Multiantenna Relay Beamforming Design for QoS Discrimination in Two-Way Relay Networks
Xiong, Ke; Zhang, Yu; Li, Dandan; Zhong, Zhangdui
2013-01-01
This paper investigates the relay beamforming design for quality of service (QoS) discrimination in two-way relay networks. The purpose is to keep legitimate two-way relay users exchange their information via a helping multiantenna relay with QoS guarantee while avoiding the exchanged information overhearing by unauthorized receiver. To this end, we propose a physical layer method, where the relay beamforming is jointly designed with artificial noise (AN) which is used to interfere in the unauthorized user's reception. We formulate the joint beamforming and AN (BFA) design into an optimization problem such that the received signal-to-interference-ratio (SINR) at the two legitimate users is over a predefined QoS threshold while limiting the received SINR at the unauthorized user which is under a certain secure threshold. The objective of the optimization problem is to seek the optimal AN and beamforming vectors to minimize the total power consumed by the relay node. Since the optimization problem is nonconvex, we solve it by using semidefinite program (SDP) relaxation. For comparison, we also study the optimal relay beamforming without using AN (BFO) under the same QoS discrimination constraints. Simulation results show that both the proposed BFA and BFO can achieve the QoS discrimination of the two-way transmission. However, the proposed BFA yields significant power savings and lower infeasible rates compared with the BFO method. PMID:24391459
NASA Astrophysics Data System (ADS)
Xu, Kui; Sun, Xiaoli; Zhang, Dongmei
2016-10-01
This paper investigates the spectral and energy efficiencies of a multi-pair two-way amplify-and-forward (AF) relay system over Ricean fading channels, where multiple user-pairs exchange information within pair through a relay with very large number of antennas, while each user equipped with a single antenna. Firstly, beamforming matrixe of zero-forcing reception/zero-forcing transmission (ZFR/ZFT) with imperfect channel state information (CSI) at the relay is given. Then, the unified asymptotic signal-to-interference-plus-noise ratio (SINR) expressions with imperfect CSI are obtained analytically. Finally, two power scaling schemes are proposed and the asymptotic spectral and energy efficiencies based on the proposed power scaling schemes are derived and verified by the Monte-Carlo simulations. Theoretical analyses and simulation results show that with imperfect CSI, if the number of relay antennas grows asymptotically large, we need cut down the transmit power of each user and relay to different proportion when the Ricean K-factor is non-zero and zero (Rayleigh fading) in order to maintain a desirable rate.
Spatially Controlled Relay Beamforming
NASA Astrophysics Data System (ADS)
Kalogerias, Dionysios
This thesis is about fusion of optimal stochastic motion control and physical layer communications. Distributed, networked communication systems, such as relay beamforming networks (e.g., Amplify & Forward (AF)), are typically designed without explicitly considering how the positions of the respective nodes might affect the quality of the communication. Optimum placement of network nodes, which could potentially improve the quality of the communication, is not typically considered. However, in most practical settings in physical layer communications, such as relay beamforming, the Channel State Information (CSI) observed by each node, per channel use, although it might be (modeled as) random, it is both spatially and temporally correlated. It is, therefore, reasonable to ask if and how the performance of the system could be improved by (predictively) controlling the positions of the network nodes (e.g., the relays), based on causal side (CSI) information, and exploitting the spatiotemporal dependencies of the wireless medium. In this work, we address this problem in the context of AF relay beamforming networks. This novel, cyber-physical system approach to relay beamforming is termed as "Spatially Controlled Relay Beamforming". First, we discuss wireless channel modeling, however, in a rigorous, Bayesian framework. Experimentally accurate and, at the same time, technically precise channel modeling is absolutely essential for designing and analyzing spatially controlled communication systems. In this work, we are interested in two distinct spatiotemporal statistical models, for describing the behavior of the log-scale magnitude of the wireless channel: 1. Stationary Gaussian Fields: In this case, the channel is assumed to evolve as a stationary, Gaussian stochastic field in continuous space and discrete time (say, for instance, time slots). Under such assumptions, spatial and temporal statistical interactions are determined by a set of time and space invariant parameters, which completely determine the mean and covariance of the underlying Gaussian measure. This model is relatively simple to describe, and can be sufficiently characterized, at least for our purposes, both statistically and topologically. Additionally, the model is rather versatile and there is existing experimental evidence, supporting its practical applicability. Our contributions are summarized in properly formulating the whole spatiotemporal model in a completely rigorous mathematical setting, under a convenient measure theoretic framework. Such framework greatly facilitates formulation of meaningful stochastic control problems, where the wireless channel field (or a function of it) can be regarded as a stochastic optimization surface.. 2. Conditionally Gaussian Fields, when conditioned on a Markovian channel state: This is a completely novel approach to wireless channel modeling. In this approach, the communication medium is assumed to behave as a partially observable (or hidden) system, where a hidden, global, temporally varying underlying stochastic process, called the channel state, affects the spatial interactions of the actual channel magnitude, evaluated at any set of locations in the plane. More specifically, we assume that, conditioned on the channel state, the wireless channel constitutes an observable, conditionally Gaussian stochastic process. The channel state evolves in time according to a known, possibly non stationary, non Gaussian, low dimensional Markov kernel. Recognizing the intractability of general nonlinear state estimation, we advocate the use of grid based approximate nonlinear filters as an effective and robust means for recursive tracking of the channel state. We also propose a sequential spatiotemporal predictor for tracking the channel gains at any point in time and space, providing real time sequential estimates for the respective channel gain map. In this context, our contributions are multifold. Except for the introduction of the layered channel model previously described, this line of research has resulted in a number of general, asymptotic convergence results, advancing the theory of grid-based approximate nonlinear stochastic filtering. In particular, sufficient conditions, ensuring asymptotic optimality are relaxed, and, at the same time, the mode of convergence is strengthened. Although the need for such results initiated as an attempt to theoretically characterize the performance of the proposed approximate methods for statistical inference, in regard to the proposed channel modeling approach, they turn out to be of fundamental importance in the areas of nonlinear estimation and stochastic control. The experimental validation of the proposed channel model, as well as the related parameter estimation problem, termed as "Markovian Channel Profiling (MCP)", fundamentally important for any practical deployment, are subject of current, ongoing research. Second, adopting the first of the two aforementioned channel modeling approaches, we consider the spatially controlled relay beamforming problem for an AF network with a single source, a single destination, and multiple, controlled at will, relay nodes. (Abstract shortened by ProQuest.).
Lee, Jong-Ho; Sohn, Illsoo; Kim, Yong-Hwa
2017-05-16
In this paper, we investigate simultaneous wireless power transfer and secure multicasting via cooperative decode-and-forward (DF) relays in the presence of multiple energy receivers and eavesdroppers. Two scenarios are considered under a total power budget: maximizing the minimum harvested energy among the energy receivers under a multicast secrecy rate constraint; and maximizing the multicast secrecy rate under a minimum harvested energy constraint. For both scenarios, we solve the transmit power allocation and relay beamformer design problems by using semidefinite relaxation and bisection technique. We present numerical results to analyze the energy harvesting and secure multicasting performances in cooperative DF relay networks.
Lee, Jong-Ho; Sohn, Illsoo; Kim, Yong-Hwa
2017-01-01
In this paper, we investigate simultaneous wireless power transfer and secure multicasting via cooperative decode-and-forward (DF) relays in the presence of multiple energy receivers and eavesdroppers. Two scenarios are considered under a total power budget: maximizing the minimum harvested energy among the energy receivers under a multicast secrecy rate constraint; and maximizing the multicast secrecy rate under a minimum harvested energy constraint. For both scenarios, we solve the transmit power allocation and relay beamformer design problems by using semidefinite relaxation and bisection technique. We present numerical results to analyze the energy harvesting and secure multicasting performances in cooperative DF relay networks. PMID:28509841
Multiple-access phased array antenna simulator for a digital beam-forming system investigation
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.
1992-01-01
Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.
Digital transceiver design for two-way AF-MIMO relay systems with imperfect CSI
NASA Astrophysics Data System (ADS)
Hu, Chia-Chang; Chou, Yu-Fei; Chen, Kui-He
2013-09-01
In the paper, combined optimization of the terminal precoders/equalizers and single-relay precoder is proposed for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) two-way single-relay system with correlated channel uncertainties. Both terminal transceivers and relay precoding matrix are designed based on the minimum mean square error (MMSE) criterion when terminals are unable to erase completely self-interference due to imperfect correlated channel state information (CSI). This robust joint optimization problem of beamforming and precoding matrices under power constraints belongs to neither concave nor convex so that a nonlinear matrix-form conjugate gradient (MCG) algorithm is applied to explore local optimal solutions. Simulation results show that the robust transceiver design is able to overcome effectively the loss of bit-error-rate (BER) due to inclusion of correlated channel uncertainties and residual self-interference.
Energy Efficiency Optimization in Relay-Assisted MIMO Systems With Perfect and Statistical CSI
NASA Astrophysics Data System (ADS)
Zappone, Alessio; Cao, Pan; Jorswieck, Eduard A.
2014-01-01
A framework for energy-efficient resource allocation in a single-user, amplify-and-forward relay-assisted MIMO system is devised in this paper. Previous results in this area have focused on rate maximization or sum power minimization problems, whereas fewer results are available when bits/Joule energy efficiency (EE) optimization is the goal. The performance metric to optimize is the ratio between the system's achievable rate and the total consumed power. The optimization is carried out with respect to the source and relay precoding matrices, subject to QoS and power constraints. Such a challenging non-convex problem is tackled by means of fractional programming and and alternating maximization algorithms, for various CSI assumptions at the source and relay. In particular the scenarios of perfect CSI and those of statistical CSI for either the source-relay or the relay-destination channel are addressed. Moreover, sufficient conditions for beamforming optimality are derived, which is useful in simplifying the system design. Numerical results are provided to corroborate the validity of the theoretical findings.
ATDRS payload technology R & D
NASA Technical Reports Server (NTRS)
Anzic, G.; Connolly, D. J.; Fujikawa, G.; Andro, M.; Kunath, R. R.; Sharp, G. R.
1990-01-01
Four technology development tasks were chosen to reduce (or at least better understand) the technology risks associated with proposed approaches to Advanced Tracking and Data Relay Satellite (ATDRS). The four tasks relate to a Tri-Band Antenna feed system, a Digital Beamforming System for the S Band Multiple-Access System (SMA), an SMA Phased Array Antenna, and a Configuration Thermal/Mechanical Analysis task. The objective, approach, and status of each are discussed.
ATDRS payload technology research and development
NASA Technical Reports Server (NTRS)
Anzic, G.; Connolly, D. J.; Fujikawa, G.; Andro, M.; Kunath, R. R.; Sharp, G. R.
1990-01-01
Four technology development tasks were chosen to reduce (or at least better understand) the technology risks associated with proposed approaches to Advanced Tracking and Data Relay Satellite (ATDRS). The four tasks relate to a Tri-Band Antenna feed system, a Digital Beamforming System for the S Band Multiple Access System (SMA), an SMA Phased Array Antenna, and a Configuration Thermal/Mechanical Analysis task. The objective, approach, and status of each are discussed.
ATDRS payload technology R & D
NASA Astrophysics Data System (ADS)
Anzic, G.; Connolly, D. J.; Fujikawa, G.; Andro, M.; Kunath, R. R.; Sharp, G. R.
Four technology development tasks were chosen to reduce (or at least better understand) the technology risks associated with proposed approaches to Advanced Tracking and Data Relay Satellite (ATDRS). The four tasks relate to a Tri-Band Antenna feed system, a Digital Beamforming System for the S Band Multiple-Access System (SMA), an SMA Phased Array Antenna, and a Configuration Thermal/Mechanical Analysis task. The objective, approach, and status of each are discussed.
Multiple-access phased array antenna simulator for a digital beam forming system investigation
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.
1992-01-01
Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.
2017-01-01
Collaborative beamforming (CBF) with a finite number of collaborating nodes (CNs) produces sidelobes that are highly dependent on the collaborating nodes’ locations. The sidelobes cause interference and affect the communication rate of unintended receivers located within the transmission range. Nulling is not possible in an open-loop CBF since the collaborating nodes are unable to receive feedback from the receivers. Hence, the overall sidelobe reduction is required to avoid interference in the directions of the unintended receivers. However, the impact of sidelobe reduction on the capacity improvement at the unintended receiver has never been reported in previous works. In this paper, the effect of peak sidelobe (PSL) reduction in CBF on the capacity of an unintended receiver is analyzed. Three meta-heuristic optimization methods are applied to perform PSL minimization, namely genetic algorithm (GA), particle swarm algorithm (PSO) and a simplified version of the PSO called the weightless swarm algorithm (WSA). An average reduction of 20 dB in PSL alongside 162% capacity improvement is achieved in the worst case scenario with the WSA optimization. It is discovered that the PSL minimization in the CBF provides capacity improvement at an unintended receiver only if the CBF cluster is small and dense. PMID:28464000
Collaboration via E-Mail and Internet Relay Chat: Understanding Time and Technology.
ERIC Educational Resources Information Center
Duin, Ann Hill; Archee, Ray
1996-01-01
Examines how college students working across distances used e-mail and Internet Relay Chat (IRC) to facilitate their collaboration and decision-making processes. Finds that students came to a decision more quickly using e-mail than with IRC, and when IRC was slow, students reverted to a series of rapid-fire e-mail messages. (RS)
Felici-Castell, Santiago; Navarro, Enrique A.; Pérez-Solano, Juan J.; Segura-García, Jaume; García-Pineda, Miguel
2017-01-01
Wireless Sensor Networks (WSNs) are composed of spatially distributed autonomous sensor devices, named motes. These motes have their own power supply, processing unit, sensors and wireless communications However with many constraints, such as limited energy, bandwidth and computational capabilities. In these networks, at least one mote called a sink, acts as a gateway to connect with other networks. These sensor networks run monitoring applications and then the data gathered by these motes needs to be retrieved by the sink. When this sink is located in the far field, there have been many proposals in the literature based on Collaborative Beamforming (CB), also known as Distributed or Cooperative Beamforming, for these long range communications to reach the sink. In this paper, we conduct a thorough study of the related work and analyze the requirements to do CB. In order to implement these communications in real scenarios, we will consider if these requirements and the assumptions made are feasible from the point of view of commercial motes and their constraints. In addition, we will go a step further and will consider different alternatives, by relaxing these requirements, trying to find feasible assumptions to carry out these types of communications with commercial motes. This research considers the nonavailability of a central clock that synchronizes all motes in the WSN, and all motes have identical hardware. This is a feasibility study to do CB on WSN, using a simulated scenario with randomized delays obtained from experimental data from commercial motes. PMID:28134753
Felici-Castell, Santiago; Navarro, Enrique A; Pérez-Solano, Juan J; Segura-García, Jaume; García-Pineda, Miguel
2017-01-26
Wireless Sensor Networks (WSNs) are composed of spatially distributed autonomous sensor devices, named motes. These motes have their own power supply, processing unit, sensors and wireless communications However with many constraints, such as limited energy, bandwidth and computational capabilities. In these networks, at least one mote called a sink, acts as a gateway to connect with other networks. These sensor networks run monitoring applications and then the data gathered by these motes needs to be retrieved by the sink. When this sink is located in the far field, there have been many proposals in the literature based on Collaborative Beamforming (CB), also known as Distributed or Cooperative Beamforming, for these long range communications to reach the sink. In this paper, we conduct a thorough study of the related work and analyze the requirements to do CB. In order to implement these communications in real scenarios, we will consider if these requirements and the assumptions made are feasible from the point of view of commercial motes and their constraints. In addition, we will go a step further and will consider different alternatives, by relaxing these requirements, trying to find feasible assumptions to carry out these types of communications with commercial motes. This research considers the nonavailability of a central clock that synchronizes all motes in the WSN, and all motes have identical hardware. This is a feasibility study to do CB on WSN, using a simulated scenario with randomized delays obtained from experimental data from commercial motes.
ERIC Educational Resources Information Center
Simpson, Carol
2000-01-01
Describes Internet Relay Chats (IRCs), electronic conversations over the Internet that allow multiple users to write messages, and their applications to educational settings such as teacher collaboration and conversations between classes. Explains hardware and software requirements, IRC organization into nets and channels, and benefits and…
Performance Analysis of Relay Subset Selection for Amplify-and-Forward Cognitive Relay Networks
Qureshi, Ijaz Mansoor; Malik, Aqdas Naveed; Zubair, Muhammad
2014-01-01
Cooperative communication is regarded as a key technology in wireless networks, including cognitive radio networks (CRNs), which increases the diversity order of the signal to combat the unfavorable effects of the fading channels, by allowing distributed terminals to collaborate through sophisticated signal processing. Underlay CRNs have strict interference constraints towards the secondary users (SUs) active in the frequency band of the primary users (PUs), which limits their transmit power and their coverage area. Relay selection offers a potential solution to the challenges faced by underlay networks, by selecting either single best relay or a subset of potential relay set under different design requirements and assumptions. The best relay selection schemes proposed in the literature for amplify-and-forward (AF) based underlay cognitive relay networks have been very well studied in terms of outage probability (OP) and bit error rate (BER), which is deficient in multiple relay selection schemes. The novelty of this work is to study the outage behavior of multiple relay selection in the underlay CRN and derive the closed-form expressions for the OP and BER through cumulative distribution function (CDF) of the SNR received at the destination. The effectiveness of relay subset selection is shown through simulation results. PMID:24737980
2017-08-01
filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics
Collaborative Storytelling Experiences in Social Media: Influence of Peer-Assistance Mechanisms
ERIC Educational Resources Information Center
Liu, Chen-Chung; Liu, Kuo-Ping; Chen, Wei-Hong; Lin, Chiu-Pin; Chen, Gwo-Dong
2011-01-01
Collaborative storytelling activities in social media environments are generally developed in a linear way in which all participants collaborate on a shared story as it is passed from one to another in a relay form. Difficulties with this linear approach arise when collecting the contributions of participants in to a coherent story. This study…
Collaborative Beamfocusing Radio (COBRA)
NASA Astrophysics Data System (ADS)
Rode, Jeremy P.; Hsu, Mark J.; Smith, David; Husain, Anis
2013-05-01
A Ziva team has recently demonstrated a novel technique called Collaborative Beamfocusing Radios (COBRA) which enables an ad-hoc collection of distributed commercial off-the-shelf software defined radios to coherently align and beamform to a remote radio. COBRA promises to operate even in high multipath and non-line-of-sight environments as well as mobile applications without resorting to computationally expensive closed loop techniques that are currently unable to operate with significant movement. COBRA exploits two key technologies to achieve coherent beamforming. The first is Time Reversal (TR) which compensates for multipath and automatically discovers the optimal spatio-temporal matched filter to enable peak signal gains (up to 20 dB) and diffraction-limited focusing at the intended receiver in NLOS and severe multipath environments. The second is time-aligned buffering which enables TR to synchronize distributed transmitters into a collaborative array. This time alignment algorithm avoids causality violations through the use of reciprocal buffering. Preserving spatio-temporal reciprocity through the TR capture and retransmission process achieves coherent alignment across multiple radios at ~GHz carriers using only standard quartz-oscillators. COBRA has been demonstrated in the lab, aligning two off-the-shelf software defined radios over-the-air to an accuracy of better than 2 degrees of carrier alignment at 450 MHz. The COBRA algorithms are lightweight, with computation in 5 ms on a smartphone class microprocessor. COBRA also has low start-up latency, achieving high accuracy from a cold-start in 30 ms. The COBRA technique opens up a large number of new capabilities in communications, and electronic warfare including selective spatial jamming, geolocation and anti-geolocation.
NASA Astrophysics Data System (ADS)
Ruigrok, Elmer; Wapenaar, Kees
2014-05-01
In various application areas, e.g., seismology, astronomy and geodesy, arrays of sensors are used to characterize incoming wavefields due to distant sources. Beamforming is a general term for phased-adjusted summations over the different array elements, for untangling the directionality and elevation angle of the incoming waves. For characterizing noise sources, beamforming is conventionally applied with a temporal Fourier and a 2D spatial Fourier transform, possibly with additional weights. These transforms become aliased for higher frequencies and sparser array-element distributions. As a partial remedy, we derive a kernel for beamforming crosscorrelated data and call it cosine beamforming (CBF). By applying beamforming not directly to the data, but to crosscorrelated data, the sampling is effectively increased. We show that CBF, due to this better sampling, suffers less from aliasing and yields higher resolution than conventional beamforming. As a flip-side of the coin, the CBF output shows more smearing for spherical waves than conventional beamforming.
Zeng, Xing; Chen, Cheng; Wang, Yuanyuan
2012-12-01
In this paper, a new beamformer which combines the eigenspace-based minimum variance (ESBMV) beamformer with the Wiener postfilter is proposed for medical ultrasound imaging. The primary goal of this work is to further improve the medical ultrasound imaging quality on the basis of the ESBMV beamformer. In this method, we optimize the ESBMV weights with a Wiener postfilter. With the optimization of the Wiener postfilter, the output power of the new beamformer becomes closer to the actual signal power at the imaging point than the ESBMV beamformer. Different from the ordinary Wiener postfilter, the output signal and noise power needed in calculating the Wiener postfilter are estimated respectively by the orthogonal signal subspace and noise subspace constructed from the eigenstructure of the sample covariance matrix. We demonstrate the performance of the new beamformer when resolving point scatterers and cyst phantom using both simulated data and experimental data and compare it with the delay-and-sum (DAS), the minimum variance (MV) and the ESBMV beamformer. We use the full width at half maximum (FWHM) and the peak-side-lobe level (PSL) to quantify the performance of imaging resolution and the contrast ratio (CR) to quantify the performance of imaging contrast. The FWHM of the new beamformer is only 15%, 50% and 50% of those of the DAS, MV and ESBMV beamformer, while the PSL is 127.2dB, 115dB and 60dB lower. What is more, an improvement of 239.8%, 232.5% and 32.9% in CR using simulated data and an improvement of 814%, 1410.7% and 86.7% in CR using experimental data are achieved compared to the DAS, MV and ESBMV beamformer respectively. In addition, the effect of the sound speed error is investigated by artificially overestimating the speed used in calculating the propagation delay and the results show that the new beamformer provides better robustness against the sound speed errors. Therefore, the proposed beamformer offers a better performance than the DAS, MV and ESBMV beamformer, showing its potential in medical ultrasound imaging. Copyright © 2012 Elsevier B.V. All rights reserved.
Impact of Beamforming on the Path Connectivity in Cognitive Radio Ad Hoc Networks
Dung, Le The; Hieu, Tran Dinh; Choi, Seong-Gon; Kim, Byung-Seo; An, Beongku
2017-01-01
This paper investigates the impact of using directional antennas and beamforming schemes on the connectivity of cognitive radio ad hoc networks (CRAHNs). Specifically, considering that secondary users use two kinds of directional antennas, i.e., uniform linear array (ULA) and uniform circular array (UCA) antennas, and two different beamforming schemes, i.e., randomized beamforming and center-directed to communicate with each other, we study the connectivity of all combination pairs of directional antennas and beamforming schemes and compare their performances to those of omnidirectional antennas. The results obtained in this paper show that, compared with omnidirectional transmission, beamforming transmission only benefits the connectivity when the density of secondary user is moderate. Moreover, the combination of UCA and randomized beamforming scheme gives the highest path connectivity in all evaluating scenarios. Finally, the number of antenna elements and degree of path loss greatly affect path connectivity in CRAHNs. PMID:28346377
New perspective on single-radiator multiple-port antennas for adaptive beamforming applications.
Byun, Gangil; Choo, Hosung
2017-01-01
One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays.
Effect of subaperture beamforming on phase coherence imaging.
Hasegawa, Hideyuki; Kanai, Hiroshi
2014-11-01
High-frame-rate echocardiography using unfocused transmit beams and parallel receive beamforming is a promising method for evaluation of cardiac function, such as imaging of rapid propagation of vibration of the heart wall resulting from electrical stimulation of the myocardium. In this technique, high temporal resolution is realized at the expense of spatial resolution and contrast. The phase coherence factor has been developed to improve spatial resolution and contrast in ultrasonography. It evaluates the variance in phases of echo signals received by individual transducer elements after delay compensation, as in the conventional delay-andsum beamforming process. However, the phase coherence factor suppresses speckle echoes because phases of speckle echoes fluctuate as a result of interference of echoes. In the present study, the receiving aperture was divided into several subapertures, and conventional delay-and-sum beamforming was performed with respect to each subaperture to suppress echoes from scatterers except for that at a focal point. After subaperture beamforming, the phase coherence factor was obtained from beamformed RF signals from respective subapertures. By means of this procedure, undesirable echoes, which can interfere with the echo from a focal point, can be suppressed by subaperture beamforming, and the suppression of the phase coherence factor resulting from phase fluctuation caused by such interference can be avoided. In the present study, the effect of subaperture beamforming in high-frame-rate echocardiography with the phase coherence factor was evaluated using a phantom. By applying subaperture beamforming, the average intensity of speckle echoes from a diffuse scattering medium was significantly higher (-39.9 dB) than that obtained without subaperture beamforming (-48.7 dB). As for spatial resolution, the width at half-maximum of the lateral echo amplitude profile obtained without the phase coherence factor was 1.06 mm. By using the phase coherence factor, spatial resolution was improved significantly, and subaperture beamforming achieved a better spatial resolution of 0.75 mm than that of 0.78 mm obtained without subaperture beamforming.
COMPASS Final Report: Lunar Relay Satellite (LRS)
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.
2012-01-01
The Lunar Relay Satellite (LRS) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session was tasked to design a satellite to orbit in an elliptical lunar polar orbit to provide relay communications between lunar South Pole assets and the Earth. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The LRS is a half-TDRSS sized box spacecraft, which provides communications and navigation relay between lunar outposts (via Lunar Communications Terminals (LCT)) or Sortie parties (with user radios) and large ground antennas on Earth. The LRS consists of a spacecraft containing all the communications and avionics equipment designed by NASA Jet Propulsion Laboratory s (JPL) Team X to perform the relay between lunar-based assets and the Earth. The satellite design is a standard box truss spacecraft design with a thermal control system, 1.7 m solar arrays for 1 kWe power, a 1 m diameter Ka/S band dish which provides relay communications with the LCT, and a Q-band dish for communications to/from the Earth based assets. While JPL's Team X and Goddard Space Flight Center s (GSFC) I M Design Center (IMDC) have completed two other LRS designs, this NASA Glenn Research Center (GRC) COMPASS LRS design sits between them in terms of physical size and capabilities.
NASA Technical Reports Server (NTRS)
Guinn, Joseph R.; Kerridge, Stuart J.; Wilson, Roby S.
2012-01-01
Mars sample return is a major scientific goal of the 2011 US National Research Council Decadal Survey for Planetary Science. Toward achievement of this goal, recent architecture studies have focused on several mission concept options for the 2018/2020 Mars launch opportunities. Mars orbiters play multiple roles in these architectures such as: relay, landing site identification/selection/certification, collection of on-going or new measurements to fill knowledge gaps, and in-orbit collection and transportation of samples from Mars to Earth. This paper reviews orbiter concepts that combine these roles and describes a novel family of relay orbits optimized for surface operations support. Additionally, these roles provide an intersection of objectives for long term NASA science, human exploration, technology development and international collaboration.
New perspective on single-radiator multiple-port antennas for adaptive beamforming applications
Choo, Hosung
2017-01-01
One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays. PMID:29023493
Computationally Efficient Adaptive Beamformer for Ultrasound Imaging Based on QR Decomposition.
Park, Jongin; Wi, Seok-Min; Lee, Jin S
2016-02-01
Adaptive beamforming methods for ultrasound imaging have been studied to improve image resolution and contrast. The most common approach is the minimum variance (MV) beamformer which minimizes the power of the beamformed output while maintaining the response from the direction of interest constant. The method achieves higher resolution and better contrast than the delay-and-sum (DAS) beamformer, but it suffers from high computational cost. This cost is mainly due to the computation of the spatial covariance matrix and its inverse, which requires O(L(3)) computations, where L denotes the subarray size. In this study, we propose a computationally efficient MV beamformer based on QR decomposition. The idea behind our approach is to transform the spatial covariance matrix to be a scalar matrix σI and we subsequently obtain the apodization weights and the beamformed output without computing the matrix inverse. To do that, QR decomposition algorithm is used and also can be executed at low cost, and therefore, the computational complexity is reduced to O(L(2)). In addition, our approach is mathematically equivalent to the conventional MV beamformer, thereby showing the equivalent performances. The simulation and experimental results support the validity of our approach.
Efficient high-performance ultrasound beamforming using oversampling
NASA Astrophysics Data System (ADS)
Freeman, Steven R.; Quick, Marshall K.; Morin, Marc A.; Anderson, R. C.; Desilets, Charles S.; Linnenbrink, Thomas E.; O'Donnell, Matthew
1998-05-01
High-performance and efficient beamforming circuitry is very important in large channel count clinical ultrasound systems. Current state-of-the-art digital systems using multi-bit analog to digital converters (A/Ds) have matured to provide exquisite image quality with moderate levels of integration. A simplified oversampling beamforming architecture has been proposed that may a low integration of delta-sigma A/Ds onto the same chip as digital delay and processing circuitry to form a monolithic ultrasound beamformer. Such a beamformer may enable low-power handheld scanners for high-end systems with very large channel count arrays. This paper presents an oversampling beamformer architecture that generates high-quality images using very simple; digitization, delay, and summing circuits. Additional performance may be obtained with this oversampled system for narrow bandwidth excitations by mixing the RF signal down in frequency to a range where the electronic signal to nose ratio of the delta-sigma A/D is optimized. An oversampled transmit beamformer uses the same delay circuits as receive and eliminates the need for separate transmit function generators.
Hall, Michael B H; Nissen, Ida A; van Straaten, Elisabeth C W; Furlong, Paul L; Witton, Caroline; Foley, Elaine; Seri, Stefano; Hillebrand, Arjan
2018-06-01
Kurtosis beamforming is a useful technique for analysing magnetoencephalograpy (MEG) data containing epileptic spikes. However, the implementation varies and few studies measure concordance with subsequently resected areas. We evaluated kurtosis beamforming as a means of localizing spikes in drug-resistant epilepsy patients. We retrospectively applied kurtosis beamforming to MEG recordings of 22 epilepsy patients that had previously been analysed using equivalent current dipole (ECD) fitting. Virtual electrodes were placed in the kurtosis volumetric peaks and visually inspected to select a candidate source. The candidate sources were compared to the ECD localizations and resection areas. The kurtosis beamformer produced interpretable localizations in 18/22 patients, of which the candidate source coincided with the resection lobe in 9/13 seizure-free patients and in 3/5 patients with persistent seizures. The sublobar accuracy of the kurtosis beamformer with respect to the resection zone was higher than ECD (56% and 50%, respectively), however, ECD resulted in a higher lobar accuracy (75%, 67%). Kurtosis beamforming may provide additional value when spikes are not clearly discernible on the sensors and support ECD localizations when dipoles are scattered. Kurtosis beamforming should be integrated with existing clinical protocols to assist in localizing the epileptogenic zone. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
An analog integrated circuit beamformer for high-frequency medical ultrasound imaging.
Gurun, Gokce; Zahorian, Jaime S; Sisman, Alper; Karaman, Mustafa; Hasler, Paul E; Degertekin, F Levent
2012-10-01
We designed and fabricated a dynamic receive beamformer integrated circuit (IC) in 0.35-μm CMOS technology. This beamformer IC is suitable for integration with an annular array transducer for high-frequency (30-50 MHz) intravascular ultrasound (IVUS) imaging. The beamformer IC consists of receive preamplifiers, an analog dynamic delay-and-sum beamformer, and buffers for 8 receive channels. To form an analog dynamic delay line we designed an analog delay cell based on the current-mode first-order all-pass filter topology, as the basic building block. To increase the bandwidth of the delay cell, we explored an enhancement technique on the current mirrors. This technique improved the overall bandwidth of the delay line by a factor of 6. Each delay cell consumes 2.1-mW of power and is capable of generating a tunable time delay between 1.75 ns to 2.5 ns. We successfully integrated the fabricated beamformer IC with an 8-element annular array. Experimental test results demonstrated the desired buffering, preamplification and delaying capabilities of the beamformer.
Kozak, M; Karaman, M
2001-07-01
Digital beamforming based on oversampled delta-sigma (delta sigma) analog-to-digital (A/D) conversion can reduce the overall cost, size, and power consumption of phased array front-end processing. The signal resampling involved in dynamic delta sigma beamforming, however, disrupts synchronization between the modulators and demodulator, causing significant degradation in the signal-to-noise ratio. As a solution to this, we have explored a new digital beamforming approach based on non-uniform oversampling delta sigma A/D conversion. Using this approach, the echo signals received by the transducer array are sampled at time instants determined by the beamforming timing and then digitized by single-bit delta sigma A/D conversion prior to the coherent beam summation. The timing information involves a non-uniform sampling scheme employing different clocks at each array channel. The delta sigma coded beamsums obtained by adding the delayed 1-bit coded RF echo signals are then processed through a decimation filter to produce final beamforming outputs. The performance and validity of the proposed beamforming approach are assessed by means of emulations using experimental raw RF data.
Highly Reconfigurable Beamformer Stimulus Generator
NASA Astrophysics Data System (ADS)
Vaviļina, E.; Gaigals, G.
2018-02-01
The present paper proposes a highly reconfigurable beamformer stimulus generator of radar antenna array, which includes three main blocks: settings of antenna array, settings of objects (signal sources) and a beamforming simulator. Following from the configuration of antenna array and object settings, different stimulus can be generated as the input signal for a beamformer. This stimulus generator is developed under a greater concept with two utterly independent paths where one is the stimulus generator and the other is the hardware beamformer. Both paths can be complemented in final and in intermediate steps as well to check and improve system performance. This way the technology development process is promoted by making each of the future hardware steps more substantive. Stimulus generator configuration capabilities and test results are presented proving the application of the stimulus generator for FPGA based beamforming unit development and tuning as an alternative to an actual antenna system.
GPU-Powered Coherent Beamforming
NASA Astrophysics Data System (ADS)
Magro, A.; Adami, K. Zarb; Hickish, J.
2015-03-01
Graphics processing units (GPU)-based beamforming is a relatively unexplored area in radio astronomy, possibly due to the assumption that any such system will be severely limited by the PCIe bandwidth required to transfer data to the GPU. We have developed a CUDA-based GPU implementation of a coherent beamformer, specifically designed and optimized for deployment at the BEST-2 array which can generate an arbitrary number of synthesized beams for a wide range of parameters. It achieves ˜1.3 TFLOPs on an NVIDIA Tesla K20, approximately 10x faster than an optimized, multithreaded CPU implementation. This kernel has been integrated into two real-time, GPU-based time-domain software pipelines deployed at the BEST-2 array in Medicina: a standalone beamforming pipeline and a transient detection pipeline. We present performance benchmarks for the beamforming kernel as well as the transient detection pipeline with beamforming capabilities as well as results of test observation.
Software beamforming: comparison between a phased array and synthetic transmit aperture.
Li, Yen-Feng; Li, Pai-Chi
2011-04-01
The data-transfer and computation requirements are compared between software-based beamforming using a phased array (PA) and a synthetic transmit aperture (STA). The advantages of a software-based architecture are reduced system complexity and lower hardware cost. Although this architecture can be implemented using commercial CPUs or GPUs, the high computation and data-transfer requirements limit its real-time beamforming performance. In particular, transferring the raw rf data from the front-end subsystem to the software back-end remains challenging with current state-of-the-art electronics technologies, which offset the cost advantage of the software back end. This study investigated the tradeoff between the data-transfer and computation requirements. Two beamforming methods based on a PA and STA, respectively, were used: the former requires a higher data transfer rate and the latter requires more memory operations. The beamformers were implemente;d in an NVIDIA GeForce GTX 260 GPU and an Intel core i7 920 CPU. The frame rate of PA beamforming was 42 fps with a 128-element array transducer, with 2048 samples per firing and 189 beams per image (with a 95 MB/frame data-transfer requirement). The frame rate of STA beamforming was 40 fps with 16 firings per image (with an 8 MB/frame data-transfer requirement). Both approaches achieved real-time beamforming performance but each had its own bottleneck. On the one hand, the required data-transfer speed was considerably reduced in STA beamforming, whereas this required more memory operations, which limited the overall computation time. The advantages of the GPU approach over the CPU approach were clearly demonstrated.
Iterative Minimum Variance Beamformer with Low Complexity for Medical Ultrasound Imaging.
Deylami, Ali Mohades; Asl, Babak Mohammadzadeh
2018-06-04
Minimum variance beamformer (MVB) improves the resolution and contrast of medical ultrasound images compared with delay and sum (DAS) beamformer. The weight vector of this beamformer should be calculated for each imaging point independently, with a cost of increasing computational complexity. The large number of necessary calculations limits this beamformer to application in real-time systems. A beamformer is proposed based on the MVB with lower computational complexity while preserving its advantages. This beamformer avoids matrix inversion, which is the most complex part of the MVB, by solving the optimization problem iteratively. The received signals from two imaging points close together do not vary much in medical ultrasound imaging. Therefore, using the previously optimized weight vector for one point as initial weight vector for the new neighboring point can improve the convergence speed and decrease the computational complexity. The proposed method was applied on several data sets, and it has been shown that the method can regenerate the results obtained by the MVB while the order of complexity is decreased from O(L 3 ) to O(L 2 ). Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Kiong, Tiong Sieh; Salem, S. Balasem; Paw, Johnny Koh Siaw; Sankar, K. Prajindra
2014-01-01
In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals. PMID:25003136
Kiong, Tiong Sieh; Salem, S Balasem; Paw, Johnny Koh Siaw; Sankar, K Prajindra; Darzi, Soodabeh
2014-01-01
In smart antenna applications, the adaptive beamforming technique is used to cancel interfering signals (placing nulls) and produce or steer a strong beam toward the target signal according to the calculated weight vectors. Minimum variance distortionless response (MVDR) beamforming is capable of determining the weight vectors for beam steering; however, its nulling level on the interference sources remains unsatisfactory. Beamforming can be considered as an optimization problem, such that optimal weight vector should be obtained through computation. Hence, in this paper, a new dynamic mutated artificial immune system (DM-AIS) is proposed to enhance MVDR beamforming for controlling the null steering of interference and increase the signal to interference noise ratio (SINR) for wanted signals.
Adaptive-Adaptive Narrowband Subarray Beamforming
1994-02-10
the ML ASA beamformer exhibits some extra noise gain. • In the presence of dominant transition band interferers, the NG ASA beamformer exhibits an...Inc., 87. [8] M. Rendas and J. Moura. Cramer-Rao bound for location systems in multipath environments. IEEE Transactions on Signal Processing, 39
Demi, Libertario; Viti, Jacopo; Kusters, Lieneke; Guidi, Francesco; Tortoli, Piero; Mischi, Massimo
2013-11-01
The speed of sound in the human body limits the achievable data acquisition rate of pulsed ultrasound scanners. To overcome this limitation, parallel beamforming techniques are used in ultrasound 2-D and 3-D imaging systems. Different parallel beamforming approaches have been proposed. They may be grouped into two major categories: parallel beamforming in reception and parallel beamforming in transmission. The first category is not optimal for harmonic imaging; the second category may be more easily applied to harmonic imaging. However, inter-beam interference represents an issue. To overcome these shortcomings and exploit the benefit of combining harmonic imaging and high data acquisition rate, a new approach has been recently presented which relies on orthogonal frequency division multiplexing (OFDM) to perform parallel beamforming in transmission. In this paper, parallel transmit beamforming using OFDM is implemented for the first time on an ultrasound scanner. An advanced open platform for ultrasound research is used to investigate the axial resolution and interbeam interference achievable with parallel transmit beamforming using OFDM. Both fundamental and second-harmonic imaging modalities have been considered. Results show that, for fundamental imaging, axial resolution in the order of 2 mm can be achieved in combination with interbeam interference in the order of -30 dB. For second-harmonic imaging, axial resolution in the order of 1 mm can be achieved in combination with interbeam interference in the order of -35 dB.
Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging.
Amaro, Joao; Yiu, Billy Y S; Falcao, Gabriel; Gomes, Marco A C; Yu, Alfred C H
2015-05-01
Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.
Constrained Low-Interference Relay Node Deployment for Underwater Acoustic Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Wenping
An Underwater Acoustic Wireless Sensor Network (UA-WSN) consists of many resource-constrained Underwater Sensor Nodes (USNs), which are deployed to perform collaborative monitoring tasks over a given region. One way to preserve network connectivity while guaranteing other network QoS is to deploy some Relay Nodes (RNs) in the networks, in which RNs' function is more powerful than USNs and their cost is more expensive. This paper addresses Constrained Low-interference Relay Node Deployment (C-LRND) problem for 3-D UA-WSNs in which the RNs are placed at a subset of candidate locations to ensure connectivity between the USNs, under both the number of RNs deployed and the value of total incremental interference constraints. We first prove that it is NP-hard, then present a general approximation algorithm framework and get two polynomial time O(1)-approximation algorithms.
NASA Astrophysics Data System (ADS)
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Kratkiewicz, Karl; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-02-01
In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance (MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers.
Optimal beamforming in ultrasound using the ideal observer.
Abbey, Craig K; Nguyen, Nghia Q; Insana, Michael F
2010-08-01
Beamforming of received pulse-echo data generally involves the compression of signals from multiple channels within an aperture. This compression is irreversible, and therefore allows the possibility that information relevant for performing a diagnostic task is irretrievably lost. The purpose of this study was to evaluate information transfer in beamforming using a previously developed ideal observer model to quantify diagnostic information relevant to performing a task. We describe an elaborated statistical model of image formation for fixed-focus transmission and single-channel reception within a moving aperture, and we use this model on a panel of tasks related to breast sonography to evaluate receive-beamforming approaches that optimize the transfer of information. Under the assumption that acquisition noise is well described as an additive wide-band Gaussian white-noise process, we show that signal compression across receive-aperture channels after a 2-D matched-filtering operation results in no loss of diagnostic information. Across tasks, the matched-filter beamformer results in more information than standard delay-and-sum beamforming in the subsequent radio-frequency signal by a factor of two. We also show that for this matched filter, 68% of the information gain can be attributed to the phase of the matched-filter and 21% can be attributed to the amplitude. A 1-D matched filtering along axial lines shows no advantage over delay-andsum, suggesting an important role for incorporating correlations across different aperture windows in beamforming. We also show that a post-compression processing before the computation of an envelope is necessary to pass the diagnostic information in the beamformed radio-frequency signal to the final envelope image.
Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions
NASA Astrophysics Data System (ADS)
Warnick, Karl F.; Ivashina, Marianna V.; Wijnholds, Stefan J.; Maaskant, Rob
2012-01-01
For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation.
Best, Virginia; Mejia, Jorge; Freeston, Katrina; van Hoesel, Richard J; Dillon, Harvey
2015-01-01
Binaural beamformers are super-directional hearing aids created by combining microphone outputs from each side of the head. While they offer substantial improvements in SNR over conventional directional hearing aids, the benefits (and possible limitations) of these devices in realistic, complex listening situations have not yet been fully explored. In this study we evaluated the performance of two experimental binaural beamformers. Testing was carried out using a horizontal loudspeaker array. Background noise was created using recorded conversations. Performance measures included speech intelligibility, localization in noise, acceptable noise level, subjective ratings, and a novel dynamic speech intelligibility measure. Participants were 27 listeners with bilateral hearing loss, fitted with BTE prototypes that could be switched between conventional directional or binaural beamformer microphone modes. Relative to the conventional directional microphones, both binaural beamformer modes were generally superior for tasks involving fixed frontal targets, but not always for situations involving dynamic target locations. Binaural beamformers show promise for enhancing listening in complex situations when the location of the source of interest is predictable.
Best, Virginia; Mejia, Jorge; Freeston, Katrina; van Hoesel, Richard J.; Dillon, Harvey
2016-01-01
Objective Binaural beamformers are super-directional hearing aids created by combining microphone outputs from each side of the head. While they offer substantial improvements in SNR over conventional directional hearing aids, the benefits (and possible limitations) of these devices in realistic, complex listening situations have not yet been fully explored. In this study we evaluated the performance of two experimental binaural beamformers. Design Testing was carried out using a horizontal loudspeaker array. Background noise was created using recorded conversations. Performance measures included speech intelligibility, localisation in noise, acceptable noise level, subjective ratings, and a novel dynamic speech intelligibility measure. Study sample Participants were 27 listeners with bilateral hearing loss, fitted with BTE prototypes that could be switched between conventional directional or binaural beamformer microphone modes. Results Relative to the conventional directional microphones, both binaural beamformer modes were generally superior for tasks involving fixed frontal targets, but not always for situations involving dynamic target locations. Conclusions Binaural beamformers show promise for enhancing listening in complex situations when the location of the source of interest is predictable. PMID:26140298
Student Drivers on the Information Highway.
ERIC Educational Resources Information Center
Hanson, William R.
1994-01-01
Describes high school students' use of the Internet based on experiences at a Canadian high school, including its use to obtain information for classroom assignments. Topics discussed include Internet Relay Chat; gender bias; collaboration; hackers and ethics agreements; control on the Internet; students teaching teachers; listservs and discussion…
Bertrand, Alexander; Seo, Dongjin; Maksimovic, Filip; Carmena, Jose M; Maharbiz, Michel M; Alon, Elad; Rabaey, Jan M
2014-01-01
In this paper, we examine the use of beamforming techniques to interrogate a multitude of neural implants in a distributed, ultrasound-based intra-cortical recording platform known as Neural Dust. We propose a general framework to analyze system design tradeoffs in the ultrasonic beamformer that extracts neural signals from modulated ultrasound waves that are backscattered by free-floating neural dust (ND) motes. Simulations indicate that high-resolution linearly-constrained minimum variance beamforming sufficiently suppresses interference from unselected ND motes and can be incorporated into the ND-based cortical recording system.
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Kratkiewicz, Karl; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-02-01
In photoacoustic imaging, delay-and-sum (DAS) beamformer is a common beamforming algorithm having a simple implementation. However, it results in a poor resolution and high sidelobes. To address these challenges, a new algorithm namely delay-multiply-and-sum (DMAS) was introduced having lower sidelobes compared to DAS. To improve the resolution of DMAS, a beamformer is introduced using minimum variance (MV) adaptive beamforming combined with DMAS, so-called minimum variance-based DMAS (MVB-DMAS). It is shown that expanding the DMAS equation results in multiple terms representing a DAS algebra. It is proposed to use the MV adaptive beamformer instead of the existing DAS. MVB-DMAS is evaluated numerically and experimentally. In particular, at the depth of 45 mm MVB-DMAS results in about 31, 18, and 8 dB sidelobes reduction compared to DAS, MV, and DMAS, respectively. The quantitative results of the simulations show that MVB-DMAS leads to improvement in full-width-half-maximum about 96%, 94%, and 45% and signal-to-noise ratio about 89%, 15%, and 35% compared to DAS, DMAS, MV, respectively. In particular, at the depth of 33 mm of the experimental images, MVB-DMAS results in about 20 dB sidelobes reduction in comparison with other beamformers. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Robust Frequency Invariant Beamforming with Low Sidelobe for Speech Enhancement
NASA Astrophysics Data System (ADS)
Zhu, Yiting; Pan, Xiang
2018-01-01
Frequency invariant beamformers (FIBs) are widely used in speech enhancement and source localization. There are two traditional optimization methods for FIB design. The first one is convex optimization, which is simple but the frequency invariant characteristic of the beam pattern is poor with respect to frequency band of five octaves. The least squares (LS) approach using spatial response variation (SRV) constraint is another optimization method. Although, it can provide good frequency invariant property, it usually couldn’t be used in speech enhancement for its lack of weight norm constraint which is related to the robustness of a beamformer. In this paper, a robust wideband beamforming method with a constant beamwidth is proposed. The frequency invariant beam pattern is achieved by resolving an optimization problem of the SRV constraint to cover speech frequency band. With the control of sidelobe level, it is available for the frequency invariant beamformer (FIB) to prevent distortion of interference from the undesirable direction. The approach is completed in time-domain by placing tapped delay lines(TDL) and finite impulse response (FIR) filter at the output of each sensor which is more convenient than the Frost processor. By invoking the weight norm constraint, the robustness of the beamformer is further improved against random errors. Experiment results show that the proposed method has a constant beamwidth and almost the same white noise gain as traditional delay-and-sum (DAS) beamformer.
HERA: an atmospheric probe to unveil the depths of Saturn
NASA Astrophysics Data System (ADS)
Mousis, Olivier; Atkinson, David H.; Amato, Michael; Aslam, Shahid; Atreya, Sushil K.; Blanc, Michel; Bolton, Scott J.; Brugger, Bastien; Calcutt, Simon; Cavalié, Thibault; Charnoz, Sébastien; Coustenis, Athena; DELEUIL, Magali; Ferri, Francesca; Fletcher, Leigh N.; Guillot, Tristan; Hartogh, Paul; Holland, Andrew; Hueso, Ricardo; Keller, Christoph; Kessler, Ernst; Lebreton, Jean-Pierre; leese, Mark; Lellouch, Emmanuel; Levacher, Patrick; Marty, Bernard; Morse, Andrew; Nixon, Conor; Reh, Kim R.; Renard, Jean-Baptiste; Sanchez-Lavega, Agustin; Schmider, François-Xavier; Sheridan, Simon; Simon, Amy A.; Snik, Frans; Spilker, Thomas R.; Stam, Daphne M.; Venkatapathy, Ethiraj; Vernazza, Pierre; Waite, J. Hunter; Wurz, Peter
2016-10-01
The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a significant collaboration with NASA. It consists of a Saturn atmospheric probe and a Carrier-Relay spacecraft. Hera will perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets.The primary science objectives will be addressed by an atmospheric entry probe that would descend under parachute and carry out in situ measurements beginning in the stratosphere to help characterize the location and properties of the tropopause, and continue into the troposphere to pressures of at least 10 bars. All of the science objectives, except for the abundance of oxygen, which may be only addressed indirectly via observations of species whose abundances are tied to the abundance of water, can be achieved by reaching 10 bars. As in previous highly successful collaborative efforts between ESA and NASA, the proposed mission has a baseline concept based on a NASA-provided carrier/data relay spacecraft that would deliver the ESA-provided atmospheric probe to the desired atmospheric entry point at Saturn. ESA's proposed contribution should fit well into the M5 Cosmic Vision ESA call cost envelope.A nominal mission configuration would consist of a probe that detaches from the carrier one to several months prior to probe entry. Subsequent to probe release, the carrier trajectory would be deflected to optimize the over-flight phasing of the probe descent location for both probe data relay as well as performing carrier approach and flyby science, and would allow multiple retransmissions of the probe data for redundancy. The Saturn atmospheric entry probe would in many respects resemble the Jupiter Galileo probe. It is anticipated that the probe architecture for this mission would be battery-powered and accommodate a data relay to the carrier for data collection, storage on board the carrier/data relay, for later retransmission to Earth.
Photoacoustic image reconstruction from ultrasound post-beamformed B-mode image
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M.
2016-03-01
A requirement to reconstruct photoacoustic (PA) image is to have a synchronized channel data acquisition with laser firing. Unfortunately, most clinical ultrasound (US) systems don't offer an interface to obtain synchronized channel data. To broaden the impact of clinical PA imaging, we propose a PA image reconstruction algorithm utilizing US B-mode image, which is readily available from clinical scanners. US B-mode image involves a series of signal processing including beamforming, followed by envelope detection, and end with log compression. Yet, it will be defocused when PA signals are input due to incorrect delay function. Our approach is to reverse the order of image processing steps and recover the original US post-beamformed radio-frequency (RF) data, in which a synthetic aperture based PA rebeamforming algorithm can be further applied. Taking B-mode image as the input, we firstly recovered US postbeamformed RF data by applying log decompression and convoluting an acoustic impulse response to combine carrier frequency information. Then, the US post-beamformed RF data is utilized as pre-beamformed RF data for the adaptive PA beamforming algorithm, and the new delay function is applied by taking into account that the focus depth in US beamforming is at the half depth of the PA case. The feasibility of the proposed method was validated through simulation, and was experimentally demonstrated using an acoustic point source. The point source was successfully beamformed from a US B-mode image, and the full with at the half maximum of the point improved 3.97 times. Comparing this result to the ground-truth reconstruction using channel data, the FWHM was slightly degraded with 1.28 times caused by information loss during envelope detection and convolution of the RF information.
Buechner, Andreas; Dyballa, Karl-Heinz; Hehrmann, Phillipp; Fredelake, Stefan; Lenarz, Thomas
2014-01-01
Objective To investigate the performance of monaural and binaural beamforming technology with an additional noise reduction algorithm, in cochlear implant recipients. Method This experimental study was conducted as a single subject repeated measures design within a large German cochlear implant centre. Twelve experienced users of an Advanced Bionics HiRes90K or CII implant with a Harmony speech processor were enrolled. The cochlear implant processor of each subject was connected to one of two bilaterally placed state-of-the-art hearing aids (Phonak Ambra) providing three alternative directional processing options: an omnidirectional setting, an adaptive monaural beamformer, and a binaural beamformer. A further noise reduction algorithm (ClearVoice) was applied to the signal on the cochlear implant processor itself. The speech signal was presented from 0° and speech shaped noise presented from loudspeakers placed at ±70°, ±135° and 180°. The Oldenburg sentence test was used to determine the signal-to-noise ratio at which subjects scored 50% correct. Results Both the adaptive and binaural beamformer were significantly better than the omnidirectional condition (5.3 dB±1.2 dB and 7.1 dB±1.6 dB (p<0.001) respectively). The best score was achieved with the binaural beamformer in combination with the ClearVoice noise reduction algorithm, with a significant improvement in SRT of 7.9 dB±2.4 dB (p<0.001) over the omnidirectional alone condition. Conclusions The study showed that the binaural beamformer implemented in the Phonak Ambra hearing aid could be used in conjunction with a Harmony speech processor to produce substantial average improvements in SRT of 7.1 dB. The monaural, adaptive beamformer provided an averaged SRT improvement of 5.3 dB. PMID:24755864
Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun
2017-08-20
This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ , where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority.
Photonic beamforming network for multibeam satellite-on-board phased-array antennas
NASA Astrophysics Data System (ADS)
Piqueras, M. A.; Cuesta-Soto, F.; Villalba, P.; Martí, A.; Hakansson, A.; Perdigués, J.; Caille, G.
2017-11-01
The implementation of a beamforming unit based on integrated photonic technologies is addressed in this work. This integrated photonic solution for multibeam coverage will be compared with the digital and the RF solution. Photonic devices show unique characteristics that match the critical requirements of space oriented devices such as low mass/size, low power consumption and easily scalable to big systems. An experimental proof-of-concept of the photonic beamforming structure based on 4x4 and 8x8 Butler matrices is presented. The proof-of-concept is based in the heterodyne generation of multiple phase engineered RF signals for the conformation of 8-4 different beams in an antenna array. Results show the feasibility of this technology for the implementation of optical beamforming with phase distribution errors below σ=10o with big savings in the required mass and size of the beamforming unit.
A low power, area efficient fpga based beamforming technique for 1-D CMUT arrays.
Joseph, Bastin; Joseph, Jose; Vanjari, Siva Rama Krishna
2015-08-01
A low power area efficient digital beamformer targeting low frequency (2MHz) 1-D linear Capacitive Micromachined Ultrasonic Transducer (CMUT) array is developed. While designing the beamforming logic, the symmetry of the CMUT array is well exploited to reduce the area and power consumption. The proposed method is verified in Matlab by clocking an Arbitrary Waveform Generator(AWG). The architecture is successfully implemented in Xilinx Spartan 3E FPGA kit to check its functionality. The beamforming logic is implemented for 8, 16, 32, and 64 element CMUTs targeting Application Specific Integrated Circuit (ASIC) platform at Vdd 1.62V for UMC 90nm technology. It is observed that the proposed architecture consumes significantly lesser power and area (1.2895 mW power and 47134.4 μm(2) area for a 64 element digital beamforming circuit) compared to the conventional square root based algorithm.
FPGA implementation of adaptive beamforming in hearing aids.
Samtani, Kartik; Thomas, Jobin; Varma, G Abhinav; Sumam, David S; Deepu, S P
2017-07-01
Beamforming is a spatial filtering technique used in hearing aids to improve target sound reception by reducing interference from other directions. In this paper we propose improvements in an existing architecture present for two omnidirectional microphone array based adaptive beamforming for hearing aid applications and implement the same on Xilinx Artix 7 FPGA using VHDL coding and Xilinx Vivado ® 2015.2. The nulls are introduced in particular directions by combination of two fixed polar patterns. This combination can be adaptively controlled to steer the null in the direction of noise. The beamform patterns and improvements in SNR values obtained from experiments in a conference room environment are analyzed.
Smart Antenna UKM Testbed for Digital Beamforming System
NASA Astrophysics Data System (ADS)
Islam, Mohammad Tariqul; Misran, Norbahiah; Yatim, Baharudin
2009-12-01
A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH) array antenna and software reconfigurable digital beamforming system (DBS). The antenna is developed based on using the novel LIEH microstrip patch element design arranged into [InlineEquation not available: see fulltext.] uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance [InlineEquation not available: see fulltext.] floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88-2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.
NASA Astrophysics Data System (ADS)
Ma, Manyou; Rohling, Robert; Lampe, Lutz
2017-03-01
Synthetic transmit aperture beamforming is an increasingly used method to improve resolution in biomedical ultrasound imaging. Synthetic aperture sequential beamforming (SASB) is an implementation of this concept which features a relatively low computation complexity. Moreover, it can be implemented in a dual-stage architecture, where the first stage only applies simple single receive-focused delay-and-sum (srDAS) operations, while the second, more complex stage is performed either locally or remotely using more powerful processing. However, like traditional DAS-based beamforming methods, SASB is susceptible to inaccurate speed-of-sound (SOS) information. In this paper, we show how SOS estimation can be implemented using the srDAS beamformed image, and integrated into the dual-stage implementation of SASB, in an effort to obtain high resolution images with relatively low-cost hardware. Our approach builds on an existing per-channel radio frequency data-based direct estimation method, and applies an iterative refinement of the estimate. We use this estimate for SOS compensation, without the need to repeat the first stage beamforming. The proposed and previous methods are tested on both simulation and experimental studies. The accuracy of our SOS estimation method is on average 0.38% in simulation studies and 0.55% in phantom experiments, when the underlying SOS in the media is within the range 1450-1620 m/s. Using the estimated SOS, the beamforming lateral resolution of SASB is improved on average 52.6% in simulation studies and 50.0% in phantom experiments.
Owen, Kevin; Fuller, Michael I.; Hossack, John A.
2015-01-01
Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phaserotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 × 60 channel array using a 40 × 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can significantly improve frame rate and battery life for hand-held devices with 2-D arrays. PMID:22828829
Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing
NASA Astrophysics Data System (ADS)
Hewener, Holger J.; Tretbar, Steffen H.
Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.
Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun
2017-01-01
This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ, where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority. PMID:28825648
A Fast and Robust Beamspace Adaptive Beamformer for Medical Ultrasound Imaging.
Mohades Deylami, Ali; Mohammadzadeh Asl, Babak
2017-06-01
Minimum variance beamformer (MVB) increases the resolution and contrast of medical ultrasound imaging compared with nonadaptive beamformers. These advantages come at the expense of high computational complexity that prevents this adaptive beamformer to be applied in a real-time imaging system. A new beamspace (BS) based on discrete cosine transform is proposed in which the medical ultrasound signals can be represented with less dimensions compared with the standard BS. This is because of symmetric beampattern of the beams in the proposed BS compared with the asymmetric ones in the standard BS. This lets us decrease the dimensions of data to two, so a high complex algorithm, such as the MVB, can be applied faster in this BS. The results indicated that by keeping only two beams, the MVB in the proposed BS provides very similar resolution and also better contrast compared with the standard MVB (SMVB) with only 0.44% of needed flops. Also, this beamformer is more robust against sound speed estimation errors than the SMVB.
NASA Astrophysics Data System (ADS)
Li, Hanyu; Syed, Mubashir; Yao, Yu-Dong; Kamakaris, Theodoros
2009-12-01
This paper investigates spectrum sharing issues in the unlicensed industrial, scientific, and medical (ISM) bands. It presents a radio frequency measurement setup and measurement results in 2.4 GHz. It then develops an analytical model to characterize the coexistence interference in the ISM bands, based on radio frequency measurement results in the 2.4 GHz. Outage performance using the interference model is examined for a hybrid direct-sequence frequency-hopping spread spectrum system. The utilization of beamforming techniques in the system is also investigated, and a simplified beamforming model is proposed to analyze the system performance using beamforming. Numerical results show that beamforming significantly improves the system outage performance. The work presented in this paper provides a quantitative evaluation of signal outages in a spectrum sharing environment. It can be used as a tool in the development process for future dynamic spectrum access models as well as engineering designs for applications in unlicensed bands.
House Rules: Using the Television Series "House" to Teach Research Ethics
ERIC Educational Resources Information Center
Andrews, Urkovia
2013-01-01
The purpose of this exercise is to get students to relay and connect with the impact of ethics on public relations research. Students will begin to realize and analyze how their personal ethics influence their professional ethics choices. This is conceptualized through the completion of the Collaborative Institutional Training Initiative (CITI)…
Interaction in Storytelling in Japanese Conversations: An Analysis of Story Recipients' Questions
ERIC Educational Resources Information Center
Koike, Chisato
2009-01-01
This study investigates how "unknowing" story recipients (C. Goodwin, 1979) use different types of questions in order to actively participate in storytelling and collaboratively construct a story when a storyteller is relaying his or her past experience, by examining grammar, intonation, gaze, body movements, and sequence organization in Japanese…
Team Teaching in Social Work: Sharing Power with Bachelor of Social Work Students
ERIC Educational Resources Information Center
Zapf, Michael Kim; Jerome, Les; Williams, Margaret
2011-01-01
Team teaching in social work education usually involves sequential lectures delivered by different instructors--relay or tag-team teaching. Truly collaborative or collegial team teaching involves a committed group of diverse instructors interacting together as equals in the classroom. Having more than one teacher in the classroom confounds…
Development of a Resource Manager Framework for Adaptive Beamformer Selection
2013-12-27
DEVELOPMENT OF A RESOURCE MANAGER FRAMEWORK FOR ADAPTIVE BEAMFORMER SELECTION DISSERTATION Jeremy P. Stringer, Major, USAF AFIT-ENG-DS-13-D-01...Force, the United States Department of Defense or the United States Government. AFIT-ENG-DS-13-D-01 DEVELOPMENT OF A RESOURCE MANAGER FRAMEWORK FOR...ADAPTIVE BEAMFORMER SELECTION DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air
NASA Astrophysics Data System (ADS)
Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.
2018-06-01
Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.
Acoustic emission beamforming for enhanced damage detection
NASA Astrophysics Data System (ADS)
McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.
2008-03-01
As civil infrastructure ages, the early detection of damage in a structure becomes increasingly important for both life safety and economic reasons. This paper describes the analysis procedures used for beamforming acoustic emission techniques as well as the promising results of preliminary experimental tests on a concrete bridge deck. The method of acoustic emission offers a tool for detecting damage, such as cracking, as it occurs on or in a structure. In order to gain meaningful information from acoustic emission analyses, the damage must be localized. Current acoustic emission systems with localization capabilities are very costly and difficult to install. Sensors must be placed throughout the structure to ensure that the damage is encompassed by the array. Beamforming offers a promising solution to these problems and permits the use of wireless sensor networks for acoustic emission analyses. Using the beamforming technique, the azmuthal direction of the location of the damage may be estimated by the stress waves impinging upon a small diameter array (e.g. 30mm) of acoustic emission sensors. Additional signal discrimination may be gained via array processing techniques such as the VESPA process. The beamforming approach requires no arrival time information and is based on very simple delay and sum beamforming algorithms which can be easily implemented on a wireless sensor or mote.
Payload Performance of TDRS KL and Future Services
NASA Technical Reports Server (NTRS)
Toral, Marco A.; Heckler, Gregory W.; Pogorelc, Patricia M.; George, Nicholas E.; Han, Katherine S.
2017-01-01
NASA has accepted two of the 3nd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and GT; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, GT, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.
Payload Performance of Third Generation TDRS and Future Services
NASA Technical Reports Server (NTRS)
Toral, Marco; Heckler, Gregory; Pogorelc, Patsy; George, Nicholas; Han, Katherine S.
2017-01-01
NASA has accepted two of the 3rd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space & Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and G/T; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, G/T, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.
Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging.
Bandaru, Raja Sekhar; Sornes, Anders Rasmus; Hermans, Jeroen; Samset, Eigil; D'hooge, Jan
2016-12-01
Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.
NASA Astrophysics Data System (ADS)
Bera, D.; Raghunathan, S. B.; Chen, C.; Chen, Z.; Pertijs, M. A. P.; Verweij, M. D.; Daeichin, V.; Vos, H. J.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.
2018-04-01
Until now, no matrix transducer has been realized for 3D transesophageal echocardiography (TEE) in pediatric patients. In 3D TEE with a matrix transducer, the biggest challenges are to connect a large number of elements to a standard ultrasound system, and to achieve a high volume rate (>200 Hz). To address these issues, we have recently developed a prototype miniaturized matrix transducer for pediatric patients with micro-beamforming and a small central transmitter. In this paper we propose two multiline parallel 3D beamforming techniques (µBF25 and µBF169) using the micro-beamformed datasets from 25 and 169 transmit events to achieve volume rates of 300 Hz and 44 Hz, respectively. Both the realizations use angle-weighted combination of the neighboring overlapping sub-volumes to avoid artifacts due to sharp intensity changes introduced by parallel beamforming. In simulation, the image quality in terms of the width of the point spread function (PSF), lateral shift invariance and mean clutter level for volumes produced by µBF25 and µBF169 are similar to the idealized beamforming using a conventional single-line acquisition with a fully-sampled matrix transducer (FS4k, 4225 transmit events). For completeness, we also investigated a 9 transmit-scheme (3 × 3) that allows even higher frame rates but found worse B-mode image quality with our probe. The simulations were experimentally verified by acquiring the µBF datasets from the prototype using a Verasonics V1 research ultrasound system. For both µBF169 and µBF25, the experimental PSFs were similar to the simulated PSFs, but in the experimental PSFs, the clutter level was ~10 dB higher. Results indicate that the proposed multiline 3D beamforming techniques with the prototype matrix transducer are promising candidates for real-time pediatric 3D TEE.
Effect of atmospherics on beamforming accuracy
NASA Technical Reports Server (NTRS)
Alexander, Richard M.
1990-01-01
Two mathematical representations of noise due to atmospheric turbulence are presented. These representations are derived and used in computer simulations of the Bartlett Estimate implementation of beamforming. Beamforming is an array processing technique employing an array of acoustic sensors used to determine the bearing of an acoustic source. Atmospheric wind conditions introduce noise into the beamformer output. Consequently, the accuracy of the process is degraded and the bearing of the acoustic source is falsely indicated or impossible to determine. The two representations of noise presented here are intended to quantify the effects of mean wind passing over the array of sensors and to correct for these effects. The first noise model is an idealized case. The effect of the mean wind is incorporated as a change in the propagation velocity of the acoustic wave. This yields an effective phase shift applied to each term of the spatial correlation matrix in the Bartlett Estimate. The resultant error caused by this model can be corrected in closed form in the beamforming algorithm. The second noise model acts to change the true direction of propagation at the beginning of the beamforming process. A closed form correction for this model is not available. Efforts to derive effective means to reduce the contributions of the noise have not been successful. In either case, the maximum error introduced by the wind is a beam shift of approximately three degrees. That is, the bearing of the acoustic source is indicated at a point a few degrees from the true bearing location. These effects are not quite as pronounced as those seen in experimental results. Sidelobes are false indications of acoustic sources in the beamformer output away from the true bearing angle. The sidelobes that are observed in experimental results are not caused by these noise models. The effects of mean wind passing over the sensor array as modeled here do not alter the beamformer output as significantly as expected.
COMPASS Final Report: Lunar Communications Terminal (LCT)
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.
2010-01-01
The Lunar Communications Terminal (LCT) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session designed a terminal to provide communications between lunar South Pole assets, communications relay to/from these assets through an orbiting Lunar Relay Satellite (LRS) and navigation support. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The Terminal consists of a pallet containing the communications and avionics equipment, surrounded by the thermal control system (radiator), an attached, deployable 10-m tower, upon which were mounted locally broadcasting and receiving modems and a deployable 1 m diameter Ka/S band dish which provides relay communications with the lunar relay satellites and, as a backup, Earth when it is in view. All power was assumed to come from the lunar outpost Habitat. Three LCT design options were explored: a stand-alone LCT servicing the manned outpost, an integrated LCT (into the Habitat or Lunar Lander), and a mini-LCT which provides a reduced level of communication for primarily robotic areas dealing as in situ resource utilization (ISRU) and remote science. Where possible all the designs assumed single fault tolerance. Significant mass savings were found when integrating the LCT into the Habitat or Lander but increases in costs occurred depending upon the level of man rating required for such designs.
A small hemispherical helical antenna array for two-dimensional GPS beam-forming
NASA Astrophysics Data System (ADS)
Hui, H. T.; Aditya, S.; Mohamed, F. Bin S.; Hafiedz-Ul, A. Bin T.
2005-02-01
A small hemispherical helical antenna array with multibeam output for GPS beam-forming is designed and characterized. A Butler matrix beam-forming network is designed to provide four spatial beams in a two-dimensional directional space. The original design of the hemispherical helical antenna elements is modified in order to match it to the system impedance. Our study shows that even after an ˜30° scan from the normal direction, the maximum change in beam width is only 6°, the maximum change in axial ratio is 1.4 dB, and the maximum change in power gain is 1.1 dB. These characteristics indicate that the array can be potentially used for GPS beam-forming.
Beamforming design with proactive interference cancelation in MISO interference channels
NASA Astrophysics Data System (ADS)
Li, Yang; Tian, Yafei; Yang, Chenyang
2015-12-01
In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.
Spherical beamforming for spherical array with impedance surface
NASA Astrophysics Data System (ADS)
Tontiwattanakul, Khemapat
2018-01-01
Spherical microphone array beamforming has been a popular research topic for recent years. Due to their isotropic beam in three dimensional spaces as well as a certain frequency range, the arrays are widely used in many applications such as sound field recording, acoustic beamforming, and noise source localisation. The body of a spherical array is usually considered perfectly rigid. A sound field captured by the sensors on spherical array can be decomposed into a series of spherical harmonics. In noise source localisation, the amplitude density of sound sources is estimated and illustrated by mean of colour maps. In this work, a rigid spherical array covered by fibrous materials is studied via numerical simulation and the performance of the spherical beamforming is discussed.
Cheung, Chris C P; Yu, Alfred C H; Salimi, Nazila; Yiu, Billy Y S; Tsang, Ivan K H; Kerby, Benjamin; Azar, Reza Zahiri; Dickie, Kris
2012-02-01
The lack of open access to the pre-beamformed data of an ultrasound scanner has limited the research of novel imaging methods to a few privileged laboratories. To address this need, we have developed a pre-beamformed data acquisition (DAQ) system that can collect data over 128 array elements in parallel from the Ultrasonix series of research-purpose ultrasound scanners. Our DAQ system comprises three system-level blocks: 1) a connector board that interfaces with the array probe and the scanner through a probe connector port; 2) a main board that triggers DAQ and controls data transfer to a computer; and 3) four receiver boards that are each responsible for acquiring 32 channels of digitized raw data and storing them to the on-board memory. This system can acquire pre-beamformed data with 12-bit resolution when using a 40-MHz sampling rate. It houses a 16 GB RAM buffer that is sufficient to store 128 channels of pre-beamformed data for 8000 to 25 000 transmit firings, depending on imaging depth; corresponding to nearly a 2-s period in typical imaging setups. Following the acquisition, the data can be transferred through a USB 2.0 link to a computer for offline processing and analysis. To evaluate the feasibility of using the DAQ system for advanced imaging research, two proof-of-concept investigations have been conducted on beamforming and plane-wave B-flow imaging. Results show that adaptive beamforming algorithms such as the minimum variance approach can generate sharper images of a wire cross-section whose diameter is equal to the imaging wavelength (150 μm in our example). Also, planewave B-flow imaging can provide more consistent visualization of blood speckle movement given the higher temporal resolution of this imaging approach (2500 fps in our example).
Wittevrongel, Benjamin; Van Hulle, Marc M
2017-01-01
Brain-Computer Interfaces (BCIs) decode brain activity with the aim to establish a direct communication channel with an external device. Albeit they have been hailed to (re-)establish communication in persons suffering from severe motor- and/or communication disabilities, only recently BCI applications have been challenging other assistive technologies. Owing to their considerably increased performance and the advent of affordable technological solutions, BCI technology is expected to trigger a paradigm shift not only in assistive technology but also in the way we will interface with technology. However, the flipside of the quest for accuracy and speed is most evident in EEG-based visual BCI where it has led to a gamut of increasingly complex classifiers, tailored to the needs of specific stimulation paradigms and use contexts. In this contribution, we argue that spatiotemporal beamforming can serve several synchronous visual BCI paradigms. We demonstrate this for three popular visual paradigms even without attempting to optimizing their electrode sets. For each selectable target, a spatiotemporal beamformer is applied to assess whether the corresponding signal-of-interest is present in the preprocessed multichannel EEG signals. The target with the highest beamformer output is then selected by the decoder (maximum selection). In addition to this simple selection rule, we also investigated whether interactions between beamformer outputs could be employed to increase accuracy by combining the outputs for all targets into a feature vector and applying three common classification algorithms. The results show that the accuracy of spatiotemporal beamforming with maximum selection is at par with that of the classification algorithms and interactions between beamformer outputs do not further improve that accuracy.
Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L
2018-05-01
In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.
Advances in Digital Calibration Techniques Enabling Real-Time Beamforming SweepSAR Architectures
NASA Technical Reports Server (NTRS)
Hoffman, James P.; Perkovic, Dragana; Ghaemi, Hirad; Horst, Stephen; Shaffer, Scott; Veilleux, Louise
2013-01-01
Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable SweepSAR architectures, which promise significant increases in instrument capability for solid earth and biomass remote sensing. These new instrument concepts require new methods for calibrating the multiple channels, which are combined on-board, in real-time. The benefit of this effort is that it enables a new class of lightweight radar architecture, Digital Beamforming with SweepSAR, providing significantly larger swath coverage than conventional SAR architectures for reduced mass and cost. This paper will review the on-going development of the digital calibration architecture for digital beamforming radar instrument, such as the proposed Earth Radar Mission's DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) instrument. This proposed instrument's baseline design employs SweepSAR digital beamforming and requires digital calibration. We will review the overall concepts and status of the system architecture, algorithm development, and the digital calibration testbed currently being developed. We will present results from a preliminary hardware demonstration. We will also discuss the challenges and opportunities specific to this novel architecture.
Compact FPGA-based beamformer using oversampled 1-bit A/D converters.
Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt
2005-05-01
A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. The high sampling rate provides the necessary delay resolution for the focusing. The low channel data width (1-bit) makes it possible to construct a compact beamformer logic. The signal reconstruction is done using finite impulse reponse (FIR) filters, applied on selected bit sequences of the delta-sigma modulator output stream. The approach allows for a multichannel beamformer to fit in a single field programmable gate array (FPGA) device. A 32-channel beamformer is estimated to occupy 50% of the available logic resources in a commercially available mid-range FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.
Systems, Apparatuses and Methods for Beamforming RFID Tags
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)
2017-01-01
A radio frequency identification (RFID) system includes an RFID interrogator and an RFID tag having a plurality of information sources and a beamforming network. The tag receives electromagnetic radiation from the interrogator. The beamforming network directs the received electromagnetic radiation to a subset of the plurality of information sources. The RFID tag transmits a response to the received electromagnetic radiation, based on the subset of the plurality of information sources to which the received electromagnetic radiation was directed. Method and other embodiments are also disclosed.
Reflective echo tomographic imaging using acoustic beams
Kisner, Roger; Santos-Villalobos, Hector J
2014-11-25
An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks †
Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar
2015-01-01
Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels. PMID:26131675
Coded Cooperation for Multiway Relaying in Wireless Sensor Networks.
Si, Zhongwei; Ma, Junyang; Thobaben, Ragnar
2015-06-29
Wireless sensor networks have been considered as an enabling technology for constructing smart cities. One important feature of wireless sensor networks is that the sensor nodes collaborate in some manner for communications. In this manuscript, we focus on the model of multiway relaying with full data exchange where each user wants to transmit and receive data to and from all other users in the network. We derive the capacity region for this specific model and propose a coding strategy through coset encoding. To obtain good performance with practical codes, we choose spatially-coupled LDPC (SC-LDPC) codes for the coded cooperation. In particular, for the message broadcasting from the relay, we construct multi-edge-type (MET) SC-LDPC codes by repeatedly applying coset encoding. Due to the capacity-achieving property of the SC-LDPC codes, we prove that the capacity region can theoretically be achieved by the proposed MET SC-LDPC codes. Numerical results with finite node degrees are provided, which show that the achievable rates approach the boundary of the capacity region in both binary erasure channels and additive white Gaussian channels.
Beam-Forming Concentrating Solar Thermal Array Power Systems
NASA Technical Reports Server (NTRS)
Hoppe, Daniel J. (Inventor); Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor)
2016-01-01
The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.
Ultrasound phase rotation beamforming on multi-core DSP.
Ma, Jieming; Karadayi, Kerem; Ali, Murtaza; Kim, Yongmin
2014-01-01
Phase rotation beamforming (PRBF) is a commonly-used digital receive beamforming technique. However, due to its high computational requirement, it has traditionally been supported by hardwired architectures, e.g., application-specific integrated circuits (ASICs) or more recently field-programmable gate arrays (FPGAs). In this study, we investigated the feasibility of supporting software-based PRBF on a multi-core DSP. To alleviate the high computing requirement, the analog front-end (AFE) chips integrating quadrature demodulation in addition to analog-to-digital conversion were defined and used. With these new AFE chips, only delay alignment and phase rotation need to be performed by DSP, substantially reducing the computational load. We implemented the delay alignment and phase rotation modules on a Texas Instruments C6678 DSP with 8 cores. We found it takes 200 μs to beamform 2048 samples from 64 channels using 2 cores. With 4 cores, 20 million samples can be beamformed in one second. Therefore, ADC frequencies up to 40 MHz with 2:1 decimation in AFE chips or up to 20 MHz with no decimation can be supported as long as the ADC-to-DSP I/O requirement can be met. The remaining 4 cores can work on back-end processing tasks and applications, e.g., color Doppler or ultrasound elastography. One DSP being able to handle both beamforming and back-end processing could lead to low-power and low-cost ultrasound machines, benefiting ultrasound imaging in general, particularly portable ultrasound machines. Copyright © 2013 Elsevier B.V. All rights reserved.
Multicore fiber beamforming network for broadband satellite communications
NASA Astrophysics Data System (ADS)
Zainullin, Airat; Vidal, Borja; Macho, Andres; Llorente, Roberto
2017-02-01
Multi-core fiber (MCF) has been one of the main innovations in fiber optics in the last decade. Reported work on MCF has been focused on increasing the transmission capacity of optical communication links by exploiting space-division multiplexing. Additionally, MCF presents a strong potential in optical beamforming networks. The use of MCF can increase the compactness of the broadband antenna array controller. This is of utmost importance in platforms where size and weight are critical parameters such as communications satellites and airplanes. Here, an optical beamforming architecture that exploits the space-division capacity of MCF to implement compact optical beamforming networks is proposed, being a new application field for MCF. The experimental demonstration of this system using a 4-core MCF that controls a four-element antenna array is reported. An analysis of the impact of MCF on the performance of antenna arrays is presented. The analysis indicates that the main limitation comes from the relatively high insertion loss in the MCF fan-in and fan-out devices, which leads to angle dependent losses which can be mitigated by using fixed optical attenuators or a photonic lantern to reduce MCF insertion loss. The crosstalk requirements are also experimentally evaluated for the proposed MCF-based architecture. The potential signal impairment in the beamforming network is analytically evaluated, being of special importance when MCF with a large number of cores is considered. Finally, the optimization of the proposed MCF-based beamforming network is addressed targeting the scalability to large arrays.
Chen, Yuling; Lou, Yang; Yen, Jesse
2017-07-01
During conventional ultrasound imaging, the need for multiple transmissions for one image and the time of flight for a desired imaging depth limit the frame rate of the system. Using a single plane wave pulse during each transmission followed by parallel receive processing allows for high frame rate imaging. However, image quality is degraded because of the lack of transmit focusing. Beamforming by spatial matched filtering (SMF) is a promising method which focuses ultrasonic energy using spatial filters constructed from the transmit-receive impulse response of the system. Studies by other researchers have shown that SMF beamforming can provide dynamic transmit-receive focusing throughout the field of view. In this paper, we apply SMF beamforming to plane wave transmissions (PWTs) to achieve both dynamic transmit-receive focusing at all imaging depths and high imaging frame rate (>5000 frames per second). We demonstrated the capability of the combined method (PWT + SMF) of achieving two-way focusing mathematically through analysis based on the narrowband Rayleigh-Sommerfeld diffraction theory. Moreover, the broadband performance of PWT + SMF was quantified in terms of lateral resolution and contrast from both computer simulations and experimental data. Results were compared between SMF beamforming and conventional delay-and-sum (DAS) beamforming in both simulations and experiments. At an imaging depth of 40 mm, simulation results showed a 29% lateral resolution improvement and a 160% contrast improvement with PWT + SMF. These improvements were 17% and 48% for experimental data with noise.
Gimenez, Sonia; Roger, Sandra; Baracca, Paolo; Martín-Sacristán, David; Monserrat, Jose F; Braun, Volker; Halbauer, Hardy
2016-09-22
The use of massive multiple-input multiple-output (MIMO) techniques for communication at millimeter-Wave (mmW) frequency bands has become a key enabler to meet the data rate demands of the upcoming fifth generation (5G) cellular systems. In particular, analog and hybrid beamforming solutions are receiving increasing attention as less expensive and more power efficient alternatives to fully digital precoding schemes. Despite their proven good performance in simple setups, their suitability for realistic cellular systems with many interfering base stations and users is still unclear. Furthermore, the performance of massive MIMO beamforming and precoding methods are in practice also affected by practical limitations and hardware constraints. In this sense, this paper assesses the performance of digital precoding and analog beamforming in an urban cellular system with an accurate mmW channel model under both ideal and realistic assumptions. The results show that analog beamforming can reach the performance of fully digital maximum ratio transmission under line of sight conditions and with a sufficient number of parallel radio-frequency (RF) chains, especially when the practical limitations of outdated channel information and per antenna power constraints are considered. This work also shows the impact of the phase shifter errors and combiner losses introduced by real phase shifter and combiner implementations over analog beamforming, where the former ones have minor impact on the performance, while the latter ones determine the optimum number of RF chains to be used in practice.
Jeong, Jinsoo
2011-01-01
This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure. PMID:22163987
Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian
2012-01-01
A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.
A distributed transmit beamforming synchronization strategy for multi-element radar systems
NASA Astrophysics Data System (ADS)
Xiao, Manlin; Li, Xingwen; Xu, Jikang
2017-02-01
The distributed transmit beamforming has recently been discussed as an energy-effective technique in wireless communication systems. A common ground of various techniques is that the destination node transmits a beacon signal or feedback to assist source nodes to synchronize signals. However, this approach is not appropriate for a radar system since the destination is a non-cooperative target of an unknown location. In our paper, we propose a novel synchronization strategy for a distributed multiple-element beamfoming radar system. Source nodes estimate parameters of beacon signals transmitted from others to get their local synchronization information. The channel information of the phase propagation delay is transmitted to nodes via the reflected beacon signals as well. Next, each node generates appropriate parameters to form a beamforming signal at the target. Transmit beamforming signals of all nodes will combine coherently at the target compensating for different propagation delay. We analyse the influence of the local oscillation accuracy and the parameter estimation errors on the performance of the proposed synchronization scheme. The results of numerical simulations illustrate that this synchronization scheme is effective to enable the transmit beamforming in a distributed multi-element radar system.
Numerical analysis of biosonar beamforming mechanisms and strategies in bats.
Müller, Rolf
2010-09-01
Beamforming is critical to the function of most sonar systems. The conspicuous noseleaf and pinna shapes in bats suggest that beamforming mechanisms based on diffraction of the outgoing and incoming ultrasonic waves play a major role in bat biosonar. Numerical methods can be used to investigate the relationships between baffle geometry, acoustic mechanisms, and resulting beampatterns. Key advantages of numerical approaches are: efficient, high-resolution estimation of beampatterns, spatially dense predictions of near-field amplitudes, and the malleability of the underlying shape representations. A numerical approach that combines near-field predictions based on a finite-element formulation for harmonic solutions to the Helmholtz equation with a free-field projection based on the Kirchhoff integral to obtain estimates of the far-field beampattern is reviewed. This method has been used to predict physical beamforming mechanisms such as frequency-dependent beamforming with half-open resonance cavities in the noseleaf of horseshoe bats and beam narrowing through extension of the pinna aperture with skin folds in false vampire bats. The fine structure of biosonar beampatterns is discussed for the case of the Chinese noctule and methods for assessing the spatial information conveyed by beampatterns are demonstrated for the brown long-eared bat.
Adaptive near-field beamforming techniques for sound source imaging.
Cho, Yong Thung; Roan, Michael J
2009-02-01
Phased array signal processing techniques such as beamforming have a long history in applications such as sonar for detection and localization of far-field sound sources. Two sometimes competing challenges arise in any type of spatial processing; these are to minimize contributions from directions other than the look direction and minimize the width of the main lobe. To tackle this problem a large body of work has been devoted to the development of adaptive procedures that attempt to minimize side lobe contributions to the spatial processor output. In this paper, two adaptive beamforming procedures-minimum variance distorsionless response and weight optimization to minimize maximum side lobes--are modified for use in source visualization applications to estimate beamforming pressure and intensity using near-field pressure measurements. These adaptive techniques are compared to a fixed near-field focusing technique (both techniques use near-field beamforming weightings focusing at source locations estimated based on spherical wave array manifold vectors with spatial windows). Sound source resolution accuracies of near-field imaging procedures with different weighting strategies are compared using numerical simulations both in anechoic and reverberant environments with random measurement noise. Also, experimental results are given for near-field sound pressure measurements of an enclosed loudspeaker.
NASA Astrophysics Data System (ADS)
Xi, Songnan; Zoltowski, Michael D.
2008-04-01
Multiuser multiple-input multiple-output (MIMO) systems are considered in this paper. We continue our research on uplink transmit beamforming design for multiple users under the assumption that the full multiuser channel state information, which is the collection of the channel state information between each of the users and the base station, is known not only to the receiver but also to all the transmitters. We propose an algorithm for designing optimal beamforming weights in terms of maximizing the signal-to-interference-plus-noise ratio (SINR). Through statistical modeling, we decouple the original mathematically intractable optimization problem and achieved a closed-form solution. As in our previous work, the minimum mean-squared error (MMSE) receiver with successive interference cancellation (SIC) is adopted for multiuser detection. The proposed scheme is compared with an existing jointly optimized transceiver design, referred to as the joint transceiver in this paper, and our previously proposed eigen-beamforming algorithm. Simulation results demonstrate that our algorithm, with much less computational burden, accomplishes almost the same performance as the joint transceiver for spatially independent MIMO channel and even better performance for spatially correlated MIMO channels. And it always works better than our previously proposed eigen beamforming algorithm.
15 CFR Supplement No. 6 to Part 774 - Sensitive List
Code of Federal Regulations, 2014 CFR
2014-01-01
... filtering and beamforming using Fast Fourier or other transforms or processes. (vi) 6A001.a.2.d. (vii) 6A001... processing and correlation, including spectral analysis, digital filtering and beamforming using Fast Fourier...
Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu
2016-01-01
This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.
Real-time catheter localization and visualization using three-dimensional echocardiography
NASA Astrophysics Data System (ADS)
Kozlowski, Pawel; Bandaru, Raja Sekhar; D'hooge, Jan; Samset, Eigil
2017-03-01
Real-time three-dimensional transesophageal echocardiography (RT3D-TEE) is increasingly used during minimally invasive cardiac surgeries (MICS). In many cath labs, RT3D-TEE is already one of the requisite tools for image guidance during MICS. However, the visualization of the catheter is not always satisfactory making 3D- TEE challenging to use as the only modality for guidance. We propose a novel technique for better visualization of the catheter along with the cardiac anatomy using TEE alone - exploiting both beamforming and post processing methods. We extended our earlier method called Delay and Standard Deviation (DASD) beamforming to 3D in order to enhance specular reflections. The beam-formed image was further post-processed by the Frangi filter to segment the catheter. Multi-variate visualization techniques enabled us to render both the standard tissue and the DASD beam-formed image on a clinical ultrasound scanner simultaneously. A frame rate of 15 FPS was achieved.
Bai, Chen; Xu, Shanshan; Duan, Junbo; Jing, Bowen; Yang, Miao; Wan, Mingxi
2017-08-01
Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.
CHIME-Net, The Connecticut Health Information Network: A Pilot Study
Reed-Fourquet, LL; Durand, D; Johnson, L; Beaudin, S; Trask, J; DiSilvestro, E; Smith, L; Courtway, P; Pappanikou, J; Bretaigne, R; Pendleton, R; Vogler, E; Lobb, J; Dalal, S; Lynch, JT
1995-01-01
CHIME-Net is a state-wide community health information network project which uses a frame-relay approach to interfacility and internet connectivity. This is a collaborative effort among competitive institutions, which embraces technologies new to the health care industry. The experiences of implementation of the CHIME-Net pilot project are presented as a first milestone for the state-wide effort. PMID:8563347
DOT National Transportation Integrated Search
2006-05-08
This paper describes the integration of wavelet analysis and time-domain beamforming : of microphone array output signals for analyzing the acoustic emissions from airplane : generated wake vortices. This integrated process provides visual and quanti...
Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark
2014-01-01
NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.
Robust Group Sparse Beamforming for Multicast Green Cloud-RAN With Imperfect CSI
NASA Astrophysics Data System (ADS)
Shi, Yuanming; Zhang, Jun; Letaief, Khaled B.
2015-09-01
In this paper, we investigate the network power minimization problem for the multicast cloud radio access network (Cloud-RAN) with imperfect channel state information (CSI). The key observation is that network power minimization can be achieved by adaptively selecting active remote radio heads (RRHs) via controlling the group-sparsity structure of the beamforming vector. However, this yields a non-convex combinatorial optimization problem, for which we propose a three-stage robust group sparse beamforming algorithm. In the first stage, a quadratic variational formulation of the weighted mixed l1/l2-norm is proposed to induce the group-sparsity structure in the aggregated beamforming vector, which indicates those RRHs that can be switched off. A perturbed alternating optimization algorithm is then proposed to solve the resultant non-convex group-sparsity inducing optimization problem by exploiting its convex substructures. In the second stage, we propose a PhaseLift technique based algorithm to solve the feasibility problem with a given active RRH set, which helps determine the active RRHs. Finally, the semidefinite relaxation (SDR) technique is adopted to determine the robust multicast beamformers. Simulation results will demonstrate the convergence of the perturbed alternating optimization algorithm, as well as, the effectiveness of the proposed algorithm to minimize the network power consumption for multicast Cloud-RAN.
Enhanced linear-array photoacoustic beamforming using modified coherence factor.
Mozaffarzadeh, Moein; Yan, Yan; Mehrmohammadi, Mohammad; Makkiabadi, Bahador
2018-02-01
Photoacoustic imaging (PAI) is a promising medical imaging modality providing the spatial resolution of ultrasound imaging and the contrast of optical imaging. For linear-array PAI, a beamformer can be used as the reconstruction algorithm. Delay-and-sum (DAS) is the most prevalent beamforming algorithm in PAI. However, using DAS beamformer leads to low-resolution images as well as high sidelobes due to nondesired contribution of off-axis signals. Coherence factor (CF) is a weighting method in which each pixel of the reconstructed image is weighted, based on the spatial spectrum of the aperture, to mainly improve the contrast. We demonstrate that the numerator of the formula of CF contains a DAS algebra and propose the use of a delay-multiply-and-sum beamformer instead of the available DAS on the numerator. The proposed weighting technique, modified CF (MCF), has been evaluated numerically and experimentally compared to CF. It was shown that MCF leads to lower sidelobes and better detectable targets. The quantitative results of the experiment (using wire targets) show that MCF leads to for about 45% and 40% improvement, in comparison with CF, in the terms of signal-to-noise ratio and full-width-half-maximum, respectively. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Nakata, N.; Hadziioannou, C.; Igel, H.
2017-12-01
Six-component measurements of seismic ground motion provide a unique opportunity to identify and decompose seismic wavefields into different wave types and incoming azimuths, as well as estimate structural information (e.g., phase velocity). By using the relationship between the transverse component and vertical rotational motion for Love waves, we can find the incident azimuth of the wave and the phase velocity. Therefore, when we scan the entire range of azimuth and slownesses, we can process the seismic waves in a similar way to conventional beamforming processing, without using a station array. To further improve the beam resolution, we use the distribution of amplitude ratio between translational and rotational motions at each time sample. With this beamforming, we decompose multiple incoming waves by azimuth and phase velocity using only one station. We demonstrate this technique using the data observed at Wettzell (vertical rotational motion and 3C translational motions). The beamforming results are encouraging to extract phase velocity at the location of the station, apply to oceanic microseism, and to identify complicated SH wave arrivals. We also discuss single-station beamforming using other components (vertical translational and horizontal rotational components). For future work, we need to understand the resolution limit of this technique, suitable length of time windows, and sensitivity to weak motion.
Source-space ICA for MEG source imaging.
Jonmohamadi, Yaqub; Jones, Richard D
2016-02-01
One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.
Improving the Nulling Beamformer Using Subspace Suppression.
Rana, Kunjan D; Hämäläinen, Matti S; Vaina, Lucia M
2018-01-01
Magnetoencephalography (MEG) captures the magnetic fields generated by neuronal current sources with sensors outside the head. In MEG analysis these current sources are estimated from the measured data to identify the locations and time courses of neural activity. Since there is no unique solution to this so-called inverse problem, multiple source estimation techniques have been developed. The nulling beamformer (NB), a modified form of the linearly constrained minimum variance (LCMV) beamformer, is specifically used in the process of inferring interregional interactions and is designed to eliminate shared signal contributions, or cross-talk, between regions of interest (ROIs) that would otherwise interfere with the connectivity analyses. The nulling beamformer applies the truncated singular value decomposition (TSVD) to remove small signal contributions from a ROI to the sensor signals. However, ROIs with strong crosstalk will have high separating power in the weaker components, which may be removed by the TSVD operation. To address this issue we propose a new method, the nulling beamformer with subspace suppression (NBSS). This method, controlled by a tuning parameter, reweights the singular values of the gain matrix mapping from source to sensor space such that components with high overlap are reduced. By doing so, we are able to measure signals between nearby source locations with limited cross-talk interference, allowing for reliable cortical connectivity analysis between them. In two simulations, we demonstrated that NBSS reduces cross-talk while retaining ROIs' signal power, and has higher separating power than both the minimum norm estimate (MNE) and the nulling beamformer without subspace suppression. We also showed that NBSS successfully localized the auditory M100 event-related field in primary auditory cortex, measured from a subject undergoing an auditory localizer task, and suppressed cross-talk in a nearby region in the superior temporal sulcus.
He, Tian; Xiao, Denghong; Pan, Qiang; Liu, Xiandong; Shan, Yingchun
2014-01-01
This paper attempts to introduce an improved acoustic emission (AE) beamforming method to localize rotor-stator rubbing fault in rotating machinery. To investigate the propagation characteristics of acoustic emission signals in casing shell plate of rotating machinery, the plate wave theory is used in a thin plate. A simulation is conducted and its result shows the localization accuracy of beamforming depends on multi-mode, dispersion, velocity and array dimension. In order to reduce the effect of propagation characteristics on the source localization, an AE signal pre-process method is introduced by combining plate wave theory and wavelet packet transform. And the revised localization velocity to reduce effect of array size is presented. The accuracy of rubbing localization based on beamforming and the improved method of present paper are compared by the rubbing test carried on a test table of rotating machinery. The results indicate that the improved method can localize rub fault effectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Double-Stage Delay Multiply and Sum Beamforming Algorithm Applied to Ultrasound Medical Imaging.
Mozaffarzadeh, Moein; Sadeghi, Masume; Mahloojifar, Ali; Orooji, Mahdi
2018-03-01
In ultrasound (US) imaging, delay and sum (DAS) is the most common beamformer, but it leads to low-quality images. Delay multiply and sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from the level of side lobes and low noise suppression. Here, a novel beamforming algorithm is introduced based on expansion of the DMAS formula. We found that there is a DAS algebra inside the expansion, and we proposed use of the DMAS instead of the DAS algebra. The introduced method, namely double-stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in an approximately 25% lower level of side lobes compared with DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in signal-to-noise ratio, full width at half-maximum and contrast ratio, respectively, compared with the DMAS beamformer. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Kim, Daesung; Kim, Kihyun; Wang, Semyung; Lee, Sung Q.; Crocker, Malcolm J.
2011-11-01
This paper mainly addresses design methods for near field loudspeaker arrays. These methods have been studied recently since they can be used to realize a personal audio space without the use of headphones. From a practical view point, they can also be used to form a directional sound beam within a short distance from the sources especially using a linear loudspeaker array. In this regard, we re-analyzed the previous near field beamforming methods in order to obtain a comprehensive near field beamforming formulation. Broadband directivity control is proposed for multi-objective optimization, which maximizes the directivity with the desired gain, where both the directivity and the gain are commonly used array performance measures. This method of control aims to form a directive sound beam within a short distance while widening the frequency range of the beamforming. Simulation and experimental results demonstrate that broadband directivity control achieves higher directivity and gain over our whole frequency range of interest compared with previous beamforming methods.
Multiband Photonic Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Tang, Suning
2015-01-01
A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.
Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.
Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859
Directional hearing aid using hybrid adaptive beamformer (HAB) and binaural ITE array
NASA Astrophysics Data System (ADS)
Shaw, Scott T.; Larow, Andy J.; Gibian, Gary L.; Sherlock, Laguinn P.; Schulein, Robert
2002-05-01
A directional hearing aid algorithm called the Hybrid Adaptive Beamformer (HAB), developed for NIH/NIA, can be applied to many different microphone array configurations. In this project the HAB algorithm was applied to a new array employing in-the-ear microphones at each ear (HAB-ITE), to see if previous HAB performance could be achieved with a more cosmetically acceptable package. With diotic output, the average benefit in threshold SNR was 10.9 dB for three HoH and 11.7 dB for five normal-hearing subjects. These results are slightly better than previous results of equivalent tests with a 3-in. array. With an innovative binaural fitting, a small benefit beyond that provided by diotic adaptive beamforming was observed: 12.5 dB for HoH and 13.3 dB for normal-hearing subjects, a 1.6 dB improvement over the diotic presentation. Subjectively, the binaural fitting preserved binaural hearing abilities, giving the user a sense of space, and providing left-right localization. Thus the goal of creating an adaptive beamformer that simultaneously provides excellent noise reduction and binaural hearing was achieved. Further work remains before the HAB-ITE can be incorporated into a real product, optimizing binaural adaptive beamforming, and integrating the concept with other technologies to produce a viable product prototype. [Work supported by NIH/NIDCD.
Beamforming applied to surface EEG improves ripple visibility.
van Klink, Nicole; Mol, Arjen; Ferrier, Cyrille; Hillebrand, Arjan; Huiskamp, Geertjan; Zijlmans, Maeike
2018-01-01
Surface EEG can show epileptiform ripples in people with focal epilepsy, but identification is impeded by the low signal-to-noise ratio of the electrode recordings. We used beamformer-based virtual electrodes to improve ripple identification. We analyzed ten minutes of interictal EEG of nine patients with refractory focal epilepsy. EEGs with more than 60 channels and 20 spikes were included. We computed ∼79 virtual electrodes using a scalar beamformer and marked ripples (80-250 Hz) co-occurring with spikes in physical and virtual electrodes. Ripple numbers in physical and virtual electrodes were compared, and sensitivity and specificity of ripples for the region of interest (ROI; based on clinical information) were determined. Five patients had ripples in the physical electrodes and eight in the virtual electrodes, with more ripples in virtual than in physical electrodes (101 vs. 57, p = .007). Ripples in virtual electrodes predicted the ROI better than physical electrodes (AUC 0.65 vs. 0.56, p = .03). Beamforming increased ripple visibility in surface EEG. Virtual ripples predicted the ROI better than physical ripples, although sensitivity was still poor. Beamforming can facilitate ripple identification in EEG. Ripple localization needs to be improved to enable its use for presurgical evaluation in people with epilepsy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Stripline Antenna Beam-Forming Network
NASA Technical Reports Server (NTRS)
Cramer, P. W.
1984-01-01
Stripline antenna beam-forming network includes 87 beam ports and 136 feed-element ports and contained on only two microstrip boards. Both uplink and downlink strips supported on same boards. Originally used for communications coverage of continental United States for Land Mobile Satellite System, structure of interest to antenna designers in other applications.
Towed Array Performance in the Littoral Waters of Northern Australia
1997-06-01
utilization of inverse beamforming. 14. SUBJECT TERMS Oceanography, Pasive Sonar, Inital Detection Ranges, Arafura Sea, 15. NUMBER OF Beamforming PAGES 121...therefore of interest to ascertain how towed arrays designed in this matter perform in specific areas of operation. The Arafura Sea, shown at Figure 2
Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.
Ma, Ping; Lien, Fue-Sang; Yee, Eugene
2017-01-01
This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.
Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn
2010-01-01
GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.
Digital Beamforming Synthetic Aperture Radar Developments at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung Kuk; Du Toit, Cornelis F.; Perrine, Martin; Ranson, K. Jon; Sun, Guoqing; Deshpande, Manohar; Beck, Jaclyn;
2016-01-01
Advanced Digital Beamforming (DBF) Synthetic Aperture Radar (SAR) technology is an area of research and development pursued at the NASA Goddard Space Flight Center (GSFC). Advanced SAR architectures enhances radar performance and opens a new set of capabilities in radar remote sensing. DBSAR-2 and EcoSAR are two state-of-the-art radar systems recently developed and tested. These new instruments employ multiple input-multiple output (MIMO) architectures characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instruments have been developed to support several disciplines in Earth and Planetary sciences. This paper describes the radars advanced features and report on the latest SAR processing and calibration efforts.
A Circular Polarizer with Beamforming Feature Based on Frequency Selective Surfaces
NASA Astrophysics Data System (ADS)
Yin, Jia Yuan; Wan, Xiang; Ren, Jian; Cui, Tie Jun
2017-01-01
We propose a circular polarizer with beamforming features based on frequency selective surface (FSS), in which a modified anchor-shaped unit cell is used to reach the circular polarizer function. The beamforming characteristic is realized by a particular design of the unit-phase distribution, which is obtained by varying the scale of the unit cell. Instead of using plane waves, a horn antenna is designed to feed the phase-variant FSS. The proposed two-layer FSS is fabricated and measured to verify the design. The measured results show that the proposed structure can convert the linearly polarized waves to circularly polarized waves. Compared with the feeding horn antenna, the transmitted beam of the FSS-added horn is 14.43° broader in one direction, while 3.77° narrower in the orthogonal direction. To our best knowledge, this is the first time to realize circular polarizer with beamforming as the extra function based on FSS, which is promising in satellite and communication systems for potential applications due to its simple design and good performance.
Radar wideband digital beamforming based on time delay and phase compensation
NASA Astrophysics Data System (ADS)
Fu, Wei; Jiang, Defu
2018-07-01
In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.
Beamforming using subspace estimation from a diagonally averaged sample covariance.
Quijano, Jorge E; Zurk, Lisa M
2017-08-01
The potential benefit of a large-aperture sonar array for high resolution target localization is often challenged by the lack of sufficient data required for adaptive beamforming. This paper introduces a Toeplitz-constrained estimator of the clairvoyant signal covariance matrix corresponding to multiple far-field targets embedded in background isotropic noise. The estimator is obtained by averaging along subdiagonals of the sample covariance matrix, followed by covariance extrapolation using the method of maximum entropy. The sample covariance is computed from limited data snapshots, a situation commonly encountered with large-aperture arrays in environments characterized by short periods of local stationarity. Eigenvectors computed from the Toeplitz-constrained covariance are used to construct signal-subspace projector matrices, which are shown to reduce background noise and improve detection of closely spaced targets when applied to subspace beamforming. Monte Carlo simulations corresponding to increasing array aperture suggest convergence of the proposed projector to the clairvoyant signal projector, thereby outperforming the classic projector obtained from the sample eigenvectors. Beamforming performance of the proposed method is analyzed using simulated data, as well as experimental data from the Shallow Water Array Performance experiment.
Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour
Ram, Gopi; Mandal, Durbadal; Kar, Rajib; Ghoshal, Sakti Prasad
2013-01-01
A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL) and same or less first null beam width (FNBW), keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL) and first null beam width (FNBW) have been achieved by the proposed collective animal behaviour (CAB) algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB. PMID:23970843
NASA Astrophysics Data System (ADS)
Naldi, G.; Bartolini, M.; Mattana, A.; Pupillo, G.; Hickish, J.; Foster, G.; Bianchi, G.; Lingua, A.; Monari, J.; Montebugnoli, S.; Perini, F.; Rusticelli, S.; Schiaffino, M.; Virone, G.; Zarb Adami, K.
In radio astronomy Field Programmable Gate Array (FPGA) technology is largely used for the implementation of digital signal processing techniques applied to antenna arrays. This is mainly due to the good trade-off among computing resources, power consumption and cost offered by FPGA chip compared to other technologies like ASIC, GPU and CPU. In the last years several digital backend systems based on such devices have been developed at the Medicina radio astronomical station (INAF-IRA, Bologna, Italy). Instruments like FX correlator, direct imager, beamformer, multi-beam system have been successfully designed and realized on CASPER (Collaboration for Astronomy Signal Processing and Electronics Research, https://casper.berkeley.edu) processing boards. In this paper we present the gained experience in this kind of applications.
Impact of a Moving Noise Masker on Speech Perception in Cochlear Implant Users
Weissgerber, Tobias; Rader, Tobias; Baumann, Uwe
2015-01-01
Objectives Previous studies investigating speech perception in noise have typically been conducted with static masker positions. The aim of this study was to investigate the effect of spatial separation of source and masker (spatial release from masking, SRM) in a moving masker setup and to evaluate the impact of adaptive beamforming in comparison with fixed directional microphones in cochlear implant (CI) users. Design Speech reception thresholds (SRT) were measured in S0N0 and in a moving masker setup (S0Nmove) in 12 normal hearing participants and 14 CI users (7 subjects bilateral, 7 bimodal with a hearing aid in the contralateral ear). Speech processor settings were a moderately directional microphone, a fixed beamformer, or an adaptive beamformer. The moving noise source was generated by means of wave field synthesis and was smoothly moved in a shape of a half-circle from one ear to the contralateral ear. Noise was presented in either of two conditions: continuous or modulated. Results SRTs in the S0Nmove setup were significantly improved compared to the S0N0 setup for both the normal hearing control group and the bilateral group in continuous noise, and for the control group in modulated noise. There was no effect of subject group. A significant effect of directional sensitivity was found in the S0Nmove setup. In the bilateral group, the adaptive beamformer achieved lower SRTs than the fixed beamformer setting. Adaptive beamforming improved SRT in both CI user groups substantially by about 3 dB (bimodal group) and 8 dB (bilateral group) depending on masker type. Conclusions CI users showed SRM that was comparable to normal hearing subjects. In listening situations of everyday life with spatial separation of source and masker, directional microphones significantly improved speech perception with individual improvements of up to 15 dB SNR. Users of bilateral speech processors with both directional microphones obtained the highest benefit. PMID:25970594
Distributed polar-coded OFDM based on Plotkin's construction for half duplex wireless communication
NASA Astrophysics Data System (ADS)
Umar, Rahim; Yang, Fengfan; Mughal, Shoaib; Xu, HongJun
2018-07-01
A Plotkin-based polar-coded orthogonal frequency division multiplexing (P-PC-OFDM) scheme is proposed and its bit error rate (BER) performance over additive white gaussian noise (AWGN), frequency selective Rayleigh, Rician and Nakagami-m fading channels has been evaluated. The considered Plotkin's construction possesses a parallel split in its structure, which motivated us to extend the proposed P-PC-OFDM scheme in a coded cooperative scenario. As the relay's effective collaboration has always been pivotal in the design of cooperative communication therefore, an efficient selection criterion for choosing the information bits has been inculcated at the relay node. To assess the BER performance of the proposed cooperative scheme, we have also upgraded conventional polar-coded cooperative scheme in the context of OFDM as an appropriate bench marker. The Monte Carlo simulated results revealed that the proposed Plotkin-based polar-coded cooperative OFDM scheme convincingly outperforms the conventional polar-coded cooperative OFDM scheme by 0.5 0.6 dBs over AWGN channel. This prominent gain in BER performance is made possible due to the bit-selection criteria and the joint successive cancellation decoding adopted at the relay and the destination nodes, respectively. Furthermore, the proposed coded cooperative schemes outperform their corresponding non-cooperative schemes by a gain of 1 dB under an identical condition.
Advanced Architectures for Modern Weather/Multifunction Radars
2017-03-01
Advanced Architectures for Modern Weather /Multifunction Radars Caleb Fulton The University of Oklahoma Advanced Radar Research Center Norman...and all of them are addressing the need to lower cost while improving beamforming flexibility in future weather radar systems that will be tasked...with multiple non- weather functions. Keywords: Phased arrays, digital beamforming, multifunction radar. Introduction and Overview As the performance
ERIC Educational Resources Information Center
Dorman, Michael F.; Natale, Sarah; Spahr, Anthony; Castioni, Erin
2017-01-01
Purpose: The aim of this experiment was to compare, for patients with cochlear implants (CIs), the improvement for speech understanding in noise provided by a monaural adaptive beamformer and for two interventions that produced bilateral input (i.e., bilateral CIs and hearing preservation [HP] surgery). Method: Speech understanding scores for…
Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines
Lien, Fue-Sang
2017-01-01
This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz. PMID:28378012
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.
2010-01-01
An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing
2014-01-01
The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.
2016-03-01
Representational state transfer Java messaging service Java application programming interface (API) Internet relay chat (IRC)/extensible messaging and...JBoss application server or an Apache Tomcat servlet container instance. The relational database management system can be either PostgreSQL or MySQL ... Java library called direct web remoting. This library has been part of the core CACE architecture for quite some time; however, there have not been
Overview of the NSTX Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Sichta; J. Dong; G. Oliaro
2001-12-03
The National Spherical Torus Experiment (NSTX) is an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. Since achieving first plasma in 1999, the device has been used for fusion research through an international collaboration of more than twenty institutions. The NSTX is operated through a collection of control systems that encompass a wide range of technology, from hardwired relay controls to real-time control systems with giga-FLOPS of capability. This paper presents a broad introduction to the controlmore » systems used on NSTX, with an emphasis on the computing controls, data acquisition, and synchronization systems.« less
Daneshmand, Saeed; Marathe, Thyagaraja; Lachapelle, Gérard
2016-10-31
The use of antenna arrays in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its superior capability to suppress both narrowband and wideband interference. However, the phase distortions resulting from array processing may limit the applicability of these methods for high precision applications using carrier phase based positioning techniques. This paper studies the phase distortions occurring with the adaptive blind beamforming method in which satellite angle of arrival (AoA) information is not employed in the optimization problem. To cater to non-stationary interference scenarios, the array weights of the adaptive beamformer are continuously updated. The effects of these continuous updates on the tracking parameters of a GNSS receiver are analyzed. The second part of this paper focuses on reducing the phase distortions during the blind beamforming process in order to allow the receiver to perform carrier phase based positioning by applying a constraint on the structure of the array configuration and by compensating the array uncertainties. Limitations of the previous methods are studied and a new method is proposed that keeps the simplicity of the blind beamformer structure and, at the same time, reduces tracking degradations while achieving millimetre level positioning accuracy in interference environments. To verify the applicability of the proposed method and analyze the degradations, array signals corresponding to the GPS L1 band are generated using a combination of hardware and software simulators. Furthermore, the amount of degradation and performance of the proposed method under different conditions are evaluated based on Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Huang, Howard; Lei, Chen; Kim, Younsu; Boctor, Emad M.
2017-03-01
Photoacoustic (PA) imaging has shown its potential for many clinical applications, but current research and usage of PA imaging are constrained by additional hardware costs to collect channel data, as the PA signals are incorrectly processed in existing clinical ultrasound systems. This problem arises from the fact that ultrasound systems beamform the PA signals as echoes from the ultrasound transducer instead of directly from illuminated sources. Consequently, conventional implementations of PA imaging rely on parallel channel acquisition from research platforms, which are not only slow and expensive, but are also mostly not approved by the FDA for clinical use. In previous studies, we have proposed the synthetic-aperture based photoacoustic re-beamformer (SPARE) that uses ultrasound beamformed radio frequency (RF) data as the input, which is readily available in clinical ultrasound scanners. The goal of this work is to implement the SPARE beamformer in a clinical ultrasound system, and to experimentally demonstrate its real-time visualization. Assuming a high pulsed repetition frequency (PRF) laser is used, a PZT-based pseudo PA source transmission was synchronized with the ultrasound line trigger. As a result, the frame-rate increases when limiting the image field-of-view (FOV), with 50 to 20 frames per second achieved for FOVs from 35 mm to 70 mm depth, respectively. Although in reality the maximum PRF of laser firing limits the PA image frame rate, this result indicates that the developed software is capable of displaying PA images with the maximum possible frame-rate for certain laser system without acquiring channel data.
Smart Acoustic Network Using Combined FSK-PSK, Adaptive Beamforming and Equalization
2002-09-30
sonar data transmission from underwater vehicle during mission. The two-year objectives for the high-reliability acoustic network using multiple... sonar laboratory) and used for acoustic networking during underwater vehicle operation. The joint adaptive coherent path beamformer method consists...broadband communications transducer, while the low noise preamplifier conditions received signals for analog to digital conversion. External user
Smart Acoustic Network Using Combined FSK-PSK, Adaptive, Beamforming and Equalization
2001-09-30
sonar data transmission from underwater vehicle during mission. The two-year objectives for the high-reliability acoustic network using multiple... sonar laboratory) and used for acoustic networking during underwater vehicle operation. The joint adaptive coherent path beamformer method consists...broadband communications transducer, while the low noise preamplifier conditions received signals for analog to digital conversion. External user
Two-dimensional grid-free compressive beamforming.
Yang, Yang; Chu, Zhigang; Xu, Zhongming; Ping, Guoli
2017-08-01
Compressive beamforming realizes the direction-of-arrival (DOA) estimation and strength quantification of acoustic sources by solving an underdetermined system of equations relating microphone pressures to a source distribution via compressive sensing. The conventional method assumes DOAs of sources to lie on a grid. Its performance degrades due to basis mismatch when the assumption is not satisfied. To overcome this limitation for the measurement with plane microphone arrays, a two-dimensional grid-free compressive beamforming is developed. First, a continuum based atomic norm minimization is defined to denoise the measured pressure and thus obtain the pressure from sources. Next, a positive semidefinite programming is formulated to approximate the atomic norm minimization. Subsequently, a reasonably fast algorithm based on alternating direction method of multipliers is presented to solve the positive semidefinite programming. Finally, the matrix enhancement and matrix pencil method is introduced to process the obtained pressure and reconstruct the source distribution. Both simulations and experiments demonstrate that under certain conditions, the grid-free compressive beamforming can provide high-resolution and low-contamination imaging, allowing accurate and fast estimation of two-dimensional DOAs and quantification of source strengths, even with non-uniform arrays and noisy measurements.
Geostationary payload concepts for personal satellite communications
NASA Technical Reports Server (NTRS)
Benedicto, J.; Rinous, P.; Roberts, I.; Roederer, A.; Stojkovic, I.
1993-01-01
This paper reviews candidate satellite payload architectures for systems providing world-wide communication services to mobile users equipped with hand-held terminals based on large geostationary satellites. There are a number of problems related to the payload architecture, on-board routing and beamforming, and the design of the S-band Tx and L-band Rx antenna and front ends. A number of solutions are outlined, based on trade-offs with respect to the most significant performance parameters such as capacity, G/T, flexibility of routing traffic to beams and re-configuration of the spot-beam coverage, and payload mass and power. Candidate antenna and front-end configurations were studied, in particular direct radiating arrays, arrays magnified by a reflector and active focused reflectors with overlapping feed clusters for both transmit (multimax) and receive (beam synthesis). Regarding the on-board routing and beamforming sub-systems, analog techniques based on banks of SAW filters, FET or CMOS switches and cross-bar fixed and variable beamforming are compared with a hybrid analog/digital approach based on Chirp Fourier Transform (CFT) demultiplexer combined with digital beamforming or a fully digital processor implementation, also based on CFT demultiplexing.
Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang
2018-05-08
When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.
Beamforming array techniques for acoustic emission monitoring of large concrete structures
NASA Astrophysics Data System (ADS)
McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.
2010-06-01
This paper introduces a novel method of acoustic emission (AE) analysis which is particularly suited for field applications on large plate-like reinforced concrete structures, such as walls and bridge decks. Similar to phased-array signal processing techniques developed for other non-destructive evaluation methods, this technique adapts beamforming tools developed for passive sonar and seismological applications for use in AE source localization and signal discrimination analyses. Instead of relying on the relatively weak P-wave, this method uses the energy-rich Rayleigh wave and requires only a small array of 4-8 sensors. Tests on an in-service reinforced concrete structure demonstrate that the azimuth of an artificial AE source can be determined via this method for sources located up to 3.8 m from the sensor array, even when the P-wave is undetectable. The beamforming array geometry also allows additional signal processing tools to be implemented, such as the VESPA process (VElocity SPectral Analysis), whereby the arrivals of different wave phases are identified by their apparent velocity of propagation. Beamforming AE can reduce sampling rate and time synchronization requirements between spatially distant sensors which in turn facilitates the use of wireless sensor networks for this application.
Point focusing using loudspeaker arrays from the perspective of optimal beamforming.
Bai, Mingsian R; Hsieh, Yu-Hao
2015-06-01
Sound focusing is to create a concentrated acoustic field in the region surrounded by a loudspeaker array. This problem was tackled in the previous research via the Helmholtz integral approach, brightness control, acoustic contrast control, etc. In this paper, the same problem was revisited from the perspective of beamforming. A source array model is reformulated in terms of the steering matrix between the source and the field points, which lends itself to the use of beamforming algorithms such as minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV) originally intended for sensor arrays. The beamforming methods are compared with the conventional methods in terms of beam pattern, directional index, and control effort. Objective tests are conducted to assess the audio quality by using perceptual evaluation of audio quality (PEAQ). Experiments of produced sound field and listening tests are conducted in a listening room, with results processed using analysis of variance and regression analysis. In contrast to the conventional energy-based methods, the results have shown that the proposed methods are phase-sensitive in light of the distortionless constraint in formulating the array filters, which helps enhance audio quality and focusing performance.
A MISO UCA Beamforming Dimmable LED System for Indoor Positioning
Taparugssanagorn, Attaphongse; Siwamogsatham, Siwaruk; Pomalaza-Ráez, Carlos
2014-01-01
The use of a multiple input single output (MISO) transmit beamforming system using dimmable light emitting arrays (LEAs) in the form of a uniform circular array (UCA) of transmitters is proposed in this paper. With this technique, visible light communications between a transmitter and a receiver (LED reader) can be achieved with excellent performance and the receiver's position can be estimated. A hexagonal lattice alignment of LED transmitters is deployed to reduce the coverage holes and the areas of overlapping radiation. As a result, the accuracy of the position estimation is better than when using a typical rectangular grid alignment. The dimming control is done with pulse width modulation (PWM) to obtain an optimal closed loop beamforming and minimum energy consumption with acceptable lighting. PMID:24481234
Cigada, Alfredo; Lurati, Massimiliano; Ripamonti, Francesco; Vanali, Marcello
2008-12-01
This paper introduces a measurement technique aimed at reducing or possibly eliminating the spatial aliasing problem in the beamforming technique. Beamforming main disadvantages are a poor spatial resolution, at low frequency, and the spatial aliasing problem, at higher frequency, leading to the identification of false sources. The idea is to move the microphone array during the measurement operation. In this paper, the proposed approach is theoretically and numerically investigated by means of simple sound propagation models, proving its efficiency in reducing the spatial aliasing. A number of different array configurations are numerically investigated together with the most important parameters governing this measurement technique. A set of numerical results concerning the case of a planar rotating array is shown, together with a first experimental validation of the method.
Lateral velocity estimation bias due to beamforming delay errors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Rodriguez-Molares, Alfonso; Fadnes, Solveig; Swillens, Abigail; Løvstakken, Lasse
2017-03-01
An artefact has recently been reported [1,2] in the estimation of the lateral blood velocity using speckle tracking. This artefact shows as a net velocity bias in presence of strong spatial velocity gradients such as those that occur at the edges of the filling jets in the heart. Even though this artifact has been found both in vitro and in simulated data, its causes are still undescribed. Here we demonstrate that a potential source of this artefact can be traced to smaller errors in the beamforming setup. By inserting a small offset in the beamforming delay, one can artificially create a net lateral movement in the speckle in areas of high velocity gradient. That offset does not have a strong impact in the image quality and can easily go undetected.
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Fung, K. M.; Yong, T.; Liu, X.
2015-12-01
Proper agricultural land management is essential for securing food supply and minimizing damage to the environment. Among available farming practices, relay strip intercropping and fertilizer application are commonly used, but to study their wider environmental implications and possible feedbacks we require an Earth system modeling framework. In this study, the effectiveness of a maize-soybean relay strip intercropping system and fertilizer reduction is investigated using a multi-model method. The DNDC (DeNitrification-DeComposition) model is used to simulate agricultural activities and their impacts on the environment through nitrogen emissions and changes in soil chemical composition. Crop yield, soil nutrient content and nitrogen emissions to the atmosphere in major agricultural regions of China are predicted under various cultivation scenarios. The GEOS-Chem global chemical transport model is then used to estimate the effects on downwind particle and ozone air pollution. We show that relay strip intercropping and optimal fertilization not only improve crop productivity, but also retain soil nutrients, reduce ammonia emission and mitigate downwind air pollution. By cutting 25% fertilization inputs but cultivating maize and soybean together in a relay strip intercropping system used with field studies, total crop production was improved slightly by 4.4% compared to monoculture with conventional amount of fertilizers. NH3 volatilization decreases by 29%, equivalent to saving the pollution-induced health damage costs by about US$2.5 billion per year. The possible feedback effects from atmospheric nitrogen deposition onto the croplands are also investigated. We show that careful management and better quantitative understanding of alternative farming practices hold huge potential in simultaneously addressing different global change issues including the food crisis, air pollution and climate change, and calls for greater collaboration between scientists, farmers and policy makers concerning these issues.
1991-12-01
TRANSFORM, WIGNER - VILLE DISTRIBUTION , AND NONSTATIONARY SIGNAL REPRESENTATIONS 6. AUTHOR(S) J. C. Allen 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...bispectrum yields a bispectral direction finder. Estimates of time-frequency distributions produce Wigner - Ville and Gabor direction-finders. Some types...Beamforming Concepts: Source Localization Using the Bispectrum, Gabor Transform, Wigner - Ville Distribution , and Nonstationary Signal Representations
Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume
NASA Technical Reports Server (NTRS)
Panda, J.; Mosher, R.
2010-01-01
A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform routine CLEAN-SC created a series of lumped sources which may be unphysical. We believe that the present effort is the first-ever attempt to directly measure noise source distribution in a rocket plume.
Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank
NASA Astrophysics Data System (ADS)
Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.
2014-05-01
Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.
Whiteboard animation for knowledge mobilization: a test case from the Slave River and Delta, Canada.
Bradford, Lori E A; Bharadwaj, Lalita A
2015-01-01
To present the co-creation of a whiteboard animation video, an enhanced e-storytelling technique for relaying traditional knowledge interview results as narratives. We present a design for translating interview results into a script and accompanying series of figures, followed by technical steps to create a whiteboard animation product. Our project used content analysis and researcher triangulation, followed by a collaborative process to develop an animated video to disseminate research findings. A 13-minute long whiteboard animation video was produced from a research study about changing environments in northern Canadian communities and was distributed to local people. Three challenging issues in the video creation process including communication issues, technical difficulties and contextual debate were resolved among the supporting agencies and researchers. Dissemination of findings is a crucial step in the research process. Whiteboard animation video products may be a viable and culturally-appropriate form of relaying research results back to Indigenous communities in a storytelling format.
Whiteboard animation for knowledge mobilization: a test case from the Slave River and Delta, Canada.
Bradford, Lori E A; Bharadwaj, Lalita A
2015-01-01
Objective To present the co-creation of a whiteboard animation video, an enhanced e-storytelling technique for relaying traditional knowledge interview results as narratives. Design We present a design for translating interview results into a script and accompanying series of figures, followed by technical steps to create a whiteboard animation product. Method Our project used content analysis and researcher triangulation, followed by a collaborative process to develop an animated video to disseminate research findings. A 13-minute long whiteboard animation video was produced from a research study about changing environments in northern Canadian communities and was distributed to local people. Three challenging issues in the video creation process including communication issues, technical difficulties and contextual debate were resolved among the supporting agencies and researchers. Conclusions Dissemination of findings is a crucial step in the research process. Whiteboard animation video products may be a viable and culturally-appropriate form of relaying research results back to Indigenous communities in a storytelling format.
Whiteboard animation for knowledge mobilization: a test case from the Slave River and Delta, Canada
Bradford, Lori E. A.; Bharadwaj, Lalita A.
2015-01-01
Objective To present the co-creation of a whiteboard animation video, an enhanced e-storytelling technique for relaying traditional knowledge interview results as narratives. Design We present a design for translating interview results into a script and accompanying series of figures, followed by technical steps to create a whiteboard animation product. Method Our project used content analysis and researcher triangulation, followed by a collaborative process to develop an animated video to disseminate research findings. A 13-minute long whiteboard animation video was produced from a research study about changing environments in northern Canadian communities and was distributed to local people. Three challenging issues in the video creation process including communication issues, technical difficulties and contextual debate were resolved among the supporting agencies and researchers. Conclusions Dissemination of findings is a crucial step in the research process. Whiteboard animation video products may be a viable and culturally-appropriate form of relaying research results back to Indigenous communities in a storytelling format. PMID:26507716
Spatio-temporal Reconstruction of Neural Sources Using Indirect Dominant Mode Rejection.
Jafadideh, Alireza Talesh; Asl, Babak Mohammadzadeh
2018-04-27
Adaptive minimum variance based beamformers (MVB) have been successfully applied to magnetoencephalogram (MEG) and electroencephalogram (EEG) data to localize brain activities. However, the performance of these beamformers falls down in situations where correlated or interference sources exist. To overcome this problem, we propose indirect dominant mode rejection (iDMR) beamformer application in brain source localization. This method by modifying measurement covariance matrix makes MVB applicable in source localization in the presence of correlated and interference sources. Numerical results on both EEG and MEG data demonstrate that presented approach accurately reconstructs time courses of active sources and localizes those sources with high spatial resolution. In addition, the results of real AEF data show the good performance of iDMR in empirical situations. Hence, iDMR can be reliably used for brain source localization especially when there are correlated and interference sources.
Lin, Huifa; Shin, Won-Yong
2017-01-01
We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice. PMID:28076402
Jiang, Xiaoyue; Tang, Hao-Yen; Lu, Yipeng; Ng, Eldwin J; Tsai, Julius M; Boser, Bernhard E; Horsley, David A
2017-09-01
In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz. TX beamforming is used to focus the ultrasonic beam at the imaging plane where the finger is located, increasing the ultrasonic pressure and narrowing the 3-dB beamwidth to [Formula: see text], a factor of 6.4 narrower than nonbeamformed measurements. The surface of the sensor is coated with a poly-dimethylsiloxane (PDMS) layer to provide good acoustic impedance matching to skin. Scanning laser Doppler vibrometry of the PDMS surface was used to map the ultrasonic pressure field at the imaging surface, demonstrating the expected increase in pressure, and reduction in beamwidth. Imaging experiments were conducted using both PDMS phantoms and real fingerprints. The average image contrast is increased by a factor of 1.5 when beamforming is used.
Reconfigurable signal processor designs for advanced digital array radar systems
NASA Astrophysics Data System (ADS)
Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining
2017-05-01
The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.
NASA Astrophysics Data System (ADS)
Haji Heidari, Mehdi; Mozaffarzadeh, Moein; Manwar, Rayyan; Nasiriavanaki, Mohammadreza
2018-02-01
In recent years, the minimum variance (MV) beamforming has been widely studied due to its high resolution and contrast in B-mode Ultrasound imaging (USI). However, the performance of the MV beamformer is degraded at the presence of noise, as a result of the inaccurate covariance matrix estimation which leads to a low quality image. Second harmonic imaging (SHI) provides many advantages over the conventional pulse-echo USI, such as enhanced axial and lateral resolutions. However, the low signal-to-noise ratio (SNR) is a major problem in SHI. In this paper, Eigenspace-based minimum variance (EIBMV) beamformer has been employed for second harmonic USI. The Tissue Harmonic Imaging (THI) is achieved by Pulse Inversion (PI) technique. Using the EIBMV weights, instead of the MV ones, would lead to reduced sidelobes and improved contrast, without compromising the high resolution of the MV beamformer (even at the presence of a strong noise). In addition, we have investigated the effects of variations of the important parameters in computing EIBMV weights, i.e., K, L, and δ, on the resolution and contrast obtained in SHI. The results are evaluated using numerical data (using point target and cyst phantoms), and the proper parameters of EIBMV are indicated for THI.
Lin, Huifa; Shin, Won-Yong
2017-01-01
We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice.
High resolution beamforming on large aperture vertical line arrays: Processing synthetic data
NASA Astrophysics Data System (ADS)
Tran, Jean-Marie Q.; Hodgkiss, William S.
1990-09-01
This technical memorandum studies the beamforming of large aperture line arrays deployed vertically in the water column. The work concentrates on the use of high resolution techniques. Two processing strategies are envisioned: (1) full aperture coherent processing which offers in theory the best processing gain; and (2) subaperture processing which consists in extracting subapertures from the array and recombining the angular spectra estimated from these subarrays. The conventional beamformer, the minimum variance distortionless response (MVDR) processor, the multiple signal classification (MUSIC) algorithm and the minimum norm method are used in this study. To validate the various processing techniques, the ATLAS normal mode program is used to generate synthetic data which constitute a realistic signals environment. A deep-water, range-independent sound velocity profile environment, characteristic of the North-East Pacific, is being studied for two different 128 sensor arrays: a very long one cut for 30 Hz and operating at 20 Hz; and a shorter one cut for 107 Hz and operating at 100 Hz. The simulated sound source is 5 m deep. The full aperture and subaperture processing are being implemented with curved and plane wavefront replica vectors. The beamforming results are examined and compared to the ray-theory results produced by the generic sonar model.
NASA Astrophysics Data System (ADS)
Mozaffarzadeh, Moein; Mahloojifar, Ali; Nasiriavanaki, Mohammadreza; Orooji, Mahdi
2018-02-01
Delay and sum (DAS) is the most common beamforming algorithm in linear-array photoacoustic imaging (PAI) as a result of its simple implementation. However, it leads to a low resolution and high sidelobes. Delay multiply and sum (DMAS) was used to address the incapabilities of DAS, providing a higher image quality. However, the resolution improvement is not well enough compared to eigenspace-based minimum variance (EIBMV). In this paper, the EIBMV beamformer has been combined with DMAS algebra, called EIBMV-DMAS, using the expansion of DMAS algorithm. The proposed method is used as the reconstruction algorithm in linear-array PAI. EIBMV-DMAS is experimentally evaluated where the quantitative and qualitative results show that it outperforms DAS, DMAS and EIBMV. The proposed method degrades the sidelobes for about 365 %, 221 % and 40 %, compared to DAS, DMAS and EIBMV, respectively. Moreover, EIBMV-DMAS improves the SNR about 158 %, 63 % and 20 %, respectively.
NASA Astrophysics Data System (ADS)
Wu, Fei; Shao, Shihai; Tang, Youxi
2016-10-01
To enable simultaneous multicast downlink transmit and receive operations on the same frequency band, also known as full-duplex links between an access point and mobile users. The problem of minimizing the total power of multicast transmit beamforming is considered from the viewpoint of ensuring the suppression amount of near-field line-of-sight self-interference and guaranteeing prescribed minimum signal-to-interference-plus-noise-ratio (SINR) at each receiver of the multicast groups. Based on earlier results for multicast groups beamforming, the joint problem is easily shown to be NP-hard. A semidefinite relaxation (SDR) technique with linear program power adjust method is proposed to solve the NP-hard problem. Simulation shows that the proposed method is feasible even when the local receive antenna in nearfield and the mobile user in far-filed are in the same direction.
Compressive spherical beamforming for localization of incipient tip vortex cavitation.
Choo, Youngmin; Seong, Woojae
2016-12-01
Noises by incipient propeller tip vortex cavitation (TVC) are generally generated at regions near the propeller tip. Localization of these sparse noises is performed using compressive sensing (CS) with measurement data from cavitation tunnel experiments. Since initial TVC sound radiates in all directions as a monopole source, a sensing matrix for CS is formulated by adopting spherical beamforming. CS localization is examined with known source acoustic measurements, where the CS estimated source position coincides with the known source position. Afterwards, CS is applied to initial cavitation noise cases. The result of cavitation localization was detected near the upper downstream area of the propeller and showed less ambiguity compared to Bartlett spherical beamforming. Standard constraint in CS was modified by exploiting the physical features of cavitation to suppress remaining ambiguity. CS localization of TVC using the modified constraint is shown according to cavitation numbers and compared to high-speed camera images.
G. Marconi: A Data Relay Satellite for Mars Communications
NASA Astrophysics Data System (ADS)
Dionisio, C.; Marcozzi, M.; Landriani, C.
2002-01-01
Mars has always been a source of intrigue and fascination. Recent scientific discoveries have stimulated this longstanding interest, leading to a renaissance in Mars exploration. Future missions to Mars will be capable of long-distance surface mobility, hyperspectral imaging, subsurface exploration, and even life-detection. Manned missions and, eventually, colonies may follow. No mission to the Red Planet stands alone. New scientific and technological knowledge is passed on from one mission to the next, not only improving the journey into space, but also providing benefits here on Earth. The Mars Relay Network, an international constellation of Mars orbiters with relay radios, directly supports other Mars missions by relaying communications between robotic vehicles at Mars and ground stations on Earth. The ability of robotic visitors from Earth to explore Mars will take a gigantic leap forward in 2007 with the launch of the Guglielmo Marconi Orbiter (GMO), the first spacecraft primarily dedicated to providing communication relay, navigation and timing services at Mars. GMO will be the preeminent node of the Mars Relay Network. GMO will relay communications between Earth and robotic vehicles near Mars. GMO will also provide navigation services to spacecraft approaching Mars. GMO will receive transmissions from ground stations on Earth at X-band and will transmit to ground stations on Earth at X- and Ka-bands. GMO will transmit to robotic vehicles at Mars at UHF and receive from these vehicles at UHF and X-band. GMO's baseline 4450 km circular orbit provides complete coverage of the planet for telecommunication and navigation support. GMO will arrive at Mars in mid-2008, just before the NetLander and Mars Scout missions that will be its first users. GMO is designed for a nominal operating lifetime of 10 years and will support nominal commanding and data acquisition, as well as mission critical events such as Mars Orbit Insertion, Entry, Descent and Landing, and Mars Ascent Vehicle launch and Orbiting Sample Canister detection for the Mars Sample Return mission. The GMO mission is a close collaboration between the Italian and American national space agencies and two implementing organizations: Alenia Spazio in Italy and JPL in the United States. As the Italian prime contractor, Alenia Spazio is to design and fabricate the spacecraft bus, integrate the Italian and JPL payloads, support integration of the spacecraft with the launch vehicle, support launch, and conduct mission operations. GMO will use Alenia' s PRIMA spacecraft bus in a deep space configuration. The PRIMA bus is a new design concept, developed under ASI funding, that combines flexibility, low cost and high efficiency. Its modular design makes it adaptable for several classes of missions, including interplanetary.
A comparison between temporal and subband minimum variance adaptive beamforming
NASA Astrophysics Data System (ADS)
Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis
2014-03-01
This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar resolution but slightly lower side-lobes and higher contrast for the subband approach at the expense of increased computation time.
Design of a Synthetic Aperture Array to Support Experiments in Active Control of Scattering
1990-06-01
becomes necessary to validate the theory and test the control system algorithms . While experiments in open water would be most like the anticipated...mathematical development of the beamforming algorithms used as well as an estimate of their applicability to the specifics of beamforming in a reverberant...Chebyshev array have been proposed. The method used in ARRAY, a nested product algorithm , proposed by Bresler [21] is recommended by Pozar [19] and
Exact least squares adaptive beamforming using an orthogonalization network
NASA Astrophysics Data System (ADS)
Yuen, Stanley M.
1991-03-01
The pros and cons of various classical and state-of-the-art methods in adaptive array processing are discussed, and the relevant concepts and historical developments are pointed out. A set of easy-to-understand equations for facilitating derivation of any least-squares-based algorithm is derived. Using this set of equations and incorporating all of the useful properties associated with various techniques, an efficient solution to the real-time adaptive beamforming problem is developed.
NASA Astrophysics Data System (ADS)
Lee, Sanghyo; Kim, Jong-Man; Kim, Yong-Kweon; Kwon, Youngwoo
2009-01-01
In this paper, a new absorptive single-pole four-throw (SP4T) switch based on multiple-contact switching is proposed and integrated with a Butler matrix to demonstrate a monolithic beam-forming network at millimeter waves (mm waves). In order to simplify the switching driving circuit and reduce the number of unit switches in an absorptive SP4T switch, the individual switches were replaced with long-span multiple-contact switches using stress-free single-crystalline-silicon MEMS technology. This approach improves the mechanical stability as well as the manufacturing yield, thereby allowing successful integration into a monolithic beam former. The fabricated absorptive SP4T MEMS switch shows insertion loss less than 1.3 dB, return losses better than 11 dB at 30 GHz and wideband isolation performance higher than 39 dB from 20 to 40 GHz. The absorptive SP4T MEMS switch is integrated with a 4 × 4 Butler matrix on a single chip to implement a monolithic beam-forming network, directing beam into four distinct angles. Array factors from the measured data show that the proposed absorptive SPnT MEMS switch can be effectively used for high-performance mm-wave beam-switching systems. This work corresponds to the first demonstration of a monolithic beam-forming network using switched beams.
Fast Minimum Variance Beamforming Based on Legendre Polynomials.
Bae, MooHo; Park, Sung Bae; Kwon, Sung Jae
2016-09-01
Currently, minimum variance beamforming (MV) is actively investigated as a method that can improve the performance of an ultrasound beamformer, in terms of the lateral and contrast resolution. However, this method has the disadvantage of excessive computational complexity since the inverse spatial covariance matrix must be calculated. Some noteworthy methods among various attempts to solve this problem include beam space adaptive beamforming methods and the fast MV method based on principal component analysis, which are similar in that the original signal in the element space is transformed to another domain using an orthonormal basis matrix and the dimension of the covariance matrix is reduced by approximating the matrix only with important components of the matrix, hence making the inversion of the matrix very simple. Recently, we proposed a new method with further reduced computational demand that uses Legendre polynomials as the basis matrix for such a transformation. In this paper, we verify the efficacy of the proposed method through Field II simulations as well as in vitro and in vivo experiments. The results show that the approximation error of this method is less than or similar to those of the above-mentioned methods and that the lateral response of point targets and the contrast-to-speckle noise in anechoic cysts are also better than or similar to those methods when the dimensionality of the covariance matrices is reduced to the same dimension.
TCP Performance Enhancement Over Iridium
NASA Technical Reports Server (NTRS)
Torgerson, Leigh; Hutcherson, Joseph; McKelvey, James
2007-01-01
In support of iNET maturation, NASA-JPL has collaborated with NASA-Dryden to develop, test and demonstrate an over-the-horizon vehicle-to-ground networking capability, using Iridium as the vehicle-to-ground communications link for relaying critical vehicle telemetry. To ensure reliability concerns are met, the Space Communications Protocol Standards (SCPS) transport protocol was investigated for its performance characteristics in this environment. In particular, the SCPS-TP software performance was compared to that of the standard Transmission Control Protocol (TCP) over the Internet Protocol (IP). This paper will report on the results of this work.
Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure
NASA Technical Reports Server (NTRS)
Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David
2016-01-01
Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.
Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure
NASA Technical Reports Server (NTRS)
Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David
2016-01-01
Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.
Dual stage beamforming in the absence of front-end receive focusing
NASA Astrophysics Data System (ADS)
Bera, Deep; Bosch, Johan G.; Verweij, Martin D.; de Jong, Nico; Vos, Hendrik J.
2017-08-01
Ultrasound front-end receive designs for miniature, wireless, and/or matrix transducers can be simplified considerably by direct-element summation in receive. In this paper we develop a dual-stage beamforming technique that is able to produce a high-quality image from scanlines that are produced with focused transmit, and simple summation in receive (no delays). We call this non-delayed sequential beamforming (NDSB). In the first stage, low-resolution RF scanlines are formed by simple summation of element signals from a running sub-aperture. In the second stage, delay-and-sum beamforming is performed in which the delays are calculated considering the transmit focal points as virtual sources emitting spherical waves, and the sub-apertures as large unfocused receive elements. The NDSB method is validated with simulations in Field II. For experimental validation, RF channel data were acquired with a commercial research scanner using a 5 MHz linear array, and were subsequently processed offline. For NDSB, good average lateral resolution (0.99 mm) and low grating lobe levels (<-40 dB) were achieved by choosing the transmit {{F}\\#} as 0.75 and the transmit focus at 15 mm. NDSB was compared with conventional dynamic receive focusing (DRF) and synthetic aperture sequential beamforming (SASB) with their own respective optimal settings. The full width at half maximum of the NDSB point spread function was on average 20% smaller than that of DRF except for at depths <30 mm and 10% larger than SASB considering all the depths. NDSB showed only a minor degradation in contrast-to-noise ratio and contrast ratio compared to DRF and SASB when measured on an anechoic cyst embedded in a tissue-mimicking phantom. In conclusion, using simple receive electronics front-end, NDSB can attain an image quality better than DRF and slightly inferior to SASB.
NASA Astrophysics Data System (ADS)
Yousefian Jazi, Nima
Spatial filtering and directional discrimination has been shown to be an effective pre-processing approach for noise reduction in microphone array systems. In dual-microphone hearing aids, fixed and adaptive beamforming techniques are the most common solutions for enhancing the desired speech and rejecting unwanted signals captured by the microphones. In fact, beamformers are widely utilized in systems where spatial properties of target source (usually in front of the listener) is assumed to be known. In this dissertation, some dual-microphone coherence-based speech enhancement techniques applicable to hearing aids are proposed. All proposed algorithms operate in the frequency domain and (like traditional beamforming techniques) are purely based on the spatial properties of the desired speech source and does not require any knowledge of noise statistics for calculating the noise reduction filter. This benefit gives our algorithms the ability to address adverse noise conditions, such as situations where interfering talker(s) speaks simultaneously with the target speaker. In such cases, the (adaptive) beamformers lose their effectiveness in suppressing interference, since the noise channel (reference) cannot be built and updated accordingly. This difference is the main advantage of the proposed techniques in the dissertation over traditional adaptive beamformers. Furthermore, since the suggested algorithms are independent of noise estimation, they offer significant improvement in scenarios that the power level of interfering sources are much more than that of target speech. The dissertation also shows the premise behind the proposed algorithms can be extended and employed to binaural hearing aids. The main purpose of the investigated techniques is to enhance the intelligibility level of speech, measured through subjective listening tests with normal hearing and cochlear implant listeners. However, the improvement in quality of the output speech achieved by the algorithms are also presented to show that the proposed methods can be potential candidates for future use in commercial hearing aids and cochlear implant devices.
Spriet, Ann; Van Deun, Lieselot; Eftaxiadis, Kyriaky; Laneau, Johan; Moonen, Marc; van Dijk, Bas; van Wieringen, Astrid; Wouters, Jan
2007-02-01
This paper evaluates the benefit of the two-microphone adaptive beamformer BEAM in the Nucleus Freedom cochlear implant (CI) system for speech understanding in background noise by CI users. A double-blind evaluation of the two-microphone adaptive beamformer BEAM and a hardware directional microphone was carried out with five adult Nucleus CI users. The test procedure consisted of a pre- and post-test in the lab and a 2-wk trial period at home. In the pre- and post-test, the speech reception threshold (SRT) with sentences and the percentage correct phoneme scores for CVC words were measured in quiet and background noise at different signal-to-noise ratios. Performance was assessed for two different noise configurations (with a single noise source and with three noise sources) and two different noise materials (stationary speech-weighted noise and multitalker babble). During the 2-wk trial period at home, the CI users evaluated the noise reduction performance in different listening conditions by means of the SSQ questionnaire. In addition to the perceptual evaluation, the noise reduction performance of the beamformer was measured physically as a function of the direction of the noise source. Significant improvements of both the SRT in noise (average improvement of 5-16 dB) and the percentage correct phoneme scores (average improvement of 10-41%) were observed with BEAM compared to the standard hardware directional microphone. In addition, the SSQ questionnaire and subjective evaluation in controlled and real-life scenarios suggested a possible preference for the beamformer in noisy environments. The evaluation demonstrates that the adaptive noise reduction algorithm BEAM in the Nucleus Freedom CI-system may significantly increase the speech perception by cochlear implantees in noisy listening conditions. This is the first monolateral (adaptive) noise reduction strategy actually implemented in a mainstream commercial CI.
Performance of velocity vector estimation using an improved dynamic beamforming setup
NASA Astrophysics Data System (ADS)
Munk, Peter; Jensen, Joergen A.
2001-05-01
Estimation of velocity vectors using transverse spatial modulation has previously been presented. Initially, the velocity estimation was improved using an approximated dynamic beamformer setup instead of a static combined with a new velocity estimation scheme. A new beamformer setup for dynamic control of the acoustic field, based on the Pulsed Plane Wave Decomposition (PPWD), is presented. The PPWD gives an unambiguous relation between a given acoustic field and the time functions needed on an array transducer for transmission. Applying this method for the receive beamformation results in a setup of the beamformer with different filters for each channel for each estimation depth. The method of the PPWD is illustrated by analytical expressions of the decomposed acoustic field and these results are used for simulation. Results of velocity estimates using the new setup are given on the basis of simulated and experimental data. The simulation setup is an attempt to approximate the situation present when performing a scanning of the carotid artery with a linear array. Measurement of the flow perpendicular to the emission direction is possible using the approach of transverse spatial modulation. This is most often the case in a scanning of the carotid artery, where the situation is handled by an angled Doppler setup in the present ultrasound scanners. The modulation period of 2 mm is controlled for a range of 20-40 mm which covers the typical range of the carotid artery. A 6 MHz array on a 128-channel system is simulated. The flow setup in the simulation is based on a vessel with a parabolic flow profile for a 60 and 90-degree flow angle. The experimental results are based on the backscattered signal from a sponge mounted in a stepping device. The bias and std. Dev. Of the velocity estimate are calculated for four different flow angles (50,60,75 and 90 degrees). The velocity vector is calculated using the improved 2D estimation approach at a range of depths.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
...] Structure and Practices of the Video Relay Service Program: Telecommunications Relay Services and Speech-to... telecommunications relay services (TRS) program continues to offer functional equivalence to all eligible users and... Practices of the Video Relay Service Program; Telecommunications Relay Services and Speech-to-Speech...
Opportunistic Beamforming with Wireless Powered 1-bit Feedback Through Rectenna Array
NASA Astrophysics Data System (ADS)
Krikidis, Ioannis
2015-11-01
This letter deals with the opportunistic beamforming (OBF) scheme for multi-antenna downlink with spatial randomness. In contrast to conventional OBF, the terminals return only 1-bit feedback, which is powered by wireless power transfer through a rectenna array. We study two fundamental topologies for the combination of the rectenna elements; the direct-current combiner and the radio-frequency combiner. The beam outage probability is derived in closed form for both combination schemes, by using high order statistics and stochastic geometry.
A Covariance Modeling Approach to Adaptive Beamforming and Detection
1991-07-30
to achieve the main results of this report. I would especially like to thank Dr. E. J. Kelly for the support he has given me during the past years . His...direction of propagation A,, 0 S, Figure 4. Plane wace propagating through array. The array steering vector d(, E) is d~w d d2 ... dN]T (10) with...the covariance matrix to form a matched-filter beamformer that adapts to the interference environment. This was one of the first papers to propose using
2017-03-20
sub-array, which is based on all-pass filters (APFs) is realized using 130 nm CMOS technology. Approximate- discrete Fourier transform (a-DFT...fixed beams are directed at known directions [9]. The proposed approximate- discrete Fourier transform (a-DFT) based multi-beamformer [9] yields L...to digital conversion daughter board. occurs in the discrete time domain (in ROACH-2 FPGA platform) following signal digitization (see Figs. 1(d) and
Real-time correction of beamforming time delay errors in abdominal ultrasound imaging
NASA Astrophysics Data System (ADS)
Rigby, K. W.
2000-04-01
The speed of sound varies with tissue type, yet commercial ultrasound imagers assume a constant sound speed. Sound speed variation in abdominal fat and muscle layers is widely believed to be largely responsible for poor contrast and resolution in some patients. The simplest model of the abdominal wall assumes that it adds a spatially varying time delay to the ultrasound wavefront. The adequacy of this model is controversial. We describe an adaptive imaging system consisting of a GE LOGIQ 700 imager connected to a multi- processor computer. Arrival time errors for each beamforming channel, estimated by correlating each channel signal with the beamsummed signal, are used to correct the imager's beamforming time delays at the acoustic frame rate. A multi- row transducer provides two-dimensional sampling of arrival time errors. We observe significant improvement in abdominal images of healthy male volunteers: increased contrast of blood vessels, increased visibility of the renal capsule, and increased brightness of the liver.
GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array
Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.
2014-01-01
Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080
Single-snapshot DOA estimation by using Compressed Sensing
NASA Astrophysics Data System (ADS)
Fortunati, Stefano; Grasso, Raffaele; Gini, Fulvio; Greco, Maria S.; LePage, Kevin
2014-12-01
This paper deals with the problem of estimating the directions of arrival (DOA) of multiple source signals from a single observation vector of an array data. In particular, four estimation algorithms based on the theory of compressed sensing (CS), i.e., the classical ℓ 1 minimization (or Least Absolute Shrinkage and Selection Operator, LASSO), the fast smooth ℓ 0 minimization, and the Sparse Iterative Covariance-Based Estimator, SPICE and the Iterative Adaptive Approach for Amplitude and Phase Estimation, IAA-APES algorithms, are analyzed, and their statistical properties are investigated and compared with the classical Fourier beamformer (FB) in different simulated scenarios. We show that unlike the classical FB, a CS-based beamformer (CSB) has some desirable properties typical of the adaptive algorithms (e.g., Capon and MUSIC) even in the single snapshot case. Particular attention is devoted to the super-resolution property. Theoretical arguments and simulation analysis provide evidence that a CS-based beamformer can achieve resolution beyond the classical Rayleigh limit. Finally, the theoretical findings are validated by processing a real sonar dataset.
NASA Astrophysics Data System (ADS)
Fischer, J.; Doolan, C.
2017-12-01
A method to improve the quality of acoustic beamforming in reverberant environments is proposed in this paper. The processing is based on a filtering of the cross-correlation matrix of the microphone signals obtained using a microphone array. The main advantage of the proposed method is that it does not require information about the geometry of the reverberant environment and thus it can be applied to any configuration. The method is applied to the particular example of aeroacoustic testing in a hard-walled low-speed wind tunnel; however, the technique can be used in any reverberant environment. Two test cases demonstrate the technique. The first uses a speaker placed in the hard-walled working section with no wind tunnel flow. In the second test case, an airfoil is placed in a flow and acoustic beamforming maps are obtained. The acoustic maps have been improved, as the reflections observed in the conventional maps have been removed after application of the proposed method.
Beamforming Based Full-Duplex for Millimeter-Wave Communication
Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen
2016-01-01
In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256
Novel application of windowed beamforming function imaging for FLGPR
NASA Astrophysics Data System (ADS)
Xique, Ismael J.; Burns, Joseph W.; Thelen, Brian J.; LaRose, Ryan M.
2018-04-01
Backprojection of cross-correlated array data, using algorithms such as coherent interferometric imaging (Borcea, et al., 2006), has been advanced as a method to improve the statistical stability of images of targets in an inhomogeneous medium. Recently, the Windowed Beamforming Energy (WBE) function algorithm has been introduced as a functionally equivalent approach, which is significantly less computationally burdensome (Borcea, et al., 2011). WBE produces similar results through the use of a quadratic function summing signals after beamforming in transmission and reception, and windowing in the time domain. We investigate the application of WBE to improve the detection of buried targets with forward looking ground penetrating MIMO radar (FLGPR) data. The formulation of WBE as well the software implementation of WBE for the FLGPR data collection will be discussed. WBE imaging results are compared to standard backprojection and Coherence Factor imaging. Additionally, the effectiveness of WBE on field-collected data is demonstrated qualitatively through images and quantitatively through the use of a CFAR statistic on buried targets of a variety of contrast levels.
NASA Astrophysics Data System (ADS)
Piñero, G.; Vergara, L.; Desantes, J. M.; Broatch, A.
2000-11-01
The knowledge of the particle velocity fluctuations associated with acoustic pressure oscillation in the exhaust system of internal combustion engines may represent a powerful aid in the design of such systems, from the point of view of both engine performance improvement and exhaust noise abatement. However, usual velocity measurement techniques, even if applicable, are not well suited to the aggressive environment existing in exhaust systems. In this paper, a method to obtain a suitable estimate of velocity fluctuations is proposed, which is based on the application of spatial filtering (beamforming) techniques to instantaneous pressure measurements. Making use of simulated pressure-time histories, several algorithms have been checked by comparison between the simulated and the estimated velocity fluctuations. Then, problems related to the experimental procedure and associated with the proposed methodology are addressed, making application to measurements made in a real exhaust system. The results indicate that, if proper care is taken when performing the measurements, the application of beamforming techniques gives a reasonable estimate of the velocity fluctuations.
STBC AF relay for unmanned aircraft system
NASA Astrophysics Data System (ADS)
Adachi, Fumiyuki; Miyazaki, Hiroyuki; Endo, Chikara
2015-01-01
If a large scale disaster similar to the Great East Japan Earthquake 2011 happens, some areas may be isolated from the communications network. Recently, unmanned aircraft system (UAS) based wireless relay communication has been attracting much attention since it is able to quickly re-establish the connection between isolated areas and the network. However, the channel between ground station (GS) and unmanned aircraft (UA) is unreliable due to UA's swing motion and as consequence, the relay communication quality degrades. In this paper, we introduce space-time block coded (STBC) amplify-and-forward (AF) relay for UAS based wireless relay communication to improve relay communication quality. A group of UAs forms single frequency network (SFN) to perform STBC-AF cooperative relay. In STBC-AF relay, only conjugate operation, block exchange and amplifying are required at UAs. Therefore, STBC-AF relay improves the relay communication quality while alleviating the complexity problem at UAs. It is shown by computer simulation that STBC-AF relay can achieve better throughput performance than conventional AF relay.
Transurethral light delivery for prostate photoacoustic imaging
NASA Astrophysics Data System (ADS)
Lediju Bell, Muyinatu A.; Guo, Xiaoyu; Song, Danny Y.; Boctor, Emad M.
2015-03-01
Photoacoustic imaging has broad clinical potential to enhance prostate cancer detection and treatment, yet it is challenged by the lack of minimally invasive, deeply penetrating light delivery methods that provide sufficient visualization of targets (e.g., tumors, contrast agents, brachytherapy seeds). We constructed a side-firing fiber prototype for transurethral photoacoustic imaging of prostates with a dual-array (linear and curvilinear) transrectal ultrasound probe. A method to calculate the surface area and, thereby, estimate the laser fluence at this fiber tip was derived, validated, applied to various design parameters, and used as an input to three-dimensional Monte Carlo simulations. Brachytherapy seeds implanted in phantom, ex vivo, and in vivo canine prostates at radial distances of 5 to 30 mm from the urethra were imaged with the fiber prototype transmitting 1064 nm wavelength light with 2 to 8 mJ pulse energy. Prebeamformed images were displayed in real time at a rate of 3 to 5 frames per second to guide fiber placement and beamformed offline. A conventional delay-and-sum beamformer provided decreasing seed contrast (23 to 9 dB) with increasing urethra-to-target distance, while the short-lag spatial coherence beamformer provided improved and relatively constant seed contrast (28 to 32 dB) regardless of distance, thus improving multitarget visualization in single and combined curvilinear images acquired with the fiber rotating and the probe fixed. The proposed light delivery and beamforming methods promise to improve key prostate cancer detection and treatment strategies.
Cohen, Michael X
2015-09-01
The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
...] Speech-to-Speech and Internet Protocol (IP) Speech-to-Speech Telecommunications Relay Services... Internet Protocol (IP) Speech-to-Speech Telecommunications Relay Services; Telecommunications Relay... (IP Relay) and video relay service (VRS), the Commission should bundle national STS outreach efforts...
NASA Tech Briefs, December 2012
NASA Technical Reports Server (NTRS)
2012-01-01
The topics include: Pattern Generator for Bench Test of Digital Boards; 670-GHz Down- and Up-Converting HEMT-Based Mixers; Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder; Feedback Augmented Sub-Ranging (FASR) Quantizer; Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring; Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol; Description and User Instructions for the Quaternion to Orbit v3 Software; AdapChem; Mars Relay Lander and Orbiter Overflight Profile Estimation; Extended Testability Analysis Tool; Interactive 3D Mars Visualization; Rapid Diagnostics of Onboard Sequences; MER Telemetry Processor; pyam: Python Implementation of YaM; Process for Patterning Indium for Bump Bonding; Archway for Radiation and Micrometeorite Occurrence Resistance; 4D Light Field Imaging System Using Programmable Aperture; Device and Container for Reheating and Sterilization; Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources; Membrane Shell Reflector Segment Antenna; High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves; Compact Autonomous Hemispheric Vision System; A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring; Wideband Single-Crystal Transducer for Bone Characterization; Numerical Simulation of Rocket Exhaust Interaction With Lunar Soil; Motion Imagery and Robotics Application (MIRA): Standards-Based Robotics; Particle Filtering for Model-Based Anomaly Detection in Sensor Networks; Ka-band Digitally Beamformed Airborne Radar Using SweepSAR Technique; Composite With In Situ Plenums; Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers; JWST Lifting System; Next-Generation Tumbleweed Rover; Pneumatic System for Concentration of Micrometer-Size Lunar Soil.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-05
... Relay Service (IP Relay) providers; Adopts rules to protect the privacy of customer information relating... Structure and Practices of the Video Relay Service Program; Telecommunications Relay Services and Speech-to-Speech Services for Individuals With Hearing and Speech Disabilities; Final Rule #0;#0;Federal Register...
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2016-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple DecadalSurvey Science Goals.
Implementation of RF Circuitry for Real-Time Digital Beam-Forming SAR Calibration Schemes
NASA Technical Reports Server (NTRS)
Horst, Stephen J.; Hoffman, James P.; Perkovic-Martin, Dragana; Shaffer, Scott; Thrivikraman, Tushar; Yates, Phil; Veilleux, Louise
2012-01-01
The SweepSAR architecture for space-borne remote sensing applications is an enabling technology for reducing the temporal baseline of repeat-pass interferometers while maintaining near-global coverage. As part of this architecture, real-time digital beam-forming would be performed on the radar return signals across multiple channels. Preserving the accuracy of the combined return data requires real-time calibration of the transmit and receive RF paths on each channel. This paper covers several of the design considerations necessary to produce a practical implementation of this concept.
Next Generation P-Band Planetary Synthetic Aperture Radar
NASA Technical Reports Server (NTRS)
Rincon, Rafael; Carter, Lynn; Lu, Dee Pong Daniel
2017-01-01
The Space Exploration Synthetic Aperture Radar (SESAR) is an advanced P-band beamforming radar instrument concept to enable a new class of observations suitable to meet Decadal Survey science goals for planetary exploration. The radar operates at full polarimetry and fine (meter scale) resolution, and achieves beam agility through programmable waveform generation and digital beamforming. The radar architecture employs a novel low power, lightweight design approach to meet stringent planetary instrument requirements. This instrument concept has the potential to provide unprecedented surface and near- subsurface measurements applicable to multiple Decadal Survey Science Goals.
Mother ship and physical agents collaboration
NASA Astrophysics Data System (ADS)
Young, Stuart H.; Budulas, Peter P.; Emmerman, Philip J.
1999-07-01
This paper discusses ongoing research at the U.S. Army Research Laboratory that investigates the feasibility of developing a collaboration architecture between small physical agents and a mother ship. This incudes the distribution of planning, perception, mobility, processing and communications requirements between the mother ship and the agents. Small physical agents of the future will be virtually everywhere on the battlefield of the 21st century. A mother ship that is coupled to a team of small collaborating physical agents (conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); logistics; sentry; and communications relay) will be used to build a completely effective and mission capable intelligent system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the smaller agents. The mother ship also establishes a robust communications network between the agents and is the primary information disseminating and receiving point to the external world. Because of its global knowledge and processing power, the mother ship does the high-level control and planning for the collaborative physical agents. This high level control and interaction between the mother ship and its agents (including inter agent collaboration) will be software agent architecture based. The mother ship incorporates multi-resolution battlefield visualization and analysis technology, which aids in mission planning and sensor fusion.
NASA Astrophysics Data System (ADS)
Lertwiram, Namzilp; Tran, Gia Khanh; Mizutani, Keiichi; Sakaguchi, Kei; Araki, Kiyomichi
Setting relays can address the shadowing problem between a transmitter (Tx) and a receiver (Rx). Moreover, the Multiple-Input Multiple-Output (MIMO) technique has been introduced to improve wireless link capacity. The MIMO technique can be applied in relay network to enhance system performance. However, the efficiency of relaying schemes and relay placement have not been well investigated with experiment-based study. This paper provides a propagation measurement campaign of a MIMO two-hop relay network in 5GHz band in an L-shaped corridor environment with various relay locations. Furthermore, this paper proposes a Relay Placement Estimation (RPE) scheme to identify the optimum relay location, i.e. the point at which the network performance is highest. Analysis results of channel capacity show that relaying technique is beneficial over direct transmission in strong shadowing environment while it is ineffective in non-shadowing environment. In addition, the optimum relay location estimated with the RPE scheme also agrees with the location where the network achieves the highest performance as identified by network capacity. Finally, the capacity analysis shows that two-way MIMO relay employing network coding has the best performance while cooperative relaying scheme is not effective due to shadowing effect weakening the signal strength of the direct link.
Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi
2016-07-01
Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution, especially in a laboratory environment where more careful analysis may be required under controlled conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shapoori, Kiyanoosh; Sadler, Jeffrey; Wydra, Adrian; Malyarenko, Eugene; Sinclair, Anthony; Maev, Roman G.
2013-03-01
A new adaptive beamforming method for accurately focusing ultrasound behind highly scattering layers of human skull and its application to 3D transcranial imaging via small-aperture planar phased arrays are reported. Due to its undulating, inhomogeneous, porous, and highly attenuative structure, human skull bone severely distorts ultrasonic beams produced by conventional focusing methods in both imaging and therapeutic applications. Strong acoustical mismatch between the skull and brain tissues, in addition to the skull's undulating topology across the active area of a planar ultrasonic probe, could cause multiple reflections and unpredictable refraction during beamforming and imaging processes. Such effects could significantly deflect the probe's beam from the intended focal point. Presented here is a theoretical basis and simulation results of an adaptive beamforming method that compensates for the latter effects in transmission mode, accompanied by experimental verification. The probe is a custom-designed 2 MHz, 256-element matrix array with 0.45 mm element size and 0.1mm kerf. Through its small footprint, it is possible to accurately measure the profile of the skull segment in contact with the probe and feed the results into our ray tracing program. The latter calculates the new time delay patterns adapted to the geometrical and acoustical properties of the skull phantom segment in contact with the probe. The time delay patterns correct for the refraction at the skull-brain boundary and bring the distorted beam back to its intended focus. The algorithms were implemented on the ultrasound open-platform ULA-OP (developed at the University of Florence).
Lossless data compression for improving the performance of a GPU-based beamformer.
Lok, U-Wai; Fan, Gang-Wei; Li, Pai-Chi
2015-04-01
The powerful parallel computation ability of a graphics processing unit (GPU) makes it feasible to perform dynamic receive beamforming However, a real time GPU-based beamformer requires high data rate to transfer radio-frequency (RF) data from hardware to software memory, as well as from central processing unit (CPU) to GPU memory. There are data compression methods (e.g. Joint Photographic Experts Group (JPEG)) available for the hardware front end to reduce data size, alleviating the data transfer requirement of the hardware interface. Nevertheless, the required decoding time may even be larger than the transmission time of its original data, in turn degrading the overall performance of the GPU-based beamformer. This article proposes and implements a lossless compression-decompression algorithm, which enables in parallel compression and decompression of data. By this means, the data transfer requirement of hardware interface and the transmission time of CPU to GPU data transfers are reduced, without sacrificing image quality. In simulation results, the compression ratio reached around 1.7. The encoder design of our lossless compression approach requires low hardware resources and reasonable latency in a field programmable gate array. In addition, the transmission time of transferring data from CPU to GPU with the parallel decoding process improved by threefold, as compared with transferring original uncompressed data. These results show that our proposed lossless compression plus parallel decoder approach not only mitigate the transmission bandwidth requirement to transfer data from hardware front end to software system but also reduce the transmission time for CPU to GPU data transfer. © The Author(s) 2014.
Diversity Order Analysis of Dual-Hop Relaying with Partial Relay Selection
NASA Astrophysics Data System (ADS)
Bao, Vo Nguyen Quoc; Kong, Hyung Yun
In this paper, we study the performance of dual hop relaying in which the best relay selected by partial relay selection will help the source-destination link to overcome the channel impairment. Specifically, closed-form expressions for outage probability, symbol error probability and achievable diversity gain are derived using the statistical characteristic of the signal-to-noise ratio. Numerical investigation shows that the system achieves diversity of two regardless of relay number and also confirms the correctness of the analytical results. Furthermore, the performance loss due to partial relay selection is investigated.
Development and validation of a short-lag spatial coherence theory for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Graham, Michelle T.; Lediju Bell, Muyinatu A.
2018-02-01
We previously derived spatial coherence theory to be implemented for studying theoretical properties of ShortLag Spatial Coherence (SLSC) beamforming applied to photoacoustic images. In this paper, our newly derived theoretical equation is evaluated to generate SLSC images of a point target and a 1.2 mm diameter target and corresponding lateral profiles. We compared SLSC images simulated solely based on our theory to SLSC images created after beamforming acoustic channel data from k-Wave simulations of 1.2 mm-diameter disc target. This process was repeated for a point target and the full width at half the maximum signal amplitudes were measured to estimate the resolution of each imaging system. Resolution as a function of lag was comparable for the first 10% of the receive aperture (i.e., the short-lag region), after which resolution measurements diverged by a maximum of 1 mm between the two types of simulated images. These results indicate the potential for both simulation methods to be utilized as independent resources to study coherence-based photoacoustic beamformers when imaging point-like targets.
Cheng, Sibei; Zhang, Qingjun; Bian, Mingming; Hao, Xinhong
2018-02-08
For the conventional FDA-MIMO (frequency diversity array multiple-input-multiple-output) Radar with uniform frequency offset and uniform linear array, the DOFs (degrees of freedom) of the adaptive beamformer are limited by the number of elements. A better performance-for example, a better suppression for strong interferences and a more desirable trade-off between the main lobe and side lobe-can be achieved with a greater number of DOFs. In order to obtain larger DOFs, this paper researches the signal model of the FDA-MIMO Radar with nested frequency offset and nested array, then proposes an improved adaptive beamforming method that uses the augmented matrix instead of the covariance matrix to calculate the optimum weight vectors and can be used to improve the output performances of FDA-MIMO Radar with the same element number or reduce the element number while maintain the approximate output performances such as the received beampattern, the main lobe width, side lobe depths and the output SINR (signal-to-interference-noise ratio). The effectiveness of the proposed scheme is verified by simulations.
Cheng, Sibei; Zhang, Qingjun; Bian, Mingming; Hao, Xinhong
2018-01-01
For the conventional FDA-MIMO (frequency diversity array multiple-input-multiple-output) Radar with uniform frequency offset and uniform linear array, the DOFs (degrees of freedom) of the adaptive beamformer are limited by the number of elements. A better performance—for example, a better suppression for strong interferences and a more desirable trade-off between the main lobe and side lobe—can be achieved with a greater number of DOFs. In order to obtain larger DOFs, this paper researches the signal model of the FDA-MIMO Radar with nested frequency offset and nested array, then proposes an improved adaptive beamforming method that uses the augmented matrix instead of the covariance matrix to calculate the optimum weight vectors and can be used to improve the output performances of FDA-MIMO Radar with the same element number or reduce the element number while maintain the approximate output performances such as the received beampattern, the main lobe width, side lobe depths and the output SINR (signal-to-interference-noise ratio). The effectiveness of the proposed scheme is verified by simulations. PMID:29419814
Cobalt: A GPU-based correlator and beamformer for LOFAR
NASA Astrophysics Data System (ADS)
Broekema, P. Chris; Mol, J. Jan David; Nijboer, R.; van Amesfoort, A. S.; Brentjens, M. A.; Loose, G. Marcel; Klijn, W. F. A.; Romein, J. W.
2018-04-01
For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a new-generation radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper, we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system show the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.
Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk
2006-02-01
A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.
NASA Astrophysics Data System (ADS)
Olivieri, Ferdinando; Fazi, Filippo Maria; Nelson, Philip A.; Shin, Mincheol; Fontana, Simone; Yue, Lang
2016-07-01
Methods for beamforming are available that provide the signals used to drive an array of sources for the implementation of systems for the so-called personal audio. In this work, performance of the delay-and-sum (DAS) method and of three widely used methods for optimal beamforming are compared by means of computer simulations and experiments in an anechoic environment using a linear array of sources with given constraints on quality of the reproduced field at the listener's position and limit to input energy to the array. Using the DAS method as a benchmark for performance, the frequency domain responses of the loudspeaker filters can be characterized in three regions. In the first region, at low frequencies, input signals designed with the optimal methods are identical and provide higher directivity performance than that of the DAS. In the second region, performance of the optimal methods are similar to the DAS method. The third region starts above the limit due to spatial aliasing. A method is presented to estimate the boundaries of these regions.
47 CFR 74.635 - Unattended operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Stations § 74.635 Unattended operation. (a) TV relay stations, TV translator relay stations, TV STL... persons; (3) TV relay stations, TV STL stations, TV translator relay stations, and TV microwave booster... control point. Additionally, a TV translator relay station (and any associated TV microwave booster...
Mars Express Forward Link Capabilities for the Mars Relay Operations Service (MaROS)
NASA Technical Reports Server (NTRS)
Allard, Daniel A.; Wallick, Michael N.; Gladden, Roy E.; Wang, Paul
2012-01-01
This software provides a new capability for landed Mars assets to perform forward link relay through the Mars Express (MEX) European Union orbital spacecraft. It solves the problem of standardizing the relay interface between lander missions and MEX. The Mars Operations Relay Service (MaROS) is intended as a central point for relay planning and post-pass analysis for all Mars landed and orbital assets. Through the first two phases of implementation, MaROS supports relay coordination through the Odyssey orbiter and the Mars Reconnaissance Orbiter (MRO). With this new software, MaROS now fully integrates the Mars Express spacecraft into the relay picture. This new software generates and manages a new set of file formats that allows for relay request to MEX for forward and return link relay, including the parameters specific to MEX. Existing MEX relay planning interactions were performed via email exchanges and point-to-point file transfers. By integrating MEX into MaROS, all transactions are managed by a centralized service for tracking and analysis. Additionally, all lander missions have a single, shared interface with MEX and do not have to integrate on a mission-by mission basis. Relay is a critical element of Mars lander data management. Landed assets depend largely upon orbital relay for data delivery, which can be impacted by the availability and health of each orbiter in the network. At any time, an issue may occur to prevent relay. For this reason, it is imperative that all possible orbital assets be integrated into the overall relay picture.
Secure relay selection based on learning with negative externality in wireless networks
NASA Astrophysics Data System (ADS)
Zhao, Caidan; Xiao, Liang; Kang, Shan; Chen, Guiquan; Li, Yunzhou; Huang, Lianfen
2013-12-01
In this paper, we formulate relay selection into a Chinese restaurant game. A secure relay selection strategy is proposed for a wireless network, where multiple source nodes send messages to their destination nodes via several relay nodes, which have different processing and transmission capabilities as well as security properties. The relay selection utilizes a learning-based algorithm for the source nodes to reach their best responses in the Chinese restaurant game. In particular, the relay selection takes into account the negative externality of relay sharing among the source nodes, which learn the capabilities and security properties of relay nodes according to the current signals and the signal history. Simulation results show that this strategy improves the user utility and the overall security performance in wireless networks. In addition, the relay strategy is robust against the signal errors and deviations of some user from the desired actions.
NASA Astrophysics Data System (ADS)
Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris
2015-05-01
Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.
Beamforming strategy of ULA and UCA sensor configuration in multistatic passive radar
NASA Astrophysics Data System (ADS)
Hossa, Robert
2009-06-01
A Beamforming Network (BN) concept of Uniform Linear Array (ULA) and Uniform Circular Array (UCA) dipole configuration designed to multistatic passive radar is considered in details. In the case of UCA configuration, computationally efficient procedure of beamspace transformation from UCA to virtual ULA configuration with omnidirectional coverage is utilized. If effect, the idea of the proposed solution is equivalent to the techniques of antenna array factor shaping dedicated to ULA structure. Finally, exemplary results from the computer software simulations of elaborated spatial filtering solutions to reference and surveillance channels are provided and discussed.
Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.
2015-01-01
This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).
Effects of atmospheric variations on acoustic system performance
NASA Technical Reports Server (NTRS)
Nation, Robert; Lang, Stephen; Olsen, Robert; Chintawongvanich, Prasan
1993-01-01
Acoustic propagation over medium to long ranges in the atmosphere is subject to many complex, interacting effects. Of particular interest at this point is modeling low frequency (less than 500 Hz) propagation for the purpose of predicting ranges and bearing accuracies at which acoustic sources can be detected. A simple means of estimating how much of the received signal power propagated directly from the source to the receiver and how much was received by turbulent scattering was developed. The correlations between the propagation mechanism and detection thresholds, beamformer bearing estimation accuracies, and beamformer processing gain of passive acoustic signal detection systems were explored.
Controlling the perceived distance of an auditory object by manipulation of loudspeaker directivity.
Laitinen, Mikko-Ville; Politis, Archontis; Huhtakallio, Ilkka; Pulkki, Ville
2015-06-01
This work presents a method to control the perceived distance of an auditory object by changing the directivity pattern of a loudspeaker and consequently the direct-to-reverberant ratio at the listening spot. Control of the directivity pattern is achieved by beamforming using a compact multi-driver loudspeaker unit. A small-sized cubic array consisting of six drivers is assembled, and per driver beamforming filters are derived from directional measurements of the array. The proposed method is evaluated using formal listening tests. The results show that the perceived distance can be controlled effectively by directivity pattern modification.
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James
2014-01-01
The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of the number of links looking above and below GEO; the detailed design of a GEO SSBS spacecraft bus and its accommodation of the communication payload, and a summary of the trade study that resulted in the selection of the Falcon 9 launch vehicle to deploy the SSBS and its impact on cost reductions per satellite. ======================================================================== Several initiatives have taken place within NASA1 and international space agencies2 to create a human exploration strategy for expanding human presence into the solar system; these initiatives have been driven by multiple factors to benefit Earth. Of the many elements in the strategy one stands out: to send robotic and human missions to destinations beyond Low Earth Orbit (LEO), including cis-lunar space, Near-Earth Asteroids (NEAs), the Moon, and Mars and its moons.3, 4 The time frame for human exploration to various destinations, based on the public information available,1,4 is shown in Figure 1. Advance planning is needed to define how future space communications services will be provided in the new budget environment to meet future space communications needs. The spacecraft for these missions can be dispersed anywhere from below LEO to beyond GEO, and to various destinations within the solar system. NASA's Space Communications and Navigation (SCaN) program office provides communication and tracking services to space missions during launch, in-orbit testing, and operation phases. Currently, SCaN's space networking relay satellites mainly provide services to users below GEO, at Near Earth Orbit (NEO), below LEO, and in deep space. The potential exists for using a space-based relay satellite, located in the vicinity of various solar system destinations, to provide communication space links to missions both below and above its orbit. Such relays can meet the needs of human exploration missions for maximum connectivity to Earth locations and for reduced latency. In the past, several studies assessed the ability of satellite-based relays working above GEO in conjunction with Earth ground stations. Many of these focused on the trade between space relay and direct-to-Earth station links5,6,7. Several others focused on top-level architecture based on relays at various destinations8,9,10,11,12. Much has changed in terms of microwave and optical technology since the publication of the referenced papers; Ka-band communication systems are being deployed, optical communication is being demonstrated, and spacecraft buses are becoming increasingly more functional and operational. A design concept study was undertaken to access the potential for deploying a Small Space-Based Satellite (SSBS) relay capable of serving missions between LEO and NEO. The needs of future human exploration missions were analyzed, and a notional relay-based architecture concept was generated as shown in Fig. 1. Relay satellites in Earth through cis-Lunar orbits are normally located in stable orbits requiring low fuel consumption. Relay satellites for Mars orbit are normally selected based on the mission requirement and projected fuel consumption. Relay satellites have extreme commonalities of functions between them, differing only in the redundancy and frequencies used; therefore, the relay satellite in GEO was selected for further analysis since it will be the first step in achieving a relay-based architecture for human exploration missions (see Fig.Figure 2). The mission design methodology developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team13 was used to produce the satellite relay design and to perform various design trades. At the start of the activity, the team was provided with the detailed concept of the notional architecture and the system and communication payload drivers.
Mesh Network Architecture for Enabling Inter-Spacecraft Communication
NASA Technical Reports Server (NTRS)
Becker, Christopher; Merrill, Garrick
2017-01-01
To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..
49 CFR 236.52 - Relayed cut-section.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Relayed cut-section. 236.52 Section 236.52...: All Systems Track Circuits § 236.52 Relayed cut-section. Where relayed cut-section is used in... shall be open and the track circuit shunted when the track relay at such cut-section is in deenergized...
49 CFR 236.52 - Relayed cut-section.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Relayed cut-section. 236.52 Section 236.52...: All Systems Track Circuits § 236.52 Relayed cut-section. Where relayed cut-section is used in... shall be open and the track circuit shunted when the track relay at such cut-section is in deenergized...
47 CFR 64.601 - Definitions and provisions of general applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... obtained by a VRS or IP Relay provider that identifies the physical location of an end user. (18... not use such a device, speech-to-speech services, video relay services and non-English relay services.... (26) Video relay service (VRS). A telecommunications relay service that allows people with hearing or...
47 CFR 64.601 - Definitions and provisions of general applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... obtained by a VRS or IP Relay provider that identifies the physical location of an end user. (18... not use such a device, speech-to-speech services, video relay services and non-English relay services.... (26) Video relay service (VRS). A telecommunications relay service that allows people with hearing or...
47 CFR 64.601 - Definitions and provisions of general applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vocabulary. (18) Registered Location. The most recent information obtained by a VRS or IP Relay provider that... services, video relay services and non-English relay services. TRS supersedes the terms “dual party relay... TRS User's NANP telephone number to his or her end device. (27) Video relay service (VRS). A...
Breaking the Myth That Relay Swimming Is Faster Than Individual Swimming.
Skorski, Sabrina; Etxebarria, Naroa; Thompson, Kevin G
2016-04-01
To investigate if swimming performance is better in a relay race than in the corresponding individual race. The authors analyzed 166 elite male swimmers from 15 nations in the same competition (downloaded from www.swimrankings.net). Of 778 observed races, 144 were Olympic Games performances (2000, 2004, 2012), with the remaining 634 performed in national or international competitions. The races were 100-m (n = 436) and 200-m (n = 342) freestyle events. Relay performance times for the 2nd-4th swimmers were adjusted (+ 0.73 s) to allow for the "flying start." Without any adjustment, mean individual relay performances were significantly faster for the first 50 m and overall time in the 100-m events. Furthermore, the first 100 m of the 200-m relay was significantly faster (P > .001). During relays, swimmers competing in 1st position did not show any difference compared with their corresponding individual performance (P > .16). However, swimmers competing in 2nd-4th relay-team positions demonstrated significantly faster times in the 100-m (P < .001) and first half of the 200-m relays than in their individual events (P < .001, ES: 0.28-1.77). However, when finishing times for 2nd-4th relay team positions were adjusted for the flying start no differences were detected between relay and individual race performance for any event or split time (P > .17). Highly trained swimmers do not swim (or turn) faster in relay events than in their individual races. Relay exchange times account for the difference observed in individual vs relay performance.
The Laser Communications Relay and the Path to the Next Generation Near Earth Relay
NASA Technical Reports Server (NTRS)
Israel, David J.
2015-01-01
NASA Goddard Space Flight Center is currently developing the Laser Communications Relay Demonstration (LCRD) as a Path to the Next Generation Near Earth Space Communication Network. The current NASA Space Network or Tracking and Data Relay Satellite System is comprised of a constellation of Tracking and Data Relay Satellites (TDRS) in geosynchronous orbit and associated ground stations and operation centers. NASA is currently targeting a next generation of relay capability on orbit in the 2025 timeframe.
Xia, Huijun; Yang, Kunde; Ma, Yuanliang; Wang, Yong; Liu, Yaxiong
2017-01-01
Generally, many beamforming methods are derived under the assumption of white noise. In practice, the actual underwater ambient noise is complex. As a result, the noise removal capacity of the beamforming method may be deteriorated considerably. Furthermore, in underwater environment with extremely low signal-to-noise ratio (SNR), the performances of the beamforming method may be deteriorated. To tackle these problems, a noise removal method for uniform circular array (UCA) is proposed to remove the received noise and improve the SNR in complex noise environments with low SNR. First, the symmetrical noise sources are defined and the spatial correlation of the symmetrical noise sources is calculated. Then, based on the preceding results, the noise covariance matrix is decomposed into symmetrical and asymmetrical components. Analysis indicates that the symmetrical component only affect the real part of the noise covariance matrix. Consequently, the delay-and-sum (DAS) beamforming is performed by using the imaginary part of the covariance matrix to remove the symmetrical component. However, the noise removal method causes two problems. First, the proposed method produces a false target. Second, the proposed method would seriously suppress the signal when it is located in some directions. To solve the first problem, two methods to reconstruct the signal covariance matrix are presented: based on the estimation of signal variance and based on the constrained optimization algorithm. To solve the second problem, we can design the array configuration and select the suitable working frequency. Theoretical analysis and experimental results are included to demonstrate that the proposed methods are particularly effective in complex noise environments with low SNR. The proposed method can be extended to any array. PMID:28598386
Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui
2017-06-01
In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.
Telecommunications Relay Services
... Home » Health Info » Hearing, Ear Infections, and Deafness Telecommunications Relay Services On this page: What are telecommunication ... additional information about telecommunication relay services? What are telecommunication relay services? Title IV of the Americans with ...
MaROS Strategic Relay Planning and Coordination Interfaces
NASA Technical Reports Server (NTRS)
Allard, Daniel A.
2010-01-01
The Mars Relay Operations Service (MaROS) is designed to provide planning and analysis tools in support of ongoing Mars Network relay operations. Strategic relay planning requires coordination between lander and orbiter mission ground data system (GDS) teams to schedule and execute relay communications passes. MaROS centralizes this process, correlating all data relevant to relay coordination to provide a cohesive picture of the relay state. Service users interact with the system through thin-layer command line and web user interface client applications. Users provide and utilize data such as lander view periods of orbiters, Deep Space Network (DSN) antenna tracks, and reports of relay pass performance. Users upload and download relevant relay data via formally defined and documented file structures including some described in Extensible Markup Language (XML). Clients interface with the system via an http-based Representational State Transfer (ReST) pattern using Javascript Object Notation (JSON) formats. This paper will provide a general overview of the service architecture and detail the software interfaces and considerations for interface design.
Relay Telecommunications for the Coming Decade of Mars Exploration
NASA Technical Reports Server (NTRS)
Edwards, C.; DePaula, R.
2010-01-01
Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.
NASA Astrophysics Data System (ADS)
Quang Nguyen, Sang; Kong, Hyung Yun
2016-11-01
In this article, the presence of multi-hop relaying, eavesdropper and co-channel interference (CCI) in the same system model is investigated. Specifically, the effect of CCI on a secured multi-hop relaying network is studied, in which the source communicates with the destination via multi-relay-hopping under the presence of an eavesdropper and CCI at each node. The optimal relay at each cluster is selected to help forward the message from the source to the destination. We apply two relay selection approaches to such a system model, i.e. the optimal relay is chosen based on (1) the maximum channel gain from the transmitter to all relays in the desired cluster and (2) the minimum channel gain from the eavesdropper to all relays in each cluster. For the performance evaluation and comparison, we derived the exact closed form of the secrecy outage probability of the two approaches. That analysis is verified by Monte Carlo simulation. Finally, the effects of the number of hops, the transmit power at the source, relays and the external sources, the distance between the external sources and each node in the system, and the location of the eavesdropper are presented and discussed.
Overview of Key Saturn Probe Mission Trades
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill
2007-01-01
Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.
Energy efficient circuit design using nanoelectromechanical relays
NASA Astrophysics Data System (ADS)
Venkatasubramanian, Ramakrishnan
Nano-electromechanical (NEM) relays are a promising class of emerging devices that offer zero off-state leakage and behave like an ideal switch. Recent advances in planar fabrication technology have demonstrated that microelectromechanical (MEMS) scale miniature relays could be manufactured reliably and could be used to build fully functional, complex integrated circuits. The zero leakage operation of relays has renewed the interest in relay based low power logic design. This dissertation explores circuit architectures using NEM relays and NEMS-CMOS heterogeneous integration. Novel circuit topologies for sequential logic, memory, and power management circuits have been proposed taking into consideration the NEM relay device properties and optimizing for energy efficiency and area. In nanoscale electromechanical devices, dispersion forces like Van der Waals' force (vdW) affect the pull-in stability of the relay devices significantly. Verilog-A electromechanical model of the suspended gate relay operating at 1V with a nominal air gap of 5 - 10nm has been developed taking into account all the electrical, mechanical and dispersion effects. This dissertation explores different relay based latch and flip-flop topologies. It has been shown that as few as 4 relay cells could be used to build flip-flops. An integrated voltage doubler based flip flop that improves the performance by 2X by overdriving Vgb has been proposed. Three NEM relay based parallel readout memory bitcell architectures have been proposed that have faster access time, and remove the reliability issues associated with previously reported serial readout architectures. A paradigm shift in design of power switches using NEM relays is proposed. An interesting property of the relay device is that the ON state resistance (Ron) of the NEM relay switch is constant and is insensitive to the gate slew rate. This coupled with infinite OFF state resistance (Roff ) offers significant area and power advantages over CMOS. This dissertation demonstrates NEM relay based charge pump and NEM-CMOS heterogeneous discontinuous conduction mode (DCM) buck regulator and the results are compared against a standard commercial 0.35μm CMOS implementation. It is shown that NEM-CMOS heterogeneous DC-DC converter has an area savings of 60% over CMOS and achieves an overall higher efficiency over CMOS, with a peak efficiency of 94.3% at 100mA. NEM relays offers unprecedented 10X-30X energy efficiency improvement in logic design for low frequency operation and has the potential to break the CMOS efficiency barrier in power electronic circuits as well. The practical aspects of NEM Relay integration are evaluated and algorithms for synthesis and development of large NEM relay based logic circuits are explored.
2008-06-01
Diablo and LLNL o ITT Mesh, OPAREA TWO: between BP RHIB and BV, and between Sea Fox (USV) and BV o Sky Pilot, OPAREA THREE: between Tachyon ...between Sea Fox (USV) and BV o Sky Pilot, OPAREA THREE: between Tachyon Satellite and Sky Pilot Relay and between Sky Pilot Relay and BV o Wave Relay...between Tachyon Satellite and Sky Pilot Relay and between Sky Pilot Relay and BV o Wave Relay, OPAREA THREE: between BV and Balloon and between
Failure analysis of blistered gold plating on spot welded electrical relays
NASA Technical Reports Server (NTRS)
Sokolowski, Witold; O'Donnell, Tim
1989-01-01
Gold-plated stainless-steel sideplates, part of a JPL Galileo spacecraft electronic-relay assembly, exhibited blistering after resistance spot welding. Unacceptable relays had heavy nonuniform gold electrodeposited layers with thicknesses 4.5-11.5 microns. SEM and metallographic investigations indicated much higher heat input generated during the resistance spot welding in unacceptable relays. The attributes of acceptable welded relays are contrasted with unacceptable relays; the possible mechanism of laminar formation of polymeric material in the gold plating is discussed; and some recommendations are provided to prevent similar problems.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-12
... Services (CTS), Internet Protocol (IP) CTS, IP Relay, and Video Relay Services (VRS), for the 2010-2011... comment on NECA's proposed compensation rates for TRS, STS, CTS, IP CTS, IP Relay, and VRS, for the 2010... interstate traditional TRS; $3.1566 for STS; $1.6951 for CTS and IP CTS; $1.2985 for IP Relay. Based on these...
Implementation of LSCMA adaptive array terminal for mobile satellite communications
NASA Astrophysics Data System (ADS)
Zhou, Shun; Wang, Huali; Xu, Zhijun
2007-11-01
This paper considers the application of adaptive array antenna based on the least squares constant modulus algorithm (LSCMA) for interference rejection in mobile SATCOM terminals. A two-element adaptive array scheme is implemented with a combination of ADI TS201S DSP chips and Altera Stratix II FPGA device, which makes a cooperating computation for adaptive beamforming. Its interference suppressing performance is verified via Matlab simulations. Digital hardware system is implemented to execute the operations of LSCMA beamforming algorithm that is represented by an algorithm flowchart. The result of simulations and test indicate that this scheme can improve the anti-jamming performance of terminals.
Uniform circular array for structural health monitoring of composite structures
NASA Astrophysics Data System (ADS)
Stepinski, Tadeusz; Engholm, Marcus
2008-03-01
Phased array with all-azimuth angle coverage would be extremely useful in structural health monitoring (SHM) of planar structures. One method to achieve the 360° coverage is to use uniform circular arrays (UCAs). In this paper we present the concept of UCA adapted for SHM applications. We start from a brief presentation of UCA beamformers based on the principle of phase mode excitation. UCA performance is illustrated by the results of beamformer simulations performed for the narrowband and wideband ultrasonic signals. Preliminary experimental results obtained with UCA used for the reception of ultrasonic signals propagating in an aluminum plate are also presented.
Terahertz plasmonic Bessel beamformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David
We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integratedmore » with solid-state terahertz sources.« less
Application of Adaptive Beamforming to Signal Observations at the Mt. Meron Array, Israel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, D. B.
2010-06-07
The Mt. Meron array consists of 16 stations spanning an aperture of 3-4 kilometers in northern Israel. The array is situated in a region of substantial topographic relief, and is surrounded by settlements at close range (Figure 1). Consequently the level of noise at the array is high, which requires efforts at mitigation if distant regional events of moderate magnitude are to be observed. This note describes an initial application of two classic adaptive beamforming algorithms to data from the array to observe P waves from 5 events east of the array ranging in distance from 1100- 2150 kilometers.
Geoacoustic inversion with two source-receiver arrays in shallow water.
Sukhovich, Alexey; Roux, Philippe; Wathelet, Marc
2010-08-01
A geoacoustic inversion scheme based on a double beamforming algorithm in shallow water is proposed and tested. Double beamforming allows identification of multi-reverberated eigenrays propagating between two vertical transducer arrays according to their emission and reception angles and arrival times. Analysis of eigenray intensities yields the bottom reflection coefficient as a function of angle of incidence. By fitting the experimental reflection coefficient with a theoretical prediction, values of the acoustic parameters of the waveguide bottom can be extracted. The procedure was initially tested in a small-scale tank experiment for a waveguide with a Plexiglas bottom. Inversion results for the speed of shear waves in Plexiglas are in good agreement with the table values. A similar analysis was applied to data collected during an at-sea experiment in shallow coastal waters of the Mediterranean. Bottom reflection coefficient was fitted with the theory in which bottom sediments are modeled as a multi-layered system. Retrieved bottom parameters are in quantitative agreement with those determined from a prior inversion scheme performed in the same area. The present study confirms the interest in processing source-receiver array data through the double beamforming algorithm, and indicates the potential for application of eigenray intensity analysis to geoacoustic inversion problems.
Frequency Domain Beamforming for a Deep Space Network Downlink Array
NASA Technical Reports Server (NTRS)
Navarro, Robert
2012-01-01
This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.
Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin
2016-01-01
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.
Non-Gaussian probabilistic MEG source localisation based on kernel density estimation☆
Mohseni, Hamid R.; Kringelbach, Morten L.; Woolrich, Mark W.; Baker, Adam; Aziz, Tipu Z.; Probert-Smith, Penny
2014-01-01
There is strong evidence to suggest that data recorded from magnetoencephalography (MEG) follows a non-Gaussian distribution. However, existing standard methods for source localisation model the data using only second order statistics, and therefore use the inherent assumption of a Gaussian distribution. In this paper, we present a new general method for non-Gaussian source estimation of stationary signals for localising brain activity from MEG data. By providing a Bayesian formulation for MEG source localisation, we show that the source probability density function (pdf), which is not necessarily Gaussian, can be estimated using multivariate kernel density estimators. In the case of Gaussian data, the solution of the method is equivalent to that of widely used linearly constrained minimum variance (LCMV) beamformer. The method is also extended to handle data with highly correlated sources using the marginal distribution of the estimated joint distribution, which, in the case of Gaussian measurements, corresponds to the null-beamformer. The proposed non-Gaussian source localisation approach is shown to give better spatial estimates than the LCMV beamformer, both in simulations incorporating non-Gaussian signals, and in real MEG measurements of auditory and visual evoked responses, where the highly correlated sources are known to be difficult to estimate. PMID:24055702
Demi, Libertario; Ramalli, Alessandro; Giannini, Gabriele; Mischi, Massimo
2015-01-01
In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed.
The performance of matched-field track-before-detect methods using shallow-water Pacific data.
Tantum, Stacy L; Nolte, Loren W; Krolik, Jeffrey L; Harmanci, Kerem
2002-07-01
Matched-field track-before-detect processing, which extends the concept of matched-field processing to include modeling of the source dynamics, has recently emerged as a promising approach for maintaining the track of a moving source. In this paper, optimal Bayesian and minimum variance beamforming track-before-detect algorithms which incorporate a priori knowledge of the source dynamics in addition to the underlying uncertainties in the ocean environment are presented. A Markov model is utilized for the source motion as a means of capturing the stochastic nature of the source dynamics without assuming uniform motion. In addition, the relationship between optimal Bayesian track-before-detect processing and minimum variance track-before-detect beamforming is examined, revealing how an optimal tracking philosophy may be used to guide the modification of existing beamforming techniques to incorporate track-before-detect capabilities. Further, the benefits of implementing an optimal approach over conventional methods are illustrated through application of these methods to shallow-water Pacific data collected as part of the SWellEX-1 experiment. The results show that incorporating Markovian dynamics for the source motion provides marked improvement in the ability to maintain target track without the use of a uniform velocity hypothesis.
True-time-delay photonic beamformer for an L-band phased array radar
NASA Astrophysics Data System (ADS)
Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.
1995-10-01
The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications. This paper also serves as an update of work-in-progress at the Rome Laboratory Photonics Center Optical Beamforming Lab. The multi-faceted aspects of the design and construction of this state-of-the-art beamforming project will be discussed. Experimental results which demonstrate the performance of the system to-date with regard to both maximum delay and resolution over a broad bandwidth are presented.
Relay selection in energy harvesting cooperative networks with rateless codes
NASA Astrophysics Data System (ADS)
Zhu, Kaiyan; Wang, Fei
2018-04-01
This paper investigates the relay selection in energy harvesting cooperative networks, where the relays harvests energy from the radio frequency (RF) signals transmitted by a source, and the optimal relay is selected and uses the harvested energy to assist the information transmission from the source to its destination. Both source and the selected relay transmit information using rateless code, which allows the destination recover original information after collecting codes bits marginally surpass the entropy of original information. In order to improve transmission performance and efficiently utilize the harvested power, the optimal relay is selected. The optimization problem are formulated to maximize the achievable information rates of the system. Simulation results demonstrate that our proposed relay selection scheme outperform other strategies.
Adaptive transmission based on multi-relay selection and rate-compatible LDPC codes
NASA Astrophysics Data System (ADS)
Su, Hualing; He, Yucheng; Zhou, Lin
2017-08-01
In order to adapt to the dynamical changeable channel condition and improve the transmissive reliability of the system, a cooperation system of rate-compatible low density parity check (RC-LDPC) codes combining with multi-relay selection protocol is proposed. In traditional relay selection protocol, only the channel state information (CSI) of source-relay and the CSI of relay-destination has been considered. The multi-relay selection protocol proposed by this paper takes the CSI between relays into extra account in order to obtain more chances of collabration. Additionally, the idea of hybrid automatic request retransmission (HARQ) and rate-compatible are introduced. Simulation results show that the transmissive reliability of the system can be significantly improved by the proposed protocol.
Considerations for an Earth Relay Satellite with RF and Optical Trunklines
NASA Technical Reports Server (NTRS)
Israel, David J.
2016-01-01
Support for user platforms through the use of optical links to geosynchronous relay spacecraft are expected to be part of the future space communications architecture. The European Data Relay Satellite System (EDRS) has its first node, EDRS-A, in orbit. The EDRS architecture includes space-to-space optical links with a Ka-Band feeder link or trunkline. NASA's Laser Communications Relay Demonstration (LCRD) mission, originally baselined to support a space-to-space optical link relayed with an optical trunkline, has added an Radio Frequency (RF) trunkline. The use of an RF trunkline avoids the outages suffered by an optical trunkline due to clouds, but an RF trunkline will be bandwidth limited. A space relay architecture with both RF and optical trunklines could relay critical realtime data, while also providing a high data volume capacity. This paper considers the relay user scenarios that could be supported, and the implications to the space relay system and operations. System trades such as the amount of onboard processing and storage required, the use of link layer switching vs. network layer routing, and the use of Delay/Disruption Tolerant Networking (DTN) are discussed.
Using a micromachined magnetostatic relay in commutating a DC motor
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Wright, John A. (Inventor); Lilienthal, Gerald (Inventor)
2004-01-01
A DC motor is commutated by rotating a magnetic rotor to induce a magnetic field in at least one magnetostatic relay in the motor. Each relay is activated in response to the magnetic field to deliver power to at least one corresponding winding connected to the relay. In some cases, each relay delivers power first through a corresponding primary winding and then through a corresponding secondary winding to a common node. Specific examples include a four-pole, three-phase motor in which each relay is activated four times during one rotation of the magnetic rotor.
A performance analysis in AF full duplex relay selection network
NASA Astrophysics Data System (ADS)
Ngoc, Long Nguyen; Hong, Nhu Nguyen; Loan, Nguyen Thi Phuong; Kieu, Tam Nguyen; Voznak, Miroslav; Zdralek, Jaroslav
2018-04-01
This paper studies on the relaying selective matter in amplify-and-forward (AF) cooperation communication with full-duplex (FD) activity. Various relay choice models supposing the present of different instant information are investigated. We examine a maximal relaying choice that optimizes the instant FD channel capacity and asks for global channel state information (CSI) as well as partial CSI learning. To make comparison easy, accurate outage probability clauses and asymptote form of these strategies that give a diversity rank are extracted. From that, we can see clearly that the number of relays, noise factor, the transmittance coefficient as well as the information transfer power had impacted on their performance. Besides, the optimal relay selection (ORS) model can promote than that of the partial relay selection (PRS) model.
Relay discovery and selection for large-scale P2P streaming
Zhang, Chengwei; Wang, Angela Yunxian
2017-01-01
In peer-to-peer networks, application relays have been commonly used to provide various networking services. The service performance often improves significantly if a relay is selected appropriately based on its network location. In this paper, we studied the location-aware relay discovery and selection problem for large-scale P2P streaming networks. In these large-scale and dynamic overlays, it incurs significant communication and computation cost to discover a sufficiently large relay candidate set and further to select one relay with good performance. The network location can be measured directly or indirectly with the tradeoffs between timeliness, overhead and accuracy. Based on a measurement study and the associated error analysis, we demonstrate that indirect measurements, such as King and Internet Coordinate Systems (ICS), can only achieve a coarse estimation of peers’ network location and those methods based on pure indirect measurements cannot lead to a good relay selection. We also demonstrate that there exists significant error amplification of the commonly used “best-out-of-K” selection methodology using three RTT data sets publicly available. We propose a two-phase approach to achieve efficient relay discovery and accurate relay selection. Indirect measurements are used to narrow down a small number of high-quality relay candidates and the final relay selection is refined based on direct probing. This two-phase approach enjoys an efficient implementation using the Distributed-Hash-Table (DHT). When the DHT is constructed, the node keys carry the location information and they are generated scalably using indirect measurements, such as the ICS coordinates. The relay discovery is achieved efficiently utilizing the DHT-based search. We evaluated various aspects of this DHT-based approach, including the DHT indexing procedure, key generation under peer churn and message costs. PMID:28410384
Relay discovery and selection for large-scale P2P streaming.
Zhang, Chengwei; Wang, Angela Yunxian; Hei, Xiaojun
2017-01-01
In peer-to-peer networks, application relays have been commonly used to provide various networking services. The service performance often improves significantly if a relay is selected appropriately based on its network location. In this paper, we studied the location-aware relay discovery and selection problem for large-scale P2P streaming networks. In these large-scale and dynamic overlays, it incurs significant communication and computation cost to discover a sufficiently large relay candidate set and further to select one relay with good performance. The network location can be measured directly or indirectly with the tradeoffs between timeliness, overhead and accuracy. Based on a measurement study and the associated error analysis, we demonstrate that indirect measurements, such as King and Internet Coordinate Systems (ICS), can only achieve a coarse estimation of peers' network location and those methods based on pure indirect measurements cannot lead to a good relay selection. We also demonstrate that there exists significant error amplification of the commonly used "best-out-of-K" selection methodology using three RTT data sets publicly available. We propose a two-phase approach to achieve efficient relay discovery and accurate relay selection. Indirect measurements are used to narrow down a small number of high-quality relay candidates and the final relay selection is refined based on direct probing. This two-phase approach enjoys an efficient implementation using the Distributed-Hash-Table (DHT). When the DHT is constructed, the node keys carry the location information and they are generated scalably using indirect measurements, such as the ICS coordinates. The relay discovery is achieved efficiently utilizing the DHT-based search. We evaluated various aspects of this DHT-based approach, including the DHT indexing procedure, key generation under peer churn and message costs.
Relay protection features of frequency-adjustable electric drive
NASA Astrophysics Data System (ADS)
Kuprienko, V. V.
2018-03-01
The features of relay protection of high-voltage electric motors in composition of the frequency-adjustable electric drive are considered in the article. The influence of frequency converters on the stability of the operation of various types of relay protection used on electric motors is noted. Variants of circuits for connecting relay protection devices are suggested. The need to develop special relay protection devices for a frequency-adjustable electric drive is substantiated.
Development of a Relay Performance Web Tool for the Mars Network
NASA Technical Reports Server (NTRS)
Allard, Daniel A.; Edwards, Charles D.
2009-01-01
Modern Mars surface missions rely upon orbiting spacecraft to relay communications to and from Earth systems. An important component of this multi-mission relay process is the collection of relay performance statistics supporting strategic trend analysis and tactical anomaly identification and tracking.
Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond
Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong
2016-01-01
In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment. PMID:27898712
Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond.
Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong
2016-01-01
In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment.
Advanced Strategic and Tactical Relay Request Management for the Mars Relay Operations Service
NASA Technical Reports Server (NTRS)
Allard, Daniel A.; Wallick, Michael N.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.
2013-01-01
This software provides a new set of capabilities for the Mars Relay Operations Service (MaROS) in support of Strategic and Tactical relay, including a highly interactive relay request Web user interface, mission control over relay planning time periods, and mission management of allowed strategic vs. tactical request parameters. Together, these new capabilities expand the scope of the system to include all elements critical for Tactical relay operations. Planning of replay activities spans a time period that is split into two distinct phases. The first phase is called Strategic, which begins at the time that relay opportunities are identified, and concludes at the point that the orbiter generates the flight sequences for on board execution. Any relay request changes from this point on are called Tactical. Tactical requests, otherwise called Orbit - er Relay State Changes (ORSC), are highly restricted in terms of what types of changes can be made, and the types of parameters that can be changed may differ from one orbiter to the next. For example, one orbiter may be able to delay the start of a relay request, while another may not. The legacy approach to ORSC management involves exchanges of e-mail with "requests for change" and "acknowledgement of approval," with no other tracking of changes outside of e-mail folders. MaROS Phases 1 and 2 provided the infrastructure for strategic relay for all supported missions. This new version, 3.0, introduces several capabilities that fully expand the scope of the system to include tactical relay. One new feature allows orbiter users to manage and "lock" Planning Periods, which allows the orbiter team to formalize the changeover from Strategic to Tactical operations. Another major feature allows users to interactively submit tactical request changes via a Web user interface. A third new feature allows orbiter missions to specify allowed tactical updates, which are automatically incorporated into the tactical change process. This software update is significant in that it provides the only centralized service for tactical request management available for relay missions.
Relay Selection for Cooperative Relaying in Wireless Energy Harvesting Networks
NASA Astrophysics Data System (ADS)
Zhu, Kaiyan; Wang, Fei; Li, Songsong; Jiang, Fengjiao; Cao, Lijie
2018-01-01
Energy harvesting from the surroundings is a promising solution to provide energy supply and extend the life of wireless sensor networks. Recently, energy harvesting has been shown as an attractive solution to prolong the operation of cooperative networks. In this paper, we propose a relay selection scheme to optimize the amplify-and-forward (AF) cooperative transmission in wireless energy harvesting cooperative networks. The harvesting energy and channel conditions are considered to select the optimal relay as cooperative relay to minimize the outage probability of the system. Simulation results show that our proposed relay selection scheme achieves better outage performance than other strategies.
Sparsity-aware multiple relay selection in large multi-hop decode-and-forward relay networks
NASA Astrophysics Data System (ADS)
Gouissem, A.; Hamila, R.; Al-Dhahir, N.; Foufou, S.
2016-12-01
In this paper, we propose and investigate two novel techniques to perform multiple relay selection in large multi-hop decode-and-forward relay networks. The two proposed techniques exploit sparse signal recovery theory to select multiple relays using the orthogonal matching pursuit algorithm and outperform state-of-the-art techniques in terms of outage probability and computation complexity. To reduce the amount of collected channel state information (CSI), we propose a limited-feedback scheme where only a limited number of relays feedback their CSI. Furthermore, a detailed performance-complexity tradeoff investigation is conducted for the different studied techniques and verified by Monte Carlo simulations.
A microcomputer-based testing station for dynamic and static testing of protective relay systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.J.; Li, R.J.; Gu, J.C.
1995-12-31
Dynamic and static relay performance testing before installation in the field is a subject of great interest to utility relay engineers. The common practice in utility testing of new relays is to put the new unit to be tested in parallel with an existing functioning relay in the system, wait until an actual transient occurs and then observe and analyze the performance of new relay. It is impossible to have a thorough test of the protective relay system through this procedure. An equipment, Microcomputer-Based Testing Station (or PC-Based Testing Station), that can perform both static and dynamic testing of themore » relay is described in this paper. The Power System Simulation Laboratory at the University of Texas at Arlington is a scaled-down, three-phase, physical power system which correlates well with the important components for a real power system and is an ideal facility for the dynamic and static testing of protective relay systems. A brief introduction to the configuration of this laboratory is presented. Test results of several protective functions by using this laboratory illustrate the usefulness of this test set-up.« less
Relay exchanges in elite short track speed skating.
Hext, Andrew; Heller, Ben; Kelley, John; Goodwill, Simon
2017-06-01
In short track speed skating, the relay exchange provides an additional strategic component to races by allowing a team to change the skater involved in the pack race. Typically executed every 1½ laps, it is the belief of skaters and coaches that during this period of the race, time can be gained or lost due to the execution of the relay exchange. As such, the aim of this study was to examine the influence of the relay exchange on a team's progression through a 5000 m relay race. Using data collected from three World Cup relay events during the 2012-2013 season, the time taken to complete the straight for the scenarios with and without the relay exchange were compared at different skating speeds for the corner exit prior to the straight. Overall, the influence of the relay exchange was found to be dependent on this corner exit speed. At slower corner exit speeds (12.01-13.5 m/s), relay exchange straight times were significantly faster than the free skating scenario (P < 0.01). While at faster corner exit speeds (14.01-15 m/s), straight times were significantly slower (P < 0.001). The findings of this study suggest that the current norm of executing relay exchanges every 1½ laps may not be optimal. Instead, varying the frequency of relay exchange execution throughout the race could allow: (1) time to be gained relative to other teams; and (2) facilitate other race strategies by providing an improved opportunity to overtake.
47 CFR 90.243 - Mobile relay stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Mobile relay stations. 90.243 Section 90.243... MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.243 Mobile relay stations. (a) Mobile relay operations will be authorized on frequencies below 512 MHz, except in the Radiolocation...
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Inspection and Tests; Locomotive § 236.589 Relays. (a) Each relay shall be removed... train stop or train control system, at least once every two years; and (2) All other relays, at least...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Inspection and Tests; Locomotive § 236.589 Relays. (a) Each relay shall be removed... train stop or train control system, at least once every two years; and (2) All other relays, at least...
76 FR 59551 - Internet-Based Telecommunications Relay Service Numbering
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
..., and IP Relay, which allows these individuals to communicate in text using a computer. The final rules... hearing and speech disabilities to communicate using sign language through video equipment, and IP Relay... language through video equipment, and IP Relay, which allows these individuals to communicate in text using...
78 FR 55249 - Transmission Relay Loadability Reliability Standard; Notice of Compliance Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
...; RM11-16-000] Transmission Relay Loadability Reliability Standard; Notice of Compliance Filing Take.... \\1\\ Transmission Relay Loadability Reliability Standard, Order No. 733, 130 FERC ] 61, 221 (2010..., Order No. 733-B, 136 FERC ] 61,185 (2011). \\2\\ Transmission Relay Loadability Reliability Standard, 138...
78 FR 21929 - Transmission Relay Loadability Reliability Standard; Notice of Compliance Filing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... Relay Loadability Reliability Standard; Notice of Compliance Filing Take notice that on February 19... Relay Loadability Reliability Standard, Order No. 733, 130 FERC ] 61,221 (2010) (Order No. 733); order..., 136 FERC ] 61,185 (2011). \\2\\ Transmission Relay Loadability Reliability Standard, 138 FERC ] 61,197...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... Relay Services and Speech-to-Speech Services for Individuals With Hearing and Speech Disabilities; Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION...-minute video relay service (``VRS'') compensation rates, and adopts per-minute compensation rates for the...
How to Use Telecommunications Relay Service. NETAC Teacher Tipsheet
ERIC Educational Resources Information Center
Mothersell, Mary Beth, Comp.
1999-01-01
Telecommunications Relay Service provides full telephone accessibility to people who are deaf, hard of hearing, deaf-blind, or speech-disabled. Specially trained Communication Assistants (CAs) serve as intermediaries, relaying conversations between hearing persons and persons using a text telephone device (TTY). Relay Service is available 24 hours…
75 FR 41863 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: In this document, the Commission takes a fresh look at its video relay service (VRS) rules so that the Commission.... SUPPLEMENTARY INFORMATION: This is a summary of the Commission's Structure and Practices of the Video Relay...
76 FR 68642 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Final rule... with the Commission's Structure and Practices of the Video Relay Service Program, Memorandum Opinion... effective date of these rule sections. See, In the Matter of Structure and Practices of the Video Relay...
76 FR 68328 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Final rule... with the Commission's Structure and Practices of the Video Relay Service Program, Second Report and... effective date of these rule sections. See, In the Matter of Structure and Practices of the Video Relay...
76 FR 8659 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Final rule... with the Commission's Structure and Practices of the Video Relay Service Program, Declaratory Ruling... Practices of the Video Relay Service Program, CG Docket No. 10-51. Form Number: N/A. Respondents: Business...
75 FR 51735 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. [[Page 51736... to detect and prevent fraud and misuse in the provision of Video Relay Service (VRS). Because the VRS... is a summary of the Commission's Structure and Practices of the Video Relay Service Program, Notice...
76 FR 58424 - Transmission Relay Loadability Reliability Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... Protection Systems 2. Protective relays are devices that detect and initiate the removal of faults [[Page... protective relay detects a fault on an element of the system under its protection, it sends a signal to an... distribution providers to set load-responsive phase protection relays according to specific criteria to ensure...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-02
...] Structure and Practices of the Video Relay Service Program; Telecommunications Relay Services and Speech-to-Speech Services for Individuals With Hearing and Speech Disabilities AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY: In this document, the Commission tentatively concludes that it...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-15
...] Speech-to-Speech and Internet Protocol (IP) Speech-to-Speech Telecommunications Relay Services...: This is a summary of the Commission's Speech-to-Speech and Internet Protocol (IP) Speech-to-Speech...), Internet Protocol Relay (IP Relay), and IP captioned telephone service (IP CTS) as compensable forms of TRS...
The History and Development of the California Relay Service.
ERIC Educational Resources Information Center
Schultz, Stephen
1990-01-01
The California Relay Services (CRS) is a statewide 24-hour dual-party relay system which is designed to bridge the communication gap between the hearing-impaired and the normal-hearing community by using communication assistants to relay calls between those without Telecommunication Devices for the Deaf (TDDs) and TDD-users. (DB)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
...] Telecommunications Relay Services and Speech-to-Speech Services for Individuals With Hearing and Speech Disabilities... for telecommunications relay services (TRS) by eliminating standards for Internet-based relay services... comments, identified by CG Docket No. 03-123, by any of the following methods: Electronic Filers: Comments...
NASA Technical Reports Server (NTRS)
Fox, D. A.
1977-01-01
Solid-state relay (SSR), containing multinode control logic, is operated as normally open, normally closed, or latched. Moreover several can be paralleled to form two-pole or double-throw relays. Versatile unit ends need to design custom control circuit for every relay application. Technique can be extended to incorporate selectable time delay, on operation or release, or pulsed output.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-25
... the Internet, this service has become subject to abuse. Among other things, persons have been using IP...] Misuse of Internet Protocol (IP) Relay Service; Telecommunications Relay Services and Speech-to-Speech.... ACTION: Final rule. SUMMARY: In this document, the Commission adopts a measure that prohibits Internet...
Cross-layer Joint Relay Selection and Power Allocation Scheme for Cooperative Relaying System
NASA Astrophysics Data System (ADS)
Zhi, Hui; He, Mengmeng; Wang, Feiyue; Huang, Ziju
2018-03-01
A novel cross-layer joint relay selection and power allocation (CL-JRSPA) scheme over physical layer and data-link layer is proposed for cooperative relaying system in this paper. Our goal is finding the optimal relay selection and power allocation scheme to maximize system achievable rate when satisfying total transmit power constraint in physical layer and statistical delay quality-of-service (QoS) demand in data-link layer. Using the concept of effective capacity (EC), our goal can be formulated into an optimal joint relay selection and power allocation (JRSPA) problem to maximize the EC when satisfying total transmit power limitation. We first solving optimal power allocation (PA) problem with Lagrange multiplier approach, and then solving optimal relay selection (RS) problem. Simulation results demonstrate that CL-JRSPA scheme gets larger EC than other schemes when satisfying delay QoS demand. In addition, the proposed CL-JRSPA scheme achieves the maximal EC when relay located approximately halfway between source and destination, and EC becomes smaller when the QoS exponent becomes larger.
Wireless Energy Harvesting Two-Way Relay Networks with Hardware Impairments.
Peng, Chunling; Li, Fangwei; Liu, Huaping
2017-11-13
This paper considers a wireless energy harvesting two-way relay (TWR) network where the relay has energy-harvesting abilities and the effects of practical hardware impairments are taken into consideration. In particular, power splitting (PS) receiver is adopted at relay to harvests the power it needs for relaying the information between the source nodes from the signals transmitted by the source nodes, and hardware impairments is assumed suffered by each node. We analyze the effect of hardware impairments [-20]on both decode-and-forward (DF) relaying and amplify-and-forward (AF) relaying networks. By utilizing the obtained new expressions of signal-to-noise-plus-distortion ratios, the exact analytical expressions of the achievable sum rate and ergodic capacities for both DF and AF relaying protocols are derived. Additionally, the optimal power splitting (OPS) ratio that maximizes the instantaneous achievable sum rate is formulated and solved for both protocols. The performances of DF and AF protocols are evaluated via numerical results, which also show the effects of various network parameters on the system performance and on the OPS ratio design.
Commercial grade item (CGI) dedication of MDR relays for nuclear safety related applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, R.K.; Julka, A.; Modi, G.
1994-08-01
MDR relays manufactured by Potter and Brumfield (P and B) have been used in various safety related applications in commercial nuclear power plants. These include emergency safety features (ESF) actuation systems, emergency core cooling systems (ECCS) actuation, and reactor protection systems. The MDR relays manufactured prior to May 1990 showed signs of generic failure due to corrosion and outgassing of coil varnish. P and B has made design changes to correct these problems in relays manufactured after May 1990. However, P and B does not manufacture the relays under any 10CFR50 Appendix B quality assurance (QA) program. They manufacture themore » relays under their commercial QA program and supply these as commercial grade items. This necessitates CGI Dedication of these relays for use in nuclear-safety-related applications. This paper presents a CGI dedication program that has been used to dedicate the MDR relays manufactured after May 1990. The program is in compliance with current Nuclear Regulatory Commission (NRC) and Electric Power Research Institute (EPRI) guidelines and applicable industry standards; it specifies the critical characteristics of the relays, provides the tests and analysis required to verify the critical characteristics, the acceptance criteria for the test results, performs source verification to qualify P and B for its control of the critical characteristics, and provides documentation. The program provides reasonable assurance that the new MDR relays will perform their intended safety functions.« less
Novel Material Integration for Reliable and Energy-Efficient NEM Relay Technology
NASA Astrophysics Data System (ADS)
Chen, I.-Ru
Energy-efficient switching devices have become ever more important with the emergence of ubiquitous computing. NEM relays are promising to complement CMOS transistors as circuit building blocks for future ultra-low-power information processing, and as such have recently attracted significant attention from the semiconductor industry and researchers. Relay technology potentially can overcome the energy efficiency limit for conventional CMOS technology due to several key characteristics, including zero OFF-state leakage, abrupt switching behavior, and potentially very low active energy consumption. However, two key issues must be addressed for relay technology to reach its full potential: surface oxide formation at the contacting surfaces leading to increased ON-state resistance after switching, and high switching voltages due to strain gradient present within the relay structure. This dissertation advances NEM relay technology by investigating solutions to both of these pressing issues. Ruthenium, whose native oxide is conductive, is proposed as the contacting material to improve relay ON-state resistance stability. Ruthenium-contact relays are fabricated after overcoming several process integration challenges, and show superior ON-state resistance stability in electrical measurements and extended device lifetime. The relay structural film is optimized via stress matching among all layers within the structure, to provide lower strain gradient (below 10E-3/microm -1) and hence lower switching voltage. These advancements in relay technology, along with the integration of a metallic interconnect layer, enable complex relay-based circuit demonstration. In addition to the experimental efforts, this dissertation theoretically analyzes the energy efficiency limit of a NEM switch, which is generally believed to be limited by the surface adhesion energy. New compact (<1 microm2 footprint), low-voltage (<0.1 V) switch designs are proposed to overcome this limit. The results pave a pathway to scaled energy-efficient electronic device technology.
Audemard, Corinne; Kator, Howard I; Reece, Kimberly S
2018-08-20
High salinity relay of Eastern oysters (Crassostrea virginica) was evaluated as a post-harvest processing (PHP) method for reducing Vibrio vulnificus. This approach relies on the exposure of oysters to natural high salinity waters and preserves a live product compared to previously approved PHPs. Although results of prior studies evaluating high salinity relay as a means to decrease V. vulnificus levels were promising, validation of this method as a PHP following approved guidelines is required. This study was designed to provide data for validation of this method following Food and Drug Administration (FDA) PHP validation guidelines. During each of 3 relay experiments, oysters cultured from 3 different Chesapeake Bay sites of contrasting salinities (10-21 psu) were relayed without acclimation to high salinity waters (31-33 psu) for up to 28 days. Densities of V. vulnificus and densities of total and pathogenic Vibrio parahaemolyticus (as tdh positive strains) were measured using an MPN-quantitative PCR approach. Overall, 9 lots of oysters were relayed with 6 exhibiting initial V. vulnificus >10,000/g. As recommended by the FDA PHP validation guidelines, these lots reached both the 3.52 log reduction and the <30 MPN/g densities requirements for V. vulnificus after 14 to 28 days of relay. Densities of total and pathogenic V. parahaemolyticus in relayed oysters were significantly lower than densities at the sites of origin suggesting an additional benefit associated with high salinity relay. While relay did not have a detrimental effect on oyster condition, oyster mortality levels ranged from 2 to 61% after 28 days of relay. Although the identification of the factors implicated in oyster mortality will require further examination, this study strongly supports the validation of high salinity relay as an effective PHP method to reduce levels of V. vulnificus in oysters to endpoint levels approved for human consumption. Copyright © 2018 Elsevier B.V. All rights reserved.
Taylor, Michael A; Yu, Jong W; Howell, Thomas L; Jones, Stephen H
2018-04-01
Vibrio parahaemolyticus is the leading cause of seafood-borne human infections in the United States, and many of these illnesses are associated with consumption of raw molluscan shellfish. V. parahaemolyticus levels in shellfish vary temporally and spatially with environmental conditions in and around production areas. The objective of this study was to study the potential for reducing levels of V. parahaemolyticus in live oysters by relaying them during higher-risk warm weather to a site with elevated salinity and consistently low V. parahaemolyticus levels. The effectiveness of relaying was assessed by analyzing oyster samples collected on days 0, 2, 7, 10, and 14 for V. parahaemolyticus levels using a three-tube most-probable-number enrichment method in conjunction with genetic marker-based quantitative PCR. The salinity at the relay site was always higher than the salinity at the harvest site, with the difference between the two sites ranging from 3.4 to 19.1 ppt (average, 12 ppt) during 2011 to 2014. Oysters relayed during June, July, and August in 2011 and 2012 showed consistently reduced V. parahaemolyticus levels after 14 days, whereas relaying was less successful and V. parahaemolyticus populations changed to include trh-positive strains during 2013. When effective, relay required at least 10 days to reduce V. parahaemolyticus levels. A sample of oysters collected in August 2012, which was temperature abused to increase initial V. parahaemolyticus levels, showed a 4.5-log decrease in V. parahaemolyticus levels after 14 days of relay. These results suggest that relaying oysters to reduce V. parahaemolyticus levels holds promise, but that both microbial community and environmental conditions at relay sites can affect relay success. Further investigation to discover key factors that affect V. parahaemolyticus levels in relayed oysters may aid in developing a consistent approach for reducing V. parahaemolyticus in oysters to eliminate the risk of illness for oyster consumers.
Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.
Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N
2016-06-01
The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920 ps) together with a compact footprint (4.15 mm2) and optical loss <27 dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.
Fractional Programming for Communication Systems—Part I: Power Control and Beamforming
NASA Astrophysics Data System (ADS)
Shen, Kaiming; Yu, Wei
2018-05-01
This two-part paper explores the use of FP in the design and optimization of communication systems. Part I of this paper focuses on FP theory and on solving continuous problems. The main theoretical contribution is a novel quadratic transform technique for tackling the multiple-ratio concave-convex FP problem--in contrast to conventional FP techniques that mostly can only deal with the single-ratio or the max-min-ratio case. Multiple-ratio FP problems are important for the optimization of communication networks, because system-level design often involves multiple signal-to-interference-plus-noise ratio terms. This paper considers the applications of FP to solving continuous problems in communication system design, particularly for power control, beamforming, and energy efficiency maximization. These application cases illustrate that the proposed quadratic transform can greatly facilitate the optimization involving ratios by recasting the original nonconvex problem as a sequence of convex problems. This FP-based problem reformulation gives rise to an efficient iterative optimization algorithm with provable convergence to a stationary point. The paper further demonstrates close connections between the proposed FP approach and other well-known algorithms in the literature, such as the fixed-point iteration and the weighted minimum mean-square-error beamforming. The optimization of discrete problems is discussed in Part II of this paper.
Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin
2016-01-01
An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents’ positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904
Prototype Parts of a Digital Beam-Forming Wide-Band Receiver
NASA Technical Reports Server (NTRS)
Kaplan, Steven B.; Pylov, Sergey V.; Pambianchi, Michael
2003-01-01
Some prototype parts of a digital beamforming (DBF) receiver that would operate at multigigahertz carrier frequencies have been developed. The beam-forming algorithm in a DBF receiver processes signals from multiple antenna elements with appropriate time delays and weighting factors chosen to enhance the reception of signals from a specific direction while suppressing signals from other directions. Such a receiver would be used in the directional reception of weak wideband signals -- for example, spread-spectrum signals from a low-power transmitter on an Earth-orbiting spacecraft or other distant source. The prototype parts include superconducting components on integrated-circuit chips, and a multichip module (MCM), within which the chips are to be packaged and connected via special inter-chip-communication circuits. The design and the underlying principle of operation are based on the use of the rapid single-flux quantum (RSFQ) family of logic circuits to obtain the required processing speed and signal-to-noise ratio. RSFQ circuits are superconducting circuits that exploit the Josephson effect. They are well suited for this application, having been proven to perform well in some circuits at frequencies above 100 GHz. In order to maintain the superconductivity needed for proper functioning of the RSFQ circuits, the MCM must be kept in a cryogenic environment during operation.
Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth R; Penny, William D; Zrinzo, Ludvic; Hariz, Marwan I; Limousin, Patricia; Friston, Karl J; Brown, Peter
2010-05-01
Insight into how brain structures interact is critical for understanding the principles of functional brain architectures and may lead to better diagnosis and therapy for neuropsychiatric disorders. We recorded, simultaneously, magnetoencephalographic (MEG) signals and subcortical local field potentials (LFP) in a Parkinson's disease (PD) patient with bilateral deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN). These recordings offer a unique opportunity to characterize interactions between the subcortical structures and the neocortex. However, high-amplitude artefacts appeared in the MEG. These artefacts originated from the percutaneous extension wire, rather than from the actual DBS electrode and were locked to the heart beat. In this work, we show that MEG beamforming is capable of suppressing these artefacts and quantify the optimal regularization required. We demonstrate how beamforming makes it possible to localize cortical regions whose activity is coherent with the STN-LFP, extract artefact-free virtual electrode time-series from regions of interest and localize cortical areas exhibiting specific task-related power changes. This furnishes results that are consistent with previously reported results using artefact-free MEG data. Our findings demonstrate that physiologically meaningful information can be extracted from heavily contaminated MEG signals and pave the way for further analysis of combined MEG-LFP recordings in DBS patients. 2009 Elsevier Inc. All rights reserved.
High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.
Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk
2006-02-01
This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned.
Implementation of a direct-imaging and FX correlator for the BEST-2 array
NASA Astrophysics Data System (ADS)
Foster, G.; Hickish, J.; Magro, A.; Price, D.; Zarb Adami, K.
2014-04-01
A new digital backend has been developed for the Basic Element for SKA Training II (BEST-2) array at Radiotelescopi di Medicina, INAF-IRA, Italy, which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is, to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allow for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. These instruments aim to detect highly redshifted hydrogen from the epoch of reionization and/or to perform wide-field surveys for time-domain studies of the radio sky. We experimentally show the direct-imaging correlator architecture to be a viable solution for correlation and beamforming.
Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M
2017-11-08
When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... Services (TRS) mandatory minimum standards for Video Relay Service (VRS) and Internet Protocol Relay (IP... waivers for one year because the record demonstrates that it is technologically infeasible for VRS and IP... standards for VRS and IP Relay will expire on July 1, 2011, or until the Commission addresses pending...
47 CFR 64.606 - VRS and IP Relay provider and TRS program certification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false VRS and IP Relay provider and TRS program... Services and Related Customer Premises Equipment for Persons With Disabilities § 64.606 VRS and IP Relay... including notification in the Federal Register. (2) VRS and IP Relay provider. Any entity desiring to...
49 CFR 236.206 - Battery or power supply with respect to relay; location.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Battery or power supply with respect to relay..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.206 Battery or power supply with respect to relay; location. The battery or power supply for each signal control relay circuit, where an open...
49 CFR 236.206 - Battery or power supply with respect to relay; location.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Battery or power supply with respect to relay..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.206 Battery or power supply with respect to relay; location. The battery or power supply for each signal control relay circuit, where an open...
49 CFR 236.206 - Battery or power supply with respect to relay; location.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Battery or power supply with respect to relay..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.206 Battery or power supply with respect to relay; location. The battery or power supply for each signal control relay circuit, where an open...
49 CFR 236.206 - Battery or power supply with respect to relay; location.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Battery or power supply with respect to relay..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.206 Battery or power supply with respect to relay; location. The battery or power supply for each signal control relay circuit, where an open...
49 CFR 236.206 - Battery or power supply with respect to relay; location.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Battery or power supply with respect to relay..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.206 Battery or power supply with respect to relay; location. The battery or power supply for each signal control relay circuit, where an open...
Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.
2012-01-01
Mars Relay Network is prepared to support MSL: a) ODY/MRO/MEX will all provide critical event comm support during EDL. b) New Electra/Electra-Lite capabilities on the MSL-MRO link will support >250 Mb/sol MSL data return. 2013 MAVEN orbiter will replenish on-orbit relay infrastructure as prior orbiters approach end-of-life. While NASA has withdrawn from the 2016 EMTGO and 2018 Joint Rover missions, analysis of the potential link shows a path to Gbit/sol relay capability 2012.
Relay Sequence Generation Software
NASA Technical Reports Server (NTRS)
Gladden, Roy E.; Khanampompan, Teerapat
2009-01-01
Due to thermal and electromagnetic interactivity between the UHF (ultrahigh frequency) radio onboard the Mars Reconnaissance Orbiter (MRO), which performs relay sessions with the Martian landers, and the remainder of the MRO payloads, it is required to integrate and de-conflict relay sessions with the MRO science plan. The MRO relay SASF/PTF (spacecraft activity sequence file/ payload target file) generation software facilitates this process by generating a PTF that is needed to integrate the periods of time during which MRO supports relay activities with the rest of the MRO science plans. The software also generates the needed command products that initiate the relay sessions, some features of which are provided by the lander team, some are managed by MRO internally, and some being derived.
Automated detection of epileptic ripples in MEG using beamformer-based virtual sensors
NASA Astrophysics Data System (ADS)
Migliorelli, Carolina; Alonso, Joan F.; Romero, Sergio; Nowak, Rafał; Russi, Antonio; Mañanas, Miguel A.
2017-08-01
Objective. In epilepsy, high-frequency oscillations (HFOs) are expressively linked to the seizure onset zone (SOZ). The detection of HFOs in the noninvasive signals from scalp electroencephalography (EEG) and magnetoencephalography (MEG) is still a challenging task. The aim of this study was to automate the detection of ripples in MEG signals by reducing the high-frequency noise using beamformer-based virtual sensors (VSs) and applying an automatic procedure for exploring the time-frequency content of the detected events. Approach. Two-hundred seconds of MEG signal and simultaneous iEEG were selected from nine patients with refractory epilepsy. A two-stage algorithm was implemented. Firstly, beamforming was applied to the whole head to delimitate the region of interest (ROI) within a coarse grid of MEG-VS. Secondly, a beamformer using a finer grid in the ROI was computed. The automatic detection of ripples was performed using the time-frequency response provided by the Stockwell transform. Performance was evaluated through comparisons with simultaneous iEEG signals. Main results. ROIs were located within the seizure-generating lobes in the nine subjects. Precision and sensitivity values were 79.18% and 68.88%, respectively, by considering iEEG-detected events as benchmarks. A higher number of ripples were detected inside the ROI compared to the same region in the contralateral lobe. Significance. The evaluation of interictal ripples using non-invasive techniques can help in the delimitation of the epileptogenic zone and guide placement of intracranial electrodes. This is the first study that automatically detects ripples in MEG in the time domain located within the clinically expected epileptic area taking into account the time-frequency characteristics of the events through the whole signal spectrum. The algorithm was tested against intracranial recordings, the current gold standard. Further studies should explore this approach to enable the localization of noninvasively recorded HFOs to help during pre-surgical planning and to reduce the need for invasive diagnostics.
Mills, Travis; Lalancette, Marc; Moses, Sandra N; Taylor, Margot J; Quraan, Maher A
2012-07-01
Magnetoencephalography provides precise information about the temporal dynamics of brain activation and is an ideal tool for investigating rapid cognitive processing. However, in many cognitive paradigms visual stimuli are used, which evoke strong brain responses (typically 40-100 nAm in V1) that may impede the detection of weaker activations of interest. This is particularly a concern when beamformer algorithms are used for source analysis, due to artefacts such as "leakage" of activation from the primary visual sources into other regions. We have previously shown (Quraan et al. 2011) that we can effectively reduce leakage patterns and detect weak hippocampal sources by subtracting the functional images derived from the experimental task and a control task with similar stimulus parameters. In this study we assess the performance of three different subtraction techniques. In the first technique we follow the same post-localization subtraction procedures as in our previous work. In the second and third techniques, we subtract the sensor data obtained from the experimental and control paradigms prior to source localization. Using simulated signals embedded in real data, we show that when beamformers are used, subtraction prior to source localization allows for the detection of weaker sources and higher localization accuracy. The improvement in localization accuracy exceeded 10 mm at low signal-to-noise ratios, and sources down to below 5 nAm were detected. We applied our techniques to empirical data acquired with two different paradigms designed to evoke hippocampal and frontal activations, and demonstrated our ability to detect robust activations in both regions with substantial improvements over image subtraction. We conclude that removal of the common-mode dominant sources through data subtraction prior to localization further improves the beamformer's ability to project the n-channel sensor-space data to reveal weak sources of interest and allows more accurate localization.
Comparing Binaural Pre-processing Strategies I: Instrumental Evaluation.
Baumgärtel, Regina M; Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M A; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-12-30
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. © The Author(s) 2015.
Comparing Binaural Pre-processing Strategies I
Krawczyk-Becker, Martin; Marquardt, Daniel; Völker, Christoph; Hu, Hongmei; Herzke, Tobias; Coleman, Graham; Adiloğlu, Kamil; Ernst, Stephan M. A.; Gerkmann, Timo; Doclo, Simon; Kollmeier, Birger; Hohmann, Volker; Dietz, Mathias
2015-01-01
In a collaborative research project, several monaural and binaural noise reduction algorithms have been comprehensively evaluated. In this article, eight selected noise reduction algorithms were assessed using instrumental measures, with a focus on the instrumental evaluation of speech intelligibility. Four distinct, reverberant scenarios were created to reflect everyday listening situations: a stationary speech-shaped noise, a multitalker babble noise, a single interfering talker, and a realistic cafeteria noise. Three instrumental measures were employed to assess predicted speech intelligibility and predicted sound quality: the intelligibility-weighted signal-to-noise ratio, the short-time objective intelligibility measure, and the perceptual evaluation of speech quality. The results show substantial improvements in predicted speech intelligibility as well as sound quality for the proposed algorithms. The evaluated coherence-based noise reduction algorithm was able to provide improvements in predicted audio signal quality. For the tested single-channel noise reduction algorithm, improvements in intelligibility-weighted signal-to-noise ratio were observed in all but the nonstationary cafeteria ambient noise scenario. Binaural minimum variance distortionless response beamforming algorithms performed particularly well in all noise scenarios. PMID:26721920
Mutual coupling, channel model, and BER for curvilinear antenna arrays
NASA Astrophysics Data System (ADS)
Huang, Zhiyong
This dissertation introduces a wireless communications system with an adaptive beam-former and investigates its performance with different antenna arrays. Mutual coupling, real antenna elements and channel models are included to examine the system performance. In a beamforming system, mutual coupling (MC) among the elements can significantly degrade the system performance. However, MC effects can be compensated if an accurate model of mutual coupling is available. A mutual coupling matrix model is utilized to compensate mutual coupling in the beamforming of a uniform circular array (UCA). Its performance is compared with other models in uplink and downlink beamforming scenarios. In addition, the predictions are compared with measurements and verified with results from full-wave simulations. In order to accurately investigate the minimum mean-square-error (MSE) of an adaptive array in MC, two different noise models, the environmental and the receiver noise, are modeled. The minimum MSEs with and without data domain MC compensation are analytically compared. The influence of mutual coupling on the convergence is also examined. In addition, the weight compensation method is proposed to attain the desired array pattern. Adaptive arrays with different geometries are implemented with the minimum MSE algorithm in the wireless communications system to combat interference at the same frequency. The bit-error-rate (BER) of systems with UCA, uniform rectangular array (URA) and UCA with center element are investigated in additive white Gaussian noise plus well-separated signals or random direction signals scenarios. The output SINR of an adaptive array with multiple interferers is analytically examined. The influence of the adaptive algorithm convergence on the BER is investigated. The UCA is then investigated in a narrowband Rician fading channel. The channel model is built and the space correlations are examined. The influence of the number of signal paths, number of the interferers, Doppler spread and convergence are investigated. The tracking mode is introduced to the adaptive array system, and it further improves the BER. The benefit of using faster data rate (wider bandwidth) is discussed. In order to have better performance in a 3D space, the geometries of uniform spherical array (USAs) are presented and different configurations of USAs are discussed. The LMS algorithm based on temporal a priori information is applied to UCAs and USAs to beamform the patterns. Their performances are compared based on simulation results. Based on the analytical and simulation results, it can be concluded that mutual coupling slightly influences the performance of the adaptive array in communication systems. In addition, arrays with curvilinear geometries perform well in AWGN and fading channels.
NASA Astrophysics Data System (ADS)
Piqueras, M. A.; Mengual, T.; Navasquillo, O.; Sotom, M.; Caille, G.
2017-11-01
The evolution of broadband communication satellites shows a clear trend towards beam forming and beamswitching systems with efficient multiple access schemes with wide bandwidths, for which to be economically viable, the communication price shall be as low as possible. In such applications, the most demanding antenna concept is the Direct Radiating Array (DRA) since its use allows a flexible power allocation between beams and may afford failures in their active chains with low impact on the antenna radiating pattern. Forming multiple antenna beams, as for `multimedia via satellite' missions, can be done mainly in three ways: in microwave domain, by digital or optical processors: - Microwave beam-formers are strongly constrained by the mass and volume of microwave devices and waveguides - the bandwidth of digital processors is limited due to power consumption and complexity constraints. - The microwave photonics is an enabling technology that can improve the antenna feeding network performances, overcoming the limitations of the traditional technology in the more demanding scenarios, and may overcome the conventional RF beam-former issues, to generate accurately the very numerous time delays or phase shifts required in a DRA with a large number of beams and of radiating elements. Integrated optics technology can play a crucial role as an alternative technology for implementing beam-forming structures for satellite applications thanks to the well known advantages of this technology such as low volume and weight, huge electrical bandwidth, electro-magnetic interference immunity, low consumption, remote delivery capability with low-attenuation (by carrying all microwave signals over optical fibres) and the robustness and precision that exhibits integrated optics. Under the ESA contract 4000105095/12/NL/RA the consortium formed by DAS Photonics, Thales Alenia Space and the Nanophotonic Technology Center of Valencia is developing a three-dimensional Optical Beamforming Network (OBFN) based on integrated photonics, with fibre-optics remote antenna feeding capabilities, that addresses the requirements of SoA DRA antennas in space communications, able to feed potentially hundreds of antenna elements with hundred of simultaneous, orthogonal beams. The core of this OBFN is a Photonic Integrated Circuit (PIC) implementing a passive Butler matrix similar to the structure well known by the RF community, but overcoming the issues of scalability, size, compactness and manufacturability associated to the fact of addressing hundred of elements. This fully-integrated beam-former solution also overcomes the opto-mechanical issues and environmental sensitivity of other free-space based OBFNs.
Hou, Gary Y.; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E.
2015-01-01
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a recently developed High-Intensity Focused Ultrasound (HIFU) treatment monitoring method. HMIFU utilizes an Amplitude-Modulated (fAM = 25 Hz) HIFU beam to induce a localized focal oscillatory motion, which is simultaneously estimated and imaged by confocally-aligned imaging transducer. HMIFU feasibilities have been previously shown in silico, in vitro, and in vivo in 1-D or 2-D monitoring of HIFU treatment. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system composed of a 93-element HIFU transducer (fcenter = 4.5MHz) and coaxially-aligned 64-element phased array (fcenter = 2.5MHz) for displacement excitation and motion estimation, respectively. A single transmit beam with divergent beam transmit was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface. The present work developed and implemented a sparse matrix beamforming onto a fully-integrated, clinically relevant system, which can stream displacement images up to 15 Hz using a GPU-based processing, an increase of 100 fold in rate of streaming displacement images compared to conventional CPU-based conventional beamforming and reconstruction processing. The achieved feedback rate is also currently the fastest and only approach that does not require interrupting the HIFU treatment amongst the acoustic radiation force based HIFU imaging techniques. Results in phantom experiments showed reproducible displacement imaging, and monitoring of twenty two in vitro HIFU treatments using the new 2D system showed a consistent average focal displacement decrease of 46.7±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15 %/ °C, and 2.03± 0.93%/ °C, respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications. PMID:24960528
Roverud, Elin; Best, Virginia; Mason, Christine R; Streeter, Timothy; Kidd, Gerald
2017-12-15
The "visually guided hearing aid" (VGHA), consisting of a beamforming microphone array steered by eye gaze, is an experimental device being tested for effectiveness in laboratory settings. Previous studies have found that beamforming without visual steering can provide significant benefits (relative to natural binaural listening) for speech identification in spatialized speech or noise maskers when sound sources are fixed in location. The aim of the present study was to evaluate the performance of the VGHA in listening conditions in which target speech could switch locations unpredictably, requiring visual steering of the beamforming. To address this aim, the present study tested an experimental simulation of the VGHA in a newly designed dynamic auditory-visual word congruence task. Ten young normal-hearing (NH) and 11 young hearing-impaired (HI) adults participated. On each trial, three simultaneous spoken words were presented from three source positions (-30, 0, and 30 azimuth). An auditory-visual word congruence task was used in which participants indicated whether there was a match between the word printed on a screen at a location corresponding to the target source and the spoken target word presented acoustically from that location. Performance was compared for a natural binaural condition (stimuli presented using impulse responses measured on KEMAR), a simulated VGHA condition (BEAM), and a hybrid condition that combined lowpass-filtered KEMAR and highpass-filtered BEAM information (BEAMAR). In some blocks, the target remained fixed at one location across trials, and in other blocks, the target could transition in location between one trial and the next with a fixed but low probability. Large individual variability in performance was observed. There were significant benefits for the hybrid BEAMAR condition relative to the KEMAR condition on average for both NH and HI groups when the targets were fixed. Although not apparent in the averaged data, some individuals showed BEAM benefits relative to KEMAR. Under dynamic conditions, BEAM and BEAMAR performance dropped significantly immediately following a target location transition. However, performance recovered by the second word in the sequence and was sustained until the next transition. When performance was assessed using an auditory-visual word congruence task, the benefits of beamforming reported previously were generally preserved under dynamic conditions in which the target source could move unpredictably from one location to another (i.e., performance recovered rapidly following source transitions) while the observer steered the beamforming via eye gaze, for both young NH and young HI groups.
Implementation of a Relay Coordination System for the Mars Network
NASA Technical Reports Server (NTRS)
Allard, Daniel A.
2010-01-01
Mars network relay operations involve the coordination of lander and orbiter teams through long-term and short-term planning, tactical changes and post-pass analysis. Much of this coordination is managed through email traffic and point-to-point file data exchanges. It is often difficult to construct a complete and accurate picture of the relay situation at any given moment, as there is no centralized store of correlated relay data. The Mars Relay Operations Service (MaROS) is being implemented to address the problem of relay coordination for current and next-generation relay missions. The service is provided for the purpose of coordinating communications sessions between landed spacecraft assets and orbiting spacecraft assets at Mars. The service centralizes a set of functions previously distributed across multiple spacecraft operations teams, and as such greatly improves visibility into the end-to-end strategic coordination process. Most of the process revolves around the scheduling of communications sessions between the spacecraft during periods of time when a landed asset on Mars is geometrically visible by an orbiting spacecraft. These "relay" sessions are used to transfer data both to and from the landed asset via the orbiting asset on behalf of Earth-based spacecraft operators. This paper will discuss the relay coordination problem space, overview the architecture and design selected to meet system requirements, and describe the first phase of system implementation
Code of Federal Regulations, 2010 CFR
2010-10-01
.../or equipment is maintained in condition to perform its intended function. Electronic device, relay... service of relay or device failing to meet test requirements. 236.101 Section 236.101 Transportation Other... Inspections and Tests; All Systems § 236.101 Purpose of inspection and tests; removal from service of relay or...
Code of Federal Regulations, 2010 CFR
2010-10-01
... operations over the grade crossing resume. (c) Any electronic device, relay, or other electromagnetic device... service of relay or device failing to meet test requirements. 234.247 Section 234.247 Transportation Other... Inspections and Tests § 234.247 Purpose of inspections and tests; removal from service of relay or device...
Mobile User Connectivity in Relay-Assisted Visible Light Communications.
Pešek, Petr; Zvanovec, Stanislav; Chvojka, Petr; Bhatnagar, Manav R; Ghassemlooy, Zabih; Saxena, Prakriti
2018-04-07
In this paper, we investigate relay-assisted visible light communications (VLC) where a mobile user acts as a relay and forwards data from a transmitter to the end mobile user. We analyse the utilization of the amplify-and-forward (AF) and decode-and-forward (DF) relaying schemes. The focus of the paper is on analysis of the behavior of the mobile user acting as a relay while considering a realistic locations of the receivers and transmitters on a standard mobile phone, more specifically with two photodetectors on both sides of a mobile phone and a transmitting LED array located upright. We also investigate dependency of the bit error rate (BER) performance on the azimuth and elevation angles of the mobile relay device within a typical office environment. We provide a new analytical description of BER for AF and DF-based relays in VLC. In addition we compare AF and DF-based systems and show that DF offers a marginal improvement in the coverage area with a BER < 10 -3 and a data rate of 100 Mb/s. Numerical results also illustrate that relay-based systems offer a significant improvement in terms of the coverage compared to direct non-line of sight VLC links.
Mobile User Connectivity in Relay-Assisted Visible Light Communications
Pešek, Petr; Zvanovec, Stanislav; Chvojka, Petr; Bhatnagar, Manav R.; Ghassemlooy, Zabih; Saxena, Prakriti
2018-01-01
In this paper, we investigate relay-assisted visible light communications (VLC) where a mobile user acts as a relay and forwards data from a transmitter to the end mobile user. We analyse the utilization of the amplify-and-forward (AF) and decode-and-forward (DF) relaying schemes. The focus of the paper is on analysis of the behavior of the mobile user acting as a relay while considering a realistic locations of the receivers and transmitters on a standard mobile phone, more specifically with two photodetectors on both sides of a mobile phone and a transmitting LED array located upright. We also investigate dependency of the bit error rate (BER) performance on the azimuth and elevation angles of the mobile relay device within a typical office environment. We provide a new analytical description of BER for AF and DF-based relays in VLC. In addition we compare AF and DF-based systems and show that DF offers a marginal improvement in the coverage area with a BER < 10–3 and a data rate of 100 Mb/s. Numerical results also illustrate that relay-based systems offer a significant improvement in terms of the coverage compared to direct non-line of sight VLC links. PMID:29642432
Van Nguyen, Binh; Kim, Kiseon
2016-09-11
In this paper, we consider amplify-and-forward (AnF) cooperative systems under correlated fading environments. We first present a brief overview of existing works on the effect of channel correlations on the system performance. We then focus on our main contribution which is analyzing the outage probability of a multi-AnF-relay system with the best relay selection (BRS) scheme under a condition that two channels of each relay, source-relay and relay-destination channels, are correlated. Using lower and upper bounds on the end-to-end received signal-to-noise ratio (SNR) at the destination, we derive corresponding upper and lower bounds on the system outage probability. We prove that the system can achieve a diversity order (DO) equal to the number of relays. In addition, and importantly, we show that the considered correlation form has a constructive effect on the system performance. In other words, the larger the correlation coefficient, the better system performance. Our analytic results are corroborated by extensive Monte-Carlo simulations.
Hieu, Tran Dinh; Duy, Tran Trung; Dung, Le The; Choi, Seong Gon
2018-06-05
To solve the problem of energy constraints and spectrum scarcity for cognitive radio wireless sensor networks (CR-WSNs), an underlay decode-and-forward relaying scheme is considered, where the energy constrained secondary source and relay nodes are capable of harvesting energy from a multi-antenna power beacon (PB) and using that harvested energy to forward the source information to the destination. Based on the time switching receiver architecture, three relaying protocols, namely, hybrid partial relay selection (H-PRS), conventional opportunistic relay selection (C-ORS), and best opportunistic relay selection (B-ORS) protocols are considered to enhance the end-to-end performance under the joint impact of maximal interference constraint and transceiver hardware impairments. For performance evaluation and comparison, we derive the exact and asymptotic closed-form expressions of outage probability (OP) and throughput (TP) to provide significant insights into the impact of our proposed protocols on the system performance over Rayleigh fading channel. Finally, simulation results validate the theoretical results.
Optimum satellite relay positions with application to a TDRS-1 Indian Ocean relay
NASA Technical Reports Server (NTRS)
Jackson, A. H.; Christopher, P.
1994-01-01
An Indian Ocean satellite relay is examined. The relay satellite position is optimized by minimizing the sum of downlink and satellite to satellite link losses. Osculating orbital elements are used for fast intensive orbital computation. Integrated Van Vleck gaseous attenuation and a Crane rain model are used for downlink attenuation. Circular polarization losses on the satellite to satellite link are found dynamically. Space to ground link antenna pointing losses are included as a function of yaw ans spacecraft limits. Relay satellite positions between 90 to 100 degrees East are found attractive for further study.
Telecommunications Relay Services
... services? Title IV of the Americans with Disabilities Act (ADA) of 1990 (which took full effect on July 26, 1993) requires all U.S. telephone companies to provide telecommunications relay services. A telecommunications relay ...
Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications
NASA Technical Reports Server (NTRS)
Israel, David J.; Shaw, Harry
2018-01-01
NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the communications space segment. For optical communications, the backbone of this effort is adoption of commercial technologies from the terrestrial high-bandwidth telecommunications industry into optical payloads. For RF communications, the explosion of software-defined radio, high-speed digital signal processing technologies and networking from areas such as 5G multicarrier will be important. Future commercial providers will not be limited to a small set of large aerospace companies. Ultimately, entirely government-owned and -operated satellite communications will phase out and make way for commercial business models that satisfy NASA's satellite communications requirements. The competition being provided by new entrants in the space communications business may result in a future in which all NASA communications needs can be satisfied commercially.
Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications
NASA Technical Reports Server (NTRS)
Israel, David J.
2018-01-01
NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the communications space segment. For optical communications, the backbone of this effort is adoption of commercial technologies from the terrestrial high-bandwidth telecommunications industry into optical payloads. For RF communications, the explosion of software-defined radio, high-speed digital signal processing technologies and networking from areas such as 5G multicarrier will be important. Future commercial providers will not be limited to a small set of large aerospace companies. Ultimately, entirely government-owned and -operated satellite communications will phase out and make way for commercial business models that satisfy NASAs satellite communications requirements. The competition being provided by new entrants in the space communications business may result in a future in which all NASA communications needs can be satisfied commercially.
NASA Astrophysics Data System (ADS)
Mulyadi, Y.; Sucita, T.; Sumarto; Alpani, M.
2018-02-01
Electricity supply demand is increasing every year. It makes PT. PLN (Persero) is required to provide optimal customer service and satisfaction. Optimal service depends on the performance of the equipment of the power system owned, especially the transformer. Power transformer is an electrical equipment that transforms electricity from high voltage to low voltage or vice versa. However, in the electrical power system, is inseparable from interference included in the transformer. But, the disturbance can be minimized by the protection system. The main protection transformer is differential relays. Differential relays working system using Kirchoff law where inflows equal outflows. If there are excessive currents that interfere then the relays will work. But, the relay can also experience decreased performance. Therefore, this final project aims to analyze the reliability of the differential relay on the transformer in three different substations. Referring to the standard applied by the transmission line protection officer, the differential relay shall have slope characteristics of 30% in the first slope and 80% in the second slope when using two slopes and 80% when using one slope with an instant time and the corresponding ratio. So, the results obtained on the Siemens differential release have a reliable slope characteristic with a value of 30 on the fuzzy logic system. In a while, ABB a differential relay is only 80% reliable because two experiments are not reliable. For the time, all the differential relays are instant with a value of 0.06 on the fuzzy logic system. For ratios, the differential relays ABB have a better value than others brand with a value of 151 on the fuzzy logic system.
Relay communications strategies for Mars exploration through 2020
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Arnold, B.; DePaula, R.; Kazz, G.; Lee, C.; Noreen, G.
2005-01-01
In this paper we will examine NASA's strategy for relay communications support of missions planned for this decade, and discuss options for longer-term relay network evolution in support of second-decade missions.
Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay Receiver Design Issues
2011-03-01
222 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 9, SEPTEMBER 2011 2595 Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay... noncoherent reception, channel estima- tion. I. INTRODUCTION IN the two-way relay channel (TWRC), a pair of sourceterminals exchange information...2011 4. TITLE AND SUBTITLE Noncoherent Physical-Layer Network Coding with FSK Modulation:Relay Receiver Design Issues 5a. CONTRACT NUMBER 5b
NASA Astrophysics Data System (ADS)
Albaaj, Azhar; Makki, S. Vahab A.; Alabkhat, Qassem; Zahedi, Abdulhamid
2017-07-01
Wireless networks suffer from battery discharging specially in cooperative communications when multiple relays have an important role but they are energy constrained. To overcome this problem, energy harvesting from radio frequency signals is applied to charge the node battery. These intermediate nodes have the ability to harvest energy from the source signal and use the energy harvested to transmit information to the destination. In fact, the node tries to harvest energy and then transmit the data to destination. Division of energy harvesting and data transmission can be done in two algorithms: time-switching-based relaying protocol and power-splitting-based relaying protocol. These two algorithms also can be applied in delay-limited and delay-tolerant transmission systems. The previous works have assumed a single relay for energy harvesting, but in this article, the proposed method is concentrated on improving the outage probability and throughput by using multiple antennas in each relay node instead of using single antenna. According to our simulation results, when using multi-antenna relays, ability of energy harvesting is increased and thus system performance will be improved to great extent. Maximum ratio combining scheme has been used when the destination chooses the best signal of relays and antennas satisfying the required signal-to-noise ratio.
Multiple-access relaying with network coding: iterative network/channel decoding with imperfect CSI
NASA Astrophysics Data System (ADS)
Vu, Xuan-Thang; Renzo, Marco Di; Duhamel, Pierre
2013-12-01
In this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels.
Su, Yishan; Han, Guangyao; Fu, Xiaomei; Xu, Naishen; Jin, Zhigang
2017-04-06
Physical layer security is an attractive security mechanism, which exploits the randomness characteristics of wireless transmission channel to achieve security. However, it is hampered by the limitation of the channel condition that the main channel must be better than the eavesdropper channel. To alleviate the limitation, cooperative communication is introduced. Few studies have investigated the physical layer security of the relay transmission model. In this paper, we performed some experiments to evaluate the physical layer security of a cooperative communication system, with a relay operating in decode-and-forward (DF) cooperative mode, selfish and malicious behavior in real non-ideal transmission environment. Security performance is evaluated in terms of the probability of non-zero secrecy capacity. Experiments showed some different results compared to theoretical simulation: (1) to achieve the maximum secrecy capacity, the optimal relay power according to the experiments result is larger than that of ideal theoretical results under both cooperative and selfish behavior relay; (2) the relay in malicious behavior who forwards noise to deteriorate the main channel may deteriorate the eavesdropper channel more seriously than the main channel; (3) the optimal relay positions under cooperative and selfish behavior relay cases are both located near the destination because of non-ideal transmission.
The broadcast classical-quantum capacity region of a two-phase bidirectional relaying channel
NASA Astrophysics Data System (ADS)
Boche, Holger; Cai, Minglai; Deppe, Christian
2015-10-01
We studied a three-node quantum network that enables bidirectional communication between two nodes with a half-duplex relay node for transmitting classical messages. A decode-and-forward protocol is used to perform the communication in two phases. In the first phase, the messages of two nodes are transmitted to the relay node. The capacity of the first phase is well known by previous works. In the second phase, the relay node broadcasts a re-encoded composition to the two nodes. We determine the capacity region of the broadcast phase. To the best of our knowledge, this is the first paper analyzing quantum bidirectional relay networks.
Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku
2016-01-01
In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119
Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku
2016-02-26
In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.
Nguyen, Binh Van; Kim, Kiseon
2016-01-01
In this paper, we consider amplify-and-forward (AnF) cooperative systems under correlated fading environments. We first present a brief overview of existing works on the effect of channel correlations on the system performance. We then focus on our main contribution which is analyzing the outage probability of a multi-AnF-relay system with the best relay selection (BRS) scheme under a condition that two channels of each relay, source-relay and relay-destination channels, are correlated. Using lower and upper bounds on the end-to-end received signal-to-noise ratio (SNR) at the destination, we derive corresponding upper and lower bounds on the system outage probability. We prove that the system can achieve a diversity order (DO) equal to the number of relays. In addition, and importantly, we show that the considered correlation form has a constructive effect on the system performance. In other words, the larger the correlation coefficient, the better system performance. Our analytic results are corroborated by extensive Monte-Carlo simulations. PMID:27626426
Optimizing estimation of hemispheric dominance for language using magnetic source imaging
Passaro, Antony D.; Rezaie, Roozbeh; Moser, Dana C.; Li, Zhimin; Dias, Nadeeka; Papanicolaou, Andrew C.
2011-01-01
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N=12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10–18 Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10–18 Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing. PMID:21890118
System-Level Performance of Antenna Arrays in CDMA-Based Cellular Mobile Radio Systems
NASA Astrophysics Data System (ADS)
Czylwik, Andreas; Dekorsy, Armin
2004-12-01
Smart antennas exploit the inherent spatial diversity of the mobile radio channel, provide an antenna gain, and also enable spatial interference suppression leading to reduced intracell as well as intercell interference. Especially, for the downlink of future CDMA-based mobile communications systems, transmit beamforming is seen as a well-promising smart antenna technique. The main objective of this paper is to study the performance of diverse antenna array topologies when applied for transmit beamforming in the downlink of CDMA-based networks. In this paper, we focus on uniform linear array (ULA) and uniform circular array (UCA) topologies. For the ULA, we consider three-sector base stations with one linear array per sector. While recent research on downlink beamforming is often restricted to one single cell, this study takes into account the important impact of intercell interference on the performance by evaluating complete networks. Especially, from the operator perspective, system capacity and system coverage are very essential parameters of a cellular system so that there is a clear necessity of intensive system level investigations. Apart from delivering assessments on the performance of the diverse antenna array topologies, in the paper also different antenna array parameters, such as element spacing and beamwidth of the sector antennas, are optimized. Although we focus on the network level, fast channel fluctuations are taken into account by including them analytically into the signal-to-interference calculation.
Clustering and Beamforming for Efficient Communication in Wireless Sensor Networks
Porcel-Rodríguez, Francisco; Valenzuela-Valdés, Juan; Padilla, Pablo; Luna-Valero, Francisco; Luque-Baena, Rafael; López-Gordo, Miguel Ángel
2016-01-01
Energy efficiency is a critical issue for wireless sensor networks (WSNs) as sensor nodes have limited power availability. In order to address this issue, this paper tries to maximize the power efficiency in WSNs by means of the evaluation of WSN node networks and their performance when both clustering and antenna beamforming techniques are applied. In this work, four different scenarios are defined, each one considering different numbers of sensors: 50, 20, 10, five, and two nodes per scenario, and each scenario is randomly generated thirty times in order to statistically validate the results. For each experiment, two different target directions for transmission are taken into consideration in the optimization process (φ = 0° and θ = 45°; φ = 45°, and θ = 45°). Each scenario is evaluated for two different types of antennas, an ideal isotropic antenna and a conventional dipole one. In this set of experiments two types of WSN are evaluated: in the first one, all of the sensors have the same amount of power for communications purposes; in the second one, each sensor has a different amount of power for its communications purposes. The analyzed cases in this document are focused on 2D surface and 3D space for the node location. To the authors’ knowledge, this is the first time that beamforming and clustering are simultaneously applied to increase the network lifetime in WSNs. PMID:27556463
Wang, Yuanguo; Zheng, Chichao; Peng, Hu; Chen, Qiang
2018-06-12
The beamforming performance has a large impact on image quality in ultrasound imaging. Previously, several adaptive weighting factors including coherence factor (CF) and generalized coherence factor (GCF) have been proposed to improved image resolution and contrast. In this paper, we propose a new adaptive weighting factor for ultrasound imaging, which is called signal mean-to-standard-deviation factor (SMSF). SMSF is defined as the mean-to-standard-deviation of the aperture data and is used to weight the output of delay-and-sum (DAS) beamformer before image formation. Moreover, we develop a robust SMSF (RSMSF) by extending the SMSF to the spatial frequency domain using an altered spectrum of the aperture data. In addition, a square neighborhood average is applied on the RSMSF to offer a more smoothed square neighborhood RSMSF (SN-RSMSF) value. We compared our methods with DAS, CF, and GCF using simulated and experimental synthetic aperture data sets. The quantitative results show that SMSF results in an 82% lower full width at half-maximum (FWHM) but a 12% lower contrast ratio (CR) compared with CF. Moreover, the SN-RSMSF leads to 15% and 10% improvement, on average, in FWHM and CR compared with GCF while maintaining the speckle quality. This demonstrates that the proposed methods can effectively improve the image resolution and contrast. Copyright © 2018 Elsevier B.V. All rights reserved.
Pinton, Gianmarco F; Trahey, Gregg E; Dahl, Jeremy J
2011-04-01
A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain (FDTD). This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-andsum beamforming is used to generate point spread functions (PSF) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is reverberation from near-field structures. Reverberation clutter in the harmonic PSF is 26 dB higher than the fundamental PSF. An artificial medium with uniform velocity but unchanged impedance characteristics indicates that for the fundamental PSF, the primary source of degradation is phase aberration. An ultrasound image is created in silico using the same physical and algorithmic process used in an ultrasound scanner: a series of pulses are transmitted through heterogeneous scattering tissue and the received echoes are used in a delay-and-sum beamforming algorithm to generate images. These beamformed images are compared with images obtained from convolution of the PSF with a scatterer field to demonstrate that a very large portion of the PSF must be used to accurately represent the clutter observed in conventional imaging. © 2011 IEEE
First Image Products from EcoSAR - Osa Peninsula, Costa Rica
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon
2016-01-01
Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Dillon, Joshua S.
2016-03-20
Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%–20% near the edges of the main lobe and in themore » sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.« less
47 CFR 64.606 - Internet-based TRS provider and TRS program certification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of Internet-based TRS to be provided (i.e., VRS, IP Relay, and/or IP captioned telephone relay... IP Relay providers certified under this section must notify the Commission of substantive changes in...
Reputation-Based Trust for a Cooperative, Agent-Based Backup Protection Scheme for Power Networks
2010-03-01
85 Appendix B . Performance Charts for Data by Scenario...protection for that line. For example Relay 3 provides zone 1 coverage for line B and zone 3 coverage for line C. Relay 4 would also provide zone 1...coverage for line B but zone 3 coverage for line A instead since it is directional. Relay 1 and relay 6 would provide zone 3 coverage for line B . A
Differential correction capability of the GTDS using TDRSS data
NASA Technical Reports Server (NTRS)
Liu, S. Y.; Soskey, D. G.; Jacintho, J.
1980-01-01
A differential correction (DC) capability was implemented in the Goddard Trajectory Determination System (GTDS) to process satellite tracking data acquired via the Tracking and Data Relay Satellite System (TRDRSS). Configuration of the TDRSS is reviewed, observation modeling is presented, and major features of the capability are discussed. The following types of TDRSS data can be processed by GTDS: two way relay range and Doppler measurements, hybrid relay range and Doppler measurements, one way relay Doppler measurements, and differenced one way relay Doppler measurements. These data may be combined with conventional ground based direct tracking data. By using Bayesian weighted least squares techniques, the software allows the simultaneous determination of the trajectories of up to four different satellites - one user satellite and three relay satellites. In addition to satellite trajectories, the following parameters can be optionally solved: for drag coefficient, reflectivity of a satellite for solar radiation pressure, transponder delay, station position, and biases.
Code of Federal Regulations, 2010 CFR
2010-07-01
... investigations and relay law enforcement information without compromise of the information, protection of... investigations and relay law enforcement information without compromise of the information, protection of... subsection (c)(3) because it will enable DSS to conduct certain investigations and relay law enforcement...
Spreading Sequence System for Full Connectivity Relay Network
NASA Technical Reports Server (NTRS)
Kwon, Hyuck M. (Inventor); Pham, Khanh D. (Inventor); Yang, Jie (Inventor)
2018-01-01
Fully connected uplink and downlink fully connected relay network systems using pseudo-noise spreading and despreading sequences subjected to maximizing the signal-to-interference-plus-noise ratio. The relay network systems comprise one or more transmitting units, relays, and receiving units connected via a communication network. The transmitting units, relays, and receiving units each may include a computer for performing the methods and steps described herein and transceivers for transmitting and/or receiving signals. The computer encodes and/or decodes communication signals via optimum adaptive PN sequences found by employing Cholesky decompositions and singular value decompositions (SVD). The PN sequences employ channel state information (CSI) to more effectively and more securely computing the optimal sequences.
Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones
NASA Technical Reports Server (NTRS)
Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.
2010-01-01
In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.
Evolution of a radio communication relay system
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Pezeshkian, Narek; Hart, Abraham; Burmeister, Aaron; Holz, Kevin; Neff, Joseph; Roth, Leif
2013-05-01
Providing long-distance non-line-of-sight control for unmanned ground robots has long been recognized as a problem, considering the nature of the required high-bandwidth radio links. In the early 2000s, the DARPA Mobile Autonomous Robot Software (MARS) program funded the Space and Naval Warfare Systems Center (SSC) Pacific to demonstrate a capability for autonomous mobile communication relaying on a number of Pioneer laboratory robots. This effort also resulted in the development of ad hoc networking radios and software that were later leveraged in the development of a more practical and logistically simpler system, the Automatically Deployed Communication Relays (ADCR). Funded by the Joint Ground Robotics Enterprise and internally by SSC Pacific, several generations of ADCR systems introduced increasingly more capable hardware and software for automatic maintenance of communication links through deployment of static relay nodes from mobile robots. This capability was finally tapped in 2010 to fulfill an urgent need from theater. 243 kits of ruggedized, robot-deployable communication relays were produced and sent to Afghanistan to extend the range of EOD and tactical ground robots in 2012. This paper provides a summary of the evolution of the radio relay technology at SSC Pacific, and then focuses on the latest two stages, the Manually-Deployed Communication Relays and the latest effort to automate the deployment of these ruggedized and fielded relay nodes.
The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II*
Bloemink, Marieke J.; Melkani, Girish C.; Bernstein, Sanford I.; Geeves, Michael A.
2016-01-01
The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1, we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase toward wild-type values. The R759E S1 construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25–30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke that involves a change in conformation at the relay/converter domain interface. Significantly, the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modeling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine-tuning myosin kinetics, in particular ATP binding and hydrolysis. PMID:26586917
NASA Astrophysics Data System (ADS)
Hedman, Mojdeh Khorsand
After a major disturbance, the power system response is highly dependent on protection schemes and system dynamics. Improving power systems situational awareness requires proper and simultaneous modeling of both protection schemes and dynamic characteristics in power systems analysis tools. Historical information and ex-post analysis of blackouts reaffirm the critical role of protective devices in cascading events, thereby confirming the necessity to represent protective functions in transient stability studies. This dissertation is aimed at studying the importance of representing protective relays in power system dynamic studies. Although modeling all of the protective relays within transient stability studies may result in a better estimation of system behavior, representing, updating, and maintaining the protection system data becomes an insurmountable task. Inappropriate or outdated representation of the relays may result in incorrect assessment of the system behavior. This dissertation presents a systematic method to determine essential relays to be modeled in transient stability studies. The desired approach should identify protective relays that are critical for various operating conditions and contingencies. The results of the transient stability studies confirm that modeling only the identified critical protective relays is sufficient to capture system behavior for various operating conditions and precludes the need to model all of the protective relays. Moreover, this dissertation proposes a method that can be implemented to determine the appropriate location of out-of-step blocking relays. During unstable power swings, a generator or group of generators may accelerate or decelerate leading to voltage depression at the electrical center along with generator tripping. This voltage depression may cause protective relay mis-operation and unintentional separation of the system. In order to avoid unintentional islanding, the potentially mis-operating relays should be blocked from tripping with the use of out-of-step blocking schemes. Blocking these mis-operating relays, combined with an appropriate islanding scheme, help avoid a system wide collapse. The proposed method is tested on data from the Western Electricity Coordinating Council. A triple line outage of the California-Oregon Intertie is studied. The results show that the proposed method is able to successfully identify proper locations of out-of-step blocking scheme.
14 CFR 1215.102 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM.... The Tracking and Data Relay Satellite System including Tracking and Data Relay Satellites (TDRS), the... user ground system/TDRSS interface. (c) Bit stream. The digital electronic signals acquired by TDRSS...
Du, Guanyao; Yu, Jianjun
2016-01-01
This paper investigates the system achievable rate for the multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system with an energy harvesting (EH) relay. Firstly we propose two protocols, time switching-based decode-and-forward relaying (TSDFR) and a flexible power splitting-based DF relaying (PSDFR) protocol by considering two practical receiver architectures, to enable the simultaneous information processing and energy harvesting at the relay. In PSDFR protocol, we introduce a temporal parameter to describe the time division pattern between the two phases which makes the protocol more flexible and general. In order to explore the system performance limit, we discuss the system achievable rate theoretically and formulate two optimization problems for the proposed protocols to maximize the system achievable rate. Since the problems are non-convex and difficult to solve, we first analyze them theoretically and get some explicit results, then design an augmented Lagrangian penalty function (ALPF) based algorithm for them. Numerical results are provided to validate the accuracy of our analytical results and the effectiveness of the proposed ALPF algorithm. It is shown that, PSDFR outperforms TSDFR to achieve higher achievable rate in such a MIMO-OFDM relaying system. Besides, we also investigate the impacts of the relay location, the number of antennas and the number of subcarriers on the system performance. Specifically, it is shown that, the relay position greatly affects the system performance of both protocols, and relatively worse achievable rate is achieved when the relay is placed in the middle of the source and the destination. This is different from the MIMO-OFDM DF relaying system without EH. Moreover, the optimal factor which indicates the time division pattern between the two phases in the PSDFR protocol is always above 0.8, which means that, the common division of the total transmission time into two equal phases in previous work applying PS-based receiver is not optimal.
Airborne relay-based regional positioning system.
Lee, Kyuman; Noh, Hongjun; Lim, Jaesung
2015-05-28
Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.
Airborne Relay-Based Regional Positioning System
Lee, Kyuman; Noh, Hongjun; Lim, Jaesung
2015-01-01
Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations. PMID:26029953
Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim
2016-01-01
This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061
Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.
2012-01-01
In the past decade, an evolving network of Mars relay orbiters has provided telecommunication relay services to the Mars Exploration Rovers, Spirit and Opportunity, and to the Mars Phoenix Lander, enabling high-bandwidth, energy-efficient data transfer and greatly increasing the volume of science data that can be returned from the Martian surface, compared to conventional direct-to-Earth links. The current relay network, consisting of NASA's Odyssey and Mars Reconnaissance Orbiter and augmented by ESA's Mars Express Orbiter, stands ready to support the Mars Science Laboratory, scheduled to arrive at Mars on Aug 6, 2012, with new capabilities enabled by the Electra and Electra-Lite transceivers carried by MRO and MSL, respectively. The MAVEN orbiter, planned for launch in 2013, and the ExoMars/Trace Gas Orbiter, planned for launch in 2016, will replenish the on-orbit relay network as the current orbiter approach their end of life. Currently planned support scenarios for this future relay network include an ESA EDL Demonstrator Module deployed by the 2016 ExoMars/TGO orbiter, and the 2018 NASA/ESA Joint Rover, representing the first step in a multimission Mars Sample Return campaign.
Orr, Stanley G.
2000-01-01
A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.
Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair
2017-03-01
Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.
NASA Technical Reports Server (NTRS)
1972-01-01
The results of the telecommunications subsystem analysis are presented. The relay system requirements and constraints, interference analysis, frequency selection, modulation and coding analysis, and the performance analysis of the relay system are included.
76 FR 72124 - Internet-Based Telecommunications Relay Service Numbering
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-22
... Docket No. 10-191; FCC 11-123] Internet-Based Telecommunications Relay Service Numbering AGENCY: Federal..., the information collection associated with the Commission's Internet- Based Telecommunications Relay... this notice as an announcement of the effective date of the rules. See Internet-Based...
77 FR 1039 - Internet-Based Telecommunications Relay Service Numbering
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [WC Docket No. 10-191; Report No. 2939] Internet... toll-free numbers by users of Internet- based Telecommunications Relay Services (iTRS). DATES... any rules of particular applicability. Subject: Internet-Based Telecommunications Relay Service...
47 CFR 64.603 - Provision of services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... telephone voice transmission services shall provide, not later than July 26, 1993, in compliance with the regulations prescribed herein, throughout the area in which it offers services, telecommunications relay... other carriers. Speech-to-speech relay service and interstate Spanish language relay service shall be...
A TorPath to TorCoin: Proof-of-Bandwidth Altcoins for Compensating Relays
2014-07-18
incentive scheme for Tor relying on two novel concepts. We introduce TorCoin, an “altcoin” that uses the Bitcoin protocol to re- ward relays for...or altcoin, based on the Bitcoin protocol [8]. Unlike Bitcoin , its proof-of-work scheme is based on bandwidth rather than computation. To “mine” a...concepts. We introduce TorCoin, an altcoin" that uses the Bitcoin protocol to re- ward relays for contributing bandwidth. Relays mine" TorCoins, then
Cour, M; Hernu, R; Bénet, T; Robert, J M; Regad, D; Chabert, B; Malatray, A; Conrozier, S; Serra, P; Lassaigne, M; Vanhems, P; Argaud, L
2013-11-01
Manual changeover of vasoactive drug infusion pumps (CVIP) frequently lead to haemodynamic instability. Some of the newest smart pumps allow automated CVIP. The aim of this study was to compare automated CVIP with manual 'Quick Change' relays. We performed a prospective, quasi-experimental study, in a university-affiliated intensive care unit (ICU). All adult patients receiving continuous i.v. infusion of vasoactive drugs were included. CVIP were successively performed manually (Phase 1) and automatically (Phase 2) during two 6-month periods. The primary endpoint was the frequency of haemodynamic incidents related to the relays, which were defined as variations of mean arterial pressure >15 mm Hg or heart rate >15 bpm. The secondary endpoints were the nursing time dedicated to relays and the number of interruptions in care because of CVIP. A multivariate mixed effects logistic regression was fitted for analytic analysis. We studied 1329 relays (Phase 1: 681, Phase 2: 648) from 133 patients (Phase 1: 63, Phase 2: 70). Incidents related to CVIP decreased from 137 (20%) in Phase 1 to 73 (11%) in Phase 2 (P<0.001). Automated relays were independently associated with a 49% risk reduction of CVIP-induced incidents (adjusted OR=0.51, 95% confidence interval 0.34-0.77, P=0.001). Time dedicated to the relays and the number of interruptions in care to manage CVIP were also significantly reduced with automated relays vs manual relays (P=0.001). These results demonstrate the benefits of automated CVIP using smart pumps in limiting the frequency of haemodynamic incidents related to relays and in reducing the nursing workload.
Section 7 reactor incident file general information from 1945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1969-01-10
At 0308 on January 10, 1966, both B and C Reactors ``scrammed`` due to an electrical fault on Line C2-L8 caused by a raccoon coming in contact with the 13-8 KV line on top of transformer No. 2 at 182-B Building. Line C2-L8 relayed out at the 151-B Building. Details of the occurrence at 151-B are covered in the attachment. C-Reactor scrammed due to reduced voltage on the pressure monitor system. The reduction in voltage caused the auxiliary relays of the pressure monitor ground detector to open, de-energizing the end result relays PSR and PSRA. The safety circuit trip identificationmore » system displayed ``Pressure Monitor`` and ``Ground Detector.`` B-Reactor scrammed by a power failure signal from 190-B Building. The power failure relays for pump numbers 1 and 3 opened due to these pumps contributing power to the fault. The power failure relays at 190-B remained open long enough for the end result relays PF and PFA to open. Since these relays are timed delayed, 0.26 seconds, the power failure relays must have remained open at least that long. At the 190-B Building the steam turbines started due to the power failure relays for pump numbers 1 and 3 opening. The main process pumps remained stable and continued to supply normal flow to the reactor. Pumps were tripped from the line at 182-B and 183-B Buildings. The surge suppressors cycled normally and the turbine export pumps started as a result of low export line pressure. No power equipment was affected in C Area.« less
The sequence relay selection strategy based on stochastic dynamic programming
NASA Astrophysics Data System (ADS)
Zhu, Rui; Chen, Xihao; Huang, Yangchao
2017-07-01
Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.
Modeling of Protection in Dynamic Simulation Using Generic Relay Models and Settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samaan, Nader A.; Dagle, Jeffery E.; Makarov, Yuri V.
This paper shows how generic protection relay models available in planning tools can be augmented with settings that are based on NERC standards or best engineering practice. Selected generic relay models in Siemens PSS®E have been used in dynamic simulations in the proposed approach. Undervoltage, overvoltage, underfrequency, and overfrequency relays have been modeled for each generating unit. Distance-relay protection was modeled for transmission system protection. Two types of load-shedding schemes were modeled: underfrequency (frequency-responsive non-firm load shedding) and underfrequency and undervoltage firm load shedding. Several case studies are given to show the impact of protection devices on dynamic simulations. Thismore » is useful for simulating cascading outages.« less
Modeling study of the ABS relay valve
NASA Astrophysics Data System (ADS)
Lei, Ming; Lin, Min; Guo, Bin; Luo, Zai; Xu, Weidong
2011-05-01
The ABS (anti-lock braking system) relay valve is the key component of anti-lock braking system in most commercial vehicles such as trucks, tractor-trailers, etc. In this paper, structure of ABS relay valve and its work theory were analyzed. Then a mathematical model of ABS relay valve, which was investigated by dividing into electronic part, magnetic part, pneumatic part and mechanical part, was set up. The displacement of spools and the response of pressure increasing, holding, releasing of ABS relay valve were simulated and analyzed under conditions of control pressure 500 KPa, braking pressure 600 KPa, atmospheric pressure 100 KPa and air temperature 310 K. Thisarticle provides reliable theory for improving the performance and efficiency of anti-lock braking system of vehicles.
NASA Astrophysics Data System (ADS)
Zhang, Zongsheng; Pi, Xurong
2014-09-01
In this paper, we investigate the outage performance of decode-and-forward cognitive relay networks for Nakagami-m fading channels, with considering both best relay selection and interference constraints. Focusing on the relay selection and making use of the underlay cognitive approach, an exact closed-form outage probability expression is derived in an independent, non-identical distributed Nakagami-m environment. The closed-form outage probability provides an efficient means to evaluate the effects of the maximum allowable interference power, number of cognitive relays, and channel conditions between the primary user and cognitive users. Finally, we present numerical results to validate the theory analysis. Moreover, from the simulation results, we obtain that the system can obtain the full diversity.
Quantum cryptography with an ideal local relay
NASA Astrophysics Data System (ADS)
Spedalieri, Gaetana; Ottaviani, Carlo; Braunstein, Samuel L.; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.; Pirandola, Stefano
2015-10-01
We consider two remote parties connected to a relay by two quantum channels. To generate a secret key, they transmit coherent states to the relay, where the states are subject to a continuous-variable (CV) Bell detection. We study the ideal case where Alice's channel is lossless, i.e., the relay is locally in her lab and the Bell detection is perfomed with unit efficiency. This configuration allows us to explore the optimal performances achievable by CV measurement-device-independent quantum key distribution. This corresponds to the limit of a trusted local relay, where the detection loss can be re-scaled. Our theoretical analysis is confirmed by an experimental simulation where 10-4 secret bits per use can potentially be distributed at 170km assuming ideal reconciliation.
García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz
2014-01-01
A novel bit-detect-and-forward (BDF) relaying scheme based on repetition coding with the relay is proposed, significantly improving the robustness to impairments proper to free-space optical (FSO) communications such as unsuitable alignment between transmitter and receiver as well as fluctuations in the irradiance of the transmitted optical beam due to the atmospheric turbulence. Closed-form asymptotic bit-error-rate (BER) expressions are derived for a 3-way FSO communication setup. Fully exploiting the potential time-diversity available in the relay turbulent channel, a relevant better performance is achieved, showing a greater robustness to the relay location since a high diversity gain is provided regardless of the source-destination link distance. PMID:24587711
Signal relay during the life cycle of Dictyostelium.
Mahadeo, Dana C; Parent, Carole A
2006-01-01
A fundamental property of multicellular organisms is signal relay, the process by which information is transmitted from one cell to another. The integration of external information, such as nutritional status or developmental cues, is critical to the function of organisms. In addition, the spatial organizations of multicellular organisms require intricate signal relay mechanisms. Signal relay is remarkably exhibited during the life cycle of the social amoebae Dictyostelium discoideum, a eukaryote that retains a simple way of life, yet it has greatly contributed to our knowledge of the mechanisms cells use to communicate and integrate information. This chapter focuses on the molecules and mechanisms that Dictyostelium employs during its life cycle to relay temporal and spatial cues that are required for survival.
Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming.
Jensen, Jonas; Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt
2017-07-01
Several techniques can estimate the 2-D velocity vector in ultrasound. Directional beamforming (DB) estimates blood flow velocities with a higher precision and accuracy than transverse oscillation (TO), but at the cost of a high beamforming load when estimating the flow angle. In this paper, it is proposed to use TO to estimate an initial flow angle, which is then refined in a DB step. Velocity magnitude is estimated along the flow direction using cross correlation. It is shown that the suggested TO-DB method can improve the performance of velocity estimates compared with TO, and with a beamforming load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beam-to-flow angles from 45° to 90°. The TO-DB method estimates the angle with a bias and standard deviation (SD) less than 2°, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2° to 17° and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger but within 4% for TO-DB. The same trends are observed in measurements although with a slightly larger bias. Simulations of realistic flow in a carotid bifurcation model provide visualization of complex flow, and the spread of velocity magnitude estimates is 7.1 cm/s for TO-DB, while it is 11.8 cm/s using only TO. However, velocities for TO-DB are underestimated at peak systole as indicated by a regression value of 0.97 for TO and 0.85 for TO-DB. An in vivo scanning of the carotid bifurcation is used for vector velocity estimations using TO and TO-DB. The SD of the velocity profile over a cardiac cycle is 4.2% for TO and 3.2% for TO-DB.
In-situ Calibration Methods for Phased Array High Frequency Radars
NASA Astrophysics Data System (ADS)
Flament, P. J.; Flament, M.; Chavanne, C.; Flores-vidal, X.; Rodriguez, I.; Marié, L.; Hilmer, T.
2016-12-01
HF radars measure currents through the Doppler-shift of electromagnetic waves Bragg-scattered by surface gravity waves. While modern clocks and digital synthesizers yield range errors negligible compared to the bandwidth-limited range resolution, azimuth calibration issues arise for beam-forming phased arrays. Sources of errors in the phases of the received waves can be internal to the radar system (phase errors of filters, cable lengths, antenna tuning) and geophysical (standing waves, propagation and refraction anomalies). They result in azimuthal biases (which can be range-dependent) and beam-forming side-lobes (which induce Doppler ambiguities). We analyze the experimental calibrations of 17 deployments of WERA HF radars, performed between 2003 and 2012 in Hawaii, the Adriatic, France, Mexico and the Philippines. Several strategies were attempted: (i) passive reception of continuous multi-frequency transmitters on GPS-tracked boats, cars, and drones; (ii) bi-static calibrations of radars in mutual view; (iii) active echoes from vessels of opportunity of unknown positions or tracked through AIS; (iv) interference of unknown remote transmitters with the chirped local oscillator. We found that: (a) for antennas deployed on the sea shore, a single-azimuth calibration is sufficient to correct phases within a typical beam-forming azimuth range; (b) after applying this azimuth-independent correction, residual pointing errors are 1-2 deg. rms; (c) for antennas deployed on irregular cliffs or hills, back from shore, systematic biases appear for some azimuths at large incidence angles, suggesting that some of the ground-wave electromagnetic energy propagates in a terrain-following mode between the sea shore and the antennas; (d) for some sites, fluctuations of 10-25 deg. in radio phase at 20-40 deg. azimuthal period, not significantly correlated among antennas, are omnipresent in calibrations along a constant-range circle, suggesting standing waves or multiple paths in the presence of reflecting structures (buildings, fences), or possibly fractal nature of the wavefronts; (e) amplitudes lack stability in time and azimuth to be usable as a-priori calibrations, confirming the accepted method of re-normalizing amplitudes by the signal of nearby cells prior to beam-forming.
Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Kim, In Young
2015-12-01
Previously suggested diagonal-steering algorithms for binaural hearing support devices have commonly assumed that the direction of the speech signal is known in advance, which is not always the case in many real circumstances. In this study, a new diagonal-steering-based binaural speech localization (BSL) algorithm is proposed, and the performances of the BSL algorithm and the binaural beamforming algorithm, which integrates the BSL and diagonal-steering algorithms, were evaluated using actual speech-in-noise signals in several simulated listening scenarios. Testing sounds were recorded in a KEMAR mannequin setup and two objective indices, improvements in signal-to-noise ratio (SNRi ) and segmental SNR (segSNRi ), were utilized for performance evaluation. Experimental results demonstrated that the accuracy of the BSL was in the 90-100% range when input SNR was -10 to +5 dB range. The average differences between the γ-adjusted and γ-fixed diagonal-steering algorithms (for -15 to +5 dB input SNR) in the talking in the restaurant scenario were 0.203-0.937 dB for SNRi and 0.052-0.437 dB for segSNRi , and in the listening while car driving scenario, the differences were 0.387-0.835 dB for SNRi and 0.259-1.175 dB for segSNRi . In addition, the average difference between the BSL-turned-on and the BSL-turned-off cases for the binaural beamforming algorithm in the listening while car driving scenario was 1.631-4.246 dB for SNRi and 0.574-2.784 dB for segSNRi . In all testing conditions, the γ-adjusted diagonal-steering and BSL algorithm improved the values of the indices more than the conventional algorithms. The binaural beamforming algorithm, which integrates the proposed BSL and diagonal-steering algorithm, is expected to improve the performance of the binaural hearing support devices in noisy situations. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Acoustic Emission Beamforming for Detection and Localization of Damage
NASA Astrophysics Data System (ADS)
Rivey, Joshua Callen
The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over the conventional wave propagation tracking technique based on laser doppler vibrometry that requires synchronization of data acquired from numerous excitations and measurements. The proposed technique can be used to characterize and localize damage by detecting the scattering, attenuation, and reflections of stress waves resulting from damage and defects. These studies lend credence to the potential development of new SHM/NDE techniques based on acoustic emission beamforming for characterizing a wide spectrum of damage modes in next-generation materials and structures without the need for mounted contact sensors.
47 CFR 11.20 - State Relay Network.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false State Relay Network. 11.20 Section 11.20... Network. This network is composed of State Relay (SR) sources, leased common carrier communications facilities or any other available communication facilities. The network distributes State EAS messages...
47 CFR 11.20 - State Relay Network.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false State Relay Network. 11.20 Section 11.20... Network. This network is composed of State Relay (SR) sources, leased common carrier communications facilities or any other available communication facilities. The network distributes State EAS messages...
ERIC Educational Resources Information Center
Schuyler, Michael
1994-01-01
Compares Frame Relay with digital and analog alternatives for connecting sites on a Wide Area Network. Cost considerations, the concepts on which the technology is based, its carrying capacity, the use of CD-ROM and Graphical User Interface (GUI) on Frame Relay, and engineering bandwidth limitations are covered. (KRN)
76 FR 67118 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Proposed... Commission's Structure and Practices of the Video Relay Service Program, Further Notice of Proposed..., and video using wired telecommunications networks. Transmission facilities may be based on a single...
Quantum network with trusted and untrusted relays
NASA Astrophysics Data System (ADS)
Ma, Xiongfeng; Annabestani, Razieh; Fung, Chi-Hang Fred; Lo, Hoi-Kwong; Lütkenhaus, Norbert; PitkäNen, David; Razavi, Mohsen
2012-02-01
Quantum key distribution offers two distant users to establish a random secure key by exploiting properties of quantum mechanics, whose security has proven in theory. In practice, many lab and field demonstrations have been performed in the last 20 years. Nowadays, quantum network with quantum key distribution systems are tested around the world, such as in China, Europe, Japan and US. In this talk, I will give a brief introduction of recent development for quantum network. For the untrusted relay part, I will introduce the measurement-device-independent quantum key distribution scheme and a quantum relay with linear optics. The security of such scheme is proven without assumptions on the detection devices, where most of quantum hacking strategies are launched. This scheme can be realized with current technology. For the trusted relay part, I will introduce so-called delayed privacy amplification, with which no error correction and privacy amplification is necessarily to be performed between users and the relay. In this way, classical communications and computational power requirement on the relay site will be reduced.
Proximity Link Design and Performance Options for a Mars Areostationary Relay Satellite
NASA Technical Reports Server (NTRS)
Edwards, Charles D.; Bell, David J.; Biswas, Abhijit; Cheung, Kar-Ming; Lock, Robert E.
2016-01-01
Current and near-term Mars relay telecommunications services are provided by a set of NASA and ESA Mars science orbiters equipped with UHF relay communication payloads employing operationally simple low-gain antennas. These have been extremely successful in supporting a series of landed Mars mission, greatly increasing data return relative to direct-to-Earth lander links. Yet their relay services are fundamentally constrained by the short contact times available from the selected science orbits. Future Mars areostationary orbiters, flying in circular, equatorial, 1- sol orbits, offer the potential for continuous coverage of Mars landers and rovers, radically changing the relay support paradigm. Achieving high rates on the longer slant ranges to areostationary altitude will require steered, high-gain links. Both RF and optical options exist for achieving data rates in excess of 100 Mb/s. Several point designs offer a measure of potential user burden, in terms of mass, volume, power, and pointing requirements for user relay payloads, as a function of desired proximity link performance.
Modeling Zone-3 Protection with Generic Relay Models for Dynamic Contingency Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiuhua; Vyakaranam, Bharat GNVSR; Diao, Ruisheng
This paper presents a cohesive approach for calculating and coordinating the settings of multiple zone-3 protections for dynamic contingency analysis. The zone-3 protections are represented by generic distance relay models. A two-step approach for determining zone-3 relay settings is proposed. The first step is to calculate settings, particularly, the reach, of each zone-3 relay individually by iteratively running line open-end fault short circuit analysis; the blinder is also employed and properly set to meet the industry standard under extreme loading conditions. The second step is to systematically coordinate the protection settings of the zone-3 relays. The main objective of thismore » coordination step is to address the over-reaching issues. We have developed a tool to automate the proposed approach and generate the settings of all distance relays in a PSS/E dyr format file. The calculated zone-3 settings have been tested on a modified IEEE 300 system using a dynamic contingency analysis tool (DCAT).« less
NASA Technical Reports Server (NTRS)
Divsalar, D.; Naderi, F.
1982-01-01
The nature of the optical/microwave interface aboard the relay satellite is considered. To allow for the maximum system flexibility, without overburdening either the optical or RF channel, demodulating the optical on board the relay satellite but leaving the optical channel decoding to be performed at the ground station is examined. The occurrence of erasures in the optical channel is treated. A hard decision on the erasure (i.e., the relay selecting a symbol at random in case of erasure occurrence) seriously degrades the performance of the overall system. Coding the erasure occurrences at the relay and transmitting this information via an extra bit to the ground station where it can be used by the decoder is suggested. Many examples with varying bit/photon energy efficiency and for the noisy and noiseless optical channel are considered. It is shown that coding the erasure occurrences dramatically improves the performance of the cascaded channel relative to the case of hard decision on the erasure by the relay.
Wireless Relay Selection in Pocket Switched Networks Based on Spatial Regularity of Human Mobility †
Huang, Jianhui; Cheng, Xiuzhen; Bi, Jingping; Chen, Biao
2016-01-01
Pocket switched networks (PSNs) take advantage of human mobility to deliver data. Investigations on real-world trace data indicate that human mobility shows an obvious spatial regularity: a human being usually visits a few places at high frequencies. These most frequently visited places form the home of a node, which is exploited in this paper to design two HomE based Relay selectiOn (HERO) algorithms. Both algorithms input single data copy into the network at any time. In the basic HERO, only the first node encountered by the source and whose home overlaps a destination’s home is selected as a relay while the enhanced HERO keeps finding more optimal relay that visits the destination’s home with higher probability. The two proposed algorithms only require the relays to exchange the information of their home and/or the visiting frequencies to their home when two nodes meet. As a result, the information update is reduced and there is no global status information that needs to be maintained. This causes light loads on relays because of the low communication cost and storage requirements. Additionally, only simple operations are needed in the two proposed algorithms, resulting in little computation overhead at relays. At last, a theoretical analysis is performed on some key metrics and then the real-world based simulations indicate that the two HERO algorithms are efficient and effective through employing only one or a few relays. PMID:26797609
Baumketner, Andrij
2012-01-01
Myosin motor protein exists in two alternative conformations, pre-recovery state M* and post-recovery state M**, upon ATP binding. The details of the M*-to-M** transition, known as the recovery stroke to reflect its role as the functional opposite of the force-generating power stroke, remain elusive. The defining feature of the post-recovery state is a kink in the relay helix, a key part of the protein involved in force generation. In this paper we determine the interactions that are responsible for the appearance of the kink. We design a series of computational models that contain three other segments, relay loop, converter domain and Src homology 1 domain helix (SH1), with which relay helix interacts, and determine their structure in accurate replica exchange molecular dynamics simulations in explicit solvent. By conducting an exhaustive combinatorial search among different models we find that: 1) the converter domain must be attached to the relay helix during the transition, so it does not interfere with other parts of the protein, 2) the structure of the relay helix is controlled by SH1 helix. The kink is strongly coupled to the position of SH1 helix. It arises as a result of direct interactions between SH1 and the relay helix and leads to a rotation of the C-terminal part of the relay helix which is subsequently transmitted to the converter domain. PMID:22411190
Relay Support for the Mars Science Laboratory Mission
NASA Technical Reports Server (NTRS)
Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.;
2013-01-01
The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.
The Relay/Converter Interface Influences Hydrolysis of ATP by Skeletal Muscle Myosin II.
Bloemink, Marieke J; Melkani, Girish C; Bernstein, Sanford I; Geeves, Michael A
2016-01-22
The interface between relay and converter domain of muscle myosin is critical for optimal myosin performance. Using Drosophila melanogaster indirect flight muscle S1, we performed a kinetic analysis of the effect of mutations in the converter and relay domain. Introduction of a mutation (R759E) in the converter domain inhibits the steady-state ATPase of myosin S1, whereas an additional mutation in the relay domain (N509K) is able to restore the ATPase toward wild-type values. The R759E S1 construct showed little effect on most steps of the actomyosin ATPase cycle. The exception was a 25-30% reduction in the rate constant of the hydrolysis step, the step coupled to the cross-bridge recovery stroke that involves a change in conformation at the relay/converter domain interface. Significantly, the double mutant restored the hydrolysis step to values similar to the wild-type myosin. Modeling the relay/converter interface suggests a possible interaction between converter residue 759 and relay residue 509 in the actin-detached conformation, which is lost in R759E but is restored in N509K/R759E. This detailed kinetic analysis of Drosophila myosin carrying the R759E mutation shows that the interface between the relay loop and converter domain is important for fine-tuning myosin kinetics, in particular ATP binding and hydrolysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
47 CFR 64.6040 - Rates for Telecommunications Relay Service (TRS) calling.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 3 2014-10-01 2014-10-01 false Rates for Telecommunications Relay Service (TRS) calling. 64.6040 Section 64.6040 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON....6040 Rates for Telecommunications Relay Service (TRS) calling. No Provider shall levy or collect any...
76 FR 59557 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-27
...] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION... Structure and Practices of the Video Relay Service Program, Second Report and Order and Order in CG Docket... replies. In light of impending deadlines for initial and [[Page 59558
47 CFR Alphabetical Index - Part 74
Code of Federal Regulations, 2011 CFR
2011-10-01
..., Directional (Aural STL/Relays) 74.536 Antenna location— LPTV/TV Translator 74.737 FM Translators/Boosters 74... Automatic relay stations (Remote pickup) 74.436 Avoidance of interference (TV Auxiliaries) 74.604 BP='02... (Aural STL/Relays) 74.536 E Emergency information Broadcasting (All Services) 74.21 Emission authorized...
49 CFR 236.737 - Cut-section, relayed.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Cut-section, relayed. 236.737 Section 236.737..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.737 Cut-section, relayed. A cut-section where the energy for one track circuit is supplied through front contacts...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
...] Misuse of Internet Protocol (IP) Captioned Telephone Service; Telecommunications Relay Services and... further possible actions necessary to improve internet protocol captioned telephone relay service (IP CTS... for calculating the compensation rate paid to IP CTS providers. This action is necessary to ensure...
77 FR 16486 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... values of nuts on circuit breakers, contactors and terminal blocks of the EPC and battery relay panel... battery relay panel]. The required actions include doing a general visual inspection to determine if... and circuit breakers, contactors, and terminal blocks of the EPC and battery relay panel, as...
49 CFR 236.737 - Cut-section, relayed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Cut-section, relayed. 236.737 Section 236.737..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.737 Cut-section, relayed. A cut-section where the energy for one track circuit is supplied through front contacts...
47 CFR 90.243 - Mobile relay stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Service. (b) Special provisions for mobile relay operations: (1) In the Public Safety Pool, systems... authorized to operate on any frequency available for assignment to base stations. (5) A mobile station associated with mobile relay station(s) may not be authorized to operate on a frequency below 25 MHz. (c...
DOT National Transportation Integrated Search
1977-12-01
Consideration is given to the properties of solid-state circuits, miniature relays and large gravity-operated relays when applied to control systems for grade crossings equipped with train-activated motorist warnings. Factors discussed include origin...
76 FR 67070 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Final rule.... SUPPLEMENTARY INFORMATION: This is a summary of the Commission's Structure and Practices of the Video Relay... supervision should be deemed to be employees of the provider, in satisfaction of the requirement that video...
75 FR 39945 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... FEDERAL COMMUNICATIONS COMMISSION [CG Docket No. 10-51; FCC 10-88] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: In this... Practices of the Video Relay Service Program, Declaratory Ruling, document FCC 10-88, adopted May 24, 2010...
75 FR 39859 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 10-88] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Interim rule... a summary of the Commission's Structure and Practices of the Video Relay Service Program, Order...
76 FR 47476 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 11-118] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Interim rule... summary of the Commission's Structure and Practices of the Video Relay Service Program, Order (Order...
77 FR 60630 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 11-54] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Correcting... address fraud, waste, and abuse in the Video Relay Service (VRS) industry. DATES: Effective October 4...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
... legitimate relay calls, however, are not entitled to these transparency and confidentiality protections... Relay Service AGENCY: Federal Communications Commission. ACTION: Proposed rule. SUMMARY: In this... refresh the record regarding misuse of Internet Protocol relay service. Further comments are requested to...
77 FR 20505 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... Company Model 757 airplanes. This AD requires replacing the power control relays for the fuel boost pumps and override pumps with new relays having a ground fault interrupter (GFI) feature. This AD also requires an electrical bonding resistance measurement for certain GFI relays to verify that certain bonding...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
...: Telecommunications Relay Services and Speech-to-Speech Services for Individuals with Hearing and Speech Disabilities... enable the Commission to collect waiver reports from Telecommunications Relay Service (TRS) providers... Report and Order and Order on Reconsideration in Telecommunications Relay Services and Speech-to- Speech...
Radio Relays Improve Wireless Products
NASA Technical Reports Server (NTRS)
2009-01-01
Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.
NASA Astrophysics Data System (ADS)
Vu, Thang X.; Duhamel, Pierre; Chatzinotas, Symeon; Ottersten, Bjorn
2017-12-01
This work studies the performance of a cooperative network which consists of two channel-coded sources, multiple relays, and one destination. To achieve high spectral efficiency, we assume that a single time slot is dedicated to relaying. Conventional network-coded-based cooperation (NCC) selects the best relay which uses network coding to serve the two sources simultaneously. The bit error rate (BER) performance of NCC with channel coding, however, is still unknown. In this paper, we firstly study the BER of NCC via a closed-form expression and analytically show that NCC only achieves diversity of order two regardless of the number of available relays and the channel code. Secondly, we propose a novel partial relaying-based cooperation (PARC) scheme to improve the system diversity in the finite signal-to-noise ratio (SNR) regime. In particular, closed-form expressions for the system BER and diversity order of PARC are derived as a function of the operating SNR value and the minimum distance of the channel code. We analytically show that the proposed PARC achieves full (instantaneous) diversity order in the finite SNR regime, given that an appropriate channel code is used. Finally, numerical results verify our analysis and demonstrate a large SNR gain of PARC over NCC in the SNR region of interest.
Development and Testing of a Two-UAV Communication Relay System.
Li, Boyang; Jiang, Yifan; Sun, Jingxuan; Cai, Lingfeng; Wen, Chih-Yung
2016-10-13
In the development of beyond-line-of-sight (BLOS) Unmanned Aerial Vehicle (UAV) systems, communication between the UAVs and the ground control station (GCS) is of critical importance. The commonly used economical wireless modules are restricted by the short communication range and are easily blocked by obstacles. The use of a communication relay system provides a practical way to solve these problems, improving the performance of UAV communication in BLOS and cross-obstacle operations. In this study, a communication relay system, in which a quadrotor was used to relay radio communication for another quadrotor was developed and tested. First, the UAVs used as the airborne platform were constructed, and the hardware for the communication relay system was selected and built up. Second, a set of software programs and protocol for autonomous mission control, communication relay control, and ground control were developed. Finally, the system was fully integrated into the airborne platform and tested both indoor and in-flight. The Received Signal Strength Indication (RSSI) and noise value in two typical application scenarios were recorded. The test results demonstrated the ability of this system to extend the communication range and build communication over obstacles. This system also shows the feasibility to coordinate multiple UAVs' communication with the same relay structure.
Development and Testing of a Two-UAV Communication Relay System
Li, Boyang; Jiang, Yifan; Sun, Jingxuan; Cai, Lingfeng; Wen, Chih-Yung
2016-01-01
In the development of beyond-line-of-sight (BLOS) Unmanned Aerial Vehicle (UAV) systems, communication between the UAVs and the ground control station (GCS) is of critical importance. The commonly used economical wireless modules are restricted by the short communication range and are easily blocked by obstacles. The use of a communication relay system provides a practical way to solve these problems, improving the performance of UAV communication in BLOS and cross-obstacle operations. In this study, a communication relay system, in which a quadrotor was used to relay radio communication for another quadrotor was developed and tested. First, the UAVs used as the airborne platform were constructed, and the hardware for the communication relay system was selected and built up. Second, a set of software programs and protocol for autonomous mission control, communication relay control, and ground control were developed. Finally, the system was fully integrated into the airborne platform and tested both indoor and in-flight. The Received Signal Strength Indication (RSSI) and noise value in two typical application scenarios were recorded. The test results demonstrated the ability of this system to extend the communication range and build communication over obstacles. This system also shows the feasibility to coordinate multiple UAVs’ communication with the same relay structure. PMID:27754369
Pilot symbol-assisted beamforming algorithms in the WCDMA reverse link
NASA Astrophysics Data System (ADS)
Kong, Dongkeon; Lee, Jong H.; Chun, Joohwan; Woo, Yeon Sik; Soh, Ju Won
2001-08-01
We present a pilot symbol-assisted beamforming algorithm and a simulation tool of smart antennas for Wideband Code Division Multiple Access (WCDMA) in reverse link. In the 3GPP WCDMA system smart antenna technology has more room to play with than in the second generation wireless mobile systems such as IS-95 because the pilot symbol in Dedicated Physical Control Channel (DPCCH) can be utilized. First we show a smart antenna structure and adaptation algorithms, and then we explain a low-level smart antenna implementation using Simulink and MATLAB. In the design of our smart antenna system we pay special attention for the easiness of the interface to the baseband modem; Our ultimate goal is to implement a baseband smart antenna chip sets that can easily be added to to-be-existed baseband WCDMA modem units.
NASA Astrophysics Data System (ADS)
Wang, Yupeng; Chang, Kyunghi
In this paper, we analyze the coexistence issues of M-WiMAX TDD and WCDMA FDD systems. Smart antenna techniques are applied to mitigate the performance loss induced by adjacent channel interference (ACI) in the scenarios where performance is heavily degraded. In addition, an ACI model is proposed to capture the effect of transmit beamforming at the M-WiMAX base station. Furthermore, a MCS-based throughput analysis is proposed, to jointly consider the effects of ACI, system packet error rate requirement, and the available modulation and coding schemes, which is not possible by using the conventional Shannon equation based analysis. From the results, we find that the proposed MCS-based analysis method is quite suitable to analyze the system theoretical throughput in a practical manner.
NASA Astrophysics Data System (ADS)
Kaburaki, Kaori; Mozumi, Michiya; Hasegawa, Hideyuki
2018-07-01
Methods for the estimation of two-dimensional (2D) velocity and displacement of physiological tissues are necessary for quantitative diagnosis. In echocardiography with a phased array probe, the accuracy in the estimation of the lateral motion is lower than that of the axial motion. To improve the accuracy in the estimation of the lateral motion, in the present study, the coordinate system for ultrasonic beamforming was changed from the conventional polar coordinate to the Cartesian coordinate. In a basic experiment, the motion velocity of a phantom, which was moved at a constant speed, was estimated by the conventional and proposed methods. The proposed method reduced the bias error and standard deviation in the estimated motion velocities. In an in vivo measurement, intracardiac blood flow was analyzed by the proposed method.
Beamforming transmission in IEEE 802.11ac under time-varying channels.
Yu, Heejung; Kim, Taejoon
2014-01-01
The IEEE 802.11ac wireless local area network (WLAN) standard has adopted beamforming (BF) schemes to improve spectral efficiency and throughput with multiple antennas. To design the transmit beam, a channel sounding process to feedback channel state information (CSI) is required. Due to sounding overhead, throughput increases with the amount of transmit data under static channels. Under practical channel conditions with mobility, however, the mismatch between the transmit beam and the channel at transmission time causes performance loss when transmission duration after channel sounding is too long. When the fading rate, payload size, and operating signal-to-noise ratio are given, the optimal transmission duration (i.e., packet length) can be determined to maximize throughput. The relationship between packet length and throughput is also investigated for single-user and multiuser BF modes.
Beamforming Transmission in IEEE 802.11ac under Time-Varying Channels
2014-01-01
The IEEE 802.11ac wireless local area network (WLAN) standard has adopted beamforming (BF) schemes to improve spectral efficiency and throughput with multiple antennas. To design the transmit beam, a channel sounding process to feedback channel state information (CSI) is required. Due to sounding overhead, throughput increases with the amount of transmit data under static channels. Under practical channel conditions with mobility, however, the mismatch between the transmit beam and the channel at transmission time causes performance loss when transmission duration after channel sounding is too long. When the fading rate, payload size, and operating signal-to-noise ratio are given, the optimal transmission duration (i.e., packet length) can be determined to maximize throughput. The relationship between packet length and throughput is also investigated for single-user and multiuser BF modes. PMID:25152927
Speech Intelligibility Advantages using an Acoustic Beamformer Display
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Sunder, Kaushik; Godfroy, Martine; Otto, Peter
2015-01-01
A speech intelligibility test conforming to the Modified Rhyme Test of ANSI S3.2 "Method for Measuring the Intelligibility of Speech Over Communication Systems" was conducted using a prototype 12-channel acoustic beamformer system. The target speech material (signal) was identified against speech babble (noise), with calculated signal-noise ratios of 0, 5 and 10 dB. The signal was delivered at a fixed beam orientation of 135 deg (re 90 deg as the frontal direction of the array) and the noise at 135 deg (co-located) and 0 deg (separated). A significant improvement in intelligibility from 57% to 73% was found for spatial separation for the same signal-noise ratio (0 dB). Significant effects for improved intelligibility due to spatial separation were also found for higher signal-noise ratios (5 and 10 dB).
Optimizing estimation of hemispheric dominance for language using magnetic source imaging.
Passaro, Antony D; Rezaie, Roozbeh; Moser, Dana C; Li, Zhimin; Dias, Nadeeka; Papanicolaou, Andrew C
2011-10-06
The efficacy of magnetoencephalography (MEG) as an alternative to invasive methods for investigating the cortical representation of language has been explored in several studies. Recently, studies comparing MEG to the gold standard Wada procedure have found inconsistent and often less-than accurate estimates of laterality across various MEG studies. Here we attempted to address this issue among normal right-handed adults (N=12) by supplementing a well-established MEG protocol involving word recognition and the single dipole method with a sentence comprehension task and a beamformer approach localizing neural oscillations. Beamformer analysis of word recognition and sentence comprehension tasks revealed a desynchronization in the 10-18Hz range, localized to the temporo-parietal cortices. Inspection of individual profiles of localized desynchronization (10-18Hz) revealed left hemispheric dominance in 91.7% and 83.3% of individuals during the word recognition and sentence comprehension tasks, respectively. In contrast, single dipole analysis yielded lower estimates, such that activity in temporal language regions was left-lateralized in 66.7% and 58.3% of individuals during word recognition and sentence comprehension, respectively. The results obtained from the word recognition task and localization of oscillatory activity using a beamformer appear to be in line with general estimates of left hemispheric dominance for language in normal right-handed individuals. Furthermore, the current findings support the growing notion that changes in neural oscillations underlie critical components of linguistic processing. Published by Elsevier B.V.
Bottenus, Nick; D’hooge, Jan; Trahey, Gregg E.
2017-01-01
The transverse oscillation (TO) technique can improve the estimation of tissue motion perpendicular to the ultrasound beam direction. TOs can be introduced using plane wave (PW) insonification and bi-lobed Gaussian apodisation (BA) on receive (abbreviated as PWTO). Furthermore, the TO frequency can be doubled after a heterodyning demodulation process is performed (abbreviated as PWTO*). This study is concerned with identifying the limitations of the PWTO technique in the specific context of myocardial deformation imaging with phased arrays and investigating the conditions in which it remains advantageous over traditional focused (FOC) beamforming. For this purpose, several tissue phantoms were simulated using Field II, undergoing a wide range of displacement magnitudes and modes (lateral, axial and rotational motion). The Cramer-Rao lower bound (CRLB) was used to optimize TO beamforming parameters and theoretically predict the fundamental tracking performance limits associated with the FOC, PWTO and PWTO* beamforming scenarios. This framework was extended to also predict performance for BA functions which are windowed by the physical aperture of the transducer, leading to higher lateral oscillations. It was found that windowed BA functions resulted in lower jitter errors compared to tradional BA functions. PWTO* outperformed FOC at all investigated SNR levels but only up to a certain displacement, with the advantage rapidly decreasing when SNR increased. These results suggest that PWTO* improves lateral tracking performance, but only when inter-frame displacements remain relatively low. The study concludes by translating these findings to a clinical environment by suggesting optimal scanner settings. PMID:27810806
Fault detection in rotating machines with beamforming: Spatial visualization of diagnosis features
NASA Astrophysics Data System (ADS)
Cardenas Cabada, E.; Leclere, Q.; Antoni, J.; Hamzaoui, N.
2017-12-01
Rotating machines diagnosis is conventionally related to vibration analysis. Sensors are usually placed on the machine to gather information about its components. The recorded signals are then processed through a fault detection algorithm allowing the identification of the failing part. This paper proposes an acoustic-based diagnosis method. A microphone array is used to record the acoustic field radiated by the machine. The main advantage over vibration-based diagnosis is that the contact between the sensors and the machine is no longer required. Moreover, the application of acoustic imaging makes possible the identification of the sources of acoustic radiation on the machine surface. The display of information is then spatially continuous while the accelerometers only give it discrete. Beamforming provides the time-varying signals radiated by the machine as a function of space. Any fault detection tool can be applied to the beamforming output. Spectral kurtosis, which highlights the impulsiveness of a signal as function of frequency, is used in this study. The combination of spectral kurtosis with acoustic imaging makes possible the mapping of the impulsiveness as a function of space and frequency. The efficiency of this approach lays on the source separation in the spatial and frequency domains. These mappings make possible the localization of such impulsive sources. The faulty components of the machine have an impulsive behavior and thus will be highlighted on the mappings. The study presents experimental validations of the method on rotating machines.
In vivo photoacoustic imaging of prostate brachytherapy seeds
NASA Astrophysics Data System (ADS)
Lediju Bell, Muyinatu A.; Kuo, Nathanael P.; Song, Danny Y.; Kang, Jin; Boctor, Emad M.
2014-03-01
We conducted an approved canine study to investigate the in vivo feasibility of photoacoustic imaging for intraoperative updates to brachytherapy treatment plans. Brachytherapy seeds coated with black ink were inserted into the canine prostate using methods similar to a human procedure. A transperineal, interstitial, fiber optic light delivery method, coupled to a 1064 nm laser, was utilized to irradiate the prostate and the resulting acoustic waves were detected with a transrectal ultrasound probe. The fiber was inserted into a high dose rate (HDR) brachytherapy needle that acted as a light-diffusing sheath, enabling radial light delivery from the tip of the fiber inside the sheath. The axis of the fiber was located at a distance of 4-9 mm from the long axis of the cylindrical seeds. Ultrasound images acquired with the transrectal probe and post-operative CT images of the implanted seeds were analyzed to confirm seed locations. In vivo limitations with insufficient light delivery within the ANSI laser safety limit (100 mJ/cm2) were overcome by utilizing a short-lag spatial coherence (SLSC) beamformer, which provided average seed contrasts of 20-30 dB for energy densities ranging 8-84 mJ/cm2. The average contrast was improved by up to 20 dB with SLSC beamforming compared to conventional delay-and-sum beamforming. There was excellent agreement between photoacoustic, ultrasound, and CT images. Challenges included visualization of photoacoustic artifacts that corresponded with locations of the optical fiber and hyperechoic tissue structures.
Status of LOFAR Data in HDF5 Format
NASA Astrophysics Data System (ADS)
Alexov, A.; Schellart, P.; ter Veen, S.; van der Akker, M.; Bähren, L.; Greissmeier, J.-M.; Hessels, J. W. T.; Mol, J. D.; Renting, G. A.; Swinbank, J.; Wise, M.
2012-09-01
The Hierarchical Data Format, version 5 (HDF5) is a data model, library, and file format for storing and managing data. It is designed for flexible and efficient I/O and for high volume, complex data. The Low Frequency Array (LOFAR) project is solving the challenge of data size and complexity using HDF5. Most of LOFAR's standard data products will be stored using HDF5; the beam-formed time-series data and transient buffer board data have already transitioned from project-specific binary format to HDF5. We report on our effort to pave the way towards new astronomical data encapsulation using HDF5, which can be used by future ground and space projects. The LOFAR project has formed a collaboration with NRAO, the Virtual Astronomical Observatory (VAO) and the HDF Group to obtain funding for a full-time staff member to work on documenting and developing standards for astronomical data written in HDF5. We hope our effort will enhance HDF5 visibility and usage within the community, specifically for LSST, the SKA pathfinders (ASKAP, MeerKAT, MWA, LWA), and other major new radio telescopes such as EVLA, ALMA, and eMERLIN.
SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array
NASA Astrophysics Data System (ADS)
Primiani, Rurik A.; Young, Kenneth H.; Young, André; Patel, Nimesh; Wilson, Robert W.; Vertatschitsch, Laura; Chitwood, Billie B.; Srinivasan, Ranjani; MacMahon, David; Weintroub, Jonathan
2016-03-01
A 32GHz bandwidth VLBI capable correlator and phased array has been designed and deployeda at the Smithsonian Astrophysical Observatory’s Submillimeter Array (SMA). The SMA Wideband Astronomical ROACH2 Machine (SWARM) integrates two instruments: a correlator with 140kHz spectral resolution across its full 32GHz band, used for connected interferometric observations, and a phased array summer used when the SMA participates as a station in the Event Horizon Telescope (EHT) very long baseline interferometry (VLBI) array. For each SWARM quadrant, Reconfigurable Open Architecture Computing Hardware (ROACH2) units shared under open-source from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) are equipped with a pair of ultra-fast analog-to-digital converters (ADCs), a field programmable gate array (FPGA) processor, and eight 10 Gigabit Ethernet (GbE) ports. A VLBI data recorder interface designated the SWARM digital back end, or SDBE, is implemented with a ninth ROACH2 per quadrant, feeding four Mark6 VLBI recorders with an aggregate recording rate of 64 Gbps. This paper describes the design and implementation of SWARM, as well as its deployment at SMA with reference to verification and science data.
Protein Scaffolding for Small Molecule Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, David
We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematicallymore » modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.« less
IEEE 802.16J-Relay Fortified Aeromacs Networks; Benefits and Challenges
NASA Technical Reports Server (NTRS)
Kamali, Behnam; Apaza, Rafael D.
2014-01-01
Aeronautical Mobile Airport Communications System (AeroMACS) is an IEEE 802.16 standard-based (WiMAX) broadband aviation transmission technology, developed to provide safety critical communications coverage for airport surface in support of fixed and mobile ground to ground applications and services. We have previously demonstrated that IEEE 802.16j-amendment-based WiMAX is most feasible for AeroMACS applications. The principal argument in favor of application of IEEE 802.16j technology is the flexible and cost effective extension of radio coverage that is afforded by relay fortified WiMAX networks, with virtually no increase in the power requirements. In this article, following introductory remarks on airport surface communications, WiMAX and AeroMACS; the IEEE 802.16j-based WiMAX technology and multihop relay systems are briefly described. The two modes of relay operation supported by IEEE 802.16j amendment; i.e., transparent (TRS) and non-transparent (NTRS) modes, are discussed in some detail. Advantages and disadvantages of using TRS and NTRS in AeroMACS networks are summarized in a table. Practical issues vis--vis the inclusion of relays in AeroMACS networks are addressed. It is argued that the selection of relay type may affect a number of network parameters. A discussion on specific benefits and challenges of inclusion of relays in AeroMACS networks is provided. The article concludes that in case it is desired or necessary to exclusively employ one type of relay mode for all applications throughout an AeroMACS network, the proper selection would be the non-transparent mode.
47 CFR 64.611 - Internet-based TRS registration.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Default provider registration. Every provider of VRS or IP Relay must, no later than December 31, 2008, provide users with the capability to register with that VRS or IP Relay provider as a “default provider.” Upon a user's registration, the VRS or IP Relay provider shall: (1) Either: (i) Facilitate the user's...
47 CFR 64.611 - Internet-based TRS registration.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Default provider registration. Every provider of VRS or IP Relay must, no later than December 31, 2008, provide users with the capability to register with that VRS or IP Relay provider as a “default provider.” Upon a user's registration, the VRS or IP Relay provider shall: (1) Either: (i) Facilitate the user's...
78 FR 56601 - Airworthiness Directives; Fokker Services B.V. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... torque values of nuts on circuit breakers, contactors, and terminal blocks of the EPC and battery relay... blocks of the EPC and battery relay panel, as applicable; and do all applicable adjustments of the torque... contacts and nuts on circuit breakers, contactors, and terminal blocks of the EPC and battery relay panel...
Understanding the Design, Function and Testing of Relays
ERIC Educational Resources Information Center
Adams, Roger E.; Lindbloom, Trent
2006-01-01
The increased use of electronics in today's automobiles has complicated the control of circuits and actuators. Manufacturers use relays to control a variety of complex circuits--for example, those involving actuators and other components like the A/C clutch, electronic cooling fans, and blower motors. Relays allow a switch or processor to control…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-21
... new relays having a GFI feature, performing certain bonding resistance measurements, and modifying... with new relays having a GFI feature, Doing certain bonding resistance measurements to verify certain... relay module assemblies and bond resistance measurements. In addition, we have reviewed Section 9 of...
78 FR 4055 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-18
...) Installation of New Relay and Wiring Bundle Change Within 24 months after the effective date of this AD: Change... requires installing a new relay and doing certain wiring changes of the entertainment control switch. We... proposed to require installing a new relay and doing certain wiring changes of the entertainment control...
76 FR 30841 - Structure and Practices of the Video Relay Service Program; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 11-54] Structure and Practices of the Video Relay Service Program; Correction AGENCY: Federal Communications Commission. ACTION... address fraud, waste, and abuse in the Video Relay Service (VRS) industry. DATES: Effective June 1, 2011...
77 FR 18106 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-27
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 11-54] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Final rule... adopted by the FCC to prevent fraud, waste, and abuse in the Video Relay Service (VRS) industry. DATES...
76 FR 68116 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Interim rule... with the Commission's Structure and Practices of the Video Relay Service Program, Second Report and... announcement of the effective date of the rules. See, In the Matter of Structure and Practices of the Video...
75 FR 25255 - Structure and Practices of the Video Relay Service Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: In this... compensability from the Interstate TRS Fund (Fund) of certain types of calls made through Video Relay Service... CA, after the VRS user has initiated the video call to the CA, call back the VRS user on a voice...
Cultivar and planting date selection for relay-cropping soybean with winter oilseeds
USDA-ARS?s Scientific Manuscript database
Double- and relay-cropping soybean with winter camelina (Camelina sativa L. Crantz) and pennycress (Thlaspi arvense L.) have been shown to be viable cropping systems for the Upper Midwest. Relaying soybean with these winter oilseeds can result in greater total seed yield (i.e., both combined) and ec...
47 CFR 74.1290 - FM translator and booster station information available on the Internet.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Additional orders by FCC (All Services) 74.28 Antenna, Directional (Aural STL/Relays) 74.536 Antenna location... frequencies (remote broadcast pickup) 74.402 Automatic relay stations (Remote pickup) 74.436 Avoidance of....1201 Directional antenna required (Aural STL/Relays) 74.536 E Emergency information Broadcasting (All...
30 CFR 75.800-2 - Approved circuit schemes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... necessary protection to the circuits required by § 75.800: (a) Ground check relays may be used for undervoltage protection if the relay coils are designed to trip the circuit breaker when line voltage decreases to 40 percent to 60 percent of the nominal line voltage; (b) Ground trip relays on resistance...
30 CFR 75.800-2 - Approved circuit schemes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... necessary protection to the circuits required by § 75.800: (a) Ground check relays may be used for undervoltage protection if the relay coils are designed to trip the circuit breaker when line voltage decreases to 40 percent to 60 percent of the nominal line voltage; (b) Ground trip relays on resistance...
47 CFR 74.601 - Classes of TV broadcast auxiliary stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or other purposes as authorized in § 74.631. (d) TV translator relay station. A fixed station used... translator, and to other communications facilities that the Commission may authorize or for other purposes as..., TV STL, TV relay, or TV translator relay station and retransmits them on the same frequency. [65 FR...
Mapping Interactions between Myosin Relay and Converter Domains That Power Muscle Function*
Kronert, William A.; Melkani, Girish C.; Melkani, Anju; Bernstein, Sanford I.
2014-01-01
Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile508, Asn509, and Asp511) in communicating with converter domain residue Arg759. We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle. PMID:24627474
EAGLE: relay mirror technology development
NASA Astrophysics Data System (ADS)
Hartman, Mary; Restaino, Sergio R.; Baker, Jeffrey T.; Payne, Don M.; Bukley, Jerry W.
2002-06-01
EAGLE (Evolutionary Air & Space Global Laser Engagement) is the proposed high power weapon system with a high power laser source, a relay mirror constellation, and the necessary ground and communications links. The relay mirror itself will be a satellite composed of two optically-coupled telescopes/mirrors used to redirect laser energy from ground, air, or space based laser sources to distant points on the earth or space. The receiver telescope captures the incoming energy, relays it through an optical system that cleans up the beam, then a separate transmitter telescope/mirror redirects the laser energy at the desired target. Not only is it a key component in extending the range of DoD's current laser weapon systems, it also enables ancillary missions. Furthermore, if the vacuum of space is utilized, then the atmospheric effects on the laser beam propagation will be greatly attenuated. Finally, several critical technologies are being developed to make the EAGLE/Relay Mirror concept a reality, and the Relay Mirror Technology Development Program was set up to address them. This paper will discuss each critical technology, the current state of the work, and the future implications of this program.
Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage
Lee, Kyuman; Baek, Hoki; Lim, Jaesung
2016-01-01
The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user positioning. PMID:27529252
Enhanced Positioning Algorithm of ARPS for Improving Accuracy and Expanding Service Coverage.
Lee, Kyuman; Baek, Hoki; Lim, Jaesung
2016-08-12
The airborne relay-based positioning system (ARPS), which employs the relaying of navigation signals, was proposed as an alternative positioning system. However, the ARPS has limitations, such as relatively large vertical error and service restrictions, because firstly, the user position is estimated based on airborne relays that are located in one direction, and secondly, the positioning is processed using only relayed navigation signals. In this paper, we propose an enhanced positioning algorithm to improve the performance of the ARPS. The main idea of the enhanced algorithm is the adaptable use of either virtual or direct measurements of reference stations in the calculation process based on the structural features of the ARPS. Unlike the existing two-step algorithm for airborne relay and user positioning, the enhanced algorithm is divided into two cases based on whether the required number of navigation signals for user positioning is met. In the first case, where the number of signals is greater than four, the user first estimates the positions of the airborne relays and its own initial position. Then, the user position is re-estimated by integrating a virtual measurement of a reference station that is calculated using the initial estimated user position and known reference positions. To prevent performance degradation, the re-estimation is performed after determining its requirement through comparing the expected position errors. If the navigation signals are insufficient, such as when the user is outside of airborne relay coverage, the user position is estimated by additionally using direct signal measurements of the reference stations in place of absent relayed signals. The simulation results demonstrate that a higher accuracy level can be achieved because the user position is estimated based on the measurements of airborne relays and a ground station. Furthermore, the service coverage is expanded by using direct measurements of reference stations for user positioning.
Audemard, Corinne; Kator, Howard I; Rhodes, Martha W; Gallivan, Thomas; Erskine, A J; Leggett, A Thomas; Reece, Kimberly S
2011-11-01
In 2009 the U.S. Food and Drug Administration (FDA) announced its intention to implement postharvest processing (PHP) methods to eliminate Vibrio vulnificus from oysters intended for the raw, half-shell market that are harvested from the Gulf of Mexico during warmer months. FDA-approved PHP methods can be expensive and may be associated with unfavorable responses from some consumers. A relatively unexplored PHP method that uses relaying to high salinity waters could be an alternative strategy, considering that high salinities appear to negatively affect the survival of V. vulnificus. During relay, however, oysters may be exposed to rapid and large salinity increases that could cause increased mortality. In this study, the effectiveness of high salinity relay to reduce V. vulnificus to <30 most probable number (MPN) per g and the impact on oyster mortality were assessed in the lower Chesapeake Bay. Two relay experiments were performed during the summer and fall of 2010. Oysters collected from three grow-out sites, a low salinity site (14 to 15 practical salinity units [psu]) and two moderate salinity sites (22 to 25 psu), were relayed directly to a high salinity site (≥30 psu) on Virginia's Eastern Shore. Oysters were assayed for V. vulnificus and Vibrio parahaemolyticus (another Vibrio species of concern) densities at time 0 prior to relay and after 7 and 14 days of relay, using the FDA MPN enrichment method combined with detection by real-time PCR. After 14 days, both V. vulnificus and V. parahaemolyticus densities were ≤0.8 MPN/g, and decreases of 2 to 3 log in V. vulnificus densities were observed. Oyster mortalities were low (≤4%) even for oysters from the low salinity harvest site, which experienced a salinity increase of approximately 15 psu. Results, although preliminary and requiring formal validation and economic analysis, suggest that high salinity relay could be an effective PHP method.
Bubbling in delay-coupled lasers.
Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E
2009-06-01
We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.
Lessons Learned from Coordinating Relay Activities at Mars
NASA Technical Reports Server (NTRS)
Gladden, Roy E.; Hwang, Pauline; Waggoner, Bruce; McLaughlin, Bruce; Fieseler, Paul; Thomas, Reid; Bigwood, Maria; Herrera, Paul
2005-01-01
The Mission Management Office at the Jet Propulsion Laboratory was tasked with coordinating the relay of data between multiple spacecraft at Mars in support of the Mars Exploration Rover Missions in early 2004. The confluence of three orbiters (Mars Global Surveyor, Mars Odyssey, and Mars Express), two rovers (Spirit and Opportunity), and one lander (Beagle 2) has provided a challenging operational scenario that required careful coordination between missions to provide the necessary support and to avoid potential interference during simultaneous relay sessions. As these coordination efforts progressed, several important lessons were learned that should be applied to future Mars relay activities.
Innovation Relay: Empowering School Nurses to Find New Solutions for Old Problems.
Maughan, Erin D; Galemore, Cynthia; Mattey, Beth
2016-09-01
NASN's 48th Annual School Nurse Conference-Learning, Linking, Leading-included the first ever innovation relay contest. The relay was based on a design developed by the Institute of Healthcare Improvement's Innovation Relay. Participation included 43 contestants from 16 states and one foreign country. Teams were given 24 hours to develop a solution. This article describes the process utilized, the problem introduced, and a brief synopsis of each team's solution. The ongoing purpose of the exercise is to encourage innovation by school nurses as they experience student health-related barriers in the academic setting. © 2016 The Author(s).
Heat analysis of thermal overload relays using 3-D finite element method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawase, Yoshihiro; Ichihashi, Takayuki; Ito, Shokichi
1999-05-01
In designing a thermal overload relay, it is necessary to analyze thermal characteristics of several trial models. Up to now, this has been done by measuring the temperatures on a number of positions in the trial models. This experimental method is undoubtedly expensive. In this paper, the temperature distribution of a thermal overload relay is obtained by using 3-D finite element analysis taking into account the current distribution in current-carrying conductors. It is shown that the 3-D analysis is capable of evaluating a new design of thermal overload relays.
Outage probability of a relay strategy allowing intra-link errors utilizing Slepian-Wolf theorem
NASA Astrophysics Data System (ADS)
Cheng, Meng; Anwar, Khoirul; Matsumoto, Tad
2013-12-01
In conventional decode-and-forward (DF) one-way relay systems, a data block received at the relay node is discarded, if the information part is found to have errors after decoding. Such errors are referred to as intra-link errors in this article. However, in a setup where the relay forwards data blocks despite possible intra-link errors, the two data blocks, one from the source node and the other from the relay node, are highly correlated because they were transmitted from the same source. In this article, we focus on the outage probability analysis of such a relay transmission system, where source-destination and relay-destination links, Link 1 and Link 2, respectively, are assumed to suffer from the correlated fading variation due to block Rayleigh fading. The intra-link is assumed to be represented by a simple bit-flipping model, where some of the information bits recovered at the relay node are the flipped version of their corresponding original information bits at the source. The correlated bit streams are encoded separately by the source and relay nodes, and transmitted block-by-block to a common destination using different time slots, where the information sequence transmitted over Link 2 may be a noise-corrupted interleaved version of the original sequence. The joint decoding takes place at the destination by exploiting the correlation knowledge of the intra-link (source-relay link). It is shown that the outage probability of the proposed transmission technique can be expressed by a set of double integrals over the admissible rate range, given by the Slepian-Wolf theorem, with respect to the probability density function ( pdf) of the instantaneous signal-to-noise power ratios (SNR) of Link 1 and Link 2. It is found that, with the Slepian-Wolf relay technique, so far as the correlation ρ of the complex fading variation is | ρ|<1, the 2nd order diversity can be achieved only if the two bit streams are fully correlated. This indicates that the diversity order exhibited in the outage curve converges to 1 when the bit streams are not fully correlated. Moreover, the Slepian-Wolf outage probability is proved to be smaller than that of the 2nd order maximum ratio combining (MRC) diversity, if the average SNRs of the two independent links are the same. Exact as well as asymptotic expressions of the outage probability are theoretically derived in the article. In addition, the theoretical outage results are compared with the frame-error-rate (FER) curves, obtained by a series of simulations for the Slepian-Wolf relay system based on bit-interleaved coded modulation with iterative detection (BICM-ID). It is shown that the FER curves exhibit the same tendency as the theoretical results.
Surgeon-Therapist Communication: Do All Members See Eye-to-Eye?
Longstaffe, Robert; Slade Shantz, Jesse; Leiter, Jeff; Peeler, Jason
2015-11-01
Poor interprofessional collaboration has been shown to negatively affect patient care within many fields of medicine. Growing evidence is suggesting that improved interprofessional collaboration can positively affect patient care. Postoperative rehabilitation of many orthopedic conditions necessitates the combined efforts of surgeons, and therapists. There is a paucity of literature examining collaboration among orthopedic surgeons and therapists regarding postoperative rehabilitation. The following study examines the perceived quality of communications between orthopedic surgeons and therapists employing an online survey. We hypothesized that collaborative practice patterns result in improved perceptions of communication. Ethics board approval was obtained. Subjects consisted of orthopedic surgeons, licensed physiotherapists and certified athletic therapists. The online survey was distributed through the Canadian Orthopaedic Association (COA), the Canadian Physiotherapy Association (CPA) and the Canadian Athletic Therapists Association (CATA). Data analysis was performed using Stata/IC 12.1 (Stata Corp, College Station, TX, USA). Descriptive statistics were calculated to determine the median responses and ranges. Median responses were compared using the Kruskal-Wallis one-way analysis of variance. Qualitative analysis regarding text responses was performed by three reviewers. Responses were received from all specialties (COA 164, CPA 524, CATA 163). There were significant differences in the perceived quality of communication by quantitative and qualitative analysis (p < 0.001). Analysis of communication within practice patterns of stand-alone versus collaborative revealed improved perception of communication quality with increased contact. 65.6% of responders that practiced as stand-alone had a negative view of interprofessional communication. 48.4% of responders in a collaborative practice had a positive view of interprofessional communication. Analysis of the preferred form of communication found that orthopedic surgeons felt the most useful referral information was a pre-printed consult sheet (odds ratio [OR] = 1.56, p < 0.001), whereas therapists were more likely to rank consult notes (OR = 1.27, p < 0.042) and operative reports (OR = 1.20, p < 0.092) as a more useful form of communication. Collaborative practice shows improved perceptions of communication between specialties. Orthopedic surgeons perceive a higher quality of communication than therapists. Therapists and orthopedic surgeons also do not agree on the information that should be relayed between the specialties regarding postoperative rehabilitation.
Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.
Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing
2017-04-20
The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.
Real time testing of intelligent relays for synchronous distributed generation islanding detection
NASA Astrophysics Data System (ADS)
Zhuang, Davy
As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.
Coding, modulation, and relays for deep space communication Mars Rovers Case Study
NASA Technical Reports Server (NTRS)
Statman, Joseph I.; Edwards, Charles D.
2004-01-01
This paper presents the communications challenges for the MER mission, the use of DSN and MER tools to maximize the science return, and the application of standards-based relays to the problem. To date, more than 90% of the data returned from MER has been returned via relays, not direct-to-Earath (DTE).
76 FR 47424 - Airworthiness Directives; Dassault Aviation Model FALCON 7X Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... (HSTA) electric motors reversion relays (installed with M1235 and M1236), has been developed and must be... operational test of the HSTA electric motors reversion relays. For aeroplanes equipped with HSECU P/N 051244... operational test of the HSTA electric motors reversion relays is 1,850 flight hours after accomplishment of...
Torque control for electric motors
NASA Technical Reports Server (NTRS)
Bernard, C. A.
1980-01-01
Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... the compliance times specified, unless already done. Installation of New Relay and Wiring Bundle (g... certain wiring changes, installing a new relay and necessary wiring in the cabin air conditioning and... for changing the wire bundle route and wiring, installing a new relay and applicable wiring in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... Affairs Bureau Seeks Comment on Application of New and Emerging Technologies for Video Relay Service Use... seeks comment regarding new and emerging technologies that may be used to access Video Relay Service... Video Relay Service Use, Public Notice, document DA 11-317, released on February 17, 2011, in CG Docket...
NASA Astrophysics Data System (ADS)
Ilik, Semih C.; Arsoy, Aysen B.
2017-07-01
Integration of distributed generation (DG) such as renewable energy sources to electrical network becomes more prevalent in recent years. Grid connection of DG has effects on load flow directions, voltage profile, short circuit power and especially protection selectivity. Applying traditional overcurrent protection scheme is inconvenient when system reliability and sustainability are considered. If a fault happens in DG connected network, short circuit contribution of DG, creates additional branch element feeding the fault current; compels to consider directional overcurrent (OC) protection scheme. Protection coordination might get lost for changing working conditions when DG sources are connected. Directional overcurrent relay parameters are determined for downstream and upstream relays when different combinations of DG connected singular or plural, on radial test system. With the help of proposed flow chart, relay parameters are updated and coordination between relays kept sustained for different working conditions in DigSILENT PowerFactory program.
Motes, M L; DePaola, A
1996-10-01
Oysters naturally contaminated with 10(3) to 10(4) most probable numbers (MPN) of Vibrio vulnificus per g were relayed to offshore waters (salinity, 30 to 34 ppt), where they were suspended in racks at a depth of 7.6 m. V. vulnificus counts in oysters were reduced to < 10 MPN/g within 7 to 17 days in five of the six studies. At the end of the studies (17 to 49 days), V. vulnificus levels were reduced further and ranged from a mean of 0.23 to 2.6 MPN/g. Oyster mortalities during relaying were < 6%. The reduction of V. vulnificus in relayed oysters is associated with exposure to high-salinity environments essentially devoid of V. vulnificus. Offshore suspension relaying may be a method that industry can employ to reduce V. vulnificus levels in raw Gulf Coast oysters.
Relay kidney transplantation in Korea--legal, ethical and medical aspects.
Park, Jong-Hyun; Park, Joong-Won; Koo, Young-Mo; Kim, Jang Han
2004-07-01
Living kidney transplantations constitute the majority of kidney transplantations in Korea. Recently, relay kidney transplantation, which is a modified form of both 'exchange transplantation' and 'living anonymous donation', has become at issue. After a living anonymous donor makes the initial donation, the next donor, who is related to the first recipient, makes the second donation; the third donor, who is related to the second recipient, makes the third donation; and so on. In relay kidney transplantation, organ trafficking, coercion of donation, assessment order, breach of agreement, and recipient burden should be evaluated with respect to ethical, legal and medical considerations. Despite these problems, a non-governmental body, the Korean Organ and Tissue Donor Program, has been promoting relay kidney transplantations to address the shortage of cadaveric kidney donations. Acceptance of the method of relay kidney transplantation requires the institution of supplementary measures to minimize the related problems.
GPS/REFSAT definition study report for low-cost terminals
NASA Technical Reports Server (NTRS)
1980-01-01
A relay transponder, located either on a satellite in geostationary orbit or on a local tower to relay acquisition-aiding data, ephemerides, etc, from a ground-based remote control station to a GPS civil user terminal located on a ship or land-transportation vehicle is described. Termed REFSAT (Reference Satellite), this concept reduces the circuit complexity and cost of user terminals. The various systems needed to implement the REFSAT concept for low-cost, GPS civil terminals are defined. The GPS/REFSAT system compatible with the NAVSTAR GPS system consists of a geostationary relay satellite, civil user terminals, and the central facility which performs operations common to all users for relay via the space segment. A GPS/REFSAT system utilizing a local tower for the relay transponder is described, results of a study of civil user requirements are presented, and specifications for the GPS/REFSAT system and its individual segments are included.
Development of an adaptive optics test-bed for relay mirror applications
NASA Astrophysics Data System (ADS)
Mansell, Justin D.; Jacobs, Arturo A.; Maynard, Morris
2005-08-01
The relay mirror concept involves deploying a passive optical station at a high altitude for relaying a beam from a laser weapon to a target. Relay mirrors have been proposed as a method of increasing the range of laser weapons that is less costly than deploying a larger number of laser weapons. Relay mirrors will only be effective if the beam spreading and beam quality degradation induced by atmospheric aberrations and thermal blooming can be mitigated. In this paper we present the first phase of a multi-year effort to develop a theoretical and experimental capability at Boeing-SVS to study these problems. A team from MZA and Boeing-SVS has developed a laboratory test-bed consisting of a distributed atmospheric path simulated by three liquid crystal phase screens, a Shack-Hartmann wavefront sensor, and a MEMS membrane deformable mirror. We present results of AO component calibration and evaluation, the system construction, and the system performance.
Ambient noise correlations on a mobile, deformable array.
Naughton, Perry; Roux, Philippe; Yeakle, Riley; Schurgers, Curt; Kastner, Ryan; Jaffe, Jules S; Roberts, Paul L D
2016-12-01
This paper presents a demonstration of ambient acoustic noise processing on a set of free floating oceanic receivers whose relative positions vary with time. It is shown that it is possible to retrieve information that is relevant to the travel time between the receivers. With thousands of short time cross-correlations (10 s) of varying distance, it is shown that on average, the decrease in amplitude of the noise correlation function with increased separation follows a power law. This suggests that there may be amplitude information that is embedded in the noise correlation function. An incoherent beamformer is developed, which shows that it is possible to determine a source direction using an array with moving elements and large element separation. This incoherent beamformer is used to verify cases when the distribution of noise sources in the ocean allows one to recover travel time information between pairs of mobile receivers.
NASA Astrophysics Data System (ADS)
Juretzek, Carina; Hadziioannou, Céline
2014-05-01
Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.
NASA Astrophysics Data System (ADS)
Kim, Sung-Man; Kwon, Ki-Keun
2017-07-01
The relatively unsatisfactory performance of optical wireless communication (OWC) with respect to WiFi and millimeter-wave communications has formed a key issue preventing its commercialization. We experimentally demonstrate an OWC technology using a combination of positive real-valued orthogonal frequency-division multiplexing (OFDM) and optical beamforming (OB). Due to the intensity-modulation and direct-detection aspects of OWC systems, a positive real-valued OFDM signal can be suitably utilized to maximize the OWC data rate. Further, the OB technique, which can focus laser light on a desired target, can be utilized to increase the OWC data rate and transmission distance. Our experimental results show that the received optical signal power and electrical signal increase by up to 42 and 25 dB, respectively. Further, the data rate increases by a factor of 200 with OB over the conventional approach.
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
NASA Technical Reports Server (NTRS)
Moller, Delwyn K.; Heavey, Brandon; Hodges, Richard; Rengarajan, Sembiam; Rignot, Eric; Rogez, Francois; Sadowy, Gregory; Simard, Marc; Zawadzki, Mark
2006-01-01
The estimation of the mass balance of ice sheets and glaciers on Earth is a problem of considerable scientific and societal importance. A key measurement to understanding, monitoring and forecasting these changes is ice-surface topography, both for ice-sheet and glacial regions. As such NASA identified 'ice topographic mapping instruments capable of providing precise elevation and detailed imagery data for measurements on glacial scales for detailed monitoring of ice sheet, and glacier changes' as a science priority for the most recent Instrument Incubator Program (IIP) opportunities. Funded under this opportunity is the technological development for a Ka-Band (35GHz) single-pass digitally beamformed interferometric synthetic aperture radar (InSAR). Unique to this concept is the ability to map a significant swath impervious of cloud cover with measurement accuracies comparable to laser altimeters but with variable resolution as appropriate to the differing scales-of-interest over ice-sheets and glaciers.
Bargaining and the MISO Interference Channel
NASA Astrophysics Data System (ADS)
Nokleby, Matthew; Swindlehurst, A. Lee
2009-12-01
We examine the MISO interference channel under cooperative bargaining theory. Bargaining approaches such as the Nash and Kalai-Smorodinsky solutions have previously been used in wireless networks to strike a balance between max-sum efficiency and max-min equity in users' rates. However, cooperative bargaining for the MISO interference channel has only been studied extensively for the two-user case. We present an algorithm that finds the optimal Kalai-Smorodinsky beamformers for an arbitrary number of users. We also consider joint scheduling and beamformer selection, using gradient ascent to find a stationary point of the Kalai-Smorodinsky objective function. When interference is strong, the flexibility allowed by scheduling compensates for the performance loss due to local optimization. Finally, we explore the benefits of power control, showing that power control provides nontrivial throughput gains when the number of transmitter/receiver pairs is greater than the number of transmit antennas.
Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces
Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung
2016-01-01
Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634
Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays
NASA Technical Reports Server (NTRS)
Humphreys, Jr., William M. (Inventor); Brooks, Thomas F. (Inventor)
2012-01-01
Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.
Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays
NASA Technical Reports Server (NTRS)
Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)
2010-01-01
A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation.
Bilayer Protograph Codes for Half-Duplex Relay Channels
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; VanNguyen, Thuy; Nosratinia, Aria
2013-01-01
Direct to Earth return links are limited by the size and power of lander devices. A standard alternative is provided by a two-hops return link: a proximity link (from lander to orbiter relay) and a deep-space link (from orbiter relay to Earth). Although direct to Earth return links are limited by the size and power of lander devices, using an additional link and a proposed coding for relay channels, one can obtain a more reliable signal. Although significant progress has been made in the relay coding problem, existing codes must be painstakingly optimized to match to a single set of channel conditions, many of them do not offer easy encoding, and most of them do not have structured design. A high-performing LDPC (low-density parity-check) code for the relay channel addresses simultaneously two important issues: a code structure that allows low encoding complexity, and a flexible rate-compatible code that allows matching to various channel conditions. Most of the previous high-performance LDPC codes for the relay channel are tightly optimized for a given channel quality, and are not easily adapted without extensive re-optimization for various channel conditions. This code for the relay channel combines structured design and easy encoding with rate compatibility to allow adaptation to the three links involved in the relay channel, and furthermore offers very good performance. The proposed code is constructed by synthesizing a bilayer structure with a pro to graph. In addition to the contribution to relay encoding, an improved family of protograph codes was produced for the point-to-point AWGN (additive white Gaussian noise) channel whose high-rate members enjoy thresholds that are within 0.07 dB of capacity. These LDPC relay codes address three important issues in an integrative manner: low encoding complexity, modular structure allowing for easy design, and rate compatibility so that the code can be easily matched to a variety of channel conditions without extensive re-optimization. The main problem of half-duplex relay coding can be reduced to the simultaneous design of two codes at two rates and two SNRs (signal-to-noise ratios), such that one is a subset of the other. This problem can be addressed by forceful optimization, but a clever method of addressing this problem is via the bilayer lengthened (BL) LDPC structure. This method uses a bilayer Tanner graph to make the two codes while using a concept of "parity forwarding" with subsequent successive decoding that removes the need to directly address the issue of uneven SNRs among the symbols of a given codeword. This method is attractive in that it addresses some of the main issues in the design of relay codes, but it does not by itself give rise to highly structured codes with simple encoding, nor does it give rate-compatible codes. The main contribution of this work is to construct a class of codes that simultaneously possess a bilayer parity- forwarding mechanism, while also benefiting from the properties of protograph codes having an easy encoding, a modular design, and being a rate-compatible code.
NASA Astrophysics Data System (ADS)
Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas
2013-04-01
Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is characterised by the successive deposition of the northward prograding Platanos Gilbert-type delta (Middle group; deposited in hangingwall of the Pirgaki-Mamoussia fault) and the NE to E prograding Akrata Gilbert-type delta (Upper group). The Akrata Gilbert-type delta records progressive rotation and lengthening of the relay ramp as the East Helike fault and Derveni fault propagated laterally (from around 0.8 Ma) and started to overlap. The relay ramp was then breached by the Krathis fault (around 0.45 Ma) and the latter reactivated a NW-SE oriented inherited structure. Onshore-offshore correlation and profile restoration of the Upper group demonstrate the presence of this pre-existing structure (detachment fault?) below the Akrata relay zone that was responsible for significant eastward thickening in early rift sediments (Lower to Middle group). Our evolution model is consistent with the 'isolated fault' model where a fault array initially develops from growth of kinematically independent fault segments and fault displacement gradually accumulates during pre- and post-linkage stages. Despite the prominent control of pre-existing fabrics on the location of the transfer zone, lateral fault propagation and interaction can be well documented.
Libration Point Navigation Concepts Supporting the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.
2004-01-01
This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.
ERIC Educational Resources Information Center
Mungal, Angus Shiva
2016-01-01
In New York City, a partnership between Teach For America (TFA), the New York City Department of Education (NYCDOE), the Relay Graduate School of Education (Relay), and three charter school networks produced a "parallel education structure" within the public school system. Driving the partnership and the parallel education structure are…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
... telecommunications device for the deaf may call the Federal Relay Service (FedRelay) at 1-800-877- 8339 TTY/ASCII to contact the above individual during normal business hours. The FedRelay is available 24 hours a day, 7.... Groundwater Storage; 5. Habitat/Watershed Protection and Enhancement; 6. Enhanced Water Conservation; and 7...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
... the deaf may call the Federal Relay Service (FedRelay) at 1-800-877- 8339 TTY/ASCII to contact the above individual during normal business hours. The FedRelay is available 24 hours a day, 7 days a week...; 5. Habitat/Watershed Protection and Enhancement; 6. Enhanced Water Conservation; and 7. Market...
Laser Communications Relay Demonstration (LCRD) Update and the Path Towards Optical Relay Operations
NASA Technical Reports Server (NTRS)
Israel, David J.; Edwards, Bernard L.; Staren, John W.
2017-01-01
This paper provides a concept for an evolution of NASA's optical communications near Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory - California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO), following launch in 2019. This paper will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.
NASA Technical Reports Server (NTRS)
Sater, B. L.; Riley, T. J.; Janssen, W.
1973-01-01
A hybrid microelectronics solid state relay was developed in a TO-116 package for the MINX project. The relay provides 2500 Vdc input to output isolation and operated from a MHTL logic signal to switch a load of 400 Vdc at 2 mA. The relay is designed to operate in space and survive 1000 thermal cycles of 120 C to 80 C. The use of X-rays for failure analysis in small hybrid circuits proved valuable and the applications of vacuum deposited Parylene as a dielectric coating proved extremely valuable.
Laser Communications Relay Demonstration (LCRD) Update and the Path Towards Optical Relay Operations
NASA Technical Reports Server (NTRS)
Israel, David J.; Edwards, Bernard L.; Staren, John W.
2017-01-01
This Presentation provides a concept for an evolution of NASAs optical communications near Earth relay architecture. NASA's Laser Communications Relay Demonstration (LCRD), a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory - California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will provide a minimum of two years of high data rate optical communications service experiments in geosynchronous orbit (GEO), following launch in 2019. This paper will provide an update of the LCRD mission status and planned capabilities and experiments, followed by a discussion of the path from LCRD to operational network capabilities.
Liu, Yang; Han, Guangjie; Shi, Sulong; Li, Zhengquan
2018-06-20
This study investigates the superiority of cooperative broadcast transmission over traditional orthogonal schemes when applied in a downlink relaying broadcast channel (RBC). Two proposed cooperative broadcast transmission protocols, one with an amplify-and-forward (AF) relay, and the other with a repetition-based decode-and-forward (DF) relay, are investigated. By utilizing superposition coding (SupC), the source and the relay transmit the private user messages simultaneously instead of sequentially as in traditional orthogonal schemes, which means the channel resources are reused and an increased channel degree of freedom is available to each user, hence the half-duplex penalty of relaying is alleviated. To facilitate a performance evaluation, theoretical outage probability expressions of the two broadcast transmission schemes are developed, based on which, we investigate the minimum total power consumption of each scheme for a given traffic requirement by numerical simulation. The results provide details on the overall system performance and fruitful insights on the essential characteristics of cooperative broadcast transmission in RBCs. It is observed that better overall outage performances and considerable power gains can be obtained by utilizing cooperative broadcast transmissions compared to traditional orthogonal schemes.
Le, Duc Van; Oh, Hoon; Yoon, Seokhoon
2013-07-05
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.
NASA Astrophysics Data System (ADS)
Saito, Shoichi; Uehara, Tetsutaro; Izumi, Yutaka; Kunieda, Yoshitoshi
The VPN (Virtual Private Network) technique becomes more and more popular to protect contents of messages and to achieve secure communication from incidents, such as tapping. However, it grow in usage that a VPN server is used on a sub-network in part of an office-wide network. But, a PPTP system included in Windows operating systems cannot establish nested VPN links. Moreover encrypted communication by VPN hides a user of the VPN connection. Consequently, any administrators of network systems can’t find out the users of the VPN connection via firewall, moreover can’t decide whether if the user is legal or not. In order to solve this problem, we developed a multi step PPTP relay system on a firewall. This system solves all the problems of our previously developed PPTP relay system(1). The new relay system improves security by encrypting through the whole end-to-end communication and abolishing of prior registration of passwords for the next step. Furthermore, transport speed is accelerated, and the restriction of the number of steps on relay is also abolished. By these features the multi step PPTP relay system expands usability.
Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel.
Selvaprabhu, Poongundran; Chinnadurai, Sunil; Li, Jun; Lee, Moon Ho
2017-08-17
In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K -user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes.
Implementing Strategic Planning Capabilities Within the Mars Relay Operations Service
NASA Technical Reports Server (NTRS)
Hy, Franklin; Gladden, Roy; Allard, Dan; Wallick, Michael
2011-01-01
Since the Mars Exploration Rovers (MER), Spirit and Opportunity, began their travels across the Martian surface in January of 2004, orbiting spacecraft such as the Mars 2001 Odyssey orbiter have relayed the majority of their collected scientific and operational data to and from Earth. From the beginning of those missions, it was evident that using orbiters to relay data to and from the surface of Mars was a vastly more efficient communications strategy in terms of power consumption and bandwidth compared to direct-to-Earth means. However, the coordination between the various spacecraft, which are largely managed independently and on differing commanding timelines, has always proven to be a challenge. Until recently, the ground operators of all these spacecraft have coordinated the movement of data through this network using a collection of ad hoc human interfaces and various, independent software tools. The Mars Relay Operations Service (MaROS) has been developed to manage the evolving needs of the Mars relay network, and specifically to standardize and integrate the relay planning and coordination data into a centralized infrastructure. This paper explores the journey of developing the MaROS system, from inception to delivery and acceptance by the Mars mission users.
Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel
Li, Jun; Lee, Moon Ho
2017-01-01
In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K-user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes. PMID:28817071
Van Le, Duc; Oh, Hoon; Yoon, Seokhoon
2013-01-01
In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134
Hussain, Tanvir; Allen, Allyssa; Halbert, Jennifer; Anderson, Cheryl A M; Boonyasai, Romsai Tony; Cooper, Lisa A
2015-04-01
Care management has become a widespread strategy for improving chronic illness care. However, primary care provider (PCP) participation in programs has been poor. Because the success of care management relies on provider engagement, understanding provider perspectives is necessary. Our goal was to identify care management functions most valuable to PCPs in hypertension treatment. Six focus groups were conducted to discuss current challenges in hypertension care and identify specific functions of care management that would improve care. The study included 39 PCPs (participation rate: 83 %) representing six clinics, two of which care for large African American populations and four that are in underserved locations, in the greater Baltimore metropolitan area. This was a qualitative analysis of focus groups, using grounded theory and iterative coding. Providers desired achieving blood pressure control more rapidly. Collaborating with care managers who obtain ongoing patient data would allow treatment plans to be tailored to the changing life conditions of patients. The P.A.R.T.N.E.R. framework summarizes the care management functions that providers reported were necessary for effective collaboration: Partner with patients, providers, and the community; Arrange follow-up care; Resolve barriers to adherence; Track treatment response and progress; Navigate the health care system with patients; Educate patients & Engage patients in self-management; Relay information between patients and/or provider(s). The P.A.R.T.N.E.R. framework is the first to offer a checklist of care management functions that may promote successful collaboration with PCPs. Future research should examine the validity of this framework in various settings and for diverse patient populations affected by chronic diseases.
Heyde, Brecht; Bottenus, Nick; D'hooge, Jan; Trahey, Gregg E
2017-02-01
The transverse oscillation (TO) technique can improve the estimation of tissue motion perpendicular to the ultrasound beam direction. TOs can be introduced using plane wave (PW) insonification and bilobed Gaussian apodization (BA) on receive (abbreviated as PWTO). Furthermore, the TO frequency of PWTO can be doubled after a heterodyning demodulation process is performed (abbreviated as PWTO*). This paper is concerned with identifying the limitations of the PWTO technique in the specific context of myocardial deformation imaging with phased arrays and investigating the conditions in which it remains advantageous over traditional focused (FOC) beamforming. For this purpose, several tissue phantoms were simulated using Field II, undergoing a wide range of displacement magnitudes and modes (lateral, axial, and rotational motions). The Cramer-Rao lower bound was used to optimize TO beamforming parameters and theoretically predict the fundamental tracking performance limits associated with the FOC, PWTO, and PWTO* beamforming scenarios. This framework was extended to also predict the performance for BA functions that are windowed by the physical aperture of the transducer, leading to higher lateral oscillations. It was found that windowed BA functions resulted in lower jitter errors compared with traditional BA functions. PWTO* outperformed FOC at all investigated signal-to-noise ratio (SNR) levels but only up to a certain displacement, with the advantage rapidly decreasing when the SNR increased. These results suggest that PWTO* improves lateral tracking performance, but only when interframe displacements remain relatively low. This paper concludes by translating these findings into a clinical environment by suggesting optimal scanner settings.
An Assessment of Iterative Reconstruction Methods for Sparse Ultrasound Imaging
Valente, Solivan A.; Zibetti, Marcelo V. W.; Pipa, Daniel R.; Maia, Joaquim M.; Schneider, Fabio K.
2017-01-01
Ultrasonic image reconstruction using inverse problems has recently appeared as an alternative to enhance ultrasound imaging over beamforming methods. This approach depends on the accuracy of the acquisition model used to represent transducers, reflectivity, and medium physics. Iterative methods, well known in general sparse signal reconstruction, are also suited for imaging. In this paper, a discrete acquisition model is assessed by solving a linear system of equations by an ℓ1-regularized least-squares minimization, where the solution sparsity may be adjusted as desired. The paper surveys 11 variants of four well-known algorithms for sparse reconstruction, and assesses their optimization parameters with the goal of finding the best approach for iterative ultrasound imaging. The strategy for the model evaluation consists of using two distinct datasets. We first generate data from a synthetic phantom that mimics real targets inside a professional ultrasound phantom device. This dataset is contaminated with Gaussian noise with an estimated SNR, and all methods are assessed by their resulting images and performances. The model and methods are then assessed with real data collected by a research ultrasound platform when scanning the same phantom device, and results are compared with beamforming. A distinct real dataset is finally used to further validate the proposed modeling. Although high computational effort is required by iterative methods, results show that the discrete model may lead to images closer to ground-truth than traditional beamforming. However, computing capabilities of current platforms need to evolve before frame rates currently delivered by ultrasound equipments are achievable. PMID:28282862
LCMV beamforming for a novel wireless local positioning system: a stationarity analysis
NASA Astrophysics Data System (ADS)
Tong, Hui; Zekavat, Seyed A.
2005-05-01
In this paper, we discuss the implementation of Linear Constrained Minimum Variance (LCMV) beamforming (BF) for a novel Wireless Local Position System (WLPS). WLPS main components are: (a) a dynamic base station (DBS), and (b) a transponder (TRX), both mounted on mobiles. WLPS might be considered as a node in a Mobile Adhoc NETwork (MANET). Each TRX is assigned an identification (ID) code. DBS transmits periodic short bursts of energy which contains an ID request (IDR) signal. The TRX transmits back its ID code (a signal with a limited duration) to the DBS as soon as it detects the IDR signal. Hence, the DBS receives non-continuous signals transmitted by TRX. In this work, we assume asynchronous Direct-Sequence Code Division Multiple Access (DS-CDMA) transmission from the TRX with antenna array/LCMV BF mounted at the DBS, and we discuss the implementation of the observed signal covariance matrix for LCMV BF. In LCMV BF, the observed covariance matrix should be estimated. Usually sample covariance matrix (SCM) is used to estimate this covariance matrix assuming a stationary model for the observed data which is the case in many communication systems. However, due to the non-stationary behavior of the received signal in WLPS systems, SCM does not lead to a high WLPS performance compared to even a conventional beamformer. A modified covariance matrix estimation method which utilizes the cyclostationarity property of WLPS system is introduced as a solution to this problem. It is shown that this method leads to a significant improvement in the WLPS performance.
Adaptive beamforming in a CDMA mobile satellite communications system
NASA Technical Reports Server (NTRS)
Munoz-Garcia, Samuel G.
1993-01-01
Code-Division Multiple-Access (CDMA) stands out as a strong contender for the choice of multiple access scheme in these future mobile communication systems. This is due to a variety of reasons such as the excellent performance in multipath environments, high scope for frequency reuse and graceful degradation near saturation. However, the capacity of CDMA is limited by the self-interference between the transmissions of the different users in the network. Moreover, the disparity between the received power levels gives rise to the near-far problem, this is, weak signals are severely degraded by the transmissions from other users. In this paper, the use of time-reference adaptive digital beamforming on board the satellite is proposed as a means to overcome the problems associated with CDMA. This technique enables a high number of independently steered beams to be generated from a single phased array antenna, which automatically track the desired user signal and null the unwanted interference sources. Since CDMA is interference limited, the interference protection provided by the antenna converts directly and linearly into an increase in capacity. Furthermore, the proposed concept allows the near-far effect to be mitigated without requiring a tight coordination of the users in terms of power control. A payload architecture will be presented that illustrates the practical implementation of this concept. This digital payload architecture shows that with the advent of high performance CMOS digital processing, the on-board implementation of complex DSP techniques -in particular digital beamforming- has become possible, being most attractive for Mobile Satellite Communications.
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-01-01
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. However, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely delay-multiply-and-sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging, was introduced to overcome the challenges in DAS. DMAS was used in PAI systems and it was shown that this algorithm results in resolution improvement and sidelobe degrading. However, DMAS is still sensitive to high levels of noise, and resolution improvement is not satisfying. Here, we propose a novel algorithm based on DAS algebra inside DMAS formula expansion, double stage DMAS (DS-DMAS), which improves the image resolution and levels of sidelobe, and is much less sensitive to high level of noise compared to DMAS. The performance of DS-DMAS algorithm is evaluated numerically and experimentally. The resulted images are evaluated qualitatively and quantitatively using established quality metrics including signal-to-noise ratio (SNR), full-width-half-maximum (FWHM) and contrast ratio (CR). It is shown that DS-DMAS outperforms DAS and DMAS at the expense of higher computational load. DS-DMAS reduces the lateral valley for about 15 dB and improves the SNR and FWHM better than 13% and 30%, respectively. Moreover, the levels of sidelobe are reduced for about 10 dB in comparison with those in DMAS.