Sample records for collaborative research center

  1. 34 CFR 350.21 - What collaboration must a Rehabilitation Research and Training Center engage in?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What collaboration must a Rehabilitation Research and... Centers Does the Secretary Assist? § 350.21 What collaboration must a Rehabilitation Research and Training Center engage in? A Rehabilitation Research and Training Center must be operated by or in collaboration...

  2. 34 CFR 350.21 - What collaboration must a Rehabilitation Research and Training Center engage in?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What collaboration must a Rehabilitation Research and... Centers Does the Secretary Assist? § 350.21 What collaboration must a Rehabilitation Research and Training Center engage in? A Rehabilitation Research and Training Center must be operated by or in collaboration...

  3. 78 FR 27198 - Applications for New Awards; National Institute on Disability and Rehabilitation Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project AGENCY... Brain Injury Model Systems Centers Collaborative Research Projects; Notice inviting applications for new... competition. Priority 1, the DRRP Priority for the Traumatic Brain Injury Model Systems Centers Collaborative...

  4. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...

  5. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...

  6. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...

  7. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...

  8. 34 CFR 350.31 - What collaboration must a Rehabilitation Engineering Research Center engage in?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true What collaboration must a Rehabilitation Engineering... DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Rehabilitation Engineering Research Centers Does the Secretary Assist? § 350.31 What collaboration must a Rehabilitation Engineering Research...

  9. Michigan/Air Force Research Laboratory (AFRL) Collaborative Center in Control Science (MACCCS)

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0139 MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE (MACCCS) Anouck Girard...Final 18 April 2007 – 30 September 2016 4. TITLE AND SUBTITLE MICHIGAN/AIR FORCE RESEARCH LABORATORY (AFRL) COLLABORATIVE CENTER IN CONTROL SCIENCE...and amplify an internationally recognized center of excellence in control science research and education, through interaction between the faculty and

  10. 2013 CGH Awardees

    Cancer.gov

    The National cancer institute, CENTER FOR GLOBAL HEALTH, in collaboration with the OFFICE OF CANCER CENTERS, is pleased to announce the 2013 awardees of the Request for Proposals for Pilot Collaborations with Low- and Mid-Income Countries (LMICs) in Global Cancer Research or Global Health Research at NCI-Designated Cancer Centers.  In 2013, the Center for Global Health and the Office of Cancer Centers developed a funding opportunity to promote research collaborations between NCI-Designated Cancer Centers with institutions in LMICs.

  11. Scientific collaboration and team science: a social network analysis of the centers for population health and health disparities.

    PubMed

    Okamoto, Janet

    2015-03-01

    The past decade has seen dramatic shifts in the way that scientific research is conducted as networks, consortia, and large research centers are funded as transdisciplinary, team-based enterprises to tackle complex scientific questions. Key investigators (N = 167) involved in ten health disparities research centers completed a baseline social network and collaboration readiness survey. Collaborative ties existed primarily between investigators from the same center, with just 7 % of ties occurring across different centers. Grants and work groups were the most common types of ties between investigators, with shared presentations the most common tie across different centers. Transdisciplinary research orientation was associated with network position and reciprocity. Center directors/leaders were significantly more likely to form ties with investigators in other roles, such as statisticians and trainees. Understanding research collaboration networks can help to more effectively design and manage future team-based research, as well as pinpoint potential issues and continuous evaluation of existing efforts.

  12. Collaborative research in the model spinal cord injury systems: process and outcomes.

    PubMed

    Richards, J Scott

    2002-01-01

    To review the way in which collaborative research has been conducted under the National Institute on Disability and Rehabilitation Research (NIDRR)-funded Model Spinal Cord Injury Systems (MSCIS) Program, changes made in that process, and significant outcomes. A comparison of changes by NIDRR in the way collaborative research was competed and funded in the 1 995 and 2001 competitions. A review of outcomes of the 1 995 collaborative projects was based on queries to lead centers. Collaborative research through the model SCI systems has been conducted and continues to be conducted through 2 main venues: The National Spinal Cord Injury Statistical Center (NSCISC) database, which has provided data for a number of collaborative studies, and specifically funded proposals for collaborative research. In the 1995 competition for NIDRR funding, collaborative research proposals were submitted as part of the Model SCI Systems competitive applications. In the 2001 competition, collaborative research was parceled out and a separate competition held. There have been a number of publications stemming from the 1 995 competition; some of the data from these projects are still being explored and used for manuscripts. The outcomes for the 2001 competition will not be known for several years. Collaborative research has the advantage of generating larger numbers more quickly than any 1 center can typically generate, producing a more broadly based sample and, therefore, generalizable result, and facilitating the use of expertise not always available in a single center. Collaborative research activities have been among the most productive aspects of the Model Systems program; the change in the way this component is competed in the most recent competition is yet to be evaluated in terms of its efficacy compared with methods used for funding collaborative research in past competitions.

  13. Comparative case study of two biomedical research collaboratories.

    PubMed

    Schleyer, Titus K L; Teasley, Stephanie D; Bhatnagar, Rishi

    2005-10-25

    Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific activity of two biomedical research centers. The two centers were the Great Lakes Regional Center for AIDS Research (HIV/AIDS Center) and the New York University Oral Cancer Research for Adolescent and Adult Health Promotion Center (Oral Cancer Center). In each collaboratory, we used semistructured interviews, surveys, and contextual inquiry to assess user needs and define the technology requirements. We evaluated and selected commercial software applications by comparing their feature sets with requirements and then pilot-testing the applications. Local and remote support staff cooperated in the implementation and end user training for the collaborative tools. Collaboratory staff evaluated each implementation by analyzing utilization data, administering user surveys, and functioning as participant observers. The HIV/AIDS Center primarily required real-time interaction for developing projects and attracting new participants to the center; the Oral Cancer Center, on the other hand, mainly needed tools to support distributed and asynchronous work in small research groups. The HIV/AIDS Center's collaboratory included a center-wide website that also served as the launch point for collaboratory applications, such as NetMeeting, Timbuktu Conference, PlaceWare Auditorium, and iVisit. The collaboratory of the Oral Cancer Center used Groove and Genesys Web conferencing. The HIV/AIDS Center was successful in attracting new scientists to HIV/AIDS research, and members used the collaboratory for developing and implementing new research studies. The Oral Cancer Center successfully supported highly distributed and asynchronous research, and the collaboratory facilitated real-time interaction for analyzing data and preparing publications. The two collaboratory implementations demonstrated the feasibility of supporting biomedical research centers using off-the-shelf commercial tools, but they also identified several barriers to successful collaboration. These barriers included computing platform incompatibilities, network infrastructure complexity, variable availability of local versus remote IT support, low computer and collaborative software literacy, and insufficient maturity of available collaborative software. Factors enabling collaboratory use included collaboration incentives through funding mechanism, a collaborative versus competitive relationship of researchers, leadership by example, and tools well matched to tasks and technical progress. Integrating electronic collaborative tools into routine scientific practice can be successful but requires further research on the technical, social, and behavioral factors influencing the adoption and use of collaboratories.

  14. Collaboration in health services research: on developing relationships between VA researchers and those in other institutions.

    PubMed Central

    Greenlick, M R; Freeborn, D K

    1986-01-01

    This article explores the potential for collaboration between investigators in institutions outside of the VA and those engaged in research within the VA. The focus is on the potential for collaborative work in health services research; our perspective is that of researchers in a freestanding HMO research center affiliated with the Veterans Administration's Northwest Health Services Research and Development Field Program. The paper begins with a review of the reasons that make collaboration between VA researchers and other health services researchers so appropriate at this time. An example of collaboration is presented, drawing on the experience of the Northwest Field Program and the Kaiser Permanente Center for Health Research. Finally, some difficulties inherent in collaboration between VA and other health services researchers are discussed. PMID:3512485

  15. Conversations on Collaboration: Graduate Students as Writing Program Administrators in the Writing Center

    ERIC Educational Resources Information Center

    Hewerdine, Jennifer M.

    2017-01-01

    This research sought to ascertain through a phenomenological approach whether and how collaboration occurs in writing center administration. The reflections and perceptions of former writing center gWPAs provided insight into a variety of institutional contexts and experiences present in writing center collaboration. The participants perceived…

  16. Vision and creation of the American Heart Association pharmaceutical roundtable outcomes research centers.

    PubMed

    Peterson, Eric D; Spertus, John A; Cohen, David J; Hlatky, Mark A; Go, Alan S; Vickrey, Barbara G; Saver, Jeffrey L; Hinton, Patricia C

    2009-11-01

    The field of outcomes research seeks to define optimal treatment in practice and to promote the rapid full adoption of efficacious therapies into routine clinical care. The American Heart Association (AHA) formed the AHA Pharmaceutical Roundtable (PRT) Outcomes Research Centers Network to accelerate attainment of these goals. Participating centers were intended to carry out state-of-the-art outcomes research in cardiovascular disease and stroke, to train the next generation of investigators, and to support the formation of a collaborative research network. After a competitive application process, 4 AHA PRT Outcomes Research Centers were selected: Duke Clinical Research Institute; Saint Luke's Mid America Heart Institute; Stanford University-Kaiser Permanente of Northern California; and University of California, Los Angeles. Each center proposed between 1 and 3 projects organized around a single theme in cardiovascular disease or stroke. Additionally, each center will select and train up to 6 postdoctoral fellows over the next 4 years, and will participate in cross-collaborative activities among the centers. The AHA PRT Outcomes Research Centers Network is designed to further strengthen the field of cardiovascular disease and stroke outcomes research by fostering innovative research, supporting high quality training, and encouraging center-to-center collaborations.

  17. Comparative Case Study of Two Biomedical Research Collaboratories

    PubMed Central

    Teasley, Stephanie D; Bhatnagar, Rishi

    2005-01-01

    Background Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. Objective The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific activity of two biomedical research centers. The two centers were the Great Lakes Regional Center for AIDS Research (HIV/AIDS Center) and the New York University Oral Cancer Research for Adolescent and Adult Health Promotion Center (Oral Cancer Center). Methods In each collaboratory, we used semistructured interviews, surveys, and contextual inquiry to assess user needs and define the technology requirements. We evaluated and selected commercial software applications by comparing their feature sets with requirements and then pilot-testing the applications. Local and remote support staff cooperated in the implementation and end user training for the collaborative tools. Collaboratory staff evaluated each implementation by analyzing utilization data, administering user surveys, and functioning as participant observers. Results The HIV/AIDS Center primarily required real-time interaction for developing projects and attracting new participants to the center; the Oral Cancer Center, on the other hand, mainly needed tools to support distributed and asynchronous work in small research groups. The HIV/AIDS Center’s collaboratory included a center-wide website that also served as the launch point for collaboratory applications, such as NetMeeting, Timbuktu Conference, PlaceWare Auditorium, and iVisit. The collaboratory of the Oral Cancer Center used Groove and Genesys Web conferencing. The HIV/AIDS Center was successful in attracting new scientists to HIV/AIDS research, and members used the collaboratory for developing and implementing new research studies. The Oral Cancer Center successfully supported highly distributed and asynchronous research, and the collaboratory facilitated real-time interaction for analyzing data and preparing publications. Conclusions The two collaboratory implementations demonstrated the feasibility of supporting biomedical research centers using off-the-shelf commercial tools, but they also identified several barriers to successful collaboration. These barriers included computing platform incompatibilities, network infrastructure complexity, variable availability of local versus remote IT support, low computer and collaborative software literacy, and insufficient maturity of available collaborative software. Factors enabling collaboratory use included collaboration incentives through funding mechanism, a collaborative versus competitive relationship of researchers, leadership by example, and tools well matched to tasks and technical progress. Integrating electronic collaborative tools into routine scientific practice can be successful but requires further research on the technical, social, and behavioral factors influencing the adoption and use of collaboratories. PMID:16403717

  18. 76 FR 38124 - Applications for New Awards; Americans With Disabilities Act (ADA) National Network Regional...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ...) National Network Regional Centers and ADA National Network Collaborative Research Projects AGENCY: Office... National Network Regional Centers (formerly the Disability Business Technical Assistance Centers (DBTACs), and ADA National Network Collaborative Research Projects. Notice inviting applications for new awards...

  19. Coordinating Centers in Cancer-Epidemiology Research: The Asia Cohort Consortium Coordinating Center

    PubMed Central

    Rolland, Betsy; Smith, Briana R; Potter, John D

    2011-01-01

    Although it is tacitly recognized that a good Coordinating Center (CC) is essential to the success of any multi-site collaborative project, very little study has been done on what makes a CC successful, why some CCs fail, or how to build a CC that meets the needs of a given project. Moreover, very little published guidance is available, as few CCs outside the clinical-trial realm write about their work. The Asia Cohort Consortium (ACC) is a collaborative cancer-epidemiology research project that has made strong scientific and organizational progress over the past three years by focusing its CC on the following activities: collaboration development; operations management; statistical and data management; and communications infrastructure and tool development. Our hope is that, by sharing our experience building the ACC CC, we can begin a conversation about what it means to run a coordinating center for multi-institutional collaboration in cancer epidemiology, help other collaborative projects solve some of the issues associated with collaborative research, and learn from others. PMID:21803842

  20. The prevention research centers' managing epilepsy well network.

    PubMed

    DiIorio, Colleen K; Bamps, Yvan A; Edwards, Ariele L; Escoffery, Cam; Thompson, Nancy J; Begley, Charles E; Shegog, Ross; Clark, Noreen M; Selwa, Linda; Stoll, Shelley C; Fraser, Robert T; Ciechanowski, Paul; Johnson, Erica K; Kobau, Rosemarie; Price, Patricia H

    2010-11-01

    The Managing Epilepsy Well (MEW) Network was created in 2007 by the Centers for Disease Control and Prevention's (CDC) Prevention Research Centers and Epilepsy Program to promote epilepsy self-management research and to improve the quality of life for people with epilepsy. MEW Network membership comprises four collaborating centers (Emory University, University of Texas Health Science Center at Houston, University of Michigan, and University of Washington), representatives from CDC, affiliate members, and community stakeholders. This article describes the MEW Network's background, mission statement, research agenda, and structure. Exploratory and intervention studies conducted by individual collaborating centers are described, as are Network collaborative projects, including a multisite depression prevention intervention and the development of a standard measure of epilepsy self-management. Communication strategies and examples of research translation programs are discussed. The conclusion outlines the Network's role in the future development and dissemination of evidence-based epilepsy self-management programs. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Promoting Cognitive Health: A Formative Research Collaboration of the Healthy Aging Research Network

    ERIC Educational Resources Information Center

    Laditka, James N.; Beard, Renee L.; Bryant, Lucinda L.; Fetterman, David; Hunter, Rebecca; Ivey, Susan; Logsdon, Rebecca G.; Sharkey, Joseph R.; Wu, Bei

    2009-01-01

    Purpose: Evidence suggests that healthy lifestyles may help maintain cognitive health. The Prevention Research Centers Healthy Aging Research Network, 9 universities collaborating with their communities and the Centers for Disease Control and Prevention, is conducting a multiyear research project, begun in 2005, to understand how to translate this…

  2. Collaborative proposal on resilience : definitions, measurement, tools and research opportunities.

    DOT National Transportation Integrated Search

    2016-08-01

    Rutgers University Center for Advanced Infrastructure and Transportation (CAIT), in collaboration : with research partners within the University Transportation Center (UTC) consortium, seeks to identify : knowledge gaps and chart future R&D direction...

  3. Impact of the Cancer Prevention and Control Research Network

    PubMed Central

    Ribisl, Kurt M.; Fernandez, Maria E.; Friedman, Daniela B.; Hannon, Peggy; Leeman, Jennifer; Moore, Alexis; Olson, Lindsay; Ory, Marcia; Risendal, Betsy; Sheble, Laura; Taylor, Vicky; Williams, Rebecca; Weiner, Bryan J.

    2018-01-01

    The Cancer Prevention and Control Research Network (CPCRN) is a thematic network dedicated to accelerating the adoption of evidence-based cancer prevention and control practices in communities by advancing dissemination and implementation science. Funded by the Centers for Disease Control and Prevention and National Cancer Institute, CPCRN has operated at two levels: Each participating Network Center conducts research projects with primarily local partners as well as multicenter collaborative research projects with state and national partners. Through multicenter collaboration, thematic networks leverage the expertise, resources, and partnerships of participating centers to conduct research projects collectively that might not be feasible individually. Although multicenter collaboration often is advocated, it is challenging to promote and assess. Using bibliometric network analysis and other graphical methods, this paper describes CPCRN’s multicenter publication progression from 2004 to 2014. Searching PubMed, Scopus, and Web of Science in 2014 identified 249 peer-reviewed CPCRN publications involving two or more centers out of 6,534 total. The research and public health impact of these multicenter collaborative projects initiated by CPCRN during that 10-year period were then examined. CPCRN established numerous workgroups around topics such as: 2-1-1, training and technical assistance, colorectal cancer control, federally qualified health centers, cancer survivorship, and human papillomavirus. The paper discusses the challenges that arise in promoting multicenter collaboration and the strategies that CPCRN uses to address those challenges. The lessons learned should broadly interest those seeking to promote multisite collaboration to address public health problems, such as cancer prevention and control. PMID:28215371

  4. Education and Strategic Research Collaborations

    Science.gov Websites

    Los Alamos National Laboratory National Security Education Center Image Search Site submit LaboratoryNational Security Education Center Menu Program Offices Energy Security Council New Mexico Consortium Geophysics, Planetary Physics, Signatures Events Collaborations for education and strategic research, student

  5. Behind the scenes of a research and training collaboration: power, privilege, and the hidden transcript of race.

    PubMed

    Carpenter-Song, Elizabeth; Whitley, Rob

    2013-06-01

    This paper examines a federally funded research and training collaboration between an Ivy League psychiatric research center and a historically Black university and medical center. This collaboration focuses on issues of psychiatric recovery and rehabilitation among African Americans. In addition, this multidisciplinary collaboration aims to build the research capacity at both institutions and to contribute to the tradition of research in culture and mental health within the medical social sciences and cultural psychiatry. This article provides a window into the complex, often messy, dynamics of a collaboration that cross cuts institutional, disciplinary, and demographic boundaries. Taking an auto-ethnographic approach, we intend to illustrate how collaborative relationships unfold and are constructed through ongoing reciprocal flows of knowledge and experience. Central to this aim is a consideration of how issues of power, privilege, and the hidden transcript of race shape the nature of our research and training efforts.

  6. Networks of Collaboration among Scientists in a Center for Diabetes Translation Research

    PubMed Central

    Harris, Jenine K.; Wong, Roger; Thompson, Kellie; Haire-Joshu, Debra; Hipp, J. Aaron

    2015-01-01

    Background Transdisciplinary collaboration is essential in addressing the translation gap between scientific discovery and delivery of evidence-based interventions to prevent and treat diabetes. We examined patterns of collaboration among scientists at the Washington University Center for Diabetes Translation Research. Methods Members (n = 56) of the Washington University Center for Diabetes Translation Research were surveyed about collaboration overall and on publications, presentations, and grants; 87.5% responded (n = 49). We used traditional and network descriptive statistics and visualization to examine the networks and exponential random graph modeling to identify predictors of collaboration. Results The 56 network members represented nine disciplines. On average, network members had been affiliated with the center for 3.86 years (s.d. = 1.41). The director was by far the most central in all networks. The overall and publication networks were the densest, while the overall and grant networks were the most centralized. The grant network was the most transdisciplinary. The presentation network was the least dense, least centralized, and least transdisciplinary. For every year of center affiliation, network members were 10% more likely to collaborate (OR: 1.10; 95% CI: 1.00–1.21) and 13% more likely to write a paper together (OR: 1.13; 95% CI: 1.02–1.25). Network members in the same discipline were over twice as likely to collaborate in the overall network (OR: 2.10; 95% CI: 1.40–3.15); however, discipline was not associated with collaboration in the other networks. Rank was not associated with collaboration in any network. Conclusions As transdisciplinary centers become more common, it is important to identify structural features, such as a central leader and ongoing collaboration over time, associated with scholarly productivity and, ultimately, with advancing science and practice. PMID:26301873

  7. Networks of Collaboration among Scientists in a Center for Diabetes Translation Research.

    PubMed

    Harris, Jenine K; Wong, Roger; Thompson, Kellie; Haire-Joshu, Debra; Hipp, J Aaron

    2015-01-01

    Transdisciplinary collaboration is essential in addressing the translation gap between scientific discovery and delivery of evidence-based interventions to prevent and treat diabetes. We examined patterns of collaboration among scientists at the Washington University Center for Diabetes Translation Research. Members (n = 56) of the Washington University Center for Diabetes Translation Research were surveyed about collaboration overall and on publications, presentations, and grants; 87.5% responded (n = 49). We used traditional and network descriptive statistics and visualization to examine the networks and exponential random graph modeling to identify predictors of collaboration. The 56 network members represented nine disciplines. On average, network members had been affiliated with the center for 3.86 years (s.d. = 1.41). The director was by far the most central in all networks. The overall and publication networks were the densest, while the overall and grant networks were the most centralized. The grant network was the most transdisciplinary. The presentation network was the least dense, least centralized, and least transdisciplinary. For every year of center affiliation, network members were 10% more likely to collaborate (OR: 1.10; 95% CI: 1.00-1.21) and 13% more likely to write a paper together (OR: 1.13; 95% CI: 1.02-1.25). Network members in the same discipline were over twice as likely to collaborate in the overall network (OR: 2.10; 95% CI: 1.40-3.15); however, discipline was not associated with collaboration in the other networks. Rank was not associated with collaboration in any network. As transdisciplinary centers become more common, it is important to identify structural features, such as a central leader and ongoing collaboration over time, associated with scholarly productivity and, ultimately, with advancing science and practice.

  8. National Institute of Nursing Research Centers of Excellence: a logic model for sustainability, leveraging resources, and collaboration to accelerate cross-disciplinary science.

    PubMed

    Dorsey, Susan G; Schiffman, Rachel; Redeker, Nancy S; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S; Grady, Patricia A

    2014-01-01

    The National Institute of Nursing Research (NINR) Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present the NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR center directors' meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Frederick National Lab Collaborates with Moffitt Cancer Center on HPV and Oral Cancer | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Frederick National Lab and Moffitt Cancer Center have established a collaboration to research antibody responses against the human papillomavirus (HPV) in males following administration of the Gardasil vaccine. The vaccine prevents HPV infections

  10. Integration of data systems and technology improves research and collaboration for a superfund research center.

    PubMed

    Hobbie, Kevin A; Peterson, Elena S; Barton, Michael L; Waters, Katrina M; Anderson, Kim A

    2012-08-01

    Large collaborative centers are a common model for accomplishing integrated environmental health research. These centers often include various types of scientific domains (e.g., chemistry, biology, bioinformatics) that are integrated to solve some of the nation's key economic or public health concerns. The Superfund Research Center (SRP) at Oregon State University (OSU) is one such center established in 2008 to study the emerging health risks of polycyclic aromatic hydrocarbons while using new technologies both in the field and laboratory. With outside collaboration at remote institutions, success for the center as a whole depends on the ability to effectively integrate data across all research projects and support cores. Therefore, the OSU SRP center developed a system that integrates environmental monitoring data with analytical chemistry data and downstream bioinformatics and statistics to enable complete "source-to-outcome" data modeling and information management. This article describes the development of this integrated information management system that includes commercial software for operational laboratory management and sample management in addition to open-source custom-built software for bioinformatics and experimental data management.

  11. Integration of Data Systems and Technology Improves Research and Collaboration for a Superfund Research Center

    PubMed Central

    Hobbie, Kevin A.; Peterson, Elena S.; Barton, Michael L.; Waters, Katrina M.; Anderson, Kim A.

    2012-01-01

    Large collaborative centers are a common model for accomplishing integrated environmental health research. These centers often include various types of scientific domains (e.g. chemistry, biology, bioinformatics) that are integrated to solve some of the nation’s key economic or public health concerns. The Superfund Research Center (SRP) at Oregon State University (OSU) is one such center established in 2008 to study the emerging health risks of polycyclic aromatic hydrocarbons while utilizing new technologies both in the field and laboratory. With outside collaboration at remote institutions, success for the center as a whole depends on the ability to effectively integrate data across all research projects and support cores. Therefore, the OSU SRP center developed a system that integrates environmental monitoring data with analytical chemistry data and downstream bioinformatics and statistics to enable complete ‘source to outcome’ data modeling and information management. This article describes the development of this integrated information management system that includes commercial software for operational laboratory management and sample management in addition to open source custom built software for bioinformatics and experimental data management. PMID:22651935

  12. Collaborative engagement experiment

    NASA Astrophysics Data System (ADS)

    Mullens, Katherine; Troyer, Bradley; Wade, Robert; Skibba, Brian; Dunn, Michael

    2006-05-01

    Unmanned ground and air systems operating in collaboration have the potential to provide future Joint Forces a significant capability for operations in complex terrain. Collaborative Engagement Experiment (CEE) is a consolidation of separate Air Force, Army and Navy collaborative efforts within the Joint Robotics Program (JRP) to provide a picture of the future of unmanned warfare. The Air Force Research Laboratory (AFRL), Material and Manufacturing Directorate, Aerospace Expeditionary Force Division, Force Protection Branch (AFRL/MLQF), The Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) Joint Technology Center (JTC)/Systems Integration Laboratory (SIL), and the Space and Naval Warfare Systems Center - San Diego (SSC San Diego) are conducting technical research and proof of principle experiments for an envisioned operational concept for extended range, three dimensional, collaborative operations between unmanned systems, with enhanced situational awareness for lethal operations in complex terrain. This paper describes the work by these organizations to date and outlines some of the plans for future work.

  13. Between the Local and the Global: Organized Research Units and International Collaborations in the Health Sciences

    ERIC Educational Resources Information Center

    Sa, Creso M.; Oleksiyenko, Anatoly

    2011-01-01

    Organized research units--also known as centers, institutes, and laboratories--are increasingly prominent in the university. This paper examines how ORUs emerge to promote global agendas and international collaborations in an academic health center in North America. The roles these units play in helping researchers work across institutional and…

  14. Impact of the Cancer Prevention and Control Research Network: Accelerating the Translation of Research Into Practice.

    PubMed

    Ribisl, Kurt M; Fernandez, Maria E; Friedman, Daniela B; Hannon, Peggy A; Leeman, Jennifer; Moore, Alexis; Olson, Lindsay; Ory, Marcia; Risendal, Betsy; Sheble, Laura; Taylor, Vicky M; Williams, Rebecca S; Weiner, Bryan J

    2017-03-01

    The Cancer Prevention and Control Research Network (CPCRN) is a thematic network dedicated to accelerating the adoption of evidence-based cancer prevention and control practices in communities by advancing dissemination and implementation science. Funded by the Centers for Disease Control and Prevention and National Cancer Institute, CPCRN has operated at two levels: Each participating network center conducts research projects with primarily local partners as well as multicenter collaborative research projects with state and national partners. Through multicenter collaboration, thematic networks leverage the expertise, resources, and partnerships of participating centers to conduct research projects collectively that might not be feasible individually. Although multicenter collaboration is often advocated, it is challenging to promote and assess. Using bibliometric network analysis and other graphical methods, this paper describes CPCRN's multicenter publication progression from 2004 to 2014. Searching PubMed, Scopus, and Web of Science in 2014 identified 249 peer-reviewed CPCRN publications involving two or more centers out of 6,534 total. The research and public health impact of these multicenter collaborative projects initiated by CPCRN during that 10-year period were then examined. CPCRN established numerous workgroups around topics such as: 2-1-1, training and technical assistance, colorectal cancer control, federally qualified health centers, cancer survivorship, and human papillomavirus. This paper discusses the challenges that arise in promoting multicenter collaboration and the strategies that CPCRN uses to address those challenges. The lessons learned should broadly interest those seeking to promote multisite collaboration to address public health problems, such as cancer prevention and control. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  15. [Research activities in Kobe-Indonesia Collaborative Research Centers].

    PubMed

    Utsumi, Takako; Hayashi, Yoshitake; Hotta, Hak

    2013-01-01

    Kobe-Indonesia Collaborative Research Center was established in Institute of Tropical Disease (ITD), Airlangga University, Surabaya, Indonesia in 2007 under the program of ''Founding Research Centers for Emerging and Reemerging Infectious Diseases'' supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and then it has been under the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID) since 2010. Japanese researchers have been stationed at ITD, conducting joint researches on influenza, viral hepatitis, dengue and infectious diarrhea. Also, another Japanese researcher has been stationed at Faculty of Medicine, University of Indonesia, Jakarta, carrying out joint researches on'' Identification of anti-hepatitis C virus (HCV) substances and development of HCV and dengue vaccines'' in collaboration with University of Indonesia and Airlangga University through the Science and Technology Research Partnership for Sustainable Development (SATREPS) supported by the Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA) since 2009. In this article, we briefly introduce the background history of Kobe University Research Center in Indonesia, and discuss the research themes and outcomes of J-GRID and SATREPS activities.

  16. Identifying emerging research collaborations and networks: method development.

    PubMed

    Dozier, Ann M; Martina, Camille A; O'Dell, Nicole L; Fogg, Thomas T; Lurie, Stephen J; Rubinstein, Eric P; Pearson, Thomas A

    2014-03-01

    Clinical and translational research is a multidisciplinary, collaborative team process. To evaluate this process, we developed a method to document emerging research networks and collaborations in our medical center to describe their productivity and viability over time. Using an e-mail survey, sent to 1,620 clinical and basic science full- and part-time faculty members, respondents identified their research collaborators. Initial analyses, using Pajek software, assessed the feasibility of using social network analysis (SNA) methods with these data. Nearly 400 respondents identified 1,594 collaborators across 28 medical center departments resulting in 309 networks with 5 or more collaborators. This low-burden approach yielded a rich data set useful for evaluation using SNA to: (a) assess networks at several levels of the organization, including intrapersonal (individuals), interpersonal (social), organizational/institutional leadership (tenure and promotion), and physical/environmental (spatial proximity) and (b) link with other data to assess the evolution of these networks.

  17. The Healthy Aging Research Network: Modeling Collaboration for Community Impact.

    PubMed

    Belza, Basia; Altpeter, Mary; Smith, Matthew Lee; Ory, Marcia G

    2017-03-01

    As the first Centers for Disease Control and Prevention (CDC) Prevention Research Centers Program thematic network, the Healthy Aging Research Network was established to better understand the determinants of healthy aging within older adult populations, identify interventions that promote healthy aging, and assist in translating research into sustainable community-based programs throughout the nation. To achieve these goals requires concerted efforts of a collaborative network of academic, community, and public health organizational partnerships. For the 2001-2014 Prevention Research Center funding cycles, the Healthy Aging Research Network conducted prevention research and promoted the wide use of practices known to foster optimal health. Organized around components necessary for successful collaborations (i.e., governance and infrastructure, shaping focus, community involvement, and evaluation and improvement), this commentary highlights exemplars that demonstrate the Healthy Aging Research Network's unique contributions to the field. The Healthy Aging Research Network's collaboration provided a means to collectively build capacity for practice and policy, reduce fragmentation and duplication in health promotion and aging research efforts, maximize the efficient use of existing resources and generate additional resources, and ultimately, create synergies for advancing the healthy aging agenda. This collaborative model was built upon a backbone organization (coordinating center); setting of common agendas and mutually reinforcing activities; and continuous communications. Given its successes, the Healthy Aging Research Network model could be used to create new and evaluate existing thematic networks to guide the translation of research into policy and practice. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Academic-health department collaborative relationships are reciprocal and strengthen public health practice: results from a study of academic research centers.

    PubMed

    Neri, Elizabeth M; Ballman, Marie R; Lu, Hua; Greenlund, Kurt J; Grunbaum, Jo Anne

    2014-01-01

    Collaborations between academic institutions and state and local health departments have been shown to enhance the public health core functions of Assurance by improving the public health workforce's knowledge and skills. Few studies have analyzed how academic-health department collaborations enhance Assessment and Policy Development core functions. This qualitative study explores types of collaborations between health departments and Prevention Research Centers (PRCs) and how they align with the core functions. Prevention Research Centers are academic institutions funded by the Centers for Disease Control and Prevention to conduct public health research and translate research results for policies and practices. We reviewed each PRC's annual report from fiscal year 2011 and abstracted descriptions of PRC-health department collaborations. We identified 14 themes of PRC-health department collaborations and conducted a qualitative analysis to describe the dimensions and distribution of themes. Of the 37 PRCs, 36 reported 215 collaborations with 19 city, 97 county, 31 state, and 46 tribal health departments. Themes of research, survey, and surveillance aligned with the Assessment core function and evaluation, strategic planning, technical assistance, and program implementation supported the Policy Development and Assurance core functions. Overall, health departments provided on-the-ground expertise to inform PRC research, ensuring its applicability to public health practice. Reciprocally, PRCs improved data quality, increased the scientific rigor of health department processes and programs, and filled knowledge gaps within health departments. Both PRCs and health departments enhanced the relevance of public health programs and practices by grounding implementation and evaluation in community needs and views. Findings from this study demonstrate that PRC-health department collaborations often enhanced multiple core functions that could lead to implementation of evidence-based interventions and continuous quality improvement of public health administration at the local, state, and tribal levels. This study highlights the value and importance of reciprocal academic-health department partnerships.

  19. NASA-OAI Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center at Lewis Field

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    During the summer of 2002, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA- ASEE Summer Faculty Fellowship Program, that operated for 38 years at Glenn. This year s program began officially on June 3, 2002 and continued through August 9, 2002. This report is intended primarily to summarize the research activities comprising the 2002 CFP Program at Glenn. Fifteen research summaries are included.

  20. US Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance 2014 Capstone Experiment

    DTIC Science & Technology

    2016-07-01

    ARL-TR-7729 ● JULY 2016 US Army Research Laboratory US Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance...TR-7729 ● JULY 2016 US Army Research Laboratory US Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance 2014 Capstone...National Robotics Engineering Center, Pittsburgh, PA Robert Dean, Terence Keegan, and Chip Diberardino General Dynamics Land Systems, Westminster

  1. Homeland Security Collaboration: Catch Phrase or Preeminent Organizational Construct?

    DTIC Science & Technology

    2009-09-01

    collaborative effort? C. RESEARCH METHODOLOGY This research project utilized a modified case study methodology. The traditional case study method ...discussing the research method , offering smart practices and culminate with findings and recommendations. Chapter II Homeland Security Collaboration...41 Centers for Regional Excellence, “Building Models.” 16 Chapter III Research Methodology:  Modified Case Study Method is

  2. The John Wesley Powell Center for Analysis and Synthesis

    USGS Publications Warehouse

    Baron, Jill S.; Goldhaber, Martin

    2011-01-01

    The Powell Center provides an environment for cross-disciplinary scientific collaboration. The Center expands U.S. Geological Survey earth system science synthesis research activities by fostering the innovation that results from accumulated knowledge, constructive errors, and the "information spillover" that emerges from collaborative settings. Working Groups at the Powell Center use existing data to produce new knowledge..

  3. Collaboration across eight research centers: unanticipated benefits and outcomes for project managers.

    PubMed

    Perez, Norma A; Weathers, Benita; Willis, Marilyn; Mendez, Jacqueline

    2013-02-01

    Managers of transdisciplinary collaborative research lack suitable didactic material to support the implementation of research methodologies and to build ongoing partnerships with community representatives and peers, both between and within multiple academic centers. This article will provide insight on the collaborative efforts of project managers involved in multidisciplinary research and their subsequent development of a tool kit for research project managers and/or directors. Project managers from the 8 Centers for Population Health and Health Disparities across the nation participated in monthly teleconferences to share experiences and offer advice on how to achieve high participation rates and maintain community involvement in collaboration with researchers and community leaders to achieve the common goal of decreasing health inequities. In the process, managers recognized and seized the opportunity to produce a tool kit that was designed for future project managers and directors. Project managers in geographically distinct locations maintained a commitment to work together over 4 years and subsequently built upon an existing communications network to design a tool kit that could be disseminated easily to a diverse audience.

  4. Structure and Evolution of Scientific Collaboration Networks in a Modern Research Collaboratory

    ERIC Educational Resources Information Center

    Pepe, Alberto

    2010-01-01

    This dissertation is a study of scientific collaboration at the Center for Embedded Networked Sensing (CENS), a modern, multi-disciplinary, distributed laboratory involved in sensor network research. By use of survey research and network analysis, this dissertation examines the collaborative ecology of CENS in terms of three networks of…

  5. About BTTC | Center for Cancer Research

    Cancer.gov

    About Combined Forces Drive BTTC The Brain Tumor Trials Collaborative (BTTC) was created in 2003 - a combined effort of many professionals, entities and organizations to help those suffering from brain tumors. The National Cancer Institute's (NCI) Center for Cancer Research serves as the lead institution and provides the administrative infrastructure, clinical database and oversight for the collaborative.

  6. The NASA Short-Term Prediction Research and Transition (SPoRT) Center: Opportunities for Collaboration in the Great Lakes Region

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2010-01-01

    The presentation slides include: The SPoRT Center, History and Future of SPoRT, Great Lakes Applications, Great Lakes Forecasting Issues, Applications to the WRF-EMS, Precipitation Science, Lake Effect Precipitation, Sensitivity to Microphysics, Exploring New Schemes, Opportunities for Collaboration, and SPoRT Research and Development.

  7. The center for plant and microbial complex carbohydrates at the University of Georgia Complex Carbohydrate Research Center. Five-year report, September 15, 1987--December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albersheim, Peter; Darvill, Alan

    1992-05-01

    The Complex Carbohydrate Research Center (CCRC) is the home of ten independent but complementary interdisciplinary research groups led by nine regular faculty and one adjunct faculty. The research of these groups represents a broad spectrum of interests, and they are involved in about 90 collaborations with their CCRC and UGA colleagues and with scientists at other institutions and companies in the US, Canada, Europe, Israel, and Japan. The hallmark of the CCRC is the collaborative, interactive environment encouraged by its directors, faculty and tong-term staff. Newcomers to the CCRC or short-term members soon learn that everyone benefits from this process.more » The team-oriented approach in carbohydrate science translates into the day-today generous giving of one's time and expertise to the work of others, whether it be in sharing specialized instrumentation, participating in the design of experiments and interpretalon of data, providing service to scientists outside the CCRC, or joining collaborative projects. The CCRC is founded on the principle that the cross-fertilization of ideas and know-how leads to the synergistic advancement of science. This report contains a series of appendices that document the extent and breadth of the Plant and Microbial Carbohydrate Center's contributions to collaborative research and education. Several collaborative research projects that have received postdoctoral research associate support from the Grant are highlighted, as these projects are particularly illustrative of the wide-ranging collaborations that have evolved as a result of this Grant and the quality of the science that the Grant enables.« less

  8. Human Centered Hardware Modeling and Collaboration

    NASA Technical Reports Server (NTRS)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  9. Strengthening Statistics Graduate Programs with Statistical Collaboration--The Case of Hawassa University, Ethiopia

    ERIC Educational Resources Information Center

    Goshu, Ayele Taye

    2016-01-01

    This paper describes the experiences gained from the established statistical collaboration center at Hawassa University as part of LISA 2020 network. The center has got similar setup as LISA at Virginia Tech. Statisticians are trained on how to become more effective scientific collaborators with researchers. The services are being delivered since…

  10. University Research Centers: Heuristic Categories, Issues, and Administrative Strategies

    ERIC Educational Resources Information Center

    Hall, Kelly

    2011-01-01

    University-based research centers can bring prestige and revenue to the institutions of higher education with which they are affiliated. Collaborating with corporations, units of government, and foundations, centers provide services to organizational leaders, policy makers, and communities. University research centers continue to increase in…

  11. Perceptions and Expectations at New York State's Centers for Advanced Technology: Some Implications for Research Management.

    ERIC Educational Resources Information Center

    Bitting, Robert K.

    1989-01-01

    An evaluation of the 10 Centers for Advanced Ceramic Technology in New York State's collaborative research and development program yielded unexpected perceptions held by center, government, and industry personnel. Implications for the research effort, including the role of basic research and the importance of the research center administrators,…

  12. The Power of Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2005-09-20

    Institutions Lawrence Livermore National Laboratory conduct similar or complementary research often excel through collaboration. Indeed, much of Lawrence Livermore's research involves collaboration with other institutions, including universities, other national laboratories, government agencies, and private industry. In particular, Livermore's strategic collaborations with other University of California (UC) campuses have proven exceptionally successful in combining basic science and applied multidisciplinary research. In joint projects, the collaborating institutions benefit from sharing expertise and resources as they work toward their distinctive missions in education, research, and public service. As Laboratory scientists and engineers identify resources needed to conduct their work, they often turn tomore » university researchers with complementary expertise. Successful projects can expand in scope to include additional scientists and engineers both from the Laboratory and from UC, and these projects may become an important element of the research portfolios of the cognizant Livermore directorate and the university department. Additional funding may be provided to broaden or deepen a research project or perhaps develop it for transfer to the private sector for commercial release. Occasionally, joint projects evolve into a strategic collaboration at the institutional level, attracting the attention of the Laboratory director and the UC chancellor. Government agencies or private industries may contribute funding in recognition of the potential payoff of the joint research, and a center may be established at one of the UC campuses. Livermore scientists and engineers and UC faculty are recruited to these centers to focus on a particular area and achieve goals through interdisciplinary research. Some of these researchers hold multilocation appointments, allowing them to work at Livermore and another UC campus. Such centers also attract postdoctoral researchers and graduate students pursuing careers in the centers specialized areas of science. foster university collaboration is through the Laboratory's institutes, which have been established to focus university outreach efforts in fields of scientific importance to Livermore's programs and missions. Some of these joint projects may grow to the level of a strategic collaboration. Others may assist in Livermore's national security mission; provide a recruiting pipeline from universities to the Laboratory; or enhance university interactions and the vitality of Livermore's science and technology environment through seminars, workshops, and visitor programs.« less

  13. Frederick National Lab Collaborates with Moffitt Cancer Center on HPV and Oral Cancer | FNLCR Staging

    Cancer.gov

    The Frederick National Lab and Moffitt Cancer Center have established a collaboration to research antibody responses against the human papillomavirus (HPV) in males following administration of the Gardasil vaccine. The vaccine prevents HPV infections

  14. Collaborative Research to Optimize Warfighter Nutrition II (CROWN II)

    DTIC Science & Technology

    2016-09-01

    Award Number: W81XWH-14-1-0335 TITLE: Collaborative Research to Optimize Warfighter Nutrition II (CROWN II) PRINCIPAL INVESTIGATOR: Jennifer C...2016 4. TITLE AND SUBTITLE Collaborative Research to Optimize Warfighter Nutrition II (CROWN II) 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1...has been forged between USARIEM and Pennington Biomedical Research Center (PBRC) since 1988. Objective: CROWN II conducts research in nutrition

  15. 2015 NIEHS/EPA Children’s Centers Grantees Meeting Agenda

    EPA Pesticide Factsheets

    The Meeting will enable Children’s Centers program researchers to present novel findings, discuss lessons learned, identify challenges, review methodologies as well as to identify collaborative opportunities for future research efforts between the Centers.

  16. Greater than the sum of their parts: the benefits of Youth Violence Prevention Centers.

    PubMed

    Azrael, Deborah; Hemenway, David

    2011-09-01

    Academic Centers for Excellence on Youth Violence Prevention (ACE), which support a broad range of activities over and above RO1-type research projects, can add significantly to a community's capacity to respond to youth violence. We use the example of the Harvard Youth Violence Prevention Center to describe the types of research-practice collaborations these centers can promote, as well as the ways in which these collaborations can foster adoption of program planning, development, implementation and evaluation practices consistent with evidence-based approaches to youth violence prevention. Throughout, we describe the ways in which the existence of a center led, under the ACE format, to research, policy and practice opportunities that would not have existed in the absence of a center.

  17. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  18. Multi-Institution Research Centers: Planning and Management Challenges

    ERIC Educational Resources Information Center

    Spooner, Catherine; Lavey, Lisa; Mukuka, Chilandu; Eames-Brown, Rosslyn

    2016-01-01

    Funding multi-institution centers of research excellence (CREs) has become a common means of supporting collaborative partnerships to address specific research topics. However, there is little guidance for those planning or managing a multi-institution CRE, which faces specific challenges not faced by single-institution research centers. We…

  19. Summary Report: 2017 Annual Grantees Meeting of the NIH-EPA Centers of Excellence on Environmental Health Disparities Research

    EPA Science Inventory

    Approximately 100 researchers, trainees, students, and community partners attended the 2-day grantees meeting. In addition to research updates by the five EHD Centers, the meeting featured working group discussions around topics such as research translation, cross-center collabor...

  20. Establishing a Research Center: The Minority Male Community College Collaborative (M2C3)

    ERIC Educational Resources Information Center

    Wood, J. Luke; Urias, Marissa Vasquez; Harris, Frank, III

    2016-01-01

    This chapter describes the establishment of the Minority Male Community College Collaborative (M2C3), a research and practice center at San Diego State University. M2C3 partners with community colleges across the United States to enhance access, achievement, and success among men of color. This chapter begins with a description of the national…

  1. ENVIRONMENTAL BIOINFORMATICS AND COMPUTATIONAL TOXICOLOGY CENTER

    EPA Science Inventory

    The Center activities focused on integrating developmental efforts from the various research projects of the Center, and collaborative applications involving scientists from other institutions and EPA, to enhance research in critical areas. A representative sample of specif...

  2. The DOE Bioenergy Research Centers: History, Operations, and Scientific Output

    DOE PAGES

    Slater, Steven C.; Simmons, Blake A.; Rogers, Tamara S.; ...

    2015-08-20

    Over the past 7 years, the US Department of Energy's Office of Biological and Environmental Research has funded three Bioenergy Research Centers (BRCs). These centers have developed complementary and collaborative research portfolios that address the key technical and economic challenges in biofuel production from lignocellulosic biomass. All three centers have established a close, productive relationship with DOE's Joint Genome Institute (JGI). This special issue of Bioenergy Research samples the breadth of basic science and engineering work required to underpin a diverse, sustainable, and robust biofuel industry. In this report, which was collaboratively produced by all three BRCs, we discuss themore » BRC contributions over their first 7 years to the development of renewable transportation fuels. In additon, we also highlight the BRC research published in the current issue and discuss technical challenges in light of recent progress.« less

  3. Bridging the Gap Between Research and Operations in the National Weather Service: The Huntsville Model

    NASA Technical Reports Server (NTRS)

    Darden, C.; Carroll, B.; Lapenta, W.; Jedlovec, G.; Goodman, S.; Bradshaw, T.; Gordon, J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The National Weather Service Office (WFO) in Huntsville, Alabama (HUN) is slated to begin full-time operations in early 2003. With the opening of the Huntsville WFO, a unique opportunity has arisen for close and productive collaboration with scientists at NASA Marshall Space Flight Center (MSFC) and the University of Alabama Huntsville (UAH). As a part of the collaboration effort, NASA has developed the Short-term Prediction Research and Transition (SPoRT) Center. The mission of the SPoRT center is to incorporate NASA earth science technology and research into the NWS operational environment. Emphasis will be on improving mesoscale and short-term forecasting in the first 24 hours of the forecast period. As part of the collaboration effort, the NWS and NASA will develop an implementation and evaluation plan to streamline the integration of the latest technologies and techniques into the operational forecasting environment. The desire of WFO HUN, NASA, and UAH is to provide a model for future collaborative activities between research and operational communities across the country.

  4. Research overview at USDA-ARS Coastal Plains, Soil, Water and Plant Research Center, and potential collaborative research projects with RDA - NIAS

    USDA-ARS?s Scientific Manuscript database

    The Center at Florence is one of the ninety research units of the United States Department of Agriculture - Agricultural Research Service (USDA-ARS). The mission of the Center is to conduct research and transfer solutions that improve agricultural production, protect the environment, and enhance the...

  5. Collaborative Systems Biology Projects for the Military Medical Community.

    PubMed

    Zalatoris, Jeffrey J; Scheerer, Julia B; Lebeda, Frank J

    2017-09-01

    This pilot study was conducted to examine, for the first time, the ongoing systems biology research and development projects within the laboratories and centers of the U.S. Army Medical Research and Materiel Command (USAMRMC). The analysis has provided an understanding of the breadth of systems biology activities, resources, and collaborations across all USAMRMC subordinate laboratories. The Systems Biology Collaboration Center at USAMRMC issued a survey regarding systems biology research projects to the eight U.S.-based USAMRMC laboratories and centers in August 2016. This survey included a data call worksheet to gather self-identified project and programmatic information. The general topics focused on the investigators and their projects, on the project's research areas, on omics and other large data types being collected and stored, on the analytical or computational tools being used, and on identifying intramural (i.e., USAMRMC) and extramural collaborations. Among seven of the eight laboratories, 62 unique systems biology studies were funded and active during the final quarter of fiscal year 2016. Of 29 preselected medical Research Task Areas, 20 were associated with these studies, some of which were applicable to two or more Research Task Areas. Overall, studies were categorized among six general types of objectives: biological mechanisms of disease, risk of/susceptibility to injury or disease, innate mechanisms of healing, diagnostic and prognostic biomarkers, and host/patient responses to vaccines, and therapeutic strategies including host responses to therapies. We identified eight types of omics studies and four types of study subjects. Studies were categorized on a scale of increasing complexity from single study subject/single omics technology studies (23/62) to studies integrating results across two study subject types and two or more omics technologies (13/62). Investigators at seven USAMRMC laboratories had collaborations with systems biology experts from 18 extramural organizations and three other USAMRMC laboratories. Collaborators from six USAMRMC laboratories and 58 extramural organizations were identified who provided additional research expertise to these systems biology studies. At the end of fiscal year 2016, USAMRMC laboratories self-reported 66 systems biology/computational biology studies (62 of which were unique) with 25 intramural and 81 extramural collaborators. Nearly two-thirds were led by or in collaboration with the U.S. Army Telemedicine and Advanced Technology Research Center/Department of Defense Biotechnology High-Performance Computing Software Applications Institute and U.S. Army Center for Environmental Health Research. The most common study objective addressed biological mechanisms of disease. The most common types of Research Task Areas addressed infectious diseases (viral and bacterial) and chemical agents (environmental toxicant exposures, and traditional and emerging chemical threats). More than 40% of the studies (27/62) involved collaborations between the reporting USAMRMC laboratory and one other organization. Nearly half of the studies (30/62) involved collaborations between the reporting USAMRMC laboratory and at least two other organizations. These survey results indicate that USAMRMC laboratories are compliant with data-centric policy and guidance documents whose goals are to prevent redundancy and promote collaborations by sharing data and leveraging capabilities. These results also serve as a foundation to make recommendations for future systems biology research efforts. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  6. Research Collaborations Between Universities and Department of Defense Laboratories

    DTIC Science & Technology

    2014-07-31

    collaboration and often combines government, industry , and university partners. Must be competed. Medium to long term Yes Yes Yes Yes...can reach out to third parties such as industry or Federally Funded Research and Development Centers (FFRDCs) without the having to go through...position at DOD laboratories. Students learn about research that is important to the DOD, and university- industry collaborations are a great way to

  7. Toward a Global Community of Scholars. The Special Partnership between the Carnegie Foundation for the Advancement of Teaching and China's National Center for Education Development Research, 1988-1997.

    ERIC Educational Resources Information Center

    Ch'i, Hsi-sheng

    This volume traces the history of a collaboration between the Carnegie Foundation for the Advancement of Teaching and China's National Center for Education Development Research. The collaboration, which began in 1988, was initiated to conduct a comparative study of education in the two countries through information exchanges and seminars.…

  8. The Begun Center for Violence Prevention Research and Education at Case Western Reserve University

    ERIC Educational Resources Information Center

    Flannery, Daniel J.; Singer, Mark I.

    2015-01-01

    Established in the year 2000, the Begun Center for Violence Prevention Research and Education is a multidisciplinary center located at a school of social work that engages in collaborative, community-based research and evaluation that spans multiple systems and disciplines. The Center currently occupies 4,200 sq. ft. with multiple offices and…

  9. Engaging Communities in Education and Research: PBRNs, AHEC, and CTSA

    PubMed Central

    Westfall, John M.; Ingram, Beth; Navarro, Daniel; Magee, Deidre; Niebauer, Linda; Zittleman, Linda; Fernald, Douglas; Pace, Wilson

    2012-01-01

    Abstract Background: Community engagement has become a prominent element in medical research and is an important component of the Clinical and Translational Science Awards program. Area Health Education Centers engage communities in education and workforce development. Methods: Engaging Communities in Education and Research (ECER) is a successful collaboration among the Colorado Area Health Education Center (AHEC), the Colorado Clinical Translational Science Institute, and Shared Network of Collaborative Ambulatory Practices and Partners—Colorado’s practice‐based research collaborative. The ECER Conference is an annual conference of community members, health care providers, clinical preceptors, AHEC board members, university faculty, primary care investigators, program administrators, and community organization leaders. Results: Over 1,000 people have participated in the ECER Conference representing all regions of Colorado. Several projects from the “new ideas” breakout session have been developed and completed. Six‐month follow‐up provided evidence of numerous new collaborations, campus‐community partnerships, and developing research projects. Several new collaborations highlight the long‐term nature of building on relationships started at the ECER Conference. Discussion and Conclusion: ECER has been a successful collaboration to develop and support campus‐community collaborations in Colorado. Although seemingly just a simple 3‐day conference, we have found that this event has lead to many important partnerships. Clin Trans Sci 2012; Volume #: 1–9 PMID:22686202

  10. ARTEMIS: a collaborative framework for health care.

    PubMed

    Reddy, R; Jagannathan, V; Srinivas, K; Karinthi, R; Reddy, S M; Gollapudy, C; Friedman, S

    1993-01-01

    Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system.

  11. Virginia Water Resources Research Center - at Virginia Tech since 1965

    Science.gov Websites

    Virginia Water Resources Research Center at Virginia Tech since 1965 Search for: Search Skip to collaborative research, extension, and education programs to develop solutions to water resource challenges. We Monitoring Council Conference: March 21, 2018 The Virginia Water Resources Research Center at Virginia Tech

  12. Russian delegation visits NIH and NCI to discuss research collaboration

    Cancer.gov

    The NCI Center for Global Health hosted a delegation from the Russian Foundation for Basic Research to discuss ongoing and future collaborations in cancer research. The delegation was accompanied by representatives from the US Embassy in Moscow and the Embassy of the Russian Federation in Washington DC.

  13. Ohio Space Grant Funds for Scholarship/Fellowship Students

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Ohio Aerospace Institute (OAT), a consortium of university, industry, and government, was formed to promote collaborative aerospace-related research, graduate education, and technology transfer among the nine Ohio universities with doctoral level engineering programs, NASA Lewis Research Center, Air Force Wright Laboratory, and industry. OAT provides enhanced opportunities for affiliates to utilize federal government research laboratories and facilities at Lewis Research Center (LeRC) and Wright Laboratory. As a component of the graduate education and research programs, students and faculty from the member universities, LeRC engineers and scientists, and visiting investigators from industry, government and non-member universities conduct collaborative research projects using the unique facilities at LeRC, and will participate in collaborative education programs. Faculty from the member universities who hold collateral appointments at OAT, and government and industry experts serving as adjunct faculty, can participate in the supervision of student research.

  14. NINR Centers of Excellence: A logic model for sustainability, leveraging resources and collaboration to accelerate cross-disciplinary science

    PubMed Central

    Dorsey, Susan G.; Schiffman, Rachel; Redeker, Nancy S.; Heitkemper, Margaret; McCloskey, Donna Jo; Weglicki, Linda S.; Grady, Patricia A.

    2014-01-01

    The NINR Centers of Excellence program is a catalyst enabling institutions to develop infrastructure and administrative support for creating cross-disciplinary teams that bring multiple strategies and expertise to bear on common areas of science. Centers are increasingly collaborative with campus partners and reflect an integrated team approach to advance science and promote the development of scientists in these areas. The purpose of this paper is to present a NINR Logic Model for Center Sustainability. The components of the logic model were derived from the presentations and robust discussions at the 2013 NINR Center Directors’ meeting focused on best practices for leveraging resources and collaboration as methods to promote center sustainability. Collaboration through development and implementation of cross-disciplinary research teams is critical to accelerate the generation of new knowledge for solving fundamental health problems. Sustainability of centers as a long-term outcome beyond the initial funding can be enhanced by thoughtful planning of inputs, activities, and leveraging resources across multiple levels. PMID:25085328

  15. 78 FR 27036 - Final Priority. National Institute on Disability and Rehabilitation Research-Traumatic Brain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... individuals with disabilities in conducting TBIMS research. Types of Priorities When inviting applications for... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project AGENCY... Services announces a priority for the Disability and Rehabilitation Research Projects and Centers Program...

  16. Collaborative engagement experiment (CEE)

    NASA Astrophysics Data System (ADS)

    Wade, Robert L.; Reames, Joseph M.

    2005-05-01

    Unmanned ground and air systems operating in collaboration have the potential to provide future Joint Forces a significant capability for operations in complex terrain. Ground and air collaborative engagements potentially offer force conservation, perform timely acquisition and dissemination of essential combat information, and can eliminate high value and time critical targets. These engagements can also add considerably to force survivability by reducing soldier and equipment exposure during critical operations. The Office of the Secretary of Defense, Joint Robotics Program (JRP) sponsored Collaborative Engagement Experiment (CEE) is a consolidation of separate Air Force, Army and Navy collaborative efforts to provide a Joint capability. The Air Force Research Laboratory (AFRL), Material and Manufacturing Directorate, Aerospace Expeditionary Force Division, Force Protection Branch (AFRLMLQF), The Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) Joint Technology Center (JTC)/Systems Integration Laboratory (SIL), and the Space and Naval Warfare Systems Center-San Diego (SSC San Diego) are conducting technical research and proof of principle for an envisioned operational concept for extended range, three dimensional, collaborative operations between unmanned systems, with enhanced situational awareness for lethal operations in complex terrain. This program will assess information requirements and conduct experiments to identify and resolve technical risks for collaborative engagements using Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs). It will research, develop and physically integrate multiple unmanned systems and conduct live collaborative experiments. Modeling and Simulation systems will be upgraded to reflect engineering fidelity levels to greater understand technical challenges to operate as a team. This paper will provide an update of a multi-year program and will concentrate primarily on the JTC/SIL efforts. Other papers will outline in detail the Air Force and Navy portions of this effort.

  17. 78 FR 13600 - Proposed Priority-National Institute on Disability and Rehabilitation Research-Traumatic Brain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... designs. The research must focus on outcomes in one or more of the following domains identified in NIDRR's... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project [CFDA Number... Services proposes a priority under the Disability and Rehabilitation Research Projects and Centers Program...

  18. Research at USAFA 2010

    DTIC Science & Technology

    2010-01-01

    optical surveillance program for Space Situational Awareness (SSA), cadet First class Sean harte’s break-through repair technique for enamel ...also undertaken several collaborative projects to include Air Force Research Lab projects such as crack growth studies and a c-130 center Wingbox...research. the research projects involved in the collaboration include energy harvesting, corrosion and stress corrosion cracking of aging aircraft

  19. ARTEMIS: a collaborative framework for health care.

    PubMed Central

    Reddy, R.; Jagannathan, V.; Srinivas, K.; Karinthi, R.; Reddy, S. M.; Gollapudy, C.; Friedman, S.

    1993-01-01

    Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system. PMID:8130536

  20. Recipients of Regional Centers of Research Excellence (RCREs) P20 Grant Awards Announced

    Cancer.gov

    NCI, Center for Global Health (CGH) release of the applications represents novel global collaborations charged with planning and designing sustainable, Regional Centers of Research Excellence (RCREs) for non-communicable diseases, including cancer, in low- and middle-income countries (LMICs) or regions.

  1. Collaborative Research Goes to School: Guided Inquiry with Computers in Classrooms. Technical Report.

    ERIC Educational Resources Information Center

    Wiske, Martha Stone; And Others

    Twin aims--to advance theory and to improve practice in science, mathematics, and computing education--guided the Educational Technology Center's (ETC) research from its inception in 1983. These aims led ETC to establish collaborative research groups in which people whose primary interest was classroom teaching and learning, and researchers…

  2. Scientific Grid activities and PKI deployment in the Cybermedia Center, Osaka University.

    PubMed

    Akiyama, Toyokazu; Teranishi, Yuuichi; Nozaki, Kazunori; Kato, Seiichi; Shimojo, Shinji; Peltier, Steven T; Lin, Abel; Molina, Tomas; Yang, George; Lee, David; Ellisman, Mark; Naito, Sei; Koike, Atsushi; Matsumoto, Shuichi; Yoshida, Kiyokazu; Mori, Hirotaro

    2005-10-01

    The Cybermedia Center (CMC), Osaka University, is a research institution that offers knowledge and technology resources obtained from advanced researches in the areas of large-scale computation, information and communication, multimedia content and education. Currently, CMC is involved in Japanese national Grid projects such as JGN II (Japan Gigabit Network), NAREGI and BioGrid. Not limited to Japan, CMC also actively takes part in international activities such as PRAGMA. In these projects and international collaborations, CMC has developed a Grid system that allows scientists to perform their analysis by remote-controlling the world's largest ultra-high voltage electron microscope located in Osaka University. In another undertaking, CMC has assumed a leadership role in BioGrid by sharing its experiences and knowledge on the system development for the area of biology. In this paper, we will give an overview of the BioGrid project and introduce the progress of the Telescience unit, which collaborates with the Telescience Project led by the National Center for Microscopy and Imaging Research (NCMIR). Furthermore, CMC collaborates with seven Computing Centers in Japan, NAREGI and National Institute of Informatics to deploy PKI base authentication infrastructure. The current status of this project and future collaboration with Grid Projects will be delineated in this paper.

  3. UCSF Small Molecule Discovery Center: innovation, collaboration and chemical biology in the Bay Area.

    PubMed

    Arkin, Michelle R; Ang, Kenny K H; Chen, Steven; Davies, Julia; Merron, Connie; Tang, Yinyan; Wilson, Christopher G M; Renslo, Adam R

    2014-05-01

    The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.

  4. Promoting research partnerships to reduce health disparities among vulnerable populations: sharing expertise between majority institutions and historically black universities.

    PubMed

    Hutchinson, M Katherine; Davis, Bertha; Jemmott, Loretta Sweet; Gennaro, Susan; Tulman, Lorraine; Condon, Esther H; Montgomery, Arlene J; Servonsky, E Jane

    2007-01-01

    This chapter focuses on promoting cultural competence in research and the care of vulnerable populations by establishing inter-university nursing partnership centers for health disparities research between historically Black universities and minority-serving institutions and research-intensive majority institutions. The Hampton-Penn Center to Reduce Health Disparities (HPC), an inter-university collaborative center funded through the National Institutes of Health (NIH) National Institute of Nursing Research (NINR) P20 funding mechanism, is discussed as the exemplar. The mission of the Hampton-Penn Center is to promote culturally competent research on health promotion and disease prevention and the examination of how culture, race and ethnicity and their interactions with the health care system and the larger society influence health outcomes and the occurrence of health disparities. The history, goals, and conceptual model underlying this collaborative effort between the University of Pennsylvania and Hampton University Schools of Nursing are described as are the accomplishments and lessons learned to date. Based upon the Hampton-Penn experience, recommendations for similar collaborations to reduce health disparities among vulnerable populations are made in three major areas: (a) increasing the study of the multi-system level factors that contribute to health disparities among vulnerable populations, (b) promoting the development of culturally competent research on health disparities, and (c) promoting the recruitment and training of health researchers who are themselves members of vulnerable populations.

  5. Going Further: A Roadmap to the Works of the ACCLAIM Research Initiative. Working Paper No. 42

    ERIC Educational Resources Information Center

    Wilson, Zach; Howley, Craig

    2012-01-01

    "Going Further" presents a roadmap to the works of the ACCLAIM (Appalachian Collaborative Center for Learning, Assessment, and Instruction in Mathematics) Research Initiative, the research effort of one the Centers for Learning and Teaching (CLTs) created with a grant (2001-2005) from the National Science Foundation. The Center began…

  6. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  7. Beyond Career Collection Development: Academic Libraries Collaborating with Career Center for Student Success

    ERIC Educational Resources Information Center

    Pun, Raymond; Kubo, Hiromi

    2017-01-01

    This paper explores a case study at Fresno State and how the library partners with the career center to support student success in career placement and advancement. The article will share opportunities and challenges in forming and maintaining such partnership and offer some best practices to deliver career research workshops collaboratively.

  8. Play in the Sandpit: A University and a Child-Care Center Collaborate in Facilitated-Action Research

    ERIC Educational Resources Information Center

    Jarrett, Olga; French-Lee, Stacey; Bulunuz, Nermin; Bulunuz, Mizrap

    2010-01-01

    Sand play commonly occupies children at preschools, child-development centers, and school and park playgrounds. The authors review the research on sand play and present a small study on outdoor sand play conducted at a university-based, child-development center using a method they call "facilitated-action research." This study had four…

  9. Reducing Cancer Disparities Through Innovative Partnerships: A Collaboration of the South Carolina Cancer Prevention and Control Research Network and Federally Qualified Health Centers

    PubMed Central

    Young, Vicki M.; Freedman, Darcy A.; Adams, Swann Arp; Brandt, Heather M.; Xirasagar, Sudha; Felder, Tisha M.; Ureda, John R.; Hurley, Thomas; Khang, Leepao; Campbell, Dayna; Hébert, James R.

    2011-01-01

    The South Carolina Cancer Prevention and Control Research Network, in partnership with the South Carolina Primary Health Care Association, and Federally Qualified Health Centers (FQHCs), aims to promote evidence-based cancer interventions in community-based primary care settings. Partnership activities include (1) examining FQHCs’ readiness and capacity for conducting research, (2) developing a cancer-focused data sharing network, and (3) integrating a farmers’ market within an FQHC. These activities identify unique opportunities for public health and primary care collaborations. PMID:21932143

  10. Partnering with American Indian communities in health using methods of strategic collaboration.

    PubMed

    Rajaram, Shireen S; Grimm, Brandon; Giroux, Jennifer; Peck, Magda; Ramos, Athena

    2014-01-01

    The Association for Prevention Teaching and Research (APTR) sponsored six regional workshops in 2010 on community engagement and community-engaged research. One of the six workshops was a collaborative effort between the Great Plains Tribal Chairman's Health Board (GPTCHB)-Northern Plains Tribal Epidemiology Center and the College of Public Health at the University of Nebraska Medical Center (UNMC-COPH). To create a meaningful and dynamic forum for the exchange of ideas and co-learning between researchers from urban, tribal and nontribal communities and to build the groundwork for development of sustainable partnerships between researchers and American Indian (AI) communities to eliminate health disparities. To enhance meaningful community engagement, we utilized methods of Strategic Collaboration using the Appreciative Inquiry, 4D Change Process Model and designed several interactive group activities including Collaborative Learning and Understanding Exercises (CLUE) and the Research Café. The key themes that emerged from the interactive sessions stressed the importance of building relationships and trust; mutual use and sharing of data; and acquiring knowledge, skills, and abilities to enable sustainable research partnerships with AI communitiesConclusions: Innovative, dynamic, and strategic collaborative methods of Appreciative Inquiry and the World Café can served to engage people in a constructive dialogue to create a shared vision and plan for more meaningful research partnerships based on principles of equity and social justice, essential for the elimination of health disparities. These collaborative methods can be replicated and adapted in diverse communities, locally, nationally, and globally.

  11. Model collaboration: university library system and rehabilitation research team to advance telepractice knowledge.

    PubMed

    Deliyannides, Timothy S; Gabler, Vanessa

    2012-01-01

    This Publisher's Report describes the collaboration between a university library system's scholarly communication and publishing office and a federally funded research team, the Rehabilitation Engineering Research Center (RERC) on Telerehabilitation. This novel interdisciplinary collaboration engages librarians, information technologists, publishing professionals, clinicians, policy experts, and engineers and has produced a new Open Access journal, International Journal of Telerehabilitation, and a developing, interactive web-based product dedicated to disseminating information about telerehabilitation. Readership statistics are presented for March 1, 2011 - February 29, 2012.

  12. A pilot study of neurointerventional research level of evidence and collaboration.

    PubMed

    Fargen, Kyle M; Mocco, J; Spiotta, Alejandro M; Rai, Ansaar; Hirsch, Joshua A

    2017-07-01

    No studies have sought to provide a quantitative or qualitative critique of research in the field of neurointerventional surgery. To analyze recent publications from the Journal of Neurointerventional Surgery ( JNIS ) to test a new method for assessing research and collaboration. We reviewed all JNIS Online First publications from 25 February 2015 to 24 February 2016. All publications-human or non-human research, systematic reviews, meta-analyses, or literature reviews-were included; editorials and commentaries were excluded. For each publication, study design, number of patients, authors, contributing centers, and study subject were recorded. Level of evidence was defined using a new scale. A total of 206 articles met inclusion criteria. Only 4% were prospective studies. Twenty-eight per cent of scientific research featured patient series of nine or less. The majority of publications were categorized as low-level evidence (91%). Forty-seven per cent involved individuals from a single center, with 87% having collaboration from three or fewer centers. International collaboration was present in 19%. While 256 institutions from 31 countries were represented, 66% were represented in only one publication. We queried JNIS Online First articles from a 1-year period in a pilot study to test a new method of analyzing research quality and collaboration. The methodology appears to adequately quantify the studies into evidence tiers that emulate previously published, widely accepted scales. This may be useful for future comparison of peer-reviewed journals or for studying the quality of research being performed in different disease processes or medical specialties. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. The Creation and Role of the USDA Biomass Research Centers

    Treesearch

    William F. Anderson; Jeffery Steiner; Randy Raper; Ken Vogel; Terry Coffelt; Brenton Sharratt; Bob Rummer; Robert L. Deal; Alan Rudie

    2011-01-01

    The Five USDA Biomass Research Centers were created to facilitate coordinated research to enhance the establishment of a sustainable feedstock production for bio-based renewable energy in the United States. Scientists and staff of the Agricultural Research Service (ARS) and Forest Service (FS) within USDA collaborate with other federal agencies, universities and...

  14. Research and Action: The Role of an Educational Center.

    ERIC Educational Resources Information Center

    Flugman, Bert

    1986-01-01

    Discusses the Center for Advanced Study in Education (CASE) in Manhattan as a representative research and development center in a collaborative role with the New York City Schools. Presents its role as educational problem solver for immediate solutions rather than for interesting findings. Provides examples of three on-going problem solving…

  15. Center for Semiconductor Materials and Device Modeling: expanding collaborative research opportunities between government, academia, and industry

    NASA Astrophysics Data System (ADS)

    Perconti, Philip; Bedair, Sarah S.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith

    2016-09-01

    To increase Soldier readiness and enhance situational understanding in ever-changing and complex environments, there is a need for rapid development and deployment of Army technologies utilizing sensors, photonics, and electronics. Fundamental aspects of these technologies include the research and development of semiconductor materials and devices which are ubiquitous in numerous applications. Since many Army technologies are considered niche, there is a lack of significant industry investment in the fundamental research and understanding of semiconductor technologies relevant to the Army. To address this issue, the US Army Research Laboratory is establishing a Center for Semiconductor Materials and Device Modeling and seeks to leverage expertise and resources across academia, government and industry. Several key research areas—highlighted and addressed in this paper—have been identified by ARL and external partners and will be pursued in a collaborative fashion by this Center. This paper will also address the mechanisms by which the Center is being established and will operate.

  16. A New Business Model for Problem Solving-Infusing Open Collaboration and Innovation Health and Human Services

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Eliabeth E.; Fogarty, Jennifer A.; Rando, Cynthia M.

    2011-01-01

    This slide presentation reviews the Space Life Sciences Directorate (SLSD) new business model for problem solving, with emphasis on open collaboration and innovation. The topics that are discussed are: an overview of the work of the Space Life Sciences Directorate and the strategic initiatives that arrived at the new business model. A new business model was required to infuse open collaboration/innovation tools into existing models for research, development and operations (research announcements, procurements, SBIR/STTR etc). This new model involves use of several open innovation partnerships: InnoCentive, Yet2.com, TopCoder and NASA@work. There is also a new organizational structure developed to facilitate the joint collaboration with other NASA centers, international partners, other U.S. Governmental organizations, Academia, Corporate, and Non-Profit organizations: the NASA Human Health and Performance Center (NHHPC).

  17. Collaboration and Team Science Field Guide - Center for Research Strategy

    Cancer.gov

    Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.

  18. Brain Tumor Trials Collaborative | Center for Cancer Research

    Cancer.gov

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  19. Assessment of short-sea shipping options for domestic applications.

    DOT National Transportation Integrated Search

    2009-12-23

    This report has been prepared for Dr. Paul Rispin, Office of Naval Research (ONR), as part of the research conducted by the Volpe Center in collaboration with the Center for Commercial Deployment of Transportation Technologies (CCDoTT). The report, o...

  20. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: I. Surgical phenotype data collection in endometriosis research

    PubMed Central

    Becker, Christian M.; Laufer, Marc R.; Stratton, Pamela; Hummelshoj, Lone; Missmer, Stacey A.; Zondervan, Krina T.; Adamson, G. David; Adamson, G.D.; Allaire, C.; Anchan, R.; Becker, C.M.; Bedaiwy, M.A.; Buck Louis, G.M.; Calhaz-Jorge, C.; Chwalisz, K.; D'Hooghe, T.M.; Fassbender, A.; Faustmann, T.; Fazleabas, A.T.; Flores, I.; Forman, A.; Fraser, I.; Giudice, L.C.; Gotte, M.; Gregersen, P.; Guo, S.-W.; Harada, T.; Hartwell, D.; Horne, A.W.; Hull, M.L.; Hummelshoj, L.; Ibrahim, M.G.; Kiesel, L.; Laufer, M.R.; Machens, K.; Mechsner, S.; Missmer, S.A.; Montgomery, G.W.; Nap, A.; Nyegaard, M.; Osteen, K.G.; Petta, C.A.; Rahmioglu, N.; Renner, S.P.; Riedlinger, J.; Roehrich, S.; Rogers, P.A.; Rombauts, L.; Salumets, A.; Saridogan, E.; Seckin, T.; Stratton, P.; Sharpe-Timms, K.L.; Tworoger, S.; Vigano, P.; Vincent, K.; Vitonis, A.F.; Wienhues-Thelen, U.-H.; Yeung, P.P.; Yong, P.; Zondervan, K.T.

    2014-01-01

    Objective To standardize the recording of surgical phenotypic information on endometriosis and related sample collections obtained at laparoscopy, allowing large-scale collaborative research into the condition. Design An international collaboration involving 34 clinical/academic centers and three industry collaborators from 16 countries. Setting Two workshops were conducted in 2013, bringing together 54 clinical, academic, and industry leaders in endometriosis research and management worldwide. Patient(s) None. Intervention(s) A postsurgical scoring sheet containing general and gynecological patient and procedural information, extent of disease, the location and type of endometriotic lesion, and any other findings was developed during several rounds of review. Comments and any systematic surgical data collection tools used in the reviewers' centers were incorporated. Main Outcome Measure(s) The development of a standard recommended (SSF) and minimum required (MSF) form to collect data on the surgical phenotype of endometriosis. Result(s) SSF and MSF include detailed descriptions of lesions, modes of procedures and sample collection, comorbidities, and potential residual disease at the end of surgery, along with previously published instruments such as the revised American Society for Reproductive Medicine and Endometriosis Fertility Index classification tools for comparison and validation. Conclusion(s) This is the first multicenter, international collaboration between academic centers and industry addressing standardization of phenotypic data collection for a specific disease. The Endometriosis Phenome and Biobanking Harmonisation Project SSF and MSF are essential tools to increase our understanding of the pathogenesis of endometriosis by allowing large-scale collaborative research into the condition. PMID:25150390

  1. International collaborative research on infectious diseases by Japanese universities and institutes in Asia and Africa, with a special emphasis on J-GRID.

    PubMed

    Shinoda, Sumio; Imamura, Daisuke; Mizuno, Tamaki; Miyoshi, Shin-Ichi; Ramamurthy, Thandavrayan

    2015-01-01

    In developed countries including Japan, malignant tumor (cancer), heart disease and cerebral apoplexy are major causes of death, but infectious diseases are still responsible for a high number of deaths in developing countries, especially among children aged less than 5 years. World Health Statistics published by WHO reports a high percentage of mortality from infectious diseases in children, and many of these diseases may be subject to transmission across borders and could possibly invade Japan.  Given this situation, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan initiated Phase I of the Program of Founding Research Centers for Emerging and Reemerging Infectious Disease, which ran from FY 2005 to 2009, and involved 8 Japanese universities and 2 research centers. The program was established for the following purposes: 1) creation of a domestic research structure to promote the accumulation of fundamental knowledge about infectious diseases, 2) establishment of 13 overseas research collaboration centers in 8 countries at high risk of emerging and reemerging infections and at which Japanese researchers are stationed and conduct research in partnership with overseas instructors, 3) development of a network among domestic and overseas research centers, and 4) development of human resources.  The program was controlled under MEXT and managed by the RIKEN Center of Research Network for Infectious Diseases (Riken CRNID). Phase II of the program was set up as the Japan Initiative for Global Research Network on Infectious Diseases (J-GRID), and has been running in FY 2010-2014.  Phase III will start in April 2015, and will be organized by the newly established Japanese governmental organization "Japan Agency for Medical Research and Development (AMED)", the so-called Japanese style NIH.  The Collaborative Research Center of Okayama University for Infectious Diseases in India (CRCOUI) was started up in 2007 at the National Institute of Cholera and Enteric Disease, Kolkata, India. Major projects of CRCOUI are concerned with diarrheal diseases such as, 1) active surveillance of diarrheal patients, 2) development of dysentery vaccines, 3) viable but nonculturable (VBNC) Vibrio cholerae, and 4) pathogenic mechanisms of various diarrhogenic microorganisms.  This review article outlines project of J-GRID and CRCOUI which the authors carried out collaboratively with NICED staff members.

  2. Eliminating Health Disparities Through Transdisciplinary Research, Cross-Agency Collaboration, and Public Participation

    PubMed Central

    Spengler, Robert F.; Wagner, Robin M.; Melanson, Cindi; Skillen, Elizabeth L.; Mays, Robert A.; Heurtin-Roberts, Suzanne; Long, Judith A.

    2009-01-01

    Despite efforts to the contrary, disparities in health and health care persist in the United States. To solve this problem, federal agencies representing different disciplines and perspectives are collaborating on a variety of transdisciplinary research initiatives. The most recent of these initiatives was launched in 2006 when the Centers for Disease Control and Prevention's Office of Public Health Research and the Department of Health and Human Services’ Office of Minority Health brought together federal partners representing a variety of disciplines to form the Federal Collaboration on Health Disparities Research (FCHDR). FCHDR collaborates with a wide variety of federal and nonfederal partners to support and disseminate research that aims to reduce or eliminate disparities in health and health care. Given the complexity involved in eliminating health disparities, there is a need for more transdisciplinary, collaborative research, and facilitating that research is FCHDR's mission. PMID:19762652

  3. Laboratory of the Neuropsychology and Cognitive Neurosciences Research Center of Universidad Católica del Maule, Chile.

    PubMed

    Lucero, Boris; Saracini, Chiara; Muñoz-Quezada, María Teresa; Mendez-Bustos, Pablo; Mora, Marco

    2018-06-14

    The Laboratory of the Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), located in the "Technological Park" building of the Catholic University of Maule (Universidad Católica del Maule, UCM) campus in Talca, Chile, has been established as "Psychology Lab" recently in July, 2016. Our lines of work include basic and applied research. Among the basic research, we study executive functions, decision-making, and spatial cognition. In the applied field, we have studied neuropsychological and neurobehavioral effects of pesticides exposure, among other interests. One of our aims is to develop collaboration both national and internationally. It is important to mention that to date there are only few psychology laboratories and research centers in Chile involved with the fields of neuropsychology and neurosciences. Thus, this scientific effort could be a groundbreaking initiative to develop specific knowledge in this area locally and interculturally through its international collaborations.

  4. Treatment of Prostate Cancer using Anti-androgen Small Molecules | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute seeks parties interested in collaborative research to co-develop and commercialize a new class of small molecules for the treatment of prostate cancer. General information on co-development research collaborations, can be found on our web site (http://ttc.nci.nih.gov/forms).

  5. Goddard Space Flight Center's Partnership with Florida International University

    NASA Astrophysics Data System (ADS)

    Rishe, N. D.; Graham, S. C.; Gutierrez, M. E.

    2004-12-01

    NASA's Goddard Space Flight Center (GSFC) has been collaborating with Florida International University's High Performance Database Research Center (FIU HPDRC) for nearly ten years. Much of this collaboration was funded through a NASA Institutional Research Award (IRA). That award involved research in the Internet dissemination of geospatial data, and in recruiting and training student researchers. FIU's TerraFly web service presently serves more than 10,000 unique users per day by providing an easy-to-use mechanism for exploring geospatial data and imagery. IRA-supported students have received 47 Bachelor's degrees, 20 Master's degrees, and 2 Doctoral degrees at FIU. FIU leveraged IRA funding into over \\$19 million in other funding and donations for their research and training activities and has published nearly 150 scientific papers acknowledging the NASA IRA award. GSFC has worked closely with FIU HPDRC in the development of their geospatial data storage and dissemination research. TerraFly presents many NASA datasets such as the nationwide mosaic of LandSat 5, the PRISM precipitation model, the TRMM accumulated rainfall worldwide; as well as USGS aerial photography nationwide at 30cm to 1m resolutions, demographic data, Ikonos satellite imagery, and many more. Our presentation will discuss the lessons learned during the collaboration between GSFC and FIU as well as our current research projects.

  6. NASA-OAI Collaborative Aerospace Research and Fellowship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Kankam, Mark D.

    2003-01-01

    During the summer of 2003, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). The objectives of CFP are: (1) to further the professional knowledge of qualified engineering and science faculty, (2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of Glenn. This report is intended primarily to summarize the research activities comprising the 2003 CFP Program at Glenn.

  7. Development and Feasibility Testing of a Critical Care EEG Monitoring Database for Standardized Clinical Reporting and Multicenter Collaborative Research.

    PubMed

    Lee, Jong Woo; LaRoche, Suzette; Choi, Hyunmi; Rodriguez Ruiz, Andres A; Fertig, Evan; Politsky, Jeffrey M; Herman, Susan T; Loddenkemper, Tobias; Sansevere, Arnold J; Korb, Pearce J; Abend, Nicholas S; Goldstein, Joshua L; Sinha, Saurabh R; Dombrowski, Keith E; Ritzl, Eva K; Westover, Michael B; Gavvala, Jay R; Gerard, Elizabeth E; Schmitt, Sarah E; Szaflarski, Jerzy P; Ding, Kan; Haas, Kevin F; Buchsbaum, Richard; Hirsch, Lawrence J; Wusthoff, Courtney J; Hopp, Jennifer L; Hahn, Cecil D

    2016-04-01

    The rapid expansion of the use of continuous critical care electroencephalogram (cEEG) monitoring and resulting multicenter research studies through the Critical Care EEG Monitoring Research Consortium has created the need for a collaborative data sharing mechanism and repository. The authors describe the development of a research database incorporating the American Clinical Neurophysiology Society standardized terminology for critical care EEG monitoring. The database includes flexible report generation tools that allow for daily clinical use. Key clinical and research variables were incorporated into a Microsoft Access database. To assess its utility for multicenter research data collection, the authors performed a 21-center feasibility study in which each center entered data from 12 consecutive intensive care unit monitoring patients. To assess its utility as a clinical report generating tool, three large volume centers used it to generate daily clinical critical care EEG reports. A total of 280 subjects were enrolled in the multicenter feasibility study. The duration of recording (median, 25.5 hours) varied significantly between the centers. The incidence of seizure (17.6%), periodic/rhythmic discharges (35.7%), and interictal epileptiform discharges (11.8%) was similar to previous studies. The database was used as a clinical reporting tool by 3 centers that entered a total of 3,144 unique patients covering 6,665 recording days. The Critical Care EEG Monitoring Research Consortium database has been successfully developed and implemented with a dual role as a collaborative research platform and a clinical reporting tool. It is now available for public download to be used as a clinical data repository and report generating tool.

  8. Texas pavement preservation center four-year summary report.

    DOT National Transportation Integrated Search

    2009-07-04

    The Texas Pavement Preservation Center (TPPC), in joint collaboration with the Center for Transportation Research (CTR) of the University of Texas at Austin and the Texas Transportation Institute (TTI) of Texas A&M University, promotes the use of pav...

  9. Job Needs and Priorities Report, Phase 2: Action Plans : Northeast Region

    DOT National Transportation Integrated Search

    2016-08-01

    The Northeast Transportation Workforce Center (NETWC) is housed at the University of Vermont Transportation Research Center (UVM TRC). It has collaborated in this effort with the Center for Advanced Infrastructure and Transportation (CAIT). The NE re...

  10. Lewis' Educational and Research Collaborative Intership Program Grant Closeout Report

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Lewis' Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships and 10 or 12-week fellowships for undergraduate/graduate students and secondary school teachers. Approximately 130 interns are selected to participate in this program each year and begin arriving the second week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, lectures and short courses. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds.

  11. Developing a center for nursing research: an influence on nursing education and research through mentorship.

    PubMed

    Krause-Parello, Cheryl A; Sarcone, Annaruth; Samms, Kimika; Boyd, Zakiya N

    2013-03-01

    Nursing research, education, and mentoring are effective strategies to enhance and generate nursing knowledge. In order to explore new opportunities using an international and interdisciplinary approach, a Center for Nursing Research (CNR) was developed at Kean University a public institution for higher education in the United States. At the CNR, nursing professionals and students collaborate in all aspects of nursing education and the research process from a global perspective and across disciplines. The advancement of knowledge and understanding is of absolute importance to the field of nursing and other collaborative fields. The CNR functions to educate nursing faculty and students through scholarly activities with an ongoing commitment to nursing education and research. Mentorship in nursing education and research fosters professional, scholarly, and personal growth for both the mentor and mentee. The CNR serves as a model vehicle of applied, functional mentoring strategies and provides the venue to allow the mentor and mentee to collaborate in all aspects of nursing education and research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  13. Fuel Cells for Society

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through a SBIR contract with Lewis Research Center, ElectroChem, Inc. developed a hydrogen/oxygen fuel cell. The objective for Lewis Research Center's collaboration with ElectroChem was to develop a fuel cell system that could deliver 200-W (minimum) approximately to 10kWh of electrical energy.

  14. The National Institutes of Health Fogarty International Center Global Health Scholars and Fellows Program: Collaborating across Five Consortia to Strengthen Research Training

    PubMed Central

    Zunt, Joseph R.; Chi, Benjamin H.; Heimburger, Douglas C.; Cohen, Craig R.; Strathdee, Steffanie; Hobbs, Nicole; Thomas, Yolanda; Bale, Kimberly; Salisbury, Kathryn; Hernandez, Maria T.; Riley, Lee W.; Vermund, Sten H.; van der Horst, Charles

    2016-01-01

    As demand for global health research training continues to grow, many universities are striving to meet the needs of trainees in a manner complementary to research priorities of the institutions hosting trainees, while also increasing capacity for conducting research. We provide an overview of the first 4 years of the Global Health Program for Fellows and Scholars, a collaboration of 20 U.S. universities and institutions spread across 36 low- and middle-income countries funded through the National Institutes of Health Fogarty International Center. We highlight many aspects of our program development that may be of interest to other multinational consortia developing global health research training programs. PMID:27382074

  15. Integrating research, legal technical assistance, and advocacy to inform shared use legislation in Mississippi.

    PubMed

    Spengler, John O; Frost, Natasha R; Bryant, Katherine K

    2014-01-01

    The purpose of this article was to describe the process by which research findings informed the successful passage of legislation designed to increase opportunities for physical activity in Mississippi, and discuss implications and lessons learned from this process. The article is descriptive and conceptual, and addresses the collaborative process by which research, legal technical assistance, and advocacy informed and shaped shared use legislation in Mississippi. Collaborators informing this article were an Active Living Research grantee, a staff attorney with the Public Health Law Center, the American Heart Association Mississippi Government Relations Director, and community partners. The American Heart Association and Public Health Law Center developed policy guidance in the form of sample language for legislation as a starting point for states in determining policy needed to eliminate or reduce barriers to the shared use of school recreational facilities. The policy guidance was informed by evidence from Active Living Research-funded research studies. The American Heart Association, supporting a bill shaped by the policy guidance, led the effort to advocate for successful shared use legislation in Mississippi. Research should be policy relevant and properly translated and disseminated. Legal technical assistance should involve collaboration with both researchers and advocates so that policymakers have the information to make evidence-based decisions. Government relations directors should collaborate with legal technical staff to obtain and understand policy guidance relevant to their advocacy efforts. Effective collaborations, with an evidence-based approach, can lead to informed, successful policy change.

  16. Research Programs & Initiatives

    Cancer.gov

    CGH develops international initiatives and collaborates with other NCI divisions, NCI-designated Cancer Centers, and other countries to support cancer control planning, encourage capacity building, and support cancer research and research networks.

  17. Reconfiguring REU programs to build links between institutions is an efficiient way of expanding student participation in research.

    NASA Astrophysics Data System (ADS)

    Halpern, J. B.

    2016-12-01

    There is good evidence that STEM career recruiting would be bettered by a shift in REU programs from an individual student focus to building institutional links with faculty participation. This would improve recruiting, duration and the scientific productivity of the REU system. Student commitment would benefit from a more sophisticated and productive project that this would enable as would research groups and mentors at all institutions. Such programs build long lasting links between the institutions and individual faculty. For teaching institutions, scientifically centered collaborations bring faculty and students into the research culture. Faculty who teach at such institutions will maintain their research skills as well as their links to the field and gain respect both internally and externally. Visibility of the collaboration at the non-research centered institution will attract other students into the area. An on-going collaboration offers benefits to the research institution as well. First, recruitment becomes less hit and miss because the partners have observed and taught their students. Second partners will provide appropriate training and context before the summer starts for new students. Third, the availability of partners to help mentoring the students during the summer and into the academic year makes it easier for graduate students, post-docs and the research university faculty as well. Fourth, a good collaboration builds respect and understanding on all sides, which, since many in the research group will go on to teach at teaching centered institutions is important. Building respect for transfer students from Community Colleges and smaller teaching institutions among the research faculty is another benefit. I will describe programs that I have designed an led that successfully implement these ideas.

  18. Collaborators | Center for Cancer Research

    Cancer.gov

    Collaborators Structural Biophysics Laboratory, CCR Macromolecular NMR Section (R. Andrew Byrd, Ph.D.) Protein-Nucleic Acid Interactions Section (Yun-Xing Wang, Ph.D.) Protein Processing Section (Kylie J. Walters, Ph.D.) Kinase Complexes Section (Ping Zhang, Ph.D.) Macromolecular Crystallography Laboratory, CCR

  19. Academic Information Services: A Library Management Perspective.

    ERIC Educational Resources Information Center

    Allen, Bryce

    1995-01-01

    Using networked information resources to communicate research results has great potential for academic libraries; this development will require collaboration among libraries, scholars, computing centers, and university presses. Library managers can help overcome collaboration barriers by developing appropriate organizational structures, selecting…

  20. PERMANENCE OF BIOLOGICAL AND CHEMICAL WARFARE AGENTS IN MUNICIPAL SOLID WASTE LANDFILL LEACHATES

    EPA Science Inventory

    The objective of this work is to permit EPA/ORD's National Homeland Security Research Center (NHSRC) and Edgewood Chemical Biological Center to collaborate together to test the permanence of biological and chemical warfare agents in municipal solid waste landfills. Research into ...

  1. Mary S. Easton Center of Alzheimer's Disease Research at UCLA: advancing the therapeutic imperative.

    PubMed

    Cummings, Jeffrey L; Ringman, John; Metz, Karen

    2010-01-01

    The Mary S. Easton Center for Alzheimer's Disease Research (UCLA-Easton Alzheimer's Center) is committed to the "therapeutic imperative" and is devoted to finding new treatments for Alzheimer's disease (AD) and to developing technologies (biomarkers) to advance that goal. The UCLA-Easton Alzheimer's Center has a continuum of research and research-related activities including basic/foundational studies of peptide interactions; translational studies in transgenic animals and other animal models of AD; clinical research to define the phenotype of AD, characterize familial AD, develop biomarkers, and advance clinical trials; health services and outcomes research; and active education, dissemination, and recruitment activities. The UCLAEaston Alzheimer's Center is supported by the National Institutes on Aging, the State of California, and generous donors who share our commitment to developing new therapies for AD. The naming donor (Jim Easton) provided substantial funds to endow the center and to support projects in AD drug discovery and biomarker development. The Sidell-Kagan Foundation supports the Katherine and Benjamin Kagan Alzheimer's Treatment Development Program, and the Deane F. Johnson Alzheimer's Research Foundation supports the Deane F. Johnson Center for Neurotherapeutics at UCLA. The John Douglas French Alzheimer's Research Foundation provides grants to junior investigators in critical periods of their academic development. The UCLA-Easton Alzheimer's Center partners with community organizations including the Alzheimer's Association California Southland Chapter and the Leeza Gibbons memory Foundation. Collaboration with pharmaceutical companies, biotechnology companies, and device companies is critical to developing new therapeutics for AD and these collaborations are embraced in the mission of the UCLA-Easton Alzheimer's Center. The Center supports excellent senior 3 investigators and serves as an incubator for new scientists, agents, models, technologies and concepts that will significantly influence the future of AD treatment and AD research.

  2. Assessment of Translational and Interdisciplinary Clinical Research at an Oklahoma Health Sciences Center

    PubMed Central

    Dao, Hanh Dung; Kota, Pravina; James, Judith A.; Stoner, Julie A.; Akins, Darrin R.

    2015-01-01

    Purpose In response to National Institutes of Health initiatives to improve translation of basic science discoveries we surveyed faculty to assess patterns of and barriers to translational research in Oklahoma. Methods An online survey was administered to University of Oklahoma Health Sciences Center, College of Medicine faculty, which included demographic and research questions. Results Responses were received from 126 faculty members (24%). Two-thirds spent ≥20% time on research; among these, 90% conduct clinical and translational research. Identifying funding; recruiting research staff and participants; preparing reports and agreements; and protecting research time were commonly perceived as at least moderate barriers to conducting research. While respondents largely collaborated within their discipline, clinical investigators were more likely than basic science investigators to engage in interdisciplinary research. Conclusion While engagement in translational research is common, specific barriers impact the research process. This could be improved through an expanded interdisciplinary collaboration and research support structure. PMID:26242016

  3. DNA Data Bank of Japan

    PubMed Central

    Mashima, Jun; Kodama, Yuichi; Fujisawa, Takatomo; Katayama, Toshiaki; Okuda, Yoshihiro; Kaminuma, Eli; Ogasawara, Osamu; Okubo, Kousaku; Nakamura, Yasukazu; Takagi, Toshihisa

    2017-01-01

    The DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) has been providing public data services for thirty years (since 1987). We are collecting nucleotide sequence data from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC, http://www.insdc.org), in collaboration with the US National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). The DDBJ Center also services Japanese Genotype-phenotype Archive (JGA), with the National Bioscience Database Center to collect human-subjected data from Japanese researchers. Here, we report our database activities for INSDC and JGA over the past year, and introduce retrieval and analytical services running on our supercomputer system and their recent modifications. Furthermore, with the Database Center for Life Science, the DDBJ Center improves semantic web technologies to integrate and to share biological data, for providing the RDF version of the sequence data. PMID:27924010

  4. Comprehensive Oncologic Emergencies Research Network (CONCERN)

    Cancer.gov

    The Comprehensive Oncologic Emergencies Research Network (CONCERN) was established in March 2015 with the goal to accelerate knowledge generation, synthesis and translation of oncologic emergency medicine research through multi-center collaborations.

  5. Connecting Students around the World through a Collaborative Museum Education Program

    ERIC Educational Resources Information Center

    Gillespie, Katie L.; Melber, Leah M.

    2014-01-01

    In order to design programs that are relevant to global audiences, it is essential for informal learning centers to work collaboratively and test programs in a variety of communities. In line with this, research was conducted on a recent collaborative educational effort between Lincoln Park Zoo in Chicago, Illinois and the National Museum of Niger…

  6. Influencing Student Attitudes toward Older Adults: Results of a Service-Learning Collaboration

    ERIC Educational Resources Information Center

    Gutheil, Irene A.; Chernesky, Roslyn H.; Sherratt, Marian L.

    2006-01-01

    This article describes a service-learning collaboration between a research center at a graduate school of social work and a community college. While the goal of the collaboration was to conduct a community needs assessment of the older population of Bermuda, the project offered a unique opportunity to connect community service, teaching, and…

  7. A multiple phase transitioning peptide hydrogel for use in vascular a | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute (NCI), in collaboration with surgical specialists from Johns Hopkins University, have developed hydrogel compositions and methods to suture blood vessels with the hydrogels during microsurgery. These hydrogels are particularly beneficial for surgeons in whole tissue transplant procedures. The NCI researchers seek licensing and/or co-development research collaborations for further development of this technology.

  8. 77 FR 31358 - Disease, Disability, and Injury Prevention and Control Special Interest Projects (SIPs): Initial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... announced below concerns Coordinating Center for the Managing Epilepsy Well (MEW) Prevention Research Centers Network, SIP12-056, and Managing Epilepsy Well (MEW) Collaborating Center for Epilepsy Self... Managing Epilepsy Well (MEW) Prevention [[Page 31359

  9. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    ScienceCinema

    None

    2018-02-07

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  10. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-09-30

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  11. DESTRUCTION OF FRANCISELLA TULARENSIS AND YERSINIA PESTIS PERSISTENCE OF BACILLUS ANTHRACIS SPORES AND CLOSTRIDIUM BOTULINUM IN MUNICIPAL SOLID LANDFILL LEACHATES

    EPA Science Inventory

    The United States Environmental Protection Agency Office of Research and Development National Homeland Security Research Center (NHSRC) in collaboration with the Department of Defense Edgewood Chemical Biological Center (ECBC) are evaluating the permanence of biological and chemi...

  12. NIEHS/EPA Children's Environmental Health and Disease Prevention Research Centers: 2017 Annual Meeting Proceedings

    EPA Science Inventory

    The 2017 Annual Meeting of the NIEHS/EPA Children’s Environmental Health and Disease Prevention Research Centers was hosted by EPA in collaboration with NIEHS and the Pediatric Environmental Health Specialty Units (PEHSUs). The meeting was held at the EPA Region 9 offices i...

  13. Leading the Way for Open Access Research

    ERIC Educational Resources Information Center

    Warschauer, Mark

    2016-01-01

    "Language Learning & Technology" ("LLT") was launched in the mid-1990s out of a collaboration between the University of Hawai'i National Foreign Language Resource Center (NFLRC) and the Michigan State University Center for Language Education Research (CLEAR). Like other online journals started in the 1990s, "LLT"…

  14. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  15. Effective collaborative learning in biomedical education using a web-based infrastructure.

    PubMed

    Wu, Yunfeng; Zheng, Fang; Cai, Suxian; Xiang, Ning; Zhong, Zhangting; He, Jia; Xu, Fang

    2012-01-01

    This paper presents a feature-rich web-based system used for biomedical education at the undergraduate level. With the powerful groupware features provided by the wiki system, the instructors are able to establish a community-centered mentoring environment that capitalizes on local expertise to create a sense of online collaborative learning among students. The web-based infrastructure can help the instructors effectively organize and coordinate student research projects, and the groupware features may support the interactive activities, such as interpersonal communications and data sharing. The groupware features also provide the web-based system with a wide range of additional ways of organizing collaboratively developed materials, which makes it become an effective tool for online active learning. Students are able to learn the ability to work effectively in teams, with an improvement of project management, design collaboration, and technical writing skills. With the fruitful outcomes in recent years, it is positively thought that the web-based collaborative learning environment can perform an excellent shift away from the conventional instructor-centered teaching to community- centered collaborative learning in the undergraduate education.

  16. Inter-institutional Development of a Poster-Based Cancer Biology Learning Tool

    PubMed Central

    Andraos-Selim, Cecile; Modzelewski, Ruth A.; Steinman, Richard A.

    2010-01-01

    There is a paucity of African-American Cancer researchers. To help address this, an educational collaboration was developed between a Comprehensive Cancer Center and a distant undergraduate biology department at a minority institution that sought to teach students introductory cancer biology while modeling research culture. A student-centered active learning curriculum was established that incorporated scientific poster presentations and simulated research exercises to foster learning of cancer biology. Students successfully mined primary literature for supportive data to test cancer-related hypotheses. Student feedback indicated that the poster project substantially enhanced depth of understanding of cancer biology and laid the groundwork for subsequent laboratory work. This inter-institutional collaboration modeled the research process while conveying facts and concepts about cancer. PMID:20237886

  17. Force Feedback Joystick

    NASA Technical Reports Server (NTRS)

    1997-01-01

    I-FORCE, a computer peripheral from Immersion Corporation, was derived from virtual environment and human factors research at the Advanced Displays and Spatial Perception Laboratory at Ames Research Center in collaboration with Stanford University Center for Design Research. Entrepreneur Louis Rosenberg, a former Stanford researcher, now president of Immersion, collaborated with Dr. Bernard Adelstein at Ames on studies of perception in virtual reality. The result was an inexpensive way to incorporate motors and a sophisticated microprocessor into joysticks and other game controllers. These devices can emulate the feel of a car on the skid, a crashing plane, the bounce of a ball, compressed springs, or other physical phenomenon. The first products incorporating I-FORCE technology include CH- Products' line of FlightStick and CombatStick controllers.

  18. Life cycle cost reduction road map : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    Rutgers University Center for Advanced Infrastructure and Transportation (CAIT), in collaboration : with research partners within the University Transportation Center (UTC) consortium, seeks to identify : knowledge gaps and chart future R&D direction...

  19. CERES FM6 Edition1-CV Product Release

    Atmospheric Science Data Center

    2018-06-13

    ... Wednesday, June 13, 2018 The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CERES Science Team announces the release of the first Joint Polar Satellite System 1 ...

  20. Kazmerski Leads National Center for Solar Research

    Science.gov Websites

    center is a collaborative co-equal effort involving Sandia National Laboratories and NREL and helps the technologies and continue its leadership in the global marketplace." Kazmerski was NREL's first employee

  1. RIACS FY2002 Annual Report

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    2002-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. Operated by the Universities Space Research Association (a non-profit university consortium), RIACS is located at the NASA Ames Research Center, Moffett Field, California. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in September 2003. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology (IT) Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1) Automated Reasoning for Autonomous Systems; 2) Human-Centered Computing; and 3) High Performance Computing and Networking. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains including aerospace technology, earth science, life sciences, and astrobiology. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  2. [Experience and present situation of Western China Gastric Cancer Collaboration].

    PubMed

    Hu, Jiankun; Zhang, Weihan; Western China Gastric Cancer Collaboration, China

    2017-03-25

    The Western China Gastric Cancer Collaboration (WCGCC) was founded in Chongqing, China in 2011. At the early stage of the collaboration, there were only about 20 centers. While now, there are 36 centers from western area of China, including Sichuan, Chongqing, Yunnan, Shanxi, Guizhou, Gansu, Qinghai, Xinjiang, Ningxia and Tibet. During the past few years, the WCGCC organized routinely gastric cancer standardized treatment tours, training courses of mini-invasive surgical treatment of gastric cancer and the clinical research methodology for members of the collaboration. Meanwhile, the WCGCC built a multicenter database of gastric cancer since 2011 and the entering and management refer to national gastric cancer registration entering system of Japan Gastric Cancer Association. During the entering and collection of data, 190 items of data have unified definition and entering standard from Japan Gastric Cancer Guidelines. Nowadays, this database included about 11 872 gastric cancer cases, and in this paper we will introduce the initial results of these cases. Next, the collaboration will conduct some retrospective studies based on this database to analyze the clinicopathological characteristics of patients in the western area of China. Besides, the WCGCC performed a prospective study, also. The first randomized clinical trial of the collaboration aims to compare the postoperative quality of life between different reconstruction methods for total gastrectomy(WCGCC-1202, ClinicalTrials.gov Identifier: NCT02110628), which began in 2015, and now this study is in the recruitment period. In the next steps, we will improve the quality of the database, optimize the management processes. Meanwhile, we will engage in more exchanges and cooperation with the Chinese Cochrane Center, reinforce the foundation of the clinical trials research methodology. In aspect of standardized surgical treatment of gastric cancer, we will further strengthen communication with other international centers in order to improve both the treatment and research levels of gastric cancer in Western China.

  3. CoMetaR: A Collaborative Metadata Repository for Biomedical Research Networks.

    PubMed

    Stöhr, Mark R; Helm, Gudrun; Majeed, Raphael W; Günther, Andreas

    2017-01-01

    The German Center for Lung Research (DZL) is a research network with the aim of researching respiratory diseases. To perform consortium-wide queries through one single interface, it requires a uniform conceptual structure. No single terminology covers all our concepts. To achieve a broadly accepted and complete ontology, we developed a platform for collaborative metadata management "CoMetaR". Anyone can browse and discuss the ontology while editing can be performed by authenticated users.

  4. Recruitment for health disparities preventive intervention trials: the early childhood caries collaborating centers.

    PubMed

    Tiwari, Tamanna; Casciello, Alana; Gansky, Stuart A; Henshaw, Michelle; Ramos-Gomez, Francisco; Rasmussen, Margaret; Garcia, Raul I; Albino, Judith; Batliner, Terrence S

    2014-08-07

    Four trials of interventions designed to prevent early childhood caries are using community-engagement strategies to improve recruitment of low-income, racial/ethnic minority participants. The trials are being implemented by 3 centers funded by the National Institute of Dental and Craniofacial Research and known as the Early Childhood Caries Collaborating Centers (EC4): the Center for Native Oral Health Research at the University of Colorado, the Center to Address Disparities in Children's Oral Health at the University of California San Francisco, and the Center for Research to Evaluate and Eliminate Dental Disparities at Boston University. The community contexts for the EC4 trials include urban public housing developments, Hispanic communities near the US-Mexican border, and rural American Indian reservations. These communities have a high prevalence of early childhood caries, suggesting the need for effective, culturally acceptable interventions. Each center's intervention(s) used community-based participatory research approaches, identified community partners, engaged the community through various means, and developed communication strategies to enhance recruitment. All 3 centers have completed recruitment. Each center implemented several new strategies and approaches to enhance recruitment efforts, such as introducing new communication techniques, using media such as radio and newspapers to spread awareness about the studies, and hosting community gatherings. Using multiple strategies that build trust in the community, are sensitive to cultural norms, and are adaptable to the community environment can enhance recruitment in underserved communities.

  5. NASA Human Health and Performance Center (NHHPC)

    NASA Technical Reports Server (NTRS)

    Davis, J. R.; Richard, E. E.

    2010-01-01

    The NASA Human Health and Performance Center (NHHPC) will provide a collaborative and virtual forum to integrate all disciplines of the human system to address spaceflight, aviation, and terrestrial human health and performance topics and issues. The NHHPC will serve a vital role as integrator, convening members to share information and capture a diverse knowledge base, while allowing the parties to collaborate to address the most important human health and performance topics of interest to members. The Center and its member organizations will address high-priority risk reduction strategies, including research and technology development, improved medical and environmental health diagnostics and therapeutics, and state-of-the art design approaches for human factors and habitability. Once full established in 2011, the NHHPC will focus on a number of collaborative projects focused on human health and performance, including workshops, education and outreach, information sharing and knowledge management, and research and technology development projects, to advance the study of the human system for spaceflight and other national and international priorities.

  6. Identifying Strategic Scientific Opportunities

    Cancer.gov

    As NCI's central scientific strategy office, CRS collaborates with the institute's divisions, offices, and centers to identify research opportunities to advance NCI's vision for the future of cancer research.

  7. Research Design Becomes Research Reality: Colorado School of Mines Implements Research Methodology for the Center for the Advancement of Engineering Education. Research Brief

    ERIC Educational Resources Information Center

    Loshbaugh, Heidi; Streveler, Ruth; Breaux, Kimberley

    2007-01-01

    The Center for the Advancement of Engineering Education was founded in 2003 with five collaborating institutions. A multi-institutional, multi-year grant offers many opportunities for the demands of reality to interfere with design goals. In particular, at Colorado School of Mines (CSM) student demographics required adjustment of the original APS…

  8. Public Talks and Science Listens: A Community-Based Participatory Approach to Characterizing Environmental Health Risk Perceptions and Assessing Recovery Needs in the Wake of Hurricanes Katrina and Rita

    PubMed Central

    Sullivan, J.; Parras, B.; St. Marie, R.; Subra, W.; Petronella, S.; Gorenstein, J.; Fuchs-Young, R.; Santa, R.K.; Chavarria, A.; Ward, J.; Diamond, P.

    2009-01-01

    In response to the human health threats stemming from Hurricanes Katrina and Rita, inter-disciplinary working groups representing P30-funded Centers of the National Institute Environmental Health Sciences were created to assess threats posed by mold, harmful alga blooms, chemical toxicants, and various infectious agents at selected sites throughout the hurricane impact zone. Because of proximity to impacted areas, UTMB NIEHS Center in Environmental Toxicology was charged with coordinating direct community outreach efforts, primarily in south Louisiana. In early October 2005, UTMB/NIEHS Center Community Outreach and Education Core, in collaboration with outreach counterparts at The University of Texas MD Anderson Cancer Center @ Smithville TX/Center for Research in Environmental Disease sent two groups into southern Louisiana. One group used Lafourche Parish as a base to deliver humanitarian aid and assess local needs for additional supplies during local recovery/reclamation. A second group, ranging through New Iberia, New Orleans, Chalmette, rural Terrebonne, Lafourche and Jefferson Parishes and Baton Rouge met with community environmental leaders, emergency personnel and local citizens to 1) sample public risk perceptions, 2) evaluate the scope and reach of ongoing risk communication efforts, and 3) determine how the NIEHS could best collaborate with local groups in environmental health research and local capacity building efforts. This scoping survey identified specific information gaps limiting efficacy of risk communication, produced a community “wish list” of potential collaborative research projects. The project provided useful heuristics for disaster response and management planning and a platform for future collaborative efforts in environmental health assessment and risk communication with local advocacy groups in south Terrebonne-Lafourche parishes. PMID:20508756

  9. capr - how to partner | Center for Cancer Research

    Cancer.gov

    CAPR is striving to actively identify prospective partnering avenues and welcomes any inquiries of collaborative opportunities from NIH/NCI intramural laboratories, academic organizations and commercial partners. For further information on partnering mechanisms and to request information on possible collaboration, please, send inquiries to:

  10. Catalyzing Interdisciplinary Research and Training: Initial Outcomes and Evolution of the Affinity Research Collaboratives Model.

    PubMed

    Ravid, Katya; Seta, Francesca; Center, David; Waters, Gloria; Coleman, David

    2017-10-01

    Team science has been recognized as critical to solving increasingly complex biomedical problems and advancing discoveries in the prevention, diagnosis, and treatment of human disease. In 2009, the Evans Center for Interdisciplinary Biomedical Research (ECIBR) was established in the Department of Medicine at Boston University School of Medicine as a new organizational paradigm to promote interdisciplinary team science. The ECIBR is made up of affinity research collaboratives (ARCs), consisting of investigators from different departments and disciplines who come together to study biomedical problems that are relevant to human disease and not under interdisciplinary investigation at the university. Importantly, research areas are identified by investigators according to their shared interests. ARC proposals are evaluated by a peer review process, and collaboratives are funded annually for up to three years.Initial outcomes of the first 12 ARCs show the value of this model in fostering successful biomedical collaborations that lead to publications, extramural grants, research networking, and training. The most successful ARCs have been developed into more sustainable organizational entities, including centers, research cores, translational research projects, and training programs.To further expand team science at Boston University, the Interdisciplinary Biomedical Research Office was established in 2015 to more fully engage the entire university, not just the medical campus, in interdisciplinary research using the ARC mechanism. This approach to promoting team science may be useful to other academic organizations seeking to expand interdisciplinary research at their institutions.

  11. Webinar Presentation: Children’s Environmental Health Research

    EPA Pesticide Factsheets

    This presentation, Children’s Environmental Health Research, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: The Significance of Children’s Environmental Health Research Through Collaboration held on July 8, 2015.

  12. EPIDEMIOLOGY AND EXPOSURE ASSESSMENT

    EPA Science Inventory

    Research collaborations between the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL) centered on the development and application of exposure analysis tools in environmental epidemiology include the El Paso...

  13. Building a Collaboration One Day at a Time: Integrating Infant Mental Health into a Residential Drug Treatment Program

    ERIC Educational Resources Information Center

    Heffron, Mary Claire; Purcell, Arlene; Schalit, Jackie

    2007-01-01

    Families In Recovery Staying Together (FIRST) is a team from Children's Hospital and Research Center at Oakland that has joined in collaboration with two local perinatal residential drug treatment programs to create early childhood mental health services at those sites. The authors highlight the collaboration strategies and challenges the partners…

  14. The Collaboration to Improve Reading in the Content Areas (The CIRCA Project). Reading Education Report No. 65.

    ERIC Educational Resources Information Center

    Armbruster, Bonnie B.; And Others

    The Collaboration to Improve Reading in the Content Areas (CIRCA) project, a collaborative effort between the Center for the Study of Reading and the Chicago Public Schools, is described in this paper. Noting that the project was designed to translate research about content area reading into practice, the first section briefly discusses the…

  15. Collaborative research to prevent HIV among male prison inmates and their female partners.

    PubMed

    Grinstead, O A; Zack, B; Faigeles, B

    1999-04-01

    Despite the need for targeted HIV prevention interventions for prison inmates, institutional and access barriers have impeded development and evaluation of such programs. Over the past 6 years, the authors have developed a unique collaborative relationship to develop and evaluate HIV prevention interventions for prison inmates. The collaboration includes an academic research institution (the Center for AIDS Prevention Studies at the University of California, San Francisco), a community-based organization (Centerforce), and the staff and inmate peer educators inside a state prison. In this ongoing collaboration, the authors have developed and evaluated a series of HIV prevention interventions for prison inmates and for women who visit prison inmates. Results of these studies support the feasibility and effectiveness of HIV prevention programs for inmates and their partners both in prison and in the community. Access and institutional barriers to HIV intervention research in prisons can be overcome through the development of collaborative research partnerships.

  16. DNA Data Bank of Japan: 30th anniversary.

    PubMed

    Kodama, Yuichi; Mashima, Jun; Kosuge, Takehide; Kaminuma, Eli; Ogasawara, Osamu; Okubo, Kousaku; Nakamura, Yasukazu; Takagi, Toshihisa

    2018-01-04

    The DNA Data Bank of Japan (DDBJ) Center (http://www.ddbj.nig.ac.jp) has been providing public data services for 30 years since 1987. We are collecting nucleotide sequence data and associated biological information from researchers as a member of the International Nucleotide Sequence Database Collaboration (INSDC), in collaboration with the US National Center for Biotechnology Information and the European Bioinformatics Institute. The DDBJ Center also services the Japanese Genotype-phenotype Archive (JGA) with the National Bioscience Database Center to collect genotype and phenotype data of human individuals. Here, we outline our database activities for INSDC and JGA over the past year, and introduce submission, retrieval and analysis services running on our supercomputer system and their recent developments. Furthermore, we highlight our responses to the amended Japanese rules for the protection of personal information and the launch of the DDBJ Group Cloud service for sharing pre-publication data among research groups. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Information Presentation

    NASA Technical Reports Server (NTRS)

    Holden, K.L.; Boyer, J.L.; Sandor, A.; Thompson, S.G.; McCann, R.S.; Begault, D.R.; Adelstein, B.D.; Beutter, B.R.; Stone, L.S.

    2009-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers at Johnson Space Center and Ames Research Center.

  18. Knowledge Discovery/A Collaborative Approach, an Innovative Solution

    NASA Technical Reports Server (NTRS)

    Fitts, Mary A.

    2009-01-01

    Collaboration between Medical Informatics and Healthcare Systems (MIHCS) at NASA/Johnson Space Center (JSC) and the Texas Medical Center (TMC) Library was established to investigate technologies for facilitating knowledge discovery across multiple life sciences research disciplines in multiple repositories. After reviewing 14 potential Enterprise Search System (ESS) solutions, Collexis was determined to best meet the expressed needs. A three month pilot evaluation of Collexis produced positive reports from multiple scientists across 12 research disciplines. The joint venture and a pilot-phased approach achieved the desired results without the high cost of purchasing software, hardware or additional resources to conduct the task. Medical research is highly compartmentalized by discipline, e.g. cardiology, immunology, neurology. The medical research community at large, as well as at JSC, recognizes the need for cross-referencing relevant information to generate best evidence. Cross-discipline collaboration at JSC is specifically required to close knowledge gaps affecting space exploration. To facilitate knowledge discovery across these communities, MIHCS combined expertise with the TMC library and found Collexis to best fit the needs of our researchers including:

  19. About BTTC | Center for Cancer Research

    Cancer.gov

    About Combined Forces Drive BTTC The Brain Tumor Trials Collaborative (BTTC) was created in 2003 - a combined effort of many professionals, entities and organizations to help those suffering from brain tumors. The National Cancer Institute's (NCI) Center for Cancer Research serves as the lead institution and provides the administrative infrastructure, clinical database and

  20. Columbia University to Open Network of International Collaborative-Research Centers

    ERIC Educational Resources Information Center

    Labi, Aisha

    2009-01-01

    In what university officials say represents a new approach to the internationalization of higher education, Columbia University is building a network of six to eight research institutes in capitals around the world. The Columbia Global Centers, as they are called, are designed for faculty members and students from various disciplines to…

  1. The Revitalized Tutoring Center

    ERIC Educational Resources Information Center

    Koselak, Jeremy

    2017-01-01

    One high-leverage strategy rooted in a strong research base--the revitalized tutoring center--provides a wealth of opportunity to students who may be otherwise underserved. This embedded, open-all-day tutoring center supports collaborative teacher teams by using peer tutors and community volunteers. By centralizing resources and providing supports…

  2. A participatory evaluation framework in the establishment and implementation of transdisciplinary collaborative centers for health disparities research.

    PubMed

    Scarinci, Isabel C; Moore, Artisha; Benjamin, Regina; Vickers, Selwyn; Shikany, James; Fouad, Mona

    2017-02-01

    We describe the formulation and implementation of a participatory evaluation plan for three Transdisciplinary Collaborative Centers for Health Disparities Research funded by the National Institute of Minority Health and Health Disparities. Although different in scope of work, all three centers share a common goal of establishing sustainable centers in health disparities science in three priority areas - social determinants of health, men's health research, and health policy research. The logic model guides the process, impact, and outcome evaluation. Emphasis is placed on process evaluation in order to establish a "blue print" that can guide other efforts as well as assure that activities are being implemented as planned. We have learned three major lessons in this process: (1) Significant engagement, participation, and commitment of all involved is critical for the evaluation process; (2) Having a "roadmap" (logic model) and "directions" (evaluation worksheets) are instrumental in getting members from different backgrounds to follow the same path; and (3) Participation of the evaluator in the leadership and core meetings facilitates continuous feedback. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The California Central Coast Research Partnership: Building Relationships, Partnerships and Paradigms for University-Industry Research Collaboration

    DTIC Science & Technology

    2005-10-14

    of the decision-support systems that underlie and are key to these strategies. Cal Poly’s Collaborative Agent Design (CAD) Research Center is the...architect and lead developer of one of the first such systems: IMMACCS (Integrated Marine Multi- Agent Command and Control System), with JPL, SPAWAR...presented later in this document. An overview of accomplishments to date on the project follows: " Research carried out by the CADRC (Cooperative Agent

  4. Remix as Professional Learning: Educators' Iterative Literacy Practice in CLMOOC

    ERIC Educational Resources Information Center

    Smith, Anna; West-Puckett, Stephanie; Cantrill, Christina; Zamora, Mia

    2016-01-01

    The Connected Learning Massive Open Online Collaboration (CLMOOC) is an online professional development experience designed as an openly networked, production-centered, participatory learning collaboration for educators. Addressing the paucity of research that investigates learning processes in MOOC experiences, this paper examines the situated…

  5. Colorado Lightning Mapping Array Collaborations through the GOES-R Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Szoke, Edward; Rydell, Nezette; Cox, Robert; Mazur, Rebecca

    2014-01-01

    For the past two years, the GOES-R Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Short-term Prediction Research and Transition (SPoRT) Center has used this opportunity to support the GOES-R Proving Ground by expanding SPoRT's total lightning collaborations. In 2012, this expanded the evaluation of SPoRT's pseudo-geostationary lightning mapper product to the Aviation Weather Center and Storm Prediction Center. This year, SPoRT has collaborated with the Colorado Lightning Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in real-time. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and lightning safety, and formal evaluations to take place in the spring of 2014.

  6. Leading Antibacterial Laboratory Research by Integrating Conventional and Innovative Approaches: The Laboratory Center of the Antibacterial Resistance Leadership Group.

    PubMed

    Manca, Claudia; Hill, Carol; Hujer, Andrea M; Patel, Robin; Evans, Scott R; Bonomo, Robert A; Kreiswirth, Barry N

    2017-03-15

    The Antibacterial Resistance Leadership Group (ARLG) Laboratory Center (LC) leads the evaluation, development, and implementation of laboratory-based research by providing scientific leadership and supporting standard/specialized laboratory services. The LC has developed a physical biorepository and a virtual biorepository. The physical biorepository contains bacterial isolates from ARLG-funded studies located in a centralized laboratory and they are available to ARLG investigators. The Web-based virtual biorepository strain catalogue includes well-characterized gram-positive and gram-negative bacterial strains published by ARLG investigators. The LC, in collaboration with the ARLG Leadership and Operations Center, developed procedures for review and approval of strain requests, guidance during the selection process, and for shipping strains from the distributing laboratories to the requesting investigators. ARLG strains and scientific and/or technical guidance have been provided to basic research laboratories and diagnostic companies for research and development, facilitating collaboration between diagnostic companies and the ARLG Master Protocol for Evaluating Multiple Infection Diagnostics (MASTERMIND) initiative for evaluation of multiple diagnostic devices from a single patient sampling event. In addition, the LC has completed several laboratory-based studies designed to help evaluate new rapid molecular diagnostics by developing, testing, and applying a MASTERMIND approach using purified bacterial strains. In collaboration with the ARLG's Statistical and Data Management Center (SDMC), the LC has developed novel analytical strategies that integrate microbiologic and genetic data for improved and accurate identification of antimicrobial resistance. These novel approaches will aid in the design of future ARLG studies and help correlate pathogenic markers with clinical outcomes. The LC's accomplishments are the result of a successful collaboration with the ARLG's Leadership and Operations Center, Diagnostics and Devices Committee, and SDMC. This interactive approach has been pivotal for the success of LC projects. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. The University of Botswana and the University of Tromso Collaborative Program: Its Relevance to Minority Education and San Youth Capacity-Building

    ERIC Educational Resources Information Center

    Bolaane, Maitseo; Saugestad, Sidsel

    2011-01-01

    This article highlights a multidisciplinary collaborative program between the University of Botswana and the University of Tromso, Norway, focusing on San research and capacity-building. After 12 years of operation, this program led, in April 2010, to the creation of a new "Research Center for San Studies" at the University of Botswana.…

  8. Mobile-Based Collaborative Learning in the Fitness Center: A Case Study on the Development of English Listening Comprehension with a Context-Aware Application

    ERIC Educational Resources Information Center

    Liu, Gi-Zen; Chen, Jing-Yao; Hwang, Gwo-Jen

    2018-01-01

    Mobile applications on the go have been adopted in many fields and areas. However, there has been little research regarding the development and use of a context-aware application for users to improve their English listening comprehension through collaboration. This research aimed at helping users improve their listening comprehension with a…

  9. Tumor Biology and Immunology | Center for Cancer Research

    Cancer.gov

    Tumor Biology and Immunology The Comparative Brain Tumor Consortium is collaborating with National Center for Advanced Translational Sciences to complete whole exome sequencing on canine meningioma samples. Results will be published and made publicly available.

  10. Cancer Clinical Trials at the National Institutes of Health Clinical Center

    MedlinePlus

    ... Data Conducting Clinical Trials Statistical Tools and Data Terminology Resources NCI Data Catalog Cryo-EM NCI's Role ... fosters interaction and collaboration among clinicians and researchers. Medical Care at the Clinical Center Is Free Another ...

  11. Overview: Small Aircraft Transportation System Airborne Remote Sensing Fuel Droplet Evaporation

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Holmes, Bruce; Gogos, George; Narayanan, Ram; Smith, Russell; Woods, Sara

    2004-01-01

    The NASA Nebraska Preparation Grant was designed to solidify relationships, intensify communication, and launch collaborative initiatives among Nebraska researchers and key contacts at NASA research centers and enterprises. In doing so, Nebraska was successful in laying the groundwork for the foundation for numerous long-term, mutually beneficial collaborations that were subsequently proposed and awarded in the NASA EPSCoR 2000 competition. The NASA Nebraska EPSCoR Preparation Grant was managed by the same administrative team that oversees Nebraska's NASA Space Grant and EPSCoR programs. An advisory board (later Technical Advisory Committee) made up of voting representatives from all affiliate and partner organizations regularly reviewed grant progress and direction. The University of Nebraska at Omaha's Aviation Institute, the host institution for all three programs, provided additional administrative oversight and program evaluation through established review mechanisms. This structure has served NASA well and has been cited as a model program. The second year of preparation grant funding served as a significant opportunity for Nebraska to lay the groundwork for the continued elevation and success of its NASA EPSCoR program. In anticipation of the NASA EPSCoR 2000 grant competition, Year 2 funding enabled funded researchers to further broaden and enhance the quality and quantity of collaborations with NASA Field Centers, Codes, and Enterprises. The plan set the stage for long-term research and outreach endeavors that have contributed significantly to the achievement of NASA's strategic objectives; the state of Nebraska's economic and aerospace development efforts; and have advanced Nebraska s aeronautics research efforts to a national leadership level. The overarching goal of the NASA Nebraska EPSCoR Preparation grant was met by facilitating research endeavors among Nebraska faculty that addressed research and technology priorities of the NASA Field Centers, Codes, and Strategic Enterprises. During the first year of funding, Nebraska established open and frequent lines of communication with university affairs officers and other key personnel at all NASA Centers and Enterprises, and facilitated the development of collaborations between and among junior faculty in the state and NASA researchers. As a result, Nebraska initiated a major research cluster, the Small Aircraft Transportation System Nebraska Implementation Template.

  12. 5 strategies for improving performance of academic medical centers.

    PubMed

    Valletta, Robert M; Harkness, Alicia

    2013-06-01

    Academic medical centers should consider five strategies for becoming more cost-efficient and profitable as reforms are implemented: Make faculty responsible for cost and quality. Explore opportunities to collaborate with community hospitals. Extend care and education beyond the walls of the organization, employing technology and innovative teaching practices. Maximize healthcare IT investment by sharing data-rich patient records with other medical centers and research institutes. Align research with business strategy.

  13. Center of Excellence in Model-Based Human Performance

    NASA Technical Reports Server (NTRS)

    Wandell, Brian A.

    1997-01-01

    The Center of Excellence (COE) was created in 1984 to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. As this document will review, over that period of time, the COE served its function well. Funds from the Center supported a large number of projects over the last ten years. Many of the people who were supported by the Center have gone on to distinguished research careers in government, industry and university. In fact, several of the people currently working at NASA Ames were initially funded by the Center mechanism, which served as a useful vehicle for attracting top quality candidates and supporting their research efforts. We are grateful for NASA's support over the years. As we reviewed in the reports for each year, the COE budget generally provided a portion of the true costs of the individual research projects. Hence, the funds from the COE were leveraged with funds from industry and other government agencies. In this way, we feel that all parties benefitted greatly from the collaborative spirit and interactive aspects of the COE. The portion of the support from NASA was particularly important in helping members of the COE to set aside the time to publish papers and communicate advances in our understanding of human performance in NASA-related missions.

  14. Center of Excellence in Model-Based Human Performance

    NASA Technical Reports Server (NTRS)

    Wandell, Brian A.

    1997-01-01

    The Center of Excellence (COE) was created in 1984 to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. As this document will review, over that period of time, the COE served its function well. Funds from the Center supported a large number of projects over the last ten years. Many of the people who were supported by the Center Have gone on to distinguished research careers in government, industry and university. In fact, several of the people currently working at NASA Ames were initially funded by the Center mechanism, which served as a useful vehicle for attracting top quality candidates and supporting their research efforts. We are grateful for NASA's support over the years. As we reviewed in the reports for each year, the COE budget generally provided a portion of the true costs of the individual research project. Hence, the funds from the COE were leveraged with funds from industry and other government agencies. In this way, we feel that all parties benefitted greatly from the collaborative spirit and interactive aspects of the COE. The portion of the support from NASA was particularly important in helping members of the COE to set aside the time to publish papers and communicate advances in our understanding of human performance in NASA-related missions.

  15. Inflammation, regeneration, and transformation in the pancreas: results of the Collaborative Research Center 518 (SFB 518) at the University of Ulm.

    PubMed

    Giehl, Klaudia; Bachem, Max; Beil, Michael; Böhm, Bernhard O; Ellenrieder, Volker; Fulda, Simone; Gress, Thomas M; Holzmann, Karlheinz; Kestler, Hans A; Kornmann, Marko; Menke, Andre; Möller, Peter; Oswald, Franz; Schmid, Roland M; Schmidt, Volker; Schirmbeck, Reinhold; Seufferlein, Thomas; von Wichert, Götz; Wagner, Martin; Walther, Paul; Wirth, Thomas; Adler, Guido

    2011-05-01

    The primary diseases of the pancreas include diabetes mellitus, acute and chronic pancreatitis, as well as pancreatic carcinoma. This review presents findings and emerging questions on the diseases of the pancreas obtained by the consortium of the Collaborative Research Center 518 (SFB 518), "Inflammation, Regeneration, and Transformation in the Pancreas" at the University of Ulm. During the last 12 years, the SFB 518 contributed considerably to the understanding of the cellular and molecular basis of pancreatic diseases and established the basis for the development of new strategies for prevention and causal therapy for diabetes, pancreatitis, and pancreatic cancer.

  16. Liaison and Logistics Work with Industrial Advisory Boards

    ERIC Educational Resources Information Center

    Michel, Kathryn K.

    2014-01-01

    One model for successful university research centers is based upon close collaboration with other organizations, including large and small companies as well as federal and state agencies. Collaborations of this nature often involve an Institutional Advisory Board (IAB), which can have significant responsibility for management and financial…

  17. Research Institute for Advanced Computer Science: Annual Report October 1998 through September 1999

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    1999-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center (ARC). It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. ARC has been designated NASA's Center of Excellence in Information Technology. In this capacity, ARC is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA ARC and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, and visiting scientist programs, designed to encourage and facilitate collaboration between the university and NASA information technology research communities.

  18. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, and visiting scientist programs, designed to encourage and facilitate collaboration between the university and NASA information technology research communities.

  19. Examining Core Elements of International Research Collaboration: Summary of a Workshop

    DTIC Science & Technology

    2011-06-26

    security, and confidentiality; bioethical issues related to human subjects research as well as other activities with bioethical implications, all from...standing academic center of excellence affiliated with a number of universities. The West African Bioethics Center in Nigeria has also established a...confidentiality; bio- ethical issues related to human subjects research as well as other activities with bioethical implications, all from both a domestic

  20. Center for Fuel Cell Research and Applications development phase. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center willmore » enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.« less

  1. Collaboration Platforms in China for Translational and Clinical Research: The Partnership Between Peking University Health Science Center and the University of Michigan Medical School.

    PubMed

    Kolars, Joseph C; Fang, Weigang; Zheng, Kai; Huang, Amy Y; Sun, Qiudan; Wang, Yanfang; Woolliscroft, James O; Ke, Yang

    2017-03-01

    Clinical and translational research is increasing in China, attracting faculty-to-faculty collaborations between U.S. and Chinese researchers. However, examples of successful institution-to-institution collaborations to facilitate this research are limited. The authors describe a partnership between Peking University Health Science Center (PUHSC) and the University of Michigan Medical School (UMMS) designed to enable faculty-initiated joint translational and clinical research projects. In 2009, UMMS leadership identified PUHSC as the most appropriate institutional partner, and the Joint Institute for Translational and Clinical Research was established in 2010. Each contributed $7 million for joint research projects in areas of mutual interest. A shared governance structure, four thematic programs (pulmonary, cardiovascular, liver, and renal diseases), three joint research-enabling cores, and processes for awarding funding have been established along with methods for collaborating and mechanisms to share data and biomaterials. As of November 2015, 52 joint faculty proposals have been submitted, and 25 have been funded. These projects have involved more than 100,000 patients in the United States and China and have generated 13 peer-reviewed publications. Pilot data have been leveraged to secure $3.3 million of U.S. extramural funding. Faculty and trainee exchanges take place regularly (including an annual symposium), and mechanisms exist to link faculty seeking collaborations. Critical determinants of success include having co-ownership at all levels with coinvestment of resources. Each institution is committed to continuing its support with a repeat $7 million investment. Next steps include initiating studies in new clinical areas and pursuing large clinical intervention trials.

  2. New TES Search and Subset Application

    Atmospheric Science Data Center

    2017-08-23

    ... Wednesday, September 19, 2012 The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration ... pleased to announce the release of the TES Search and Subset Web Application for select TES Level 2 products. Features of the Search and ...

  3. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  4. International Cancer Proteogenome Consortium | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The International Cancer Proteogenome Consortium (ICPC), is a voluntary scientific organization that provides a forum for collaboration among some of the world's leading cancer and proteogenomic research centers.

  5. The benefits and challenges of research centers and institutes in academic medicine: findings from six universities and their medical schools.

    PubMed

    Mallon, William T

    2006-06-01

    To understand the benefits and challenges of using centers and institutes in the academic research enterprise, and to explore institutional strategies that capitalize on the strengths and ameliorate the weaknesses of the center/institute structure. Using a qualitative research design, the author and associates interviewed over 150 faculty members and administrators at six medical schools and their parent universities in 2004. Interview data were transcribed, coded, and analyzed using a grounded theory approach. This methodology generated rich descriptions and explanations of the six institutions, which can produce extrapolations to, but not necessarily findings that are generalizable to, other institutions and settings. Centers and institutes offer a number of benefits to academic institutions. Centers can aid in faculty recruitment and retention, facilitate collaboration in research, secure research resources, offer a sense of community and promote continued learning, afford organizational flexibility, and focus on societal problems and raise funds. Despite their many benefits, centers can also create tensions and present management challenges to institutional leaders. Centers can compete with departments over resources, complicate faculty recruitment, contribute to a fragmented mission, resist effective evaluation, pose governance problems, and impede junior faculty development. Institutional leaders might capitalize on the strengths of centers through three strategies: (1) reward leaders who embrace a collaborative point of view and develop a culture that frowns upon empire building; (2) distinguish among the many entities that share the "center" or "institute" labels; and (3) acknowledge that departments must maintain their place in the organizational milieu.

  6. Social Networking in an Agricultural Research Center: Using Data to Enhance Outcomes.

    PubMed

    Cramer, Mary E; Araz, Ozgur M; Wendl, Mary J

    2017-01-01

    The purpose of this article is to present a case study of one midwestern Agricultural Center (Ag Center) that used social network analysis (SNA) to (1) evaluate its collaborations with extramural stakeholders and (2) strategically plan for extending outreach for goal achievement. An evaluation team developed a data collection instrument based on SNA principles. It was administered to the Ag Center's intramural stakeholders (N = 9), who were asked to identify the key extramural stakeholders with whom they had collaborated within the previous 12 months. Additional questions about each extramural stakeholder helped to categorize them according to SNA network measures for degree of centrality, betweenness centrality, and closeness centrality. Findings showed the Ag Center had N = 305 extramural stakeholders. Most of these were other researchers and did not represent the diverse group of stakeholders that the Ag Center had targeted for engagement. Only a few of the intramural stakeholders had national or international connections. Findings were used to improve and diversify connections in order to leverage the Ag Center's expertise and ability to translate research into new best practices and policies. The SNA case study has implications for other evaluators and project directors looking for methodologies that can monitor networks in large science consortia and help leaders plan for translating research into practice and policies by networking with those who can influence such change.

  7. Practitioner Action Research on Writing Center Tutor Training: Critical Discourse Analysis of Reflections on Video-Recorded Sessions

    ERIC Educational Resources Information Center

    Pigliacelli, Mary

    2017-01-01

    Training writing center tutors to work collaboratively with students on their writing is a complex and challenging process. This practitioner action research uses critical discourse analysis (Gee, 2014a) to interrogate tutors' understandings of their work, as expressed in their written reflections on video-recorded tutoring sessions, to facilitate…

  8. The Collaboration Readiness of Transdisciplinary Research Teams and Centers

    PubMed Central

    Hall, Kara L.; Stokols, Daniel; Moser, Richard P.; Taylor, Brandie K.; Thornquist, Mark D.; Nebeling, Linda C.; Ehret, Carolyn C.; Barnett, Matthew J.; McTiernan, Anne; Berger, Nathan A.; Goran, Michael I.; Jeffery, Robert W.

    2009-01-01

    Growing interest in promoting cross-disciplinary collaboration among health scientists has prompted several federal agencies, including the NIH, to establish large, multicenter initiatives intended to foster collaborative research and training. In order to assess whether these initiatives are effective in promoting scientific collaboration that ultimately results in public health improvements, it is necessary to develop new strategies for evaluating research processes and products as well as the longer-term societal outcomes associated with these programs. Ideally, evaluative measures should be administered over the entire course of large initiatives, including their near-term and later phases. The present study focuses on the development of new tools for assessing the readiness for collaboration among health scientists at the outset (during Year One) of their participation in the National Cancer Institute’s Transdisciplinary Research on Energetics and Cancer (TREC) initiative. Indexes of collaborative readiness, along with additional measures of near-term collaborative processes, were administered as part of the TREC Year-One evaluation survey. Additionally, early progress toward scientific collaboration and integration was assessed, using a protocol for evaluating written research products. Results from the Year-One survey and the ratings of written products provide evidence of cross-disciplinary collaboration among participants during the first year of the initiative, and also reveal opportunities for enhancing collaborative processes and outcomes during subsequent phases of the project. The implications of these findings for future evaluations of team science initiatives are discussed. PMID:18619396

  9. Mary S. Easton Center of Alzheimer’s Disease Research at UCLA: Advancing the Therapeutic Imperative

    PubMed Central

    Cummings, Jeffrey L.; Ringman, John; Metz, Karen

    2010-01-01

    The Mary S. Easton Center for Alzheimer’s Disease Research (UCLA-Easton Alzheimer’s Center) is committed to the “therapeutic imperative” and is devoted to finding new treatments for Alzheimer’s disease (AD) and to developing technologies (biomarkers) to advance that goal. The UCLA-Easton Alzheimer’s Center has a continuum of research and research-related activities including basic/foundational studies of peptide interactions; translational studies in transgenic animals and other animal models of AD; clinical research to define the phenotype of AD, characterize familial AD, develop biomarkers, and advance clinical trials; health services and outcomes research; and active education, dissemination, and recruitment activities. The UCLA-Easton Alzheimer’s Center is supported by the National Institutes on Aging, the State of California, and generous donors who share our commitment to developing new therapies for AD. The naming donor (Jim Easton) provided substantial funds to endow the center and to support projects in AD drug discovery and biomarker development. The Sidell-Kagan Foundation supports the Katherine and Benjamin Kagan Alzheimer’s Treatment Development Program, and the Deane F. Johnson Alzheimer’s Research Foundation supports the Deane F. Johnson Center for Neurotherapeutics at UCLA. The John Douglas French Alzheimer’s Research Foundation provides grants to junior investigators in critical periods of their academic development. The UCLA-Easton Alzheimer’s Center partners with community organizations including the Alzheimer’s Association California Southland Chapter and the Leeza Gibbons memory Foundation. Collaboration with pharmaceutical companies, biotechnology companies, and device companies is critical to developing new therapeutics for AD and these collaborations are embraced in the mission of the UCLA-Easton Alzheimer’s Center. The Center supports excellent senior investigators and serves as an incubator for new scientists, agents, models, technologies and concepts that will significantly influence the future of AD treatment and AD research. PMID:20110588

  10. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    NASA Technical Reports Server (NTRS)

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; hide

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  11. National Center for Mathematics and Science - who we are

    Science.gov Websites

    . Carpenter, PhD University of Wisconsin-Madison Former Director (1996-1999), Thomas A. Romberg, PhD University of Wisconsin-Madison Associate Director, James Stewart, PhD University of Wisconsin-Madison University of Wisconsin-Madison Collaborating Institutions Researchers from these institutions collaborate on

  12. COLLABORATIVE, MULTI-TIME PERIOD LIDAR COLLECTION AND ANALYSIS FOR RESIDENTIAL DEVELOPMENT IMPACT ASSESSMENT AND MONITORING

    EPA Science Inventory

    The U.S. EPA Environmental Photographic Interpretation Center (EPIC) in

    Reston, Virginia is currently conducting collaborative landscape/stream ecology research

    in the Clarksburg Special Protection Area (CSPA) in Montgomery County, Maryland.

    The CSPA is an ar...

  13. Storytelling as an Instructional Method: Research Perspectives (Modeling and Simulations for Learning and Instruction)

    DTIC Science & Technology

    2010-01-01

    solving the problem and then applying facts and skills to reach a solution (Savery, 1998). KEY INSTRUCTIONAL STORY RESEARCH QUESTIONS Regardless of the...collaborative writing in higher education. In C. J. Bonk & K. S. King (Eds.), Electronic collaborators: Learner-centered technologies for literacy ...Gentner and Kokinov (2001) and luthe (2005), analogical reasoning involves making inferences from the similarity of relationships of elements across two

  14. Independent but coordinated trials: insights from the practice-based Opportunities for Weight Reduction Trials Collaborative Research Group.

    PubMed

    Yeh, Hsin-Chieh; Clark, Jeanne M; Emmons, Karen E; Moore, Reneé H; Bennett, Gary G; Warner, Erica T; Sarwer, David B; Jerome, Gerald J; Miller, Edgar R; Volger, Sheri; Louis, Thomas A; Wells, Barbara; Wadden, Thomas A; Colditz, Graham A; Appel, Lawrence J

    2010-08-01

    The National Heart, Lung, and Blood Institute (NHLBI) funded three institutions to conduct effectiveness trials of weight loss interventions in primary care settings. Unlike traditional multi-center clinical trials, each study was established as an independent trial with a distinct protocol. Still, efforts were made to coordinate and standardize several aspects of the trials. The three trials formed a collaborative group, the 'Practice-based Opportunities for Weight Reduction (POWER) Trials Collaborative Research Group.' We describe the common and distinct features of the three trials, the key characteristics of the collaborative group, and the lessons learned from this novel organizational approach. The Collaborative Research Group consists of three individual studies: 'Be Fit, Be Well' (Washington University in St. Louis/Harvard University), 'POWER Hopkins' (Johns Hopkins), and 'POWER-UP' (University of Pennsylvania). There are a total of 15 participating clinics with ~1100 participants. The common primary outcome is change in weight at 24 months of follow-up, but each protocol has trial-specific elements including different interventions and different secondary outcomes. A Resource Coordinating Unit at Johns Hopkins provides administrative support. The Collaborative Research Group established common components to facilitate potential cross-site comparisons. The main advantage of this approach is to develop and evaluate several interventions, when there is insufficient evidence to test one or two approaches, as would be done in a traditional multi-center trial. The challenges of the organizational design include the complex decision-making process, the extent of potential data pooling, time intensive efforts to standardize reports, and the additional responsibilities of the DSMB to monitor three distinct protocols.

  15. National Urea Cycle Disorders Foundation

    MedlinePlus

    ... questions, NUCDF has collaborated with clinical investigators to design a patient-centered research study to gather evidence- ... UCDC). The UCDC will be assist in study design as well as protocol review. Pre-clinical research ...

  16. Electrical Auxiliary Power Unit (EAPU) Corona Design Guideline. Revised

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Kirkici, Hulya; Schweickart, Dan L.; Dunbar, William; Hillard, Barry

    2000-01-01

    This document is the result of a collaborative effort between NASA's Johnson Space Center, Marshall Space Flight Center, Glenn Research Center, and the United States Air Force Research Laboratory at Wright Patterson AFB in support of the Space Shuttle Orbiter Upgrades Program, specifically the Electric Auxiliary Power Unit Program. This document is intended as a guideline for design applications for corona and partial discharge avoidance and is not a requirements specification instrument.

  17. Connecting Research to Teaching: Professional Communities: Teachers Supporting Teachers.

    ERIC Educational Resources Information Center

    Adajian, Lisa Byrd

    1996-01-01

    Reviews research on importance of strong professional communities for supporting reform. National Center for Research in Mathematical Sciences Education (NCRMSE) found significant correlation between teachers' professional community and reformed mathematics instruction. Urban Mathematics Collaboratives (UMC), Quantitative Understanding: Amplifying…

  18. 76 FR 36551 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ...-exclusive licensing as a Biological material/Research tool. Licensing Contact: David A. Lambertson, PhD; 301... of Federally-funded research and development. Foreign patent applications are filed on selected...-4632; [email protected] . Collaborative Research Opportunity: The Center for Cancer Research...

  19. Bridging basic and clinical science with policy studies: The Partners with Transdisciplinary Tobacco Use Research Centers experience.

    PubMed

    Kobus, Kimberly; Mermelstein, Robin

    2009-05-01

    The Partners with Transdisciplinary Tobacco Use Research Centers (TTURCs) initiative was a transdisciplinary team-building program, funded by the Robert Wood Johnson Foundation, to expand the policy research capacity of the TTURCs. EXPANSION INTO POLICY RESEARCh: Policy research activities at the TTURCs fell into four broad domains: (a) health services research, (b) examination of the business case for cessation treatment and funding, (c) collaborative teams with key stakeholders, and (d) direct assessment of smoking-related policies. Examples of each domain are presented. Goals of the initiative included efforts to foster collaborative, transdisciplinary research, to bring new investigators into the field, to develop programs of policy research, to answer next-step translational questions, and to enhance awareness of policy relevance. Success at meeting each of these goals is discussed. We offer recommendations for incorporating programs of policy research into full-spectrum transdisciplinary research initiatives, including the roles of research teams, senior researchers, infrastructure, stakeholders, and communications activities. The TTURC Partners initiative represented a first-generation effort to fill the gap between scientific discovery and research translation through expansion into policy studies. While all aspects of the effort were not equally successful, the effort demonstrated that it is possible to develop successful collaborations that extend more basic and applied research into studies that examine their policy and practice implications.

  20. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: IV. Tissue collection, processing, and storage in endometriosis research

    PubMed Central

    Fassbender, Amelie; Rahmioglu, Nilufer; Vitonis, Allison F.; Viganò, Paola; Giudice, Linda C.; D’Hooghe, Thomas M.; Hummelshoj, Lone; Adamson, G. David; Becker, Christian M.; Missmer, Stacey A.; Zondervan, Krina T.; Adamson, G.D.; Allaire, C.; Anchan, R.; Becker, C.M.; Bedaiwy, M.A.; Buck Louis, G.M.; Calhaz-Jorge, C.; Chwalisz, K.; D'Hooghe, T.M.; Fassbender, A.; Faustmann, T.; Fazleabas, A.T.; Flores, I.; Forman, A.; Fraser, I.; Giudice, L.C.; Gotte, M.; Gregersen, P.; Guo, S.-W.; Harada, T.; Hartwell, D.; Horne, A.W.; Hull, M.L.; Hummelshoj, L.; Ibrahim, M.G.; Kiesel, L.; Laufer, M.R.; Machens, K.; Mechsner, S.; Missmer, S.A.; Montgomery, G.W.; Nap, A.; Nyegaard, M.; Osteen, K.G.; Petta, C.A.; Rahmioglu, N.; Renner, S.P.; Riedlinger, J.; Roehrich, S.; Rogers, P.A.; Rombauts, L.; Salumets, A.; Saridogan, E.; Seckin, T.; Stratton, P.; Sharpe-Timms, K.L.; Tworoger, S.; Vigano, P.; Vincent, K.; Vitonis, A.F.; Wienhues-Thelen, U.-H.; Yeung, P.P.; Yong, P.; Zondervan, K.T.

    2014-01-01

    Objective To harmonize standard operating procedures (SOPs) and standardize the recording of associated data for collection, processing, and storage of human tissues relevant to endometriosis. Design An international collaboration involving 34 clinical/academic centers and three industry collaborators from 16 countries on five continents. Setting In 2013, two workshops were conducted followed by global consultation, bringing together 54 leaders in endometriosis research and sample processing from around the world. Patient(s) None. Intervention(s) Consensus SOPs were based on: 1) systematic comparison of SOPs from 24 global centers collecting tissue samples from women with and without endometriosis on a medium or large scale (publication on >100 cases); 2) literature evidence where available, or consultation with laboratory experts otherwise; and 3) several global consultation rounds. Main Outcome Measure(s) Standard recommended and minimum required SOPs for tissue collection, processing, and storage in endometriosis research. Result(s) We developed “recommended standard” and “minimum required” SOPs for the collection, processing, and storage of ectopic and eutopic endometrium, peritoneum, and myometrium, and a biospecimen data collection form necessary for interpretation of sample-derived results. Conclusion(s) The EPHect SOPs allow endometriosis research centers to decrease variability in tissue-based results, facilitating between-center comparisons and collaborations. The procedures are also relevant to research into other gynecologic conditions involving endometrium, myometrium, and peritoneum. The consensus SOPs are based on the best available evidence; areas with limited evidence are identified as requiring further pilot studies. The SOPs will be reviewed based on investigator feedback and through systematic triannual follow-up. Updated versions will be made available at: http://endometriosisfoundation.org/ephect. PMID:25256928

  1. Sensors, nano-electronics and photonics for the Army of 2030 and beyond

    NASA Astrophysics Data System (ADS)

    Perconti, Philip; Alberts, W. C. K.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith

    2016-02-01

    The US Army's future operating concept will rely heavily on sensors, nano-electronics and photonics technologies to rapidly develop situational understanding in challenging and complex environments. Recent technology breakthroughs in integrated 3D multiscale semiconductor modeling (from atoms-to-sensors), combined with ARL's Open Campus business model for collaborative research provide a unique opportunity to accelerate the adoption of new technology for reduced size, weight, power, and cost of Army equipment. This paper presents recent research efforts on multi-scale modeling at the US Army Research Laboratory (ARL) and proposes the establishment of a modeling consortium or center for semiconductor materials modeling. ARL's proposed Center for Semiconductor Materials Modeling brings together government, academia, and industry in a collaborative fashion to continuously push semiconductor research forward for the mutual benefit of all Army partners.

  2. Naval Health Research Center 1985 Annual Report

    DTIC Science & Technology

    1985-01-01

    research. While much of our earlier work addressed organizational issues within the shote -based health care delivery sytem, more recent efforts have focused...Laboratory, Groton, Connecticut, cn the Neurometric Program. Dr. Naitoh met with Dr. Charles Winget of NASA Amen Rasearch Center for a research consultation...lag in commercial aircrews. Collaborators on the project include LT COL R. Curtis Graeber from NASA -Ames, Dr. Hans-Martin Wegmann from the West German

  3. Lewis' Educational and Research Collaborative Internship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann; Gott, Susan (Technical Monitor)

    2004-01-01

    The Lewis Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships in addition to summer and winter extensions if funding is available and/or is requested by mentor (no less than 1 week no more than 4 weeks) for undergraduate/graduate students and secondary school teachers. Students who meet the travel reimbursement criteria receive up to $500 for travel expenses. Approximately 178 interns are selected to participate in this program each year and begin arriving the fourth week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, and lectures. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 2004.

  4. International and national initiatives in biobanking.

    PubMed

    Ectors, N

    2011-01-01

    Translational research and biobanking are "in", also in Flanders and in Belgium. In Flanders the Advice report 120 from the Flemish Council for Science and innovation, entitled "Extension of translational research in Flanders" paved the way for the Center for Medical Innovation. The Center for Medical Innovation aims at promoting collaboration between Flemish Universities, university hospitals, pharma and biotech industry and the Flemish Government specifically in the domain of translational research. The Initiative # 27 of the Cancer plan from the Federal Government aims at financing a virtual interuniversity tumor bank in order to promote "cancer" translational research in a collaborative network between academic structures, general hospitals en different industrial partners (pharmacy, biotechnology, diagnostics, ...) active in research in Belgium. However, the scientific interest in the human tissues is not new, at all. This text aims at giving an overview of the development and evolutions of "biobanking" initiatives.

  5. Communicating Climate Change: Lessons Learned from a Researcher-Museum Collaboration †

    PubMed Central

    Parker, Christopher T.; Cockerham, Debbie; Foss, Ann W.

    2018-01-01

    The need for science education and outreach is great. However, despite the ever-growing body of available scientific information, facts are often misrepresented to or misunderstood by the general public. This can result in uninformed decisions that negatively impact society at both individual and community levels. One solution to this problem is to make scientific information more available to the public through outreach programs. Most outreach programs, however, focus on health initiatives, STEM programs, or young audiences exclusively. This article describes a collaboration between the Research and Learning Center at the Fort Worth Museum of Science and History and an interdisciplinary team of researchers from the Dallas–Fort Worth (DFW) metroplex area. The collaboration was a pilot effort of a science communication fellowship and was designed to train researchers to effectively convey current science information to the public with a focus on lifelong learning. We focus on the broader idea of a university-museum collaboration that bridges the science communication gap as we outline the process of forming this collaboration, lessons we learned from the process, and directions that can support future collaborations. PMID:29904536

  6. Research on collaborative innovation mechanism of green construction supply chain based on united agency

    NASA Astrophysics Data System (ADS)

    Zhang, Min; He, Weiyi

    2018-06-01

    Under the guidance of principal-agent theory and modular theory, the collaborative innovation of green technology-based companies, design contractors and project builders based on united agency will provide direction for the development of green construction supply chain in the future. After analyzing the existing independent agencies, this paper proposes the industry-university-research bilateral collaborative innovation network architecture and modularization with the innovative function of engineering design in the context of non-standard transformation interfaces, analyzes the innovation responsibility center, and gives some countermeasures and suggestions to promote the performance of bilateral cooperative innovation network.

  7. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Each item is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1996.

  8. Sixth NASA Glenn Research Center Propulsion Control and Diagnostics (PCD) Workshop

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S. (Compiler)

    2018-01-01

    The Intelligent Control and Autonomy Branch at NASA Glenn Research Center hosted the Sixth Propulsion Control and Diagnostics Workshop on August 22-24, 2017. The objectives of this workshop were to disseminate information about research being performed in support of NASA Aeronautics programs; get feedback from peers on the research; and identify opportunities for collaboration. There were presentations and posters by NASA researchers, Department of Defense representatives, and engine manufacturers on aspects of turbine engine modeling, control, and diagnostics.

  9. Forging Alliances in Interdisciplinary Rehabilitation Research (FAIRR): A Logic Model.

    PubMed

    Gill, Simone V; Khetani, Mary A; Yinusa-Nyahkoon, Leanne; McManus, Beth; Gardiner, Paula M; Tickle-Degnen, Linda

    2017-07-01

    In a patient-centered care era, rehabilitation can benefit from researcher-clinician collaboration to effectively and efficiently produce the interdisciplinary science that is needed to improve patient-centered outcomes. The authors propose the use of the Forging Alliances in Interdisciplinary Rehabilitation Research (FAIRR) logic model to provide guidance to rehabilitation scientists and clinicians who are committed to growing their involvement in interdisciplinary rehabilitation research. We describe the importance and key characteristics of the FAIRR model for conducting interdisciplinary rehabilitation research.

  10. OVERVIEW OF THE EPA/DOE MINE WASTE TECHNOLOGY PROGRAM

    EPA Science Inventory

    This meeting was held at the Hilton Cincinnati Netherland plaza in Cincinnati, OH. The purpose of thie meeting was to discuss current Hazardous Substance Research Center and USEPA/ ORD superfund research, identify research needs, and foster collaborative efforts. The presentatio...

  11. Students Promoting Economic Development and Environmental Sustainability: An Analysis of the Impact of Involvement in a Community-Based Research and Service-Learning Program

    ERIC Educational Resources Information Center

    Keen, Cheryl; Baldwin, Elizabeth

    2004-01-01

    Community-based research has been suggested as a particularly effective form of service learning in college-community collaborations. This paper reviews findings from interviews with alumni/ae and community partners of an environmental and economic sustainability center at Allegheny College in Northwest Pennsylvania, the Center for Economic and…

  12. CALIPSO V1.00 L3 IceCloud Formal Release Announcement

    Atmospheric Science Data Center

    2018-06-13

    ... The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CALIPSO mission team announces the ... distributions of ice cloud extinction coefficients and ice water content histograms on a uniform spatial grid.  All parameters are ...

  13. Making Mitosis Visible

    ERIC Educational Resources Information Center

    Williams, Michelle; Linn, Marcia C.; Hollowell, Gail P.

    2008-01-01

    The Technology-Enhanced Learning in Science (TELS) center, a National Science Foundation-funded Center for Learning and Teaching, offers research-tested science modules for students in grades 6-12 (Linn et al. 2006). These free, online modules engage students in scientific inquiry through collaborative activities that include online…

  14. Concurrent and Collaborative Engineering Implementation in an R and D Organization

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben; Davis, Jose M.; Keys, L. Ken

    2003-01-01

    Concurrent Engineering (CE), and Collaborative Engineering (or Collaborative Product Development - CPD) have emerged as new paradigms with significant impact in the development of new products and processes. With documented and substantiated success in the automotive and technology industries CE and, most recently, CPD are being touted as innovative management philosophies for many other business sectors including Research and De- velopment. This paper introduces two independent research initiatives conducted at the NASA Glenn Research Center (GRC) in Cleveland, Ohio investigating the application of CE and CPD in an RdiD environment. Since little research has been conducted in the use of CE and CPD in sectors other than the high mass production manufacturing, the objective of these independent studies is to provide a systematic evaluation of the applicability of these paradigms (concur- rent and collaborative) in a low/no production, service environment, in particular R&D.

  15. Synergistic Combination Agent for Cancer Therapy | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Nanotechnology Characterization Laboratory of the Frederick National Laboratory for Biomedical Research seeks parties interested in collaborative research to co-develop a ceramide and vinca alkaloid combination therapy for treatment of cancer.

  16. Conducting research and collaborating with researchers: the experience of clinicians in a residential treatment center.

    PubMed

    Adelman, Robert W; Castonguay, Louis G; Kraus, David R; Zack, Sanno E

    2015-01-01

    This paper describes the experience of clinicians in conducting research and collaborating with academic researchers. As part of clinical routine of a residential program for adolescent substance abusers, empirical data have been collected to assess client's needs before and after treatment, improve clinical practice, and identify barriers to change. Some of the challenges faced and the benefits learned in conducting these studies are presented. In addition to highlighting the convergence of research interests between clinicians and academicians, the conclusion offers general recommendations to foster these partnerships and solidify the scientific-practitioner model.

  17. "We Need More Consistency": Negotiating the Division of Labor in ESOL-Mainstream Teacher Collaboration

    ERIC Educational Resources Information Center

    Peercy, Megan Madigan; Ditter, Margaret; Destefano, Megan

    2017-01-01

    This study contributes to research on teacher collaboration, which has not adequately examined the supports and challenges to English for speakers of other languages (ESOL) specialists and mainstream classroom teachers sharing roles in a student-centered classroom. Using a sociocultural theoretical framework, this study highlights the importance…

  18. Collaboration for prevention of chronic disease in Kentucky: the Health Education Through Extension Leaders (HEEL) program.

    PubMed

    Riley, Peggy

    2008-09-01

    Health Education Through Extension Leaders (HEEL) is one of the solutions the University of Kentucky College of Agriculture has created to address the problem of chronic disease in Kentucky. Building on the land grant model for education, outreach, and prevention, HEEL collaborates and partners with the academic health centers, area health education centers, the Center for Rural Health, the Kentucky Cancer Program, the Markey Cancer Center, the University of Kansas Wellness Program, and the Kentucky Cabinet for Health and Family Services to implement research-based preventive programs to the county extension agents across Kentucky. Extension agents are an instrumental bridge between the communities across Kentucky and the educational resources provided by the HEEL program.

  19. The University of Miami Center for Oceans and Human Health

    NASA Astrophysics Data System (ADS)

    Fleming, L. E.; Smith, S. L.; Minnett, P. J.

    2007-05-01

    Two recent major reports on the health of the oceans in the United States have warned that coastal development and population pressures are responsible for the dramatic degradation of U.S. ocean and coastal environments. The significant consequences of this increased population density, particularly in sub/tropical coastal regions, can be seen in recent weather events: Hurricanes Andrew, Ivan, and Katrina in the US Gulf of Mexico states, and the Tsunami in Southeast Asia in December 2004, all causing significant deaths and destruction. Microbial contamination, man-made chemicals, and a variety of harmful algal blooms and their toxins are increasingly affecting the health of coastal human populations via the seafood supply, as well as the commercial and recreational use of coastal marine waters. At the same time, there has been the realization that the oceans are a source of unexplored biological diversity able to provide medicinal, as well as nutritional, benefits. Therefore, the exploration and preservation of the earth's oceans have significant worldwide public health implications for current and future generations. The NSF/NIEHS Center for Oceans and Human Health Center (COHH) at the University of Miami Rosenstiel School and its collaborators builds on several decades of collaborative and interdisciplinary research, education, and training to address the NIEHS-NSF research initiative in Oceans and Human Health. The COHH focuses on issues relevant to the Southeastern US and Caribbean, as well as global Sub/Tropical areas worldwide, to integrate interdisciplinary research between biomedical and oceanographic scientists. The Center includes three Research Projects: (1) research into the application of toxic algal culture, toxin analysis, remote sensing, oceanography, and genomics to subtropical/tropical Harmful Algal Bloom (HAB) organism and toxin distribution; (2) exploring the interaction between functional genomics and oceanography of the subtropical/tropical HAB organism, Karenia brevis, and its environmental interactions; and (3) exploring the relationship between microbial indicators and human health effects in sub/tropical recreational marine waters. There are three Facilities Cores supporting this research in Genomics, Remote Sensing, and Toxic Algal Culture. To accomplish this research program in subtropical/tropical oceans and human health, the University of Miami Oceans & Human Health Center collaborates with interdisciplinary scientists at Florida International University (FIU), the Centers for Disease Control and Prevention (CDC), the Miami Dade County Dept of Health, the University of Florida, and other institutions, as well as other Oceans and Human Health Centers and researchers.

  20. A Classification Scheme for Therapeutic Recreation Research Grounded in the Rehabilitative Sciences.

    ERIC Educational Resources Information Center

    Shank, J. W.; And Others

    1996-01-01

    Presents therapeutic recreation (TR) research according to a model from the National Center for Medical Rehabilitation Research to guide research on disability, rehabilitation, and quality of life for persons with disabilities. Suggests that disseminating TR research can stimulate interdisciplinary collaboration and support inclusion of TR…

  1. U.S. Environmental Protection Agency national network of research centers: A case study in socio-political influences on research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morehouse, K.

    1995-12-01

    During the 15 years that the U.S. Environmental Protection Agency (EPA) has supported university-based research centers, there have been many changes in mission, operating style, funding level, eligibility, and selection process. Even the definition of the term {open_quotes}research center{close_quotes} is open to debate. Shifting national priorities, political realities, and funding uncertainties have powered the evolution of research centers in EPA, although the agency`s basic philosophy on the purpose and value of this approach to research remains essentially unchanged. Today, EPA manages 28 centers, through the Office of Exploratory Research. These centers are administered under three distinct programs. Each program hasmore » its own mission and goals which guide the way individual centers are selected and operated. This paper will describe: (1) EPA`s philosophy of reserach centers, (2) the complicated history of EPA research centers, (3) coordination and interaction among EPA centers and others, (4) opportunities for collaboration, and (5) plans for the future.« less

  2. Creating the Evidence through Comparative Effectiveness Research for Interprofessional Education and Collaborative Practice by Deploying a National Intervention Network and a National Data Repository

    PubMed Central

    Pechacek, Judith; Cerra, Frank; Brandt, Barbara; Lutfiyya, May Nawal; Delaney, Connie

    2015-01-01

    Background: There is currently a resurgence of interest in interprofessional education and collaborative practice (IPECP) and its potential to positively impact health outcomes at both the patient level and population level, healthcare delivery, and health professions education. This resurgence of interest led to the creation of the National Center on Interprofessional Collaborative Practice and Education in October 2012. Methods: This paper describes three intertwined knowledge generation strategies of the National Center on Interprofessional Practice and Education: (1) the development of a Nexus Incubator Network, (2) the undertaking of comparative effectiveness research, and (3) the creation of a National Center Data Repository. Results: As these strategies are implemented over time they will result in the production of empirically grounded knowledge regarding the direction and scope of the impact, if any, of IPECP on well-defined health and healthcare outcomes including the possible improvement of the patient experience of care. Conclusions: Among the motivating factors for the National Center and the three strategies adopted and addressed herein is the need for rigorously produced, scientifically sound evidence regarding IPECP and whether or not it has the capacity to positively affect the patient experience of care, the health of populations, and the per capita cost of healthcare. PMID:27417753

  3. Collaborating and sharing data in epilepsy research.

    PubMed

    Wagenaar, Joost B; Worrell, Gregory A; Ives, Zachary; Dümpelmann, Matthias; Matthias, Dümpelmann; Litt, Brian; Schulze-Bonhage, Andreas

    2015-06-01

    Technological advances are dramatically advancing translational research in Epilepsy. Neurophysiology, imaging, and metadata are now recorded digitally in most centers, enabling quantitative analysis. Basic and translational research opportunities to use these data are exploding, but academic and funding cultures prevent this potential from being realized. Research on epileptogenic networks, antiepileptic devices, and biomarkers could progress rapidly if collaborative efforts to digest this "big neuro data" could be organized. Higher temporal and spatial resolution data are driving the need for novel multidimensional visualization and analysis tools. Crowd-sourced science, the same that drives innovation in computer science, could easily be mobilized for these tasks, were it not for competition for funding, attribution, and lack of standard data formats and platforms. As these efforts mature, there is a great opportunity to advance Epilepsy research through data sharing and increase collaboration between the international research community.

  4. Helping the Graduate Thesis Writer through Faculty and Writing Center Collaboration.

    ERIC Educational Resources Information Center

    Powers, Judith K.

    Last year, the Writing Center at the University of Wyoming saw a 100% increase in conferences held with graduate student research writers. Reactions of writing center staff to this development were not entirely positive because: (1) writers came with documents that were too long to discuss in a 30-minute conference and still expected a "quick…

  5. The National Quality Improvement Center on the Privatization of Child Welfare Services: A Program Description

    ERIC Educational Resources Information Center

    Collins-Camargo, Crystal; Ensign, Karl; Flaherty, Chris

    2008-01-01

    Quality improvement centers were created by the U.S. Department of Health and Human Services' Children's Bureau beginning in 2001 to promote knowledge development through an innovative approach to applied collaborative research in child welfare. The National Quality Improvement Center on the Privatization of Child Welfare Services was funded to…

  6. Multimedia Sampling During The Application Of Biosolids On A Land Test Site

    EPA Science Inventory

    This report documents the approach, methodologies, results, and interpretation of a collaborative research study conducted by the National Risk Management Research Center (NRMRL) of the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development (ORD); ...

  7. The Academic Research Centre: A Vital Link between Industry and Higher Education.

    ERIC Educational Resources Information Center

    Steiner, Karl V.; Kukich, Diane S.

    1995-01-01

    The Center for Composite Materials at the University of Delaware opens up new funding sources and collaborative research opportunities and enhances student skills. Government-sponsored research is focusing on real-world problems in close cooperation with industry. (SK)

  8. Announcement of CERES FM6 Edition1-CV Product Release

    Atmospheric Science Data Center

    2018-06-14

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CERES Science Team ... be found at the CERES data table:   http://eosweb.larc.nasa.gov/project/ceres/ceres_table   Edition1-CV is for instrument ...

  9. [Assessing the correlation between international collaboration and academic influence in parasitic diseases: a case study of National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention].

    PubMed

    Yao, Jia-wen; Jia, Tie-wu; Zhou, Xiao-nong

    2013-08-01

    To investigate the activity of scientific research and international collaboration in National Institute of Parasitic Diseases (NIPD), Chinese Center for Disease Control and Prevention (China CDC) from 2002 to 2012, and assess the relationship between international collaboration and academic influence at an individual level. Non-bibliometric indicators including number and structure of scientific research personnel, number of projects and funds, visiting frequency, etc, were used to assess the activity of scientific research and international collaboration, and bibliometric indicators including publications and h index, were employed to estimate the academic influence of senior professionals in NIPD, China CDC. The relationship between the international collaboration and international academic influence in the control and research of parasitic diseases was evaluated by using analysis of covariance and generalized linear models. There was an increase tendency of the number of projects, funds and visiting frequency in NIPD, China CDC since the foundation of the institute in 2002, notably after 2011. The h2 index of NIPD, China was 7. Analysis of covariance and generalized linear model analysis revealed that the number of international partners (F = 81.75, P < 0.0001) , number of international projects (F = 22.81, P < 0.0001) , number of national projects (F = 7.30, P = 0.0110), and academic degree (F = 3.80, P = 0.0330) contributed greatly to individual academic influence, while visiting frequency, professional title and length of service had no significant association with h index. Elevation of international collaboration projects and development of long-term, stable international partnership may enhance the institutional and individual international academic influence in the field of parasitic diseases.

  10. Research and development of optical measurement techniques for aerospace propulsion research: A NASA Lewis Research Center perspective

    NASA Technical Reports Server (NTRS)

    Lesco, Daniel J.

    1991-01-01

    The applied research effort required to develop new nonintrusive measurement techniques capable of obtaining the data required by aerospace propulsion researchers and of operating in the harsh environments encountered in research and test facilities is discussed and illustrated through several ongoing projects at NASA's Lewis Research Center. Factors including length of development time, funding levels, and collaborative support from fluid-thermal researchers are cited. Progress in developing new instrumentation via a multi-path approach, including NASA research, grant, and government-sponsored research through mechanisms like the Small Business Innovative Research program, is also described.

  11. Metals and Ceramics Division Materials Sciences Program. Annual progress report for period ending December 31, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiegler, J.O.

    1986-06-01

    The report is divided into the following: structural characterization, high-temperature alloy research, structural ceramics, radiation effects, structure and properties of surfaces and interfaces, and collaborative research centers. (DLC)

  12. Teachers engaging in Authentic Education Research as They Engage Students in Authentic Science Research: A Collaboration Among Scientists, Education Researchers and Practitioners

    NASA Astrophysics Data System (ADS)

    Schielack, J. F.; Herbert, B. E.

    2004-12-01

    The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative evaluation process that has moved the ITS Center's collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). Phase II highlighted learning experiences over two summers focused on the exploration of environmentally-related science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum.

  13. Big Data Analytics and Machine Intelligence Capability Development at NASA Langley Research Center: Strategy, Roadmap, and Progress

    NASA Technical Reports Server (NTRS)

    Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward

    2016-01-01

    In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.

  14. Build It: Will They Come?

    NASA Astrophysics Data System (ADS)

    Corrie, Brian; Zimmerman, Todd

    Scientific research is fundamentally collaborative in nature, and many of today's complex scientific problems require domain expertise in a wide range of disciplines. In order to create research groups that can effectively explore such problems, research collaborations are often formed that involve colleagues at many institutions, sometimes spanning a country and often spanning the world. An increasingly common manifestation of such a collaboration is the collaboratory (Bos et al., 2007), a “…center without walls in which the nation's researchers can perform research without regard to geographical location — interacting with colleagues, accessing instrumentation, sharing data and computational resources, and accessing information from digital libraries.” In order to bring groups together on such a scale, a wide range of components need to be available to researchers, including distributed computer systems, remote instrumentation, data storage, collaboration tools, and the financial and human resources to operate and run such a system (National Research Council, 1993). Media Spaces, as both a technology and a social facilitator, have the potential to meet many of these needs. In this chapter, we focus on the use of scientific media spaces (SMS) as a tool for supporting collaboration in scientific research. In particular, we discuss the design, deployment, and use of a set of SMS environments deployed by WestGrid and one of its collaborating organizations, the Centre for Interdisciplinary Research in the Mathematical and Computational Sciences (IRMACS) over a 5-year period.

  15. Global Health, Medical Anthropology, and Social Marketing: Steps to the Ecology of Collaboration.

    PubMed

    Whiteford, Linda

    2015-06-01

    Anthropology and global health have long been a focus of research for both biological and medical anthropologists. Research has looked at physiological adaptations to high altitudes, community responses to water-borne diseases, the integration of traditional and biomedical approaches to health, global responses to HIV/AIDS, and more recently, to the application of cultural approaches to the control of the Ebola epidemic. Academic anthropology has employed theory and methods to extend knowledge, but less often to apply that knowledge. However, anthropologists outside of the academy have tackled global health issues such as family planning and breast-feeding by bringing together applied medical anthropology and social marketing. In 2014, that potent and provocative combination resulted in the University of South Florida in Tampa, Florida being made the home of an innovative center designed to combine academic and applied anthropology with social marketing in order to facilitate social change. This article discusses how inter- and intra-disciplinary research/application has led to the development of Florida's first World Health Organization Collaborating Center (WHO CC), and the first such center to focus on social marketing, social change and non-communicable diseases. This article explains the genesis of the Center and presents readers with a brief overview, basic principles and applications of social marketing by reviewing a case study of a water conservation project. The article concludes with thoughts on the ecology of collaboration among global health, medical anthropology and social marketing practitioners.

  16. Models of interinstitutional partnerships between research intensive universities and minority serving institutions (MSI) across the Clinical Translational Science Award (CTSA) consortium.

    PubMed

    Ofili, Elizabeth O; Fair, Alecia; Norris, Keith; Verbalis, Joseph G; Poland, Russell; Bernard, Gordon; Stephens, David S; Dubinett, Steven M; Imperato-McGinley, Julianne; Dottin, Robert P; Pulley, Jill; West, Andrew; Brown, Arleen; Mellman, Thomas A

    2013-12-01

    Health disparities are an immense challenge to American society. Clinical and Translational Science Awards (CTSAs) housed within the National Center for Advancing Translational Science (NCATS) are designed to accelerate the translation of experimental findings into clinically meaningful practices and bring new therapies to the doorsteps of all patients. Research Centers at Minority Institutions (RCMI) program at the National Institute on Minority Health and Health Disparities (NIMHD) are designed to build capacity for biomedical research and training at minority serving institutions. The CTSA created a mechanism fostering formal collaborations between research intensive universities and minority serving institutions (MSI) supported by the RCMI program. These consortium-level collaborations activate unique translational research approaches to reduce health disparities with credence to each academic institutions history and unique characteristics. Five formal partnerships between research intensive universities and MSI have formed as a result of the CTSA and RCMI programs. These partnerships present a multifocal approach; shifting cultural change and consciousness toward addressing health disparities, and training the next generation of minority scientists. This collaborative model is based on the respective strengths and contributions of the partnering institutions, allowing bidirectional interchange and leveraging NIH and institutional investments providing measurable benchmarks toward the elimination of health disparities. © 2013 Wiley Periodicals, Inc.

  17. Models of Interinstitutional Partnerships between Research Intensive Universities and Minority Serving Institutions (MSI) across the Clinical Translational Science Award (CTSA) Consortium

    PubMed Central

    Fair, Alecia; Norris, Keith; Verbalis, Joseph G.; Poland, Russell; Bernard, Gordon; Stephens, David S.; Dubinett, Steven M.; Imperato‐McGinley, Julianne; Dottin, Robert P.; Pulley, Jill; West, Andrew; Brown, Arleen; Mellman, Thomas A.

    2013-01-01

    Abstract Health disparities are an immense challenge to American society. Clinical and Translational Science Awards (CTSAs) housed within the National Center for Advancing Translational Science (NCATS) are designed to accelerate the translation of experimental findings into clinically meaningful practices and bring new therapies to the doorsteps of all patients. Research Centers at Minority Institutions (RCMI) program at the National Institute on Minority Health and Health Disparities (NIMHD) are designed to build capacity for biomedical research and training at minority serving institutions. The CTSA created a mechanism fostering formal collaborations between research intensive universities and minority serving institutions (MSI) supported by the RCMI program. These consortium‐level collaborations activate unique translational research approaches to reduce health disparities with credence to each academic institutions history and unique characteristics. Five formal partnerships between research intensive universities and MSI have formed as a result of the CTSA and RCMI programs. These partnerships present a multifocal approach; shifting cultural change and consciousness toward addressing health disparities, and training the next generation of minority scientists. This collaborative model is based on the respective strengths and contributions of the partnering institutions, allowing bidirectional interchange and leveraging NIH and institutional investments providing measurable benchmarks toward the elimination of health disparities. PMID:24119157

  18. Other Resources Related to SAM

    EPA Pesticide Factsheets

    Learn more about websites and information related to EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM), including key EPA collaborators, laboratories, and research centers.

  19. Innovation in global collaborations: from student placement to mutually beneficial exchanges.

    PubMed

    Suarez-Balcazar, Yolanda; Hammel, Joy; Mayo, Liliana; Inwald, Stephanie; Sen, Supriya

    2013-06-01

    Five years ago, an academic department in the United States and the Ann Sullivan Center of Peru (CASP) initiated an international partnership to foster research collaborations and reciprocal consultation, and to create an advanced clinical placement for occupational therapy doctoral students. CASP is a globally recognized hub for community-based research, demonstration and training for people with disabilities (most of whom are from low-income families). CASP has provided occupational therapy students and faculty with a rich cultural environment in which to learn and collaborate as well as opportunities for developing research collaborations. The purpose of this manuscript is to discuss an innovative model of international collaboration highlighting specific areas of exchange and reciprocal learning. First, we will describe the collaboration and CASP's rich learning opportunities. Second, we will discuss a model of collaboration that includes three main phases: planning and preparation, developing and sustaining the partnership, and evaluating and celebrating outcomes and benefits. We illustrate the partnership with a case example and describe exchanges between CASP and a local community agency with whom faculty have collaborated for 20 years. Finally, we discuss implications of our innovative model towards developing and sustaining global partnerships. . Copyright © 2013 John Wiley & Sons, Ltd.

  20. Changes in Social Capital and Networks: A Study of Community-Based Environmental Management through a School-Centered Research Program

    ERIC Educational Resources Information Center

    Thornton, Teresa; Leahy, Jessica

    2012-01-01

    Social network analysis (SNA) is a social science research tool that has not been applied to educational programs. This analysis is critical to documenting the changes in social capital and networks that result from community based K-12 educational collaborations. We review SNA and show an application of this technique in a school-centered,…

  1. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  2. 76 FR 15961 - Funding Priorities and Selection Criterion; Disability and Rehabilitation Research Projects and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... least one, but no more than two, site-specific research projects to test innovative approaches to... Criterion; Disability and Rehabilitation Research Projects and Spinal Cord Injury Model Systems Centers and Multi-Site Collaborative Research Projects AGENCY: Office of Special Education and Rehabilitative...

  3. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2017-12-09

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  4. New project to support scientific collaboration electronically

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Rasmussen, C. E.; Niciejewski, R. J.; Killeen, T. L.; Kelly, J. D.; Zambre, Y.; Rosenberg, T. J.; Stauning, P.; Friis-Christensen, E.; Mende, S. B.; Weymouth, T. E.; Prakash, A.; McDaniel, S. E.; Olson, G. M.; Finholt, T. A.; Atkins, D. E.

    A new multidisciplinary effort is linking research in the upper atmospheric and space, computer, and behavioral sciences to develop a prototype electronic environment for conducting team science worldwide. A real-world electronic collaboration testbed has been established to support scientific work centered around the experimental operations being conducted with instruments from the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland. Such group computing environments will become an important component of the National Information Infrastructure initiative, which is envisioned as the high-performance communications infrastructure to support national scientific research.

  5. The Integrated WRF/Urban Modeling System: Development, Evaluation, and Applications to Urban Environmental Problems

    EPA Science Inventory

    To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and fore...

  6. 76 FR 576 - National Cancer Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ..., Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399, Cancer Control, National Institutes of...: Wlodek Lopaczynski, M.D., PhD, Scientific Review Officer, Research Programs Review Branch, Division of... Institute Special Emphasis Panel; Collaborative Research in Integrative Cancer Biology and the Tumor...

  7. Measurements of the center-of-mass energies at BESIII via the di-muon process

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- → γISR/FSRμ+μ-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  8. caTIES: a grid based system for coding and retrieval of surgical pathology reports and tissue specimens in support of translational research.

    PubMed

    Crowley, Rebecca S; Castine, Melissa; Mitchell, Kevin; Chavan, Girish; McSherry, Tara; Feldman, Michael

    2010-01-01

    The authors report on the development of the Cancer Tissue Information Extraction System (caTIES)--an application that supports collaborative tissue banking and text mining by leveraging existing natural language processing methods and algorithms, grid communication and security frameworks, and query visualization methods. The system fills an important need for text-derived clinical data in translational research such as tissue-banking and clinical trials. The design of caTIES addresses three critical issues for informatics support of translational research: (1) federation of research data sources derived from clinical systems; (2) expressive graphical interfaces for concept-based text mining; and (3) regulatory and security model for supporting multi-center collaborative research. Implementation of the system at several Cancer Centers across the country is creating a potential network of caTIES repositories that could provide millions of de-identified clinical reports to users. The system provides an end-to-end application of medical natural language processing to support multi-institutional translational research programs.

  9. One Mission-Centered, Market-Smart Globalization Response: A Case Study of the Georgia Tech-Emory University Biomedical Engineering Curricular Joint Venture

    ERIC Educational Resources Information Center

    Burriss, Annie Hunt

    2010-01-01

    One innovative, higher-education response to globalization and changing fiscal realities is the curricular joint venture (CJV), a formal collaboration between academic institutions that leverages missions through new joint degrees and research not previously offered by collaborating institutions (Eckel, 2003). In 1997, a pioneering biomedical…

  10. Learning from Cross-University Collaboration and Research: A Greek Tragedy in Three Acts

    ERIC Educational Resources Information Center

    Mercado, Carmen I.

    2004-01-01

    A multiyear collaboration engaging key educational partners set out to understand how it was that English-language learners attending public schools that had the potential to serve as centers of excellence came to demonstrate relatively strong levels of performance on New York City and New York State standardized tests. This article describes what…

  11. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  12. Center for Computational Structures Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Perry, Ferman W.

    1995-01-01

    The Center for Computational Structures Technology (CST) is intended to serve as a focal point for the diverse CST research activities. The CST activities include the use of numerical simulation and artificial intelligence methods in modeling, analysis, sensitivity studies, and optimization of flight-vehicle structures. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The key elements of the Center are: (1) conducting innovative research on advanced topics of CST; (2) acting as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); (3) strong collaboration with NASA scientists and researchers from universities and other government laboratories; and (4) rapid dissemination of CST to industry, through integration of industrial personnel into the ongoing research efforts.

  13. Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2011-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.

  14. A Methodology for Assessing the Military Benefits of Science and Technology Investments

    DTIC Science & Technology

    2008-09-01

    and sources for this paper were drawn from unclassified materials. Albert Sciarretta is a Senior Research Fellow at the Center for Technology and...should be noted that Dr. Killion also co-authored the unpublished paper , “Measuring Return on investment for Army Basic Research ,” provided as appendix C...Lyons, “Army R&D Collaboration and The Role of Globalization In Research ,” Defense & Technology Paper 51 (Washington, DC: Center For Technology and

  15. USDA dietary supplement ingredient database, release 2

    USDA-ARS?s Scientific Manuscript database

    The Nutrient Data Laboratory (NDL),Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), USDA, in collaboration with the Office of Dietary Supplements, National Institutes of Health (ODS/NIH) and other federal agencies has developed a Dietary Supplement Ingredient ...

  16. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  17. Integrating research, clinical care, and education in academic health science centers.

    PubMed

    King, Gillian; Thomson, Nicole; Rothstein, Mitchell; Kingsnorth, Shauna; Parker, Kathryn

    2016-10-10

    Purpose One of the major issues faced by academic health science centers (AHSCs) is the need for mechanisms to foster the integration of research, clinical, and educational activities to achieve the vision of evidence-informed decision making (EIDM) and optimal client care. The paper aims to discuss this issue. Design/methodology/approach This paper synthesizes literature on organizational learning and collaboration, evidence-informed organizational decision making, and learning-based organizations to derive insights concerning the nature of effective workplace learning in AHSCs. Findings An evidence-informed model of collaborative workplace learning is proposed to aid the alignment of research, clinical, and educational functions in AHSCs. The model articulates relationships among AHSC academic functions and sub-functions, cross-functional activities, and collaborative learning processes, emphasizing the importance of cross-functional activities in enhancing collaborative learning processes and optimizing EIDM and client care. Cross-functional activities involving clinicians, researchers, and educators are hypothesized to be a primary vehicle for integration, supported by a learning-oriented workplace culture. These activities are distinct from interprofessional teams, which are clinical in nature. Four collaborative learning processes are specified that are enhanced in cross-functional activities or teamwork: co-constructing meaning, co-learning, co-producing knowledge, and co-using knowledge. Practical implications The model provides an aspirational vision and insight into the importance of cross-functional activities in enhancing workplace learning. The paper discusses the conceptual and empirical basis to the model, its contributions and limitations, and implications for AHSCs. Originality/value The model's potential utility for health care is discussed, with implications for organizational culture and the promotion of cross-functional activities.

  18. MEDNET: A Multi-State Policymaker/Researcher Collaboration to Improve Prescribing Practices

    PubMed Central

    Finnerty, Molly; Neese-Todd, Sheree; Bilder, Scott; Olfson, Mark; Crystal, Stephen

    2015-01-01

    States face new federal requirements to monitor psychotropic prescribing practices for children and adults in Medicaid. Effective use of quality measurement and quality improvement strategies hold the promise of improved outcomes for public mental health systems. The Medicaid/Mental Health Network for Evidence Based Treatment (MEDNET) is an AHRQ funded multi-state Medicaid quality collaborative with the Rutgers University Center for Health Services Research on Pharmacotherapy, Chronic Disease Management, and Outcomes. We review the development, infrastructure, challenges, and early evidence of success of this public-academic partnership, the first multi-state Medicaid quality improvement collaborative to focus on psychotropic medications. PMID:25756882

  19. Moving out of one's comfort zone: developing and teaching an interprofessional research course.

    PubMed

    Berman, Rosemarie O

    2013-07-01

    Teamwork and interprofessional collaboration have long been identified as core competencies for achieving quality, safe, patient-centered care. The shared learning environment of an interprofessional course is one method for developing the foundation for a collaborative practice-ready work force. Developing and teaching a course for students in a variety of health professions can be challenging as faculty move beyond the comfort level of their discipline. This article describes the development of an interprofessional research course to meet the needs of different health disciplines with specific teaching strategies to develop core competencies for interprofessional collaboration and practice. Copyright 2013, SLACK Incorporated.

  20. User requirements for geo-collaborative work with spatio-temporal data in a web-based virtual globe environment.

    PubMed

    Yovcheva, Zornitza; van Elzakker, Corné P J M; Köbben, Barend

    2013-11-01

    Web-based tools developed in the last couple of years offer unique opportunities to effectively support scientists in their effort to collaborate. Communication among environmental researchers often involves not only work with geographical (spatial), but also with temporal data and information. Literature still provides limited documentation when it comes to user requirements for effective geo-collaborative work with spatio-temporal data. To start filling this gap, our study adopted a User-Centered Design approach and first explored the user requirements of environmental researchers working on distributed research projects for collaborative dissemination, exchange and work with spatio-temporal data. Our results show that system design will be mainly influenced by the nature and type of data users work with. From the end-users' perspective, optimal conversion of huge files of spatio-temporal data for further dissemination, accuracy of conversion, organization of content and security have a key role for effective geo-collaboration. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Building Networks for Global Clinical Research: The Basics.

    PubMed

    Shearer, David W; Volberding, Paul A; Schemitsch, Emil H; Cook, Gillian E; Slobogean, Gerard P; Morshed, Saam

    2015-12-01

    Over the last several decades, interest in global health across all fields of medicine, including orthopaedic surgery, has grown markedly. Cross-national collaborations are an effective means of conducting high-quality clinical research and offer many advantages over single-center investigations. Successful collaboration requires a well-designed research protocol, development of an effective team structure, and the funding to ensure the project is sustained to completion. Equally important, investigators must consider the social, linguistic, and cultural context in which the study is being undertaken. Although randomized clinical trials are the highest level of evidence, study designs may have to be adapted to accommodate available resources, expertise, and local contextual factors. With appropriate planning, these collaborative endeavors can generate changes in clinical practice and positively impact health policy.

  2. Independent but Coordinated Trials: Insights from the Practice Based Opportunities for Weight Reduction (POWER) Trials Collaborative Research Group

    PubMed Central

    Yeh, Hsin-Chieh; Clark, Jeanne M.; Emmons, Karen M.; Moore, Renee H.; Bennett, Gary G; Warner, Erica T.; Sarwer, Davis B.; Jerome, Gerald J; Miller, Edgar R; Volger, Sheri; Louis, Thomas A.; Wells, Barbara; Wadden, Thomas A.; Colditz, Graham A.; Appel, Lawrence J.

    2011-01-01

    Background The National Heart, Lung, and Blood Institute (NHLBI) funded three institutions to conduct effectiveness trials of weight loss interventions in primary care settings. Unlike traditional multi-center clinical trials, each study was established as an independent trial with a distinct protocol. Still, efforts were made to coordinate and standardize several aspects of the trials. The three trials formed a collaborative group, the “Practice Based Opportunities for Weight Reduction (POWER) Trials Collaborative Research Group.” Purpose We describe the common and distinct features of the three trials, the key characteristics of the collaborative group, and the lessons learned from this novel organizational approach. Methods The Collaborative Research Group consists of three individual studies: “Be Fit, Be Well“(Washington University in St. Louis/Harvard University), “POWER Hopkins” (Johns Hopkins), and “POWER-UP” (University of Pennsylvania). There are a total of 15 participating clinics with ~1,100 participants. The common primary outcome is change in weight at 24 months of follow-up, but each protocol has trial-specific elements including different interventions and different secondary outcomes. A Resource Coordinating Unit at Johns Hopkins provides administrative support. Results The Collaborative Research Group established common components to facilitate potential cross-site comparisons. The main advantage of this approach is to develop and evaluate several interventions, when there is insufficient evidence to test one or two approaches, as would be done in a traditional multi-center trial. Limitations The challenges of the organizational design include the complex decision making process, the extent of potential data pooling, time intensive efforts to standardize reports, and the additional responsibilities of the DSMB to monitor three distinct protocols. Conclusions The POWER Trials Collaborative Research Group is a case study of an alternative organizational model to conduct independent, yet coordinated trials. Such a model is increasingly being used in NHLBI supported trials , especially given the interest in comparative effectiveness research. Nevertheless, the ultimate utility of this model will not be fully understood until the trials are completed. PMID:20573639

  3. Flight Test Results of an Axisymmetric Channeled Center Body Supersonic Inlet at Off-Design Conditions

    NASA Technical Reports Server (NTRS)

    St. John, Clinton W.; Frederick, Michael Alan

    2013-01-01

    Flight-testing of a channeled center-body axisymmetric supersonic inlet design concept was conducted at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center in collaboration with the NASA Glenn Research Center (Cleveland, Ohio) and TechLand Research, Inc. (North Olmsted, Ohio). This testing utilized the Propulsion Flight Test Fixture, flown on the NASA F-15B research test bed airplane (NASA tail number 836) at local experiment Mach numbers up to 1.50. The translating channeled center-body inlet was designed by TechLand Research, Inc. (U.S. Patent No. 6,276,632 B1) to allow for a novel method of off-design flow matching, with original test planning conducted under a NASA Small Business Innovative Research study. Data were collected in flight at various off-design Mach numbers for fixed-geometry representations of both the channeled center-body design and an equivalent area smooth center-body design for direct comparison of total pressure recovery and limited distortion measurements.

  4. The Waite Campus: Industry, Research and Educational Collaboration.

    ERIC Educational Resources Information Center

    PEB Exchange, 1997

    1997-01-01

    The Waite Campus at the University of Adelaide, South Australia, houses industrial, research, and educational organizations. One advantage of this co-location is sharing the cost of facilities and equipment. The facilities described include Plant Research Center, Wine Science Laboratory, refectory, library, conference facilities, teleteaching,…

  5. The Origin and Management of a State/Industry/University Research Center.

    ERIC Educational Resources Information Center

    Loper, Gerald D.; Sudermann, Frederick

    1998-01-01

    Describes the origins and first two years of a focused collaborative project involving Wichita State University (Kansas), the aviation industry, and state economic-development organizations. The center is industry-driven and reflects the industry's current technological needs. The arrangement can offer significant advantages to each stakeholder,…

  6. 78 FR 37521 - Proposed Establishment of a Federally Funded Research and Development Center-Second Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... collaboration for accelerating the widespread adoption of integrated cybersecurity tools and technologies. This..., Gaithersburg, MD 20899-1640. SUPPLEMENTARY INFORMATION: The National Cybersecurity Center of Excellence (NCCoE... cybersecurity tools and technologies. The NCCoE will bring together experts from industry, government and...

  7. The Center for Frontiers of Subsurface Energy Security (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Gary A.

    "The Center for Frontiers of Subsurface Energy Security (CFSES)" was submitted to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conductmore » fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  8. The Center for Frontiers of Subsurface Energy Security (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Pope, Gary A. (Director, Center for Frontiers of Subsurface Energy Security); CFSES Staff

    2017-12-09

    'The Center for Frontiers of Subsurface Energy Security (CFSES)' was submitted to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CFSES is directed by Gary A. Pope at the University of Texas at Austin and partners with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  9. Model Validation | Center for Cancer Research

    Cancer.gov

    Research Investigation and Animal Model Validation This activity is also under development and thus far has included increasing pathology resources, delivering pathology services, as well as using imaging and surgical methods to develop and refine animal models in collaboration with other CCR investigators.

  10. Center for the Integration of Optical Computing

    DTIC Science & Technology

    1992-03-15

    their photorefractive properties, calculating the possible interconnect capacities, and collaborating with industry( Brimrose Corp. and Hughes Research...cooperation with Hughes Research Laboratories and Brimrose Corporation we have proceeded with a basic study of CdTe, ZnTe, and the mixed crystals Cd

  11. University of Maryland MRSEC - Collaborations

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership , National Nanotechnology Lab, Neocera, NIST, Rowan University, Rutgers University, Seagate, Tokyo Tech

  12. Autonomous Satellite Operations Via Secure Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Miller, Eric; Paulsen, Phillip E.; Pasciuto, Michael

    2011-01-01

    The science community is interested in improving their ability to respond to rapidly evolving, transient phenomena via autonomous rapid reconfiguration, which derives from the ability to assemble separate but collaborating sensors and data forecasting systems to meet a broad range of research and application needs. Current satellite systems typically require human intervention to respond to triggers from dissimilar sensor systems. Additionally, satellite ground services often need to be coordinated days or weeks in advance. Finally, the boundaries between the various sensor systems that make up such a Sensor Web are defined by such things as link delay and connectivity, data and error rate asymmetry, data reliability, quality of service provisions, and trust, complicating autonomous operations. Over the past ten years, researchers from the NASA Glenn Research Center (GRC), General Dynamics, Surrey Satellite Technology Limited (SSTL), Cisco, Universal Space Networks (USN), the U.S. Geological Survey (USGS), the Naval Research Laboratory, the DoD Operationally Responsive Space (ORS) Office, and others have worked collaboratively to develop a virtual mission operations capability. Called VMOC (Virtual Mission Operations Center), this new capability allows cross-system queuing of dissimilar mission unique systems through the use of a common security scheme and published application programming interfaces (APIs). Collaborative VMOC demonstrations over the last several years have supported the standardization of spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of new tactics, techniques and procedures that lead to responsive space employment.

  13. Theory to practice: A study of science teachers' pedagogical practices as measured by the Science Teacher Analysis Matrix (STAM) and Teacher Pedagogical Philosophy Interview (TPPI)

    NASA Astrophysics Data System (ADS)

    Brown, Sherri Lynne

    This study continued research previously conducted by a nine-university collaborative, the Salish I Research Project, by exploring science teachers' beliefs and actions with regard to inquiry instruction. Science education reform efforts require that students learn science via inquiry. The purpose of this study was to determine and classify espoused teaching beliefs and observable teaching style. Reported are linkages between the teachers' beliefs and styles, influential coursework from College of Education and College of Liberal Arts, and outcomes of increased classroom experience. Eight participants were chosen from three separate preservice science education cohorts. Inquiry efforts require a student-centered environment as opposed to the traditional teacher-centered environment. According to the 1997 Salish I Research Collaborative, beginning teachers displayed a stark contrast between their student centered beliefs to their teacher-centered actions. The limitations of this study were as follows: (1) the participants had completed the authentic research-based inquiry science course, Knowing and Teaching Science: Just Do It; (2) the participants were currently teaching science at the secondary level; (3) the selected instruments were used in the Salish I Research Collaborative Study, and (4) instrument validity and reliability data were not available. Interview data from the Teacher Pedagogical Philosophy Interview (TPPI) instrument and observational data from the Secondary Science Teacher Analysis Matrix (STAM) instrument were statistically compiled via concept maps and matrices. Data were then represented on an ordinal scale. Interview results indicated that 87.5% of the participants professed a teacher-centered style with regard to teacher and student's actions. Observational results indicated that 56% of the participants displayed a teacher-centered style with regard to content, teacher's actions, student's actions, resources, and environment. Additionally, 36% of the participants displayed a conceptual style, which has characteristics of both teacher and student-centered domains. Linkages between the interview and observational data were unexpected due to the fact that participants professed a slightly greater teacher-centered style along the inquiry instruction continuum than what they actually practiced. This study reported congruity between what the participants believed and what they practiced. A negligible change regarding inquiry beliefs and instruction was discovered among the three cohorts as years of teaching experience increased.

  14. An Assessment of the U.S. Army Tank Automotive Research, Development and Engineering Center’s Utilization of the Processes, and Availability of Tools and Physical Environments that Promote Innovation

    DTIC Science & Technology

    2014-04-02

    workspaces Proximity H13 : TARDEC associates do not sit near other associates with different functional expertise Objective The objective of...Physical Environment Collaborative Workspace H12: TARDEC does not have available innovation best practice collaborative workspaces Proximity H13 ...does not have available innovation best practice collaborative workspaces Proximity H13 : TARDEC associates do not sit near other associates with

  15. Center for Defect Physics - Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Stocks, G. Malcolm (Director, Center for Defect Physics in Structural Materials); CDP Staff

    2017-12-09

    'Center for Defect Physics - Energy Frontier Research Center' was submitted by the Center for Defect Physics (CDP) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; Brown University; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Lawrence Livermore National Laboratory; Ohio State University; and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  16. Center for Defect Physics - Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stocks, G. Malcolm; Ice, Gene

    "Center for Defect Physics - Energy Frontier Research Center" was submitted by the Center for Defect Physics (CDP) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CDP is directed by G. Malcolm Stocks at Oak Ridge National Laboratory, and is a partnership of scientists from eight institutions: Oak Ridge National Laboratory (lead); Ames Laboratory; University of California, Berkeley; Carnegie Mellon University; University of Illinois, Urbana-Champaign; Ohio State University;more » University of Georgia and University of Tennessee. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  17. Case Study in International Cooperation: Cuba's Molecular Immunology Center and Roswell Park Cancer Institute.

    PubMed

    Evans, Rachel; Reid, Mary; Segal, Brahm; Abrams, Scott I; Lee, Kelvin

    2018-04-01

    In 1961, the USA severed diplomatic relations with Cuba, and in 1962 an embargo was imposed on trade and financial relations with that country. It was not until five decades later that the USA and Cuba would reestablish relations. This opened the way for the New York State Trade Mission to Cuba in April 2015, during which Cuba's Molecular Immunology Center and Buffalo, New York's Roswell Park Cancer Institute signed a formal agreement that would set in motion biotechnology research collaboration to address one of the most important causes of death in both countries. Significant research from Cuba led to this groundbreaking collaboration. The purpose of this paper is to discuss the development of this cooperation, from the Molecular Immunology Center's initial investigations, through the opening of a phase I clinical trial at Roswell Park Cancer Institute with therapies developed at the Center. This cooperation was responsible for the first clinical trial for CIMAvax-EGF involving advanced-stage non-small cell lung cancer patients in the USA. A license was also approved by the US Department of the Treasury's Office of Foreign Assets Control authorizing a commercial partnership for development of biotechnology products, combining the cancer research efforts of both institutions. This unusual collaboration between Cuba and the USA-the US economic embargo and travel restrictions not withstanding-opens good prospects for expanded medical research between the two countries. While political and logistical challenges remain, the shared mission and dedication of these Cuban and US scientists points the way towards relationships that can lead to development, testing, approval and use of promising new therapies for cancer patients. KEYWORDS Biotechnology, clinical trials, cancer vaccines, cancer immunotherapy, non-small cell lung cancer, NSCLC, Cuba, USA.

  18. The American Association of Birth Centers: history, membership, and current initiatives.

    PubMed

    Phillippi, Julia C; Alliman, Jill; Bauer, Kate

    2009-01-01

    The American Association of Birth Centers (AABC) is a multidisciplinary membership organization dedicated to the birth center model of care. This article reviews the history, membership, and current policy initiatives of the AABC. The history of AABC includes the promotion of research, education, and national and state policies that are supportive of birth center care. Current AABC priorities address three main pressures to birth center sustainability: high malpractice insurance rates, the lack of a federally mandated birth center facility fee, and low rates of certified nurse-midwife/certified midwife reimbursement. The AABC is addressing these concerns through lobbying, collaborating with other national organizations, and the promotion of birth research.

  19. Multi-Center Implementation of NPR 7123.1A: A Collaborative Effort

    NASA Technical Reports Server (NTRS)

    Hall, Phillip B.; McNelis, Nancy B.

    2011-01-01

    Collaboration efforts between MSFC and GRC Engineering Directorates to implement the NASA Systems Engineering (SE) Engine have expanded over the past year to include other NASA Centers. Sharing information on designing, developing, and deploying SE processes has sparked further interest based on the realization that there is relative consistency in implementing SE processes at the institutional level. This presentation will provide a status on the ongoing multi-center collaboration and provide insight into how these NPR 7123.1A SE-aligned directives are being implemented and managed to better support the needs of NASA programs and projects. NPR 7123.1A, NASA Systems Engineering Processes and Requirements, was released on March 26, 2007 to clearly articulate and establish the requirements on the implementing organization for performing, supporting, and evaluating SE activities. In early 2009, MSFC and GRC Engineering Directorates undertook a collaborative opportunity to share their research and work associated with developing, updating and revising their SE process policy to comply and align with NPR 7123.1A. The goal is to develop instructions, checklists, templates, and procedures for each of the 17 SE process requirements so that systems engineers will be a position to define work that is process-driven. Greater efficiency and more effective technical management will be achieved due to consistency and repeatability of SE process implementation across and throughout each of the NASA centers. An added benefit will be to encourage NASA centers to pursue and collaborate on joint projects as a result of using common or similar processes, methods, tools, and techniques.

  20. Applications of NASA and NOAA Satellite Observations by NASA's Short-term Prediction Research and Transition (SPoRT) Center in Response to Natural Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2012-01-01

    NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.

  1. Measuring the evolution and output of cross-disciplinary collaborations within the NCI Physical Sciences-Oncology Centers Network.

    PubMed

    Basner, Jodi E; Theisz, Katrina I; Jensen, Unni S; Jones, C David; Ponomarev, Ilya; Sulima, Pawel; Jo, Karen; Eljanne, Mariam; Espey, Michael G; Franca-Koh, Jonathan; Hanlon, Sean E; Kuhn, Nastaran Z; Nagahara, Larry A; Schnell, Joshua D; Moore, Nicole M

    2013-12-01

    Development of effective quantitative indicators and methodologies to assess the outcomes of cross-disciplinary collaborative initiatives has the potential to improve scientific program management and scientific output. This article highlights an example of a prospective evaluation that has been developed to monitor and improve progress of the National Cancer Institute Physical Sciences-Oncology Centers (PS-OC) program. Study data, including collaboration information, was captured through progress reports and compiled using the web-based analytic database: Interdisciplinary Team Reporting, Analysis, and Query Resource. Analysis of collaborations was further supported by data from the Thomson Reuters Web of Science database, MEDLINE database, and a web-based survey. Integration of novel and standard data sources was augmented by the development of automated methods to mine investigator pre-award publications, assign investigator disciplines, and distinguish cross-disciplinary publication content. The results highlight increases in cross-disciplinary authorship collaborations from pre- to post-award years among the primary investigators and confirm that a majority of cross-disciplinary collaborations have resulted in publications with cross-disciplinary content that rank in the top third of their field. With these evaluation data, PS-OC Program officials have provided ongoing feedback to participating investigators to improve center productivity and thereby facilitate a more successful initiative. Future analysis will continue to expand these methods and metrics to adapt to new advances in research evaluation and changes in the program.

  2. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the... EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Projects Does the...

  3. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the... EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Projects Does the...

  4. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the... EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Projects Does the...

  5. Student Inquiry in the Research Process, Part 4: Inquiry Research Investigation.

    ERIC Educational Resources Information Center

    Preddy, Leslie B.

    2003-01-01

    Explains a hands-on, classroom teacher/library media specialist collaborative model for implementing the inquiry approach to the research process into the classroom and school library media center. Topics include the investigation phase; source notes; primary sources; interviews; community resources; storyboards; and peer conferences. (LRW)

  6. The Perspectives of Policy Researchers: A Synthesis of Special Issue Contributions

    ERIC Educational Resources Information Center

    Mullin, Christopher M.

    2015-01-01

    This article summarizes the divergent perspectives found across the 14 articles written by individuals from three types of policy research organizations--think tanks, regional collaborative organizations, and university-based institutes and centers--for this special issue of the "Community College Journal of Research and Practice." It…

  7. The Armed Forces Health Surveillance Center: Global Emerging Infections Surveillance & Response System, FY 2010

    DTIC Science & Technology

    2010-01-01

    Kochel (2010), “Epidemiology of spotted fever group and typhus group rickettsial infection in the Amazon basin of Peru ,” Am J Trop Med Hyg, 82 (4), 683...Naval Medical Research Unit No. 3 (NAMRU-3) in Cairo, Egypt; and the US Naval Medical Research Unit No. 6 (NAMRU-6) in Lima, Peru . Working in...Collaborating Center for Emerging and Re-emerging Infectious Diseases in 2001 US NAVAL MEDICAL RESEARCH UNIT NO. 6 (NAMRU-6), LIMA, PERU

  8. Developing effective interuniversity partnerships and community-based research to address health disparities.

    PubMed

    Carey, Timothy S; Howard, Daniel L; Goldmon, Moses; Roberson, James T; Godley, Paul A; Ammerman, Alice

    2005-11-01

    Health disparities are an enormous challenge to American society. Addressing these disparities is a priority for U.S. society and especially for institutions of higher learning, with their threefold mission of education, service, and research. Collaboration across multiple intellectual disciplines will be critical as universities address health disparities. In addition, universities must collaborate with communities, with state partners, and with each other. Development of these collaborations must be sensitive to the history and unique characteristics of each academic institution and population. The authors describe the challenges of all three types of collaboration, but primarily focus on collaboration between research-intensive universities and historically black colleges and universities. The authors describe a four-year collaboration between Shaw University and the University of North Carolina at Chapel Hill (UNC-CH). These universities strategically developed multiple research initiatives to address health disparities, building on modest early success and personal relationships. These activities included participation by Shaw faculty in faculty development activities, multiple collaborative pilot studies, and joint participation in securing grants from the Agency for Health care Research and Quality of the federal Department of Health and Human Services and the National Institutes of Health, including a P-60 Project EXPORT center grant. These multiple activities were sometimes led by UNC-CH, sometimes by Shaw University. Open discussion of problems as they arose, realistic expectations, and mutual recognition of the strengths of each institution and its faculty have been critical in achieving successful collaboration to date.

  9. Developing Effective Interuniversity Partnerships and Community-Based Research to Address Health Disparities

    PubMed Central

    Carey, Timothy S.; Howard, Daniel L.; Goldmon, Moses; Roberson, James T.; Godley, Paul A.; Ammerman, Alice

    2009-01-01

    Health disparities are an enormous challenge to American society. Addressing these disparities is a priority for U.S. society and especially for institutions of higher learning, with their threefold mission of education, service, and research. Collaboration across multiple intellectual disciplines will be critical as universities address health disparities. In addition, universities must collaborate with communities, with state partners, and with each other. Development of these collaborations must be sensitive to the history and unique characteristics of each academic institution and population. The authors describe the challenges of all three types of collaboration, but primarily focus on collaboration between research-intensive universities and historically black colleges and universities. The authors describe a four-year collaboration between Shaw University and the University of North Carolina at Chapel Hill (UNC-CH). These universities strategically developed multiple research initiatives to address health disparities, building on modest early success and personal relationships. These activities included participation by Shaw faculty in faculty development activities, multiple collaborative pilot studies, and joint participation in securing grants from the Agency for Health care Research and Quality of the federal Department of Health and Human Services and the National Institutes of Health, including a P-60 Project EXPORT center grant. These multiple activities were sometimes led by UNC-CH, sometimes by Shaw University. Open discussion of problems as they arose, realistic expectations, and mutual recognition of the strengths of each institution and its faculty have been critical in achieving successful collaboration to date. PMID:16249303

  10. Perchlorate Questions and Answers

    MedlinePlus

    ... decision making on perchlorate under the Safe Drinking Water Act. Scientists from the EPA and the FDA’s National Center for Toxicological Research (NCTR) collaborated to develop this modeling work, which ...

  11. Research Collaborations | NREL

    Science.gov Websites

    University, and the University of Colorado at Boulder. Visit CRES ICMC-International Center for Multiscale the art in multiscale characterization. Of special interest are materials for photovoltaic, battery

  12. Undergraduate Research Program Between SCU and SOFIA

    NASA Astrophysics Data System (ADS)

    Kulas, Kristin Rose; Andersson, B.-G.

    2018-06-01

    We present results on an undergraduate research program run in collaboration between Santa Clara University (SCU), a predominately undergraduate liberal arts college and the SOFIA Science Center/USRA. We have started a synergistic program between SCU and SOFIA (located at NASA Ames) where the students are able to be fully immersed in astronomical research; from helping to write telescope observing proposal; to observing at a world-class telescope; to reducing and analyzing the data that they acquired and ultimately to presenting/publishing their findings. A recently awarded NSF collaborative grant will allow us to execute and expand this program over the next several years. In this poster we present some of our students research and their success after the program. In addition, we discuss how a small university can actively collaborate with a large government-funded program like SOFIA, funded by NASA.

  13. Exploring Effective Decision Making through Human-Centered and Computational Intelligence Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kyungsik; Cook, Kristin A.; Shih, Patrick C.

    Decision-making has long been studied to understand a psychological, cognitive, and social process of selecting an effective choice from alternative options. Its studies have been extended from a personal level to a group and collaborative level, and many computer-aided decision-making systems have been developed to help people make right decisions. There has been significant research growth in computational aspects of decision-making systems, yet comparatively little effort has existed in identifying and articulating user needs and requirements in assessing system outputs and the extent to which human judgments could be utilized for making accurate and reliable decisions. Our research focus ismore » decision-making through human-centered and computational intelligence methods in a collaborative environment, and the objectives of this position paper are to bring our research ideas to the workshop, and share and discuss ideas.« less

  14. Primary Immunodeficiencies: “New” Disease in an Old Country

    PubMed Central

    Lee, Pamela P W; Lau, Yu-Lung

    2009-01-01

    Primary immunodeficiency disorders (PIDs) are rare inborn errors of the immune system. Patients with PIDs are unique models that exemplify the functional and phenotypic consequences of various immune defects underlying infections, autoimmunity, lymphoproliferation, allergy and cancer. Over 150 PID syndromes were characterized in the past 60 years, with an ever growing list of new entities being discovered. Because of their rarity, multi-center collaboration for pooled data analysis and molecular studies is important to gain meaningful insights into the phenotypic and genetic diversities of PIDs. In this article, we summarize our research findings on PIDs in Chinese population in the past 20 years. Close collaboration among various immunology centers, cross-referrals and systematic data analysis constitute the foundation for research on PIDs. Future directions include establishment of a national PID registry, raising awareness of PIDs and securing sufficient resources for patient care and scientific research. PMID:20003815

  15. WATER ENVIRONMENT RESEARCH FOUNDATION (WERF)'S NATIONAL CENTER FOR RESOURCE RECOVERY AND NUTRIENT MANAGEMENT

    EPA Science Inventory

    • Research findings that will inform the long-term attainment of sustainable water management.
    • Better collaboration and communication by scientific community, facility owners/operators, policy makers, and the public at the intersections of wastewater, ...

    • UPDATE ON DEVELOPMENT OF NUDGING FDDA FOR ADVANCED RESEARCH WRF

      EPA Science Inventory

      A nudging-based four-dimensional data assimilation (FDDA) system is being developed for the Weather Research and Forecasting (WRF) Model. This effort represents a collaboration between The Pennsylvania State University (i.e., Penn State), the National Center for Atmospheric Rese...

    • The Virtual Environmental Microbiology Center - A Social Network for Enhanced Communication between Water Researchers and Policy Makers

      EPA Science Inventory

      Effective communication within and between organizations involved in research and policy making activities is essential. Sharing information across organizational and geographic boundaries can also facilitate coordination and collaboration, promote a better understanding of tech...

    • Tenure Track/Tenure Eligible Positions | Center for Cancer Research

      Cancer.gov

      The newly established RNA Biology Laboratory at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting Tenure-eligible or Tenure Track Investigators to join the Intramural Research Program’s mission of high impact, high reward science. These positions, which are supported with stable financial resources, are the equivalent of Assistant Professor/Associate Professor/Professor in an academic department. The RNA Biology Laboratory is looking for candidate(s) who will complement our current group of seven dynamic and collaborative principal investigators (https://ccr.cancer.gov/RNA-Biology-Laboratory). We encourage outstanding scientists investigating any area of RNA Biology to apply. Areas of interest include, but are not limited to, the roles of RNA-binding proteins, noncoding RNAs and nucleotide modifications in cell and organismal function; the ways in which alterations in RNA homeostasis resul  t in diseases such as cancer, and the development of RNA therapeutics. About NCI's Center for Cancer Research The Center for Cancer Research (CCR) is an intramural research component of the National Cancer Institute (NCI). CCR’s enabling infrastructure facilitates clinical studies at the NIH Clinical Center, the world’s largest dedicated clinical research complex; provides extensive opportunities for collaboration; and allows scientists and clinicians to undertake high-impact laboratory- and clinic-based investigations.  Investigators are supported by a wide array of intellectual and technological and research resources, including animal facilities and dedicated, high quality technology cores in areas such as imaging/microscopy, including cryo-electron microscopy; chemistry/purification, mass spectrometry, flow cytometry, SAXS, genomics/DNA sequencing, transgenics and knock out mice, arrays/molecular profiling, and human genetics/bioinformatics.  For an overview of CCR, please visit http://ccr.cancer.gov/.

    • The Center for Astronomy Education (CAE) and Our NSF Funded CCLI Phase III Collaboration of Astronomy Teaching Scholars (CATS) Program: Updates to Our New Community-Based Model for Astronomy Education Research

      NASA Astrophysics Data System (ADS)

      Brissenden, Gina; Impey, C.; Prather, E. E.; Lee, K. M.; CATS

      2010-01-01

      The Center for Astronomy Education (CAE) has been devoted to improving teaching & learning in Astro 101 by creating research-validated curriculum & assessment instruments for use in Astro 101 & by providing Astro 101 instructors professional development opportunities to increase their pedagogical content knowledge & instructional skills at implementing these curricula & assessment materials. To create sustainability and further expand this work, CAE, in collaboration with other national leaders in astronomy education & research, developed the Collaboration of Astronomy Teaching Scholars (CATS) Program. The primary goals of CATS are to: 1) increase the number of Astro 101 instructors conducting fundamental research in astronomy education 2) increase the amount of research-validated curriculum & assessment instruments available for use in Astro 101 3) increase the number of people prepared to develop & conduct their own CAE Teaching Excellence Workshops In our second year we have concluded a national study assessing the contribution students’ personal characteristics make to student learning gains and the effectiveness of interactive learning strategies. We have results from our classroom research validation study on the use of the "ClassAction” electronic learning system. We have begun creation of an assessment instrument designed specifically for Astro 101 to evaluate the effectiveness of our instruction in improving students’ attitudes & beliefs about science, and which is being informed by several of our studies and community input. We have also begun field-testing of our Solar System Concept Inventory. Additionally research into students’ beliefs and reasoning difficulties on topics in Cosmology is underway. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

    • Building Research Relationships With Managed Care Organizations: Issues and Strategies.

      PubMed

      Lein, Catherine; Collins, Clare; Lyles, Judith S; Hillman, Donald; Smith, Robert C

      2003-06-01

      Managed care is now the dominant form of healthcare in the United States. The need for clinical research about the organization, delivery, and outcomes of primary care services in managed care models is high, yet access to managed care organizations as sites for clinical research may be problematic. The purpose of this article is to describe issues involved in obtaining access to managed care settings for clinical research and practical strategies for successful collaboration using literature review and case description. Three steps for developing collaborative relationships with managed care organizations (MCOs) are presented: 1) assessment of organizational structure, history, and culture; 2) finding common ground; and 3) project implementation. These steps are discussed within the context of MCO systems issues and a relationship-centered approach to communication between researchers and individuals from the MCO. Successful relationships with MCOs for clinical research are possible when careful attention is paid to inclusion of MCOs as collaborators in the development of the research questions and design, and as partners in the research implementation process.

  1. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, Robert E.

    "PARC - Scientific Exchange Program" was submitted by the Photosynthetic Antenna Research Center (PARC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) inmore » 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  2. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff

    2017-12-09

    'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  3. The Development of a Mentoring Program for University Undergraduate Women

    ERIC Educational Resources Information Center

    Putsche, Laura; Storrs, Debbie; Lewis, Alicia A.; Haylett, Jennifer

    2008-01-01

    The Women's Center at a university in the United States implemented a mentoring program based on feminist and networking models to improve the educational climate for female undergraduate students. Due to a lack of literature detailing how to develop such a program, an interdisciplinary team of researchers collaborated with the Women's Center to…

  4. Center for Collegiate Mental Health (CCMH) 2009 Pilot Study: Executive Summary. Publication No. STA 09-160 MPC105808

    ERIC Educational Resources Information Center

    Center for Collegiate Mental Health, 2009

    2009-01-01

    The Center for Collegiate Mental Health (CCMH) represents a collaborative, multi-disciplinary effort combining the expertise of mental health treatment providers, psychological researchers, industry, and information sciences and technology. This report outlines a preliminary effort to describe the range of information on college student mental…

  5. World-Class Workforce Preparation: Empowering Illinois Area Vocational Centers for New Realities.

    ERIC Educational Resources Information Center

    Illinois State Council on Vocational Education, Springfield.

    Four interrelated research activities examined the missions of area vocational centers (AVCs) in Illinois and identified new and/or expanded roles and functions that AVCs might play in collaboration with sending schools, colleges and universities, business and industry, and other job training providers. The following activities were conducted: (1)…

  6. CALIOP V4 Level 1 Product Release

    Atmospheric Science Data Center

    2014-11-13

    CALIOP V4 Level 1 Product Release Thursday, November 13, 2014 The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center in collaboration with the CALIPSO ... and peer-reviewed approach.   The version 3.x (3.01, 3.02 and 3.30) CALIOP Level 1 data product will continue to be generated ...

  7. Education to Theatricality: The Theatrical Workshop as a Training Model--The Expressive and Performing Arts in Education

    ERIC Educational Resources Information Center

    Oliva, Gaetano

    2015-01-01

    Education to Theatricality as pedagogical and artistic research is experienced by almost twenty years in Italy in laboratories and projects organized in collaboration with universities, schools, theaters, educational centers, cultural centers, educational and social services, associations. Education to Theatricality is a science that includes…

  8. Complex collaborative problem-solving processes in mission control.

    PubMed

    Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo

    2014-04-01

    NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.

  9. EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Zhu, Xiaoyang (Director, Understanding Charge Separation and Transfer at Interfaces in Energy Materials); CST Staff

    2017-12-09

    'EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center' was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC:CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  10. Engineered Biological Pacemakers | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute on Aging's Cellular Biophysics Section is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize biological pacemakers.

  11. Improved Personalized Cancer Immunotherapy | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Surgery Branch seeks partners interested in collaborative research to co-develop adoptive transfer of tumor infiltrating leukocytes (TIL) for cancers other than melanoma.

  12. Your Premature Baby

    MedlinePlus

    ... Quality Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems ... to our health educators. GO On your baby's team Meet the people caring for your baby in ...

  13. Introducing NASA's Solar System Exploration Research Virtual Institute

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners include: Canada, Germany, Israel, Netherlands, Saudi Arabia, South Korea, and the United Kingdom. Discussions are ongoing to bring several more partners into the fold. These partnerships have impacted lunar science in a number of ways, resulting in such efforts and groups as the Pan-European Lunar Science Consortium and the Canadian Sudbury Field School. For more information visit sservi.nasa.gov

  14. Research in Modeling and Simulation for Airspace Systems Innovation

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Kimmel, William M.; Welch, Sharon S.

    2007-01-01

    This viewgraph presentation provides an overview of some of the applied research and simulation methodologies at the NASA Langley Research Center that support aerospace systems innovation. Risk assessment methodologies, complex systems design and analysis methodologies, and aer ospace operations simulations are described. Potential areas for future research and collaboration using interactive and distributed simula tions are also proposed.

  15. Center of Excellence for Laser Applications in Medicine, Microlaser Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, R. H.

    The Center of Excellence for Laser Applications in Medicine at the Schepens Eye Research Institute (SERI) is a Center for: A core group of researchers who support each other and their various projects for real-time medical imaging and diagnostics in contiguous space at SERI. Clinical collaborators who participate in the core research at SERI, MEEI, and local ophthalmology practices, and at associated sites around the world. Industrial partners who transfer our technology to commercial products that will reach clinical usage everywhere. Students, post-doctoral associates and medical fellows who work with us and learn how to practice real-time medical imaging andmore » diagnostics.« less

  16. PREPping Students for Authentic Science

    ERIC Educational Resources Information Center

    Dolan, Erin L.; Lally, David J.; Brooks, Eric; Tax, Frans E.

    2008-01-01

    In this article, the authors describe a large-scale research collaboration, the Partnership for Research and Education in Plants (PREP), which has capitalized on publicly available databases that contain massive amounts of biological information; stock centers that house and distribute inexpensive organisms with different genotypes; and the…

  17. University of Maryland MRSEC - Collaborations: Educational

    Science.gov Websites

    . University of Maryland Materials Research Science and Engineering Center Home About Us Leadership Administration Committees Directory Research IRG 1 IRG 2 Seed 1 Seed 2 Seed 3 Highlights Publications Facilities Educational Education Pre-College Programs Homeschool Programs Undergraduate & Graduate Programs Teacher

  18. Telementoring Physics: University-Community After-school Collaborations and the Mediation of the Formal/Informal Divide

    NASA Astrophysics Data System (ADS)

    Lecusay, Robert A.

    For several decades improvement of science education has been a major concern of policy makers concerned that the U.S. is a "nation at risk" owing to the dearth of students pursing careers in science. Recent policy proposals have argued that provision of broadband digital connectivity to organizations in the informal sector would increase the reach of the formal, academic sector to raise the overall level of science literacy in the country. This dissertation reports on a longitudinal study of a physics telementoring activity jointly run by a university-community collaborative at a community learning center. The activity implemented a digital infrastructure that exceeds the technical and social-institutional arrangements promoted by policy makers. In addition to broadband internet access (for tele-conferencing between students at the community center and physicists at a university), supplemented by digital software designed to promote physics education, the activity included the presence of a collaborating researcher/tutor at the community learning center to coordinate and document the instructional activities. The current research revealed a fundamental contradiction between the logic, goals, and practices of the physics instructors, and the corresponding logic, goals, and practices of the participants at the community learning center. This contradiction revolves around a contrast between the physicists' formal, logocentric ways of understanding expressed in the ability to explain the scientific rules underlying physical phenomena and the informal, pragmatic orientation of the youth and adults at the learning center. The observations in this dissertation should remind techno-enthusiasts, especially in the arena of public education policy, that there are no turnkey solutions in "distance" science education. Technically "connecting" people is not equivalent to creating conditions that expand opportunities to learn and a functioning socio-technical system that supports learning. Secondly, for designers and practitioners of informal learning in community-university collaborative settings, it is critically important to understand distance learning activities as developing "cross-cultural, " collaborative encounters, the results of which are more likely to be hybrids of different ways of learning and knowing than the conversion of informal learning into a tool for instruction that will allow youth to "think like physicists."

  19. Keeping the Edge. Air Force Materiel Command Cold War Context (1945-1991). Volume 3: Index

    DTIC Science & Technology

    2003-08-01

    485 The Architects Collaborative (Harvard University) see Gropius , Walter , under Architects and Engineers, across the Department of Defense The...Sons (Newark, New Jersey) Volume II: 250 Graham, Anderson, Probst & White (Chicago) Volume II: 392, 455, 460, 461,475 Gropius , Walter ...models for Air Force research and development centers Gropius , Walter (The Architects Collaborative) see Architects and Engineers, across the

  20. Electricity: The Energy of Tomorrow (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    "Electricity: the Energy of Tomorrow" was submitted by the Energy Materials Center at Cornell (emc2) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs)more » in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  1. Electricity: The Energy of Tomorrow (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Abruna, Hector D. (Director, Energy Materials Center at Cornell); emc2 Staff

    2017-12-09

    'Electricity: the Energy of Tomorrow' was submitted by the Energy Materials Center at Cornell (emc2) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. emc2, an EFRC directed by Hector D. Abruna at Cornell University (lead) is a partnership between Cornell and Lawrence Berkeley National Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  2. Research Nurse | Center for Cancer Research

    Cancer.gov

    We are looking for a Research Nurse (Accrual Site Coordinator) to join our neuro-oncology clinical team to help us provide administrative and coordination support for the Brain Tumor Trials Collaborative (BTTC). Duties include, but are not limited to, monitoring and overseeing activities pertaining to clinical protocols and administrative operations supporting the BTTC, with

  3. Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: U.S. EPA’s Four Lab Study

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s “Four Lab Study” involved participation of researchers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from the water industry and academia. The study evaluated toxicological...

  4. Developing Professional Fitness through Classroom Assessment and Classroom Research. The Cross Papers, Number 1.

    ERIC Educational Resources Information Center

    Cross, K. Patricia

    Classroom assessment and research are effective means of professional development for community college faculty. Assessment tests engage students in monitoring and evaluating their own learning, and encourage teachers to reflect on their classes from a learning perspective. Classroom research is learner-centered, teacher-directed, collaborative,…

  5. Development of a pharmacy student research program at a large academic medical center.

    PubMed

    McLaughlin, Milena M; Skoglund, Erik; Bergman, Scott; Scheetz, Marc H

    2015-11-01

    A program to promote research by pharmacy students created through the collaboration of an academic medical center and a college of pharmacy is described. In 2009, Midwestern University Chicago College of Pharmacy and Northwestern Memorial Hospital (NMH) expanded their existing partnership by establishing a program to increase opportunities for pharmacy students to conduct clinical-translational research. All professional year 1, 2, or 3 students at the college, as well as professional year 4 students on rotation at NMH, can participate in the program. Central to the program's infrastructure is the mentorship of student leads by faculty- and hospital-based pharmacists. The mentors oversee the student research projects and guide development of poster presentations; student leads mentor junior students and assist with orientation and training activities. Publication of research findings in the peer-reviewed literature is a key program goal. In the first four years after program implementation, participation in a summer research program grew nearly 10-fold (mainly among incoming professional year 2 or 3 students, and student poster presentations at national pharmacy meetings increased nearly 20-fold; the number of published research articles involving student authors increased from zero in 2009 to three in 2012 and two in 2013. A collaborative program between an academic medical center and a college of pharmacy has enabled pharmacy students to conduct research at the medical center and has been associated with increases in the numbers of poster presentations and publications involving students. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  6. MIT Lincoln Laboratory Annual Report 2010

    DTIC Science & Technology

    2010-01-01

    Research and Development Center (FFRDC) and a DoD Research and Development Laboratory. The Laboratory conducts research and development pertinent to...year, the Laboratory restruc- tured three divisions to focus research and development in areas that are increasingly important to the nation...the Director 3 Collaborations with MIT campus continue to grow, leveraging the strengths of researchers at both the Laboratory and campus. The

  7. Collaborative Engineering for Research and Development

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  8. EPA-Health Canada CompTox Collaboration

    EPA Science Inventory

    Research program of EPA’s National Center for Computational Toxicology addresses chemical screening and prioritization needs for pesticidal inerts, anti-microbials, CCLs, HPVs and MPVs, comprehensive use of HTS technologies to generate.

  9. Immunocompetent Mouse Model for Tracking Cancer Progression | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute seeks licensees or research collaborators to develop and commercialize transgenic mice having immunocompetent rat growth hormone-firefly Luciferase-enhanced green fluorescent protein.

  10. Birth Defects: Cerebral Palsy

    MedlinePlus

    ... Quality Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems ... is CP treated? You can work with a team of health care providers to figure out your ...

  11. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Peter; Lenzen, Meehan

    "Energy Frontier Research Center Materials Science of Actinides" was submitted by the EFRC for Materials Science of Actinides (MSA) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Researchmore » Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  12. Who Owns the Content and Who Runs the Risk? Dynamics of Teacher Change in Teacher-Researcher Collaboration

    NASA Astrophysics Data System (ADS)

    Hamza, Karim; Piqueras, Jesús; Wickman, Per-Olof; Angelin, Marcus

    2017-06-01

    We present analyses of teacher professional growth during collaboration between science teachers and science education researchers, with special focus on how the differential assumption of responsibility between teachers and researchers affected the growth processes. The collaboration centered on a new conceptual framework introduced by the researchers, which aimed at empowering teachers to plan teaching in accordance with perceived purposes. Seven joint planning meetings between teachers and researchers were analyzed, both quantitatively concerning the extent to which the introduced framework became part of the discussions and qualitatively through the interconnected model of teacher professional growth. The collaboration went through three distinct phases characterized by how and the extent to which the teachers made use of the new framework. The change sequences identified in relation to each phase show that teacher recognition of salient outcomes from the framework was important for professional growth to occur. Moreover, our data suggest that this recognition may have been facilitated because the researchers, in initial phases of the collaboration, took increased responsibility for the implementation of the new framework. We conclude that although this differential assumption of responsibility may result in unequal distribution of power between teachers and researchers, it may at the same time mean more equal distribution of concrete work required as well as the inevitable risks associated with pedagogical innovation and introduction of research-based knowledge into science teachers' practice.

  13. WastePD, an innovative center on materials degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankel, Gerald S.; Vienna, John; Lian, Jie

    The US Department of Energy recently awarded funds to create the Center for Performance and Design of Nuclear Waste Forms and Containers (WastePD) as part of the Energy Frontier Research Center (EFRC) program. EFRCs are multi-investigator collaborations of universities, national labs and companies that “conduct fundamental research focusing on one or more “grand challenges” and use-inspired “basic research needs” identified in major strategic planning efforts by the scientific community.” The major performance parameter of nuclear waste forms is their ability to isolate the radionuclides by withstanding degradation in a repository environment over very long periods of time. So WastePD ismore » at heart a center focused on materials degradation.« less

  14. Scientific Collaboration in Chinese Nursing Research: A Social Network Analysis Study.

    PubMed

    Hou, Xiao-Ni; Hao, Yu-Fang; Cao, Jing; She, Yan-Chao; Duan, Hong-Mei

    2016-01-01

    Collaboration has become very important in research and in technological progress. Coauthorship networks in different fields have been intensively studied as an important type of collaboration in recent years. Yet there are few published reports about collaboration in the field of nursing. This article aimed to reveal the status and identify the key features of collaboration in the field of nursing in China. Using data from the top 10 nursing journals in China from 2003 to 2013, we constructed a nursing scientific coauthorship network using social network analysis. We found that coauthorship was a common phenomenon in the Chinese nursing field. A coauthorship network with 228 subnetworks formed by 1428 nodes was constructed. The network was relatively loose, and most subnetworks were of small scales. Scholars from Shanghai and from military medical system were at the center of the Chinese nursing scientific coauthorship network. We identified the authors' positions and influences according to the research output and centralities of each author. We also analyzed the microstructure and the evolution over time of the maximum subnetwork.

  15. Study of plasma convection and wall interactions in magnetic confinement systems

    NASA Astrophysics Data System (ADS)

    York, T. M.

    1986-06-01

    The subject contract research effort was initiated in September 1976 with two specific tasks: (1) to study the fundamental physics of confinement of an alternate concept (i.e., theta pinch based) devices; and (2) to study and to develop new diagnostic systems for use on major experiments at other locations in the country. There has been active collaboration with Los Alamos National Laboratory and Lawrence Livermore National Laboratory; there has been proposed collaboration with Princeton Plasma Physics Laboratory, Fusion Research Center at the University of Texas, and General Atomics.

  16. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  17. Neuropsychological assessment in collaborative Parkinson’s disease research

    PubMed Central

    Watson, G. Stennis; Cholerton, Brenna A.; Gross, Rachel G.; Weintraub, Daniel; Zabetian, Cyrus P.; Trojanowski, John Q.; Montine, Thomas J.; Siderowf, Andrew; Leverenz, James B.

    2012-01-01

    Cognitive impairment (CI) and behavioral disturbances can be the earliest symptoms of Parkinson’s disease (PD), ultimately afflict the vast majority of PD patients, and increase caregiver burden. Our two Morris K. Udall Centers of Excellence for Parkinson’s Disease Research were supported by the National Institute of Neurological Disorders and Stroke (NINDS) to recommend a comprehensive yet practical approach to cognitive and behavioral assessment to fuel collaborative research. We recommend a step-wise approach with two levels of standardized evaluation to establish a common battery, as well as an alternative testing recommendation for severely impaired subjects, and review supplemental tests that may be useful in specific research settings. Our flexible approach may be applied to studies with varying emphasis on cognition and behavior, does not place undue burden on participants or resources, and has a high degree of compatibility with existing test batteries to promote collaboration. PMID:23164549

  18. Cleft Lip and Cleft Palate

    MedlinePlus

    ... Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems March ... obese, you have an excess amount of body fat and your body mass index (also called BMI) ...

  19. Your Premature Baby: Low Birthweight

    MedlinePlus

    ... Quality Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems ... to our health educators. GO On your baby's team Meet the people caring for your baby in ...

  20. Creating and supporting a mixed methods health services research team.

    PubMed

    Bowers, Barbara; Cohen, Lauren W; Elliot, Amy E; Grabowski, David C; Fishman, Nancy W; Sharkey, Siobhan S; Zimmerman, Sheryl; Horn, Susan D; Kemper, Peter

    2013-12-01

    To use the experience from a health services research evaluation to provide guidance in team development for mixed methods research. The Research Initiative Valuing Eldercare (THRIVE) team was organized by the Robert Wood Johnson Foundation to evaluate The Green House nursing home culture change program. This article describes the development of the research team and provides insights into how funders might engage with mixed methods research teams to maximize the value of the team. Like many mixed methods collaborations, the THRIVE team consisted of researchers from diverse disciplines, embracing diverse methodologies, and operating under a framework of nonhierarchical, shared leadership that required new collaborations, engagement, and commitment in the context of finite resources. Strategies to overcome these potential obstacles and achieve success included implementation of a Coordinating Center, dedicated time for planning and collaborating across researchers and methodologies, funded support for in-person meetings, and creative optimization of resources. Challenges are inevitably present in the formation and operation of effective mixed methods research teams. However, funders and research teams can implement strategies to promote success. © Health Research and Educational Trust.

  1. 100 Metrics to Assess and Communicate the Value of Biomedical Research: An Ideas Book.

    PubMed

    Guthrie, Susan; Krapels, Joachim; Lichten, Catherine A; Wooding, Steven

    2017-01-01

    Biomedical research affects society in many ways. It has been shown to improve health, create jobs, add to our knowledge, and foster new collaborations. Despite the complexity of modern research, many of the metrics used to evaluate the impacts of research still focus on the traditional, often academic, part of the research pathway, covering areas such as the amount of grant funding received and the number of peer-reviewed publications. In response to increasing expectations of accountability and transparency, the Association of American Medical Colleges (AAMC), in collaboration with RAND Europe, undertook a project to help communicate the wider value of biomedical research. The initiative developed resources to support academic medical centers in evaluating the outcomes and impacts of their research using approaches relevant to various stakeholders, including patients, providers, administrators, and legislators. This study presents 100 ideas for metrics that can be used to assess and communicate the value of biomedical research. The list is not comprehensive, and the metrics are not fully developed, but they should serve to stimulate and broaden thinking about how academic medical centers can communicate the value of their research to a broad range of stakeholders.

  2. 100 Metrics to Assess and Communicate the Value of Biomedical Research

    PubMed Central

    Guthrie, Susan; Krapels, Joachim; Lichten, Catherine A.; Wooding, Steven

    2017-01-01

    Abstract Biomedical research affects society in many ways. It has been shown to improve health, create jobs, add to our knowledge, and foster new collaborations. Despite the complexity of modern research, many of the metrics used to evaluate the impacts of research still focus on the traditional, often academic, part of the research pathway, covering areas such as the amount of grant funding received and the number of peer-reviewed publications. In response to increasing expectations of accountability and transparency, the Association of American Medical Colleges (AAMC), in collaboration with RAND Europe, undertook a project to help communicate the wider value of biomedical research. The initiative developed resources to support academic medical centers in evaluating the outcomes and impacts of their research using approaches relevant to various stakeholders, including patients, providers, administrators, and legislators. This study presents 100 ideas for metrics that can be used to assess and communicate the value of biomedical research. The list is not comprehensive, and the metrics are not fully developed, but they should serve to stimulate and broaden thinking about how academic medical centers can communicate the value of their research to a broad range of stakeholders. PMID:28983437

  3. Web-based platform for collaborative medical imaging research

    NASA Astrophysics Data System (ADS)

    Rittner, Leticia; Bento, Mariana P.; Costa, André L.; Souza, Roberto M.; Machado, Rubens C.; Lotufo, Roberto A.

    2015-03-01

    Medical imaging research depends basically on the availability of large image collections, image processing and analysis algorithms, hardware and a multidisciplinary research team. It has to be reproducible, free of errors, fast, accessible through a large variety of devices spread around research centers and conducted simultaneously by a multidisciplinary team. Therefore, we propose a collaborative research environment, named Adessowiki, where tools and datasets are integrated and readily available in the Internet through a web browser. Moreover, processing history and all intermediate results are stored and displayed in automatic generated web pages for each object in the research project or clinical study. It requires no installation or configuration from the client side and offers centralized tools and specialized hardware resources, since processing takes place in the cloud.

  4. Collaboration and Productivity in Scientific Synthesis

    ERIC Educational Resources Information Center

    Hampton, Stephanie E.; Parker, John N.

    2011-01-01

    Scientific synthesis has transformed ecological research and presents opportunities for advancements across the sciences; to date, however, little is known about the antecedents of success in synthesis. Building on findings from 10 years of detailed research on social interactions in synthesis groups at the National Center for Ecological Analysis…

  5. Pinto common bean cultivars Blackfoot, Nez Perce, and Twin Falls

    USDA-ARS?s Scientific Manuscript database

    Pinto common bean cultivars Blackfoot (Reg. No. -----,), Nez Perce (Reg. No. -----, PI), and Twin Falls (Reg. No. -----,) were developed at the University of Idaho-Kimberly Research and Extension Center in collaboration with researchers in Colorado, Nebraska, and Washington State. Twin Falls is a fu...

  6. The Federal Role in Fostering University-Industry Cooperation.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    Three well-known forms of university-industry collaboration (research parks, cooperative research centers, and industrial extension services) were examined, along with the federal role of stimulating cooperation. The objective was to develop information and guidelines to help policymakers in designing new or revised federal initiatives to promote…

  7. Monitoring sodium levels in commercially processed and restaurant foods - dataset and webpages.

    USDA-ARS?s Scientific Manuscript database

    Nutrient Data Laboratory (NDL), Agriculture Research Service (ARS) in collaboration with Food Surveys Research Group, ARS, and the Centers for Disease Control and Prevention has been monitoring commercially processed and restaurant foods in the United States since 2010. About 125 highly consumed, s...

  8. USDA Research in Support of Deployed Military Troops

    USDA-ARS?s Scientific Manuscript database

    The US Department of Agriculture has a long history of collaborating with the US military to conduct research in support of war efforts. The predecessor laboratory of the current USDA-ARS Center for Medical, Agricultural and Veterinary Entomology (CMAVE) located in Gainesville, Florida has a history...

  9. A laboratory animal science pioneer.

    PubMed

    Kostomitsopoulos, Nikolaos

    2014-11-01

    Nikolaos Kostomitsopoulos, DVM, PhD, is Head of Laboratory Animal Facilities and Designated Veterinarian, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. Dr. Kostomitsopoulos discusses his successes in implementing laboratory animal science legislation and fostering collaboration among scientists in Greece.

  10. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumman, Johann; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: 1) Overview of Adaptive Systems; and 2) V&V Processes/Methods.

  11. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumann, Johann

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: Overview of Adaptive Systems and V&V Processes/Methods.

  12. Developing a Training Program in Breast Cancer Research to Decrease the Disparity of Morbidity and Mortality in Underserved/Minority Women

    DTIC Science & Technology

    2006-10-01

    eHealth Promotion Training Institute. As a result of the training, they submitted a grant and received funding from the UNCFSP/NLM-HBCU Access...increase breast cancer screening among African American women eHealth Training Institute, Center for Collaborative Research. June...2006 Received funding and completed 40 hours of the eHealth Promotion Training Institute sponsored by the Center for Excellence in eHealth Promotion

  13. Dual Career Couple Relationships. An Annotated Bibliography, for Conference Presented by The Women's Resources and Research Center (University of California, Davis, April 11-12, 1980). UCD-Women's Resources and Research Center Working Paper Series No. 20.

    ERIC Educational Resources Information Center

    Knowles, Em Claire

    This annotated bibliography of readings related to dual career couple relationships is divided into eleven areas of focus. Sections included are (1) Alternatives to Rigid Work Imperatives; (2) Child Rearing in Dual Career Families; (3) Collaboration Strategies for Coping; (4) Definition, Trend, and Historical Perspective of Dual Career Couples;…

  14. Measuring the evolution and output of cross-disciplinary collaborations within the NCI Physical Sciences–Oncology Centers Network

    PubMed Central

    Basner, Jodi E.; Theisz, Katrina I.; Jensen, Unni S.; Jones, C. David; Ponomarev, Ilya; Sulima, Pawel; Jo, Karen; Eljanne, Mariam; Espey, Michael G.; Franca-Koh, Jonathan; Hanlon, Sean E.; Kuhn, Nastaran Z.; Nagahara, Larry A.; Schnell, Joshua D.; Moore, Nicole M.

    2013-01-01

    Development of effective quantitative indicators and methodologies to assess the outcomes of cross-disciplinary collaborative initiatives has the potential to improve scientific program management and scientific output. This article highlights an example of a prospective evaluation that has been developed to monitor and improve progress of the National Cancer Institute Physical Sciences—Oncology Centers (PS-OC) program. Study data, including collaboration information, was captured through progress reports and compiled using the web-based analytic database: Interdisciplinary Team Reporting, Analysis, and Query Resource. Analysis of collaborations was further supported by data from the Thomson Reuters Web of Science database, MEDLINE database, and a web-based survey. Integration of novel and standard data sources was augmented by the development of automated methods to mine investigator pre-award publications, assign investigator disciplines, and distinguish cross-disciplinary publication content. The results highlight increases in cross-disciplinary authorship collaborations from pre- to post-award years among the primary investigators and confirm that a majority of cross-disciplinary collaborations have resulted in publications with cross-disciplinary content that rank in the top third of their field. With these evaluation data, PS-OC Program officials have provided ongoing feedback to participating investigators to improve center productivity and thereby facilitate a more successful initiative. Future analysis will continue to expand these methods and metrics to adapt to new advances in research evaluation and changes in the program. PMID:24808632

  15. A Sustained Partnership between a Haitian Children’s Hospital and North American Academic Medical Centers

    PubMed Central

    Koster, Michael P.; Williams, Jackson H.; Gautier, Jacqueline; Alce, Renee; Trappey, Bernard E.

    2017-01-01

    Global health initiatives from academic medical centers have rapidly proliferated over the last decade. This paper endeavors to describe our 5-year experience as an academic medical collaborative supporting healthcare delivery, medical training, and research at Hôpital Saint Damien-Nos Petits Frères et Soeurs, the only freestanding children’s hospital in Haiti. Descriptions of the history and current activities of our academic medical collaborative, its partnership and communication structure, its evolution to fill the expressed needs of our host site, its funding mechanisms, and its challenges and opportunities for the future are included. PMID:28611976

  16. The Future of Dental Schools in Research Universities and Academic Health Centers.

    PubMed

    McCauley, Laurie K

    2017-09-01

    As a profession, dentistry is at a point of discernible challenge as well as incredible opportunity in a landscape of evolving changes to health care, higher education, and evidence-based decision making. Respecting the past yet driving forward, a well-mapped future course is critical. Orchestrating this course in a collaborative manner is essential for the visibility, well-being, and potentially the existence of the dental profession. The research performed in dental institutions needs to be contemporary, aligned with biomedical science in general, and united with other disciplines. Dentistry is at risk of attrition in the quality of its research and discovery mission if participation with bioscience colleagues in the collaborative generation of new knowledge is underoptimized. A fundamental opportunity dentistry has is to contribute via its position in academic health centers. Rigorous research as to the impact of interprofessional education and collaborative care on population health outcomes provides significant potential for the dental profession to participate and/or lead such evidence-centered efforts. It is imperative that academic dental institutions are part of interdisciplinary and transdisciplinary organizations that move health care into its new day. Strategizing diversity by bringing together people who have different ways of seeing problems to share perspectives, heuristics, interpretations, technologies, and predictive models across disciplines will lead to impactful progress. Academic dental institutions are a natural part of an emphasis on translational research and acceleration of implementing new scientific discoveries. Dentistry needs to remain an essential and integrated component of higher education in the health professions; doing so necessitates deliberate, respectful, and committed change. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  17. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nastasi, Michael

    "Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL" was submitted by CMIME to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegie Mellon University, the University of Illinois at Urbana-Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  18. Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff

    2017-12-09

    'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  19. The Impact of a Professional Development Model on ABE Teachers' Instructional Practice: Teachers Investigating Adult Numeracy

    ERIC Educational Resources Information Center

    Bingman, Mary Beth; Schmitt, Mary Jane

    2008-01-01

    The authors present the National Science Foundation project, Teachers Investigating Adult Numeracy (TIAN), a collaborative project of the Center for Literacy Studies at the University of Tennessee and the Technical Education Research Centers, Inc. (TERC) in Cambridge, Massachusetts. The project has developed and tested a model for inservice…

  20. Establishing the Infrastructure to Comprehensively Address Cancer Disparities: A Model for Transdisciplinary Approaches

    PubMed Central

    Green, B. Lee; Rivers, Desiree A.; Kumar, Nagi; Baldwin, Julie; Rivers, Brian M.; Sultan, Dawood; Jacobsen, Paul; Gordon, Leslene E.; Davis, Jenna; Roetzheim, Richard

    2014-01-01

    Summary The Center for Equal Health (CEH), a transdisciplinary Center of Excellence, was established to investigate cancer disparities comprehensively and achieve health equity through research, education, training, and community outreach. This paper discusses challenges faced by CEH, strategies employed to foster collaborations, lessons learned, and future considerations for establishing similar initiatives. PMID:24185157

  1. Reflections and Recommendations Based on a Migrant Health Center's Participation in a CDC Study.

    ERIC Educational Resources Information Center

    Nolon, Anne K.; O'Barr, James

    Hudson Valley Migrant Health (HVMH) (a Public Health Service program) collaborated with the Center for Disease Control (CDC) and the New York State Department of Health (NYSDOH) on a study of the incidence of sexually transmitted diseases and tuberculosis among migrant farmworkers in the mid-Hudson region of New York. CDC research personnel…

  2. Expanding the Intellectual Property Knowledge Base at University Libraries: Collaborating with Patent and Trademark Resource Centers

    ERIC Educational Resources Information Center

    Wallace, Martin; Reinman, Suzanne

    2018-01-01

    Patent and Trademark Resource Centers are located in libraries throughout the U.S., with 43 being in academic libraries. With the importance of incorporating a knowledge of intellectual property (IP) and patent research in university curricula nationwide, this study developed and evaluated a partnership program to increase the understanding of IP…

  3. Sexual Abuse Experiences of Women in Peru: An Exploratory Study

    ERIC Educational Resources Information Center

    Deboer, Rebekah E.; Tse, Luke M.

    2010-01-01

    This ethnographic study relied primarily on case notes and interviews with the president of Centro Prenatal Vida Nueva, a pregnancy center in Lima, Peru, to study the sexual abuse experiences of 33 Peruvian women. Given the language limitations of the researchers, the analyses were completed in collaboration with the president of the center, a…

  4. From Isolation to Interaction? Network-Based Professional Development and Teacher Professional Communication.

    ERIC Educational Resources Information Center

    McMahon, Teresa A.

    The Mathematics Learning Forums, a collaborative effort of Bank Street College and the Center for Children and Technology, Education Development Center, Inc., provided the primary research setting for this study. Each 8-week forum focuses on specific elements of a mathematics content area and is designed to address both student learning and…

  5. Research Activities at Fermilab for Big Data Movement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W

    2013-01-01

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  6. The Bridge: Experiments in Science and Art, Experiences from the 2017 SciArt Center Cross-Disciplinary Residency Program

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Chalmers, R.; Buntaine, J.

    2017-12-01

    Cross-disciplinary programs create the opportunity to explore new realms for scientists and artists alike. Through the collaborative process, artistic insights enable innovative approaches to emotionally connect to and visualize the world around us. Likewise, engagement across the art-science spectrum can lead to shifts in scientific thinking that create new connections in data and drive discoveries in research. The SciArt Center "The Bridge Residency Program" is a four-month long virtual residency open internationally for professionals in the arts and sciences to facilitate cross-disciplinary work and to bring together like-minded participants. The SciArt Center provides a virtual space to record and showcase the process and products of each collaboration. The work is facilitated with biweekly Skype calls and documented with weekly blog posts. Residents create either digital or physical products and share via video, images, or direct mailing with their collaborators. Past projects have produced call and response discussion, websites, skills and conference presentations, science-art studies, virtual exhibits, art shows, dance performances, and research exchange. Here we present the creative process and outcomes of one of the four collaborative teams selected for the 2017 residency. Jill Shipman, a Ph.D. Candidate in Volcanology who is also active in filmmaking and theatrical productions and Rosemary Chalmers, a UK-based lecturer, concept artist, and illustrator with a specialty in creature design. They were paired together for their shared interest in storytelling, illustration, and unique geological and environmental habitats and the life that occupies them. We will discuss the collaborative project developed by this team during their recent residency and illustrate how a virtual program can bridge the distance between geographical location to foster science and art collaboration. To follow the progress of the residency please visit: http://www.sciartcenter.org/the-bridge.html

  7. Meeting at the Museum: Sustained Research Education Partnerships Start in Your Own Back Yard

    NASA Astrophysics Data System (ADS)

    Morin, P. J.; Hamilton, P.; Campbell, K. M.

    2007-12-01

    The Science Museum of Minnesota (SMM) and the National Center for Earth-surface Dynamics (NCED) have been formal partners since 2002, when we jointly secured NSF center-level funding. We began in our local community by together creating our own "Big Back Yard", a 1.75 acre outdoor park in which museum visitors, teachers and students explore natural and engineered river systems through miniature golf and interactive exhibits. We went on to jointly design "Earthscapes" programming for students, teachers and graduate students, related directly or indirectly to the park. From there, our partnership led to a major new exhibition that begins touring nationally and around the world in late 2007. A current effort seeks to bring NCED and SMM together with five other geo-science-oriented, NSF-supported Science and Technology Centers (STCs) from around the United States to develop collaborative means by which the research and science of all six STCs can reach larger informal science education audiences. We have learned a lot along the way about how museums can help individual and teams of researchers most effectively reach formal and informal audiences. Successful partnerships require significant joint commitment and funding, dedicated staff, and meaningful formative and summative evaluation. For a research center or an individual researcher, partnering with a museum provides experience, expertise, infrastructure, collegial relationships and community visibility that significantly enhance that of the academy. For a museum, one successful and highly visible research collaboration opens many new doors in the research community, providing new opportunities to broaden and deepen the scientific content of exhibits and programming.

  8. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    NASA Astrophysics Data System (ADS)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups including research scientists, formal and informal educators, business representatives, and non-profit groups to identify ocean-related problems, and develop solutions to share with their own communities. COSEE OLC practices and studies the skills of developing these collaborations.

  9. Creating and Supporting a Mixed Methods Health Services Research Team

    PubMed Central

    Bowers, Barbara; Cohen, Lauren W; Elliot, Amy E; Grabowski, David C; Fishman, Nancy W; Sharkey, Siobhan S; Zimmerman, Sheryl; Horn, Susan D; Kemper, Peter

    2013-01-01

    Objective. To use the experience from a health services research evaluation to provide guidance in team development for mixed methods research. Methods. The Research Initiative Valuing Eldercare (THRIVE) team was organized by the Robert Wood Johnson Foundation to evaluate The Green House nursing home culture change program. This article describes the development of the research team and provides insights into how funders might engage with mixed methods research teams to maximize the value of the team. Results. Like many mixed methods collaborations, the THRIVE team consisted of researchers from diverse disciplines, embracing diverse methodologies, and operating under a framework of nonhierarchical, shared leadership that required new collaborations, engagement, and commitment in the context of finite resources. Strategies to overcome these potential obstacles and achieve success included implementation of a Coordinating Center, dedicated time for planning and collaborating across researchers and methodologies, funded support for in-person meetings, and creative optimization of resources. Conclusions. Challenges are inevitably present in the formation and operation of effective mixed methods research teams. However, funders and research teams can implement strategies to promote success. PMID:24138774

  10. Building international genomics collaboration for global health security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  11. Building international genomics collaboration for global health security

    DOE PAGES

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; ...

    2015-12-07

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  12. The Importance of Collaboration in Advancing Understanding of Rare Disorders: US/EU Joint Initiative on Silver-Russell Syndrome.

    PubMed

    Salem, Jennifer B; Netchine, Irène; Harbison, Madeleine D

    2017-11-01

    Patient-support organizations can facilitate a significant change in the way rare disorders are approached. Besides connecting families with each other and directing patients to experienced medical specialists, these groups, by collaborating with government initiatives like COST, can effect the direction and funding of rare disease research. By concentrating the rare disease patient population and funneling them to specific centers of excellence, these organizations help build specialists' experience and their study populations. It requires a basic spirit of collaboration, driven parent leaders, a well-organized support platform, sources of funding, supportive clinical and research professionals and finally an effective method of collecting and disseminating information. Silver-Russell Syndrome is an excellent example of a rare disorder that has become better recognized, understood and treated because patient-support organizations, using the internet as a critical tool, have worked together with clinical care/research specialists and public funding agencies to build collaboration. Copyright© of YS Medical Media ltd.

  13. Centers of Excellence on Environmental Health Disparities Research

    EPA Pesticide Factsheets

    collaborative effort that encourages basic, biological, clinical, epidemiological, behavioral, and/or social scientific investigations of disease conditions that are known to be a significant burden in low socioeconomic and health disparate populations

  14. Feeding Your Baby in the NICU

    MedlinePlus

    ... Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems March ... the hind milk, which is highest in the fat calories your baby needs. Pump for a minute ...

  15. Co-Transcriptional Assembly of Modified RNA Nanoparticles | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Nanobiology Program seeks parties interested in collaborative research to co-develop a method to generate RNA molecules suitable for nanoparticle and biomedical applications.

  16. Becoming a Parent in the NICU

    MedlinePlus

    ... Quality Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems ... org Product Catalog Get Involved Volunteer Volunteer leaders Team Youth National service partners Advocate Get informed Take ...

  17. Collaborative Product Development in an R&D Environment

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.; Peterson, Paul L.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  18. Cooperative Research in High Energy Astrophysics between JHU and GSFC

    NASA Technical Reports Server (NTRS)

    Vishniac, Ethan

    2004-01-01

    This grant was awarded to establish and support cooperative research programs between the Center of Astrophysical Sciences (CAS) at the Johns Hopkins University and the Laboratory for High Energy Astrophysics (LHEA) at the NASA/Goddard Space Flight Center (GSFC). The goals o f the program are to facilitate, encourage and initiate: (1) sharing of resources, knowledge and expertise in the general astrophysics, and relevant databases; (2) new collaborations and projects between the two institutions and its scientists, (3) training and mentoring of JHU students and junior researchers by way of connecting them with appropriate researchers and experts at the LHEA.

  19. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1991

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N. (Compiler)

    1991-01-01

    In a series of collaborations between NASA research and development centers and nearby universities, engineering faculty members spent 10 weeks working with professional peers on research. The Summer Faculty Program Committee of the American Society of Engineering Education supervises the programs. The objects were the following: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA center.

  20. Development and Implementation of Dynamic Scripts to Execute Cycled WRF/GSI Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Quanli; Watson, Leela

    2014-01-01

    Automating the coupling of data assimilation (DA) and modeling systems is a unique challenge in the numerical weather prediction (NWP) research community. In recent years, the Development Testbed Center (DTC) has released well-documented tools such as the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) DA system that can be easily downloaded, installed, and run by researchers on their local systems. However, developing a coupled system in which the various preprocessing, DA, model, and postprocessing capabilities are all integrated can be labor-intensive if one has little experience with any of these individual systems. Additionally, operational modeling entities generally have specific coupling methodologies that can take time to understand and develop code to implement properly. To better enable collaborating researchers to perform modeling and DA experiments with GSI, the Short-term Prediction Research and Transition (SPoRT) Center has developed a set of Perl scripts that couple GSI and WRF in a cycling methodology consistent with the use of real-time, regional observation data from the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC). Because Perl is open source, the code can be easily downloaded and executed regardless of the user's native shell environment. This paper will provide a description of this open-source code and descriptions of a number of the use cases that have been performed by SPoRT collaborators using the scripts on different computing systems.

  1. IGPP-LLNL 1998 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Cook, K H; Tweed, J

    1999-11-19

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics,more » which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in tectonics, geochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Kem Cook, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics Directorate's astrophysics efforts. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. Additional information regarding IGPP-LLNL projects and people may be found at http://wwwigpp.llnl.gov/. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $30,000. Funds are used for a variety of purposes, such as salary support for UC graduate students, postdoctoral fellows, and faculty; and costs for experimental facilities. A statistical overview of IGPP-LLNL's UCRP (colloquially known as the mini-grant program) is presented in Figures 1 and 2. Figure 1 shows the distribution of UCRP awards among the UC campuses, by total amount awarded and by number of proposals funded. Figure 2 shows the distribution of awards by center.« less

  2. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 200 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1994.

  3. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships and 10 or 12 week fellowships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Approximately 150 interns are selected to participate in this program and begin arriving the second week in May. Each intern is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1995.

  4. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    NASA Technical Reports Server (NTRS)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  5. Greater than the Sum of Its Parts: A Qualitative Study of the Role of the Coordinating Center in Facilitating Coordinated Collaborative Science

    ERIC Educational Resources Information Center

    Rolland, Betsy; Lee, Charlotte P.; Potter, John D.

    2017-01-01

    As collaborative biomedical research has increased in size and scope, so, too, has the need to facilitate the disparate work being done by investigators across institutional, geographic and, often, disciplinary boundaries. Yet we know little about what facilitation is on a day-to-day basis or what types of facilitation work contribute to the…

  6. The NHTSA & NCSDR program to combat drowsy driving : a report to the House and Senate Appropriations Committees describing collaboration between National Highway Traffic Safety Administration and National Center on Sleep Disorders Research, National Heart, Lung and Blood Institute, National Institutes of Health

    DOT National Transportation Integrated Search

    1999-03-15

    In 1996, the National Highway Traffic Safety Administration (NHTSA) embarked on a congressionally mandated effort to develop educational countermeasures to the effects of fatigue, sleep disorders, and inattention on highway safety. In collaboration w...

  7. Flight Awareness Collaboration Tool Development

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation covering airline operations center (AOC) research. It reviews a dispatcher decision support tool called the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. FACT should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations.

  8. Strategic Engagement in Global S&T: Opportunities for Defense Research

    DTIC Science & Technology

    2014-01-01

    local customization, gaining access to new markets, and placing technical staff close to manufacturing and design centers, but also because the...visit Visual access to research process; can talk to more people about the work Collaboration Designing , carrying out, and analyzing research...Development, and Acquisition DASN(RDT&E) Deputy Assistant Secretary of the Navy for Research, Development, Testing , and Evaluation Chief of Naval Research

  9. 77 FR 33729 - Disability and Rehabilitation Research Projects and Centers Program-National Data and Statistical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... statistical and other methodological consultation to this collaborative project. Discussion: Grantees under... and technical assistance must be designed to contribute to the following outcomes: (a) Maintenance of... methodological consultation available for research projects that use the BMS Database, as well as site- specific...

  10. NCI Scientists Get Deep Look at CRISPR Complex Through Deep Freeze | Poster

    Cancer.gov

    To get a closer look at one CRISPR complex, researchers from NCI’s Center for Cancer Research and their collaborators recently put it “on ice” with cryo-electron microscopy, creating highly detailed images that show its biological structures in multiple states at a molecular level.

  11. 77 FR 60478 - Proposal Review Panel for Computing Communication Foundations; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... assess the progress of the EIC Award: 1029711, ``Collaborative Research: Mining Climate and Ecosystem Data'', and to provide advice and recommendations concerning further NSF support for the Center. AGENDA... answer sessions. 1 p.m.-8 p.m. Closed Draft report on education and research activities. Wednesday...

  12. Essential Tensions in Interdisciplinary Scholarship: Navigating Challenges in Affect, Epistemologies, and Structure in Environment-Society Research Centers

    ERIC Educational Resources Information Center

    Turner, V. Kelly; Benessaiah, Karina; Warren, Scott; Iwaniec, David

    2015-01-01

    Scholars have enumerated unique challenges to collaborative interdisciplinary research, many of which evade prescriptive solutions. Some of these challenges can be understood as "essential tensions," necessary and persistent contradictory imperatives in the scientific process. Drawing from interviews with internationally renowned…

  13. Identification of Maize Breeding Markers through Investigations of Proteins Associated with Aflatoxin-Resistance

    USDA-ARS?s Scientific Manuscript database

    The goal of a collaborative research project between International Institute of Tropical Agriculture (IITA) in Nigeria and ARS-Southern Regional Research Center (SRRC) in New Orleans is to develop maize inbred lines with resistance against aflatoxin contamination by Aspergillus flavus. A second goal...

  14. Researchers discover promising new targets for treatment of fatty liver disease | Center for Cancer Research

    Cancer.gov

    Researchers have identified potential new drug targets for the prevention and treatment of non-alcoholic fatty liver disease (NAFLD). The new study, which was a collaborative effort between scientists in the Laboratory of Metabolism at CCR and Peking University, was published October 9, 2017, in Nature Medicine. Read more…

  15. An Exemplar in Mentoring and Professional Development: Teaching Graduate Students Transferable Skills beyond the Discipline

    ERIC Educational Resources Information Center

    Weisblat, Gina; Sell, Christine

    2012-01-01

    If university research is to remain a high priority in the national education agenda, graduate students must be prepared to move into research positions. Cleveland State University created the Graduate Grant Writing Center to enhance students' understanding of research principles and ethics, appreciation of the value of collaborations and…

  16. 76 FR 77238 - Submission for OMB Review; Comment Request; The SSA-NIH Collaboration to Improve the Disability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... Public: Individuals who have opted in to participate in web surveys through a survey research firm. Type... 1995, the Clinical Research Center, the National Institutes of Health has submitted to the Office of... Research Institute (BU-HDR)) and subcontractor for validation of the Computer Adaptive Tests which are...

  17. Use of health information technology to advance evidence-based care: lessons from the VA QUERI program.

    PubMed

    Hynes, Denise M; Weddle, Timothy; Smith, Nina; Whittier, Erika; Atkins, David; Francis, Joseph

    2010-01-01

    As the Department of Veterans Affairs (VA) Health Services Research and Development Service's Quality Enhancement Research Initiative (QUERI) has progressed, health information technology (HIT) has occupied a crucial role in implementation research projects. We evaluated the role of HIT in VA QUERI implementation research, including HIT use and development, the contributions implementation research has made to HIT development, and HIT-related barriers and facilitators to implementation research. Key informants from nine disease-specific QUERI Centers. Documentation analysis of 86 implementation project abstracts followed up by semi-structured interviews with key informants from each of the nine QUERI centers. We used qualitative and descriptive analyses. We found: (1) HIT provided data and information to facilitate implementation research, (2) implementation research helped to further HIT development in a variety of uses including the development of clinical decision support systems (23 of 86 implementation research projects), and (3) common HIT barriers to implementation research existed but could be overcome by collaborations with clinical and administrative leadership. Our review of the implementation research progress in the VA revealed interdependency on an HIT infrastructure and research-based development. Collaboration with multiple stakeholders is a key factor in successful use and development of HIT in implementation research efforts and in advancing evidence-based practice.

  18. The George W. Comstock Center for Public Health Research and Prevention: A Century of Collaboration, Innovation, and Translation

    PubMed Central

    Coresh, Josef; Platz, Elizabeth A.

    2016-01-01

    The Johns Hopkins Bloomberg School of Public Health has been engaged in public health research and practice in Washington County, Maryland, nearly since its inception a century ago. In 2005, the center housing this work was renamed the George W. Comstock Center for Public Health Research and Prevention to honor its pioneering leader. Principles that guided innovation and translation well in the past included: research synergies and opportunities for translation realized through longstanding connection with the community; integration of training with public health research; lifelong learning, mentorship, and teamwork; and efficiency through economies of scale. These principles are useful to consider as we face the challenges of improving the health of the population over the next 100 years. PMID:26872712

  19. CABS: Green Energy for Our Nation's Future (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    "CABS: Green Energy for our Nation's Future" was submitted by the Center for Advanced Biofuel Systems (CABS) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CABS, an EFRC directed by Jan Jaworski at the Donald Danforth Plant Science Center is a partnership of scientists from five institutions: Donald Danforth Plant Science Center (lead), Michigan State University, the University of Nebraska, New Mexico Consortium/LANL, and Washington State University. Themore » Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  20. Opportunities for collaborative phenotyping for disease resistance traits in a large beef cattle resource population.

    PubMed

    Thallman, R M; Kuehn, L A; Allan, M F; Bennett, G L; Koohmaraie, M

    2008-01-01

    The Germplasm Evaluation (GPE) Project at the US Meat Animal Research Center (USMARC) is planned to produce about 3,000 calves per year in support of the following objectives: identification and validation of genetic polymorphisms related to economically relevant traits (ERT), estimation of breed and heterosis effects among 16 breeds for ERT, and estimation of genetic correlations among ERT and physiological indicator traits (PIT). Opportunities exist for collaboration in the development and collection of PIT phenotypes for disease resistance. Other areas of potential collaboration include detailed diagnosis (identification of disease causing organisms, etc.) of treated animals, collaborative development of epidemiological statistical models that would extract more information from the records of diagnoses and treatments, or pharmacogenetics. Concentrating a variety of different phenotypes and research approaches on the same population makes each component much more valuable than it would be individually.

  1. Tools for Designing, Evaluating, and Certifying NextGen Technologies and Procedures: Automation Roles and Responsibilities

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.

    2011-01-01

    Barbara Kanki from NASA Ames Research Center will discuss research that focuses on the collaborations between pilots, air traffic controllers and dispatchers that will change in NextGen systems as automation increases and roles and responsibilities change. The approach taken by this NASA Ames team is to build a collaborative systems assessment template (CSAT) based on detailed task descriptions within each system to establish a baseline of the current operations. The collaborative content and context are delineated through the review of regulatory and advisory materials, policies, procedures and documented practices as augmented by field observations and interviews. The CSAT is developed to aid the assessment of key human factors and performance tradeoffs that result from considering different collaborative arrangements under NextGen system changes. In theory, the CSAT product may be applied to any NextGen application (such as Trajectory Based Operations) with specified ground and aircraft capabilities.

  2. NASA Airline Operations Research Center

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  3. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    ScienceCinema

    Guenther, Chris

    2018-05-23

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  4. Joint the Center for Applied Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, Todd; Bremer, Timo; Van Essen, Brian

    The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.

  5. Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guenther, Chris

    The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

  6. NASA Aeronautics and Space Database for bibliometric analysis

    NASA Technical Reports Server (NTRS)

    Powers, R.; Rudman, R.

    2004-01-01

    The authors use the NASA Aeronautics and Space Database to perform bibliometric analysis of citations. This paper explains their research methodology and gives some sample results showing collaboration trends between NASA Centers and other institutions.

  7. IP Sample Plan #5 | NCI Technology Transfer Center | TTC

    Cancer.gov

    A sample Intellectual Property Management Plan in the form of a legal agreement between a University and its collaborators which addresses data sharing, sharing of research tools and resources and intellectual property management.

  8. EFRC: CST at the University of Texas at Austin- A DOE Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaoyang

    "EFRC: CST at the University of Texas at Austin- A DOE Energy Frontier Research Center" was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC: CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in themore » U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  9. Collaborative translational research leading to multicenter clinical trials in Duchenne muscular dystrophy: the Cooperative International Neuromuscular Research Group (CINRG).

    PubMed

    Escolar, Diana M; Henricson, Erik K; Pasquali, Livia; Gorni, Ksenija; Hoffman, Eric P

    2002-10-01

    Progress in the development of rationally based therapies for Duchenne muscular dystrophy has been accelerated by encouraging multidisciplinary, multi-institutional collaboration between basic science and clinical investigators in the Cooperative International Research Group. We combined existing research efforts in pathophysiology by a gene expression profiling laboratory with the efforts of animal facilities capable of conducting high-throughput drug screening and toxicity testing to identify safe and effective drug compounds that target different parts of the pathophysiologic cascade in a genome-wide drug discovery approach. Simultaneously, we developed a clinical trial coordinating center and an international network of collaborating physicians and clinics where those drugs could be tested in large-scale clinical trials. We hope that by bringing together investigators at these facilities and providing the infrastructure to support their research, we can rapidly move new bench discoveries through animal model screening and into therapeutic testing in humans in a safe, timely and cost-effective setting.

  10. Data Democratization - Promoting Real-Time Data Sharing and Use throughout the Americas

    NASA Astrophysics Data System (ADS)

    Yoksas, T. C.

    2006-05-01

    The Unidata Program Center (Unidata) of the University Corporation of Atmospheric Research (UCAR) is actively involved in international collaborations whose goals are real-time sharing of hydro-meteorological data by institutions of higher education throughout the Americas; in the distribution of analysis and visualization tools for those data; and in the establishment of server sites that provide easy-to-use, programmatic remote- access to a wide variety of datasets. Data sharing capabilities are being provided by Unidata's Internet Data Distribution (IDD) system, a community-based effort that has been the primary source of real-time meteorological data for approximately 150 US universities for over a decade. A collaboration among Unidata, Brazil's Centro de PreviSão de Tempo e Estudos Climáticos (CPTEC), the Universidad Federal do Rio de Janeiro (UFRJ), and the Universidade de São Paulo (USP) has resulted in the creation of a Brazilian peer of the North American IDD, the IDD-Brasil. Collaboration among Unidata, the Universidad de Costa Rica (UCR), and the University of Puerto Rico at Mayaguez (UPRM) seeks to extend IDD data sharing throughout Central America and the Caribbean in an IDD-Caribe. Collaboration between Unidata and the Caribbean Institute for Meteorology and Hydrology (CIMH), a World Meteorological Organization (WMO) Regional Meteorological Training Center (RMTC) based in Barbados, has been launched to investigate the possibility of expansion of IDD data sharing throughout Caribbean RMTC member countries. Most recently, efforts aimed at creating a data sharing network for researchers on the Antarctic continent have resulted in the establishment of the Antarctic-IDD. Data analysis and visualization capabilities are being provided by Unidata through a suite of freely-available applications: the National Centers for Environmental Prediction (NCEP) GEneral Meteorology PAcKage (GEMPAK); the Unidata Integrated Data Viewer (IDV); and University of Wisconsin, Space Science and Engineering Center (SSEC) Man-computer Interactive Data Access System (McIDAS). Remote data access capabilities are provided by Unidata's Thematic Realtime Environmental Data Services (THREDDS) servers (which incorporate Open-source Project for a Network Data Access (OPeNDAP) data services), and the Abstract Data Distribution Environment (ADDE) of McIDAS. It is envisioned that the data sharing capabilities available in the IDD, IDD-Brasil, and IDD-Caribe, remote data access capabilities available in THREDDS and ADDE, and analysis capabilities available in GEMPAK, the IDV, and McIDAS will help foster new collaborations among prominent university educators and researchers, national meteorological agencies, and WMO Regional Meteorological Training Centers throughout North, Central, and South America.

  11. Catalyzing Cross-Disciplinary Research and Education Within and Beyond the Environmental and Geosciences to Address Emerging, Societally-Relevant Issues

    NASA Astrophysics Data System (ADS)

    Cak, A. D.; Vigdor, L. J.; Vorosmarty, C. J.; Giebel, B. M.; Santistevan, C.; Chasteau, C.

    2017-12-01

    Tackling emergent, societally-relevant problems in the environmental sciences is hardly confined to a single research discipline, but rather requires collaborations that bridge diverse domains and perspectives. While new technologies (e.g., Skype) can in theory unite otherwise geographically distributed participation in collaborative research, physical distance nevertheless raises the bar on intellectual dialogue. Such barriers may reveal perceptions of or real differences across disciplines, reflecting particular traditions in their histories and academic cultures. Individual disciplines are self-defined by their scientific, epistemologic, methodologic, or philosophical traditions (e.g., difficulties in understanding processes occurring at different scales, insufficient research funding for interdisciplinary work), or cultural and discursive hurdles (e.g., navigating a new field's jargon). Coupled with these challenges is a considerable deficiency in educating the next generation of scientists to help them develop a sufficient comfort level with thinking critically across multiple disciplinary domains and conceptual frameworks. To address these issues, the City University of New York (CUNY), the largest public urban university in the U.S., made a significant investment in advancing cross-disciplinary research and education, culminating in the opening of the CUNY Advanced Science Research Center (ASRC) in New York City (NYC) in late 2014. We report here on our experiences incubating new collaborative efforts to address environmental science-related research as it is interwoven with the ASRC's five research initiatives (Environmental Sciences, Neuroscience, Structural Biology, Photonics, and Nanoscience). We describe the ASRC's overall structure and function as both a stand-alone interdisciplinary center and one that collaborates more broadly with CUNY's network of twenty-four campuses distributed across NYC's five boroughs. We identify challenges we have faced so far, particularly in attempting to overcome traditional scientific, discursive, and cultural barriers, and how we are addressing them. We also describe several outreach and educational programming efforts designed to promote cross-disciplinarity, including informal science education.

  12. Diagnostics Tools Identify Faults Prior to Failure

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  13. Sustainability-Related Publications Calendar Years 2015- 2016

    DTIC Science & Technology

    The Center for the Advancement of Sustainability Innovations (CASI) was established by the U.S. Army Engineer Research and Development Center (ERDC...and around the globe. CASI teams strive to measure sustainability innovations against the Triple Bottom Line of mission, environment, and community...CASI focuses on cost savings, innovation , collaborative solutions, and continuous learning which directly link sustainability to Army policy and guidance

  14. CLUSTER: University-Science Center Partnership for Science Teacher Preparation

    ERIC Educational Resources Information Center

    Saxman, Laura J.; Gupta, Preeti; Steinberg, Richard N.

    2010-01-01

    The purpose of this paper is to describe and present results from the fourth year of a five-year collaborative research project between an interactive science center and a local college. The purpose of the project is not only to recruit and train approximately 50 highly qualified science teachers who will teach in New York City public schools, but…

  15. Variation in Blood Transfusion and Coagulation Management in Traumatic Brain Injury at the Intensive Care Unit: A Survey in 66 Neurotrauma Centers Participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Study.

    PubMed

    Huijben, Jilske A; van der Jagt, Mathieu; Cnossen, Maryse C; Kruip, Marieke J H A; Haitsma, Iain K; Stocchetti, Nino; Maas, Andrew I R; Menon, David K; Ercole, Ari; Maegele, Marc; Stanworth, Simon J; Citerio, Giuseppe; Polinder, Suzanne; Steyerberg, Ewout W; Lingsma, Hester F

    2017-11-21

    Our aim was to describe current approaches and to quantify variability between European intensive care units (ICUs) in patients with traumatic brain injury (TBI). Therefore, we conducted a provider profiling survey as part of the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The ICU Questionnaire was sent to 68 centers from 20 countries across Europe and Israel. For this study, we used ICU questions focused on 1) hemoglobin target level (Hb-TL), 2) coagulation management, and 3) deep venous thromboembolism (DVT) prophylaxis. Seventy-eight participants, mostly intensivists and neurosurgeons of 66 centers, completed the ICU questionnaire. For ICU-patients, half of the centers (N = 34; 52%) had a defined Hb-TL in their protocol. For patients with TBI, 26 centers (41%) indicated an Hb-TL between 70 and 90 g/L and 38 centers (59%) above 90 g/L. To treat trauma-related hemostatic abnormalities, the use of fresh frozen plasma (N = 48; 73%) or platelets (N = 34; 52%) was most often reported, followed by the supplementation of vitamin K (N = 26; 39%). Most centers reported using DVT prophylaxis with anticoagulants frequently or always (N = 62; 94%). In the absence of hemorrhagic brain lesions, 14 centers (21%) delayed DVT prophylaxis until 72 h after trauma. If hemorrhagic brain lesions were present, the number of centers delaying DVT prophylaxis for 72 h increased to 29 (46%). Overall, a lack of consensus exists between European ICUs on blood transfusion and coagulation management. The results provide a baseline for the CENTER-TBI study, and the large between-center variation indicates multiple opportunities for comparative effectiveness research.

  16. A translation table for patient-centered comparative effectiveness research: guidance to improve the value of research for clinical and health policy decision-making.

    PubMed

    Tunis, Sean R; Messner, Donna A; Mohr, Penny; Gliklich, Richard E; Dubois, Robert W

    2012-05-01

    This article provides background and context for a series of papers stemming from a collaborative effort by Outcome Sciences, Inc., the National Pharmaceutical Council and the Center for Medical Technology Policy to use a stakeholder-driven process to develop a decision tool to select appropriate methods for comparative effectiveness research. The perceived need and origins of the 'translation table' concept for method selection are described and the legislative history and role of the Patient-Centered Outcomes Research Institute are reviewed. The article concludes by stressing the significance of this effort for future health services and clinical research, and the importance of consulting end-users--patients, providers, payers and policy-makers--in the process of defining research questions and approaches to them.

  17. The UP College of Nursing Collaborating Center for Nursing Development in Primary Health Care.

    PubMed

    Yapchiongco, A S

    1990-01-01

    Officially designated as one of WHO's Collaborating Centers for Nursing Development (CCND), the UP College of Nursing in the Philippines will take on a leading role in achieving "health for all" through primary health care (PHC). The 1978 Declaration of Alma-Ata called for the goal of health for all by the year 2000, and recognized the key role of the nursing profession in this effort. In order to be designated a WHO collaborating center, an institution must be able to provide scientific and technical leadership at the national and international level, must be a stable institution, and must have the capacity to contribute to WHO programs. A WHO collaborating center forms part of an international network of institutions. Having become such a center, the UP College will form part of the Global Network for Nursing Development, organized in March 1987. The Global Network's functions include: 1) coordinating activities and promoting technical cooperation; 2) disseminating and exchanging informational; 3) monitoring trends in health services development and assessing their implications for nursing development; 4) supporting research; 5) gathering support and resources; and 6) promoting the goals of nursing development. As part of the Global Network, the UP College has developed a 4-year plan to fulfill the network's functions. During the June 1989 inauguration of the CCND, the Philippine Secretary of Health, Dr. Alfredo R. A. Bengzon, noted the country's lopsided ratio of health personnel per population, and issued a challenge to the UP College to lead the country in accelerating nursing development.

  18. Role of federal policy in building research infrastructure among emerging minorities: the Asian American experience.

    PubMed

    Trinh-Shevrin, Chau; Ro, Marguerite; Tseng, Winston; Islam, Nadia Shilpi; Rey, Mariano J; Kwon, Simona C

    2012-01-01

    Considerable progress in Asian American health research has occurred over the last two decades. However, greater and sustained federal support is needed for reducing health disparities in Asian American communities. PURPOSE OF THE ARTICLE: This paper reviews federal policies that support infrastructure to conduct minority health research and highlights one model for strengthening research capacity and infrastructure in Asian American communities. Research center infrastructures can play a significant role in addressing pipeline/workforce challenges, fostering campus-community research collaborations, engaging communities in health, disseminating evidence-based strategies and health information, and policy development. Research centers provide the capacity needed for academic institutions and communities to work together synergistically in achieving the goal to reduce health disparities in the Asian American community. Policies that support the development of concentrated and targeted research for Asian Americans must continue so that these centers will reach their full potential.

  19. [RABIN MEDICAL CENTER - A TERTIARY CENTER OF EXCELLENCE IN SERVICE, TEACHING AND RESEARCH].

    PubMed

    Niv, Yaron; Halpern, Eyran

    2017-04-01

    Rabin Medical Center (RMC) belongs to Clalit Health Services and is a tertiary, academic medical center with all the facilities of modern and advanced medicine. Annually in the RMC, 650,000 patients are treated in the outpatient clinics, and 100,000 patients are hospitalized in the hospital departments. All these patients are treated by 4500 devoted staff members, including 1000 physicians and 2000 nurses. RMC is one of the largest, centrally located medical centers for medical and nursing students' education in Israel, taking place in clinical departments, as well as in basic sciences courses. We also have a nursing school attached to the hospital. Our vision supports excellence in research. We have a special Research Department that supports RMC researchers, with research coordinators, and all the relevant facilities to assist in clinical and basic science studies. We also promote collaboration efforts with many academic centers in Israel and abroad. The scope of RMC research is broad, including 700 new studies every year and 1500 active studies currently. This issue of Harefuah is dedicated to the clinical and basic science research conducted at RMC with original papers presenting research performed by our departments and laboratories.

  20. Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine)

    NASA Technical Reports Server (NTRS)

    Trelogan, Jessica; Crawford, Melba; Carter, Joseph

    2002-01-01

    In 1998 the University of Texas Institute of Classical Archaeology, in collaboration with the University of Texas Center for Space Research and the National Preserve of Tauric Chersonesos (Ukraine), began a collaborative project, funded by NASA's Solid Earth and Natural Hazards program, to investigate the use of remotely sensed data for the study and protection of the ancient a cultural territory, or chora, of Chersonesos in Crimea, Ukraine.

  1. The Wisconsin Network for Health Research (WiNHR): a statewide, collaborative, multi-disciplinary, research group.

    PubMed

    Bailey, Howard; Agger, William; Baumgardner, Dennis; Burmester, James K; Cisler, Ron A; Evertsen, Jennifer; Glurich, Ingrid; Hartman, David; Yale, Steven H; DeMets, David

    2009-12-01

    In response to the goals of the Wisconsin Partnership Program and the National Institutes of Health (NIH) Initiatives to Improve Healthcare, the Wisconsin Network for Health Research (WiNHR) was formed. As a collaborative, multi-disciplinary statewide research network, WiNHR encourages and fosters the discovery and application of scientific knowledge for researchers and practitioners throughout Wisconsin. The 4 founding institutions--Aurora Health Care/Center for Urban Population Health (CUPH), Gundersen Lutheran Medical Foundation, Marshfield Clinic Research Foundation, and the University of Wisconsin-Madison--representing geographically diverse areas of the state, are optimistic and committed to WiNHR's success. This optimism is based on the relevance of its goals to public health, the quality of statewide health care research, and, most importantly, the residents of Wisconsin who recognize the value of health research.

  2. The Wisconsin Network for Health Research (WiNHR): A Statewide, Collaborative, Multi-disciplinary, Research Group

    PubMed Central

    Bailey, Howard; Agger, William; Baumgardner, Dennis; Burmester, James K.; Cisler, Ron A.; Evertsen, Jennifer; Glurich, Ingrid; Hartman, David; Yale, Steven H.; DeMets, David

    2010-01-01

    In response to the goals of the Wisconsin Partnership Program and the National Institutes of Health (NIH) Initiatives to Improve Healthcare, the Wisconsin Network for Health Research (WiNHR) was formed. As a collaborative, multi-disciplinary statewide research network, WiNHR encourages and fosters the discovery and application of scientific knowledge for researchers and practitioners throughout Wisconsin. The 4 founding institutions—Aurora Health Care/Center for Urban Population Health (CUPH), Gundersen Lutheran Medical Foundation, Marshfield Clinic Research Foundation, and the University of Wisconsin-Madison—representing geographically diverse areas of the state, are optimistic and committed to WiNHR’s success. This optimism is based on the relevance of its goals to public health, the quality of statewide health care research, and, most importantly, the residents of Wisconsin who recognize the value of health research. PMID:20131687

  3. A unique collaborative nursing evidence-based practice initiative using the Iowa model: a clinical nurse specialist, a health science librarian, and a staff nurse's success story.

    PubMed

    Krom, Zachary R; Batten, Janene; Bautista, Cynthia

    2010-01-01

    The purpose of this article was to share how the collaboration of a clinical nurse specialist (CNS), a health science librarian, and a staff nurse can heighten staff nurses' awareness of the evidence-based practice (EBP) process. The staff nurse is expected to incorporate EBP into daily patient care. This expectation is fueled by the guidelines established by professional, accrediting, and regulatory bodies. Barriers to incorporating EBP into practice have been well documented in the literature. A CNS, a health science librarian, and a staff nurse collaborated to develop an EBP educational program for staff nurses. The staff nurse provides the real-time practice issues, the CNS gives extensive knowledge of translating research into practice, and the health science librarian is an expert at retrieving the information from the literature. The resulting collaboration at this academic medical center has increased staff nurse exposure to and knowledge about EBP principles and techniques. The collaborative relationship among the CNS, health science librarian, and staff nurse effectively addresses a variety of barriers to EBP. This successful collaborative approach can be utilized by other medical centers seeking to educate staff nurses about the EBP process.

  4. Biomedical informatics research network: building a national collaboratory to hasten the derivation of new understanding and treatment of disease.

    PubMed

    Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H

    2005-01-01

    Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.

  5. Immunotherapeutics for Pediatric Solid Tumors | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Pediatric Oncology Branch seeks partners interested in licensing or collaborative research to co-develop new immunotherapeutic agents based on chimeric antigen receptor (CARs) for the treatment of pediatric solid tumors.

  6. Fragile X-Associated Tremor and Ataxia Syndrome (FXTAS)

    MedlinePlus

    ... Director NIH awards $35 Million for Centers for Collaborative Research in Fragile X Men’s Health is the Focus in ... Safe to Sleep® National Child & Maternal Health Education Program RELATED WEBSITES NIH.gov HHS.gov USA. ...

  7. Diabetes, Obesity, and Other Insulin-Related Diseases | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Urologic Oncology Branch seeks partners interested in collaborative research to co-develop small molecule epoxy-guaiane derivative englerin A and related compounds for diseases associated with insulin resistance.

  8. What Is Technology Transfer? | Poster

    Cancer.gov

    The NCI Technology Transfer Center (TTC) facilitates partnerships between NIH research laboratories and external partners. With a team of technology transfer specialists, NCI TTC guides interactions from discovery to patenting, as well as from collaboration and invention development to licensing.

  9. Oligodeoxynucleotides as Anti-Cancer Therapeutics and Diagnostics | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute Laboratory of Experimental Immunology is seeking statements of capability or interest from parties interested in licensing or collaborative research to further develop, evaluate, or commercialize anti-cancer oligodeoxynucleotides.  

  10. Assay for Arf GTP-binding Proteins | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Laboratory of Cellular and Molecular Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize an antibody-based proteomics assay.

  11. Waste-to-Energy Technology Brief

    EPA Science Inventory

    ETV's Greenhouse Gas Technology (GHG) Center, operated by Southern Research Institute under a cooperative agreement with US EPA, verified two biogas processing systems and four distributed generation (DG) energy systems in collaboration with the Colorado Governors Office or the N...

  12. Mouse Model for the Preclinical Study of Metastatic Disease | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Laboratory of Cancer Biology and Genetics, National Cancer Institute seeks partners for collaborative research to co-develop a mouse model that shows preclinical therapeutic response of residual metastatic disease.

  13. Webinar Presentation: Our Environment, Our Health, Our Children's Future

    EPA Pesticide Factsheets

    This presentation, Our Environment, Our Health, Our Children's Future, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: The Significance of Children’s Environmental Health Research Through Collaboration held on July 8, 2015.

  14. PARP Inhibitor and NO-Donor Dual Prodrugs as Anticancer Agents | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Chemical Biology Laboratory seeks partners interested in collaborative research to co-develop PARP inhibitor and NO-donor hybrid prodrugs for the treatment of cancer.

  15. Webinar Presentation: EPA Actions to Reduce Children's Health Risks from Environmental Factors

    EPA Pesticide Factsheets

    This presentation, EPA Actions to Reduce Children's Health Risks from Environmental Factors, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: The Significance of Children’s Environmental Health Research Through Collaboration.

  16. Constructivist Instructional Practices and Teacher Beliefs Related to Secondary Science Teaching and Learning

    NASA Astrophysics Data System (ADS)

    Nelson, Adrienne Fleurette

    The purpose of this mixed method research study was to examine the constructivist beliefs and instructional practices of secondary science teachers. The research also explored situations that impacted whether or not student centered instruction occurred. The study revealed science teachers held constructive beliefs pertaining to student questioning of the learning process and student autonomy in interacting with other learners. Teachers held the least constructivist beliefs pertaining to student teacher collaboration on lesson design. Additionally, teacher beliefs and practice were not congruent due to instructional practices being deemed less constructivist than reported. The study found that curricular demands, teacher perceptions about students, inadequate laboratory resources, and the lack of teacher understanding about the components of constructivist instruction inhibited student centered instruction. The results of this study led to six recommendations that can be implemented by school districts in collaboration with science teachers to promote constructivist instruction.

  17. Center for Extended Magnetohydrodynamics Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jesus

    This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification ofmore » the numerical codes. This activity was funded for twelve years.« less

  18. Cognitive and Neural Correlates of Aging in Autism Spectrum Disorder

    DTIC Science & Technology

    2017-07-01

    PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public...U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION...collaborative study of the Southwest Autism Research and Resource Center and the Barrow Neurological Institute, produces comprehensive cognitive

  19. Aging in the Undergraduate Curriculum: Faculty Perspectives

    ERIC Educational Resources Information Center

    Heyman, Janna C.; Gutheil, Irene A.; White-Ryan, Linda; Phipps, Colette; Guishard, Dozene

    2008-01-01

    This descriptive study of undergraduate faculty (N = 177) ascertained the extent to which aging content is taught and faculty are interested in aging. The research was the result of a collaboration among an area agency on aging, an alliance of academic and community leaders, and a university-based research center. While approximately 43% of the…

  20. Patterns of Classroom Quality in Head Start and Center-Based Early Childhood Education Programs. REL 2017-199

    ERIC Educational Resources Information Center

    Irwin, Clare W.; Madura, John P.; Bamat, David; McDermott, Paul A.

    2016-01-01

    Measuring classroom quality and ensuring high-quality learning experiences for young children are interests of the Early Childhood Education Research Alliance, a research alliance of Regional Educational Laboratory Northeast & Islands. This study, conducted in collaboration with the alliance, addresses these interests by examining multiple…

  1. BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers.

  2. Barrett's Esophagus Translational Research Network (BETRNet) | Division of Cancer Prevention

    Cancer.gov

    The goal of BETRNet is to reduce the incidence, morbidity, and mortality of esophageal adenocarcinoma by answering key questions related to the progression of the disease, especially in the premalignant stage. In partnership with NCI’s Division of Cancer Biology, multidisciplinary translational research centers collaborate to better understand the biology of Barrett's

  3. Changes in Social Capital and Networks: A Study of Community-Based Environmental Management Through a School-Centered Research Program

    NASA Astrophysics Data System (ADS)

    Thornton, Teresa; Leahy, Jessica

    2012-02-01

    Social network analysis (SNA) is a social science research tool that has not been applied to educational programs. This analysis is critical to documenting the changes in social capital and networks that result from community based K-12 educational collaborations. We review SNA and show an application of this technique in a school-centered, community based environmental monitoring research (CBEMR) program. This CBEMR employs K-12 students, state and local government employees, environmental organization representatives, local businesses, colleges, and community volunteers. As citizen scientists and researchers, collaborators create a database of local groundwater quality to use as a baseline for long-term environmental health management and public education. Past studies have evaluated the reliability of data generated by students acting as scientists, but there have been few studies relating to power dynamics, social capital, and resilience in school-centered CBEMR programs. We use qualitative and quantitative data gathered from a science education program conducted in five states in the northeastern United States. SPSS and NVivo data were derived from semi-structured interviews with thirty-nine participants before and after their participation in the CBEMR. Pajek software was used to determine participant centralities and power brokers within networks. Results indicate that there were statistically significant increases in social capital and resilience in social networks after participation in the school-centered CBEMR program leading to an increased community involvement in environmental health management. Limiting factors to the CBMER were based on the educator/administration relationship.

  4. Structuring Cooperative Nuclear RIsk Reduction Initiatives with China.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Larry; Reinhardt, Jason Christian; Hecker, Siegfried

    The Stanford Center for International Security and Cooperation engaged several Chinese nuclear organizations in cooperative research that focused on responses to radiological and nuclear terrorism. The objective was to identify joint research initiatives to reduce the global dangers of such threats and to pursue initial technical collaborations in several high priority areas. Initiatives were identified in three primary research areas: 1) detection and interdiction of smuggled nuclear materials; 2) nuclear forensics; and 3) radiological (“dirty bomb”) threats and countermeasures. Initial work emphasized the application of systems and risk analysis tools, which proved effective in structuring the collaborations. The extensive engagementsmore » between national security nuclear experts in China and the U.S. during the research strengthened professional relationships between these important communities.« less

  5. World Endometriosis Research Foundation Endometriosis Phenome and biobanking harmonization project: II. Clinical and covariate phenotype data collection in endometriosis research

    PubMed Central

    Vitonis, Allison F.; Vincent, Katy; Rahmioglu, Nilufer; Fassbender, Amelie; Buck Louis, Germaine M.; Hummelshoj, Lone; Giudice, Linda C.; Stratton, Pamela; Adamson, G. David; Becker, Christian M.; Zondervan, Krina T.; Missmer, Stacey A.

    2014-01-01

    Objective To harmonize the collection of nonsurgical clinical and epidemiologic data relevant to endometriosis research, allowing large-scale collaboration. Design An international collaboration involving 34 clinical/academic centers and three industry collaborators from 16 countries on five continents. Setting In 2013, two workshops followed by global consultation, bringing together 54 leaders in endometriosis research. Patients None. Intervention(s) Development of a self-administered endometriosis patient questionnaire (EPQ), based on [1] systematic comparison of questionnaires from eight centers that collect data from endometriosis cases (and controls/comparison women) on a medium to large scale (publication on >100 cases); [2] literature evidence; and [3] several global consultation rounds. Main Outcome Measure(s) Standard recommended and minimum required questionnaires to capture detailed clinical and covariate data. Result(s) The standard recommended (EPHect EPQ-S) and minimum required (EPHect EPQ-M) questionnaires contain questions on pelvic pain, subfertility and menstrual/reproductive history, hormone/medication use, medical history, and personal information. Conclusion(s) The EPQ captures the basic set of patient characteristics and exposures considered by the WERF EPHect Working Group to be most critical for the advancement of endometriosis research, but is also relevant to other female conditions with similar risk factors and/or symptomatology. The instruments will be reviewed based on feedback from investigators, and–after a first review after 1 year–triannually through systematic follow-up surveys. Updated versions will be made available through http://endometriosisfoundation.org/ephect. PMID:25256930

  6. Recent Efforts in Advanced High Frequency Communications at the Glenn Research Center in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation will discuss research and technology development work at the NASA Glenn Research Center in advanced frequency communications in support of NASAs mission. An overview of the work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

  7. Help for the Steel Industry

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collaboration between NASA Lewis Research Center (LRC) and Gladwin Engineering resulted in the adaptation of aerospace high temperature metal technology to the continuous casting of steel. The continuous process is more efficient because it takes less time and labor. A high temperature material, once used on the X-15 research plane, was applied to metal rollers by a LRC developed spraying technique. Lewis Research Center also supplied mold prototype of metal composites, reducing erosion and promoting thermal conductivity. Rollers that previously cracked due to thermal fatigue, lasted longer. Gladwin's sales have increased, and additional NASA-developed innovations are anticipated.

  8. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  9. The Phenomenon of Collaboration: A Phenomenologic Study of Collaboration between Family Medicine and Obstetrics and Gynecology Departments at an Academic Medical Center

    ERIC Educational Resources Information Center

    Brown, David R.; Brewster, Cheryl D.; Karides, Marina; Lukas, Lou A.

    2011-01-01

    Collaboration is essential to manage complex real world problems. We used phenomenologic methods to elaborate a description of collaboration between two departments at an academic medical center who considered their relationship to represent a model of effective collaboration. Key collaborative structures included a shared vision and commitment by…

  10. Asian Network of Research Resource Centers.

    PubMed

    Lee, Sunhee; Nam, Seungjoo; Jung, Paul E; Kim, Ki-Jeong; Lee, Yeonhee

    2016-10-01

    With the enactment of the Nagoya Protocol, biological resources are now increasingly considered as assets of an individual country, instead of as the common property of mankind. As worldwide interest for securing biological resources intensifies, research resource centers (RRCs), which collect, preserve, and provide resources and their information to academia and industries, are gathering more attention. The Asian Network of Research Resource Centers (ANRRC) strives for conservation and effective use of bioresources and their data by connecting resource centers of Asia, a continent with the greatest diversity of life. Since its foundation in 2009, the Network has significantly expanded to encompass 103 RRCs of 14 countries. Through the Network, member countries discuss opportunities for resource exchange and research collaboration and share biobanking information and regulations of different countries for international harmonization of resource management. ANRRC also contributes to developing of International Standards of biobanks and biological resources as a liaison to the International Organization for Standardization technical committee 276 Biotechnology.

  11. Institutional Alliances to Reduce Cancer Disparities in Chicago

    PubMed Central

    Simon, Melissa A.; Malin, Emily L.; Hitsman, Brian L.; Ciecierski, Christina C.; Victorson, David E.; Banas, Jennifer R.; Stuart, Moira; Luedke, Tracy; Cella, David

    2017-01-01

    A partnership formed between Northeastern Illinois University (NEIU) and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University sought to address well-documented cancer health disparities in Chicago by developing a collaborative research, training, and educational infrastructure between a minority-serving institution and a National Cancer Institute designated comprehensive cancer center. With a critical examination of partnership documentation and outputs, we describe the partnership’s community-engaged approaches, challenges, and lessons learned. Northeastern Illinois University and the Lurie Cancer Center engaged in a yearlong partnership-building phase, identified interdisciplinary research teams, formed a governance structure, and identified collective aims. Partnership outcomes included funded inter-institutional research projects, new curriculum, and an annual research trainee program. Significant challenges faced included uncertain fiscal climate, widespread turnover, and dissimilar institutional demands. Lessons learned from this minority serving institution and comprehensive cancer center partnership may be useful for bridging distinct academic communities in the pursuit of ameliorating health disparities. PMID:27763461

  12. The Center for Astronomy Education (CAE) Ushers in a New Community-Based Model for Astronomy Education Research with the NSF Funded CCLI Phase III Collaboration of Astronomy Teaching Scholars (CATS) Program

    NASA Astrophysics Data System (ADS)

    Brissenden, Gina; Impey, C.; Prather, E.; Lee, K.; Duncan, D.

    2009-01-01

    The Center for Astronomy Education (CAE) has been devoted to improving teaching & learning in Astro 101 by creating research-validated curriculum & assessment instruments for use in Astro 101 & by providing Astro 101 instructors professional development opportunities to increase their pedagogical content knowledge & instructional skills at implementing these curricula & assessment materials. To create sustainability and further expand this work, CAE, in collaboration with other national leaders in astronomy education & research, developed the Collaboration of Astronomy Teaching Scholars (CATS) Program. The primary goals of CATS are to: 1) increase the number of Astro 101 instructors conducting fundamental research in astronomy education 2) increase the amount of research-validated curriculum & assessment instruments available for use in Astro 101 3) increase the number of people prepared to develop & conduct their own CAE Teaching Excellence Workshops In our first year we have concluded a national study assessing the teaching & learning of Astro 101 & the effect of interactive instruction. We have begun the initial analysis of the demographics data of this study. We have begun a classroom research validation study on the use of the "ClassAction” electronic learning system. We have begun to analyze data from two different studies on students’ attitudes & understanding of science to inform the creation of an assessment instrument designed specifically for Astro 101 to evaluate the effectiveness of our instruction in improving students’ attitudes & beliefs about science. We have also begun the development of a Solar System Concept Inventory. Additionally the development of the Solar System Concept Inventory and research into students’ beliefs and reasoning difficulties on topics in Cosmology are well underway. We acknowledge the NSF for funding under Award No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  13. Information Technology in Science (ITS) Center for Teaching and Learning Environment Design Experiment Study for the Development of New Generation Leaders in Science Education

    NASA Astrophysics Data System (ADS)

    Herbert, B. E.; Schroeder, C.; Brody, S.; Cahill, T.; Kenimer, A.; Loving, C.; Schielack, J.

    2003-12-01

    The ITS Center for Teaching and Learning is a five-year NSF-funded collaborative effort to engage scientists and university and school or district-based science educators in the use of information technology to improve science teaching and learning at all levels. One assumption is that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology in science classrooms has been shown to help achieve this objective. As a design study that is -working toward a greater understanding of a -learning ecology", the research related to the creation and refinement of the ITS Centeres collaborative environment for professional development is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. This presentation will discuss the results of the formative evaluation process that has moved the ITS Centeres collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). In particular, we will focus on the development of the ITS Centeres Project Teams, which create learning experiences over two summers focused on the exploration of science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the K-16 curriculum. Ongoing formative assessment of the Cohort I project teams led to a greater emphasis on participant exploration of authentic scientific questions and tighter integration of scientific explorations and development of participant inquiry projects.

  14. Research Reports: 1989 NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R. (Editor); Six, Frank (Editor); Freeman, L. Michael (Editor)

    1989-01-01

    For the twenty-fifth consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The basic objectives of the programs are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The Faculty Fellows spent ten weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague.

  15. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  16. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA, Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  17. Concurrent Mission and Systems Design at NASA Glenn Research Center: The Origins of the COMPASS Team

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Oleson, Steven R.; Sarver-Verhey, Timothy R.

    2012-01-01

    Established at the NASA Glenn Research Center (GRC) in 2006 to meet the need for rapid mission analysis and multi-disciplinary systems design for in-space and human missions, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team is a multidisciplinary, concurrent engineering group whose primary purpose is to perform integrated systems analysis, but it is also capable of designing any system that involves one or more of the disciplines present in the team. The authors were involved in the development of the COMPASS team and its design process, and are continuously making refinements and enhancements. The team was unofficially started in the early 2000s as part of the distributed team known as Team JIMO (Jupiter Icy Moons Orbiter) in support of the multi-center collaborative JIMO spacecraft design during Project Prometheus. This paper documents the origins of a concurrent mission and systems design team at GRC and how it evolved into the COMPASS team, including defining the process, gathering the team and tools, building the facility, and performing studies.

  18. Practical Application of Research in Science Education (PARSE) -- A New Collaboration for K-12 Science Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Lopez, Jose; Clayton, James

    2008-11-01

    A new collaboration between PPPL, St. Peter's College, the Liberty Science Center, and the Jersey City Public School District was formed in order to create a unique K-12 teacher professional development program. St. Peter's College, located in Jersey City, NJ, is a liberal arts college in an urban setting. The Liberty Science Center (LSC) is the largest education resource in the New Jersey-New York City region. The Jersey City School District has 28,000 students of which approximately 90% are from populations traditionally under-represented in science. The new program is centered upon topics surrounding energy and the environment. In the first year, beginning in 2009, 15-20 teachers will participate in a pilot course that includes hands-on research at PPPL and St. Peter's, the creation of new curricular materials, and pedagogical techniques. Scientists, master teachers, and education professors will teach the course. In subsequent years, the number of participants will be significantly expanded and the curricular material disseminated to other school districts. In addition, an outside evaluator will measure the educational outcome throughout the project.

  19. Nanoscale Materials and Architectures for Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grulke, Eric A.; Sunkara, Mahendra K.

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells,more » solar fuels, and thermionic energy conversion.« less

  20. Cultivating a Grassroots Aerospace Innovation Culture at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    D'Souza, Sarah; Sanchez, Hugo; Lewis, Ryan

    2017-01-01

    This paper details the adaptation of specific 'knowledge production' methods to implement a first of its kind, grassroots event that provokes a cultural change in how the NASA Ames civil servant community engages in the creation and selection of innovative ideas. Historically, selection of innovative proposals at NASA Ames Research Center is done at the highest levels of management, isolating the views and perspectives of the larger civil servant community. Additionally, NASA innovation programs are typically open to technical organizations and do not engage non-technical organizations to bring forward innovative processes/business practices. Finally, collaboration on innovative ideas and associated solutions tend to be isolated to organizational silos. In this environment, not all Ames employees feel empowered to innovate and opportunities for employee collaboration are limited. In order to address these issues, the 'innovation contest' method was adapted to create the NASA Ames Innovation Fair, a unique, grassroots innovation opportunity for the civil servant community. The Innovation Fair consisted of a physical event with a virtual component. The physical event provided innovators the opportunity to collaborate and pitch their innovations to the NASA Ames community. The civil servant community then voted for the projects that they viewed as innovative and would contribute to NASA's core mission, making this event a truly grassroots effort. The Innovation Fair website provided a location for additional knowledge sharing, discussion, and voting. On March 3rd, 2016, the 'First Annual NASA Ames Innovation Fair' was held with 49 innovators and more than 300 participants collaborating and/or voting for the best innovations. Based on the voting results, seven projects were awarded seed funding for projects ranging from innovative cost models to innovations in aerospace technology. Surveys of both innovators and Fair participants show the Innovation Fair was successful in fostering cross-organizational collaborations, soliciting participation of non-technical innovations, and increasing employee engagement in influencing the future of NASA Ames Research Center. The grassroots component of the Innovation Fair has been bench marked by the agency as a solid foundation for increasing employee engagement in the development of game changing aerospace technology and processes in support of NASA's mission.

  1. Tackling NCD in LMIC: Achievements and Lessons Learned From the NHLBI-UnitedHealth Global Health Centers of Excellence Program.

    PubMed

    Engelgau, Michael M; Sampson, Uchechukwu K; Rabadan-Diehl, Cristina; Smith, Richard; Miranda, Jaime; Bloomfield, Gerald S; Belis, Deshiree; Narayan, K M Venkat

    2016-03-01

    Effectively tackling the growing noncommunicable disease (NCD) burden in low- and middle-income countries (LMIC) is a major challenge. To address research needs in this setting for NCDs, in 2009, National Heart, Lung, and Blood Institute (NHLBI) and UnitedHealth Group (UHG) engaged in a public-private partnership that supported a network of 11 LMIC-based research centers and created the NHLBI-UnitedHealth Global Health Centers of Excellence (COE) Program. The Program's overall goal was to contribute to reducing the cardiovascular and lung disease burdens by catalyzing in-country research institutions to develop a global network of biomedical research centers. Key elements of the Program included team science and collaborative approaches, developing research and training platforms for future investigators, and creating a data commons. This Program embraced a strategic approach for tackling NCDs in LMICs and will provide capacity for locally driven research efforts that can identify and address priority health issues in specific countries' settings. Published by Elsevier B.V.

  2. Addressing Urban Health in Detroit, New York City, and Seattle Through Community-Based Participatory Research Partnerships

    PubMed Central

    Metzler, Marilyn M.; Higgins, Donna L.; Beeker, Carolyn G.; Freudenberg, Nicholas; Lantz, Paula M.; Senturia, Kirsten D.; Eisinger, Alison A.; Viruell-Fuentes, Edna A.; Gheisar, Bookda; Palermo, Ann-Gel; Softley, Donald

    2003-01-01

    Objective. This study describes key activities integral to the development of 3 community-based participatory research (CBPR) partnerships. Methods. We compared findings from individual case studies conducted at 3 urban research centers (URCs) to identify crosscutting adaptations of a CBPR approach in the first 4 years of the partnerships’ development. Results. Activities critical in partnership development include sharing decisionmaking, defining principles of collaboration, establishing research priorities, and securing funding. Intermediate outcomes were sustained CBPR partnerships, trust within the partnerships, public health research programs, and increased capacity to conduct CBPR. Challenges included the time needed for meaningful collaboration, concerns regarding sustainable funding, and issues related to institutional racism. Conclusions. The URC experiences suggest that CBPR can be successfully implemented in diverse settings. PMID:12721148

  3. Center for Modeling of Turbulence and Transition: Research Briefs, 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.

  4. Center for modeling of turbulence and transition: Research briefs, 1995

    NASA Astrophysics Data System (ADS)

    1995-10-01

    This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.

  5. The NASA Short-term Prediction Research and Transition (SPoRT) Center: A Collaborative Model for Accelerating Research into Operations

    NASA Technical Reports Server (NTRS)

    Goodman, S. J.; Lapenta, W.; Jedlovec, G.; Dodge, J.; Bradshaw, T.

    2003-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, Alabama was created to accelerate the infusion of NASA earth science observations, data assimilation and modeling research into NWS forecast operations and decision-making. The principal focus of experimental products is on the regional scale with an emphasis on forecast improvements on a time scale of 0-24 hours. The SPoRT Center research is aligned with the regional prediction objectives of the US Weather Research Program dealing with 0-1 day forecast issues ranging from convective initiation to 24-hr quantitative precipitation forecasting. The SPoRT Center, together with its other interagency partners, universities, and the NASA/NOAA Joint Center for Satellite Data Assimilation, provides a means and a process to effectively transition NASA Earth Science Enterprise observations and technology to National Weather Service operations and decision makers at both the global/national and regional scales. This paper describes the process for the transition of experimental products into forecast operations, current products undergoing assessment by forecasters, and plans for the future.

  6. National High School Center Early Warning System Tool v2.0: Technical Manual

    ERIC Educational Resources Information Center

    National High School Center, 2011

    2011-01-01

    The Early Warning System (EWS) Tool v2.0 is a Microsoft Excel-based tool developed by the National High School Center at the American Institutes for Research in collaboration with Matrix Knowledge Group. The tool enables schools, districts, and states to identify students who may be at risk of dropping out of high school and to monitor these…

  7. Why Race and Culture Matter in Schools, and Why We Need to "Get This Right": A Conversation with Dr. Tyrone Howard

    ERIC Educational Resources Information Center

    Clark, Pat; Zygmunt, Eva; Howard, Tyrone

    2016-01-01

    Tyrone Howard is Professor of Education at UCLA; Associate Dean of Equity, Diversity, and Inclusion; and former Director of Center X, which is where UCLA's teacher education program is housed. Center X provides a unique setting where researchers and practitioners collaborate to design and conduct programs that prepare and support K-12 teachers and…

  8. NIH support of Centers for AIDS Research and Department of Health Collaborative Public Health Research: advancing CDC's Enhanced Comprehensive HIV Prevention Planning project.

    PubMed

    Greenberg, Alan E; Purcell, David W; Gordon, Christopher M; Flores, Stephen; Grossman, Cynthia; Fisher, Holly H; Barasky, Rebecca J

    2013-11-01

    The contributions reported in this supplemental issue highlight the relevance of NIH-funded CEWG research to health department–supported HIV prevention and care activities in the 9 US cities with the highest numbers of AIDS cases. The project findings have the potential to enhance ongoing HIV treatment and care services and to advance the wider scientific agenda. The HIV testing to care continuum, while providing a framework to help track progress on national goals, also can reflect the heterogeneities of local epidemics. The collaborative research that is highlighted in this issue not only reflects a locally driven research agenda but also demonstrates research methods, data collection tools, and collaborative processes that could be encouraged across jurisdictions. Projects such as these, capitalizing on the integrated efforts of NIH, CDC, DOH, and academic institutions, have the potential to contribute to improvements in the HIV care continuum in these communities, bringing us closer to realizing the HIV prevention and treatment goals of the NHAS.

  9. Sequestration Coating Performance Requirements for ...

    EPA Pesticide Factsheets

    symposium paper The EPA’s National Homeland Security Research Center (NHSRC), in collaboration with ASTM International, developed performance standards for materials which could be applied to exterior surfaces contaminated by an RDD to mitigate the spread and migration of radioactive contamination.

  10. Molecular-Sized DNA or RNA Sequencing Machine | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Gene Regulation and Chromosome Biology Laboratory is seeking statements of capability or interest from parties interested in collaborative research to co-develop a molecular-sized DNA or RNA sequencing machine.

  11. 78 FR 77687 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... advisory committee meeting link, or call the advisory committee information line to learn about possible... partner with FDA to foster the development of collaborative efforts in this area. To facilitate the...

  12. Ketamine Metabolites for the Treatment of Depression and Pain | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute on Aging, Laboratory of Clinical Investigation, is seeking parties interested in collaborative research to co-develop ketamine metabolites for the treatment of different forms of depression and for alleviating pain.

  13. Renal Cancer Biomarkers | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Laboratory of Proteomics and Analytical Technologies is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize diagnostic, therapeutic and prognostic cancer biomarkers from clinical specimens.

  14. Colon Cancer Biomarkers To Identify Patients Suitable For Therapeutic Intervention | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Laboratory of Human Carcinogenesis is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize cancer biomarkers and therapeutic targets.

  15. Center For Advanced Energy Studies Overview

    ScienceCinema

    Blackman, Harold; Curnutt, Byron; Harker, Caitlin; Hamilton, Melinda; Butt, Darryl; Imel, George; Tokuhiro, Akira; Harris, Jason; Hill, David

    2017-12-09

    A collaboration between Idaho National Laboratory, Boise State University, Idaho State University and the University of Idaho. Conducts research in nuclear energy, advanced materials, carbon management, bioenergy, energy policy, modeling and simulation, and energy efficiency. Educates next generation of energy workforce.

  16. IAA Space Exploration Conference

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard Elizabeth E.

    2014-01-01

    The NASA Human Health and Performance Center (NHHPC) was established in October 2010 to facilitate development of partnerships and collaborative projects in human health and performance with a focus on Earthspace benefits. The membership, which now stands at over 135 members from around the world, was developed to span the government, academic, industry and non-profit sectors, making the NHHPC a global convener in human health and performance. International members include organizations from Germany, the United Kingdom, Spain, Japan, South Africa, and India. The virtual center facilitates sharing of best practices and development of collaborative opportunities through a variety of vehicles, including annual in-person workshops, Innovation Lecture Series and Member to Member Connect webcasts, quarterly electronic newsletters, web postings, and electronic member announcements. The NHHPC has conducted four workshops leading to several collaborative projects between members, with the most recent workshop held focusing on new organizational business models for accelerating innovation. This short paper will discuss how the NHHPC facilitates partnerships and the collaborative research and technology developments projects with applications to both the NASA mission and life on Earth.

  17. Patient-Centered Outcomes Research in Practice: The CAPriCORN Infrastructure.

    PubMed

    Solomonides, Anthony; Goel, Satyender; Hynes, Denise; Silverstein, Jonathan C; Hota, Bala; Trick, William; Angulo, Francisco; Price, Ron; Sadhu, Eugene; Zelisko, Susan; Fischer, James; Furner, Brian; Hamilton, Andrew; Phua, Jasmin; Brown, Wendy; Hohmann, Samuel F; Meltzer, David; Tarlov, Elizabeth; Weaver, Frances M; Zhang, Helen; Concannon, Thomas; Kho, Abel

    2015-01-01

    CAPriCORN, the Chicago Area Patient Centered Outcomes Research Network, is one of the eleven PCORI-funded Clinical Data Research Networks. A collaboration of six academic medical centers, a Chicago public hospital, two VA hospitals and a network of federally qualified health centers, CAPriCORN addresses the needs of a diverse community and overlapping populations. To capture complete medical records without compromising patient privacy and confidentiality, the network created policies and mechanisms for patient consultation, central IRB approval, de-identification, de-duplication, and integration of patient data by study cohort, randomization and sampling, re-identification for consent by providers and patients, and communication with patients to elicit patient-reported outcomes through validated instruments. The paper describes these policies and mechanisms and discusses two case studies to prove the feasibility and effectiveness of the network.

  18. The joint center for energy storage research: A new paradigm for battery research and development

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2015-03-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  19. [The program of Founding Research Centers for Emerging and Reemerging Infectious Diseases: the present status and future prospects].

    PubMed

    Okamoto, Yoshiko; Nagai, Yoshiyuki

    2007-12-01

    The program of Founding Research Centers for Emerging and Reemerging Infectious Diseases was commenced in 2005 with an outline for Japanese universities and research institutions to establish bilateral collaboration research bases in countries where emerging and reemerging infections are breaking out or will likely break out. So far, six universities and two institutions are participating in the program and ten collaboration bases have been established in six countries (five in Asia and one in Africa). Each research base aims to contribute to the security and safety of the partner and own countries by facilitating better understanding of infectious diseases, technology innovation in diagnosis, therapy and prevention, and human resources development. The experiences of the Reseau International des Instituts Pasteur (RIIP), France, and the Wellcome Trust Southeast Asian Tropical Medicine Research Units (Oxford Network), United Kingdom, which appear to share similar missions, suggest that infectious diseases research that is based on overseas research bases can produce first-time results through the building of long-term mutual trust with the counterparts. By referring to these networks as models, Japan's program should be implemented over the long run but not be based on a short-time perspective. Thus, secure funding is a major issue.

  20. Program for the Increased Participation of Minorities in NASA-Related Research

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications

  1. Opinions of sports clinical practice chiropractors, with sports specialty training and those without, about chiropractic research priorities in sports health care: a centering resonance analysis

    PubMed Central

    Lee, Alexander D; Szabo, Kaitlyn; McDowell, Kirstie; Granger, Sydney

    2016-01-01

    Introduction: A Canadian sports chiropractic research agenda has yet to be defined. The Delphi method can be utilized to achieve this purpose; however, the sample of experts who participate can influence the results. To better inform sample selection for future research agenda development, we set out to determine if differences in opinions about research priorities exist between chiropractors who have their sports specialty designation and those who do not. Methods: Fifteen sports clinical practice chiropractors who have their sports fellowship designation and fifteen without, were interviewed with a set of standardized questions about sports chiropractic research priorities. A centering resonance analysis and cluster analysis were conducted on the interview responses. Results: The two practitioner groups differed in their opinions about the type of research that they would like to see conducted, the research that would impact their clinical practice the most, and where they believed research was lacking. However, both groups were similar in their opinions about research collaborations. Conclusion: Sports clinical practice chiropractors, with their sports specialty designation and those without, differed in their opinions about sports chiropractic research priorities; however, they had similar opinions about research collaborations. These results suggest that it may be important to sample from both practitioner groups in future studies aimed at developing research agendas for chiropractic research in sport. PMID:28065995

  2. Spotlight on nano-theranostics in South Korea: applications in diagnostics and treatment of diseases.

    PubMed

    Lee, Sangwha; Kim, Jongsung; Bark, Chung Wung; Lee, Bonghee; Ju, Heongkyu; Kang, Se Chan; Kim, TaeYoung; Kim, Moon Il; Ko, Young Tag; Nam, Jeong-Seok; Yoon, Hyon Hee; Yun, Kyu-Sik; Yoon, Young Soo; An, Seong Soo A; Hulme, John

    2015-01-01

    From the synergistic integration and the multidisciplinary strengths of the BioNano Sensor Research Center, Gachon Bionano Research Institute, and Lee Gil Ya Cancer and Diabetes Institute, researchers, students, and faculties at Gachon University in collaboration with other institutions in Korea, Australia, France, America, and Japan have come together to produce a special issue on the diverse applications of nano-theranostics in nanomedicine. This special issue will showcase new research conducted by various scientific groups in Gyonggi-do and Songdo/Incheon, South Korea. The objectives of this special issue are as follows: 1) to bring together and demonstrate some of the latest research results in the field, 2) to introduce new multifunctional nanomaterials and their applications in imaging and detection methods, and 3) to stimulate collaborative interdisciplinary research at both national and international levels in nanomedicine.

  3. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  4. Building research capacity with members of underserved American Indian/Alaskan Native communities: training in research ethics and the protection of human subjects.

    PubMed

    Jetter, Karen M; Yarborough, Mark; Cassady, Diana L; Styne, Dennis M

    2015-05-01

    To develop a research ethics training course for American Indian/Alaskan Native health clinic staff and community researchers who would be conducting human subjects research. Community-based participatory research methods were used in facilitated discussions of research ethics centered around topics included in the Collaborative Institutional Training Initiative research ethics course. The community-based participatory research approach allowed all partners to jointly develop a research ethics training program that was relevant for American Indian/Alaskan Native communities. All community and clinic partners were able to pass the Collaborative Institutional Training Initiative course they were required to pass so that they could be certified to conduct research with human subjects on federally funded projects. In addition, the training sessions provided a foundation for increased community oversight of research. By using a collaborative process to engage community partners in research ethics discussions, rather than either an asynchronous online or a lecture/presentation format, resulted in significant mutual learning about research ethics and community concerns about research. This approach requires university researchers to invest time in learning about the communities in which they will be working prior to the training. © 2014 Society for Public Health Education.

  5. Connecting Hydrologic Research and Management in American Samoa through Collaboration and Capacity Building

    NASA Astrophysics Data System (ADS)

    Shuler, C. K.; El-Kadi, A. I.; Dulai, H.; Glenn, C. R.; Mariner, M. K. E.; DeWees, R.; Schmaedick, M.; Gurr, I.; Comeros, M.; Bodell, T.

    2017-12-01

    In small-island developing communities, effective communication and collaboration with local stakeholders is imperative for successful implementation of hydrologic or other socially pertinent research. American Samoa's isolated location highlights the need for water resource sustainability, and effective scientific research is a key component to addressing critical challenges in water storage and management. Currently, aquifer degradation from salt-water-intrusion or surface-water contaminated groundwater adversely affects much of the islands' municipal water supply, necessitating an almost decade long Boil-Water-Advisory. This presentation will share the approach our research group, based at the University of Hawaii Water Resources Research Center, has taken for successfully implementing a collaboration-focused water research program in American Samoa. Instead of viewing research as a one-sided activity, our program seeks opportunities to build local capacity, develop relationships with key on-island stakeholders, and involve local community through forward-looking projects. This presentation will highlight three applications of collaborative research with water policy and management, water supply and sustainability, and science education stakeholders. Projects include: 1) working with the island's water utility to establish a long-term hydrological monitoring network, motivated by a need for data to parameterize numerical groundwater models, 2) collaboration with the American Samoa Environmental Protection Agency to better understand groundwater discharge and watershed scale land-use impacts for management of nearshore coral reef ecosystems, and 3) participation of local community college and high school students as research interns to increase involvement in, and exposure to socially pertinent water focused research. Through these innovative collaborative approaches we have utilized resources more effectively, and focused research efforts on more pertinent locally-driven research questions. Additionally, this approach has enhanced our ability to provide technical support and knowledge transfer for on-island scientific needs, and helped overcome data availability barriers faced by water managers, planners, and future investigators.

  6. Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Russell, Thomas P; Lahti, Paul M. (PHaSE - Polymer-Based Materials for Harvesting Solar Energy); PHaSE Staff

    2017-12-09

    'Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst' was submitted by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE) EFRC to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PHaSE, an EFRC co-directed by Thomas P. Russell and Paul M. Lahti at the University of Massachusetts, Amherst, is a partnership of scientists from six institutions: UMass (lead), Oak Ridge National Laboratory, Pennyslvania State University, Rensselaer Polytechnic Institute, and the University of Pittsburgh. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  7. Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pentzer, Emily

    "Solar Cells from Plastics? Mission Possible at the PHaSE Energy Research Center, UMass Amherst" was submitted by the Polymer-Based Materials for Harvesting Solar Energy (PHaSE) EFRC to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PHaSE, an EFRC co-directed by Thomas P. Russell and Paul M. Lahti at the University of Massachusetts, Amherst, is a partnership of scientists from six institutions: UMass (lead), Oak Ridge National Laboratory, Pennsylvania Statemore » University, Rensselaer Polytechnic Institute, and the University of Pittsburgh. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  8. National Institute of Biomedical Imaging and Bioengineering Point-of-Care Technology Research Network: Advancing Precision Medicine

    PubMed Central

    Ford Carleton, Penny; Parrish, John A.; Collins, John M.; Crocker, J. Benjamin; Dixon, Ronald F.; Edgman-Levitan, Susan; Lewandrowski, Kent B.; Stahl, James E.; Klapperich, Catherine; Cabodi, Mario; Gaydos, Charlotte A.; Rompalo, Anne M.; Manabe, Yukari; Wang, Tza-Huei; Rothman, Richard; Geddes, Chris D.; Widdice, Lea; Jackman, Joany; Mathura, Rishi A.; Lash, Tiffani Bailey

    2016-01-01

    To advance the development of point-of-care technology (POCT), the National Institute of Biomedical Imaging and Bioengineering established the POCT Research Network (POCTRN), comprised of Centers that emphasize multidisciplinary partnerships and close facilitation to move technologies from an early stage of development into clinical testing and patient use. This paper describes the POCTRN and the three currently funded Centers as examples of academic-based organizations that support collaborations across disciplines, institutions, and geographic regions to successfully drive innovative solutions from concept to patient care. PMID:27730014

  9. Collaboration for rare disease drug discovery research.

    PubMed

    Litterman, Nadia K; Rhee, Michele; Swinney, David C; Ekins, Sean

    2014-01-01

    Rare disease research has reached a tipping point, with the confluence of scientific and technologic developments that if appropriately harnessed, could lead to key breakthroughs and treatments for this set of devastating disorders. Industry-wide trends have revealed that the traditional drug discovery research and development (R&D) model is no longer viable, and drug companies are evolving their approach. Rather than only pursue blockbuster therapeutics for heterogeneous, common diseases, drug companies have increasingly begun to shift their focus to rare diseases. In academia, advances in genetics analyses and disease mechanisms have allowed scientific understanding to mature, but the lack of funding and translational capability severely limits the rare disease research that leads to clinical trials. Simultaneously, there is a movement towards increased research collaboration, more data sharing, and heightened engagement and active involvement by patients, advocates, and foundations. The growth in networks and social networking tools presents an opportunity to help reach other patients but also find researchers and build collaborations. The growth of collaborative software that can enable researchers to share their data could also enable rare disease patients and foundations to manage their portfolio of funded projects for developing new therapeutics and suggest drug repurposing opportunities. Still there are many thousands of diseases without treatments and with only fragmented research efforts. We will describe some recent progress in several rare diseases used as examples and propose how collaborations could be facilitated. We propose that the development of a center of excellence that integrates and shares informatics resources for rare diseases sponsored by all of the stakeholders would help foster these initiatives.

  10. Collaboration for rare disease drug discovery research

    PubMed Central

    Litterman, Nadia K.; Rhee, Michele; Swinney, David C.; Ekins, Sean

    2014-01-01

    Rare disease research has reached a tipping point, with the confluence of scientific and technologic developments that if appropriately harnessed, could lead to key breakthroughs and treatments for this set of devastating disorders. Industry-wide trends have revealed that the traditional drug discovery research and development (R&D) model is no longer viable, and drug companies are evolving their approach. Rather than only pursue blockbuster therapeutics for heterogeneous, common diseases, drug companies have increasingly begun to shift their focus to rare diseases. In academia, advances in genetics analyses and disease mechanisms have allowed scientific understanding to mature, but the lack of funding and translational capability severely limits the rare disease research that leads to clinical trials. Simultaneously, there is a movement towards increased research collaboration, more data sharing, and heightened engagement and active involvement by patients, advocates, and foundations. The growth in networks and social networking tools presents an opportunity to help reach other patients but also find researchers and build collaborations. The growth of collaborative software that can enable researchers to share their data could also enable rare disease patients and foundations to manage their portfolio of funded projects for developing new therapeutics and suggest drug repurposing opportunities. Still there are many thousands of diseases without treatments and with only fragmented research efforts. We will describe some recent progress in several rare diseases used as examples and propose how collaborations could be facilitated. We propose that the development of a center of excellence that integrates and shares informatics resources for rare diseases sponsored by all of the stakeholders would help foster these initiatives. PMID:25685324

  11. The Pioneering Role of the Vaccine Safety Datalink Project (VSD) to Advance Collaborative Research and Distributed Data Networks

    PubMed Central

    Fahey, Kevin R.

    2015-01-01

    Introduction: Large-scale distributed data networks consisting of diverse stakeholders including providers, patients, and payers are changing health research in terms of methods, speed and efficiency. The Vaccine Safety Datalink (VSD) set the stage for expanded involvement of health plans in collaborative research. Expanding Surveillance Capacity and Progress Toward a Learning Health System: From an initial collaboration of four integrated health systems with fewer than 10 million covered lives to 16 diverse health plans with nearly 100 million lives now in the FDA Sentinel, the expanded engagement of health plan researchers has been essential to increase the value and impact of these efforts. The collaborative structure of the VSD established a pathway toward research efforts that successfully engage all stakeholders in a cohesive rather than competitive manner. The scientific expertise and methodology developed through the VSD such as rapid cycle analysis (RCA) to conduct near real-time safety surveillance allowed for the development of the expanded surveillance systems that now exist. Building on Success and Lessons Learned: These networks have learned from and built on the knowledge base and infrastructure created by the VSD investigators. This shared technical knowledge and experience expedited the development of systems like the FDA’s Mini-Sentinel and the Patient Centered Outcomes Research Institute (PCORI)’s PCORnet Conclusion: This narrative reviews the evolution of the VSD, its contribution to other collaborative research networks, longer-term sustainability of this type of distributed research, and how knowledge gained from the earlier efforts can contribute to a continually learning health system. PMID:26793736

  12. 2008 Annual Report TATRC

    DTIC Science & Technology

    2008-01-01

    drugs such as Prozac . The QD probes, in collaboration with the Greengard Labora- tory at Rockefeller University, are also being used to study neural...ADDRESS(ES) US Army Medical Research and Materiel Command (USAMRMC),Telemedicine & Advanced Technology Research Center (TATRC),Fort Detrick,MD,21702 8...hasten a full return to duty and a fulfilling life.” — Major General George W. Weightman Commanding General, US Army Medical Research and Materiel

  13. Collaboration for Actionable Climate Science in Hawaii and the US-Affiliated Pacific Islands

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Grecni, Z. N.; Helweg, D. A.

    2016-12-01

    Hawaii and the US-Affiliated Pacific Islands (USAPI) encompass more than 2000 islands spread across millions of square miles of ocean. Islands can be high volcanic or low atolls, and vary widely in terms of geography, climate, ecology, language, culture, economies, government, and vulnerability to climate change impacts. For these reasons, meaningful collaboration across research groups and climate organizations is not only helpful, it is mandatory. No single group can address all the needs of every island, stakeholder, or sector, which has led to close collaboration and leveraging of research in the region to fill different niches. The NOAA-funded Pacific Regional Integrated Sciences & Assessments (RISA) program, DOI Pacific Islands Climate Science Center (PICSC), and the DOI LCC the Pacific Islands Climate Change Cooperative (PICCC) all take a stakeholder oriented approach to climate research, and have successfully collaborated on both specific projects and larger initiatives. Examples of these collaborations include comprising the core team of the Pacific Islands Regional Climate Assessment (PIRCA), the regional arm of the US National Climate Assessment, co-sponsoring a workshop on regional downscaling for scientists and managers, leveraging research projects across multiple sectors on a single island, collaborating on communication products such as handouts and websites to ensure a consistent message, and in the case of the Pacific RISA and the PICSC, jointly funding a PIRCA Sustained Assessment Specialist position. Barriers to collaboration have been around topics such as roles of research versus granting groups, perceived research overlap, and funding uncertainties. However, collaborations have been overwhelming positive in the Pacific Islands region due to communication, recognition of partners' strengths and expertise, and especially because of the "umbrella" organization and purpose provided by the PIRCA structure, which provides a shared platform for all regional groups working on climate science and adaptation, not owned by any one group. This work will give examples of successes and barriers encountered in the region.

  14. The role of clinical toxicologists and poison control centers in public health.

    PubMed

    Sutter, Mark E; Bronstein, Alvin C; Heard, Stuart E; Barthold, Claudia L; Lando, James; Lewis, Lauren S; Schier, Joshua G

    2010-06-01

    Poison control centers and clinical toxicologists serve many roles within public health; however, the degree to which these entities collaborate is unknown. The objective of this survey was to identify successful collaborations of public health agencies with clinical toxicologists and poison control centers. Four areas including outbreak identification, syndromic surveillance, terrorism preparedness, and daily public health responsibilities amenable to poison control center resources were assessed. An online survey was sent to the directors of poison control centers, state epidemiologists, and the most senior public health official in each state and selected major metropolitan areas. This survey focused on three areas: service, structure within the local or state public health system, and remuneration. Questions regarding remuneration and poison control center location within the public health structure were asked to assess if these were critical factors of successful collaborations. Senior state and local public health officials were excluded because of a low response rate. The survey was completed in October 2007. A total of 111 respondents, 61 poison control centers and 50 state epidemiologists, were eligible for the survey. Sixty-nine (62%) of the 111 respondents, completed and returned the survey. Thirty-three (54%) of the 61 poison control centers responded, and 36 of the 50 state epidemiologists (72%) responded. The most frequent collaborations were terrorism preparedness and epidemic illness reporting. Additional collaborations also exist. Important collaborations exist outside of remuneration or poison control centers being a formal part of the public health structure. Poison control centers have expanded their efforts to include outbreak identification, syndromic surveillance, terrorism preparedness, and daily public health responsibilities amenable to poison control center resources. Collaboration in these areas and others should be expanded. Published by Elsevier Inc.

  15. The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

    ERIC Educational Resources Information Center

    Shaffer, Christopher D.; Alvarez, Consuelo; Bailey, Cheryl; Barnard, Daron; Bhalla, Satish; Chandrasekaran, Chitra; Chandrasekaran, Vidya; Chung, Hui-Min; Dorer, Douglas R.; Du, Chunguang; Eckdahl, Todd T.; Poet, Jeff L.; Frohlich, Donald; Goodman, Anya L.; Gosser, Yuying; Hauser, Charles; Hoopes, Laura L. M.; Johnson, Diana; Jones, Christopher J.; Kaehler, Marian; Kokan, Nighat; Kopp, Olga R.; Kuleck, Gary A.; McNeil, Gerard; Moss, Robert; Myka, Jennifer L.; Nagengast, Alexis; Morris, Robert; Overvoorde, Paul J.; Shoop, Elizabeth; Parrish, Susan; Reed, Kelynne; Regisford, E. Gloria; Revie, Dennis; Rosenwald, Anne G.; Saville, Ken; Schroeder, Stephanie; Shaw, Mary; Skuse, Gary; Smith, Christopher; Smith, Mary; Spana, Eric P.; Spratt, Mary; Stamm, Joyce; Thompson, Jeff S.; Wawersik, Matthew; Wilson, Barbara A.; Youngblom, Jim; Leung, Wilson; Buhler, Jeremy; Mardis, Elaine R.; Lopatto, David; Elgin, Sarah C. R.

    2010-01-01

    Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington…

  16. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    Dr. Mitchell Ho’s laboratory at the National Cancer Institute in Bethesda, Maryland, USA has an open postdoctoral position. We seek a highly motivated and creative individual to participate in a collaborative research project that involves the targeting of tumor-specific cell surface glypicans (e.g. GPC2, GPC3) using human T-cells engineered to express chimeric antigen

  17. Polypeptides for Stimulation of Immune Response (Adjuvants) | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the National Cancer Institute, Laboratory of Molecular Immunoregulation developed compositions and methods for using HMGN and its derivatives as immunoadjuvants with microbial or tumor antigens.The National Cancer Institute, Laboratory of Molecular Immunoregulation seeks parties interested in collaborative research to co-develop polypeptides or antagonists for immune response regulation.

  18. Concentration, Chlorination, and Chemical Analysis of Drinking Water for Disinfection Byproduct Mixtures Health Effects Research: U.S. EPA’s Four Lab Study

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ‘Four Lab Study’, involved participation of scientists and engineers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from water industry and academia. The study evaluated tox...

  19. Possible new treatment for Kaposi sarcoma | Center for Cancer Research

    Cancer.gov

    A collaborative effort by researchers at the National Cancer Institute (NCI) and Celgene Corporation, a global biopharmaceutical company, has yielded a possible new treatment for Kaposi sarcoma (KS), a cancer caused by a human gammaherpesvirus. The drug, called pomalidomide, is highly effective against KS and has fewer side effects compared with chemotherapy, suggesting that

  20. Environmental Inquiry by College Students: Original Research and Peer Review Using Web-Based Collaborative Tools. Preliminary Quantitative Data Analysis.

    ERIC Educational Resources Information Center

    Cakir, Mustafa; Carlsen, William S.

    The Environmental Inquiry (EI) program (Cornell University and Pennsylvania State University) supports inquiry based, student-centered science teaching on selected topics in the environmental sciences. Texts to support high school student research are published by the National Science Teachers Association (NSTA) in the domains of environmental…

Top