussey, Peter; Ramsay, Sarah; Nathe, Cory; Lum, Karl; Krouse, Kevin; Stearns, David; Connolly, Brian; Skillman, Tom; Igra, Mark
2011-03-09
Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers. Sharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at http://www.labkey.org. Documentation and source code are available under the Apache License 2.0.
LabKey Server: An open source platform for scientific data integration, analysis and collaboration
2011-01-01
Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers. Conclusions Sharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at http://www.labkey.org. Documentation and source code are available under the Apache License 2.0. PMID:21385461
ERIC Educational Resources Information Center
Zanjani, Nastaran; Edwards, Sylvia L.; Nykvist, Shaun; Geva, Shlomo
2017-01-01
In recent years, universities have been under increased pressure to adopt e-learning practices for teaching and learning. In particular, the emphasis has been on learning management systems (LMSs) and associated collaboration tools to provide opportunities for sharing knowledge, building a community of learners, and supporting higher order…
The Evolution of SCORM to Tin Can API: Implications for Instructional Design
ERIC Educational Resources Information Center
Lindert, Lisa; Su, Bude
2016-01-01
Integrating and documenting formal and informal learning experiences is challenging using the current Shareable Content Object Reference Model (SCORM) eLearning standard, which limits the media and data that are obtained from eLearning. In response to SCORM's limitations, corporate, military, and academic institutions have collaborated to develop…
Career Goal-Based E-Learning Recommendation Using Enhanced Collaborative Filtering and PrefixSpan
ERIC Educational Resources Information Center
Ma, Xueying; Ye, Lu
2018-01-01
This article describes how e-learning recommender systems nowadays have applied different kinds of techniques to recommend personalized learning content for users based on their preference, goals, interests and background information. However, the cold-start problem which exists in traditional recommendation algorithms are still left over in…
Learning Systems in Post-Statutory Education
ERIC Educational Resources Information Center
Catherall, Paul
2008-01-01
This article examines the broad scope of systemised learning (e-learning) in post-statutory education. Issues for discussion include the origins and forms of learning systems, including technical and educational concepts and approaches, such as distributed and collaborative learning. The VLE (Virtual Learning Environment) is defined as the…
ERIC Educational Resources Information Center
Jonhendro; Ching, Goh Bee; Wahab, Rohazna; Leng, Wang Meei; Aun, Jimmy Tan Lip; Yeoh, Eugene; Hock, Oon; Koo, W. K.
2001-01-01
Describes an education initiative developed by a company in Malaysia, the KDU, to implement a student-centered, teacher-facilitated, educational technology-enabled and knowledge-based learning environment. Explains the KDU e-Community Network that enables passive, interactive, collaborative, and constructivist learning for a variety of…
Making practice transparent through e-portfolio.
Stewart, Sarah M
2013-12-01
Midwives are required to maintain a professional portfolio as part of their statutory requirements. Some midwives are using open social networking tools and processes to develop an e-portfolio. However, confidentiality of patient and client data and professional reputation have to be taken into consideration when using online public spaces for reflection. There is little evidence about how midwives use social networking tools for ongoing learning. It is uncertain how reflecting in an e-portfolio with an audience impacts on learning outcomes. This paper investigates ways in which reflective midwifery practice be carried out using e-portfolio in open, social networking platforms using collaborative processes. Using an auto-ethnographic approach I explored my e-portfolio and selected posts that had attracted six or more comments. I used thematic analysis to identify themes within the textual conversations in the posts and responses posted by readers. The analysis identified that my collaborative e-portfolio had four themes: to provide commentary and discuss issues; to reflect and process learning; to seek advice, brainstorm and process ideas for practice, projects and research, and provide evidence of professional development. E-portfolio using open social networking tools and processes is a viable option for midwives because it facilitates collaborative reflection and shared learning. However, my experience shows that concerns about what people think, and client confidentiality does impact on the nature of open reflection and learning outcomes. I conclude this paper with a framework for managing midwifery statutory obligations using online public spaces and social networking tools. Copyright © 2013 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing
NASA Astrophysics Data System (ADS)
Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.
2010-12-01
Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the 2009 3-day videoconferencing event, 3 graduate students and the lab PI connected to nine, 7th grade life science classes (~300 students) using SKYPE. Each of the nine videoconferences lasted for ~50 minutes and included a mini-lab tour, a short presentation on the graduate students’ field and lab-based research activities, and interspersed question and answer sessions. Teachers are currently exploring ways they can further capitalize on the connection to the research lab and are writing up a “how to” guide for SKYPE lab to classroom videoconferencing. LHS has been evaluating this videoconference project to get feedback from the participants about the collaboration, the technology, and the format in order to improve the program in the future. The collaboration has now been turned over to the graduate students and teachers with little facilitation by COSEE CA staff. COSEE CA is applying the approach to other earth and ocean science topics by offering “Virtual Lab Tours” as a broader impact option.
ERIC Educational Resources Information Center
Vandiver, Kathleen M.; Bijur, Jon Markowitz; Epstein, Ari W.; Rosenthal, Beryl; Stidsen, Don
2008-01-01
The "Learning Lab: The Cell" exhibit was developed by the Massachusetts Institute of Technology (MIT) Museum and the MIT Center for Environmental Health Sciences (CEHS). Specially designed for middle and high school students, the Learning Lab provides museum visitors of all ages with fascinating insights into how our living cells work. The…
Using Feedback Strategies to Improve Peer-Learning in Welding
ERIC Educational Resources Information Center
Chan, Selena; Leijten, Flip
2012-01-01
Due to safety considerations, students' practice and learning of welding is conducted within individual welding booths. The booth setting presents some challenges to student learning as collaborative learning within a workshop learning environment is compromised. The project reported in this paper, established peer-learning (i.e., students…
Investigating the Educational Value of Social Learning Networks: A Quantitative Analysis
ERIC Educational Resources Information Center
Dafoulas, Georgios; Shokri, Azam
2016-01-01
Purpose: The emergence of Education 2.0 enabled technology-enhanced learning, necessitating new pedagogical approaches, while e-learning has evolved into an instrumental pedagogy of collaboration through affordances of social media. Social learning networks and ubiquitous learning enabled individual and group learning through social engagement and…
Enhancing learning in geosciences and water engineering via lab activities
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Cheng, Ming
2016-04-01
This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.
e-Labs and Work Objects: Towards Digital Health Economies
NASA Astrophysics Data System (ADS)
Ainsworth, John D.; Buchan, Iain E.
The optimal provision of healthcare and public health services requires the synthesis of evidence from multiple disciplines. It is necessary to understand the genetic, environmental, behavioural and social determinants of disease and health-related states; to balance the effectiveness of interventions with their costs; to ensure the maximum safety and acceptability of interventions; and to provide fair access to care services for given populations. Ever expanding databases of knowledge and local health information, and the ability to employ computationally expensive methods, promises much for decisions to be both supported by best evidence and locally relevant. This promise will, however, not be realised without providing health professionals with the tools to make sense of this information rich environment and to collaborate across disciplines. We propose, as a solution to this problem, the e-Lab and Work Objects model as a sense-making platform for digital health economies - bringing together data, methods and people for timely health intelligence.
Defense Science Board Task Force Report: The Role of Autonomy in DoD Systems
2012-07-01
ASD(R&E) and the Military Services should schedule periodic, on-site collaborations that bring together academia, government and not-for-profit labs...expressing UxV activities, increased problem solving, planning and scheduling capabilities to enable dynamic tasking of distributed UxVs and tools for...industrial, governmental and military. Manufacturing has long exploited planning for logistics and matching product demand to production schedules
Army Reserve Component Personal Empowerment Program #2t
2013-10-01
rescheduling of appointments • Retrieved lab reports from hospital lab for 161 participants 8 • Identified abnormal values and sent copies to campus nurse ...recommendation of SHU Scientific Committee • Collaborated with SHU nurse to establish procedure for abnormal lab values • Implemented suggested...results were encouraged to discuss further with nurse as per protocol. • Researched literature concerning vitamin D to better understand lab results
FY16 Strategic Themes White Paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leland, Robert W.
The Science and Technology (S&T) Division 1000 Strategic Plan includes the Themes, Goals, and Actions for FY16. S&T will continue to support the Labs Strategic plan, Mission Areas and Program Management Units by focusing on four strategic themes that align with the targeted needs of the Labs. The themes presented in this plan are Mission Engagement, Bold Outcomes, Collaborative Environment, and the Safety Imperative. Collectively they emphasize diverse, collaborative teams and a self-reliant culture of safety that will deliver on our promise of exceptional service in the national interest like never before. Mission Engagement focuses on increasing collaboration at allmore » levels but with emphasis at the strategic level with mission efforts across the labs. Bold Outcomes seeks to increase the ability to take thoughtful risks with the goal of achieving transformative breakthroughs more frequently. Collaborative environment strives for a self-aware, collaborative working environment that bridges the many cultures of Sandia. Finally, Safety Imperative aims to minimize the risk of serious injury and to continuously strengthen the safety culture. Each of these themes is accompanied by a brief vision statement, several goals, and planned actions to support those goals throughout FY16 and leading into FY17.« less
Role of expressive behaviour for robots that learn from people.
Breazeal, Cynthia
2009-12-12
Robotics has traditionally focused on developing intelligent machines that can manipulate and interact with objects. The promise of personal robots, however, challenges researchers to develop socially intelligent robots that can collaborate with people to do things. In the future, robots are envisioned to assist people with a wide range of activities such as domestic chores, helping elders to live independently longer, serving a therapeutic role to help children with autism, assisting people undergoing physical rehabilitation and much more. Many of these activities shall require robots to learn new tasks, skills and individual preferences while 'on the job' from people with little expertise in the underlying technology. This paper identifies four key challenges in developing social robots that can learn from natural interpersonal interaction. The author highlights the important role that expressive behaviour plays in this process, drawing on examples from the past 8 years of her research group, the Personal Robots Group at the MIT Media Lab.
Knowledge management is new competitive edge.
Johnson, D E
1998-07-01
Managing knowledge is emerging as the latest business strategy to get ahead of the competition. In the process of developing knowledge management systems, executives are increasing their awareness and understanding of organizational dynamics, collaboration, corporate learning and knowledge management technology. But Donald E.L. Johnson writes that health care executives must buy into and understand collaboration and corporate learning before they tackle knowledge management.
NASA Astrophysics Data System (ADS)
Arthurs, L.; Budd, D. A.
2009-12-01
The Science Education Initiative (SEI) at the University of Colorado at Boulder was conceived in 2006 with the goal of improving science education at the undergraduate level by changing the basic approach to teaching in science departments. Five departments were selected on a competitive basis for participation in the SEI. The SEI is operating as a five year plan with funding of ~$1 million/year for the five departments. The goal of the SEI is to implement sustainable department-level change for an evidence-based and scientific approach to teaching. Among the five departments receiving funding for discipline-specific SEI projects is the Department of Geological Sciences (GEOL-SEI). The GEOL-SEI has worked to transform geology courses beginning with lower division large enrollment courses and moving towards upper division courses. They are transformed on the basis of existing research into how people learn, and they are characterized by the use of learning goals and effective instructional approaches. Furthermore, a natural component of the transformation towards evidence-based and scientific approaches to teaching is geocognition and geoscience education research. This research focuses on how students think about geologic concepts (e.g. misconceptions) and the effectiveness of different instructional approaches (e.g. the implementation of instructional technologies, peer learning activities, homework, and labs). The research is conducted by post-doctoral fellows (with PhDs in geology and pedagogical training) in collaboration with the instructional faculty members. The directorate of CU’s Science Education Initiative provides the fellows with training useful for conducting the research. Currently, into the 4th year of its 5-year plan, the GEOL-SEI is working towards publishing its findings and exploring options for sustaining various changes made to courses and new departmental programs that support student learning (e.g. GEOL Tutoring & Study Room).
University students' emotions, interest and activities in a web-based learning environment.
Nummenmaa, Minna; Nummenmaa, Lauri
2008-03-01
Within academic settings, students experience varied emotions and interest towards learning. Although both emotions and interest can increase students' likelihood to engage in traditional learning, little is known about the influence of emotions and interest in learning activities in a web-based learning environment (WBLE). This study examined how emotions experienced while using a WBLE, students' interest towards the course topic and interest towards web-based learning are associated with collaborative visible and non-collaborative invisible activities and 'lurking' in the WBLE. Participants were 99 Finnish university students from five web-based courses. All the students enrolled in the courses filled out pre- and post-test questionnaires of interest, and repeatedly completed an on-line questionnaire on emotions experienced while using the WBLE during the courses. The fluctuation of emotional reactions was positively associated with both visible collaborative and invisible non-collaborative activities in the WBLE. Further, interest towards the web-based learning was positively associated with invisible activity. The results also demonstrated that students not actively participating in the collaborative activities (i.e. lurkers) had more negative emotional experiences during the courses than other students. The results highlight the distinct impacts that emotions and interest have on different web-based learning activities and that they should be considered when designing web-based courses.
2007-01-28
is interested in B2B and B2C e-commerce, enterprise resource planning, e-procurement, supply-chain management, data mining, and knowledge discovery... social networking tools, collaborative spaces, knowledge management, “connecting-enabling” protocols like RSS, and other tools. The intent of the ILE...delivered to them, what learning pedagogy is appropriate for them, the optimal level of social interaction for learning, and available resources
Experiential Learning of Digital Communication Using LabVIEW
ERIC Educational Resources Information Center
Zhan, Wei; Porter, Jay R.; Morgan, Joseph A.
2014-01-01
This paper discusses the design and implementation of laboratories and course projects using LabVIEW in an instrumentation course. The pedagogical challenge is to enhance students' learning of digital communication using LabVIEW. LabVIEW was extensively used in the laboratory sessions, which better prepared students for the course projects. Two…
Interactive, Online, Adsorption Lab to Support Discovery of the Scientific Process
NASA Astrophysics Data System (ADS)
Carroll, K. C.; Ulery, A. L.; Chamberlin, B.; Dettmer, A.
2014-12-01
Science students require more than methods practice in lab activities; they must gain an understanding of the application of the scientific process through lab work. Large classes, time constraints, and funding may limit student access to science labs, denying students access to the types of experiential learning needed to motivate and develop new scientists. Interactive, discovery-based computer simulations and virtual labs provide an alternative, low-risk opportunity for learners to engage in lab processes and activities. Students can conduct experiments, collect data, draw conclusions, and even abort a session. We have developed an online virtual lab, through which students can interactively develop as scientists as they learn about scientific concepts, lab equipment, and proper lab techniques. Our first lab topic is adsorption of chemicals to soil, but the methodology is transferrable to other topics. In addition to learning the specific procedures involved in each lab, the online activities will prompt exploration and practice in key scientific and mathematical concepts, such as unit conversion, significant digits, assessing risks, evaluating bias, and assessing quantity and quality of data. These labs are not designed to replace traditional lab instruction, but to supplement instruction on challenging or particularly time-consuming concepts. To complement classroom instruction, students can engage in a lab experience outside the lab and over a shorter time period than often required with real-world adsorption studies. More importantly, students can reflect, discuss, review, and even fail at their lab experience as part of the process to see why natural processes and scientific approaches work the way they do. Our Media Productions team has completed a series of online digital labs available at virtuallabs.nmsu.edu and scienceofsoil.com, and these virtual labs are being integrated into coursework to evaluate changes in student learning.
ERIC Educational Resources Information Center
Songhao, He; Saito, Kenji; Maeda, Takashi; Kubo, Takara
2011-01-01
For people who live in the knowledge society which has rapidly been changing, learning in the widest sense becomes indispensable in all phases of working, living and playing. The construction of an environment, to meet the demands of people who need to acquire new knowledge and skills as the need arises, and enlighten each other regularly, is…
Virtual Collaborations in the Spanish Class: From E-Mail to Web Design and CD-ROM Development.
ERIC Educational Resources Information Center
Hellebrandt, Josef
1999-01-01
Modern technologies can provide language students with authentic content and contextualized, collaborative learning situations. This article illustrates how e-mail exchanges, Web exercises, and CD-ROM development between students in the United States and organizations in Ecuador can promote contextualized and authentic practice of Spanish language…
Roles for Technology in Collaborative Teaching.
ERIC Educational Resources Information Center
Bonvallet, Susan; De Luce, Judith
2001-01-01
Describes a collaborative upper level Latin literature course taught at a secondary school and a university that used a variety of technologies, including a MOO and e-mail. The design of this course on Plautus'"Aulularia" is discussed, including objectives, learning goals, and collaborative assignments. Argues that informed use of technology can…
Learning to Learn: Lessons from a Collaboration
ERIC Educational Resources Information Center
Chadha, Anita
2017-01-01
E-learning has become one of the primary ways to deliver education around the globe. Research is keeping pace with the use of various techno-aids as educators evaluate how to effectively use these aids in an ever-changing e-classroom. Adding to this body of work, and in assessing the effectiveness of techno-tools, this study evaluates meaningful…
ERIC Educational Resources Information Center
De Marsico, Maria; Sterbini, Andrea; Temperini, Marco
2013-01-01
The educational concept of "Zone of Proximal Development", introduced by Vygotskij, stems from the identification of a strong need for adaptation of the learning activities, both traditional classroom and modern e-learning ones, to the present state of learner's knowledge and abilities. Furthermore, Vygotskij's educational…
NASA Astrophysics Data System (ADS)
Cobb, Bethany E.
2018-01-01
Since 2013, the Physics Department at GWU has used student-centered active learning in the introductory astronomy course “Introduction to the Cosmos.” Class time is spent in groups on questions, math problems, and hands-on activities, with multiple instructors circulating to answer questions and engage with the students. The students have responded positively to this active-learning. Unfortunately, in transitioning to active-learning there was no time to rewrite the labs. Very quickly, the contrast between the dynamic classroom and the traditional labs became apparent. The labs were almost uniformly “cookie-cutter” in that the procedure and analysis were specified step-by-step and there was just one right answer. Students rightly criticized the labs for lacking a clear purpose and including busy-work. Furthermore, this class fulfills the GWU scientific reasoning general education requirement and thus includes learning objectives related to understanding the scientific method, testing hypotheses with data, and considering uncertainty – but the traditional labs did not require these skills. I set out to rejuvenate the lab sequence by writing new inquiry labs based on both topic-specific and scientific reasoning learning objectives. While inquiry labs can be challenging for the students, as they require active thinking and creativity, these labs engage the students more thoroughly in the scientific process. In these new labs, whenever possible, I include real astronomical data and ask the students to use digital tools (SDSS SkyServer, SOHO archive) as if they are real astronomers. To allow students to easily plot, manipulate and analyze data, I built “smart” Excel files using formulas, dropdown menus and macros. The labs are now much more authentic and thought-provoking. Whenever possible, students independently develop questions, hypotheses, and procedures and the scientific method is “scaffolded” over the semester by providing more guidance in the early labs and more independence later on. Finally, in every lab, students must identify and reflect on sources of error. These labs are more challenging for the instructors to run and to grade, but they are much more satisfying when it comes to student learning.
Engineering Students' Experiences from Physics Group Work in Learning Labs
ERIC Educational Resources Information Center
Mellingsaeter, Magnus Strøm
2014-01-01
Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential…
Imafuku, Rintaro; Kataoka, Ryuta; Ogura, Hiroshi; Suzuki, Hisayoshi; Enokida, Megumi; Osakabe, Keitaro
2018-05-01
Interprofessional collaboration is an essential approach to comprehensive patient care. As previous studies have argued, interprofessional education (IPE) must be integrated in a stepwise, systematic manner in undergraduate health profession education programmes. Given this perspective, first-year IPE is a critical opportunity for building the foundation of interprofessional collaborative practice. This study aims to explore the first-year students' learning processes and the longitudinal changes in their perceptions of learning in a year-long IPE programme. Data were collected at a Japanese medical university, in which different pedagogical approaches are adopted in the IPE programme. Some of these approaches include interprofessional problem-based learning, early exposure, and interactive lecture-based teaching. The students are required to submit written reflections as a formative assessment. This study conducted an inductive thematic analysis of 104 written reflections from a series of e-portfolios of 26 first-year students. The themes related to learning outcomes from student perspectives included communication (e.g., active listening and intelligible explanation), teams and teamwork (e.g., mutual engagement and leadership), roles/responsibilities as a group member (e.g., self-directed learning and information literacy), and roles/responsibilities as a health professional (e.g., understanding of the student's own professional and mutual respect in an interprofessional team). The study also indicated three perspectives of students' learning process at different stages of the IPE, i.e., processes by which students became active and responsible learners, emphasised the enhancement of teamwork, and developed their own interprofessional identities. This study revealed the first-year students' learning processes in the year-long IPE programme and clarified the role of the first-year IPE programme within the overall curriculum. The findings suggest that the students' active participation in the IPE programme facilitated their fundamental understanding of communication/teamwork and identity formation as a health professional in interprofessional collaborative practice.
Learning Experience on Transformer Using HOT Lab for Pre-service Physics Teacher’s
NASA Astrophysics Data System (ADS)
Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.
2017-09-01
This study aimed at investigating pre-service teacher’s critical thinking skills improvement through Higher Order Thinking (HOT) Lab on transformer learning. This research used mix method with the embedded experimental model. Research subjects are 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The results showed that based on the results of the analysis of practical reports and observation sheet shows students in the experimental group was better in carrying out the practicum and can solve the real problem while the control group was going on the opposite. The critical thinking skills of students applying the HOT Lab were higher than the verification lab. Critical thinking skills could increase due to HOT Lab based problems solving that can develop higher order thinking skills through laboratory activities. Therefore, it was concluded that the application of HOT Lab was more effective than verification lab on improving students’ thinking skills on transformer topic learning. Finally, HOT Lab can be implemented in other subject learning and could be used to improve another higher order thinking skills.
GeneLab: Open Science For Exploration
NASA Technical Reports Server (NTRS)
Galazka, Jonathan
2018-01-01
The NASA GeneLab project capitalizes on multi-omic technologies to maximize the return on spaceflight experiments. The GeneLab project houses spaceflight and spaceflight-relevant multi-omics data in a publicly accessible data commons, and collaborates with NASA-funded principal investigators to maximize the omics data from spaceflight and spaceflight-relevant experiments. I will discuss the current status of GeneLab and give specific examples of how the GeneLab data system has been used to gain insight into how biology responds to spaceflight conditions.
Hillenburg, K L; Cederberg, R A; Gray, S A; Hurst, C L; Johnson, G K; Potter, B J
2006-08-01
The digital revolution and growth of the Internet have led to many innovations in the area of electronic learning (e-learning). To survive and prosper, educators must be prepared to respond creatively to these changes. Administrators and information technology specialists at six dental schools and their parent institutions were interviewed regarding their opinions of the impact that e-learning will have on the future of dental education. Interview questions encompassed vision, rate of change, challenges, role of faculty, resources, enrolment, collaboration, responsibility for course design and content, mission and fate of the institution. The objective of this qualitative study was to sample the opinions of educational administrators and information technology specialists from selected US universities regarding the impact of e-learning on dental education to detect trends in their attitudes. Responses to the survey indicated disagreement between administrators and informational technology specialists regarding the rate of change, generation of resources, impact on enrolment, responsibility for course design and content, mission and fate of the university. General agreement was noted with regard to vision, challenges, role of faculty and need for collaboration.
The experiment editor: supporting inquiry-based learning with virtual labs
NASA Astrophysics Data System (ADS)
Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.
2017-05-01
Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.
ERIC Educational Resources Information Center
Davidson, Jenna L.
2017-01-01
This quantitative study examined levels of achievement in learning outcomes when using a face-to-face dissection lab compared to an online dissection lab. Constructivist theory and Understanding by Design learning framework were at the core of this research study design. Data was collected from 24 health science students at a private Midwestern…
ERIC Educational Resources Information Center
Martin, Wendy; Strother, Scott; Weatherholt, Tara; Dechaume, Merav
2008-01-01
The eMINTS professional development programs are designed to help teachers learn how to integrate technology into their teaching, using instructional strategies that promote inquiry-based learning and encourage collaboration and community building among students and teachers. The eMINTS programs considered in this evaluation include: (1) eMINTS…
ERIC Educational Resources Information Center
Spiro, Mark D.; Knisely, Karin I.
2008-01-01
Inquiry-based labs have been shown to greatly increase student participation and learning within the biological sciences. One challenge is to develop effective lab exercises within the constraints of large introductory labs. We have designed a lab for first-year biology majors to address two primary goals: to provide effective learning of the…
Transforming the advanced lab: Part I - Learning goals
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.
2012-02-01
Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).
An analysis of high school students' perceptions and academic performance in laboratory experiences
NASA Astrophysics Data System (ADS)
Mirchin, Robert Douglas
This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be tested for lab content acquisition. The final conclusion of the study is that students expressed a preference for working in groups and working with materials and equipment as opposed to individual, non-group work and analyzing data.
A Standard-Based Model for Adaptive E-Learning Platform for Mauritian Academic Institutions
ERIC Educational Resources Information Center
Kanaksabee, P.; Odit, M. P.; Ramdoyal, A.
2011-01-01
The key aim of this paper is to introduce a standard-based model for adaptive e-learning platform for Mauritian academic institutions and to investigate the conditions and tools required to implement this model. The main forces of the system are that it allows collaborative learning, communication among user, and reduce considerable paper work.…
ERIC Educational Resources Information Center
Clegg, Phil; Heap, John
2006-01-01
The advent of e-learning in higher education has entailed extensive use of online discussion boards to promote collaborative learning among students; however, the role of instructors as online facilitators is typically ill-defined due to a lack of sufficient standards or guidelines for good practice. In their audit of online discussion forum…
Conceptualizing Social Presence Awareness in E-Collaboration of Postgraduate Students
ERIC Educational Resources Information Center
Seaba, Tshinakaho Relebogile; Kekwaletswe, Raymond Mompoloki
2012-01-01
Purpose: The purpose of this paper is to argue that an e-collaboration environment, driven by awareness of social presence, may provide the just-in-time learning support needed by postgraduate students. The academic challenges faced by students may be alleviated if a correct electronic platform is provided for them to be able to consult with each…
Dynamic Group Formation as an Approach to Collaborative Learning Support
ERIC Educational Resources Information Center
Srba, Ivan; Bielikova, Maria
2015-01-01
In the current time of globalization, collaboration among people in virtual environments is becoming an important precondition of success. This trend is reflected also in the educational domain where students collaborate in various short-term groups created repetitively but changing in each round (e.g. in MOOCs). Students in these kind of dynamic…
Problem Solvers: MathLab's Design Brings Professional Learning into the Classroom
ERIC Educational Resources Information Center
Morales, Sara; Sainz, Terri
2017-01-01
Imagine teachers, administrators, and university mathematicians and staff learning together in a lab setting where students are excited about attending a week-long summer math event because they are at the forefront of the experience. Piloted in three New Mexico classrooms during summer 2014, MathLab expanded into 17 lab settings over six…
Goldey, Ellen S; Abercrombie, Clarence L; Ivy, Tracie M; Kusher, Dave I; Moeller, John F; Rayner, Doug A; Smith, Charles F; Spivey, Natalie W
2012-01-01
We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students' interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students.
Goldey, Ellen S.; Abercrombie, Clarence L.; Ivy, Tracie M.; Kusher, Dave I.; Moeller, John F.; Rayner, Doug A.; Smith, Charles F.; Spivey, Natalie W.
2012-01-01
We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students’ interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students. PMID:23222831
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Gram, W.; Lunch, C. K.; Petroy, S. B.; Elmendorf, S.
2013-12-01
'Big Data' are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. Similar efforts are underway in other parts of the globe (e.g. Australia's Terrestrial Ecosystem Research Network, TERN). These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while 'big data' are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) interactive, online multi-media content that explains key concepts related to NEON's data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged 'lab' activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All NEON materials are being developed in collaboration with labs and organizations across the globe. Integrating data analysis and processing techniques, early in student's careers will support and facilitate student advancement in the sciences - contributing to a larger body of knowledge and understanding of continental and global scale issues. Facilitating understanding of data use and empowering young ecologists with the tools required to process the data, is thus as integral to the observatory as the data itself. In this presentation, we discuss the integral role of freely available education materials that demonstrate the use of big data to address ecological questions and concepts. We also review gaps in existing educational resources related to big data and associated tools. Further, we address the great potential for big data inclusion into both an existing ecological, physical and environmental science courses and self-paced learning model through engaging and interactive multi-media presentation. Finally, we present beta-versions of the interactive, multi-media modules and results from feedback following early piloting and review.
Improving global flood risk awareness through collaborative research: Id-Lab
NASA Astrophysics Data System (ADS)
Weerts, A.; Zijderveld, A.; Cumiskey, L.; Buckman, L.; Verlaan, M.; Baart, F.
2015-12-01
Scientific and end-user collaboration on operational flood risk modelling and forecasting requires an environment where scientists and end-users can physically work together and demonstrate, enhance and learn about new tools, methods and models for forecasting and warning purposes. Therefore, Deltares has built a real-time demonstration, training and research infrastructure ('operational' room and ICT backend). This research infrastructure supports various functions like (1) Real time response and disaster management, (2) Training, (3) Collaborative Research, (4) Demonstration. The research infrastructure will be used for a mixture of these functions on a regular basis by Deltares and a multitude of both scientists as well as end users such as universities, research institutes, consultants, governments and aid agencies. This infrastructure facilitates emergency advice and support during international and national disasters caused by rainfall, tropical cyclones or tsunamis. It hosts research flood and storm surge forecasting systems for global/continental/regional scale. It facilitates training for emergency & disaster management (along with hosting forecasting system user trainings in for instance the forecasting platform Delft-FEWS) both internally and externally. The facility is expected to inspire and initiate creative innovations by bringing together different experts from various organizations. The room hosts interactive modelling developments, participatory workshops and stakeholder meetings. State of the art tools, models and software, being applied across the globe are available and on display within the facility. We will present the Id-Lab in detail and we will put particular focus on the global operational forecasting systems GLOFFIS (Global Flood Forecasting Information System) and GLOSSIS (Global Storm Surge Information System).
2009-05-01
Information Literacy – Oral Communication – Written Communication – Critical Thinking – Decision Making – Stamina – Courage – Discipline...Emory 8 I n t e g r i t y - S e r v i c e - E x c e l l e n c e Supporting “ information literacy ” - Provide right type of help near “point of...plays central role in supporting “ information literacy ” Columbia University •Computer Lab •Center for New Media in Teaching and Learning
Solar University-National Lab Ultra-Effective Program | Photovoltaic
Lab Ultra-Effective Program Solar University-National lab Ultra-effective Program (SUN UP) was created scientists arise out of long-standing collaborations. SUN UP was created to facilitate these interactions of a young man working in a laboratory setting with equipment. The goal of SUN UP is to increase the
Druce, Maralyn; Howden, Stella
2017-07-01
The growth of e-learning in health professional education reflects expansion of personal use of online resources. Understanding the user perspective in a fast-changing digital world is essential to maintain the currency of our approach. Mixed methods were used to investigate a cohort of postgraduate, e-learning healthcare students' perspectives on their use of online resources for personal and/or professional roles, via questionnaire and student-constructed diagrams, capturing use of online resources (underpinned by White's model of "resident" and "visitor" online engagement). Semistructured interviews explored the use and value of resources afforded via the online environment. The 45 study participants described a range of prior experiences with online resources in personal and professional capacities, but overall students tended to use online "tools" ("visitor" mode) rather than highly collaborative networks ("resident" mode). In relation to e-learning, the dominant interview theme was valuing knowledge transfer from the tutor and using "visitor" behaviors to maximize knowledge acquisition. Peer-learning opportunities were less valued and barriers to collaborative "resident" modes were identified. These findings help to inform e-learning course design to promote engagement. The results enable recommendations for use of the "Visitor and Residents" model and for planning activities that learners might utilize effectively.
ERIC Educational Resources Information Center
Kenney, Jacqueline; Hermens, Antoine; Clarke, Thomas
2004-01-01
The development of e-learning by government through policy, funding allocations, research-based collaborative projects and alliances has increased recently in both developed and under-developed nations. The paper notes that government, industry and corporate users are increasingly focusing on standardisation issues and the scalability of…
The Innovation Hyperlab - Linking Student Innovation at University and Pre-College Levels
NASA Astrophysics Data System (ADS)
Tagg, Randall
2012-02-01
We have created a laboratory environment to support collaboration between university and pre-college students on innovation and entrepreneurship projects. Called the ``Innovation Hyperlab,'' this facility is located in a K-12 complex called VistaPEAK schools in Aurora, Colorado. The lab is supported by four elements: a research-grade technical infrastructure of supplies and equipment for technical prototyping, a developing curriculum of ``learning modules on demand'' for rapid assimilation of technical skills, mentors from universities / medical schools / industry, and innovation projects stimulated by connections with the regional community. A current focus of projects is on medical technology development, linking tenth graders with university undergraduate research students and coordinated with the University of Colorado Denver's medical school. The Innovation Hyperlab is a work in progress and we will describe challenges that arise in connecting such a collaboration with traditional curriculum at both the university and pre-college levels.
The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model
ERIC Educational Resources Information Center
Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma
2015-01-01
The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…
E-Classroom of the 21st Century: Information Gaps
ERIC Educational Resources Information Center
Oluwatumbi, Oso Senny
2015-01-01
The introduction of technology into the classroom has revolutionized teaching and learning process. The 21st century learning environment creates exciting learning for students to collaborate and learn at their own pace making them active participants in learning process. The teacher is no-longer a dictator, pouring knowledge into passive learners…
Using Grand Challenges to Teach Science: A Biology-Geology Collaboration
NASA Astrophysics Data System (ADS)
Lyford, M.; Myers, J. D.
2012-12-01
Three science courses at the University of Wyoming explore the inextricable connections between science and society by centering on grand challenges. Two of these courses are introductory integrated science courses for non-majors while the third is an upper level course for majors and non-majors. Through collaboration, the authors have developed these courses to explore the grand challenges of energy, water and climate. Each course focuses on the fundamental STEM principles required for a citizen to understand each grand challenge. However, the courses also emphasize the non-STEM perspectives (e.g., economics, politics, human well-being, externalities) that underlie each grand challenge and argue that creating equitable, sustainable and just solutions to the grand challenges hinges on an understanding of STEM and non-STEM perspectives. Moreover, the authors also consider the multitude of personal perspectives individuals bring to the classroom (e.g., values, beliefs, empathy misconceptions) that influence any stakeholder's ability to engage in fruitful discussions about grand challenge solutions. Discovering Science (LIFE 1002) focuses on the grand challenges of energy and climate. Students attend three one-hour lectures, one two-hour lab and a one-hour discussion each week. Lectures emphasize the STEM and non-STEM principles underlying each grand challenge. Laboratory activities are designed to be interdisciplinary and engage students in inquiry-driven activities to reinforce concepts from lecture and to model how science is conducted. Labs also expose students to the difficulties often associated with scientific studies, the limits of science, and the inherent uncertainties associated with scientific findings. Discussion sessions provide an opportunity for students to explore the complexity of the grand challenges from STEM and non-STEM perspectives, and expose the multitude of personal perspectives an individual might harbor related to each grand challenge. Global Sustainability: Managing Earth's Resources (GEOL 1600) focuses on the energy-water climate nexus with a similar emphasis on STEM and non-STEM perspectives as LIFE 1002. Each week, there are three one hour lectures and a two hour lab. To set the stage for global and systems thinking, the concept of the Anthropocene and planetary boundaries are introduced early in the semester. Lectures focus on a variety of energy-water-climate topics and provide the content background for the labs. Labs are mini-case studies that address a variety of issues set in different global contexts, e.g. groundwater in Bangladesh, coal in China and petroleum in Saudi Arabia. Often the labs cover two weeks with one part covering science and the other economics. Unlike the other two courses, Energy: A Geological Perspective (GEOL 3650), is enrolled with half geology majors and half non-majors, representing almost every college on campus. Its organizational structure is similar to 1600. Labs focus on case studies, each lasting from 3 to 5 weeks, with each week addressing a different aspect of the same issue and social context, e.g. geology, economics, engineering, regulatory and political/social. Students, working in groups, present oral and written reports. Topics range from nuclear power and weapons in Iran to atmospheric emissions and global climate treaties.
A Collaborative Model for Ubiquitous Learning Environments
ERIC Educational Resources Information Center
Barbosa, Jorge; Barbosa, Debora; Rabello, Solon
2016-01-01
Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…
Online Collaborative Learning in Health Care Education
ERIC Educational Resources Information Center
Westbrook, Catherine
2012-01-01
At our University, the Faculty of Health, Social Care and Education has delivered a variety of undergraduate and postgraduate courses via flexible distance learning for many years. Distance learning can be a lonely experience for students who may feel isolated and unsupported. However e-learning provides an opportunity to use technology to…
ERIC Educational Resources Information Center
McArdle, Gavin; Bertolotto, Michela
2012-01-01
Today, the Internet plays a major role in distributing learning material within third level education. Multiple online facilities provide access to educational resources. While early systems relied on webpages, which acted as repositories for learning material, nowadays sophisticated online applications manage and deliver learning resources.…
ERIC Educational Resources Information Center
Parent, Beth A.; Marbach-Ad, Gili; Swanson, Karen V.; Smith, Ann C.
2010-01-01
Scientific literature was used to give a research oriented context to our immunology lab course. Immunology lab, a senior level course (60 students/year) was formerly taught in a traditional mode, with exercises aimed at learning lab protocols. To engage students in understanding we connected the protocols to their use as reported in research…
NASA Astrophysics Data System (ADS)
Tobin, Kenneth
2012-03-01
I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas, Joseph Maurice
We summarize the contributions of the Texas A\\&M University Group to the project (DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data - an ASCR-funded collaboration between Sandia National Labs, Texas A\\&M U, and U Utah) during 6/9/2011 -- 2/27/2013.
E-learning and blended learning in textile engineering education: a closed feedback loop approach
NASA Astrophysics Data System (ADS)
Charitopoulos, A.; Vassiliadis, S.; Rangoussi, M.; Koulouriotis, D.
2017-10-01
E-learning has gained a significant role in typical education and in professional training, thanks to the flexibility it offers to the time and location parameters of the education event framework. Purely e-learning scenarios are mostly limited either to Open University-type higher education institutions or to graduate level or professional degrees; blended learning scenarios are progressively becoming popular thanks to their balanced approach. The aim of the present work is to propose approaches that exploit the e-learning and the blended-learning scenarios for Textile Engineering education programmes, especially for multi-institutional ones. The “E-Team” European MSc degree programme organized by AUTEX is used as a case study. The proposed solution is based on (i) a free and open-source e-learning platform (moodle) and (ii) blended learning educational scenarios. Educational challenges addressed include student engagement, student error / failure handling, as well as collaborative learning promotion and support.
Accredited work-based learning: an approach for collaboration between higher education and practice.
Chalmers, H; Swallow, V M; Miller, J
2001-11-01
This article discusses the experience of creating a programme of accredited work based learning (AWBL) for emergency nurse practitioners (ENPs) who work in an Accident and Emergency (A&E) Department in the North East of England. The initiative highlighted the challenges of collaboration with purchasers of education and with professional colleagues, other than nurses. Accredited work-based learning was seen to be an appropriate means of supporting ENP role development. Some of the drivers of the development were: the need for a rapid response to wide ranging changes in the health service; the need to ensure rigour in the quality of both education and health care; to enable participants to engage in role development with appropriate skills, confidence and competence; and to ensure that the learning programme had parity in its design with conventional university based learning. The aim was to collaborate in the creation of learning which was relevant to the Trust's drive to improve patient care which accommodated the nurses' common and individual learning needs and offered academically recognized learning opportunities in tune with the post-Dearing ethos in higher education. This aim was reached and included a great deal of learning on the part of the collaborating partners. Copyright 2001 Harcourt Publishers Ltd.
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Gram, W.; Goehring, L.
2014-12-01
"Big Data" are becoming increasingly common in many fields. The National Ecological Observatory Network (NEON) will be collecting data over the 30 years, using consistent, standardized methods across the United States. These freely available new data provide an opportunity for increased understanding of continental- and global scale processes such as changes in vegetation structure and condition, biodiversity and landuse. However, while "big data" are becoming more accessible and available, integrating big data into the university courses is challenging. New and potentially unfamiliar data types and associated processing methods, required to work with a growing diversity of available data, may warrant time and resources that present a barrier to classroom integration. Analysis of these big datasets may further present a challenge given large file sizes, and uncertainty regarding best methods to properly statistically summarize and analyze results. Finally, teaching resources, in the form of demonstrative illustrations, and other supporting media that might help teach key data concepts, take time to find and more time to develop. Available resources are often spread widely across multi-online spaces. This presentation will overview the development of NEON's collaborative University-focused online education portal. Portal content will include 1) videos and supporting graphics that explain key concepts related to NEON data products including collection methods, key metadata to consider and consideration of potential error and uncertainty surrounding data analysis; and 2) packaged "lab" activities that include supporting data to be used in an ecology, biology or earth science classroom. To facilitate broad use in classrooms, lab activities will take advantage of freely and commonly available processing tools, techniques and scripts. All NEON materials are being developed in collaboration with existing labs and organizations.
Pulse!! The Virtual Clinical Learning Lab and Center of Excellence
2011-08-01
environments, physiological assets and case-authoring tools using state- of-the art technologies common to the videogame industry but here appropriated...interior processes (e.g., fluid dynamics) are beyond the current reach of the videogame industry. c. Concise Accomplishments (limit 200 words/170
Your Place or Mine? Navigating a Technology Collaborative.
ERIC Educational Resources Information Center
Wepner, Shelley B.
1998-01-01
Describes the Teaching and Learning Collaborative (TLC) in Technology, which prepared preservice teachers to incorporate technology into lesson plans and supported inservice teachers' professional development with technology, offering a professional-development course, seminar sessions, and e-mail communication. Evaluation indicated that…
ERIC Educational Resources Information Center
Houston, Linda; Johnson, Candice
After much trial and error, the Agricultural Technical Institute of the Ohio State University (ATI/OSO) discovered that training of writing lab tutors can best be done through collaboration of the Writing Lab Coordinator with the "Development of Tutor Effectiveness" course offered at the institute. The ATI/OSO main computer lab and…
Bringing Nanoscience into the K-12 Classroom
Dickerson, James; Camino, Fernando; Irwin, Edward
2018-06-12
Brookhaven Lab and a local school district collaborated to develop a nanotechnology program that brings students âintoâ labs at Brookhavenâs Center for Functional Nanomaterials through a portable videoconferencing system.
Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course
NASA Astrophysics Data System (ADS)
Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.
2018-04-01
The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.
Continuing Education Course to Attain Collaborative Comprehensive Medication Review Competencies
Tuomainen, Lea; Ovaskainen, Harri; Peura, Sirpa; Sevón-Vilkman, Nina; Tanskanen, Paavo; Airaksinen, Marja S.A.
2009-01-01
Objective To implement a long-term continuing education course for pharmacy practitioners to acquire competency in and accreditation for conducting collaborative comprehensive medication reviews (CMRs). Design A 1½- year curriculum for practicing pharmacists that combined distance learning (using e-learning tools) and face-to-face learning was created. The training consisted of 5 modules: (1) Multidisciplinary Collaboration; (2) Clinical Pharmacy and Pharmacotherapy; (3) Rational Pharmacotherapy; (4) CMR Tools; and (5) Optional Studies. Assessment The curriculum and participants' learning were evaluated using essays and learning diaries. At the end of the course, students submitted portfolios and completed an Internet-based survey instrument. Almost all respondents (92%) indicated their educational needs had been met by the course and 68% indicated they would conduct CMRs in their practice. The most important factors facilitating learning were working with peers and in small groups. Factors preventing learning were mostly related to time constraints. Conclusion Comprehensive medication review competencies were established by a 1½- year continuing education curriculum that combined different teaching methods and experiential learning. Peer support was greatly appreciated as a facilitator of learning by course participants. PMID:19885077
"Nuestra Tierra Dinamica" Global Climate Change STEM Education Fostering Environmental Stewardship
NASA Astrophysics Data System (ADS)
La Grave, M.; de Valenzuela, M.; Russell, R.
2012-12-01
CLUB ECO LÓGICO is a democratic and participatory program that provides active citizenship in schools and community, placing climate change into context for the Latino Community. The program's objectives focus on: 1. The Environment. Reducing the school and community impact on the environment through environmental footprint through stewardship actions. 2. Empowerment. Engaging participants through project and service learning and make decisions about how to improve their schools, their homes and their community's environment. 3. Community and Research Partnerships. Fostering collaborations with local community, stakeholders, government, universities, research organizations, and businesses that have expertise in environmental research, management, education and climate change. 4. Awareness. Increasing environmental and climate science knowledge of participants through STEM activities and hands-on access to technology. 5. Research and evaluation. Assessing the relevance of program activities through the engagement of the Latino community in planning and the effectiveness and impact of STEM activities through formative and summative evaluation. To address these objectives, the program has several inter related components in an after school setting: SUN EARTH Connections: Elementary (grades K to 2) students learn the basic climate change concepts through inquiry and hands on STEM activities. Bilingual 8 facilitators adapt relevant NASA educational resources for use in inquiry based, hands on activities. Drama and the arts provide unique experiences as well as play a key role in learning, participation and facilitation. GREEN LABS: Elementary students (grades 3 to 5) participate in stations where each Lab is staffed by at least two professionals: a College level fully bilingual Latin American Professional and a stakeholder representing either a research organization or other relevant environmental organization. Our current Green Lab themes include: Air, Soils, Water, Energy, Health, Waste and Communicating Science. Parental and Community Engagement: Family or Community Nights and community events showcasing student products, videos, and service learning projects in a bilingual format; and presentations by research scientists on climate and environmental science topics of interest to the Latino community. Our events have been highlighted on Univision television evening news, reaching Latinos across the state. Digital Story Telling: Our Video Lab involves Latino high school students who are trained as mentors, encouraged to research climate change topics, meet scientists and learn about video technology. By fall 2013, our HS Video Lab will mentor local middle school students. Throughout the year students take field trips to film and interview key scientists and educators. The project will share lessons learned concerning several issues: 1. What environmental and climate science issues are most relevant for Latinos; 2. What strategies are effective in engaging the Latino community in program planning and in engaging participation; 3. What approaches are effective in developing or adapting environmental and climate science education activities for Latino students and families; 4. How to develop effective partnerships with research and other environmental organizations; 5. How to develop culturally sensitive evaluation strategies.
Lessons from interprofessional e-learning: piloting a care of the elderly module.
Juntunen, Anitta; Heikkinen, Eija
2004-08-01
Educating health care professionals is a key issue in the provision of quality healthcare services. Interprofessional education has been suggested as a means of meeting this challenge. Four Finnish polytechnics providing education for nurses, social workers and physiotherapists wished to develop the content and methods of teaching the care of the elderly by collaboratively creating and implementing an interprofessional module of 15 European Credit Transfer units, using e-learning. This paper examines the planning and assessment of the impact of the pilot module. The web-based environment eminently suited teaching interprofessional care of the elderly. It supported content and methodological development and renewal of the module. It enabled discussion and collaboration between nursing, social work and rehabilitation teachers and students from the Polytechnics which are located in different parts of Finland. However, it became evident during the pilot that the most crucial challenges of the web-based pedagogy were in the ability of the teacher to supervise, support and motivate students and the organisation of interprofessional learning offered by collaborating institutions.
Cheng, Eddie W L; Chu, Samuel K W
2016-08-01
Given the increasing use of web technology for teaching and learning, this study developed and examined an extended version of the theory of planned behaviour (TPB) model, which explained students' intention to collaborate online for their group projects. Results indicated that past experience predicted the three antecedents of intention, while past behaviour was predictive of subjective norm and perceived behavioural control. Moreover, the three antecedents (attitude towards e-collaboration, subjective norm and perceived behavioural control) were found to significantly predict e-collaborative intention. This study explored the use of the "remember" type of awareness (i.e. past experience) and evaluated the value of the "know" type of awareness (i.e. past behaviour) in the TPB model. © 2015 International Union of Psychological Science.
Adaptative Peer to Peer Data Sharing for Technology Enhanced Learning
NASA Astrophysics Data System (ADS)
Angelaccio, Michele; Buttarazzi, Berta
Starting from the hypothesis that P2P Data Sharing in a direct teaching scenario (e.g.: a classroom lesson) may lead to relevant benefits, this paper explores the features of EduSHARE a Collaborative Learning System useful for Enhanced Learning Process.
ERIC Educational Resources Information Center
Yuan, Kun; Le, Vi-Nhuan
2014-01-01
In 2010, the William and Flora Hewlett Foundation's Education Program has established the Deeper Learning Initiative, which focuses on students' development of deeper learning skills (i.e., the mastery of core academic content, critical-thinking, problem-solving, collaboration, communication, and "learn-how-to-learn" skills). Two test…
ERIC Educational Resources Information Center
Shephard, Kerry; Mansvelt, Juliana; Stein, Sarah; Suddaby, Gordon; Harris, Irene; O'Hara, Duncan
2011-01-01
This collaborative research project devised a framework to support professional development for e-learning within New Zealand's diverse and integrated tertiary education sector. The research was supported by New Zealand's Ministry of Education. The research included reviews of developments in the United Kingdom, Australia and New Zealand and a…
ERIC Educational Resources Information Center
Martinez, Andrew; Mcmahon, Susan D.; Coker, Crystal; Keys, Christopher B.
2016-01-01
Student behavioral problems pose a myriad of challenges for schools. In this study, we examine the relations among teacher and school-level constructs (i.e., teacher collaboration, supervision/discipline, instructional management), and student-related outcomes (i.e., high-risk behaviors, barriers to learning, student social-behavioral climate).…
Facing the Challenges of E-Learning Initiatives in African Universities
ERIC Educational Resources Information Center
Gunga, Samson O.; Ricketts, Ian W.
2007-01-01
This paper explores the possibility of bringing e-learning to African universities through collaborative networks of public-private partnerships. It is envisaged that this approach will solve the dual problem of infrastructural barriers and weak ICT policies. As technology is used more in education, the teachers' roles are increasingly integrated…
The NASA Astrobiology Institute: A Decade of Education and Outreach
NASA Astrophysics Data System (ADS)
Scalice, Daniella
The mission statement of the NASA Astrobiology Institute (NAI) charts a course to establishing astrobiology as a new and influential field of scientific inquiry. It integrates world class, interdisciplinary research with training for the next generation of astrobiologists. It enables collaboration between distributed research teams by prioritizing the use of modern information technologies, and empowers astrobiologists to provide leadership for space missions. But this unique vision would not have been complete without the inclusion of an Education and Public Outreach (E/PO) program. Over the past ten years, NAI's E/PO program has taken shape - from bootstrapping in the early days, to partnering with the likes of Disney and PBS - in pursuit of inspiring young people onto the scientific path. The E/PO program's highly collaborative group of education specialists has worked with museums, national parks, filmmakers, radio broadcasters, families, teachers, and students to ensure that the bright young faces of today find themselves in the labs of tomorrow's astrobiologists.
Practical Clinical Training in Skills Labs: Theory and Practice
Bugaj, T. J.; Nikendei, C.
2016-01-01
Today, skills laboratories or “skills labs”, i.e. specific practical skill training facilities, are a firmly established part of medical education offering the possibility of training clinical procedures in a safe and fault-forging environment prior to real life application at bedside or in the operating room. Skills lab training follows a structured teaching concept, takes place under supervision and in consideration of methodological-didactic concepts, ideally creating an atmosphere that allows the repeated, anxiety- and risk-free practice of targeted skills. In this selective literature review, the first section is devoted to (I) the development and dissemination of the skills lab concept. There follows (II) an outline of the underlying idea and (III) an analysis of key efficacy factors. Thereafter, (IV) the training method’s effectiveness and transference are illuminated, before (V) the use of student tutors, in the sense of peer-assisted-learning, in skills labs is discussed separately. Finally, (VI) the efficiency of the skills lab concept is analyzed, followed by an outlook on future developments and trends in the field of skills lab training. PMID:27579363
Outcomes from the Delphi process of the Thoracic Robotic Curriculum Development Committee.
Veronesi, Giulia; Dorn, Patrick; Dunning, Joel; Cardillo, Giuseppe; Schmid, Ralph A; Collins, Justin; Baste, Jean-Marc; Limmer, Stefan; Shahin, Ghada M M; Egberts, Jan-Hendrik; Pardolesi, Alessandro; Meacci, Elisa; Stamenkovic, Sasha; Casali, Gianluca; Rueckert, Jens C; Taurchini, Mauro; Santelmo, Nicola; Melfi, Franca; Toker, Alper
2018-06-01
As the adoption of robotic procedures becomes more widespread, additional risk related to the learning curve can be expected. This article reports the results of a Delphi process to define procedures to optimize robotic training of thoracic surgeons and to promote safe performance of established robotic interventions as, for example, lung cancer and thymoma surgery. In June 2016, a working panel was spontaneously created by members of the European Society of Thoracic Surgeons (ESTS) and European Association for Cardio-Thoracic Surgery (EACTS) with a specialist interest in robotic thoracic surgery and/or surgical training. An e-consensus-finding exercise using the Delphi methodology was applied requiring 80% agreement to reach consensus on each question. Repeated iterations of anonymous voting continued over 3 rounds. Agreement was reached on many points: a standardized robotic training curriculum for robotic thoracic surgery should be divided into clearly defined sections as a staged learning pathway; the basic robotic curriculum should include a baseline evaluation, an e-learning module, a simulation-based training (including virtual reality simulation, Dry lab and Wet lab) and a robotic theatre (bedside) observation. Advanced robotic training should include e-learning on index procedures (right upper lobe) with video demonstration, access to video library of robotic procedures, simulation training, modular console training to index procedure, transition to full-procedure training with a proctor and final evaluation of the submitted video to certified independent examiners. Agreement was reached on a large number of questions to optimize and standardize training and education of thoracic surgeons in robotic activity. The production of the content of the learning material is ongoing.
Mazer, Barbara; Kairy, Dahlia; Guindon, Andréanne; Girard, Michel; Swaine, Bonnie; Kehayia, Eva; Labbé, Delphine
2015-04-22
Communities of practice (CoP) can facilitate collaboration between people who share a common interest, but do not usually work together. A CoP was initiated and developed including stakeholders from clinical, research, community and governmental backgrounds involved in a large multidisciplinary and multi-sectorial project: the Rehabilitation Living Lab in a Mall (RehabMaLL). This study aimed to evaluate the structure, process and outcomes of this CoP. A single case-study, using mixed-methods, evaluated the RehabMaLL CoP initiative after one year, based on Donabedian's conceptual evaluation model. Forty-three participants took part in the RehabMaLL CoP with 60.5% (n = 26) participating at least once on the online platform where 234 comments were posted. Four in-person meetings were held. Members expressed satisfaction regarding the opportunity to share knowledge with people from diverse backgrounds and the usefulness of the CoP for the RehabMaLL project. Collaboration led to concrete outcomes, such as a sensitization activity and a research project. Common challenges included lack of time and difficulty finding common objectives. A CoP can be a useful strategy to facilitate knowledge sharing on disability issues. Future research is necessary to determine strategies of increasing knowledge creation between members.
Mazer, Barbara; Kairy, Dahlia; Guindon, Andréanne; Girard, Michel; Swaine, Bonnie; Kehayia, Eva; Labbé, Delphine
2015-01-01
Communities of practice (CoP) can facilitate collaboration between people who share a common interest, but do not usually work together. A CoP was initiated and developed including stakeholders from clinical, research, community and governmental backgrounds involved in a large multidisciplinary and multi-sectorial project: the Rehabilitation Living Lab in a Mall (RehabMaLL). This study aimed to evaluate the structure, process and outcomes of this CoP. A single case-study, using mixed-methods, evaluated the RehabMaLL CoP initiative after one year, based on Donabedian’s conceptual evaluation model. Forty-three participants took part in the RehabMaLL CoP with 60.5% (n = 26) participating at least once on the online platform where 234 comments were posted. Four in-person meetings were held. Members expressed satisfaction regarding the opportunity to share knowledge with people from diverse backgrounds and the usefulness of the CoP for the RehabMaLL project. Collaboration led to concrete outcomes, such as a sensitization activity and a research project. Common challenges included lack of time and difficulty finding common objectives. A CoP can be a useful strategy to facilitate knowledge sharing on disability issues. Future research is necessary to determine strategies of increasing knowledge creation between members. PMID:25913187
E-Learning in Science and Technology via a Common Learning Platform in a Lifelong Learning Project
ERIC Educational Resources Information Center
Priem, Freddy; De Craemer, Renaat; Calu, Johan; Pedreschi, Fran; Zimmer, Thomas; Saighi, Sylvain; Lilja, Jarmo
2011-01-01
This three-year Virtual Measurements Environment curriculum development project for higher education within the Lifelong Learning Programme of the European Union is the result of intense collaboration among four institutions, teaching applied sciences and technology. It aims to apply the principles and possibilities of evolved distance and…
ERIC Educational Resources Information Center
Grenfell, Janette
2013-01-01
Selected ubiquitous technologies encourage collaborative participation between higher education students and educators within a virtual socially networked e-learning landscape. Multiple modes of teaching and learning, ranging from real world experiences, to text and digital images accessed within the Deakin studies online learning management…
Supportive Learning: Linear Learning and Collaborative Learning
ERIC Educational Resources Information Center
Lee, Bih Ni; Abdullah, Sopiah; Kiu, Su Na
2016-01-01
This is a conceptual paper which is trying to look at the educational technology is not limited to high technology. However, electronic educational technology, also known as e-learning, has become an important part of today's society, which consists of a wide variety of approaches to digitization, components and methods of delivery. In the…
E-Learning in Engineering Education: Design of a Collaborative Advanced Remote Access Laboratory
ERIC Educational Resources Information Center
Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker
2010-01-01
Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…
Meaning Making with Motion Is Messy: Developing a STEM Learning Community
ERIC Educational Resources Information Center
LópezLeiva, Carlos; Roberts-Harris, Deborah; von Toll, Elizabeth
2016-01-01
Through a collaborative effort between a sixth-grade teacher and two university faculty, we designed an integrated unit to learn about motion and we learned that an integrated teaching and learning experience about motion is MESSY (i.e., it includes movement, engagement, social interactions, spontaneity, yikes, and yippees!). We engaged in a…
Technical Service Agreement (TSA) | FNLCR Staging
Frederick National Lab for Cancer Research (FNLCR)scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than200 collaborations with more than 80 partners such as t
A Principal's Guide to ILS Facilities Installation.
ERIC Educational Resources Information Center
Ross, Tweed W.
1992-01-01
Outlines five facilities considerations that school principals need to address prior to the installation of an integrated learning system (ILS): (1) placement, i.e., labs or classrooms; (2) wiring; (3) environment, including furniture and noise; (4) security, including fire, theft, vandalism, and misuse; and (5) usability, including afterschool…
ERIC Educational Resources Information Center
Yu, Hong-Bin
2015-01-01
Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…
Strategic Design of an Interactive Video Learning Lab (IVL).
ERIC Educational Resources Information Center
Switzer, Ralph V., Jr.; Switzer, Jamie S.
1993-01-01
Describes a study that researched elements necessary for the design of an interactive video learning (IVL) lab for business courses. Highlights include a review of pertinent literature; guidelines for the use of an IVL lab; IVL systems integration; system specifications; hardware costs; and system software. (five references) (LRW)
Learning collaborative teamwork: an argument for incorporating the humanities.
Hall, Pippa; Brajtman, Susan; Weaver, Lynda; Grassau, Pamela Anne; Varpio, Lara
2014-11-01
A holistic, collaborative interprofessional team approach, which includes patients and families as significant decision-making members, has been proposed to address the increasing burden being placed on the health-care system. This project hypothesized that learning activities related to the humanities during clinical placements could enhance interprofessional teamwork. Through an interprofessional team of faculty, clinical staff, students, and patient representatives, we developed and piloted the self-learning module, "interprofessional education for collaborative person-centred practice through the humanities". The module was designed to provide learners from different professions and educational levels with a clinical placement/residency experience that would enable them, through a lens of the humanities, to better understand interprofessional collaborative person-centred care without structured interprofessional placement activities. Learners reported the self-paced and self-directed module to be a satisfactory learning experience in all four areas of care at our institution, and certain attitudes and knowledge were significantly and positively affected. The module's evaluation resulted in a revised edition providing improved structure and instruction for students with no experience in self-directed learning. The module was recently adapted into an interactive bilingual (French and English) online e-learning module to facilitate its integration into the pre-licensure curriculum at colleges and universities.
Mobile Collector for Field Trips
ERIC Educational Resources Information Center
Kravcik, Milos; Kaibel, Andreas; Specht, Marcus; Terrenghi, Lucia
2004-01-01
Current e-Learning is based on learning management systems that provide certain standard services--course authoring and delivery, tutoring, administration and collaboration facilities. Rapid development of mobile technologies opens a new area of m-Learning to enhance the current educational opportunities. Field trips are a relevant part of the…
University Students' Conceptions and Practice of Collaborative Work on Writing
ERIC Educational Resources Information Center
Mutwarasibo, Faustin
2013-01-01
Collaborative work is widely regarded as a valuable tool in the development of student-centred learning. Its importance can be viewed in two ways: First of all, when students are regularly exposed to collaborative work (i.e. pair work or group work) they are likely to develop or improve a range of communication and interpersonal skills. It is also…
ERIC Educational Resources Information Center
Vasquez-Colina, Maria D.; Maslin-Ostrowski, Pat; Baba, Suria
2017-01-01
This case study used qualitative and quantitative methods to investigate challenges of learning and teaching research methods by examining graduate students' use of collaborative technology (i.e., digital tools that enable collaboration and information seeking such as software and social media) and students' computer self-efficacy. We conducted…
geneLAB: Expanding the Impact of NASA's Biological Research in Space
NASA Technical Reports Server (NTRS)
Rayl, Nicole; Smith, Jeffrey D.
2014-01-01
The geneLAB project is designed to leverage the value of large 'omics' datasets from molecular biology projects conducted on the ISS by making these datasets available, citable, discoverable, interpretable, reusable, and reproducible. geneLAB will create a collaboration space with an integrated set of tools for depositing, accessing, analyzing, and modeling these diverse datasets from spaceflight and related terrestrial studies.
An evaluation of two hands-on lab styles for plant biodiversity in undergraduate biology.
Basey, John M; Maines, Anastasia P; Francis, Clinton D; Melbourne, Brett
2014-01-01
We compared learning cycle and expository formats for teaching about plant biodiversity in an inquiry-oriented university biology lab class (n = 465). Both formats had preparatory lab activities, a hands-on lab, and a postlab with reflection and argumentation. Learning was assessed with a lab report, a practical quiz in lab, and a multiple-choice exam in the concurrent lecture. Attitudes toward biology and treatments were also assessed. We used linear mixed-effect models to determine impacts of lab style on lower-order cognition (LO) and higher-order cognition (HO) based on Bloom's taxonomy. Relative to the expository treatment, the learning cycle treatment had a positive effect on HO and a negative effect on LO included in lab reports; a positive effect on transfer of LO from the lab report to the quiz; negative impacts on LO quiz performance and on attitudes toward the lab; and a higher degree of perceived difficulty. The learning cycle treatment had no influence on transfer of HO from lab report to quiz or exam; quiz performance on HO questions; exam performance on LO and HO questions; and attitudes toward biology as a science. The importance of LO as a foundation for HO relative to these lab styles is addressed. © 2014 J. M. Basey et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A New Approach to Teaching Petrology: Active Learning in a Studio Classroom
NASA Astrophysics Data System (ADS)
Perkins, D.
2003-12-01
During the past 15 years it has become clear that the traditional lecture and lab approach to college science teaching leaves much to be desired. The traditional approach is instructor oriented and based on passive learning. In contrast, current studies show that most students learn best when actively engaged in the learning process. Inquiry based learning and open ended projects have been shown to especially enhance learning by promoting higher order thinking. Recognizing the need for change, however, does not mean the changes are simple. The task of overhauling a course, replacing traditional approaches with more student oriented activities, requires a great deal of time and effort. It also involves much uncertainty and risk. At UND we have been experimenting with alternative pedagogies for a number of years. Change has been incremental, but this year we made wholesale changes in our petrology class. We converted it from the standard three lecture and one lab format to two 3-hour studio sessions per week. The distinction between lab and lecture is gone. In fact, there really are no lectures. The instructor talks for no more than 15 or 20 minutes at a time. Students spend most of their time doing, not listening. We emphasize collaborative active learning projects, some quite short and others lengthy and involved, and use a wide variety of activities. To assess the class, we have an outside consultant and we carry out weekly assessments to measure (1) how students are reacting to the various pedagogical approaches, and (2) how much student learning is actually occurring. This allows us to make adjustments and fine tune as necessary. We could not have made such changes a few years ago, simply because of the amount of work involved to create and test the necessary classroom materials. Today, however, there are many resources available to the reform minded teacher, and the resource base continues to grow. We borrowed heavily from other instructors at other institutions. We mined the Journal of Geoscience Education for teaching and assessment strategies. We took many ideas for projects from the recent Teaching Petrology Workshop (July 2003, one of the On the Cutting Edge: Workshops for Geoscience Faculty, supported by the NAGT, DLESE and NSF/DUE). With more workshops and meetings devoted to teaching reform, and as geoscientists further develop their scholarship of teaching and learning, reforming our classes will become easier. The result will not only be better educated students, but also a greater retention of geoscience majors.
Learning with Multiple Representations: Extending Multimedia Learning beyond the Lab
ERIC Educational Resources Information Center
Eilam, Billie; Poyas, Yael
2008-01-01
The present study extended multimedia learning principles beyond the lab to an ecologically valid setting (homework). Eighteen information cards were used to perform three homework tasks. The control group students learned from single representation (SR) cards that presented all information as printed text. The multiple representation (MR) group…
PySeqLab: an open source Python package for sequence labeling and segmentation.
Allam, Ahmed; Krauthammer, Michael
2017-11-01
Text and genomic data are composed of sequential tokens, such as words and nucleotides that give rise to higher order syntactic constructs. In this work, we aim at providing a comprehensive Python library implementing conditional random fields (CRFs), a class of probabilistic graphical models, for robust prediction of these constructs from sequential data. Python Sequence Labeling (PySeqLab) is an open source package for performing supervised learning in structured prediction tasks. It implements CRFs models, that is discriminative models from (i) first-order to higher-order linear-chain CRFs, and from (ii) first-order to higher-order semi-Markov CRFs (semi-CRFs). Moreover, it provides multiple learning algorithms for estimating model parameters such as (i) stochastic gradient descent (SGD) and its multiple variations, (ii) structured perceptron with multiple averaging schemes supporting exact and inexact search using 'violation-fixing' framework, (iii) search-based probabilistic online learning algorithm (SAPO) and (iv) an interface for Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the limited-memory BFGS algorithms. Viterbi and Viterbi A* are used for inference and decoding of sequences. Using PySeqLab, we built models (classifiers) and evaluated their performance in three different domains: (i) biomedical Natural language processing (NLP), (ii) predictive DNA sequence analysis and (iii) Human activity recognition (HAR). State-of-the-art performance comparable to machine-learning based systems was achieved in the three domains without feature engineering or the use of knowledge sources. PySeqLab is available through https://bitbucket.org/A_2/pyseqlab with tutorials and documentation. ahmed.allam@yale.edu or michael.krauthammer@yale.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
The laboratory report: A pedagogical tool in college science courses
NASA Astrophysics Data System (ADS)
Ferzli, Miriam
When viewed as a product rather than a process that aids in student learning, the lab report may become rote, busywork for both students and instructors. Students fail to see the purpose of the lab report, and instructors see them as a heavy grading load. If lab reports are taught as part of a process rather than a product that aims to "get the right answer," they may serve as pedagogical tools in college science courses. In response to these issues, an in-depth, web-based tutorial named LabWrite (www.ncsu.edu/labwrite) was developed to help students and instructors (www.ncsu.edu/labwrite/instructors) understand the purpose of the lab report as grounded in the written discourse and processes of science. The objective of this post-test only quasi-experimental study was to examine the role that in-depth instruction such as LabWrite plays in helping students to develop skills characteristic of scientifically literate individuals. Student lab reports from an introductory-level biology course at NC State University were scored for overall understanding of scientific concepts and scientific ways of thinking. The study also looked at students' attitudes toward science and lab report writing, as well as students' perceptions of lab reports in general. Significant statistical findings from this study show that students using LabWrite were able to write lab reports that showed a greater understanding of scientific investigations (p < .003) and scientific ways of thinking (p < .0001) than students receiving traditional lab report writing instruction. LabWrite also helped students develop positive attitudes toward lab reports as compared to non-LabWrite users (p < .01). Students using LabWrite seemed to perceive the lab report as a valuable tool for determining learning objectives, understanding science concepts, revisiting the lab experience, and documenting their learning.
"WGL," a Web Laboratory for Geometry
ERIC Educational Resources Information Center
Quaresma, Pedro; Santos, Vanda; Maric, Milena
2018-01-01
The role of information and communication technologies (ICT) in education is nowadays well recognised. The "Web Geometry Laboratory," is an e-learning, collaborative and adaptive, Web environment for geometry, integrating a well known dynamic geometry system. In a collaborative session, teachers and students, engaged in solving…
ePerformance: Crafting, Rehearsing, and Presenting the ePortfolio Persona
ERIC Educational Resources Information Center
Ramírez, Kimberly
2011-01-01
"ePerformance: Crafting, Rehearsing, and Presenting the ePortfolio Persona" exposes vital intersections between pedagogy and performance to reveal how using ePortfolio encourages not only student-centered learning, but facilitates collaboration through cooperative exchanges. Productive interactivity with audiences who actively influence…
Drugs Approved for Thyroid Cancer
... Partners & Collaborators Spotlight on Scientists Research Areas Cancer Biology Research Cancer Genomics Research Research on Causes of Cancer ... National Lab Partners & Collaborators Spotlight on Scientists NCI Research Areas Cancer Biology Cancer Genomics Causes of Cancer Diagnosis Prevention Screening & ...
Design and Implementation of the Retinoblastoma Collaborative Laboratory.
Qaiser, Seemi; Limo, Alice; Gichana, Josiah; Kimani, Kahaki; Githanga, Jessie; Waweru, Wairimu; Dimba, Elizabeth A O; Dimaras, Helen
2017-01-01
The purpose of this work was to describe the design and implementation of a digital pathology laboratory, the Retinoblastoma Collaborative Laboratory (RbCoLab) in Kenya. The RbCoLab is a central lab in Nairobi that receives retinoblastoma specimens from all over Kenya. Specimens were processed using evidence-based standard operating procedures. Images were produced by a digital scanner, and pathology reports were disseminated online. The lab implemented standard operating procedures aimed at improving the accuracy, completeness, and timeliness of pathology reports, enhancing the care of Kenyan retinoblastoma patients. Integration of digital technology to support pathology services supported knowledge transfer and skills transfer. A bidirectional educational network of local pathologists and other clinicians in the circle of care of the patients emerged and served to emphasize the clinical importance of cancer pathology at multiple levels of care. A 'Robin Hood' business model of health care service delivery was developed to support sustainability and scale-up of cancer pathology services. The application of evidence-based protocols, comprehensive training, and collaboration were essential to bring improvements to the care of retinoblastoma patients in Kenya. When embraced as an integrated component of retinoblastoma care, digital pathology offers the opportunity for frequent connection and consultation for development of expertise over time.
The Golden Age of Radio: Solid State's Debt to the Rad Lab
NASA Astrophysics Data System (ADS)
Martin, Joseph D.
2011-03-01
While MIT's Radiation Laboratory is rightly celebrated for its contributions to World War II radar research, its legacy extended beyond the war. The Rad Lab provided a model for interdisciplinary collaboration that continued to influence research at MIT in the post-war decades. The Rad Lab's institutional legacy--MIT's interdepartmental laboratories--drove the Institute's postwar research agenda. This talk examines how solid state physics research at MIT was shaped by a laboratory structure that encouraged cross-disciplinary collaboration. As the sub-discipline of solid state physics emerged through the late-1940s and 1950s, MIT was unique among universities in its laboratory structure, made possible by a large degree of government and military funding. Nonetheless, the manner in which MIT research groups from physics, chemistry, engineering, and metallurgy interfaced through the medium of solid state physics exemplified how the discipline of solid state physics came to be structured in the rest of the country. Through examining the Rad Lab's institutional legacy, I argue that World War II radar research, by establishing precedent for a particular mode of interdisciplinary collaboration, shaped the future structure of solid state research in the United States. Research supported by a grant-in-aid from the Friends of the Center for the History of Physics, American Institute of Physics.
Design and Implementation of the Retinoblastoma Collaborative Laboratory
Qaiser, Seemi; Limo, Alice; Gichana, Josiah; Kimani, Kahaki; Githanga, Jessie; Waweru, Wairimu; Dimba, Elizabeth A.O.; Dimaras, Helen
2017-01-01
Purpose The purpose of this work was to describe the design and implementation of a digital pathology laboratory, the Retinoblastoma Collaborative Laboratory (RbCoLab) in Kenya. Method The RbCoLab is a central lab in Nairobi that receives retinoblastoma specimens from all over Kenya. Specimens were processed using evidence-based standard operating procedures. Images were produced by a digital scanner, and pathology reports were disseminated online. Results The lab implemented standard operating procedures aimed at improving the accuracy, completeness, and timeliness of pathology reports, enhancing the care of Kenyan retinoblastoma patients. Integration of digital technology to support pathology services supported knowledge transfer and skills transfer. A bidirectional educational network of local pathologists and other clinicians in the circle of care of the patients emerged and served to emphasize the clinical importance of cancer pathology at multiple levels of care. A ‘Robin Hood’ business model of health care service delivery was developed to support sustainability and scale-up of cancer pathology services. Discussion The application of evidence-based protocols, comprehensive training, and collaboration were essential to bring improvements to the care of retinoblastoma patients in Kenya. When embraced as an integrated component of retinoblastoma care, digital pathology offers the opportunity for frequent connection and consultation for development of expertise over time. PMID:28275608
Role of expressive behaviour for robots that learn from people
Breazeal, Cynthia
2009-01-01
Robotics has traditionally focused on developing intelligent machines that can manipulate and interact with objects. The promise of personal robots, however, challenges researchers to develop socially intelligent robots that can collaborate with people to do things. In the future, robots are envisioned to assist people with a wide range of activities such as domestic chores, helping elders to live independently longer, serving a therapeutic role to help children with autism, assisting people undergoing physical rehabilitation and much more. Many of these activities shall require robots to learn new tasks, skills and individual preferences while ‘on the job’ from people with little expertise in the underlying technology. This paper identifies four key challenges in developing social robots that can learn from natural interpersonal interaction. The author highlights the important role that expressive behaviour plays in this process, drawing on examples from the past 8 years of her research group, the Personal Robots Group at the MIT Media Lab. PMID:19884147
ERIC Educational Resources Information Center
Chanprasitchai, Ong-art; Khlaisang, Jintavee
2016-01-01
The recent growth in collaborative and interactive virtual learning communities integrating innovative digital technologies and contemporary learning frameworks is contributing enormously to the use of e-learning in higher education in the twenty-first century. The purpose of this study was to describe the development of a virtual learning…
The Use of Group Quizzes in Developmental Mathematics Courses
ERIC Educational Resources Information Center
Sorensen, Ian
2012-01-01
For a period of four semesters, the possibility was explored of using a "group quiz" as a learning activity that provides a collaborative learning environment, a review of the previous week's material, and a formative assessment for both the student and the instructor. Using both quantitative (i.e., student surveys) and qualitative (i.e., student…
Collaborative Cloud: A New Model for e-Learning
ERIC Educational Resources Information Center
Liao, Jian; Wang, Minhong; Ran, Weijia; Yang, Stephen J. H.
2014-01-01
The number of learners using e-learning has been increasing at an enormous rate in the past decade due to easy access to higher educational resources via the Internet. On the other hand, the number of teachers in most universities is growing slowly. As a result, instructional problems have emerged due to the lack of sufficient support to learners…
The Digital Handshake: A Group Contract for Authentic eLearning in Higher Education
ERIC Educational Resources Information Center
Hesterman, Sandra
2016-01-01
An emerging challenge for the Australian higher education sector is the delivery of authentic eLearning to support the collaborative construction of knowledge through the provision of real-life tasks in an online environment. This paper describes research conducted in a fourth-year university course where students from across the nation were…
University of Hawai'i Community Colleges: E-Learn
ERIC Educational Resources Information Center
Walsh, Marilyn
2002-01-01
The E-Learn program is a collaboration of all seven University of Hawai'i (UH) community colleges to offer a distance-delivered Associate in Arts degree. The core mission of the UH Community Colleges is to put postsecondary education within the reach of every resident of the state. To provide that access, community colleges must be affordable,…
Synchronous E-Learning: Reflections and Design Considerations
ERIC Educational Resources Information Center
Tabak, Filiz; Rampal, Rohit
2014-01-01
This paper is a personal reflection on the design, development, and delivery of online synchronous conferencing as a pedagogical tool complementing traditional, face-to-face content delivery and learning. The purpose of the paper is to demonstrate how instructors can combine collaborative and virtual learning principles in course design. In…
Hines, Stephen A; Collins, Peggy L; Quitadamo, Ian J; Brahler, C Jayne; Knudson, Cameron D; Crouch, Gregory J
2005-01-01
A case-based program called ATLes (Adaptive Teaching and Learning Environments) was designed for use in a systemic pathology course and implemented over a four-year period. Second-year veterinary students working in small collaborative learning groups used the program prior to their weekly pathology laboratory. The goals of ATLes were to better address specific learning objectives in the course (notably the appreciation of pathophysiology), to solve previously identified problems associated with information overload and information sorting that commonly occur as part of discovery-based processes, and to enhance classroom discussion. The program was also designed to model and allow students to practice the problem-oriented approach to clinical cases, thereby enabling them to study pathology in a relevant clinical context. Features included opportunities for students to obtain additional information on the case by requesting specific laboratory tests and/or diagnostic procedures. However, students were also required to justify their diagnostic plans and to provide mechanistic analyses. The use of ATLes met most of these objectives. Student acceptance was high, and students favorably reviewed the online ''Content Links'' that made useful information more readily accessible and level appropriate. Students came to the lab better prepared to engage in an in-depth and high-quality discussion and were better able to connect clinical problems to underlying changes in tissue (lesions). However, many students indicated that the required time on task prior to lab might have been excessive relative to what they thought they learned. The classroom discussion, although improved, was not elevated to the expected level-most likely reflecting other missing elements of the learning environment, including the existing student culture and the students' current discussion skills. This article briefly discusses the lessons learned from ATLes and how similar case-based exercises might be combined with other approaches to enhance and enliven classroom discussions in the veterinary curriculum.
ERIC Educational Resources Information Center
Chambers, Timothy
2014-01-01
This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieterich, S; Perks, J; Fragoso, R
Purpose: Medical Physicists and Radiation Oncologists are two professions who should be working as a team for optimal patient care, yet lack of mutual understanding about each others respective role and work environment creates barriers To improve collaboration and learning, we designed a shared didactic and work space for physics and radiation oncology residents to maximize interaction throughout their professional training. Methods: Physician and Physics residents are required to take the same didactic classes, including journal clubs and respective seminars. The residents also share an office environment among the seven physician and two physic residents. Results: By maximizing didactic overlapmore » and sharing office space, the two resident groups have developed a close professional relationship and supportive work environment. Several joint research projects have been initiated by the residents. Awareness of physics tasks in the clinic has led to a request by the physician residents to change physics didactics, converting the physics short course into a lab-oriented course for the medical residents which is in part taught by the physics residents. The physics seminar is given by both residency groups; increased motivation and interest in learning about physics has led to several medical resident-initiated topic selections which generated lively discussion. The physics long course has changed toward including more discussion among residents to delve deeper into topics and study beyond what passing the boards would require. A supportive work environment has developed, embedding the two physics residents into a larger residents group, allowing them to find mentor and peers more easily. Conclusion: By creating a shared work and didactic environment, physician and physics residents have improved their understanding of respective professional practice. Resident-initiated changes in didactic practice have led to improved learning and joint research. A strong social support system has developed, embedding physics residents into a larger peer group.« less
ERIC Educational Resources Information Center
Neo, Mai; Park, Heykyung; Lee, Min-Jae; Soh, Jian-Yuan; Oh, Ji-Young
2015-01-01
Educators today are moving towards transforming their teaching and learning methods from conventional teacher-centered approaches to student-centered learning approaches with the support of technology so as to better motivate students to participate and engage in their learning process. This study was developed as a joint collaborative effort…
ERIC Educational Resources Information Center
Li, Yanyan; Dong, Mingkai; Huang, Ronghuai
2011-01-01
The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…
ERIC Educational Resources Information Center
Blasco-Arcas, Lorena; Buil, Isabel; Hernandez-Ortega, Blanca; Sese, F. Javier
2013-01-01
As more and more educational institutions are integrating new technologies (e.g. audience response systems) into their learning systems to support the learning process, it is becoming increasingly necessary to have a thorough understanding of the underlying mechanisms of these advanced technologies and their consequences on student learning…
Chalil Madathil, Kapil; Greenstein, Joel S
2017-11-01
Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Student Self-Efficacy in Introductory Project-Based Learning Courses
NASA Astrophysics Data System (ADS)
Pleiss, Geoffrey; Zastavker, Yevgeniya V.
2012-02-01
This study investigates first-year engineering students' self-efficacy in two introductory Project-Based Learning (PjBL) courses -- Physics (Mechanics) Laboratory and Engineering Design -- taught at a small technical institution. Twelve students participated in semi-structured open-ended interviews about their experiences in both courses. Analysis was performed using grounded theory. Results indicate that students had lower self-efficacy in Physics Lab than in Engineering Design. In Physics Lab, students reported high levels of faculty-supported scaffolding related to final project deliverables, which in turn established perceptions of an outcome-based course emphasis. Conversely, in Engineering Design, students observed high levels of scaffolding related to the intermediate project deliverables, highlighting process-centered aspects of the course. Our analyses indicate that this difference in student perceptions of course emphases -- resulting from the differences in scaffolding -- is a primary factor for the discrepancy in self-efficacy between Physics Lab and Engineering Design. Future work will examine how other variables (e.g., academic background, perception of community, gender) affect students' self-efficacy and perception of scaffolding in these PjBL courses.
Long-term effects of course-embedded undergraduate research: The CASPiE longitudinal study
NASA Astrophysics Data System (ADS)
Szteinberg, Gabriela A.
The Center for Authentic Science Practice in Education (CASPiE) is a National Science Foundation funded initiative that seeks to introduce first- and second-year undergraduate students to research in their mainstream laboratory courses. To investigate the effects of this research-based curriculum, a longitudinal study was initiated at Purdue University (PU) and University of Illinois-Chicago (UIC), where CASPiE was implemented in a portion of laboratory sections of a general chemistry course (CHEM 116 at PU/CHEM 114 at UIC). The study examined the long-term effects of the CASPiE program on students' chemistry course performance, research involvement, and retention in STEM majors and future careers. The results of the academic records analyses showed that PU CASPiE students from the opt-in semesters, i.e. those when students chose to enroll in the CASPiE sections, were higher-achieving students from the beginning of their college years and performed significantly higher than the students in the traditional sections. There were no significant differences in chemistry course performance among PU students from the randomly assigned semester. However, looking from the first semester chemistry course to the upper 300 level chemistry courses, randomly assigned PU students from the traditional sections had a significant performance decrease. The CASPiE students had a performance decrease that was not significant. At UIC, there were no significant differences between CASPiE and traditional students' chemistry performance. Analyses of the academic records also revealed that there were no differences in STEM major retention between CASPiE and traditional students, from both PU and UIC. However, CASPiE students from UIC and the ones from the opt-in sections at PU graduated faster in average than traditional students. Students' responses to an online survey showed that there were no differences in students' choice of future plans in STEM or non-STEM fields (such as graduate or professional school, or type of job). Interviews with PU's CASPiE and traditional students revealed that CASPiE students thought their laboratory work was applicable and relevant to other research and their lives and they tended to remember their lab activities more than the traditional students. CASPiE students thought the lab work they did was rewarding and they felt a sense of accomplishment. CASPiE students from the randomly assigned semester thought the experience was rewarding in retrospect, which is an important finding because during that semester students were frustrated that they were not able to choose their participation in CASPiE. Traditional students thought their lab experience helped prepare them for future courses at PU, whereas CASPiE students thought they were better prepared for class and lab in general, they learned how to keep a research notebook and write scientific papers, and that overall they learned how to conduct research. Specifically, CASPiE students thought they were able to use creativity in their lab. Both students from CASPiE and traditional sections thought they learned how to work well in groups through their lab experiences. Based on the results, we can conclude that CASPiE was successful at providing first- and second-year students with research experiences in their second-semester general chemistry class, without negatively affecting their chemistry course performance, retention in STEM majors or future plans. PU CASPiE students from the opt-in years were higher-achieving students than the traditional counterparts therefore the significant differences in chemistry performance between these students are not surprising. The CASPiE curriculum did seem to have had an enhancing effect on the randomly assigned PU CASPiE students' chemistry performance over the years. Furthermore, CASPiE students from PU reported gains from doing research experiences that have previously been reported in the literature on undergraduate research experiences. The results from this study show that CASPiE could be a beneficial curriculum for STEM college educators who wish to have more students practice research during their college courses. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Hong, Zuway-R.
2010-10-01
This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty-eight eighth-grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants' learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow-up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.
Preschool children's Collaborative Science Learning Scaffolded by Tablets
NASA Astrophysics Data System (ADS)
Fridberg, Marie; Thulin, Susanne; Redfors, Andreas
2017-06-01
This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.
3D-Lab: a collaborative web-based platform for molecular modeling.
Grebner, Christoph; Norrby, Magnus; Enström, Jonatan; Nilsson, Ingemar; Hogner, Anders; Henriksson, Jonas; Westin, Johan; Faramarzi, Farzad; Werner, Philip; Boström, Jonas
2016-09-01
The use of 3D information has shown impact in numerous applications in drug design. However, it is often under-utilized and traditionally limited to specialists. We want to change that, and present an approach making 3D information and molecular modeling accessible and easy-to-use 'for the people'. A user-friendly and collaborative web-based platform (3D-Lab) for 3D modeling, including a blazingly fast virtual screening capability, was developed. 3D-Lab provides an interface to automatic molecular modeling, like conformer generation, ligand alignments, molecular dockings and simple quantum chemistry protocols. 3D-Lab is designed to be modular, and to facilitate sharing of 3D-information to promote interactions between drug designers. Recent enhancements to our open-source virtual reality tool Molecular Rift are described. The integrated drug-design platform allows drug designers to instantaneously access 3D information and readily apply advanced and automated 3D molecular modeling tasks, with the aim to improve decision-making in drug design projects.
NASA Astrophysics Data System (ADS)
Scipio, Deana Aeolani
This dissertation examines learning within an out-of-school time (OST) Science, Technology, Engineering, and Mathematics (STEM) broadening participation program. The dissertation includes an introduction, three empirical chapters (written as individual articles), and a conclusion. The dissertation context is a chemical oceanography OST program for middle school students called Project COOL---Chemical Oceanography Outside the Lab. The program was a collaboration between middle school OST programming, a learning sciences research laboratory, and a chemical oceanography laboratory. Both labs were located at a research-based university in the Pacific Northwest of the United States. Participants include 34 youth, 12 undergraduates, and five professional scientists. The dissertation data corpus includes six years of ethnographic field notes across three field sites, 400 hours of video and audio recordings, 40 hours of semi-structured interviews, and more than 100 participant generated artifacts. Analysis methods include comparative case analysis, cognitive mapping, semiotic cluster analysis, video interaction analysis, and discourse analysis. The first empirical article focuses on synthesizing productive programmatic features from four years of design-based research.. The second article is a comparative case study of three STEM mentors from non-dominant communities in the 2011 COOL OST Program. The third article is a comparative case study of undergraduates learning to be mentors in the 2014 COOL OST Program. Findings introduce Deep Hanging as a theory of learning in practice. Deep Hanging entails authentic tasks in rich contexts, providing access, capitalizing on opportunity, and building interpersonal relationships. Taken together, these three chapters illuminate the process of designing a rich OST learning environment and the kinds of learning in practice that occurred for adult learners learning to be mentors through their participation in the COOL OST program. In the conclusion, I offer a set of design principles for mentor learning gleaned from empirical findings from the last two empirical chapters on how mentors can productively support the science learning of youth. The findings from this dissertation offer implications for designers of learning environments seeking to leverage experts for mentoring while engaging youth in contemporary science practices in order to broaden participation for youth and adult participants from non-dominant communities in STEM disciplines.
The Symmetry of Partner Modelling
ERIC Educational Resources Information Center
Dillenbourg, Pierre; Lemaignan, Séverin; Sangin, Mirweis; Nova, Nicolas; Molinari, Gaëlle
2016-01-01
Collaborative learning has often been associated with the construction of a shared understanding of the situation at hand. The psycholinguistics mechanisms at work while establishing common grounds are the object of scientific controversy. We postulate that collaborative tasks require some level of mutual modelling, i.e. that each partner needs…
Plant biology: From on-campus to on-line development and implementation
NASA Astrophysics Data System (ADS)
Bradley, Lucy K.
The lecture content of the Plant Biology class for non-majors was transformed from a traditional on-campus lecture to an asynchronous website that could be used both as a stand-alone course and as an adjunct to the on campus course sections. In addition, an interactive, on-line website with home laboratory experiments was developed and implemented by the Plant Biology Department in collaboration with design specialists from the Information Technology and Instructional Support Department of the Arizona State University. The 259-page lecture website included 134 interactive animations, as well as 11 videos. The lab website included 176 pages, with 187 graphics and 36 separate animations. Convenience was identified by most students as the key benefit of taking the course on-line. Website construction was rated highly by all of the students; however, website audio was problematic for 50% of them; video, for 71%. Students, staff, and faculty all agreed that to benefit fully from the website, adequate hardware, software, and internet connection speed were vital. Challenges with the web-based lab were either technological (inadequate equipment or skills), logistical (dissatisfaction with having to pick up home lab kits from campus), or motivational (student survey responses added to the growing literature that suggests that mature, focused, self-motivated students benefit more from distance learning).
Aligning Goals, Assessments, and Activities: An Approach to Teaching PCR and Gel Electrophoresis
Robertson, Amber L.; Batzli, Janet; Harris, Michelle; Miller, Sarah
2008-01-01
Polymerase chain reaction (PCR) and gel electrophoresis have become common techniques used in undergraduate molecular and cell biology labs. Although students enjoy learning these techniques, they often cannot fully comprehend and analyze the outcomes of their experiments because of a disconnect between concepts taught in lecture and experiments done in lab. Here we report the development and implementation of novel exercises that integrate the biological concepts of DNA structure and replication with the techniques of PCR and gel electrophoresis. Learning goals were defined based on concepts taught throughout the cell biology lab course and learning objectives specific to the PCR and gel electrophoresis lab. Exercises developed to promote critical thinking and target the underlying concepts of PCR, primer design, gel analysis, and troubleshooting were incorporated into an existing lab unit based on the detection of genetically modified organisms. Evaluative assessments for each exercise were aligned with the learning goals and used to measure student learning achievements. Our analysis found that the exercises were effective in enhancing student understanding of these concepts as shown by student performance across all learning goals. The new materials were particularly helpful in acquiring relevant knowledge, fostering critical-thinking skills, and uncovering prevalent misconceptions. PMID:18316813
2011-01-01
Background Community learning and e-mentoring, learning methods used in higher education, are not used to any extent in residency education. Yet both have the potential to enhance resident learning and, in the case of community learning, introduce residents to basic lifelong learning skills. We set out to determine whether residents participating in an Internet based e-mentoring program would, with appropriate facilitation, form a community of learners (CoL) and hold regular community meetings. We also determined resident and faculty perceptions of CoL and Internet sessions as effective learning experiences. Methods A six-month e-mentoring pilot was offered to 10 Radiology residents in the Aga Khan University Postgraduate Medical Education Program in Nairobi, Kenya (AKUHN) with a Professor of Radiology, located at University of Virginia, USA, acting as the e-mentor. Monthly Internet case-based teaching sessions were facilitated by the e-mentor. In addition, residents were coached by a community facilitator to form CoL and collectively work through clinical cases at weekly face-to-face CoL sessions. Event logs described observed resident activity at CoL sessions; exit survey and interviews were used to elicit perceptions of CoL and Internet sessions as effective learning experiences. Results Resident adoption of CoL behaviors was observed, including self-regulation, peer mentoring and collaborative problem solving. Analysis revealed high resident enthusiasm and value for CoL. Surveys and interviews indicated high levels of acceptance of Internet learning experiences, although there was room for improvement in audio-visual transmission technologies. Faculty indicated there was a need for a larger multi-specialty study. Conclusions The pilot demonstrated resident acceptance of community building and collaborative learning as valued learning experiences, addressing one barrier to its formal adoption in residency education curricula. It also highlighted the potential of e-mentoring as a means of expanding faculty and teaching materials in residency programs in developing countries. PMID:21266070
The Quantitative Analysis of User Behavior Online - Data, Models and Algorithms
NASA Astrophysics Data System (ADS)
Raghavan, Prabhakar
By blending principles from mechanism design, algorithms, machine learning and massive distributed computing, the search industry has become good at optimizing monetization on sound scientific principles. This represents a successful and growing partnership between computer science and microeconomics. When it comes to understanding how online users respond to the content and experiences presented to them, we have more of a lacuna in the collaboration between computer science and certain social sciences. We will use a concrete technical example from image search results presentation, developing in the process some algorithmic and machine learning problems of interest in their own right. We then use this example to motivate the kinds of studies that need to grow between computer science and the social sciences; a critical element of this is the need to blend large-scale data analysis with smaller-scale eye-tracking and "individualized" lab studies.
Social and Collaborative Interactions for Educational Content Enrichment in ULEs
ERIC Educational Resources Information Center
Araújo, Rafael D.; Brant-Ribeiro, Taffarel; Mendonça, Igor E. S.; Mendes, Miller M.; Dorça, Fabiano A.; Cattelan, Renan G.
2017-01-01
This article presents a social and collaborative model for content enrichment in Ubiquitous Learning Environments. Designed as a loosely coupled software architecture, the proposed model was implemented and integrated into the Classroom eXperience, a multimedia capture platform for educational environments. After automatically recording a lecture…
Using Classroom Competitions to Prepare Students for the Competitive Business World
ERIC Educational Resources Information Center
Gibson, Fay Y.; Kincade, Doris H.; Frasier, Pamela Y.
2013-01-01
This paper describes how a university, collaborating with industry, integrated research with active learning (e.g., collaboration in teams and competitions) for fashion majors. The redesigned introductory course uses two strategies: team competitions and a genius bar to guide students, give ongoing feedback, and judge final competitions. Active…
Collaborative Data Mining Tool for Education
ERIC Educational Resources Information Center
Garcia, Enrique; Romero, Cristobal; Ventura, Sebastian; Gea, Miguel; de Castro, Carlos
2009-01-01
This paper describes a collaborative educational data mining tool based on association rule mining for the continuous improvement of e-learning courses allowing teachers with similar course's profile sharing and scoring the discovered information. This mining tool is oriented to be used by instructors non experts in data mining such that, its…
ERIC Educational Resources Information Center
Ala-Mutka, Kirsti; Gaspar, Pal; Kismihok, Gabor; Suurna, Margit; Vehovar, Vasja
2010-01-01
This article summarises research carried out between 2006 and 2008 by IPTS (Institution for Prospective Technological Studies) in collaboration with a consortium of experts from 10 member states, led by ICEGEC. The project gathered information on eLearning developments to assess drivers and barriers and to suggest implications for policy and…
ERIC Educational Resources Information Center
Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako
2009-01-01
This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…
ERIC Educational Resources Information Center
Toledo, Raciel Yera; Mota, Yailé Caballero
2014-01-01
The paper proposes a recommender system approach to cover online judge's domains. Online judges are e-learning tools that support the automatic evaluation of programming tasks done by individual users, and for this reason they are usually used for training students in programming contest and for supporting basic programming teachings. The…
Mapping Pedagogy and Tools for Effective Learning Design
ERIC Educational Resources Information Center
Conole, G.; Dyke, M.; Oliver, M.; Seale, J.
2004-01-01
A number of pedagogies and approaches are often quoted in the e-learning literature--constructivism, communities of practice, collaboration--but we suggest that much of what is described could more easily be explained in terms of didactic and behaviourist approaches to learning. In this paper we propose a model that supports the development of…
Transformative Professional Development: Inquiry-Based College Science Teaching Institutes
ERIC Educational Resources Information Center
Zhao, Ningfeng; Witzig, Stephen B.; Weaver, Jan C.; Adams, John E.; Schmidt, Frank
2012-01-01
Two Summer Institutes funded by the National Science Foundation were held for current and future college science faculty. The overall goal was to promote learning and practice of inquiry-based college science teaching. We developed a collaborative and active learning format for participants that involved all phases of the 5E learning cycle of…
A Collaborative Virtual Environment for Situated Language Learning Using VEC3D
ERIC Educational Resources Information Center
Shih, Ya-Chun; Yang, Mau-Tsuen
2008-01-01
A 3D virtually synchronous communication architecture for situated language learning has been designed to foster communicative competence among undergraduate students who have studied English as a foreign language (EFL). We present an innovative approach that offers better e-learning than the previous virtual reality educational applications. The…
"The Evolution of e-Learning in the Context of 3D Virtual Worlds"
ERIC Educational Resources Information Center
Kotsilieris, Theodore; Dimopoulou, Nikoletta
2013-01-01
Information and Communication Technologies (ICT) offer new approaches towards knowledge acquisition and collaboration through distance learning processes. Web-based Learning Management Systems (LMS) have transformed the way that education is conducted nowadays. At the same time, the adoption of Virtual Worlds in the educational process is of great…
InnovateEDU, Inc.: Brooklyn Laboratory Charter Schools (LAB)
ERIC Educational Resources Information Center
EDUCAUSE, 2015
2015-01-01
Entrepreneurial learning is the backbone of this Brooklyn charter school network which opened in Fall 2014 to serve grades 6-12, including English language learners and students with disabilities. LAB's academic model combines empirically effective learning practices with innovative implementation strategies, including a blended learning model…
ERIC Educational Resources Information Center
Figueiredo, M.; Esteves, L.; Neves, J.; Vicente, H.
2016-01-01
This study reports the use of data mining tools in order to examine the influence of the methodology used in chemistry lab classes, on the weight attributed by the students to the lab work on learning and own motivation. The answer frequency analysis was unable to discriminate the opinions expressed by the respondents according to the type of the…
Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT
NASA Technical Reports Server (NTRS)
Dryer, David A.
2002-01-01
This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.
NASA Astrophysics Data System (ADS)
Browning, S.
2014-12-01
The Math You Need (TMYN) modules were introduced at Baylor University in fall 2012 to address issues of math anxiety common among freshmen non-majors completing their lab science requirement, and to reduce lab time spent reviewing basic math concepts. Modules and associated assessment questions commonly use geoscience examples to illustrate the mathematical principles involved, reinforcing topics addressed in lab. Large enrollments in the course selected for these modules necessitate multiple graduate teaching assistants in the lab, making the online nature of the modules and minimal required involvement of the teaching assistants even more valuable. Students completed three selected modules before encountering associated topics in lab, as well as a pre and post-test to gauge improvement. This presentation will review lessons learned and changes made in the first two years of TMYN at Baylor. Results indicate continued increases in mean pre to post test scores (e.g. 3.2% in fall 2012 to 11.9% in spring 2014), percentage of student pre to post- test improvement (59% in fall 2012 to 72% in spring 2014) and student participation (95 in fall 2012 to 186 in spring 2014). Continued use of these modules is anticipated.
[E-learning in ENT: Usage in University Medical Centers in Germany].
Freiherr von Saß, Peter; Klenzner, Thomas; Scheckenbach, Kathrin; Chaker, Adam
2017-03-01
E-learning is an essential part of innovative medical teaching concepts. The challenging anatomy and physiology in ENT is considered particularly suitable for self-assessed and adaptive e-learning. Usage and data on daily experience with e-learning in German ENT-university hospitals are currently unavailable and the degree of implementation of blended learning including feed-back from medical students are currently not known. We investigated the current need and usage of e-learning in academic ENT medical centers in Germany. We surveyed students and chairs for Otorhinolaryngology electronically and paperbased during the summer semester 2015. Our investigation revealed an overall heterogenous picture on quality and quantity of offered e-learning applications. While the overall amount of e-learning in academic ENT in Germany is rather low, at least half of the ENT-hospitals in medical faculties reported that e-learning had improved their own teaching activities. More collaboration among medical faculties and academic ENT-centers may help to explore new potentials, overcome technical difficulties and help to realize more ambitious projects. © Georg Thieme Verlag KG Stuttgart · New York.
Before You Collaborate, You Should Partner with NCI TTC | Poster
By Karen Surabian, Thomas Stackhouse, and Jeffrey W. Thomas, Contributing Writers As the fall and winter seasons progress, you may be attending more scientific conferences, where you may find a number of opportunities for research collaborations. To assist your lab in reaching its research goals through collaborations, the staff of the National Cancer Institute Technology
Datta, Soumitra Shankar; Agrawal, Sanjit
2017-01-01
e-learning resources need to be customised to the audience and learners to make them culturally relevant. The ' Palliative care e-learning resource for health care professionals in India' has been developed by the Karunashraya Hospice, Bengaluru in collaboration with the Cardiff Palliative Care Education Team, Wales to address the training needs of professionals in India. The resource, comprising over 20 modules, integrates psychological, social and medical care for patients requiring palliative care for cancer and other diseases. With increased internet usage, it would help in training a large number of professionals and volunteers in India who want to work in the field of palliative care.
NASA Astrophysics Data System (ADS)
Ogston, A. S.; Eidam, E.; Webster, K. L.; Hale, R. P.
2016-02-01
Experiential learning is becoming well-rooted in undergraduate curriculum as a means of stimulating interest in STEM fields, and of preparing students for future careers in scientific research and communication. To further these goals in coastal sciences, an intensive, research-focused course was developed at the UW Friday Harbor Labs. The course revolved around an active NSF-funded research project concerning the highly publicized Elwha River Restoration project. Between 2008 and 2014, four groups of research "apprentices" spent their academic quarter in residence at a small, coastal marine lab in a learning environment that integrated interdisciplinary lectures, workshops on data analysis and laboratory methods, and the research process from proposal to oceanographic research cruise to publication. This environment helped students gain important skills in fieldwork planning and execution, laboratory and digital data analyses, and manuscript preparation from start to finish—all while elevating their knowledge of integrated earth science topics related to a coastal restoration project. Students developed their own research proposals and pursued their individual interests within the overall research topic, thereby expanding the overall breadth of the NSF-funded research program. The topics of student interest were often beyond the researcher's expertise, which ultimately led to more interdisciplinary findings beyond the quarter-long class. This also provided opportunities for student creativity and leadership, and for collaboration with fellow course participants and with students from many other disciplines in residence at the marine lab. Tracking the outcomes of the diverse student group undertaking this program indicates that these undergraduate (and post-bac) students are generally attending graduate school at a high rate, and launching careers in education, coastal management, and other STEM fields.
Integrated Disinfection By-Products Mixtures Research: Results from the Four Lab Study
This study involves collaboration of four national laboratories/centers of the U.S. Environmental Protection Agency (EPA), as well as scientists from universities and water utilities, and is termed the ‘Four Lab Study’. The purpose of this study is to address concerns related to...
Successful Transportation Lab-Industry Collaborations Spotlighted at Summit
hosted leaders from the business, government, and research communities at the EERE National Lab Impact prime examples of these win-win partnerships, with major automakers, component manufacturers, and fuel with a keynote address by Ford Motor Company Vice President of Research and Advanced Engineering Ken
An Analysis of High School Students' Perceptions and Academic Performance in Laboratory Experiences
ERIC Educational Resources Information Center
Mirchin, Robert Douglas
2012-01-01
This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published…
Computer-based Astronomy Labs for Non-science Majors
NASA Astrophysics Data System (ADS)
Smith, A. B. E.; Murray, S. D.; Ward, R. A.
1998-12-01
We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.
Outreach within the Bristol ChemLabS CETL (Centre for Excellence in Teaching and Learning)
ERIC Educational Resources Information Center
Shallcross, Dudley E.; Harrison, Tim G.; Obey, Tim M.; Croker, Steve J.; Norman, Nick C.
2013-01-01
This paper presents an overview of the Bristol ChemLabS project. In particular, it describes the development and impacts of the outreach project within Bristol ChemLabS, the UK's Centre for Excellence in Teaching and Learning (CETL) in practical chemistry, and its continuation beyond the funded project. The major elements of working with both…
Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems
ERIC Educational Resources Information Center
Gómez-de-Gabriel, Jesús Manuel; Mandow, Anthony; Fernández-Lozano, Jesús; García-Cerezo, Alfonso
2015-01-01
This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to…
American Society for Clinical Pathology
... Pathology Day Share the infographics on your social media channels! Learn More Harness your Lab Data To improve patient care and fulfill CMS requirements Learn More My Role Pathologist Resident Lab Professional Program Directors Student Membership ...
Competencies for Information Professionals in Learning Labs and Makerspaces
ERIC Educational Resources Information Center
Koh, Kyungwon; Abbas, June
2015-01-01
An increasing number of libraries and museums provide transformative learning spaces, often called "Learning Labs" and "Makerspaces." These spaces invite users to explore traditional and digital media, interact with mentors and peers, and engage in creative projects. For these spaces and programs to be sustainable, it is…
Attack of the Killer Fungus: A Hypothesis-Driven Lab Module †
Sato, Brian K.
2013-01-01
Discovery-driven experiments in undergraduate laboratory courses have been shown to increase student learning and critical thinking abilities. To this end, a lab module involving worm capture by a nematophagous fungus was developed. The goals of this module are to enhance scientific understanding of the regulation of worm capture by soil-dwelling fungi and for students to attain a set of established learning goals, including the ability to develop a testable hypothesis and search for primary literature for data analysis, among others. Students in a ten-week majors lab course completed the lab module and generated novel data as well as data that agrees with the published literature. In addition, learning gains were achieved as seen through a pre-module and post-module test, student self-assessment, class exam, and lab report. Overall, this lab module enables students to become active participants in the scientific method while contributing to the understanding of an ecologically relevant model organism. PMID:24358387
Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems
NASA Technical Reports Server (NTRS)
Lowrey, Nikki M.; Mitchell, Mark A.
2015-01-01
Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both NASA and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. This presentation summarizes the tests performed, results, and lessons learned. It also demonstrates the benefits of cross-agency collaboration in a time of limited resources.
Exploring the changing learning environment of the gross anatomy lab.
Hopkins, Robin; Regehr, Glenn; Wilson, Timothy D
2011-07-01
The objective of this study was to assess the impact of virtual models and prosected specimens in the context of the gross anatomy lab. In 2009, student volunteers from an undergraduate anatomy class were randomly assigned to study groups in one of three learning conditions. All groups studied the muscles of mastication and completed identical learning objectives during a 45-minute lab. All groups were provided with two reference atlases. Groups were distinguished by the type of primary tools they were provided: gross prosections, three-dimensional stereoscopic computer model, or both resources. The facilitator kept observational field notes. A prepost multiple-choice knowledge test was administered to evaluate students' learning. No significant effect of the laboratory models was demonstrated between groups on the prepost assessment of knowledge. Recurring observations included students' tendency to revert to individual memorization prior to the posttest, rotation of models to match views in the provided atlas, and dissemination of groups into smaller working units. The use of virtual lab resources seemed to influence the social context and learning environment of the anatomy lab. As computer-based learning methods are implemented and studied, they must be evaluated beyond their impact on knowledge gain to consider the effect technology has on students' social development.
Personalized Online Learning Labs and Face-To-Face Teaching in First-Year College English Courses
ERIC Educational Resources Information Center
Sizemore, Mary L.
2017-01-01
The purpose of this two-phase, explanatory mixed methods study was to understand the benefits of teaching grammar from three different learning methods: face-to-face, online personalized learning lab and a blended learning method. The study obtained quantitative results from a pre and post-tests, a general survey and writing assignment rubrics…
ERIC Educational Resources Information Center
Sun, Koun-tem; Lin, Yuan-cheng; Yu, Chia-jui
2008-01-01
The purpose of this study is to explore the learning effect related to different learning styles in a Web-based virtual science laboratory for elementary school students. The online virtual lab allows teachers to integrate information and communication technology (ICT) into science lessons. The results of this experimental teaching method…
Identification of the focal plane wavefront control system using E-M algorithm
NASA Astrophysics Data System (ADS)
Sun, He; Kasdin, N. Jeremy; Vanderbei, Robert
2017-09-01
In a typical focal plane wavefront control (FPWC) system, such as the adaptive optics system of NASA's WFIRST mission, the efficient controllers and estimators in use are usually model-based. As a result, the modeling accuracy of the system influences the ultimate performance of the control and estimation. Currently, a linear state space model is used and calculated based on lab measurements using Fourier optics. Although the physical model is clearly defined, it is usually biased due to incorrect distance measurements, imperfect diagnoses of the optical aberrations, and our lack of knowledge of the deformable mirrors (actuator gains and influence functions). In this paper, we present a new approach for measuring/estimating the linear state space model of a FPWC system using the expectation-maximization (E-M) algorithm. Simulation and lab results in the Princeton's High Contrast Imaging Lab (HCIL) show that the E-M algorithm can well handle both the amplitude and phase errors and accurately recover the system. Using the recovered state space model, the controller creates dark holes with faster speed. The final accuracy of the model depends on the amount of data used for learning.
Sciences for Exoplanets and Planetary Systems : web sites and E-learning
NASA Astrophysics Data System (ADS)
Roques, F.; Balança, C.; Bénilan, Y.; Griessmeier, J. M.; Marcq, E.; Navarro, T.; Renner, S.; Schneider, J.; Schott, C.
2015-10-01
The websites « Sciences pour les Exoplanètes et les Systèmes Planétaires » (SESP) and « Exoplanètes » have been created in the context of the LabEx ESEP (Laboratoire d'excellence Exploration Spatiale des Environnements Planétaires) [1]. They present planetary and exoplanetary sciences with courses, interactive tools, and a didactic catalogue connected to the Encyclopedia http://exoplanet.eu [2]. These resources are directed towards undergraduate level. They will be used as support for face-to-face courses and self-training. In the future, we will translate some contents into English and create e-learning degree courses.
Wikis and Collaborative Learning in Higher Education
ERIC Educational Resources Information Center
Zheng, Binbin; Niiya, Melissa; Warschauer, Mark
2015-01-01
While collaborative learning and collaborative writing can be of great value to student learning, the implementation of a technology-supported collaborative learning environment is a challenge. With their built-in features for supporting collaborative writing and social communication, wikis are a promising platform for collaborative learning;…
Scripting for Construction of a Transactive Memory System in Multidisciplinary CSCL Environments
ERIC Educational Resources Information Center
Noroozi, Omid; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin; Chizari, Mohammad
2013-01-01
Establishing a Transactive Memory System (TMS) is essential for groups of learners, when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) could be designed to facilitate the TMS. This study investigates how various aspects of a TMS (i.e., specialization, coordination, and trust)…
A Novel Approach for Collaborative Pair Programming
ERIC Educational Resources Information Center
Goel, Sanjay; Kathuria, Vanshi
2010-01-01
The majority of an engineer's time in the software industry is spent working with other programmers. Agile methods of software development like eXtreme Programming strongly rely upon practices like daily meetings and pair programming. Hence, the need to learn the skill of working collaboratively is of primary importance for software developers.…
ERIC Educational Resources Information Center
Olson, Mark D.; Lewis, Melinda; Rappe, Paula; Hartley, Sandra
2015-01-01
A pilot study depicting a collaborative learning experience involving students in the helping professions (i.e., social work and paramedic) is presented, whereby students put discipline-specific practice behaviors into action in a training exercise using standardized clients (SCs). Real world scenarios commonly encountered in emergency response…
Discussion Tool Effects on Collaborative Learning and Social Network Structure
ERIC Educational Resources Information Center
Tomsic, Astrid; Suthers, Daniel D.
2006-01-01
This study investigated the social network structure of booking officers at the Honolulu Police Department and how the introduction of an online discussion tool affected knowledge about operation of a booking module. Baseline data provided evidence for collaboration among officers in the same district using e-mail, telephone and face-to-face media…
A Collaborative Educational Association Rule Mining Tool
ERIC Educational Resources Information Center
Garcia, Enrique; Romero, Cristobal; Ventura, Sebastian; de Castro, Carlos
2011-01-01
This paper describes a collaborative educational data mining tool based on association rule mining for the ongoing improvement of e-learning courses and allowing teachers with similar course profiles to share and score the discovered information. The mining tool is oriented to be used by non-expert instructors in data mining so its internal…
ERIC Educational Resources Information Center
Emery, Dave
1996-01-01
Describes a lab involving a cloud formation activity that uses the constructivist learning model to get students more involved in creating the lab. Enables students to develop a greater understanding of the concepts involved and more interest in the lab's outcomes. (JRH)
The New Challenges for E-learning: The Educational Semantic Web
ERIC Educational Resources Information Center
Aroyo, Lora; Dicheva, Darina
2004-01-01
The big question for many researchers in the area of educational systems now is what is the next step in the evolution of e-learning? Are we finally moving from a scattered intelligence to a coherent space of collaborative intelligence? How close we are to the vision of the Educational Semantic Web and what do we need to do in order to realize it?…
Incorporating learning goals about modeling into an upper-division physics laboratory experiment
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin M.; Finkelstein, Noah; Lewandowski, H. J.
2014-09-01
Implementing a laboratory activity involves a complex interplay among learning goals, available resources, feedback about the existing course, best practices for teaching, and an overall philosophy about teaching labs. Building on our previous work, which described a process of transforming an entire lab course, we now turn our attention to how an individual lab activity on the polarization of light was redesigned to include a renewed emphasis on one broad learning goal: modeling. By using this common optics lab as a concrete case study of a broadly applicable approach, we highlight many aspects of the activity development and show how modeling is used to integrate sophisticated conceptual and quantitative reasoning into the experimental process through the various aspects of modeling: constructing models, making predictions, interpreting data, comparing measurements with predictions, and refining models. One significant outcome is a natural way to integrate an analysis and discussion of systematic error into a lab activity.
NASA Astrophysics Data System (ADS)
Mehta, Nirav; Cheng, Kelvin
2012-10-01
We have developed an interactive workshop-style course for our introductory calculus-based physics sequence at Trinity University. Lecture is limited to approximately 15 min. at the beginning of class, and the remainder of the 50-min. class is devoted to inquiry-based activities and problem solving. So far, lab is done separately and we have not incorporated the lab component into the workshop model. We use the Brief Electricity and Magnetism Assessment (BEMA) to compare learning gains between the workshop and traditional lecture-based course for the Spring 2012 semester. Both the workshop and lecture courses shared the same inquiry-based lab component that involved pre-labs, prediction-observation and post-lab activities. Our BEMA results indicate statistically significant improvement in overall learning gains compared to the traditional course. We compare our workshop BEMA scores both to traditional lecture scores here at Trinity and to those from other institutions.
2000-07-01
identified by our collaborators in the Clevers lab in a two-hybrid screen for interactors with human 13-catenin. We have examined whether Brahma plays...Army and other research ongoing in my lab . I have thus acknowledged this support in several additional publications produced during this period, which...small increases in total Arm lead Peifer lab for helpful discussions. This work was supported by grants from the National Institutes of Health (GM
Gruson, Damien; Faure, Gilbert; Gouget, Bernard; Haliassos, Alexandre; Kisikuchin, Darya; Reguengo, Henrique; Topic, Elizabeta; Blaton, Victor
2013-04-01
The progress of information and communication technologies has strongly influenced changes in healthcare and laboratory medicine. E-learning, the learning or teaching through electronic means, contributes to the effective knowledge translation in medicine and healthcare, which is an essential element of a modern healthcare system and for the improvement of patient care. E-learning also represents a great vector for the transfer knowledge into laboratory practice, stimulate multidisciplinary interactions, enhance continuing professional development and promote laboratory medicine. The European Federation of Laboratory Medicine (EFLM) has initiated a distance learning program and the development of a collaborative network for e-learning. The EFLM dedicated working group encourages the organization of distance education programs and e-learning courses as well as critically evaluate information from courses, lectures and documents including electronic learning tools. The objectives of the present paper are to provide some specifications for distance learning and be compatible with laboratory medicine practices.
Snorkel: Rapid Training Data Creation with Weak Supervision.
Ratner, Alexander; Bach, Stephen H; Ehrenberg, Henry; Fries, Jason; Wu, Sen; Ré, Christopher
2017-11-01
Labeling training data is increasingly the largest bottleneck in deploying machine learning systems. We present Snorkel, a first-of-its-kind system that enables users to train state-of- the-art models without hand labeling any training data. Instead, users write labeling functions that express arbitrary heuristics, which can have unknown accuracies and correlations. Snorkel denoises their outputs without access to ground truth by incorporating the first end-to-end implementation of our recently proposed machine learning paradigm, data programming. We present a flexible interface layer for writing labeling functions based on our experience over the past year collaborating with companies, agencies, and research labs. In a user study, subject matter experts build models 2.8× faster and increase predictive performance an average 45.5% versus seven hours of hand labeling. We study the modeling tradeoffs in this new setting and propose an optimizer for automating tradeoff decisions that gives up to 1.8× speedup per pipeline execution. In two collaborations, with the U.S. Department of Veterans Affairs and the U.S. Food and Drug Administration, and on four open-source text and image data sets representative of other deployments, Snorkel provides 132% average improvements to predictive performance over prior heuristic approaches and comes within an average 3.60% of the predictive performance of large hand-curated training sets.
ERIC Educational Resources Information Center
Kagklis, Vasileios; Karatrantou, Anthi; Tantoula, Maria; Panagiotakopoulos, Chris T.; Verykios, Vassilios S.
2015-01-01
Online fora have become not only one of the most popular communication tools in e-learning environments, but also one of the key factors of the learning process, especially in distance learning, as they can provide to the students involved, motivation for collaboration in order to achieve a common goal. The purpose of this study is to analyse data…
Language Learning 2.0--International Collaboration Made Easy
ERIC Educational Resources Information Center
Kotikoski, Tuula-Harriet; Doshi, Natasha
2014-01-01
The Internet has become part of our daily life and serves as a source of knowledge as well as a space for interaction. E-learning is thus a vital element in teaching, and digital media offer not only the possibility to support the individual learning processes of students, but also to foster multilingualism and to immerse into authentic learning…
ERIC Educational Resources Information Center
Owen, Hazel; Dunham, Nicola
2015-01-01
E-learning experiences are widely becoming common practice in many schools, tertiary institutions and other organisations. However despite this increased use of technology to enhance learning and the associated investment involved the result does not always equate to more engaged, knowledgeable and skilled learners. We have observed two key…
ERIC Educational Resources Information Center
Lara, Miguel Angel
2013-01-01
Extant research indicates that, in face-to-face settings, cooperative learning and game-based learning strategies can be effective. However, in online settings (e.g., in distance education), there is a paucity of research in this area. This study was designed to investigate performance and attitudes of university students who played an educational…
ERIC Educational Resources Information Center
McCarthy, Josh
2016-01-01
This paper reports on a global learning partnership using "the Café: the collaborative application for education" as an e-learning environment within the Facebook framework, for first-year animation students at the University of South Australia (USA) in Australia and Nanyang Technological University in Singapore. "The Café" has…
ERIC Educational Resources Information Center
Page, Deb
2012-01-01
The digitized collections of artifacts known as electronic portfolios are creating solutions to a variety of performance improvement needs in ways that are cost-effective and improve both individual and group learning and performance. When social media functionality is embedded in e-portfolios, the tools support collaboration, social learning,…
Yeast for Mathematicians: A Ferment of Discovery and Model Competition to Describe Data.
Lewis, Matthew; Powell, James
2017-02-01
In addition to the memorization, algorithmic skills and vocabulary which are the default focus in many mathematics classrooms, professional mathematicians are expected to creatively apply known techniques, construct new mathematical approaches and communicate with and about mathematics. We propose that students can learn these professional, higher-level skills through Laboratory Experiences in Mathematical Biology which put students in the role of mathematics researcher creating mathematics to describe and understand biological data. Here we introduce a laboratory experience centered on yeast (Saccharomyces cerevisiae) growing in a small capped flask with a jar to collect carbon dioxide created during yeast growth and respiration. The lab requires no specialized equipment and can easily be run in the context of a college math class. Students collect data and develop mathematical models to explain the data. To help place instructors in the role of mentor/collaborator (as opposed to jury/judge), we facilitate the lab using model competition judged via Bayesian Information Criterion. This article includes details about the class activity conducted, student examples and pedagogical strategies for success.
NASA Astrophysics Data System (ADS)
Horswell, I.; Gimenez, E. N.; Marchal, J.; Tartoni, N.
2011-01-01
Hybrid silicon photon-counting detectors are becoming standard equipment for many synchrotron applications. The latest in the Medipix family of read-out chips designed as part of the Medipix Collaboration at CERN is the Medipix3, which while maintaining the same pixel size as its predecessor, offers increased functionality and operating modes. The active area of the Medipix3 chip is approx 14mm × 14mm (containing 256 × 256 pixels) which is not large enough for many detector applications, this results in the need to tile many sensors and chips. As a first step on the road to develop such a detector, it was decided to build a prototype single chip readout system to gain the necessary experience in operating a Medipix3 chip. To provide a flexible learning and development tool it was decided to build an interface based on the recently released FlexRIOTM system from National Instruments and to use the LabVIEWTM graphical programming environment. This system and the achieved performance are described in this paper.
NASA Astrophysics Data System (ADS)
Bistrow, Van
What aren't we teaching about physics in the traditional lecture course? Plenty! By offering the Advanced Laboratory Course, we hope to shed light on the following questions: How do we develop a systematic process of doing experiments? How do we record procedures and results? How should we interpret theoretical concepts in the real world? What experimental and computational techniques are available for producing and analyzing data? With what degree of confidence can we trust our measurements and interpretations? How well does a theory represent physical reality? How do we collaborate with experimental partners? How do we best communicate our findings to others?These questions are of fundamental importance to experimental physics, yet are not generally addressed by reading textbooks, attending lectures or doing homework problems. Thus, to provide a more complete understanding of physics, we offer laboratory exercises as a supplement to the other modes of learning. The speaker will describe some examples of experiments, and outline the history, structure and student impressions of the Advanced Lab course at the University of Chicago Department of Physics.
NASA Astrophysics Data System (ADS)
Waller, J. L.; Brey, J. A.
2014-12-01
"small problems, Big Trouble" (spBT) is an exhibition of artist Judith Waller's paintings accompanied by text panels written by Earth scientist Dr. James A. Brey and several science researchers and educators. The text panels' message is as much the focus of the show as the art--true interdisciplinarity! Waller and Brey's history of art and earth science collaborations include the successful exhibition "Layers: Places in Peril". New in spBT is extended collaboration with other scientists in order to create awareness of geoscience and other subjects (i.e. soil, parasites, dust, pollutants, invasive species, carbon, ground water contaminants, solar wind) small in scale which pose significant threats. The paintings are the size of a mirror, a symbol suggesting the problems depicted are those we increasingly need to face, noting our collective reflections of shared current and future reality. Naturalistic rendering and abstract form in the art helps reach a broad audience including those familiar with art and those familiar with science. The goal is that gallery visitors gain greater appreciation and understanding of both—and of the sober content of the show as a whole. "small problems, Big Trouble" premiers in Wisconsin April, 2015. As in previous collaborations, Waller and Brey actively utilize art and science (specifically geoscience) as an educational vehicle for active student learning. Planned are interdisciplinary university and area high school activities linked through spBT. The exhibition in a public gallery offers a means to enhance community awareness of and action on scientific issues through art's power to engage people on an emotional level. This AGU presentation includes a description of past Waller and Brey activities: incorporating art and earth science in lab and studio classrooms, producing gallery and museum exhibitions and delivering workshops and other presentations. They also describe how walking the paths of several past earth science disasters continues to inspire new chapters in their "Layers: Places in Peril" exhibit! A slide show includes images of paintings for "small problems, Big Trouble". Brey and Waller will lead a discussion on their process of incorporating broader collaboration with geoscientists and others in an educational art exhibition.
The impact of E-learning in medical education.
Ruiz, Jorge G; Mintzer, Michael J; Leipzig, Rosanne M
2006-03-01
The authors provide an introduction to e-learning and its role in medical education by outlining key terms, the components of e-learning, the evidence for its effectiveness, faculty development needs for implementation, evaluation strategies for e-learning and its technology, and how e-learning might be considered evidence of academic scholarship. E-learning is the use of Internet technologies to enhance knowledge and performance. E-learning technologies offer learners control over content, learning sequence, pace of learning, time, and often media, allowing them to tailor their experiences to meet their personal learning objectives. In diverse medical education contexts, e-learning appears to be at least as effective as traditional instructor-led methods such as lectures. Students do not see e-learning as replacing traditional instructor-led training but as a complement to it, forming part of a blended-learning strategy. A developing infrastructure to support e-learning within medical education includes repositories, or digital libraries, to manage access to e-learning materials, consensus on technical standardization, and methods for peer review of these resources. E-learning presents numerous research opportunities for faculty, along with continuing challenges for documenting scholarship. Innovations in e-learning technologies point toward a revolution in education, allowing learning to be individualized (adaptive learning), enhancing learners' interactions with others (collaborative learning), and transforming the role of the teacher. The integration of e-learning into medical education can catalyze the shift toward applying adult learning theory, where educators will no longer serve mainly as the distributors of content, but will become more involved as facilitators of learning and assessors of competency.
EDITORIAL: Student undergraduate laboratory and project work
NASA Astrophysics Data System (ADS)
Schumacher, Dieter
2007-05-01
During the last decade 'labwork' courses at university level have changed significantly. The beginning of this development was indicated and partly initiated by the EU-project 'Labwork in Science Education' funded by the European Community (1999-2001). The present special issue of the European Journal of Physics focuses on a multitude of different aspects of this process. The aim of this publication is to improve the exchange of experience and to promote this important trend. In physics research labs a silent revolution has taken place. Today the personal computer is omnipresent. It controls the experiment via stepping motors, piezo-microdrives etc, it monitors all parameters and collects the experimental data with the help of smart sensors. In particular, computer-based modern scanning and imaging techniques open the possibility of creating really new types of experiments. The computer allows data storage and processing on the one hand and simulation and modelling on the other. These processes occur in parallel or may even be interwoven. The web plays an important role in modern science for inquiry, communication, cooperation and publication. Traditional labwork courses do not prepare students for the many resulting demands. Therefore it is necessary to redefine the learning targets and to reconsider the learning methods. Two contributions show exemplarily how modern experimental devices could find their way into students' labs. In the article 'Infrared thermal imaging as a tool in university physics education' by Klaus-Peter Möllmann and Michael Vollmer we can see that infrared thermal imaging is a valuable tool in physics education at university level. It can help to visualize and thereby enhance understanding of physical phenomena of mechanics, thermal physics, electromagnetism, optics and radiation physics. The contribution 'Using Peltier cells to study solid-liquid-vapor transitions and supercooling' by Giacomo Torzo, Isabella Soletta and Mario Branca proves that new experiments which illustrate both fundamental physics and modern technology can be realized even with a small budget. Traditional labwork courses often provide a catalogue of well known experiments. The students must first learn the theoretical background. They then assemble the setup from specified equipment, collect the data and perform the default data processing. However, there is no way to learn to swim without water. In order to achieve a constructivist access to learning, 'project labs' are needed. In a project labwork course a small group of students works as a team on a mini research project. The students have to specify the question of research, develop a suitable experimental setup, conduct the experiment and find a suitable way to evaluate the data. Finally they must present their results e.g. in the framework of a public poster session. Three contributions refer to this approach, however they focus on different aspects: 'Project laboratory for first-year students' by Gorazd Planinšič, 'RealTime Physics: active learning laboratories' by David Sokoloff et al and 'Labs outside labs: miniprojects at a spring camp for future physics teachers' by Leos Dvorák. Is it possible to prepare the students specifically for project labwork? This question is answered by the contribution 'A new labwork course for physics students: devices, methods and research projects' by Knut Neumann and Manuela Welzel. The two main parts of the labwork course cover first experimental devices (e.g. multimeters, oscilloscopes, different sensors, operational amplifiers, step motors, AD/DA-converters). Then subjects such as data processing, consideration of measurement uncertainties, keeping records or using tools like LABVIEW etc are focused on. Another concrete proposal for a new curriculum is provided by James Sharp et al, in 'Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using MATLAB'. One can well imagine that project labs will be the typical learning environment for physics students in the future. However, the details of this change should be based on a better understanding of the learning process in a students' lab. A deeper insight is given by the contribution of Claudia von Aufschnaiter and Stefan von Aufschnaiter in 'University students' activities, thinking and learning during laboratory work'. A second important alteration has taken place in physics education during the last decade. The so-called new media have changed the world of learning and teaching to an unprecedented extent. Learning with new media is often much more related to physics labwork than to traditional lectures or seminars (e.g. small learning groups, problem based learning, a high level of interactivity). We need to take these new tools into consideration as suitable amendment (blended learning) or substitution (e-learning, distance learning) of labwork courses. The developments with presumably the highest impact on physics education are modelling tools, interactive screen experiments and remote labs. Under 'modelling tools', all computer programs are summarized which enable the simulation of a physical process based on an explicit or implicit given formula. Many commercial program packages are available. The application of modelling tools in labwork courses permits a tight binding of theory and experiment. This is particularly valid and necessary in the case of project work. An interactive screen experiment (ISE) is a computer assisted representation of a physical experiment. When watching a video clip of an experiment students are forced to be passive observers. In the case of an ISE they can manipulate the setup on the screen with the help of a hand-like mouse pointer and the computer will show the appropriate result. The ISE consists of a large number of digital photos taken from the real experiment. From an epistemological point of view an ISE has the character of an experiment and can be used to discover or to prove a physical law. Many more details and an overview of possible applications can be found in the contribution 'Multimedia representation of experiments in physics' by Juergen Kirstein and Volkhard Nordmeier. A remotely controlled lab (RCL) or 'remote lab' (RL) is a physical experiment which can be remotely controlled via web-interface (server) and client-PC. During recent years a lot of RLs have appeared and also disappeared on the web. At first sight it seems fascinating to use a rare and sophisticated experiment from any PC which is connected to the web. However, in order to provide such a high level experiment continuously and to manage the schedule for sequential access, an enormous amount of manpower is necessary. Sebastian Gröber et al describe their efforts to provide a number of useful RCLs in the contribution 'Experimenting from a distance—remotely controlled laboratory (RCL)'. At many universities, physics labwork courses are also provided for students of other disciplines. Usually these groups are significantly larger than the group of physics students. Labwork courses for these groups must account for the specific objectives and students' learning conditions (previous knowledge, motivation). Heike Theyßen describes a targeted labwork course especially designed for medical students: 'Towards targeted labwork in physics as a subsidiary subject: enhancing the learning efficiency by new didactical concepts and media'. The term 'targeted' refers to the specific choice of content and methods regarding the students' learning conditions as well as the objectives of the labwork course. These differ significantly from those of labwork courses for physics students. In this case two targeted learning environments were developed, implemented and evaluated by means of several comparative studies. Both learning environments differ from traditional physics labwork courses in their objectives, didactical concept, content and experimental setups. One of them is a hypermedia learning environment, in which the real experiments are represented by ISEs. We are just at the beginning of the process of developing new labwork courses. Students' labs are often provided for large learning groups. Therefore the development of new methods as well as the acquisition of new equipment demands a large amount of investment. Using the paths of communication and cooperation established in science, we can optimize the process of renewal in order to spare manpower and financial means. Robert Lambourne exemplarily presented the cooperation project piCETL in his article 'Laboratory-based teaching and the Physics Innovations Centre for Excellence in Teaching and Learning'. The articles show that the renewal process has many different facets. New concepts are in demand as well as new experimental setups; the new media as well as the recent progress in didactic research have a strong influence on the trends. All aspects are closely linked, which can be seen by the number of mutual citations in the contributions. In order to give the reader an orientation we have structured the content of this special issue along the following lines: • successful new ideas for student labs and projects • new roles of student labs and project work • information and communication technology in laboratory and project work. This special issue provides an overview and examples of best practice as well as general concepts and personal contacts as stimuli for an enhancement of the renewal of labwork courses at university level.
Is This Real Life? Is This Just Fantasy?: Realism and Representations in Learning with Technology
NASA Astrophysics Data System (ADS)
Sauter, Megan Patrice
Students often engage in hands-on activities during science learning; however, financial and practical constraints often limit the availability of these activities. Recent advances in technology have led to increases in the use of simulations and remote labs, which attempt to recreate hands-on science learning via computer. Remote labs and simulations are interesting from a cognitive perspective because they allow for different relations between representations and their referents. Remote labs are unique in that they provide a yoked representation, meaning that the representation of the lab on the computer screen is actually linked to that which it represents: a real scientific device. Simulations merely represent the lab and are not connected to any real scientific devices. However, the type of visual representations used in the lab may modify the effects of the lab technology. The purpose of this dissertation is to examine the relation between representation and technology and its effects of students' psychological experiences using online science labs. Undergraduates participated in two studies that investigated the relation between technology and representation. In the first study, participants performed either a remote lab or a simulation incorporating one of two visual representations, either a static image or a video of the equipment. Although participants in both lab conditions learned, participants in the remote lab condition had more authentic experiences. However, effects were moderated by the realism of the visual representation. Participants who saw a video were more invested and felt the experience was more authentic. In a second study, participants performed a remote lab and either saw the same video as in the first study, an animation, or the video and an animation. Most participants had an authentic experience because both representations evoked strong feelings of presence. However, participants who saw the video were more likely to believe the remote technology was real. Overall, the findings suggest that participants' experiences with technology were shaped by representation. Students had more authentic experiences using the remote lab than the simulation. However, incorporating visual representations that enhance presence made these experiences even more authentic and meaningful than afforded by the technology alone.
This study involves the collaboration of the four national laboratories of the U.S. Environmental Protection Agency (EPA), as well as other scientists from universities and water utilities, and is termed the ‘Four Lab Study’. The purpose of this study is to address concerns rela...
The U.S. Environmental Protection Agency’s “Four Lab Study” involved participation of researchers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from the water industry and academia. The study evaluated toxicological...
Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives
NASA Astrophysics Data System (ADS)
Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni
2018-03-01
This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.
NASA Astrophysics Data System (ADS)
Stanley, Jacob T.; Lewandowski, H. J.
2016-12-01
In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered "best practice" for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews with practicing researchers, namely, physics graduate students, we explore the different experiences researchers had in learning how to effectively use a notebook for scientific documentation. We find that very few of those interviewed thought that their undergraduate lab classes successfully taught them the benefit of maintaining a lab notebook. Most described training in lab notebook use as either ineffective or outright missing from their undergraduate lab course experience. Furthermore, a large majority of those interviewed explained that they did not receive any formal training in maintaining a lab notebook during their graduate school experience and received little to no feedback from their advisors on these records. Many of the interviewees describe learning the purpose of, and how to maintain, these kinds of lab records only after having a period of trial and error, having already started doing research in their graduate program. Despite the central role of scientific documentation in the research enterprise, these physics graduate students did not gain skills in documentation through formal instruction, but rather through informal hands-on practice.
ERIC Educational Resources Information Center
Jeong, Heisawn; Hmelo-Silver, Cindy E.
2016-01-01
This article proposes 7 core affordances of technology for collaborative learning based on theories of collaborative learning and CSCL (Computer-Supported Collaborative Learning) practices. Technology affords learner opportunities to (1) engage in a joint task, (2) communicate, (3) share resources, (4) engage in productive collaborative learning…
A Case Study of a High School Fab Lab
NASA Astrophysics Data System (ADS)
Lacy, Jennifer E.
This dissertation examines making and design-based STEM education in a formal makerspace. It focuses on how the design and implementation of a Fab Lab learning environment and curriculum affect how instructors and students see themselves engaging in science, and how the Fab Lab relates to the social sorting practices that already take place at North High School. While there is research examining design-based STEM education in informal and formal learning environments, we know little about how K-12 teachers define STEM in making activities when no university or museum partnership exists. This study sought to help fill this gap in the research literature. This case study of a formal makerspace followed instructors and students in one introductory Fab Lab course for one semester. Additional observations of an introductory woodworking course helped build the case and set it into the school context, and provided supplementary material to better understand the similarities and differences between the Fab Lab course and a more traditional design-based learning course. Using evidence from observational field notes, participant interviews, course materials, and student work, I found that the North Fab Lab relies on artifacts and rhetoric symbolic of science and STEM to set itself apart from other design-based courses at North High School. Secondly, the North Fab Lab instructors and students were unable to explain how what they were doing in the Fab Lab was science, and instead relied on vague and unsupported claims related to interdisciplinary STEM practices and dated descriptions of science. Lastly, the design and implementation of the Fab Lab learning environment and curriculum and its separation from North High School's low tech, design-based courses effectively reinforced social sorting practices and cultural assumptions about student work and intelligence.
2009-03-27
to learning and collaborative working • Developing more immersive learning where learning is promoted through experiencing the style of thinking of... Student Talk in Promoting Quality Learning in Science Classroom”, MS. Morrison, P., Barlow, M., Bethel, G. and Clothier, S. (2005), “Proficient Soldier...on student perceptions of learning effectiveness. 1 Computer self-efficacy: “The learner’s perception of their ability to carry out a series of
A novel collaborative e-learning platform for medical students - ALERT STUDENT
2014-01-01
Background The increasing complexity of medical curricula would benefit from adaptive computer supported collaborative learning systems that support study management using instructional design and learning object principles. However, to our knowledge, there are scarce reports regarding applications developed to meet this goal and encompass the complete medical curriculum. The aim of ths study was to develop and assess the usability of an adaptive computer supported collaborative learning system for medical students to manage study sessions. Results A study platform named ALERT STUDENT was built as a free web application. Content chunks are represented as Flashcards that hold knowledge and open ended questions. These can be created in a collaborative fashion. Multiple Flashcards can be combined into custom stacks called Notebooks that can be accessed in study Groups that belong to the user institution. The system provides a Study Mode that features text markers, text notes, timers and color-coded content prioritization based on self-assessment of open ended questions presented in a Quiz Mode. Time spent studying and Perception of knowledge are displayed for each student and peers using charts. Computer supported collaborative learning is achieved by allowing for simultaneous creation of Notebooks and self-assessment questions by many users in a pre-defined Group. Past personal performance data is retrieved when studying new Notebooks containing previously studied Flashcards. Self-report surveys showed that students highly agreed that the system was useful and were willing to use it as a reference tool. Conclusions The platform employs various instructional design and learning object principles in a computer supported collaborative learning platform for medical students that allows for study management. The application broadens student insight over learning results and supports informed decisions based on past learning performance. It serves as a potential educational model for the medical education setting that has gathered strong positive feedback from students at our school. This platform provides a case study on how effective blending of instructional design and learning object principles can be brought together to manage study, and takes an important step towards bringing information management tools to support study decisions and improving learning outcomes. PMID:25017028
A novel collaborative e-learning platform for medical students - ALERT STUDENT.
Taveira-Gomes, Tiago; Saffarzadeh, Areo; Severo, Milton; Guimarães, M Jorge; Ferreira, Maria Amélia
2014-07-14
The increasing complexity of medical curricula would benefit from adaptive computer supported collaborative learning systems that support study management using instructional design and learning object principles. However, to our knowledge, there are scarce reports regarding applications developed to meet this goal and encompass the complete medical curriculum. The aim of ths study was to develop and assess the usability of an adaptive computer supported collaborative learning system for medical students to manage study sessions. A study platform named ALERT STUDENT was built as a free web application. Content chunks are represented as Flashcards that hold knowledge and open ended questions. These can be created in a collaborative fashion. Multiple Flashcards can be combined into custom stacks called Notebooks that can be accessed in study Groups that belong to the user institution. The system provides a Study Mode that features text markers, text notes, timers and color-coded content prioritization based on self-assessment of open ended questions presented in a Quiz Mode. Time spent studying and Perception of knowledge are displayed for each student and peers using charts. Computer supported collaborative learning is achieved by allowing for simultaneous creation of Notebooks and self-assessment questions by many users in a pre-defined Group. Past personal performance data is retrieved when studying new Notebooks containing previously studied Flashcards. Self-report surveys showed that students highly agreed that the system was useful and were willing to use it as a reference tool. The platform employs various instructional design and learning object principles in a computer supported collaborative learning platform for medical students that allows for study management. The application broadens student insight over learning results and supports informed decisions based on past learning performance. It serves as a potential educational model for the medical education setting that has gathered strong positive feedback from students at our school.This platform provides a case study on how effective blending of instructional design and learning object principles can be brought together to manage study, and takes an important step towards bringing information management tools to support study decisions and improving learning outcomes.
WeFold: A Coopetition for Protein Structure Prediction
Khoury, George A.; Liwo, Adam; Khatib, Firas; Zhou, Hongyi; Chopra, Gaurav; Bacardit, Jaume; Bortot, Leandro O.; Faccioli, Rodrigo A.; Deng, Xin; He, Yi; Krupa, Pawel; Li, Jilong; Mozolewska, Magdalena A.; Sieradzan, Adam K.; Smadbeck, James; Wirecki, Tomasz; Cooper, Seth; Flatten, Jeff; Xu, Kefan; Baker, David; Cheng, Jianlin; Delbem, Alexandre C. B.; Floudas, Christodoulos A.; Keasar, Chen; Levitt, Michael; Popović, Zoran; Scheraga, Harold A.; Skolnick, Jeffrey; Crivelli, Silvia N.; Players, Foldit
2014-01-01
The protein structure prediction problem continues to elude scientists. Despite the introduction of many methods, only modest gains were made over the last decade for certain classes of prediction targets. To address this challenge, a social-media based worldwide collaborative effort, named WeFold, was undertaken by thirteen labs. During the collaboration, the labs were simultaneously competing with each other. Here, we present the first attempt at “coopetition” in scientific research applied to the protein structure prediction and refinement problems. The coopetition was possible by allowing the participating labs to contribute different components of their protein structure prediction pipelines and create new hybrid pipelines that they tested during CASP10. This manuscript describes both successes and areas needing improvement as identified throughout the first WeFold experiment and discusses the efforts that are underway to advance this initiative. A footprint of all contributions and structures are publicly accessible at http://www.wefold.org. PMID:24677212
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at
Estes, Krista; Gilliam, Eric; Knapfel, Sarah; Lee, Chanmi; Skiba, Diane
2016-01-01
The use of eHealth has grown in recent years and is projected to continue to increase exponentially. In order to empower and prepare advanced practice providers to integrate eHealth into their clinical practice, curricular changes need to occur. The iTEAM grant provides a unique opportunity to prepare advanced practice disciplines to provide collaborative care using eHealth. Through the integration of a simulated telehealth using a standardized patient, Doctor of Pharmacy and Advanced Practice Registered Nursing students learned how to apply health information technology and coordinate care in an interprofessional manner. Opportunities and challenges to guide future efforts to integrate eHealth-learning experiences into the curriculum are identified.
Geoscience Education Research: A Brief History, Context and Opportunities
NASA Astrophysics Data System (ADS)
Mogk, D. W.; Manduca, C. A.; Kastens, K. A.
2011-12-01
DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding (NRC, 2011). In the geosciences, content knowledge derives from all the "spheres, the complex interactions of components of the Earth system, applications of first principles from allied sciences, an understanding of "deep time", and approaches that emphasize the interpretive and historical nature of geoscience. Insights gained from the theory and practice of the cognitive and learning sciences that demonstrate how people learn, as well as research on learning from other STEM disciplines, have helped inform the development of geoscience curricular initiatives. The Earth Science Curriculum Project (1963) was strongly influenced by Piaget and emphasized hands-on, experiential learning. Recognizing that education research was thriving in related STEM disciplines a NSF report (NSF 97-171) recommended "... that GEO and EHR both support research in geoscience education, helping geoscientists to work with colleagues in fields such as educational and cognitive psychology, in order to facilitate development of a new generation of geoscience educators." An NSF sponsored workshop, Bringing Research on Learning to the Geosciences (2002) brought together geoscience educators and cognitive scientists to explore areas of mutual interest, and identified a research agenda that included study of spatial learning, temporal learning, learning about complex systems, use of visualizations in geoscience learning, characterization of expert learning, and learning environments. Subsequent events have focused on building new communities of scholars, such as the On the Cutting Edge faculty professional development workshops, extensive collections of online resources, and networks of scholars that have addressed teaching with visualizations, the affective domain, observing and assessing student learning, metacognition, and understanding complex systems. Geoscience education research is a growing and thriving field of scholarship that includes new PhD programs in geocognition (e.g. Michigan State Univ., Purdue Univ., Arizona State Univ., North Carolina State Univ.), and numerous collaborative research consortia (e.g. Synthesis of Research on Learning in the Geosciences; Spatial Intelligence and Learning Center, Geoscience Affective Research Network). The results of geoscience education research are presently being incorporated into the geoscience curriculum through teaching activities and textbooks. These many contributions reveal the need for sustained research on related topics: assessments of student learning, learning environments (lab and field), "what works" for different learning audiences, learning in upper division disciplinary courses, the nature of geoscience expertise. The National Research Council is currently reviewing the Status, Contributions, and Future Direction of Discipline-Based Education Research (DBER), see: http://www7.nationalacademies.org/bose/DBER_Homepage.html
Using Synchronous Technology to Enrich Student Learning
ERIC Educational Resources Information Center
Wang, Charles Xiaoxue; Jaeger, David; Liu, Jinxia; Guo, Xiaoning; Xie, Nan
2013-01-01
To explore the potential applications of synchronous technology to enrich student learning, faculty members from an American regional state university and a Chinese regional university collaborated to find appropriate ways to integrate synchronous technology (e.g., Adobe Connect) into an educational technology program in the American university…
ERIC Educational Resources Information Center
Astra, I Made; Nasbey, Hadi; Nugraha, Aditiya
2015-01-01
The aim of this research is to create learning media for senior high school students through an android application in the form of a simulation lab. The method employed in the study is research and development. A simulation lab which has been made subsequently validated by concept and media experts, further empirical testing by teachers and…
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an opportunity to develop students' understanding of the nature and importance of experimental physics within the discipline as a whole. Here, we present and compare both a longitudinal and pseudolongitudinal analysis of students' responses to a research-based assessment targeting students' views about experimental physics—the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS)—across multiple, required lab courses at a single institution. We find that, while pseudolongitudinal averages showed increases in students' E-CLASS scores in each consecutive course, analysis of longitudinal data indicates that this increase was not driven by a cumulative impact of laboratory instruction. Rather, the increase was driven by a selection effect in which students who persisted into higher-level lab courses already had more expertlike beliefs, attitudes, and expectations than their peers when they started the lower-level courses.
Ritchie, Ann
2011-03-01
The Northern Territory Department of Health and Families' (DHF) Library supports education programs for all staff. DHF is implementing an e-learning strategy, which may be viewed as a vehicle for coordinating the education function throughout the organisation. The objective of this study is to explore the concept of e-learning in relation to the Library's role in implementing an organisation-wide e-learning strategy. The main findings of a literature search about the effectiveness of e-learning in health professionals' education, and the responsibility and roles of health librarians in e-learning are described. A case study approach is used to outline the current role and future opportunities and challenges for the Library. The case study presents the organisation's strategic planning context. Four areas of operational activity which build on the Library's current educational activities are suggested: the integration of library resources 'learning objects' within a Learning Management System; developing online health information literacy training programs; establishing a physical and virtual 'e-Learning Library/Centre'; developing collaborative partnerships, taking on new responsibilities in e-learning development, and creating a new e-learning librarian role. The study shows that the Library's role is fundamental to developing the organisation's e-learning capacity and implementing an organisation-wide e-learning strategy. © 2010 The authors. Health Information and Libraries Journal © 2010 Health Libraries Group.
Open Doors, Open Minds: Empowered Teachers Work and Learn Shoulder to Shoulder
ERIC Educational Resources Information Center
Hudson, Marcia; Childs, Lauren; Carver, Cynthia L.
2016-01-01
In this article the authors share their experience of Teacher Lab, a job-embedded form of professional learning that has been a critical addition to professional learning practice for nearly a decade in the Avondale School District in Auburn Hills, Michigan. Using a full-day released time format, Teacher Lab combines preobservation dialogue and…
ERIC Educational Resources Information Center
Kamaruddin, Nafisah Kamariah Md; Jaafar, Norzilaila bt; Amin, Zulkarnain Md
2012-01-01
Inaccurate concept in statistics contributes to the assumption by the students that statistics do not relate to the real world and are not relevant to the engineering field. There are universities which introduced learning statistics using statistics lab activities. However, the learning is more on the learning how to use software and not to…
ERIC Educational Resources Information Center
Darrow, Rob; Friend, Bruce; Powell, Allison
2013-01-01
This roadmap was designed to provide guidance to the New York City Department of Education (NYCDOE) school administrators in implementing blended learning programs in their own schools. Over the 2012-13 school year, the International Association for K-12 Online Learning (iNACOL) worked with 8 NYCDOE Lab Schools, each with its own blended learning…
Epistemology and expectations survey about experimental physics: Development and initial results
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin M.; Hirokawa, Takako; Finkelstein, Noah; Lewandowski, H. J.
2014-06-01
In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) evaluates students' epistemology at the beginning and end of a semester. Students respond to paired questions about how they personally perceive doing experiments in laboratory courses and how they perceive an experimental physicist might respond regarding their research. Also, at the end of the semester, the E-CLASS assesses a third dimension of laboratory instruction, students' reflections on their course's expectations for earning a good grade. By basing survey statements on widely embraced learning goals and common critiques of teaching labs, the E-CLASS serves as an assessment tool for lab courses across the undergraduate curriculum and as a tool for physics education research. We present the development, evidence of validation, and initial formative assessment results from a sample that includes 45 classes at 20 institutions. We also discuss feedback from instructors and reflect on the challenges of large-scale online administration and distribution of results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Eric D.
1999-06-17
In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach computer-based research skills. With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Eric D.
1999-06-17
In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to teach computer-based research skills." With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less
ERIC Educational Resources Information Center
Tirado, Alejandro Uribe; Munoz, Wilson Castano
2011-01-01
This text presents the future of librarian education as exemplified by the Interamerican School of Library and Information Science at the University of Antioquia (Medellin-Colombia), using an online learning platform-LMS (Moodle) and through different personalized and collaborative learning activities and tools that help students identify their…
ERIC Educational Resources Information Center
Wang, Shu-Ling; Hwang, Gwo-Jen
2012-01-01
Research has suggested that CSCL environments contain fewer social context clues, resulting in various group processes, performance or motivation. This study thus attempts to explore the relationship among collective efficacy, group processes (i.e. task cohesion, cognitive quality) and collaborative performance in a CSCL environment. A total of 75…
The Development of a Self-Regulation in a Collaborative Context Scale
ERIC Educational Resources Information Center
Law, Victor; Ge, Xun; Eseryel, Deniz
2016-01-01
Self-regulation has been shown as a critical factor in learning in a regular classroom environment (e.g. Wolters and Pintrich in "Instr Sci" 26(1):27-47, 1998. doi: 10.1023/A:1003035929216). However, little research has been conducted to understand self-regulation in the context of collaboration (Dinsmore et al. in "Educ Psychol…
Low Latency Audio Video: Potentials for Collaborative Music Making through Distance Learning
ERIC Educational Resources Information Center
Riley, Holly; MacLeod, Rebecca B.; Libera, Matthew
2016-01-01
The primary purpose of this study was to examine the potential of LOw LAtency (LOLA), a low latency audio visual technology designed to allow simultaneous music performance, as a distance learning tool for musical styles in which synchronous playing is an integral aspect of the learning process (e.g., jazz, folk styles). The secondary purpose was…
ERIC Educational Resources Information Center
Baskerville, Delia
2012-01-01
Continuing emphasis given to computer technology resourcing in schools presents potential for web-based initiatives which focus on quality arts teaching and learning, as ways to improve arts outcomes for all students. An arts e-learning collaborative research project between specialist on-line teacher/researchers and generalist primary teachers…
The QuarkNet CMS masterclass: bringing the LHC to students
NASA Astrophysics Data System (ADS)
Cecire, Kenneth; McCauley, Thomas
2016-04-01
QuarkNet is an educational program which brings high school teachers and their students into the particle physics research community. The program supports research experiences and professional development workshops and provides inquiry-oriented investigations, some using real experimental data. The CMS experiment at the LHC has released several thousand proton-proton collision events for use in education and outreach. QuarkNet, in collaboration with CMS, has developed a physics masterclass and e-Lab based on this data. A masterclass is a day-long educational workshop where high school students travel to nearby universities and research laboratories. There they learn from LHC physicists about the basics of particle physics and detectors. They then perform a simple measurement using LHC data, and share their results with other students around the world via videoconference. Since 2011 thousands of students from over 25 countries have participated in the CMS masterclass as organized by QuarkNet and the International Particle Physics Outreach Group (IPPOG).We describe here the masterclass exercise: the physics, the online event display and database preparation behind it, the measurement the students undertake, their results and experiences, and future plans for the exercise.
Muñoz, Diana C; Ortiz, Alexandra; González, Carolina; López, Diego M; Blobel, Bernd
2010-01-01
Current e-learning systems are still inadequate to support the level of interaction, personalization and engagement demanded by clinicians, care givers, and the patient themselves. For effective e-learning to be delivered in the health context, collaboration between pedagogy and technology is required. Furthermore, e-learning systems should be flexible enough to be adapted to the students' needs, evaluated regularly, easy to use and maintain and provide students' feedback, guidelines and supporting material in different formats. This paper presents the implementation of an Intelligent Tutoring System (SIAS-ITS), and its evaluation compared to a traditional virtual learning platform (Moodle). The evaluation was carried out as a case study, in which the participants were separated in two groups, each group attending a virtual course on the WHO Integrated Management of Childhood Illness (IMCI) strategy supported by one of the two e-learning platforms. The evaluation demonstrated that the participants' knowledge level, pedagogical strategies used, learning efficiency and systems' usability were improved using the Intelligent Tutoring System.
NASA Astrophysics Data System (ADS)
Rieben, James C., Jr.
This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect of relevant (or "real world") samples on student learning and a verification-based lab design versus a discovery-based lab design. With the cellulose regeneration experiment, the effect of a discovery-based lab design vs. a verification-based lab design was the sole focus. Evaluation surveys consisting of six questions were used at three different times to assess student knowledge of experimental concepts. In the general chemistry laboratory portion of this study, four experimental variants were employed to investigate the effect of relevance and lab design on student learning. These variants consisted of a traditional (or verification) lab design, a traditional lab design using "real world" samples, a new lab design employing real world samples/situations using unknown samples, and the new lab design using real world samples/situations that were known to the student. Data used in this analysis were collected during the Fall 08, Winter 09, and Fall 09 terms. For the second part of this study a cellulose regeneration experiment was employed to investigate the effects of lab design. A demonstration creating regenerated cellulose "rayon" was modified and converted to an efficient and low-waste experiment. In the first variant students tested their products and verified a list of physical properties. In the second variant, students filled in a blank physical property chart with their own experimental results for the physical properties. Results from the conductivity experiment show significant student learning of the effects of concentration on conductivity and how to use conductivity to differentiate solution types with the use of real world samples. In the organic chemistry experiment, results suggest that the discovery-based design improved student retention of the chain length differentiation by physical properties relative to the verification-based design.
Collaboratory=Collaborate+Laboratory: The Mid-Columbia STEM Education Collaboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willcuts, Meredith H.; Kennedy, Cathleen A.
Pacific Northwest National Laboratory created a network focused on collaboration in STEM education to design and deliver projects, resources, and professional learning opportunities in a testbed environment. How do you uncover and fill gaps in equitable access to high-quality science, technology, engineering, and math (STEM) education offerings in your local region? Where might you deploy strategies to improve STEM workforce preparation and increase public understanding of STEM-oriented issues? And how can you help to ensure that students, educators, parents, and the community are aware of these programs and know how to access them in schools, colleges, and community venues? Ifmore » you are the Pacific Northwest National Laboratory (PNNL), you take on the huge goal of designing and implementing an innovative STEM education collaboration project that impacts all levels of local education, both inside and outside of school settings. PNNL is one of the 17 national laboratories funded by the U.S. Department of Energy. Operated by Battelle, PNNL has a vested interest in preparing the next generation of scientists and engineers for their future careers, thus building a STEM-capable workforce and creating a STEM-literate community. One of Battelle’s core principles is a commitment to STEM education and its role in business competitiveness and quality of life. PNNL has been active in STEM education for decades, providing internships for future scientists, giving educators in-house lab experiences, and engaging its researchers in STEM outreach activities in classrooms and the community. The Collaboratory is a relatively recent outcome of Battelle’s longstanding efforts in STEM education. The original Collaboratory planning documents, developed by PNNL’s Office of STEM Education (OSE), state the objective to “design, implement, and mature a local STEM education collaboration zone that highlights the power of PNNL and Battelle to impact the educational ecosystem and serve as a model for amplifying and accelerating progress in addressing our STEM education and workforce challenges” (PNNL 2013). In other words, we (the OSE) sought to create a zone of collaboration in which members co-design and deliver STEM education programs, share findings and lessons learned from their experiences, and co-manage and sustain the organization. We started by identifying possible collaborators located nearby in the largely rural southeast corner of Washington State. Recognizing that our potential collaborators had differing norms, values, and relationships within the community, as well as their own areas of expertise and purpose, we convened representatives from K–12 public and private schools, higher education, community-based learning providers, and local business and industry to brainstorm a unified vision to resolve gaps in local STEM education needs. Through discussions with these collaborators, we started hunting for gaps where STEM efforts were lacking but a desire to improve existed. We gave ourselves permission to try things out and built a testbed space where we could experiment with new ideas, gather evidence of feasibility, and treat failures as constructive learning opportunities. Through this generative process and with seed funding from Battelle, inter-organizational teams now work together, both virtually and in real time, to develop, test, and deploy resources to support student success, educators’ effectiveness, and community engagement in STEM. Thus, the Mid-Columbia STEM Education Collaboratory (Collaboratory) was born. This is the story of our beginnings: our challenges, our lessons learned, and emerging indicators of success. For those interested in launching an education–business–community STEM learning ecosystem, we share our story.« less
Perception of collaborative learning in associate degree students in Hong Kong.
Shek, Daniel T L; Shek, Moses M W
2013-01-01
Although collaborative learning has been widely researched in Western contexts, no study has been carried out to understand how associate degree students look at collaborative learning in Hong Kong. In this study, perceptions of and attitudes to collaborative learning among associate degree students were studied. A total of 44 associate degree students completed an online questionnaire including measures of perceived benefits and attitudes to collaborative learning, and social-emotional competence. Results showed that there were no significant differences between male and female students on perceived benefits of and attitudes towards collaborative learning. Social-emotional competence was related to perceived benefits of and attitudes to collaborative learning. Attitudes were also related to perceived benefits of collaborative learning. This paper is the first known study looking at the relationships among perceived benefits and attitudes to collaborative learning and social-emotional competence in Chinese associate degree students in different Chinese contexts.
Teacher Learning of Technology Enhanced Formative Assessment
NASA Astrophysics Data System (ADS)
Feldman, Allan; Capobianco, Brenda M.
2008-02-01
This study examined the integration of technology enhanced formative assessment (FA) into teachers' practice. Participants were high school physics teachers interested in improving their use of a classroom response system (CRS) to promote FA. Data were collected using interviews, direct classroom observations, and collaborative discussions. The physics teachers engaged in collaborative action research (AR) to learn how to use FA and CRS to promote student and teacher learning. Data were analyzed using open coding, cross-case analysis, and content analysis. Results from data analysis allowed researchers to construct a model for knowledge skills necessary for the integration of technology enhanced FA into teachers' practice. The model is as a set of four technologies: hardware and software; methods for constructing FA items; pedagogical methods; and curriculum integration. The model is grounded in the idea that teachers must develop these respective technologies as they interact with the CRS (i.e., hardware and software, item construction) and their existing practice (i.e., pedagogical methods, curriculum). Implications are that for teachers to make FA an integral part of their practice using CRS, they must: 1) engage in the four technologies; 2) understand the nature of FA; and 3) collaborate with other interested teachers through AR.
Design of Inquiry-Oriented Science Labs: Impacts on Students' Attitudes
ERIC Educational Resources Information Center
Baseya, J. M.; Francis, C. D.
2011-01-01
Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a…
ERIC Educational Resources Information Center
Fakomogbon, Michael Ayodele; Bolaji, Hameed Olalekan
2017-01-01
Collaborative learning is an approach employed by instructors to facilitate learning and improve learner's performance. Mobile learning can accommodate a variety of learning approaches. This study, therefore, investigated the effects of collaborative learning styles on performance of students in a mobile learning environment. The specific purposes…
Supporting Social Awareness in Collaborative E-Learning
ERIC Educational Resources Information Center
Lambropoulos, Niki; Faulkner, Xristine; Culwin, Fintan
2012-01-01
In the last decade, we have seen the emergence of virtual learning environments. Initially, these environments were a little more than document repositories that tutor used unicast to the students. Informed in part by social constructivist theories of education, later environments included capabilities for tutor-student and student-student,…
Professional Learning: A Fuzzy Logic-Based Modelling Approach
ERIC Educational Resources Information Center
Gravani, M. N.; Hadjileontiadou, S. J.; Nikolaidou, G. N.; Hadjileontiadis, L. J.
2007-01-01
Studies have suggested that professional learning is influenced by two key parameters, i.e., climate and planning, and their associated variables (mutual respect, collaboration, mutual trust, supportiveness, openness). In this paper, we applied analysis of the relationships between the proposed quantitative, fuzzy logic-based model and a series of…
Toward a Semantic Forum for Active Collaborative Learning
ERIC Educational Resources Information Center
Li, Yanyan; Dong, Mingkai; Huang, Ronghuai
2009-01-01
Online discussion forums provide open workspace allowing learners to share information, exchange ideas, address problems and discuss on specific themes. But the substantial impediment to its promotion as effective e-learning facility lies in the continuously increasing messages but with discrete and incoherent structure as well as the loosely-tied…
ERIC Educational Resources Information Center
Kolås, Line; Nordseth, Hugo; Yri, Jørgen Sørlie
2015-01-01
To ensure student activity in webinars we have defined 10 learning tasks focusing on production and communication e.g. collaborative writing, discussion and polling, and investigated how the technology supports the learning activities. The three project partners in the VisPed-project use different video-conferencing systems, and we analyzed how it…
ERIC Educational Resources Information Center
Kerkiri, Tania
2010-01-01
A comprehensive presentation is here made on the modular architecture of an e-learning platform with a distinctive emphasis on content personalization, combining advantages from semantic web technology, collaborative filtering and recommendation systems. Modules of this architecture handle information about both the domain-specific didactic…
ERIC Educational Resources Information Center
Salehi, Mojtaba; Nakhai Kamalabadi, Isa; Ghaznavi Ghoushchi, Mohammad Bagher
2014-01-01
Material recommender system is a significant part of e-learning systems for personalization and recommendation of appropriate materials to learners. However, in the existing recommendation algorithms, dynamic interests and multi-preference of learners and multidimensional-attribute of materials are not fully considered simultaneously. Moreover,…
[The informatics: a remarkable tool for teaching general internal medicine].
Ombelli, Julien; Pasche, Olivier; Sohrmann, Marc; Monti, Matteo
2015-05-13
INTERMED training implies a three week course, integrated in the "primary care module" for medical students in the first master year at the school of medicine in Lausanne. INTERMED uses an innovative teaching method based on repetitive sequences of e-learning-based individual learning followed by collaborative learning activities in teams, named Team-based learning (TBL). The e-learning takes place in a web-based virtual learning environment using a series of interactive multimedia virtual patients. By using INTERMED students go through a complete medical encounter applying clinical reasoning and choosing the diagnostic and therapeutic approach. INTERMED offers an authentic experience in an engaging and safe environment where errors are allowed and without consequences.
NASA Astrophysics Data System (ADS)
Beichner, Robert
2016-03-01
The Student-Centered Active Learning Environment with Upside-down Pedagogies (SCALE-UP) Project combines curricula and a specially-designed instructional space to enhance learning. SCALE-UP students practice communication and teamwork skills while performing activities that enhance their conceptual understanding and problem solving skills. This can be done with small or large classes and has been implemented at more than 250 institutions. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. SCALE-UP classtime is spent primarily on ``tangibles'' and ``ponderables''--hands-on measurements/observations and interesting questions. There are also computer simulations (called ``visibles'') and hypothesis-driven labs. Students sit at tables designed to facilitate group interactions. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Impressive learning gains have been measured at institutions across the US and internationally. This talk describes today's students, how lecturing got started, what happens in a SCALE-UP classroom, and how the approach has spread. The SCALE-UP project has greatly benefitted from numerous Grants made by NSF and FIPSE to NCSU and other institutions.
Revealing the Role of Microbes in Controlling Contaminants
Williams, Kenneth Hurst
2018-05-11
In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.
Revealing the Role of Microbes in Controlling Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kenneth Hurst
2015-04-02
In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.
The U.S. Environmental Protection Agency’s ‘Four Lab Study’, involved participation of scientists and engineers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from water industry and academia. The study evaluated tox...
Use of a Wiki-Based Software to Manage Research Group Activities
ERIC Educational Resources Information Center
Wang, Ting; Vezenov, Dmitri V.; Simboli, Brian
2014-01-01
This paper discusses use of the wiki software Confluence to organize research group activities and lab resources. Confluence can serve as an electronic lab notebook (ELN), as well as an information management and collaboration tool. The article provides a case study in how researchers can use wiki software in "home-grown" fashion to…
PBL and beyond: trends in collaborative learning.
Pluta, William J; Richards, Boyd F; Mutnick, Andrew
2013-01-01
Building upon the disruption to lecture-based methods triggered by the introduction of problem-based learning, approaches to promote collaborative learning are becoming increasingly diverse, widespread and generally well accepted within medical education. Examples of relatively new, structured collaborative learning methods include team-based learning and just-in-time teaching. Examples of less structured approaches include think-pair share, case discussions, and the flipped classroom. It is now common practice in medical education to employ a range of instructional approaches to support collaborative learning. We believe that the adoption of such approaches is entering a new and challenging era. We define collaborate learning by drawing on the broader literature, including Chi's ICAP framework that emphasizes the importance of sustained, interactive explanation and elaboration by learners. We distinguish collaborate learning from constructive, active, and passive learning and provide preliminary evidence documenting the growth of methods that support collaborative learning. We argue that the rate of adoption of collaborative learning methods will accelerate due to a growing emphasis on the development of team competencies and the increasing availability of digital media. At the same time, the adoption collaborative learning strategies face persistent challenges, stemming from an overdependence on comparative-effectiveness research and a lack of useful guidelines about how best to adapt collaborative learning methods to given learning contexts. The medical education community has struggled to consistently demonstrate superior outcomes when using collaborative learning methods and strategies. Despite this, support for their use will continue to expand. To select approaches with the greatest utility, instructors must carefully align conditions of the learning context with the learning approaches under consideration. Further, it is critical that modifications are made with caution and that instructors verify that modifications do not impede the desired cognitive activities needed to support meaningful collaborative learning.
Learning New Techniques for Remediation of Contaminated Sites
NASA Technical Reports Server (NTRS)
Lipsett-Ruiz, Teresa
2003-01-01
The project emphasizes NASA's Missions of understanding and protecting our home planet as well as of inspiring the next generation of explorers. The project fellow worked as part of a team on the development of new emulsion-based technologies for the removal of Contaminants from soil, sediment, and groundwater media with the scientists in charge of the emulsion-based technologies. Hands-on chemistry formulation and analyses using a GCM, as well as field sampling was done. The fellow was tidy immersed in lab and fieldwork, as well as, training sessions to qualify her to do the required work. The principal outcome of the project is the motivation to create collaboration links between major research university (UCF) and an emerging research university (UT).
NASA Astrophysics Data System (ADS)
Howard, K. L.; Lee, S. S.
2015-12-01
Open-source, web-based forums and online resources can be used to develop a collaborative, active-learning approach for engaging and training students in the scientific process. We used the Diatoms of the United States website as an online resource for diatom taxonomy and developed a Google+ class community to serve as a platform for high school students to learn about research in diatom taxonomy, community ecology and diatom applications to the earth sciences. Ecology and Systematics of Diatoms is a field course that has been taught at the undergraduate and graduate levels at the Iowa Lakeside Lab field station for 52 years, beginning with the Diatom Clinic in 1963. Freshwater diatom education at Lakeside Lab has since evolved into a foundational training course attracting budding diatomists from all over the world, and has grown to include a week-long course for high school students. Successful since 2012, the high school course is now offered for college credit (University of Iowa), and covers methods of diatom specimen collection and preparation, microscopy, identification of diatom genera, diatom ecology, applications of diatom research, and an introduction to data analysis incorporating multivariate statistics (ordination) using the R statistical program, as well as primary scientific literature. During the 2015 course, students contributed to a Google+ class community where they posted images, data, and questions. The web-based platform allowed students to easily share information and to give and receive feedback from both peers and instructors. Students collaborated via the Google+ community and used the Diatoms of the United States website to develop a taxonomic reference for a field-based group research project, simulating how an actual diatom research program would develop a region or project-specific flora harmonized across analysts. Students investigated the taxonomy and ecology of diatom epiphytes on the green alga Cladophora from the littoral zone of West Lake Okoboji, Iowa. They found the epiphyte community went through a seasonal succession and developed hypotheses for the observed patterns by researching the ecology of diatoms in primary literature. These course activities may be used as a model for other field-based courses or educational programs in earth and environmental sciences.
Staying Mindful in Action: The Challenge of "Double Awareness" on Task and Process in an Action Lab
ERIC Educational Resources Information Center
Svalgaard, Lotte
2016-01-01
Action Learning is a well-proven method to integrate "task" and "process", as learning about team and self (process) takes place while delivering on a task or business challenge of real importance (task). An Action Lab® is an intensive Action Learning programme lasting for 5 days, which aims at balancing and integrating…
ERIC Educational Resources Information Center
Overbaugh, Richard C.; Lin, ShinYi
2006-01-01
This study investigated differential effects of learning styles and learning orientation on sense of community and cognitive achievement in Web-based and lab-based university course formats. Students in the Web-based sections achieved higher scores at the "remember" and "understand" levels, but not at the "apply" or "analyze" levels. In terms of…
ERIC Educational Resources Information Center
Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John
2014-01-01
Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…
Co-"Lab"oration: A New Paradigm for Building a Management Information Systems Course
ERIC Educational Resources Information Center
Breimer, Eric; Cotler, Jami; Yoder, Robert
2010-01-01
We propose a new paradigm for building a Management Information Systems course that focuses on laboratory activities developed collaboratively using Computer-Mediated Communication and Collaboration tools. A highlight of our paradigm is the "practice what you preach" concept where the computer communication tools and collaboration…
Researchers at the Frederick National Lab (FNL) have collaborated in solving the three-dimensional structure of a key protein in Alzheimer’s disease, providing new insight into the basic mechanisms that give rise to the devastating illness. The pro
ERIC Educational Resources Information Center
Hanson, Pamela K.; Stultz, Laura
2015-01-01
Many science educators know of the pedagogical benefits of inquiry- and research-based labs, yet numerous barriers to implementation exist. In this article we describe a faculty development workshop that explored interdisciplinary and inter-institutional collaborations as potential mechanisms for overcoming barriers to curricular innovation.
First-Year Hands-On Design Course: Implementation & Reception
ERIC Educational Resources Information Center
Butterfield, Anthony E.; Branch, Kyle; Trujillo, Edward
2015-01-01
To incorporate active and collaborative teaching methods early in our curriculum, we have developed a freshman design laboratory. The course introduces numerous core concepts and lab skills, by way of seven teaching modules, including spectrometer construction and a collaborative project with seniors. Survey data show students enjoyed and learned…
When Collaborative Is Not Collaborative: Supporting Student Learning through Self-Surveillance
ERIC Educational Resources Information Center
Kotsopoulos, Donna
2010-01-01
Collaborative learning has been widely endorsed in education. This qualitative research examines instances of collaborative learning during mathematics that were seen to be predominantly non-collaborative despite the pedagogical efforts and intentions of the teacher and the task. In an effort to disrupt the non-collaborative learning, small groups…
Collaborative testing as a learning strategy in nursing education: a review of the literature.
Sandahl, Sheryl S
2009-01-01
Nurses are important members of a patient's interprofessional health care team. A primary goal of nursing education is to prepare nursing professionals who can work collaboratively with other team members for the benefit of the patient. Collaborative learning strategies provide students with opportunities to learn and practice collaboration. Collaborative testing is a collaborative learning strategy used to foster knowledge development, critical thinking in decision-making, and group processing skills. This article reviews the theoretical basis for collaborative learning and research on collaborative testing in nursing education.
E-learning in graduate medical education: survey of residency program directors.
Wittich, Christopher M; Agrawal, Anoop; Cook, David A; Halvorsen, Andrew J; Mandrekar, Jayawant N; Chaudhry, Saima; Dupras, Denise M; Oxentenko, Amy S; Beckman, Thomas J
2017-07-11
E-learning-the use of Internet technologies to enhance knowledge and performance-has become a widely accepted instructional approach. Little is known about the current use of e-learning in postgraduate medical education. To determine utilization of e-learning by United States internal medicine residency programs, program director (PD) perceptions of e-learning, and associations between e-learning use and residency program characteristics. We conducted a national survey in collaboration with the Association of Program Directors in Internal Medicine of all United States internal medicine residency programs. Of the 368 PDs, 214 (58.2%) completed the e-learning survey. Use of synchronous e-learning at least sometimes, somewhat often, or very often was reported by 85 (39.7%); 153 programs (71.5%) use asynchronous e-learning at least sometimes, somewhat often, or very often. Most programs (168; 79%) do not have a budget to integrate e-learning. Mean (SD) scores for the PD perceptions of e-learning ranged from 3.01 (0.94) to 3.86 (0.72) on a 5-point scale. The odds of synchronous e-learning use were higher in programs with a budget for its implementation (odds ratio, 3.0 [95% CI, 1.04-8.7]; P = .04). Residency programs could be better resourced to integrate e-learning technologies. Asynchronous e-learning was used more than synchronous, which may be to accommodate busy resident schedules and duty-hour restrictions. PD perceptions of e-learning are relatively moderate and future research should determine whether PD reluctance to adopt e-learning is based on unawareness of the evidence, perceptions that e-learning is expensive, or judgments about value versus effectiveness.
NASA Astrophysics Data System (ADS)
Barone, Vincenzo; Ratcliffe, Philip G.
Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I. Schmidt. Sivers effect in semi-inclusive deeply inelastic scattering and Drell-Yan / J. C. Collins ... [et al.]. Helicity formalism and spin asymmetries in hadronic processes / M. Anselmino ... [et al.]. Including Cahn and Sivers effects into event generators / A. Kotzinian. Comparing extractions of Sivers functions / M. Anselmino ... [et al.]. Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects / D. Boer. "T-odd" effects in transverse spin and azimuthal asymmetries in SIDIS / L. P. Gamberg & G. R. Goldstein. T-odd effects in unpolarized Drell-Yan scattering / G. R. Goldstein & L. P. Gamberg. Alternative approaches to transversity: how convenient and feasible are they? / M. Radici. Relations between single and double transverse asymmetries / O. V. Teryaev. Cross sections, error bars and event distributions in simulated Drell-Yan azimuthal asymmetry measurements / A. Bianconi. Next-to-leading order QCD corrections for transversely polarized pp and p¯p collisions / A. Mukherjee, M. Stratmann & W. Vogelsang. Double transverse-spin asymmetries in Drell-Yan and J/[symbol] production from proton-antiproton collisions / M. Guzzi ... [et al.]. The quark-quark correlator: theory and phenomenology / E. Di Salvo. Chiral quark model spin filtering mechanism and hyperon polarization / S. M. Troshin & N. E. Tyurin -- Closing lecture. Where we've been ... and where we're going / G. Bunce.
Effectiveness of a Lab Manual Delivered on CD-ROM
ERIC Educational Resources Information Center
Brickman, Peggy; Ketter, Catherine A. Teare; Pereira, Monica
2005-01-01
Although electronic instructional media are becoming increasingly prevalent in science classrooms, their worth remains unproven. Here, student perceptions and performance using CD-ROM delivery of lab materials are assessed. Numerous learning barriers that produced lower lab grades for students using a CD-ROM lab manual in comparison to a print…