ERIC Educational Resources Information Center
Fenwick, Tara
2012-01-01
Professionals increasingly must collaborate very closely, such as through inter-professional work arrangements. This involves learning both "in" and "for" collaboration. Some educational researchers have turned to complexity science to better understand these learning dynamics. This discussion asks, How useful is complexity science for examining…
ERIC Educational Resources Information Center
Chin-Fei, Huang; Chia-Ju, Liu
2012-01-01
The purpose of this study is to explore the influences of students' learning motivation on Web-based collaborative learning. This study conducted learning materials of Web pages about science and collaborative learning, a motivation questionnaire and interviews were used for data collection. Eighty Grade 5 students and a science teacher were…
NASA Astrophysics Data System (ADS)
Taylor, Jennifer Anne
This thesis presents a qualitative investigation of the effects of social competence on the participation of students with learning disabilities (LD) in the science learning processes associated with collaborative, guided inquiry learning. An inclusive Grade 2 classroom provided the setting for the study. Detailed classroom observations were the primary source of data. In addition, the researcher conducted two interviews with the teacher, and collected samples of students' written work. The purpose of the research was to investigate: (a) How do teachers and peers mediate the participation of students with LD in collaborative, guided inquiry science activities, (b) What learning processes do students with LD participate in during collaborative, guided inquiry science activities, and (c) What components of social competence support and constrain the participation of students with LD during collaborative, guided inquiry science activities? The findings of the study suggest five key ideas for research and teaching in collaborative, guided inquiry science in inclusive classrooms. First, using a variety of collaborative learning formats (whole-class, small-group, and pairs) creates more opportunities for the successful participation of diverse students with LD. Second, creating an inclusive community where students feel accepted and valued may enhance the academic and social success of students with LD. Third, careful selection of partners for students with LD is important for a positive learning experience. Students with LD should be partnered with academically successful, socially competent peers; also, this study suggested that students with LD experience more success working collaboratively in pairs rather than in small groups. Fourth, a variety of strategies are needed to promote active participation and positive social interactions for students with and without LD during collaborative, guided inquiry learning. Fifth, adopting a general approach to teaching collaborative inquiry that crosses curriculum borders may enhance success of inclusive teaching practices.
ERIC Educational Resources Information Center
DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah
2014-01-01
Collaborative problem-solving in science instruction allows learners to build their knowledge and understanding through interaction, using the language of science. Computer-mediated communication (CMC) tools facilitate collaboration and may provide the opportunity for interaction when using the language of science in learning. There seems to be…
ERIC Educational Resources Information Center
Namdar, Bahadir
2017-01-01
The purpose of this study was to investigate preservice science teachers' collaborative knowledge building through socioscientific argumentation on healthy eating in a multiple representation-rich computer supported collaborative learning (CSCL) environment. This study was conducted with a group of preservice science teachers (n = 18) enrolled in…
Fostering Distributed Science Learning through Collaborative Technologies
ERIC Educational Resources Information Center
Vazquez-Abad, Jesus; Brousseau, Nancy; Guillermina, Waldegg C.; Vezina, Mylene; Martinez, Alicia D.; de Verjovsky, Janet Paul
2004-01-01
TACTICS (French and Spanish acronym standing for Collaborative Work and Learning in Science with Information and Communications Technologies) is an ongoing project aimed at investigating a distributed community of learning and practice in which information and communications technologies (ICT) take the role of collaborative tools to support social…
ERIC Educational Resources Information Center
Chen, Ching-Huei; Wang, Kuan-Chieh; Lin, Yu-Hsuan
2015-01-01
In this study, we investigated and compared solitary and collaborative modes of game-based learning in promoting students' science learning and motivation. A total of fifty seventh grade students participated in this study. The results showed that students who played in a solitary or collaborative mode demonstrated improvement in learning…
The Design of Collaborative Learning for Teaching Physics in Vocational Secondary School
NASA Astrophysics Data System (ADS)
Ismayati, Euis
2018-04-01
Vocational secondary school (Sekolah Menengah Kejuruan or SMK) is a vocational education that is based on the principle of human resource investment (human capital investment) referring to the quality of education and productivity to compete in the global job market. Therefore, vocational education relates directly to business world/industry which fulfills the needs of the skilled worker. According to the results of some researches, the work ethics of vocational graduates are still unsatisfying. Most of them are less able to perform their works, to adapt to the changes and development of technology and science, to be retrained, to develop themselves, to collaborate, and to argue. Meanwhile, the employers in the world of work and industries require their employees to have abilities to think creatively and working collaboratively. In addition, the students’ abilities to adapt to the technology in working environment are greatly influenced by the learning process in their schools, especially in science learning. The process of science learning which can help the students to think and act scientifically should be implemented by teachers using a learning approach which is appropriate to the students’ need and the material taught to the students. To master technology and industry needs science mastery. Physics, as a part of science, has an important role in the development of technology since the products of technology strongly support further development of science. In order to develop the abilities to think critically and working collaboratively, education should be given to the students through the learning process using learning model which refers to a collaborative group discussion system called Collaborative Learning. Moreover, Collaborative learning for teaching Physics in vocational secondary school should be designed in such a way that the goal of teaching and learning can be achieved. Collaborative Learning is advantageous to improve the students’ creative thinking and collaborative working.
Collaboration and Team Science Field Guide - Center for Research Strategy
Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.
NASA Astrophysics Data System (ADS)
Steele, Astrid; Brew, Christine; Rees, Carol; Ibrahim-Khan, Sheliza
2013-02-01
Since many preservice teachers (PTs) display anxiety over teaching math and science, four PT educators collaborated to better understand the PTs' background experiences and attitudes toward those subjects. The research project provided two avenues for professional learning: the data collected from the PTs and the opportunity for collaborative action research. The mixed method study focused on: the relationship between gender and undergraduate major (science versus non-science) with respect to previous and current engagement in science and math, understanding the processes of inquiry, and learning outside the classroom. A field trip to a science center provided the setting for the data collection. From a sample of 132 PTs, a multivariate analysis showed that the science major of PTs explained most of the gender differences with respect to the PTs' attitudes toward science and mathematics. The process of inquiry is generally poorly interpreted by PTs, and non-science majors prefer a more social approach in their learning to teach science and math. The four educators/collaborators reflect on the impacts of the research on their individual practices, for example, the need to: include place-based learning, attend to the different learning strategies taken by non-science majors, emphasize social and environmental contexts for learning science and math, be more explicit regarding the processes of science inquiry, and provide out-of-classroom experiences for PTs. They conclude that the collaboration, though difficult at times, provided powerful opportunities for examining individual praxis.
Schools and Informal Science Settings: Collaborate, Co-Exist, or Assimilate?
ERIC Educational Resources Information Center
Adams, Jennifer D.; Gupta, Preeti; DeFelice, Amy
2012-01-01
In this metalogue we build on the arguments presented by Puvirajah, Verma and Webb to discuss the nature of authentic science learning experiences in context of collaborations between schools and out-of-school time settings. We discuss the role of stakeholders in creating collaborative science learning practices and affordances of out of school…
Collaborative learning in radiologic science education.
Yates, Jennifer L
2006-01-01
Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.
ERIC Educational Resources Information Center
Reed, Carole-Rae; Garcia, Luis Ivan; Slusser, Margaret M.; Konowitz, Sharon; Yep, Jewelry
2017-01-01
Assessing student learning outcomes and determining achievement of the Interprofessional Collaborative Practice (IPCEP) Core Competency of Values/Ethics in a generic pre-professional Bachelor of Science in Health Science (BSHS) program is challenging. A course level Student Learning Outcome (SLO) is: "….articulate the impact of personal…
Retrospective Evaluation of a Collaborative LearningScience Module: The Users' Perspective
ERIC Educational Resources Information Center
DeWitt, Dorothy; Siraj, Saedah; Alias, Norlidah; Leng, Chin Hai
2013-01-01
This study focuses on the retrospective evaluation of collaborative mLearning (CmL) Science module for teaching secondary school science which was designed based on social constructivist learning theories and Merrill's First Principle of Instruction. This study is part of a developmental research in which computer-mediated communication (CMC)…
ERIC Educational Resources Information Center
Hamilton, Sharon J., Ed.; Hansen, Edmund J., Ed.
This sourcebook, prepared by the Intercampus Group on Collaborative Learning of Indiana University, offers suggestions to those who are already familiar with collaborative learning, but want to know how others are responding to the same or similar challenges. Papers are presented that examine general issues of collaborative learning in the Arts…
NASA Astrophysics Data System (ADS)
Kwon, So Young
Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However, the students who collaboratively generated concept maps created significantly higher quality concept maps than those who individually generated concept maps. The researcher concluded that the concept mapping software, Inspiration(TM), fostered construction of students' concept maps individually or collaboratively for science learning and helped students capture their evolving creative ideas and organize them for meaningful learning. Students in both the individual and the collaborative concept mapping groups had positive attitudes toward concept mapping using Inspiration(TM) software.
NASA Astrophysics Data System (ADS)
Tobin, Kenneth
2012-03-01
I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.
Communicating Climate Change: Lessons Learned from a Researcher-Museum Collaboration †
Parker, Christopher T.; Cockerham, Debbie; Foss, Ann W.
2018-01-01
The need for science education and outreach is great. However, despite the ever-growing body of available scientific information, facts are often misrepresented to or misunderstood by the general public. This can result in uninformed decisions that negatively impact society at both individual and community levels. One solution to this problem is to make scientific information more available to the public through outreach programs. Most outreach programs, however, focus on health initiatives, STEM programs, or young audiences exclusively. This article describes a collaboration between the Research and Learning Center at the Fort Worth Museum of Science and History and an interdisciplinary team of researchers from the Dallas–Fort Worth (DFW) metroplex area. The collaboration was a pilot effort of a science communication fellowship and was designed to train researchers to effectively convey current science information to the public with a focus on lifelong learning. We focus on the broader idea of a university-museum collaboration that bridges the science communication gap as we outline the process of forming this collaboration, lessons we learned from the process, and directions that can support future collaborations. PMID:29904536
Collaborative Visualization Project: shared-technology learning environments for science learning
NASA Astrophysics Data System (ADS)
Pea, Roy D.; Gomez, Louis M.
1993-01-01
Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.
ERIC Educational Resources Information Center
Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Walden, Emily
2015-01-01
The 2006 National Science Board called for new strategies and instructional materials for teachers to better serve English Learners' (EL) needs. Bilingual Collaborative Online Projects in science were created to assist ELs' construction of science knowledge, facilitate academic English acquisition, and improve science learning. Two bilingual…
Examining the Role of Collaborative Learning in a Public Speaking Course
ERIC Educational Resources Information Center
Liao, Hsiang-Ann
2014-01-01
Collaborative learning has been found to benefit students in various disciplines. Moreover, in the science, technology, engineering, and mathematics literature, it was noted that minority students benefited the most from collaborative learning. Studies on the effects of collaborative learning in communication are limited. As a result, I examined…
Collaborative project-based learning: an integrative science and technological education project
NASA Astrophysics Data System (ADS)
Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan
2017-04-01
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills.
ERIC Educational Resources Information Center
Oshima, Jun; Oshima, Ritsuko; Murayama, Isao; Inagaki, Shigenori; Takenaka, Makiko; Nakayama, Hayashi; Yamaguchi, Etsuji
2004-01-01
This paper reports design experiments on two Japanese elementary science lesson units in a sixth-grade classroom supported by computer support for collaborative learning (CSCL) technology as a collaborative reflection tool. We took different approaches in the experiments depending on their instructional goals. In the unit 'air and how things…
Science teachers' learning in a context of collaborative professional development
NASA Astrophysics Data System (ADS)
Faraji, Hassan
The purpose of this qualitative study was to investigate and evaluate science teachers' learning in a context of Collaborative Professional Development, specifically in the Collaborative Program, which is under the Texas Regional Collaboratives for Excellence in Science Teaching (TRC). A non-positivistic, naturalistic approach was used to study five middle school science teachers from a large school district in South Central Texas that were involved in this program. The entire data collection process was conducted from June 1998 through September 2000. I distributed a 15-question survey to the five respondents prior to conducting in-depth interviews with them, between July 2000 and December 2000. I made five class observations, one per teacher, from March 2000 to May 2000. I started to analyze my qualitative data in June 2002. I returned to the write-up process in December 2002, and have continued to the conclusion. This study is intended to serve as a source of information and insight for many different people and groups, including current and prospective science teachers and administrators who are planning to participate in the TRC Results of the study showed eight findings: (1) An overwhelming preference for the kind of professional development respondents received in the Collaborative Program, over the kinds of workshops and seminars they has attended in the past; (2) Collaborative-style learning is initially intimidating and difficult for teachers, but ultimately valuable; (3) The teachers apply what they have learned in the Collaborative Program to their own classrooms; (4) Hands-on learning is something that both teachers and their students enjoy; (5) The Collaborative Program has invigorated their sense of themselves as teachers, and as science teachers specifically, and has built their confidence in teaching science; (6) The incentives for teacher participation in the Collaborative Program seem to be intellectual ones just as much as material ones; (7) The presence of multi-grade levels of teachers in the Collaborative Program creates a bi-directional learning environment; and, (8) The only consistent concerns, suggestions, and compliments about the Collaborative Program focus on the application of technology.
NASA Astrophysics Data System (ADS)
Roberts, Sara Hayes
The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.
NASA Astrophysics Data System (ADS)
Hong, Zuway-R.
2010-10-01
This study investigated the effects of a collaborative science intervention on high achieving students' learning anxiety and attitudes toward science. Thirty-seven eighth-grade high achieving students (16 boys and 21 girls) were selected as an experimental group who joined a 20-week collaborative science intervention, which integrated and utilized an innovative teaching strategy. Fifty-eight eighth-grade high achieving students were selected as the comparison group. The Secondary School Student Questionnaire was conducted to measure all participants' learning anxiety and attitudes toward science. In addition, 12 target students from the experimental group (i.e., six active and six passive students) were recruited for weekly classroom observations and follow-up interviews during the intervention. Both quantitative and qualitative findings revealed that experimental group students experienced significant impact as seen through increased attitudes and decreased anxiety of learning science. Implications for practice and research are provided.
NASA Astrophysics Data System (ADS)
Patchen, Terri; Smithenry, Dennis W.
2015-02-01
Researchers have theorized that integrating authentic science activities into classrooms will help students learn how working scientists collaboratively construct knowledge, but few empirical studies have examined students' experiences with these types of activities. Utilizing data from a comparative, mixed-methods study, we considered how integrating a complex, collaborative participant structure into a secondary school chemistry curriculum shapes students' perceptions of what constitutes "science." We found that the implementation of this participant structure expanded student perceptions of chemistry learning beyond the typical focus on science content knowledge to include the acquisition of collaboration skills. This support for the collaborative construction of knowledge, in addition to the appropriation of scientific content, establishes the conditions for what science educators and scientists say they want: students who can work together to solve science problems. Radical shifts towards such collaborative participant structures are necessary if we are to modify student perceptions of science and science classrooms in ways that are aligned with recent calls for science education reform.
Peffer, Melanie; Renken, Maggie
2016-01-01
Rather than pursue questions related to learning in biology from separate camps, recent calls highlight the necessity of interdisciplinary research agendas. Interdisciplinary collaborations allow for a complicated and expanded approach to questions about learning within specific science domains, such as biology. Despite its benefits, interdisciplinary work inevitably involves challenges. Some such challenges originate from differences in theoretical and methodological approaches across lines of work. Thus, aims at developing successful interdisciplinary research programs raise important considerations regarding methodologies for studying biology learning, strategies for approaching collaborations, and training of early-career scientists. Our goal here is to describe two fields important to understanding learning in biology, discipline-based education research and the learning sciences. We discuss differences between each discipline’s approach to biology education research and the benefits and challenges associated with incorporating these perspectives in a single research program. We then propose strategies for building productive interdisciplinary collaboration. PMID:27881446
NASA Astrophysics Data System (ADS)
Fuselier, Linda; Murphy, Claudia; Bender, Anita; Creel Falcón, Kandace
2015-01-01
Background and purpose:The purpose of this exploratory case study is to describe how scholars negotiated disciplinary divides to develop and communicate to their students an understanding of the basic features of scientific knowledge. Our goals were to examine boundary crossing in interdisciplinary collaboration and to assess the efficacy of adding science content to an introductory Women's Studies course. Sample:We studied a collaboration between faculty in Biology and Women's Studies and evaluated science modules in a Women's Studies course at a regional four-year university in the Midwestern USA. The study included 186 student participants over three semesters and four faculty from Philosophy, Women's Studies and Biology. Design and method:Women's Studies and Biology faculty collaborated to design and implement science content learning modules that included the case of women and science in an introductory Women's Studies course. Qualitative data collected from faculty participants in the form of peer debrief sessions and narrative reflections were used to examine the process of interdisciplinary collaboration. Students exposed to curriculum changes were administered pre- and post-lesson surveys to evaluate their understanding of issues faced by women in science careers, the nature of science, and interest in science studies. Data from collaborators, student journal reflections, and pre-/post-lesson surveys were considered together in an evaluation of how knowledge of science was understood and taught in a Women's Studies course over a longitudinal study of three semesters. Results:We found evidence of discipline-based challenges to interdisciplinarity and disciplinary boundary crossing among collaborators. Three themes emerged from our collaboration: challenges posed by disciplinary differences, creation of a space for interdisciplinary work, and evidence of boundary crossing. Student participants exhibited more prior knowledge of Women's Studies content than nature of science but showed learning in the areas of scientific literacy and the understanding of issues related to women in science careers. Student understanding of science content was enhanced by the participation of a woman scientist in the learning module. Conclusion:This case study illustrates how creating an inclusive space for interdisciplinary collaboration led to successful curriculum transformation and academic boundary crossing by faculty participants. Success is evident in the legacy of interdisciplinarity in the curriculum and learning gains by students. Use of a feminist science studies framework was successful at helping students learn about the influence of values on science and the tentative nature of scientific conclusions. It was less successful in teaching the distinction between science and other ways of knowing and the conception that science is an evidence-based approach to understanding the natural world. This study highlights the importance of interdisciplinary teams of faculty members collaborating to help students learn about science by modeling that there are multiple ways of knowing.
ERIC Educational Resources Information Center
Faris, Ahmed O.
2009-01-01
The current study aims at investigating the impact of homogeneous versus heterogeneous collaborative learning grouping in multicultural classes on the students' achievements and attitudes towards learning science. In the present study, heterogeneity was unpacked through two dimensions: the cultural background, represented by the different…
Working Together: How Teachers Teach and Students Learn in Collaborative Learning Environments
ERIC Educational Resources Information Center
Burns, Mary; Pierson, Elizabeth; Reddy, Shylaja
2014-01-01
Active Learning in Maths and Science (ALMS) was a six-month face-to-face professional development program for middle school maths and science teachers carried out between June and November, 2010 in two Indian states. ALMS's theory of action is grounded in the belief that collaborative learning serves as a "gateway" to learner-centered…
Using Wikis and Collaborative Learning for Science Teachers' Professional Development
ERIC Educational Resources Information Center
Chen, Y-H.; Jang, S-J.; Chen, P-J.
2015-01-01
Wiki bears great potential to transform learning and instruction by scaffolding personal and social constructivism. Past studies have shown that proper application of wiki benefits both students and teachers; however, few studies have integrated wiki and collaborative learning to examine the growth of science teachers' "Technological,…
Implementing Collaborative Learning Methods in the Political Science Classroom
ERIC Educational Resources Information Center
Wolfe, Angela
2012-01-01
Collaborative learning is one, among other, active learning methods, widely acclaimed in higher education. Consequently, instructors in fields that lack pedagogical training often implement new learning methods such as collaborative learning on the basis of trial and error. Moreover, even though the benefits in academic circles are broadly touted,…
NASA Astrophysics Data System (ADS)
Sherwood, Carrie-Anne
At this pivotal moment in time, when the proliferation of mobile technologies in our daily lives is influencing the relatively fast integration of these technologies into classrooms, there is little known about the process of student learning, and the role of collaboration, with app-based learning environments on mobile devices. To address this gap, this dissertation, comprised of three manuscripts, investigated three pairs of sixth grade students' synchronous collaborative use of a tablet-based science app called WeInvestigate . The first paper illustrated the methodological decisions necessary to conduct the study of student synchronous and face-to-face collaboration and knowledge building within the complex WeInvestigate and classroom learning environments. The second paper provided the theory of collaboration that guided the design of supports in WeInvestigate, and described its subsequent development. The third paper detailed the interactions between pairs of students as they engaged collaboratively in model construction and explanation tasks using WeInvestigate, hypothesizing connections between these interactions and the designed supports for collaboration. Together, these manuscripts provide encouraging evidence regarding the potential of teaching and learning with WeInvestigate. Findings demonstrated that the students in this study learned science through WeInvestigate , and were supported by the app - particularly the collabrification - to engage in collaborative modeling of phenomena. The findings also highlight the potential of the multiple methods used in this study to understand students' face-to-face and technology-based interactions within the "messy" context of an app-based learning environment and a traditional K-12 classroom. However, as the third manuscript most clearly illustrates, there are still a number of modifications to be made to the WeInvestigate technology before it can be optimally used in classrooms to support students' collaborative science endeavors. The findings presented in this dissertation contribute in theoretical, methodological, and applied ways to the fields of science education, educational technology, and the learning sciences, and point to exciting possibilities for future research on students' collaborations using future iterations of WeInvestigate with more embedded supports; comparative studies of students' use of synchronous collaboration; and studies focused on elucidating the role of the teacher using WeInvestigate - and similar mobile platforms - for teaching and learning.
Collaborative Learning in Higher Education: Evoking Positive Interdependence
ERIC Educational Resources Information Center
Scager, Karin; Boonstra, Johannes; Peeters, Ton; Vulperhorst, Jonne; Wiegant, Fred
2016-01-01
Collaborative learning is a widely used instructional method, but the learning potential of this instructional method is often underused in practice. Therefore, the importance of various factors underlying effective collaborative learning should be determined. In the current study, five different life sciences undergraduate courses with successful…
Peer Collaboration: The Relation of Regulatory Behaviors to Learning with Hypermedia
ERIC Educational Resources Information Center
Winters, Fielding I.; Alexander, Patricia A.
2011-01-01
Peer collaboration is a pedagogical method currently used to facilitate learning in classrooms. Similarly, computer-learning environments (CLEs) are often used to promote student learning in science classrooms, in particular. However, students often have difficulty utilizing these environments effectively. Does peer collaboration help students…
ERIC Educational Resources Information Center
Terrazas-Arellanes, Fatima E.; Strycker, Lisa A.; Walden, Emily D.; Gallard, Alejandro
2017-01-01
Inquiry-based learning methods, coupled with advanced technology, hold promise for closing the science literacy gap for English learners (ELs) and students with learning difficulties (SWLDs). Project ESCOLAR (Etext Supports for Collaborative Online Learning and Academic Reading) created collaborative online learning units for middle school science…
ERIC Educational Resources Information Center
Dillenbourg, Pierre, Ed.
Intended to illustrate the benefits of collaboration between scientists from psychology and computer science, namely machine learning, this book contains the following chapters, most of which are co-authored by scholars from both sides: (1) "Introduction: What Do You Mean by 'Collaborative Learning'?" (Pierre Dillenbourg); (2)…
Collaborative Project-Based Learning: An Integrative Science and Technological Education Project
ERIC Educational Resources Information Center
Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan
2017-01-01
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…
Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia
2016-06-01
Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. © 2016 Society for Conservation Biology.
Integrating the Dimensions of NGSS within a Collaborative Board Game about Honey Bees
Lauren, Hillary; Lutz, Claudia; Wallon, Robert C.; Hug, Barbara
2016-01-01
The current reform in U.S. science education calls for the integration of three dimensions of science learning in classroom teaching and learning: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. While the Next Generation Science Standards provide flexibility in how curriculum and instruction are structured to meet learning goals, there are few examples of existing curricula that portray the integration of these dimensions as “three-dimensional learning.” Here, we describe a collaborative board game about honey bees that incorporates scientific evidence on how genetic and environmental factors influence variations of traits and social behavior and requires students to collaboratively examine and use a system model. Furthermore, we show how students used and evaluated the game as a model in authentic classroom settings. PMID:27990024
ERIC Educational Resources Information Center
Soleimani, Ali
2013-01-01
Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…
Preschool children's Collaborative Science Learning Scaffolded by Tablets
NASA Astrophysics Data System (ADS)
Fridberg, Marie; Thulin, Susanne; Redfors, Andreas
2017-06-01
This paper reports on a project aiming to extend the current understanding of how emerging technologies, i.e. tablets, can be used in preschools to support collaborative learning of real-life science phenomena. The potential of tablets to support collaborative inquiry-based science learning and reflective thinking in preschool is investigated through the analysis of teacher-led activities on science, including children making timelapse photography and Slowmation movies. A qualitative analysis of verbal communication during different learning contexts gives rise to a number of categories that distinguish and identify different themes of the discussion. In this study, groups of children work with phase changes of water. We report enhanced and focused reasoning about this science phenomenon in situations where timelapse movies are used to stimulate recall. Furthermore, we show that children communicate in a more advanced manner about the phenomenon, and they focus more readily on problem solving when active in experimentation or Slowmation producing contexts.
ERIC Educational Resources Information Center
Curran, Erin; Carlson, Kerri; Celotta, Dayius Turvold
2013-01-01
Collaborative and problem-based learning strategies are theorized to be effective methods for strengthening undergraduate science, technology, engineering, and mathematics education. Peer-Led Team Learning (PLTL) is a collaborative learning technique that engages students in problem solving and discussion under the guidance of a trained peer…
ERIC Educational Resources Information Center
Olin, Anette; Ingerman, Åke
2016-01-01
This study concerns teaching and learning development in science through collaboration between science teachers and researchers. At the core was the ambition to integrate research outcomes of science education--here "didactic models"--with teaching practice, aligned with professional development. The phase where the collaboration moves…
ERIC Educational Resources Information Center
Ucan, Serkan; Webb, Mary
2015-01-01
Students' ability to regulate their learning is considered important for the quality of collaborative inquiry learning. However, there is still limited understanding about how students engage in social forms of regulation processes and what roles these regulatory processes may play during collaborative learning. The purpose of this study was to…
ERIC Educational Resources Information Center
Raes, Annelies; Schellens, Tammy
2015-01-01
This study deals with the implementation of a web-based collaborative inquiry (WISE) project in secondary science education and unravels the contribution and challenges of this learning approach to foster students' motivation to learn science, and its relation with student and class-level characteristics. An empirical mixed methods study in 13…
Cultivating Collaborations: Site Specific Design for Embodied Science Learning.
Gill, Katherine; Glazier, Jocelyn; Towns, Betsy
2018-05-21
Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.
ERIC Educational Resources Information Center
Lawrie, Gwendolyn A.; Gahan, Lawrence R.; Matthews, Kelly E.; Weaver, Gabriela C.; Bailey, Chantal; Adams, Peter; Kavanagh, Lydia J.; Long, Phillip D.; Taylor, Matthew
2014-01-01
Collaborative learning activities offer the potential to support mutual knowledge construction and shared understanding amongst students. Introducing collaborative tasks into large first-year undergraduate science classes to create learning environments that foster student engagement and enhance communication skills is appealing. However,…
Premo, Joshua; Cavagnetto, Andy; Davis, William B; Brickman, Peggy
2018-06-01
Collaboration is an important career skill and vital to student understanding of the social aspects of science, but less is known about relationships among collaborative-learning strategies, classroom climate, and student learning. We sought to increase the collaborative character of introductory undergraduate laboratory classrooms by analyzing a 9-week intervention in 10 classrooms ( n = 251) that participated in cooperative-learning modules (promoting interdependence via a modified jigsaw technique). Students in an additional 10 classrooms ( n = 232) completed the same material in an unstructured format representative of common educational practice. Results showed that, when between-class variance was controlled for, intervention students did not score higher on weekly quizzes, but science interest and prior science experience had a reduced relationship to quiz performance in intervention classrooms. Also, intervention classrooms showed increased collaborative engagement at both whole-class and individual levels (24 students at three time points), but the intervention was only one of several factors found to account for late-intervention classroom collaborative engagement (prosocial behavior and discussion practices). Taken together, findings suggest that integrating interdependence-based tasks may foster collaborative engagement at both small-group and whole-classroom levels, but by itself may not be enough to promote increased student achievement.
Moving Apart and Coming Together: Discourse, Engagement, and Deep Learning
ERIC Educational Resources Information Center
Gomoll, Andrea S.; Hmelo-Silver, Cindy E.; Tolar, Erin; Šabanovic, Selma; Francisco, Matthew
2017-01-01
An important part of "doing" science is engaging in collaborative science practices. To better understand how to support these practices, we need to consider how students collaboratively construct and represent shared understanding in complex, problem-oriented, and authentic learning environments. This research presents a case study…
An Active, Collaborative Approach to Learning Skills in Flow Cytometry
ERIC Educational Resources Information Center
Fuller, Kathryn; Linden, Matthew D.; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N.; Röhrig, Kimberley J.
2016-01-01
Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow…
The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science
NASA Astrophysics Data System (ADS)
Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.
2015-10-01
Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning environment, whereas students in the experimental group participated in online collaborative activities using the Edmodo educational platform in a hybrid learning environment. Students completed the Classroom Community Scale survey as a pretest and posttest. Results indicated that the students who participated in the face-to-face classroom had higher overall sense of community and learning community than students who participated in collaborative activities in the online environment. Results and implications are discussed and suggestions for future research are provided.
Collaborative online projects for English language learners in science
NASA Astrophysics Data System (ADS)
Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen
2013-12-01
This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.
Collaborative Testing as a Model for Addressing Equity in Student Success in STEM Classes
NASA Astrophysics Data System (ADS)
Dileonardo, C.; James, B. R.
2016-12-01
Introductory Earth science classes at two-year colleges play a critical role as "gateway courses" for underrepresented student populations into undergraduate STEM programs. Students entering college underprepared in math and science typically receive their only exposure to science at the undergraduate level in introductory courses in the Earth and space sciences. In many colleges a huge disparity exists in these classes between success rates amongst students from groups traditionally represented in the STEM fields and those from underrepresented populations. Closing the equity gap in success in these courses is a major focus of many pilot projects nationally. This concern has also led to the adoption of new teaching and learning practices, based on research in learning, in introductory Earth science pedagogy. Models of teaching practices including greater engagement, active learning approaches, and collaborative learning structures seem to help with student achievement in introductory courses. But, whereas these practices might increase overall student success they have not proven to close the equity gap in achievement. De Anza a two-year college in the San Francisco bay area has a long history in the geology department of incorporating and testing teaching practices developed out of research in learning. Collaborative learning has infused every aspect of our learning approaches in the Earth sciences, including laboratory, fieldwork, and test preparation. Though these approaches seemed to have educational benefit the huge equity gap department-wide persisted between targeted and non-targeted populations. Three years ago collaborative testing models were introduced into our geology and meteorology classes. The mechanism included methods for directly comparing collaborative to individual testing. The net result was that targeted populations including African Americans, Latinos, and Filipinos increased steadily at around 3.5% per year from 66% to 73%. The overall success rates of the non-targeted groups remained between 84% and 86%. Preliminary analysis suggests that for disengaged students in the targeted populations the opportunity to collaborate on a portion of the actual test got them more involved in the collaborative process as it offers immediate tangible return on in-class success.
Learning with Collaborative Inquiry: A Science Learning Environment for Secondary Students
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit; Xie, Wenting
2017-01-01
When inquiry-based learning is designed for a collaborative context, the interactions that arise in the learning environment can become fairly complex. While the learning effectiveness of such learning environments has been reported in the literature, there have been fewer studies on the students' learning processes. To address this, the article…
ERIC Educational Resources Information Center
Pazos, Pilar; Micari, Marina; Light, Gregory
2010-01-01
Collaborative learning is being used extensively by educators at all levels. Peer-led team learning in a version of collaborative learning that has shown consistent success in science, technology, engineering and mathematics disciplines. Using a multi-phase research study we describe the development of an observation instrument that can be used to…
Cogdill, Keith W; Ambriz, Lorely; Billman, Brooke L; Carter, Kathleen V; Nail-Chiwetalu, Barbara; Trumble, Julie M; El-Khayat, Yamila M; Nuñez, Annabelle V
2012-01-01
This article reviews the formation of the Frontera Collaboration, a coalition of health sciences librarians serving clinicians and public health personnel in the U.S.-Mexico border region. Based on findings from an assessment of the target populations' learning needs, the Frontera Collaboration participants developed a shared set of training materials that have been used in pilot training sessions. The Frontera Collaboration's participants learned several lessons related to collaborative health information outreach and increased their understanding of the concerns and needs of clinicians and public health personnel serving border communities.
Shaping Self-Regulation in Science Teachers' Professional Growth: Inquiry Skills
ERIC Educational Resources Information Center
Michalsky, Tova
2012-01-01
This study examined 188 preservice science teachers' professional growth along three dimensions--self-regulated learning (SRL) in a science pedagogical context, pedagogical content knowledge, and self-efficacy in teaching science--comparing four learner-centered, active-learning, peer-collaborative environments for learning to teach higher order…
Peffer, Melanie; Renken, Maggie
Rather than pursue questions related to learning in biology from separate camps, recent calls highlight the necessity of interdisciplinary research agendas. Interdisciplinary collaborations allow for a complicated and expanded approach to questions about learning within specific science domains, such as biology. Despite its benefits, interdisciplinary work inevitably involves challenges. Some such challenges originate from differences in theoretical and methodological approaches across lines of work. Thus, aims at developing successful interdisciplinary research programs raise important considerations regarding methodologies for studying biology learning, strategies for approaching collaborations, and training of early-career scientists. Our goal here is to describe two fields important to understanding learning in biology, discipline-based education research and the learning sciences. We discuss differences between each discipline's approach to biology education research and the benefits and challenges associated with incorporating these perspectives in a single research program. We then propose strategies for building productive interdisciplinary collaboration. © 2016 M. Peffer and M. Renken. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
McMillan, Barbara A.
2013-01-01
This paper reports on the development of a science unit for Nunavut students and my collaboration with Louise Uyarak, an early years teacher and a graduate of Arctic College's teacher education program. The unit addresses light outcomes in the "Canadian Common Framework of Science Learning Outcomes, K-12". More importantly, it…
Theme-Based Project Learning: Design and Application of Convergent Science Experiments
ERIC Educational Resources Information Center
Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee
2015-01-01
This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…
The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences
USDA-ARS?s Scientific Manuscript database
The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identify management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning m...
ERIC Educational Resources Information Center
Wendt, Jillian L.; Rockinson-Szapkiw, Amanda
2014-01-01
This quantitative, quasi-experimental pretest/posttest control group design examined the effects of online collaborative learning on middle school students' science literacy. For a 9-week period, students in the control group participated in collaborative face-to-face activities whereas students in the experimental group participated in online…
ERIC Educational Resources Information Center
Wendt, Jillian Leigh
2013-01-01
This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control group design was used. Following IRB approval and district superintendent approval, students at a public middle school in central Virginia completed a…
ERIC Educational Resources Information Center
Lee, Yuan-Hsuan
2018-01-01
Premised on Web 2.0 technology, the current study investigated the effect of facilitating critical thinking using the Collaborative Questioning, Reading, Answering, and Checking (C-QRAC) collaboration script on university students' science reading literacy in flipped learning conditions. Participants were 85 Taiwanese university students recruited…
ERIC Educational Resources Information Center
Mohammadi, Aeen; Asadzandi, Shadi; Malgard, Shiva
2017-01-01
Partnership is one of the mechanisms of scientific development, and scientific collaboration or co-authorship is considered a key element in the progress of science. This study is a survey with a scientometric approach focusing on the field of e-learning products over 10 years. In an Advanced Search of the Web of Science, the following search…
Transformative Professional Development: Inquiry-Based College Science Teaching Institutes
ERIC Educational Resources Information Center
Zhao, Ningfeng; Witzig, Stephen B.; Weaver, Jan C.; Adams, John E.; Schmidt, Frank
2012-01-01
Two Summer Institutes funded by the National Science Foundation were held for current and future college science faculty. The overall goal was to promote learning and practice of inquiry-based college science teaching. We developed a collaborative and active learning format for participants that involved all phases of the 5E learning cycle of…
Supporting Inquiry in Science Classrooms with the Web
ERIC Educational Resources Information Center
Simons, Krista; Clark, Doug
2005-01-01
This paper focuses on Web-based science inquiry and five representative science learning environments. The discussion centers around features that sustain science inquiry, namely, data-driven investigation, modeling, collaboration, and scaffolding. From the perspective of these features five science learning environments are detailed: Whyville,…
NASA Astrophysics Data System (ADS)
Ochsner, Karl
Students are moving away from content consumption to content production. Short movies are uploaded onto video social networking sites and shared around the world. Unfortunately they usually contain little to no educational value, lack a narrative and are rarely created in the science classroom. According to new Arizona Technology standards and ISTE NET*S, along with the framework from the Partnership for 21st Century Learning Standards, our society demands students not only to learn curriculum, but to think critically, problem solve effectively, and become adept at communicating and collaborating. Didactic digital movie making in the science classroom may be one way that these twenty-first century learning skills may be implemented. An action research study using a mixed-methods approach to collect data was used to investigate if didactic moviemaking can help eighth grade students learn physical science content while incorporating 21st century learning skills of collaboration, communication, problem solving and critical thinking skills through their group production. Over a five week period, students researched lessons, wrote scripts, acted, video recorded and edited a didactic movie that contained a narrative plot to teach a science strand from the Arizona State Standards in physical science. A pretest/posttest science content test and KWL chart was given before and after the innovation to measure content learned by the students. Students then took a 21st Century Learning Skills Student Survey to measure how much they perceived that communication, collaboration, problem solving and critical thinking were taking place during the production. An open ended survey and a focus group of four students were used for qualitative analysis. Three science teachers used a project evaluation rubric to measure science content and production values from the movies. Triangulating the science content test, KWL chart, open ended questions and the project evaluation rubric, it appeared that science content was gained from this project. Students felt motivated to learn and had positive experience. Students also felt that the repetition of production and watching their movies helped them remember science. Students also perceived that creating the didactic digital movie helped them use collaboration, communication, problem solving and critical thinking skills throughout their production.
ERIC Educational Resources Information Center
Adams, Dennis; Hamm, Mary
2008-01-01
This book builds on the social nature of learning to provide useful suggestions for reaching reluctant learners. It is based on the assumption that instruction that focuses on students' interests and builds on collaborative and differentiated learning will allow students to move from believing they "can't do mathematics or science" to a feeling of…
So you want to share your science…. Connecting to the world of informal science learning.
Alpert, Carol Lynn
2018-04-25
Scientists can reap personal rewards through collaborations with science and natural history museums, zoos, botanical gardens, aquaria, parks, and nature preserves, and, while doing so, help to advance science literacy and broaden participation in the natural sciences. Beyond volunteer opportunities, which allow scientists to contribute their knowledge and passion within the context of existing programs and activities, there are also opportunities for scientists to bring their knowledge and resources to the design and implementation of new learning experiences for visitors to these informal science learning organizations (ISLOs). Well-designed education outreach plans that leverage the expertise and broad audiences of ISLOs can also enhance the prospects of research grant proposals made to agencies such as National Science Foundation, which encourage researchers to pay careful attention to the broader impacts of their research as well as its intellectual merit. Few scientists, however, have had the opportunity to become familiar with the pedagogy and design of informal or 'free-choice' science learning, and fewer still know how to go about the process of collaborating with ISLO's in developing and implementing effective programs, exhibits, and other learning experiences. This article, written by an experienced science museum professional, provides guidance for individual scientists and research groups interested in pursuing effective education outreach collaborations with science museums and other ISLOs. When prospective partners begin discussions early in the proposal development process, they increase the likelihood of successful outcomes in funding, implementation, and impact. A strategic planning worksheet is provided, along with a carefully-selected set of further resources to guide the design and planning of informal science learning experiences.
Lessons Learned From the Long-Term Investment in the Teams Collaborative
ERIC Educational Resources Information Center
St. John, Mark; Carroll, Becky; Helms, Jen; Robles, Dawn; Stelmah, Lynn
2008-01-01
Over the course of three rounds of consecutive funding, the National Science Foundation (NSF) invested in the Traveling Exhibits at Museums of Science (TEAMS) collaborative. Since 1996, the TEAMS collaborative museums have developed traveling exhibitions and related education materials to circulate through each other's museums, and then more…
NASA Astrophysics Data System (ADS)
Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina
2013-06-01
In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."
ERIC Educational Resources Information Center
Wu, Sally P. W.; Rau, Martina A.
2017-01-01
Recent evidence for the effectiveness of active learning interventions has led educators to advocate for widespread adoption of active learning in undergraduate science, technology, engineering, and mathematics courses. Active learning interventions implement technology and collaboration to engage students actively with the content. Yet, it is…
Collaborative Online Projects for English Language Learners in Science
ERIC Educational Resources Information Center
Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen
2013-01-01
This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to…
NASA Astrophysics Data System (ADS)
Ting, Melodie Mirth G.
Most recently, there has been a noticeable rise in the push for use of technology in the classroom. The advancement in digital science has increased greatly the capacity to explore animations, models, and interesting apps. that should substantially enhance science cognition. At the same time, there is a great need to increase collaboration in the science classroom. There is a concern that the collaborative experience will be lost with the use of technology in the classroom. This study seeks to explore the use of iPads in conjunction with a constructivist learning approach to promote student collaboration. The participants in this study included two sections of 11 th grade AP Chemistry students. Data was generated from different sources such as teacher observations of classroom interactions patterned after Gilles (2004). In order to gauge student perception of working in groups with the use of the iPad, survey questions adapted from Knezek, Mills and Wakefield (2012) and group interviews were used (Galleta, 2013). Learning outcomes were assessed using methods adapted from a study by Lord and Baviskar (2007). Findings of this study showed high percentages of evidence for increased community, productive student group communication, effective feedback through use of the iPads, and value of the interactive apps., but it also showed that students still preferred face-to-face interactions over virtual interactions for certain learning situations. The study showed good content learning outcomes, as well as favorable opinions among the students for the effectiveness of the use of iPads in collaborative settings in the classroom.
Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry
NASA Astrophysics Data System (ADS)
Sun, Daner; Looi, Chee-Kit
2013-02-01
The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.
Student involvement in learning: Collaboration in science for PreService elementary teachers
NASA Astrophysics Data System (ADS)
Roychoudhury, Anita; Roth, Wolff-Michael
1992-03-01
The present study provided insights regarding the interactions that take place in collaborative science laboratory and regarding the outcome of such interactions. Science laboratory experiences structured by teachers have been criticized for allowing very little, if any, meaningful learning. However, this study showed that even structured laboratory experiments can provide insightful experience for students when conducted in a group setting that demanded interactive participation from all its members. The findings of the present study underscored the synergistic and supportive nature of collaborative groups. Here, students patiently repeated explanations to support the meaning construction on the part of their slower peers and elaborated their own understanding in the process; groups negotiated the meaning of observations and the corresponding theoretical explanations; students developed and practiced a range of social skills necessary in today’s workplace; and off-task behavior was thwarted by the group members motivated to work toward understanding rather than simply generating answers for task completion. The current findings suggest an increased use of collaborative learning environments for the teaching of science to elementary education majors. Some teachers have already made use of such settings in their laboratory teaching. However, collaborative learning should not be limited to the laboratory only, but be extended to more traditionally structured classes. The effects of such a switch in activity structures, increased quality of peer interaction, mastery of subject matter content, and decreased anxiety levels could well lead to better attitudes toward science among preservice elementary school teachers and eventually among their own students.
ERIC Educational Resources Information Center
Hsiao, Hsien-Sheng; Chen, Jyun-Chen; Hong, Jon-Chao; Chen, Po-Hsi; Lu, Chow-Chin; Chen, Sherry Y.
2017-01-01
A five-stage prediction-observation-explanation inquiry-based learning (FPOEIL) model was developed to improve students' scientific learning performance. In order to intensify the science learning effect, the repertory grid technology-assisted learning (RGTL) approach and the collaborative learning (CL) approach were utilized. A quasi-experimental…
ERIC Educational Resources Information Center
Kershner, Ruth; Warwick, Paul; Mercer, Neil; Kleine Staarman, Judith
2014-01-01
We focus on children's approaches to managing group work in classrooms where collaborative learning principles are explicit. Small groups of 8-10 year olds worked on collaborative science activities using an interactive whiteboard. Insubsequent interviews, they spoke of learning to "be patient" and "wait", for multiple social…
ERIC Educational Resources Information Center
Kafyulilo, Ayoub Cherd
2013-01-01
This study introduces "teachers' collaboration" as an approach to teachers' professional development geared at enhancing science and mathematics teaching in Tanzania secondary schools. Teachers' professional development through teachers' collaboration has been reported to be effective for the improvement of schools' performance and…
ERIC Educational Resources Information Center
Sung, Han-Yu; Hwang, Gwo-Jen
2013-01-01
In this study, a collaborative game-based learning environment is developed by integrating a grid-based Mindtool to facilitate the students to share and organize what they have learned during the game-playing process. To evaluate the effectiveness of the proposed approach, an experiment has been conducted in an elementary school natural science…
Making mathematics and science integration happen: key aspects of practice
NASA Astrophysics Data System (ADS)
Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne
2016-02-01
The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.
The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model
ERIC Educational Resources Information Center
Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma
2015-01-01
The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…
NASA Astrophysics Data System (ADS)
Barreto-Marrero, Luz N.
This case study presents the experiences of three public school chemistry teachers in the transformation of their teaching processes with the use of ICT. The processes' characteristics are documented, what knowledge and skills were learned, and how it changed their organization, planning and teaching. D. H. Jonassen's (1999) ideas on learning strategies for the integration of ICT, from a constructivism and critical thinking perspective guide this study. MacFarlane and Sakellariou's (2002) ideas on the use of ICT in science teaching are also considered. The relationship between ICT, mind tools, learning strategies and teaching methods is studied. The information was collected by semi-structured interviews, classroom observations and document analysis. The results were analyzed according to Wolcott's qualitative analysis model (1994), along with the QRS NVivo (2002) computer program. The teachers learned to use several new ICT equipment and materials that facilitated their teaching and evaluation processes. Among these are the use of lab simulators, various software, CBL sensors, graphic calculators, electronic blackboards, and the Internet. They used teaching strategies for active, authentic, collaborative, constructive and reflective learning according to Jonassen. Their science teaching methods corresponds to the three types, according to MacFarlane and Sakellariou, which fosters scientific method skills and scientific reasoning for science literacy. The teachers, as facilitators and mediators, were inquirers of their students needs; investigators of their curricula, strategists as they organize their teaching skills and methods; experimenters with what they had learned; and collaborators as they fostered cooperative learning. Teachers' developed better lessons, lab exercises and assessment tools, such as rubrics, concept maps, comic strips, and others. They also affirmed that their students demonstrated more motivation, participation, collaboration and learning; developed scientific and technological skills; worked real situations in a collaborative way guided by science standards; and that parents participated in their children's learning. The conditions that facilitated these processes were the availability of technological resources, practical and continuous professional development, colleague communication and collaboration, the paradigmatic change towards constructivism with changes in assessment, school texts, curriculum and educational software, and a new generation of students and teachers open towards ICT, and pre-service teachers with technological skills.
ERIC Educational Resources Information Center
Scogin, Stephen C.; Stuessy, Carol L.
2015-01-01
Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…
ERIC Educational Resources Information Center
McClellan, Michael; Myelle-Watson, Dawn; Peters, Brad; Spears, Debora; Wellen, David
2012-01-01
To teach science writing effectively, scholars encourage combining writing to learn with applications of the science writing heuristic. How teachers learn to do so remains under-examined. This essay follows a cohort of ninth-grade science teachers who collaborated in a project to develop, test, and revise such a combination of writing prompts for…
ERIC Educational Resources Information Center
Williams, Michelle; Linn, Marcia C.; Hollowell, Gail P.
2008-01-01
The Technology-Enhanced Learning in Science (TELS) center, a National Science Foundation-funded Center for Learning and Teaching, offers research-tested science modules for students in grades 6-12 (Linn et al. 2006). These free, online modules engage students in scientific inquiry through collaborative activities that include online…
NASA Astrophysics Data System (ADS)
Mills, Jada Jamerson
There is a need for STEM (science, technology, engineering, and mathematics) education to be taught effectively in elementary schools. In order to achieve this, teacher preparation programs should graduate confident, content strong teachers to convey knowledge to elementary students. This study used interdisciplinary collaboration between the School of Education and the College of Liberal Arts through a Learning-by-Teaching method (LdL): Lernen durch Lernen in German. Pre-service teacher (PST) achievement levels of understanding science concepts based on pretest and posttest data, quality of lesson plans developed, and enjoyment of the class based on the collaboration with science students. The PSTs enrolled in two treatment sections of EDEL 404: Science in the Elementary Classroom collaborated with science students enrolled in BISC 327: Introductory Neuroscience to enhance their science skills and create case-based lesson plans on neurothology topics: echolocation, electrosensory reception, steroid hormones, and vocal learning. The PSTs enrolled in the single control section of EDEL 404 collaborated with fellow elementary education majors to develop lesson plans also based on the same selected topics. Qualitative interviews of education faculty, science faculty, and PSTs provided depth to the quantitative findings. Upon lesson plan completion, in-service teachers also graded the two best and two worst plans for the treatment and control sections and a science reviewer graded the plans for scientific accuracy. Statistical analyses were conducted for hypotheses, and one significant hypothesis found that PSTs who collaborated with science students had more positive science lesson plan writing attitudes than those who did not. Despite overall insignificant statistical analyses, all PSTs responded as more confident after collaboration. Additionally, interviews provided meaning and understanding to the insignificant statistical results as well as scientific accuracy of the lesson plans.
Effective self-regulated science learning through multimedia-enriched skeleton concept maps
NASA Astrophysics Data System (ADS)
Marée, Ton J.; van Bruggen, Jan M.; Jochems, Wim M. G.
2013-04-01
Background: This study combines work on concept mapping with scripted collaborative learning. Purpose: The objective was to examine the effects of self-regulated science learning through scripting students' argumentative interactions during collaborative 'multimedia-enriched skeleton concept mapping' on meaningful science learning and retention. Programme description: Each concept in the enriched skeleton concept map (ESCoM) contained annotated multimedia-rich content (pictures, text, animations or video clips) that elaborated the concept, and an embedded collaboration script to guide students' interactions. Sample: The study was performed in a Biomolecules course on the Bachelor of Applied Science program in the Netherlands. All first-year students (N=93, 31 women, 62 men, aged 17-33 years) took part in this study. Design and methods: The design used a control group who received the regular course and an experimental group working together in dyads on an ESCoM under the guidance of collaboration scripts. In order to investigate meaningful understanding and retention, a retention test was administered a month after the final exam. Results: Analysis of covariance demonstrated a significant experimental effect on the Biomolecules exam scores between the experimental group and the control, and the difference between the groups on the retention test also reached statistical significance. Conclusions: Scripted collaborative multimedia ESCoM mapping resulted in meaningful understanding and retention of the conceptual structure of the domain, the concepts, and their relations. Not only was scripted collaborative multimedia ESCoM mapping more effective than the traditional teaching approach, it was also more efficient in requiring far less teacher guidance.
How Does the Type of Task Influence the Performance and Social Regulation of Collaborative Learning?
ERIC Educational Resources Information Center
Acuña, Santiago Roger; López-Aymes, Gabriela; Acuña-Castillo, Silvia T.
2018-01-01
In this paper we analyze the effects of the type of collaborative task (elaboration of concept map vs elaboration of expository summary) on the performance and on the level of collaboration achieved by Mexican university students in the multimedia learning of a social sciences content (Communication Psychology). Likewise, the processes of social…
The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science
ERIC Educational Resources Information Center
Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.
2015-01-01
Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning…
Literature-Based Scientific Learning: A Collaboration Model
ERIC Educational Resources Information Center
Elrod, Susan L.; Somerville, Mary M.
2007-01-01
Amidst exponential growth of knowledge, student insights into the knowledge creation practices of the scientific community can be furthered by science faculty collaborations with university librarians. The Literature-Based Scientific Learning model advances undergraduates' disciplinary mastery and information literacy through experience with…
ERIC Educational Resources Information Center
Durksen, Tracy L.; Martin, Andrew J.; Burns, Emma C.; Ginns, Paul; Williamson, Derek; Kiss, Julia
2017-01-01
Museums promote co-learning through the construction of a social community, one that involves personal, physical, and sociocultural contexts. As researchers and museum educators, we report some of our contextual reflections and recommendations that emerged from our collaborative learning experience of conducting research in a medical science…
Collaborative Learning in Higher Education: Evoking Positive Interdependence.
Scager, Karin; Boonstra, Johannes; Peeters, Ton; Vulperhorst, Jonne; Wiegant, Fred
Collaborative learning is a widely used instructional method, but the learning potential of this instructional method is often underused in practice. Therefore, the importance of various factors underlying effective collaborative learning should be determined. In the current study, five different life sciences undergraduate courses with successful collaborative-learning results were selected. This study focuses on factors that increased the effectiveness of collaboration in these courses, according to the students. Nine focus group interviews were conducted and analyzed. Results show that factors evoking effective collaboration were student autonomy and self-regulatory behavior, combined with a challenging, open, and complex group task that required the students to create something new and original. The design factors of these courses fostered a sense of responsibility and of shared ownership of both the collaborative process and the end product of the group assignment. In addition, students reported the absence of any free riders in these group assignments. Interestingly, it was observed that students seemed to value their sense of achievement, their learning processes, and the products they were working on more than their grades. It is concluded that collaborative learning in higher education should be designed using challenging and relevant tasks that build shared ownership with students. © 2016 K. Scager et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Changes in science classrooms resulting from collaborative action research initiatives
NASA Astrophysics Data System (ADS)
Oh, Phil Seok
Collaborative action research was undertaken over two years between a Korean science teacher and science education researchers at the University of Iowa. For the purpose of realizing science learning as envisioned by constructivist principles, Group-Investigations were implemented three or five times per project year. In addition, the second year project enacted Peer Assessments among students. Student perceptions of their science classrooms, as measured by the Constructivist Learning Environment Survey (CLES), provided evidence that the collaborative action research was successful in creating constructivist learning environments. Student attitudes toward science lessons, as examined by the Enjoyment of Science Lessons Scale (ESLS), indicated that the action research also contributed to developing more positive attitudes of students about science learning. Discourse analysis was conducted on video-recordings of in-class presentations and discussions. The results indicated that students in science classrooms which were moving toward constructivist learning environments engaged in such discursive practices as: (1) Communicating their inquiries to others, (2) Seeking and providing information through dialogues, and (3) Negotiating conflicts in their knowledge and beliefs. Based on these practices, science learning was viewed as the process of constructing knowledge and understanding of science as well as the process of engaging in scientific inquiry and discourse. The teacher's discursive practices included: (1) Wrapping up student presentations, (2) Addressing misconceptions, (3) Answering student queries, (4) Coaching, (5) Assessing and advising, (6) Guiding students discursively into new knowledge, and (7) Scaffolding. Science teaching was defined as situated acts of the teacher to facilitate the learning process. In particular, when the classrooms became more constructivist, the teacher intervened more frequently and carefully in student activities to fulfill a variety of pedagogical functions. Students perceived Group-Investigations and Peer Assessments as positive in that they contributed to realizing constructivist features in their classrooms. The students also reported that they gained several learning outcomes through Group-Investigations, including more positive attitudes, new knowledge, greater learning capabilities, and improved self-esteem. However, the Group-Investigation and Peer Assessment methods were perceived as negative and problematic by those who had rarely been exposed to such inquiry-based, student-centered approaches.
Lessons Learned: Collaborative Symbiosis and Responsive Disciplinary Literacy Teaching
ERIC Educational Resources Information Center
Wilder, Phillip; Herro, Danielle
2016-01-01
This paper describes a case study of how a middle school literacy coach and a science teacher attempted to improve disciplinary literacy teaching in a sixth-grade science class. The collaborative inquiry exposed the disciplinary knowledge gap of the literacy coach (a former language arts teacher) and the science teacher's limited knowledge of…
SciEthics Interactive: Science and Ethics Learning in a Virtual Environment
ERIC Educational Resources Information Center
Nadolny, Larysa; Woolfrey, Joan; Pierlott, Matthew; Kahn, Seth
2013-01-01
Learning in immersive 3D environments allows students to collaborate, build, and interact with difficult course concepts. This case study examines the design and development of the TransGen Island within the SciEthics Interactive project, a National Science Foundation-funded, 3D virtual world emphasizing learning science content in the context of…
The Role of Humor in Learning Physics: A Study of Undergraduate Students
ERIC Educational Resources Information Center
Berge, Maria
2017-01-01
We all know that they do it, but what do students laugh "about" when learning science together? Although research has shown that students do use humor when they learn science, the role of humor in science education has received little attention. In this study, undergraduate students' laughter during collaborative work in physics has been…
Knowledge Construction in Computer Science and Engineering When Learning through Making
ERIC Educational Resources Information Center
Charlton, Patricia; Avramides, Katerina
2016-01-01
This paper focuses on a design based research study about STEM (Science, Technology, Engineering and Maths) learning by making through collaboration and production. This study examines learning by making by students to explore STEM using a constructionist approach with a particular focus on computer science and engineering. The use of IoT as a…
E-Learning in Science and Technology via a Common Learning Platform in a Lifelong Learning Project
ERIC Educational Resources Information Center
Priem, Freddy; De Craemer, Renaat; Calu, Johan; Pedreschi, Fran; Zimmer, Thomas; Saighi, Sylvain; Lilja, Jarmo
2011-01-01
This three-year Virtual Measurements Environment curriculum development project for higher education within the Lifelong Learning Programme of the European Union is the result of intense collaboration among four institutions, teaching applied sciences and technology. It aims to apply the principles and possibilities of evolved distance and…
Learning by Creating and Exchanging Objects: The SCY Experience
ERIC Educational Resources Information Center
De Jong, Ton; Van Joolingen, Wouter R.; Giemza, Adam; Girault, Isabelle; Hoppe, Ulrich; Kindermann, Jorg; Kluge, Anders; Lazonder, Ard W.; Vold, Vibeke; Weinberger, Armin; Weinbrenner, Stefan; Wichmann, Astrid; Anjewierden, Anjo; Bodin, Marjolaine; Bollen, Lars; D'Ham, Cedric; Dolonen, Jan; Engler, Jan; Geraedts, Caspar; Grosskreutz, Henrik; Hovardas, Tasos; Julien, Rachel; Lechner, Judith; Ludvigsen, Sten; Matteman, Yuri; Meistadt, Oyvind; Naess, Bjorge; Ney, Muriel; Pedaste, Margus; Perritano, Anthony; Rinket, Marieke; Von Schlanbusch, Henrik; Sarapuu, Tago; Schulz, Florian; Sikken, Jakob; Slotta, Jim; Toussaint, Jeremy; Verkade, Alex; Wajeman, Claire; Wasson, Barbara; Zacharia, Zacharias C.; Van Der Zanden, Martine
2010-01-01
Science Created by You (SCY) is a project on learning in science and technology domains. SCY uses a pedagogical approach that centres around products, called "emerging learning objects" (ELOs) that are created by students. Students work individually and collaboratively in SCY-Lab (the general SCY learning environment) on "missions" that are guided…
Using multimedia and peer assessment to promote collaborative e-learning
NASA Astrophysics Data System (ADS)
Barra, Enrique; Aguirre Herrera, Sandra; Ygnacio Pastor Caño, Jose; Quemada Vives, Juan
2014-04-01
Collaborative e-learning is increasingly appealing as a pedagogical approach that can positively affect student learning. We propose a didactical model that integrates multimedia with collaborative tools and peer assessment to foster collaborative e-learning. In this paper, we explain it and present the results of its application to the "International Seminars on Materials Science" online course. The proposed didactical model consists of five educational activities. In the first three, students review the multimedia resources proposed by the teacher in collaboration with their classmates. Then, in the last two activities, they create their own multimedia resources and assess those created by their classmates. These activities foster communication and collaboration among students and their ability to use and create multimedia resources. Our purpose is to encourage the creativity, motivation, and dynamism of the learning process for both teachers and students.
Computer Supported Cooperative Work in Information Search and Retrieval.
ERIC Educational Resources Information Center
Twidale, Michael B.; Nichols, David M.
1998-01-01
Considers how research in collaborative technologies can inform research and development in library and information science. Topics include computer supported collaborative work; shared drawing; collaborative writing; MUDs; MOOs; workflow; World Wide Web; collaborative learning; computer mediated communication; ethnography; evaluation; remote…
NASA Astrophysics Data System (ADS)
Greenspan, Yvette Frank
Girls are marked by low self-confidence manifested through gender discrimination during the early years of socialization and culturalization (AAUW, 1998). The nature of gender bias affects all girls in their studies of science and mathematics, particularly in minority groups, during their school years. It has been found that girls generally do not aspire in either mathematical or science-oriented careers because of such issues as overt and subtle stereotyping, inadequate confidence in ability, and discouragement in scientific competence. Grounded on constructivism, a theoretical framework, this inquiry employs fourth generation evaluation, a twelve-step evaluative process (Guba & Lincoln, 1989). The focus is to discover through qualitative research how fifth grade girls learn science in a co-sexual collaborative learning group, as they engage in hands-on, minds-on experiments. The emphasis is centered on one Hispanic girl in an effort to understand her beliefs, attitudes, and behavior as she becomes a stakeholder with other members of her six person collaborative learning group. The intent is to determine if cultural and social factors impact the learning of scientific concepts based on observations from videotapes, interviews, and student opinion questionnaires. QSR NUD*IST 4, a computer software program is utilized to help categorize and index data. Among the findings, there is evidence that clearly indicates girls' attitudes toward science are altered as they interact with other girls and boys in a collaborative learning group. Observations also indicate that cultural and social factors affect girls' performance as they explore and discover scientific concepts with other girls and boys. Based upon what I have uncovered utilizing qualitative research and confirmed according to current literature, there seems to be an appreciable impact on the way girls appear to learn science. Rooted in the data, the results mirror the conclusions of previous studies, which indicate girls are generally conscious about their interrelationships with boys, affecting their self-perception and how others perceive them. Implications and discussion will be highlighted in the study.
NASA Astrophysics Data System (ADS)
Overoye, D.; Lewis, C.
2016-12-01
The Global Learning and Observations to Benefit the Environment (GLOBE) Program is a worldwide hands-on, primary and secondary school-based science and education program founded on Earth Day 1995. Implemented in 117 countries, GLOBE promotes the teaching and learning of science, supporting students, teachers and scientists worldwide to collaborate with each other on inquiry-based investigations of the Earth system. As an international platform supporting a large number and variety of stakeholders, the GLOBE Data Information System (DIS) was re-built with the goal of providing users the support needed to foster and develop collaboration between teachers, students and scientists while supporting the collection and visualization of over 50 different earth science investigations (protocols). There have been many challenges to consider as we have worked to prototype and build various tools to support collaboration across the GLOBE community - language, security, time zones, user roles and the Child Online Protection Act (COPA) to name a few. During the last 3 years the re-built DIS has been in operation we have supported user to user collaboration, school to school collaboration, project/campaign to user collaboration and scientist to scientist collaboration. We have built search tools to facilitate finding collaboration partners. The tools and direction continue to evolve based on feedback, evolving needs and changes in technology. With this paper we discuss our approach for dealing with some of the collaboration challenges, review tools built to encourage and support collaboration, and analyze which tools have been successful and which have not. We will review new ideas for collaboration in the GLOBE community that are guiding upcoming development.
Reflection after teaching a lesson: Experiences of secondary school science teachers
NASA Astrophysics Data System (ADS)
Halstead, Melissa A.
Secondary science teachers spend most of their time planning, collaborating, and teaching, but spend little time reflecting after teaching a single lesson. The theoretical framework of the adult learning theory and the transformative learning theory was the basis of this study. This qualitative research study was conducted to understand the reflective experiences of secondary science educators after teaching a single or several lessons. The collection of data consisted of interviews from a group of purposefully selected secondary science teachers who met the criteria set forth by the researcher. Through a qualitative analysis of interviews and field notes, the researcher determined that the secondary science teachers in this study shared similar as well as different experiences regarding collaborative and individual reflection after teaching a single or several lessons. The findings from this study also suggested that secondary science educators prefer to collaboratively reflect and then reflect alone to allow for further thought. Additionally, a supportive school culture increases the secondary science teacher’s desire to engage in collaborative as well as individual reflection. The information from this study could be used to close the gaps that exist in the teacher professional development programs.
ERIC Educational Resources Information Center
Goto, K.; Bianco-Simeral, S.
2009-01-01
Although the effects of pedagogical strategies using collaborative learning on students' perceived learning outcomes have been studied, little has been examined about possible benefits and challenges in collaborating with the campus community in a food science research project conducted by nutrition majors. We examined the effects of involving…
TransFormers in Knowledge Production: Building Science-Practice Collaborations
ERIC Educational Resources Information Center
Hoes, Anne-Charlotte; Regeer, Barbara J.; Bunders, Joske F. G.
2008-01-01
This article places action learning in the context of system innovation, as it studies the potential use of action learning for system change. In order to effect such system change, collaboration between actors from different institutional backgrounds is essential. To gain insight into if and how action learning can be applied for system change,…
Learning from the Periphery in a Collaborative Robotics Workshop for Girls
ERIC Educational Resources Information Center
Sullivan, Florence R.; Keith, Kevin; Wilson, Nicholas C.
2016-01-01
This study investigates how students who are peripherally positioned in computer science-based, collaborative group work meaningfully engage with the group activity in order to learn. Our research took place in the context of a one-day, all-girl robotics workshop, in which the participants were learning to program robotic devices. A total of 17…
Student Leadership in Small Group Science Inquiry
ERIC Educational Resources Information Center
Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.
2014-01-01
Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of…
NASA Astrophysics Data System (ADS)
Lecusay, Robert A.
For several decades improvement of science education has been a major concern of policy makers concerned that the U.S. is a "nation at risk" owing to the dearth of students pursing careers in science. Recent policy proposals have argued that provision of broadband digital connectivity to organizations in the informal sector would increase the reach of the formal, academic sector to raise the overall level of science literacy in the country. This dissertation reports on a longitudinal study of a physics telementoring activity jointly run by a university-community collaborative at a community learning center. The activity implemented a digital infrastructure that exceeds the technical and social-institutional arrangements promoted by policy makers. In addition to broadband internet access (for tele-conferencing between students at the community center and physicists at a university), supplemented by digital software designed to promote physics education, the activity included the presence of a collaborating researcher/tutor at the community learning center to coordinate and document the instructional activities. The current research revealed a fundamental contradiction between the logic, goals, and practices of the physics instructors, and the corresponding logic, goals, and practices of the participants at the community learning center. This contradiction revolves around a contrast between the physicists' formal, logocentric ways of understanding expressed in the ability to explain the scientific rules underlying physical phenomena and the informal, pragmatic orientation of the youth and adults at the learning center. The observations in this dissertation should remind techno-enthusiasts, especially in the arena of public education policy, that there are no turnkey solutions in "distance" science education. Technically "connecting" people is not equivalent to creating conditions that expand opportunities to learn and a functioning socio-technical system that supports learning. Secondly, for designers and practitioners of informal learning in community-university collaborative settings, it is critically important to understand distance learning activities as developing "cross-cultural, " collaborative encounters, the results of which are more likely to be hybrids of different ways of learning and knowing than the conversion of informal learning into a tool for instruction that will allow youth to "think like physicists."
Integrating Reading into Middle School Science: What We Did, Found and Learned
ERIC Educational Resources Information Center
Fang, Zhihui; Lamme, Linda; Pringle, Rose; Patrick, Jennifer; Sanders, Jennifer; Zmach, Courtney; Charbonnet, Sara; Henkel, Melissa
2008-01-01
Recent calls for border crossing between reading and science have heightened the need to support science teachers in integrating reading into science and to verify the robustness of this approach in the context of inquiry-based science. In this paper, we share what we did, found, and learned in a collaborative project in which a team of…
ERIC Educational Resources Information Center
Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.
2018-01-01
We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…
NASA Astrophysics Data System (ADS)
Schielack, J. F.; Herbert, B. E.
2004-12-01
The ITS Center for Teaching and Learning (http://its.tamu.edu) is a five-year NSF-funded collaborative effort to engage scientists, educational researchers, and educators in the use of information technology to enhance science teaching and learning at Grades 7 - 16. The ITS program combines graduate courses in science and science education leadership for both science and education graduate students with professional development experiences for classroom teachers. The design of the ITS professional development experience is based upon the assumption that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology to support inquiry in science classrooms has been shown to help achieve this objective. In particular, the professional development for teachers centers around support for implementing educational research in their own classrooms on the impacts of using information technology to promote authentic science experiences for their students. As a design study that is "working toward a greater understanding of the "learning ecology," the research related to the creation and refinement of the ITS Center's collaborative environment for integrating professional development for faculty, graduate students, and classroom teachers is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, science education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. In this presentation, we will discuss the results of the formative evaluation process that has moved the ITS Center's collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). Phase II highlighted learning experiences over two summers focused on the exploration of environmentally-related science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the 7-16 curriculum.
Reform in Undergraduate Science, Technology, Engineering, and Mathematics: The Classroom Context
ERIC Educational Resources Information Center
Stage, Frances K.; Kinzie, Jillian
2009-01-01
This article reports the results of a series of site visits examining modifications to science, technology, engineering, and mathematics (STEM) teaching and learning based on reform on three differing campuses. Innovations in stem classrooms included collaborative approaches to learning; incorporation of active learning, authentic contexts, peer…
NASA Astrophysics Data System (ADS)
Taylor, Neil; Lucas, Keith B.; Watters, James J.
1999-12-01
The research reported was part of a larger study that was founded on the belief that the introduction of a teaching style informed by a constructivist view of teaching and learning and utilising collaborative group work would improve the understanding of science concepts held by pre-service primary teacher education studients in Fuji. It sought to test this belief, and to explore whether such an approach would be effective for students from different ethnic groups. Two intact classes in a teachers' college studied a physical science unit, one class being involved in extensive collaborative group activities and the other, the comparison group, being taught in the usual transmissive fashion. An interpretive methodology was adopted, involving a range of data sources and analytical techniques. Data presented here support the claim that the collaborative group work stimulated increased levels of discussion and fostered deeper conceptual understanding. There were, however, some unexpected learning outcomes for some students. Implications for science education in Fiji and similar locations are discussed.
Cabatan, Maria Concepcion C; Grajo, Lenin C
This study is a pilot implementation of an Internationalization at Home (IaH) teaching and learning collaboration to enhance intercultural learning and understanding of concepts of occupation in two cohorts of occupational science and occupational therapy students from the Philippines and the United States. In this collective case study, 149 students (Cohort 1, n = 65; Cohort 2, n = 84) participated. The collaboration included virtual conversations among students, faculty presentations, reflective assignments, and completion of an anonymous online survey. Analysis yielded three essential themes: (1) perception of increased knowledge about human occupation and the influence of culture, (2) identification of teaching-learning aspects that facilitated intercultural learning outcomes, and (3) identification of factors that were enablers of and barriers to learning. This study provides insights on how intercultural learning experiences can be integrated into occupational science and occupational therapy curricula and can increase understanding of concepts related to human occupation. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Who SoTLs Where? Publishing the Scholarship of Teaching and Learning in Political Science
ERIC Educational Resources Information Center
Hamann, Kerstin; Pollock, Philip H.; Wilson, Bruce M.
2009-01-01
Political science, as a discipline, is a relative newcomer to the Scholarship of Teaching and Learning (SoTL). We examine authorship patterns of SoTL articles in "PS: Political Science & Politics," the "Journal of Political Science Education," and "International Studies Perspectives" from 1998-2008. Our findings indicate more collaborative SoTL…
CosmoQuest Collaborative: Galvanizing a Dynamic Professional Learning Network
NASA Astrophysics Data System (ADS)
Cobb, Whitney; Bracey, Georgia; Buxner, Sanlyn; Gay, Pamela L.; Noel-Storr, Jacob; CosmoQuest Team
2016-10-01
The CosmoQuest Collaboration offers in-depth experiences to diverse audiences around the nation and the world through pioneering citizen science in a virtual research facility. An endeavor between universities, research institutes, and NASA centers, CosmoQuest brings together scientists, educators, researchers, programmers—and citizens of all ages—to explore and make sense of our solar system and beyond. Leveraging human networks to expand NASA science, scaffolded by an educational framework that inspires lifelong learners, CosmoQuest engages citizens in analyzing and interpreting real NASA data, inspiring questions and defining problems.The QuestionLinda Darling-Hammond calls for professional development to be: "focused on the learning and teaching of specific curriculum content [i.e. NGSS disciplinary core ideas]; organized around real problems of practice [i.e. NGSS science and engineering practices] … [and] connected to teachers' collaborative work in professional learning community...." (2012) In light of that, what is the unique role CosmoQuest's virtual research facility can offer NASA STEM education?A Few AnswersThe CosmoQuest Collaboration actively engages scientists in education, and educators (and learners) in science. CosmoQuest uses social channels to empower and expand NASA's learning community through a variety of media, including science and education-focused hangouts, virtual star parties, and social media. In addition to creating its own supportive, standards-aligned materials, CosmoQuest offers a hub for excellent resources and materials throughout NASA and the larger astronomy community.In support of CosmoQuest citizen science opportunities, CQ initiatives (Learning Space, S-ROSES, IDEASS, Educator Zone) will be leveraged and shared through the CQPLN. CosmoQuest can be present and alive in the awareness its growing learning community.Finally, to make the CosmoQuest PLN truly relevant, it aims to encourage partnerships between scientists and educators, and offer "just-in-time" opportunities to support constituents exploring emerging NASA STEM education, from diverse educators to the curious learner of any age.
NASA Astrophysics Data System (ADS)
Elliott, E. M.; Bain, D. J.; Divers, M. T.; Crowley, K. J.; Povis, K.; Scardina, A.; Steiner, M.
2012-12-01
We describe a newly funded collaborative NSF initiative, ENERGY-NET (Energy, Environment and Society Learning Network), that brings together the Carnegie Museum of Natural History (CMNH) with the Learning Science and Geoscience research strengths at the University of Pittsburgh. ENERGY-NET aims to create rich opportunities for participatory learning and public education in the arena of energy, the environment, and society using an Earth systems science framework. We build upon a long-established teen docent program at CMNH and to form Geoscience Squads comprised of underserved teens. Together, the ENERGY-NET team, including museum staff, experts in informal learning sciences, and geoscientists spanning career stage (undergraduates, graduate students, faculty) provides inquiry-based learning experiences guided by Earth systems science principles. Together, the team works with Geoscience Squads to design "Exploration Stations" for use with CMNH visitors that employ an Earth systems science framework to explore the intersecting lenses of energy, the environment, and society. The goals of ENERGY-NET are to: 1) Develop a rich set of experiential learning activities to enhance public knowledge about the complex dynamics between Energy, Environment, and Society for demonstration at CMNH; 2) Expand diversity in the geosciences workforce by mentoring underrepresented teens, providing authentic learning experiences in earth systems science and life skills, and providing networking opportunities with geoscientists; and 3) Institutionalize ENERGY-NET collaborations among geosciences expert, learning researchers, and museum staff to yield long-term improvements in public geoscience education and geoscience workforce recruiting.
NASA Astrophysics Data System (ADS)
Murphy, Colette; Beggs, Jim; Carlisle, Karen; Greenwood, Julian
2004-08-01
This study is an investigation of the impact of collaborative teaching by student-teachers and classroom teachers on children's enjoyment and learning of science. The paper describes findings from a project in which undergraduate science specialist student-teachers were placed in primary schools where they 'co-taught' investigative science and technology with primary teachers. Almost six months after the student placement, a survey of children's attitudes to school science revealed that these children enjoyed science lessons more and showed fewer gender or age differences in their attitudes to science than children who had not been involved in the project. The authors discuss how this model of collaborative planning, teaching and evaluation can both enhance teacher education and improve children's experience of science.
A Collaborative Learning Network Approach to Improvement: The CUSP Learning Network.
Weaver, Sallie J; Lofthus, Jennifer; Sawyer, Melinda; Greer, Lee; Opett, Kristin; Reynolds, Catherine; Wyskiel, Rhonda; Peditto, Stephanie; Pronovost, Peter J
2015-04-01
Collaborative improvement networks draw on the science of collaborative organizational learning and communities of practice to facilitate peer-to-peer learning, coaching, and local adaption. Although significant improvements in patient safety and quality have been achieved through collaborative methods, insight regarding how collaborative networks are used by members is needed. Improvement Strategy: The Comprehensive Unit-based Safety Program (CUSP) Learning Network is a multi-institutional collaborative network that is designed to facilitate peer-to-peer learning and coaching specifically related to CUSP. Member organizations implement all or part of the CUSP methodology to improve organizational safety culture, patient safety, and care quality. Qualitative case studies developed by participating members examine the impact of network participation across three levels of analysis (unit, hospital, health system). In addition, results of a satisfaction survey designed to evaluate member experiences were collected to inform network development. Common themes across case studies suggest that members found value in collaborative learning and sharing strategies across organizational boundaries related to a specific improvement strategy. The CUSP Learning Network is an example of network-based collaborative learning in action. Although this learning network focuses on a particular improvement methodology-CUSP-there is clear potential for member-driven learning networks to grow around other methods or topic areas. Such collaborative learning networks may offer a way to develop an infrastructure for longer-term support of improvement efforts and to more quickly diffuse creative sustainment strategies.
NASA Astrophysics Data System (ADS)
Ucan, Serkan; Webb, Mary
2015-10-01
Students' ability to regulate their learning is considered important for the quality of collaborative inquiry learning. However, there is still limited understanding about how students engage in social forms of regulation processes and what roles these regulatory processes may play during collaborative learning. The purpose of this study was to identify when and how co- and shared regulation of metacognitive, emotional and motivational processes emerge and function during collaborative inquiry learning in science. Two groups of three students (aged 12) from a private primary school in Turkey were videotaped during collaborative inquiry activities in a naturalistic classroom setting over a seven-week period, and the transcripts were analysed in order to identify their use of regulation processes. Moreover, this was combined with the analysis of stimulated-recall interviews with the student groups. Results indicated that co- and shared regulation processes were often initiated by particular events and played a crucial role in the success of students' collaborative inquiry learning. Co-regulation of metacognitive processes had the function of stimulating students to reflect upon and clarify their thinking, as well as facilitating the construction of new scientific understanding. Shared regulation of metacognitive processes helped students to build a shared understanding of the task, clarify and justify their shared perspective, and sustain the ongoing knowledge co-construction. Moreover, the use of shared emotional and motivational regulation was identified as important for sustaining reciprocal interactions and creating a positive socio-emotional atmosphere within the groups. In addition, the findings revealed links between the positive quality of group interactions and the emergence of co- and shared regulation of metacognitive processes. This study highlights the importance of fostering students' acquisition and use of regulation processes during collaborative inquiry learning.
Improving together: collaborative learning in science communication
NASA Astrophysics Data System (ADS)
Stiller-Reeve, Mathew
2015-04-01
Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.
NASA Astrophysics Data System (ADS)
Zinicola, Debra Ann
Reformers call for change in how science is taught in schools by shifting the focus towards conceptual understanding for all students. Constructivist learning is being promoted through the dissemination of National and State Science Standards that recommend group learning practices in science classrooms. This study examined the science learning and interactions, using case study methodology, of one collaborative group of 4 students in an urban middle school. Data on science talk and social interaction were collected over 9 weeks through 12 science problem solving sessions. To determine student learning through peer interaction, varied group structures were implemented, and students reflected on the group learning experience. Data included: field notes, cognitive and reflective journals, audiotapes and videotapes of student talk, and audiotapes of group interviews. Journal data were analyzed quantitatively and all other data was transcribed into The Ethnograph database for qualitative analysis. The data record was organized into social and cognitive domains and coded with respect to interaction patterns to show how group members experienced the social construction of science concepts. The most significant finding was that all students learned as a result of 12 talk sessions as evidenced by pre- and post-conceptual change scores. Interactions that promoted learning involved students connecting their thoughts, rephrasing, and challenging ideas. The role structure was only used by students about 15% of the time, but it started the talk with a science focus, created awareness of scientific methods, and created an awareness of equitable member participation. Students offered more spontaneous, explanatory talk when the role structure was relaxed, but did not engage in as much scientific writing. They said the role structure was important for helping them know what to do in the talk but they no longer needed it after a time. Gender bias, status, and early adolescent developmental factors influenced many of the group's interactions. Recommendations are that: collaborative group problem solving be used frequently to promote conceptual change, teachers begin with a role structure to guide interactions, create heterogeneous groups, keep the same students together for a significant period of time, and monitor, guide, and teach during group learning sessions.
Students Teach Students: Alternative Teaching in Greek Secondary Education
ERIC Educational Resources Information Center
Theodoropoulos, Anastasios; Antoniou, Angeliki; Lepouras, George
2016-01-01
The students of a Greek junior high school collaborated to prepare the teaching material of a theoretical Computer Science (CS) course and then shared their understanding with other students. This study investigates two alternative teaching methods (collaborative learning and peer tutoring) and compares the learning results to the traditional…
A Collaborative, Investigative Recombinant DNA Technology Course with Laboratory
ERIC Educational Resources Information Center
Pezzementi, Leo; Johnson, Joy F.
2002-01-01
A recombinant DNA technology course was designed to promote contextual, collaborative, inquiry-based learning of science where students learn from one another and have a sense of ownership of their education. The class stressed group presentations and critical reading and discussion of scientific articles. The laboratory consisted of two research…
ERIC Educational Resources Information Center
Callaghan, Ronel
2015-01-01
Teaching in higher education poses unique sets of challenges, especially for academics in the engineering, built sciences and information science education disciplines. This article focuses on how reflective collaboration can support academics in their quest to find unique solutions to challenges in different academic contexts. A reflective…
ERIC Educational Resources Information Center
Eckhoff, Angela
2017-01-01
This article documents a collaborative project involving preservice early childhood education students' development of inquiry-based learning experiences alongside kindergarten students within a science methods course. To document this project, I utilized a multiple methods approach and data included classroom observations, transcripts from lesson…
A collaboration among health sciences schools to enhance faculty development in teaching.
Sicat, Brigitte L; O'Kane Kreutzer, Kathy; Gary, Judy; Ivey, Carole K; Marlowe, Elizabeth P; Pellegrini, Joan M; Shuford, Veronica P; Simons, Dianne F
2014-06-17
Those involved in providing faculty development may be among only a few individuals for whom faculty development is an interest and priority within their work setting. Furthermore, funding to support faculty development is limited. In 2010, an interprofessional, self-formed, faculty learning community on faculty development in teaching was established to promote collaboration on faculty development initiatives that have transference to faculty members across disciplines and to share expertise and resources for wider impact. The organic structure and processes of the faculty learning community created an environment that has not only resulted in an increased offering of faculty development opportunities and resources across the health science campus, but has created a rich environment that combines the knowledge, innovation, and experience to promote collaborative efforts that benefit all. The background, structure, processes, successes, and lessons learned of the interprofessional faculty learning community on faculty development in teaching are described.
Collaborative Embodied Learning in Mixed Reality Motion-Capture Environments: Two Science Studies
ERIC Educational Resources Information Center
Johnson-Glenberg, Mina C.; Birchfield, David A.; Tolentino, Lisa; Koziupa, Tatyana
2014-01-01
These 2 studies investigate the extent to which an Embodied Mixed Reality Learning Environment (EMRELE) can enhance science learning compared to regular classroom instruction. Mixed reality means that physical tangible and digital components were present. The content for the EMRELE required that students map abstract concepts and relations onto…
ERIC Educational Resources Information Center
Tan, Yuen Sze Michelle; Nashon, Samson Madera
2013-01-01
The potential of a theory of variation-framed learning study, a teacher professional development approach, to help teachers overcome curricular and pedagogical challenges associated with teaching new science curricula content was explored. With a group of Singapore teachers collaboratively planning and teaching new genetics content,…
Design, Development, and Evaluation of a Mobile Learning Application for Computing Education
ERIC Educational Resources Information Center
Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki
2018-01-01
The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…
ERIC Educational Resources Information Center
Brown, Sherri L.; Lashley, Terry L.
To fulfill a service-learning course requirement at the University of Tennessee, Knoxville (UTK), two science-education doctoral students provided professional development to rural teachers and principals participating in the Appalachian Rural Systemic Initiative (ARSI). This paper begins with descriptions of service learning objectives, both in…
ERIC Educational Resources Information Center
Knipfer, Kristin; Mayr, Eva; Zahn, Carmen; Schwan, Stephan; Hesse, Friedrich W.
2009-01-01
In this article, the potentials of advanced technologies for learning in science exhibitions are outlined. For this purpose, we conceptualize science exhibitions as "dynamic information space for knowledge building" which includes three pathways of knowledge communication. This article centers on the second pathway, that is, knowledge…
ERIC Educational Resources Information Center
Ljung-Djärf, Agneta; Magnusson, Andreas; Peterson, Sam
2014-01-01
We explored the use of the learning study (LS) model in developing Swedish pre-school science learning. This was done by analysing a 3-cycle LS project implemented to help a group of pre-school teachers (n?=?5) understand their science educational practice, by collaboratively and systematically challenging it. Data consisted of video recordings of…
Sahota, Michael; Leung, Betty; Dowdell, Stephanie; Velan, Gary M
2016-12-12
Students in biomedical disciplines require understanding of normal and abnormal microscopic appearances of human tissues (histology and histopathology). For this purpose, practical classes in these disciplines typically use virtual microscopy, viewing digitised whole slide images in web browsers. To enhance engagement, tools have been developed to enable individual or collaborative annotation of whole slide images within web browsers. To date, there have been no studies that have critically compared the impact on learning of individual and collaborative annotations on whole slide images. Junior and senior students engaged in Pathology practical classes within Medical Science and Medicine programs participated in cross-over trials of individual and collaborative annotation activities. Students' understanding of microscopic morphology was compared using timed online quizzes, while students' perceptions of learning were evaluated using an online questionnaire. For senior medical students, collaborative annotation of whole slide images was superior for understanding key microscopic features when compared to individual annotation; whilst being at least equivalent to individual annotation for junior medical science students. Across cohorts, students agreed that the annotation activities provided a user-friendly learning environment that met their flexible learning needs, improved efficiency, provided useful feedback, and helped them to set learning priorities. Importantly, these activities were also perceived to enhance motivation and improve understanding. Collaborative annotation improves understanding of microscopic morphology for students with sufficient background understanding of the discipline. These findings have implications for the deployment of annotation activities in biomedical curricula, and potentially for postgraduate training in Anatomical Pathology.
Integrating research, clinical care, and education in academic health science centers.
King, Gillian; Thomson, Nicole; Rothstein, Mitchell; Kingsnorth, Shauna; Parker, Kathryn
2016-10-10
Purpose One of the major issues faced by academic health science centers (AHSCs) is the need for mechanisms to foster the integration of research, clinical, and educational activities to achieve the vision of evidence-informed decision making (EIDM) and optimal client care. The paper aims to discuss this issue. Design/methodology/approach This paper synthesizes literature on organizational learning and collaboration, evidence-informed organizational decision making, and learning-based organizations to derive insights concerning the nature of effective workplace learning in AHSCs. Findings An evidence-informed model of collaborative workplace learning is proposed to aid the alignment of research, clinical, and educational functions in AHSCs. The model articulates relationships among AHSC academic functions and sub-functions, cross-functional activities, and collaborative learning processes, emphasizing the importance of cross-functional activities in enhancing collaborative learning processes and optimizing EIDM and client care. Cross-functional activities involving clinicians, researchers, and educators are hypothesized to be a primary vehicle for integration, supported by a learning-oriented workplace culture. These activities are distinct from interprofessional teams, which are clinical in nature. Four collaborative learning processes are specified that are enhanced in cross-functional activities or teamwork: co-constructing meaning, co-learning, co-producing knowledge, and co-using knowledge. Practical implications The model provides an aspirational vision and insight into the importance of cross-functional activities in enhancing workplace learning. The paper discusses the conceptual and empirical basis to the model, its contributions and limitations, and implications for AHSCs. Originality/value The model's potential utility for health care is discussed, with implications for organizational culture and the promotion of cross-functional activities.
Collaborative Learning in Higher Education: Evoking Positive Interdependence
Scager, Karin; Boonstra, Johannes; Peeters, Ton; Vulperhorst, Jonne; Wiegant, Fred
2016-01-01
Collaborative learning is a widely used instructional method, but the learning potential of this instructional method is often underused in practice. Therefore, the importance of various factors underlying effective collaborative learning should be determined. In the current study, five different life sciences undergraduate courses with successful collaborative-learning results were selected. This study focuses on factors that increased the effectiveness of collaboration in these courses, according to the students. Nine focus group interviews were conducted and analyzed. Results show that factors evoking effective collaboration were student autonomy and self-regulatory behavior, combined with a challenging, open, and complex group task that required the students to create something new and original. The design factors of these courses fostered a sense of responsibility and of shared ownership of both the collaborative process and the end product of the group assignment. In addition, students reported the absence of any free riders in these group assignments. Interestingly, it was observed that students seemed to value their sense of achievement, their learning processes, and the products they were working on more than their grades. It is concluded that collaborative learning in higher education should be designed using challenging and relevant tasks that build shared ownership with students. PMID:27909019
De Leng, Bas; Gijlers, Hannie
2015-05-01
To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Opinions and perceptions of students (n = 70) and tutors (n = 4) who used collaborative diagramming in tutorial groups were collected with a questionnaire and focus group discussions. A framework derived from the analysis of discourse in computer-supported collaborative leaning was used to construct the questionnaire. Video observations were used during the focus group discussions. Both students and tutors felt that collaborative diagramming positively affected discussion and knowledge construction. Students particularly appreciated that diagrams helped them to structure knowledge, to develop an overview of topics, and stimulated them to find relationships between topics. Tutors emphasized that diagramming increased interaction and enhanced the focus and detail of the discussion. Favourable conditions were the following: working with a shared whiteboard, using a diagram format that facilitated distribution, and applying half filled-in diagrams for non-content expert tutors and\\or for heterogeneous groups with low achieving students. The empirical findings in this study support the findings of earlier more descriptive studies that diagramming in a collaborative setting is valuable for learning complex knowledge in medicine.
Developing a Biostatistical Collaboration Course in a Health Science Research Methodology Program
ERIC Educational Resources Information Center
Thabane, Lehana; Walter, Stephen D.; Hanna, Steven; Goldsmith, Charles H.; Pullenayegum, Eleanor
2008-01-01
Effective statistical collaboration in a multidisciplinary health research environment requires skills not taught in the usual statistics courses. Graduates often learn such collaborative skills through trial and error. In this paper, we discuss the development of a biostatistical collaboration course aimed at graduate students in a Health…
NASA’s Universe of Learning: Girls STEAM Ahead
NASA Astrophysics Data System (ADS)
Marcucci, Emma; Meinke, Bonnie K.; Smith, Denise A.; Ryer, Holly; Slivinski, Carolyn; Kenney, Jessica; Arcand, Kimberly K.; Cominsky, Lynn R.; Girls STEAM Ahead with NASA Team
2017-10-01
NASA Science Mission Directorate’s Universe of Learning (UoL) program enables scientists and engineers to more effectively engage with learners of all ages. The Girls STEAM Ahead with NASA education program within UoL, expands upon the former program, NASA Science4Girls and Their Families, in celebration of National Women’s History Month. The initiative partners the NASA’s Universe of Learning science education program resources with public libraries to provide NASA-themed activities for girls and their families, including hands-on activities for engaging girls, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA’s UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. This presentation will provide an overview of the program progress related to engaging girls and their families in NASA-based science programming.
NASA Astrophysics Data System (ADS)
Marcucci, Emma; Slivinski, Carolyn; Lawton, Brandon L.; Smith, Denise A.; Squires, Gordon K.; Biferno, Anya A.; Lestition, Kathleen; Cominsky, Lynn R.; Lee, Janice C.; Rivera, Thalia; Walker, Allyson; Spisak, Marilyn
2018-06-01
NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University and is part of the NASA SMD Science Activation Collective. The NASA’s Universe of Learning projects pull on the expertise of subject matter experts (scientist and engineers) from across the broad range of NASA Astrophysics themes and missions. One such project, which draws strongly on the expertise of the community, is the NASA’s Universe of Learning Science Briefings, which is done in collaboration with the NASA Museum Alliance. This collaboration presents a monthly hour-long discussion on relevant NASA astrophysics topics or events to an audience composed largely of informal educators from informal learning environments. These professional learning opportunities use experts and resources within the astronomical community to support increased interest and engagement of the informal learning community in NASA Astrophysics-related concepts and events. Briefings are designed to create a foundation for this audience using (1) broad science themes, (2) special events, or (3) breaking science news. The NASA’s Universe of Learning team engages subject matter experts to be speakers and present their science at these briefings to provide a direct connection to NASA Astrophysics science and provide the audience an opportunity to interact directly with scientists and engineers involved in NASA missions. To maximize the usefulness of the Museum Alliance Science Briefings, each briefing highlights resources related to the science theme to support informal educators in incorporating science content into their venues and/or interactions with the public. During this presentation, learn how you can help contribute to the NASA’s Universe of Learning and take part in Science Briefings.
ERIC Educational Resources Information Center
Iiskala, Tuike; Volet, Simone; Lehtinen, Erno; Vauras, Marja
2015-01-01
The significance of socially shared metacognitive regulation (SSMR) in collaborative learning is gaining momentum. To date, however, there is still a paucity of research of how SSMR is manifested in asynchronous computer-supported collaborative learning (CSCL), and hardly any systematic investigation of SSMR's functions and evolution across…
ERIC Educational Resources Information Center
Kapur, Manu; Kinzer, Charles K.
2007-01-01
This study investigated the effect of well- vs. ill-structured problem types on: (a) group interactional activity, (b) evolution of group participation inequities, (c) group discussion quality, and (d) group performance in a synchronous, computer-supported collaborative learning (CSCL) environment. Participants were 60 11th-grade science students…
ERIC Educational Resources Information Center
Camacho, Erika T.; Holmes, Raquell M.; Wirkus, Stephen A.
2015-01-01
This chapter describes how sustained mentoring together with rigorous collaborative learning and community building contributed to successful mathematical research and individual growth in the Applied Mathematical Sciences Summer Institute (AMSSI), a program that focused on women, underrepresented minorities, and individuals from small teaching…
Wikis for a Collaborative Problem-Solving (CPS) Module for Secondary School Science
ERIC Educational Resources Information Center
DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah; Spector, Jonathan Michael
2017-01-01
Collaborative problem solving (CPS) can support online learning by enabling interactions for social and cognitive processes. Teachers may not have sufficient knowledge to support such interactions, so support needs to be designed into learning modules for this purpose. This study investigates to what extent an online module for teaching nutrition…
ERIC Educational Resources Information Center
Lawson, John; Aggarwal, Pankaj; Leininger, Thomas; Fairchild, Kenneth
2011-01-01
This article describes a collaborative learning experience in experimental design that closely approximates what practicing statisticians and researchers in applied science experience during consulting. Statistics majors worked with a teaching assistant from the chemistry department to conduct a series of experiments characterizing the variation…
Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments
ERIC Educational Resources Information Center
Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.
2010-01-01
Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…
Collaborative Practice of Science Construction in a Computer-Based Multimedia Environment.
ERIC Educational Resources Information Center
Kumpulainen, Kristiina; Mutanen, Mika
1998-01-01
Examines the ways in which the collaborative use of a multimedia-based CD-ROM encyclopedia in a sixth-grade Finnish classroom fosters science learning. Results show that students' activities during task-processing were highly procedural and product-oriented. Students had inefficient skills in accessing and retrieving information from the…
ERIC Educational Resources Information Center
Patchen, Terri; Smithenry, Dennis W.
2015-01-01
Researchers have theorized that integrating authentic science activities into classrooms will help students learn how working scientists collaboratively construct knowledge, but few empirical studies have examined students' experiences with these types of activities. Utilizing data from a comparative, mixed-methods study, we considered how…
Learning and Teaching about Social Studies and Science: A Collaborative Self-Study
ERIC Educational Resources Information Center
Christou, Theodore; Bullock, Shawn Michael
2014-01-01
This collaborative self-study article explores experiences teaching a cross-curricular undergraduate course that aimed to integrate social studies and science. The course differs from other compulsory components of the teacher candidates' program of study in that it concentrates on disciplinary structure, as opposed to methods, and it treats two…
Case Study: Collaborative Creation of an On-Line Degree Program
ERIC Educational Resources Information Center
Stewart, Barbara L.; Norwood, Marcella; Ezell, Shirley; Waight, Consuelo
2006-01-01
Faculty collaboratively developed an on-line Bachelor of Science degree in Consumer Science and Merchandising (CSM). Part-time faculty and technical support services supported the four-member team. Small grants assisted in the creation and redesign of all CSM major courses for on-line delivery. Issues of appropriate learning strategies, student…
ERIC Educational Resources Information Center
Pelaez, Nancy; Anderson, Trevor R.; Gardner, Stephanie M.; Yin, Yue; Abraham, Joel K.; Barlett, Edward L.; Gormally, Cara; Hurney, Carol A.; Long, Tammy M.; Newman, Dina L.; Sirum, Karen; Stevens, Michael T.
2018-01-01
Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who…
Supporting Teachers Learning Through the Collaborative Design of Technology-Enhanced Science Lessons
NASA Astrophysics Data System (ADS)
Kafyulilo, Ayoub C.; Fisser, Petra; Voogt, Joke
2015-12-01
This study used the Interconnected Model of Professional Growth (Clarke & Hollingsworth in Teaching and Teacher Education, 18, 947-967, 2002) to unravel how science teachers' technology integration knowledge and skills developed in a professional development arrangement. The professional development arrangement used Technological Pedagogical Content Knowledge as a conceptual framework and included collaborative design of technology-enhanced science lessons, implementation of the lessons and reflection on outcomes. Support to facilitate the process was offered in the form of collaboration guidelines, online learning materials, exemplary lessons and the availability of an expert. Twenty teachers participated in the intervention. Pre- and post-intervention results showed improvements in teachers' perceived and demonstrated knowledge and skills in integrating technology in science teaching. Collaboration guidelines helped the teams to understand the design process, while exemplary materials provided a picture of the product they had to design. The availability of relevant online materials simplified the design process. The expert was important in providing technological and pedagogical support during design and implementation, and reflected with teachers on how to cope with problems met during implementation.
Collaborative Action Research on Technology Integration for Science Learning
NASA Astrophysics Data System (ADS)
Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua
2012-02-01
This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.
Collaborative Action Research on Technology Integration for Science Learning
ERIC Educational Resources Information Center
Wang, Chien-hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua
2012-01-01
This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies,…
ERIC Educational Resources Information Center
Hodges, Linda C.
2018-01-01
As the use of collaborative-learning methods such as group work in science, technology, engineering, and mathematics classes has grown, so has the research into factors impacting effectiveness, the kinds of learning engendered, and demographic differences in student response. Generalizing across the range of this research is complicated by the…
Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2013-01-01
The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…
Student leadership in small group science inquiry
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Boz, Umit; Broadwell, George A.; Sadler, Troy D.
2014-09-01
Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity. Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry. Sample: Two small student groups investigating the burning of a candle under a jar participated in this study. Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions). Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement. Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.
... Story Investigating Lung Disease in Military Veterans Collaborative Science Leads to New Discoveries Read Story USGS helps ... rainfall in the western U.S. Learn More Our Science Our Science What, where, and how we conduct ...
A Model of Transformative Collaboration
ERIC Educational Resources Information Center
Swartz, Ann L.; Triscari, Jacqlyn S.
2011-01-01
Two collaborative writing partners sought to deepen their understanding of transformative learning by conducting several spirals of grounded theory research on their own collaborative relationship. Drawing from adult education, business, and social science literature and including descriptive analysis of their records of activity and interaction…
Tolsgaard, Martin G; Kulasegaram, Kulamakan M; Ringsted, Charlotte V
2016-01-01
This study is designed to provide an overview of why, how, when and for whom collaborative learning of clinical skills may work in health professions education. Collaborative learning of clinical skills may influence learning positively according to the non-medical literature. Training efficiency may therefore be improved if the outcomes of collaborative learning of clinical skills are superior or equivalent to those attained through individual learning. According to a social interaction perspective, collaborative learning of clinical skills mediates its effects through social interaction, motivation, accountability and positive interdependence between learners. Motor skills learning theory suggests that positive effects rely on observational learning and action imitation, and negative effects may include decreased hands-on experience. Finally, a cognitive perspective suggests that learning is dependent on cognitive co-construction, shared knowledge and reduced cognitive load. The literature on the collaborative learning of clinical skills in health science education is reviewed to support or contradict the hypotheses provided by the theories outlined above. Collaborative learning of clinical skills leads to improvements in self-efficacy, confidence and performance when task processing is observable or communicable. However, the effects of collaborative learning of clinical skills may decrease over time as benefits in terms of shared cognition, scaffolding and cognitive co-construction are outweighed by reductions in hands-on experience and time on task. Collaborative learning of clinical skills has demonstrated promising results in the simulated setting. However, further research into how collaborative learning of clinical skills may work in clinical settings, as well as into the role of social dynamics between learners, is required. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wendt, Jillian Leigh
This study examines the effects of online collaborative learning on middle school students' science literacy and sense of community. A quantitative, quasi-experimental pretest/posttest control group design was used. Following IRB approval and district superintendent approval, students at a public middle school in central Virginia completed a pretest consisting of the Misconceptions-Oriented Standards-Based Assessment Resources for Teachers (MOSART) Physical Science assessment and the Classroom Community Scale. Students in the control group received in-class assignments that were completed collaboratively in a face-to-face manner. Students in the experimental group received in-class assignments that were completed online collaboratively through the Edmodo educational platform. Both groups were members of intact, traditional face-to-face classrooms. The students were then post tested. Results pertaining to the MOSART assessment were statistically analyzed through ANCOVA analysis while results pertaining to the Classroom Community Scale were analyzed through MANOVA analysis. Results are reported and suggestions for future research are provided.
Teaching Bioinformatics in Concert
Goodman, Anya L.; Dekhtyar, Alex
2014-01-01
Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students. PMID:25411792
NASA Astrophysics Data System (ADS)
Kermish-Allen, Ruth
Traditional citizen science projects have been based on the scientific communities need to gather vast quantities of high quality data, neglecting to ask what the project participants get in return. How can participants be seen more as collaborative partners in citizen science projects? Online communities for citizen science are expanding rapidly, giving participants the opportunity to take part in a wide range of activities, from monitoring invasive species to identifying far-off galaxies. These communities can bring together the virtual and physical worlds in new ways that are egalitarian, collaborative, applied, localized and globalized to solve real environmental problems. There are a small number of citizen science projects that leverage the affordances of an online community to connect, engage, and empower participants to make local change happen. This multiple case study applies a conceptual framework rooted in sociocultural learning theory, Non-Hierarchical Online Learning Communities (NHOLCs), to three online citizen communities that have successfully fostered online collaboration and on-the-ground environmental actions. The purpose of the study is to identify the range and variation of the online and programmatic functions available in each project. The findings lead to recommendations for designing these innovative communities, specifically the technological and programmatic components of online citizen science communities that support environmental actions in our backyards.
Arguing to learn in science: the role of collaborative, critical discourse.
Osborne, Jonathan
2010-04-23
Argument and debate are common in science, yet they are virtually absent from science education. Recent research shows, however, that opportunities for students to engage in collaborative discourse and argumentation offer a means of enhancing student conceptual understanding and students' skills and capabilities with scientific reasoning. As one of the hallmarks of the scientist is critical, rational skepticism, the lack of opportunities to develop the ability to reason and argue scientifically would appear to be a significant weakness in contemporary educational practice. In short, knowing what is wrong matters as much as knowing what is right. This paper presents a summary of the main features of this body of research and discusses its implications for the teaching and learning of science.
NASA Astrophysics Data System (ADS)
Herbert, B. E.; Schroeder, C.; Brody, S.; Cahill, T.; Kenimer, A.; Loving, C.; Schielack, J.
2003-12-01
The ITS Center for Teaching and Learning is a five-year NSF-funded collaborative effort to engage scientists and university and school or district-based science educators in the use of information technology to improve science teaching and learning at all levels. One assumption is that science and mathematics teaching and learning will be improved when they become more connected to the authentic science research done in field settings or laboratories. The effective use of information technology in science classrooms has been shown to help achieve this objective. As a design study that is -working toward a greater understanding of a -learning ecology", the research related to the creation and refinement of the ITS Centeres collaborative environment for professional development is contributing information about an important setting not often included in the descriptions of professional development, a setting that incorporates distributed expertise and resulting distributed growth in the various categories of participants: scientists, science graduate students, education researchers, education graduate students, and master teachers. Design-based research is an emerging paradigm for the study of learning in context through the systematic design and study of instructional strategies and tools. This presentation will discuss the results of the formative evaluation process that has moved the ITS Centeres collaborative environment for professional development through the iterative process from Phase I (the planned program designed in-house) to Phase II (the experimental program being tested in-house). In particular, we will focus on the development of the ITS Centeres Project Teams, which create learning experiences over two summers focused on the exploration of science, technology, engineering or mathematics (STEM) topics through the use of modeling, visualization and complex data sets to explore authentic scientific questions that can be integrated within the K-16 curriculum. Ongoing formative assessment of the Cohort I project teams led to a greater emphasis on participant exploration of authentic scientific questions and tighter integration of scientific explorations and development of participant inquiry projects.
A Model for Collaborative Learning in Undergraduate Climate Change Courses
NASA Astrophysics Data System (ADS)
Teranes, J. L.
2008-12-01
Like several colleges and universities across the nation, the University of California, San Diego, has introduced climate change topics into many existing and new undergraduate courses. I have administered a program in this area at UCSD and have also developed and taught a new lower-division UCSD course entitled "Climate Change and Society", a general education course for non-majors. This class covers the basics of climate change, such as the science that explains it, the causes of climate change, climate change impacts, and mitigation strategies. The teaching methods for this course stress interdisciplinary approaches. I find that inquiry-based and collaborative modes of learning are particularly effective when applied to science-based climate, environmental and sustainability topics. Undergraduate education is often dominated by a competitive and individualistic approach to learning. In this approach, individual success is frequently perceived as contingent on others being less successful. Such a model is at odds with commonly stated goals of teaching climate change and sustainability, which are to equip students to contribute to the debate on global environmental change and societal adaptation strategies; and to help students become better informed citizens and decision makers. I present classroom-tested strategies for developing collaborative forms of learning in climate change and environmental courses, including team projects, group presentations and group assessment exercises. I show how critical thinking skills and long-term retention of information can benefit in the collaborative mode of learning. I find that a collaborative learning model is especially appropriate to general education courses in which the enrolled student body represents a wide diversity of majors, class level and expertise. I also connect collaborative coursework in interdisciplinary environmental topics directly to applications in the field, where so much "real-world" achievement in research, education, government and business is effectively accomplished in collaborative teams.
Inter-University Collaboration in Methods of Teaching Science
ERIC Educational Resources Information Center
Black, P. J.; Ogborn, Jon
1977-01-01
HELP (P), the Higher Education Learning Project (Physics) is a collaborative venture among teachers of physics in several British universities involving skill development, stimulation of individualized study, and teaching techniques. (LBH)
Student Perceptions of a Successful Online Collaborative Learning Community
ERIC Educational Resources Information Center
Waugh, Michael L.; Su, Jian
2016-01-01
This paper shares the perceptions of a group of 11 successful online students regarding the value of the collaborative learning community that developed as part of their participation in the first cohort of the WebIT online Master of Science Degree in Instructional Technology program, at The University of Tennessee at Knoxville during 2008-2010.…
Examination of Studies on Technology-Assisted Collaborative Learning Published between 2010-2014
ERIC Educational Resources Information Center
Arnavut, Ahmet; Özdamli, Fezile
2016-01-01
This study is a content analysis of the articles about technology-assisted collaborative learning published in Science Direct database between the years of 2010 and 2014. Developing technology has become a topic that we encounter in every aspect of our lives. Educators deal with the contribution and integration of technology into education.…
ERIC Educational Resources Information Center
Lee, Mark J. W.; Eustace, Ken; Fellows, Geoff; Bytheway, Allan; Irving, Leah
2005-01-01
This paper reports on the first stage of a project to develop and test the use of massively multiplayer online role playing games (MMORPGs) for promoting computer supported collaborative learning through instructional gaming in the high school classroom. Teachers and students of English and Science at Swan View Senior High School, Western…
ERIC Educational Resources Information Center
Turcotte, Sandrine
2012-01-01
This article describes in detail a conversation analysis of conceptual change in a computer-supported collaborative learning environment. Conceptual change is an essential learning process in science education that has yet to be fully understood. While many models and theories have been developed over the last three decades, empirical data to…
Chi, Michelene T H; Roy, Marguerite; Hausmann, Robert G M
2008-03-01
The goals of this study are to evaluate a relatively novel learning environment, as well as to seek greater understanding of why human tutoring is so effective. This alternative learning environment consists of pairs of students collaboratively observing a videotape of another student being tutored. Comparing this collaboratively observing environment to four other instructional methods-one-on-one human tutoring, observing tutoring individually, collaborating without observing, and studying alone-the results showed that students learned to solve physics problems just as effectively from observing tutoring collaboratively as the tutees who were being tutored individually. We explain the effectiveness of this learning environment by postulating that such a situation encourages learners to become active and constructive observers through interactions with a peer. In essence, collaboratively observing combines the benefit of tutoring with the benefit of collaborating. The learning outcomes of the tutees and the collaborative observers, along with the tutoring dialogues, were used to further evaluate three hypotheses explaining why human tutoring is an effective learning method. Detailed analyses of the protocols at several grain sizes suggest that tutoring is effective when tutees are independently or jointly constructing knowledge: with the tutor, but not when the tutor independently conveys knowledge. 2008 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Tan, Yuen Sze Michelle; Nashon, Samson Madera
2015-01-01
Through a case study, we explore how four Grade 9-10 biology teachers in Singapore experienced their collaborative approach to curriculum and addressed challenges associated with newly prescribed science curricula, such as the perceived lack of clarity and pressure to complete teaching curricular content. With the teachers participating in a…
ERIC Educational Resources Information Center
Koch, Paul L.; Soldat, Douglas J.; Horgan, Brian P.; Bauer, Samuel J.; Patton, Aaron J.
2017-01-01
Increasing costs and decreasing numbers of university Extension faculty have made it difficult to provide quality turfgrass short course education. In response, faculty from nine institutions collaborated to develop the Great Lakes School of Turfgrass Science. This 12-week online course provides students with unique learning experiences through a…
Gormally, Cara
2017-01-01
For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students’ attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students’ characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. PMID:28188279
ERIC Educational Resources Information Center
Tirado, Alejandro Uribe; Munoz, Wilson Castano
2011-01-01
This text presents the future of librarian education as exemplified by the Interamerican School of Library and Information Science at the University of Antioquia (Medellin-Colombia), using an online learning platform-LMS (Moodle) and through different personalized and collaborative learning activities and tools that help students identify their…
ERIC Educational Resources Information Center
Smyrnaiou, Zacharoula; Moustaki, Foteini; Yiannoutsou, Nikoleta; Kynigos, Chronis
2012-01-01
The literature of the science education does not offer much data concerning meaning generation (MG) and learning to learn together (L2L2) processes. The objective of this paper is the study of how a group of students working with an on-line Platform, interact, collaborate and express themselves to generate meanings with regard to moving in 3d…
Science-for-Teaching Discourse in Science Teachers' Professional Learning Communities
NASA Astrophysics Data System (ADS)
Lohwasser, Karin
Professional learning communities (PLCs) provide an increasingly common structure for teachers' professional development. The effectiveness of PLCs depends on the content and quality of the participants' discourse. This dissertation was conducted to add to an understanding of the science content needed to prepare to teach science, and the discourse characteristics that create learning opportunities in teachers' PLCs. To this end, this study examined how middle school science teachers in three PLCs addressed science-for-teaching, and to what effect. Insight into discourse about content knowledge for teaching in PLCs has implications for the analysis, interpretation, and support of teachers' professional discourse, their collaborative learning, and consequently their improvement of practice. This dissertation looked closely at the hybrid space between teachers' knowledge of students, of teaching, and of science, and how this space was explored in the discourse among teachers, and between teachers and science experts. At the center of the study were observations of three 2-day PLC cycles in which participants worked together to improve the way they taught their curriculum. Two of the PLC cycles were supported, in part, by a science expert who helped the teachers explore the science they needed for teaching. The third PLC worked without such support. The following overarching questions were explored in the three articles of this dissertation: (1) What kind of science knowledge did teachers discuss in preparation for teaching? (2) How did the teachers talk about content knowledge for science teaching, and to what effect for their teaching practice? (3) How did collaborating teachers' discursive accountabilities provide opportunities for furthering the teachers' content knowledge for science teaching? The teachers' discourse during the 2-day collaboration cycles was analyzed and interpreted based on a sociocultural framework that included concepts from the practice-based theory of content knowledge for teaching developed by D. L. Ball, Thames, and Phelps (2008) and the Accountable Talk framework by Michaels, O'Connor, & Resnick (2008). The study's findings could provide justification for and ideas on how to provide targeted support for PLCs to make teachers' work on science knowledge more applicable to lesson planning, teaching, and student learning.
ERIC Educational Resources Information Center
Goodnough, Karen; Cashion, Marie
2006-01-01
This paper reports on the experiences of a small collaborative inquiry group consisting of a high school science teacher, Deidre, and two university researchers, the authors of this paper, as they explored an active, inquiry-based approach to teaching and learning referred to as Problem-Based Learning or PBL (Barrows, 1994; Barrows & Tamblyn,…
Science and the city: A visual journey towards a critical place based science education
NASA Astrophysics Data System (ADS)
Ibrahim, Sheliza
The inclusion of societal and environmental considerations during the teaching and learning of science and technology has been a central focus among science educators for many decades. Major initiatives in science and technology curriculum advocate for science, technology, society and environment (STSE). Yet, it is surprising that despite these longstanding discussions, it is only recently that a handful of researchers have turned to students' 'places' (and the literature of place based education) to serve as a source of teaching and learning in science education. In my study, I explore three issues evident in place based science education. First, it seems that past scholarship focused on place-based projects which explore issues usually proposed by government initiatives, university affiliation, or community organizations. Second, some of the studies fail to pay extended attention to the collaborative and intergenerational agency that occurs between researcher, teacher, student, and community member dynamics, nor does it share the participatory action research process in order to understand how teacher practice, student learning, and researcher/local collaborations might help pedagogy emerge. The third issue is that past place-based projects, rarely if ever, return to the projects to remember the collaborative efforts and question what aspects sustained after they were complete. To address these issues, I propose a critical place based science education (CPBSE) model. I describe a participatory action research project that develops and explores the CPBSE model. The data were gathered collaboratively among teachers, researchers, and students over 3 years (2006-2008), via digital video ethnography, photographs, and written reflections. The data were analysed using a case study approach and the constant comparative method. I discuss the implications for its practice in the field of STSE and place based education. I conclude that an effective pedagogical model of CPBSE comprises of three stages: critical visualizing, investigating, remembering, by sharing Science and the City (a case study that connects science to place using visual imagery).
Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Community Collaborations
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Lawton, B. L.; Bartolone, L.; Schultz, G. R.; Blair, W. P.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team
2013-01-01
The NASA Astrophysics Science Education and Public Outreach Forum is one of four scientist-educator teams that support NASA's Science Mission Directorate and its nationwide education and public outreach community in increasing the coherence, efficiency, and effectiveness of their education and public outreach efforts. NASA Astrophysics education and outreach teams collaborate with each other through the Astrophysics Forum to place individual programs in context, connect with broader education and public outreach activities, learn and share successful strategies and techniques, and develop new partnerships. This poster highlights examples of collaborative efforts designed to engage youth and adults across the full spectrum of learning environments, from public outreach venues, to centers of informal learning, to K-12 and higher education classrooms. These include coordinated efforts to support major outreach events such as the USA Science and Engineering Festival; pilot "Astro4Girls" activities in public libraries to engage girls and their families in science during Women’s History Month; and a pilot "NASA's Multiwavelength Universe" online professional development course for middle and high school educators. Resources to assist scientists and Astro101 instructors in incorporating NASA Astrophysics discoveries into their education and public outreach efforts are also discussed.
Effects of Different Student Response Modes on Science Learning
ERIC Educational Resources Information Center
Kho, Lee Sze; Chen, Chwen Jen
2017-01-01
Student response systems (SRSs) are wireless answering devices that enable students to provide simple real-time feedback to instructors. This study aims to evaluate the effects of different SRS interaction modes on elementary school students' science learning. Three interaction modes which include SRS Individual, SRS Collaborative, and Classroom…
Student Sensemaking with Science Diagrams in a Computer-Based Setting
ERIC Educational Resources Information Center
Furberg, Anniken; Kluge, Anders; Ludvigsen, Sten
2013-01-01
This paper reports on a study of students' conceptual sensemaking with science diagrams within a computer-based learning environment aimed at supporting collaborative learning. Through the microanalysis of students' interactions in a project about energy and heat transfer, we demonstrate "how" representations become productive social and cognitive…
Influence of Culture and Home Environment on Science Learning.
ERIC Educational Resources Information Center
Giddings, Geoff J.
This paper has the potential for identifying and codifying the home learning environment and parental factors in a unique multicultural setting within Australian schools, and for the establishment of research-based initiatives for more effective collaboration between schools and parents. The Third International Mathematics and Science Study…
Investigating Science Collaboratively: A Case Study of Group Learning
ERIC Educational Resources Information Center
Zinicola, Debra A.
2009-01-01
Discussions of one urban middle school group of students who were investigating scientific phenomena were analyzed; this study was conducted to discern if and how peer interaction contributes to learning. Through a social constructivist lens, case study methodology, we examined conceptual change among group members. Data about science talk was…
School-Community Collaborations: Bringing Authentic Science into Schools
ERIC Educational Resources Information Center
Clark, John Cripps; Tytler, Russell; Symington, David
2014-01-01
There is increasing interest in collaborative arrangements between schools and community scientists to enhance student engagement with learning. We describe research in which we identify a wide range of such collaborations in Australia, and investigate through interviews with community participants their perspectives on the purposes of…
Curran, Vernon R; Mugford, J Gerry; Law, Rebecca M T; MacDonald, Sandra
2005-03-01
An evaluation study of an undergraduate HIV/AIDS interprofessional education program for medical, nursing and pharmacy students was undertaken to assess changes in role perception, attitudes towards collaboration, self-reported teamwork skills and satisfaction with a shared learning experience. A combined one group pretest-posttest and time-series study design was used. Several survey instruments and observation checklists were completed by students and tutors before, during and after the educational program. Students reported greater awareness of roles and the continuous exposure to interprofessional learning led to improved attitudes towards teamwork. Standardized patients were effective in fostering an experience of realism and motivating collaboration between students. A problem-based learning approach combined with standardized patients was effective in enhancing HIV/AIDS interprofessional role perception, enhancing attitudes towards collaboration and interprofessional approaches to HIV/AIDS care and fostering confidence in teamwork skills among pre-licensure health sciences students.
ERIC Educational Resources Information Center
Chiang, Kuang-Hsu
2011-01-01
This paper examines the educational implications of research collaboration between university and industry for the research training of doctoral students. It is concerned with the issues of how research training is constructed in such collaborations and what might be the effects of collaboration on doctoral students' learning. The study adopts a…
NASA Astrophysics Data System (ADS)
Podrasky, A.; Covitt, B. A.; Woessner, W.
2017-12-01
The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.
Interlaboratory Collaborations in the Undergraduate Setting
ERIC Educational Resources Information Center
Megehee, Elise G.; Hyslop, Alison G.; Rosso, Richard J.
2005-01-01
A novel approach to cross-disciplinary and group learning, known as interlaboratory collaborations, was developed. The method mimics an industrial or research setting, fosters teamwork, and emphasizes the importance of good communication skills in the sciences.
Establishing Learning Communities among Science Teachers through Lesson Study
ERIC Educational Resources Information Center
Mee, Lee Shok; Oyao, Sheila Gamut
2013-01-01
The fundamental philosophy embedded in lesson study is the collaborative practice of teachers working together to plan, teach, observe, reflect and refine lessons. It has been well established that collaboration strengthens teacher collegial relationships and enhances pedagogical content knowledge. While teacher collaboration seems to be a norm in…
Collaborative Approach in Software Engineering Education: An Interdisciplinary Case
ERIC Educational Resources Information Center
Vicente, Aileen Joan; Tan, Tiffany Adelaine; Yu, Alvin Ray
2018-01-01
Aim/Purpose: This study was aimed at enhancing students' learning of software engineering methods. A collaboration between the Computer Science, Business Management, and Product Design programs was formed to work on actual projects with real clients. This interdisciplinary form of collaboration simulates the realities of a diverse Software…
NASA Astrophysics Data System (ADS)
Cooke-Nieves, Natasha Anika
Science education research has consistently shown that elementary teachers have a low self-efficacy and background knowledge to teach science. When they teach science, there is a lack of field experiences and inquiry-based instruction at the elementary level due to limited resources, both material and pedagogical. This study focused on an analysis of a professional development (PD) model designed by the author known as the Collaborative Diagonal Learning Network (CDLN). The purpose of this study was to examine elementary school teacher participants pedagogical content knowledge related to their experiences in a CDLN model. The CDLN model taught formal and informal instruction using a science coach and an informal educational institution. Another purpose for this research included a theoretical analysis of the CDLN model to see if its design enabled teachers to expand their resource knowledge of available science education materials. The four-month-long study used qualitative data obtained during an in-service professional development program facilitated by a science coach and educators from a large natural history museum. Using case study as the research design, four elementary school teachers were asked to evaluate the effectiveness of their science coach and museum educator workshop sessions. During the duration of this study, semi-structured individual/group interviews and open-ended pre/post PD questionnaires were used. Other data sources included researcher field notes from lesson observations, museum field trips, audio-recorded workshop sessions, email correspondence, and teacher-created artifacts. The data were analyzed using a constructivist grounded theory approach. Themes that emerged included increased self-efficacy; increased pedagogical content knowledge; increased knowledge of museum education resources and access; creation of a professional learning community; and increased knowledge of science notebooking. Implications for formal and informal professional development in elementary science reform are offered. It is suggested that researchers investigate collaborative coaching through the lenses of organizational learning network theory, and develop professional learning communities with formal and informal educators; and that professional developers in city school systems and informal science institutions work in concert to produce more effective elementary teachers who not only love science but love teaching it.
ERIC Educational Resources Information Center
Tang, Kok-Sing; Tan, Seng-Chee
2017-01-01
The study in this article examines and illustrates the intertextual meanings made by a group of high school science students as they embarked on a knowledge building discourse to solve a physics problem. This study is situated in a computer-supported collaborative learning (CSCL) environment designed to support student learning through a science…
ERIC Educational Resources Information Center
Briscoe, Carol; Prayaga, Chandra S.
2004-01-01
This interpretive case study describes a collaborative project involving a physics professor and a science educator. We report what was learned about factors that influenced the professor's development of teaching strategies, alternative to lecture, that were intended to promote prospective teachers' meaningful learning and their use of canonical…
ERIC Educational Resources Information Center
Chen, Ching-Huei; Chen, Chia-Ying
2012-01-01
This study examined the effects of an inquiry-based learning (IBL) approach compared to that of a problem-based learning (PBL) approach on learner performance, attitude toward science and inquiry ability. Ninety-six students from three 7th-grade classes at a public school were randomly assigned to two experimental groups and one control group. All…
Design of Scalable and Effective Earth Science Collaboration Tool
NASA Astrophysics Data System (ADS)
Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.
2014-12-01
Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation Suite (NEOS3).
Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.
ERIC Educational Resources Information Center
Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.
During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…
ERIC Educational Resources Information Center
Geiger, Vince; Date-Huxtable, Liz; Ahlip, Rehez; Herberstein, Marie; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian; Mulligan, Joanne
2016-01-01
The purpose of this paper is to describe the processes utilised to develop an online learning module within the Opening Real Science (ORS) project--"Modelling the present: Predicting the future." The module was realised through an interdisciplinary collaboration, among mathematicians, scientists and mathematics and science educators that…
World First MarsLink Mission Participants Learn and Enjoy Science
ERIC Educational Resources Information Center
Barry, Dana
2005-01-01
This article describes how students learn and experience the excitement of science by actively participating in the MarsLink Space Mission, an educational component of the National Aeronautics and Space Administration's (NASA) Mars Missions. This Mission has been made possible by Space Explorers, Inc., in collaboration with NASA. In the…
ERIC Educational Resources Information Center
Russell, Jae-eun; Van Horne, Sam; Ward, Adam S.; Bettis, Arthur, III.; Sipola, Maija; Colombo, Mariana; Rocheford, Mary K.
2016-01-01
This study investigated students' attitudes, engagement, satisfaction, and performance in Introduction to Environmental Science after it was transformed from a typical large lecture to a student-centered learning environment. The instructors of the course collaborated with the Office of Teaching, Learning & Technology and radically redesigned…
Reflection after Teaching a Lesson: Experiences of Secondary School Science Teachers
ERIC Educational Resources Information Center
Halstead, Melissa A.
2017-01-01
Secondary science teachers spend most of their time planning, collaborating, and teaching, but spend little time reflecting after teaching a single lesson. The theoretical framework of the adult learning theory and the transformative learning theory was the basis of this study. This qualitative research study was conducted to understand the…
Information Infrastructure, Information Environments, and Long-Term Collaboration
NASA Astrophysics Data System (ADS)
Baker, K. S.; Pennington, D. D.
2009-12-01
Information infrastructure that supports collaborative science is a complex system of people, organizational arrangements, and tools that require co-management. Contemporary studies are exploring how to establish and characterize effective collaborative information environments. Collaboration depends on the flow of information across the human and technical system components through mechanisms that create linkages, both conceptual and technical. This transcends the need for requirements solicitation and usability studies, highlighting synergistic interactions between humans and technology that can lead to emergence of group level cognitive properties. We consider the ramifications of placing priority on establishing new metaphors and new types of learning environments located near-to-data-origin for the field sciences. In addition to changes in terms of participant engagement, there are implications in terms of innovative contributions to the design of information systems and data exchange. While data integration occurs in the minds of individual participants, it may be facilitated by collaborative thinking and community infrastructure. Existing learning frameworks - from Maslow’s hierarchy of needs to organizational learning - require modification and extension if effective approaches to decentralized information management and systems design are to emerge. Case studies relating to data integration include ecological community projects: development of cross-disciplinary conceptual maps and of a community unit registry.
Using wikis to stimulate collaborative learning in two online health sciences courses.
Zitzelsberger, Hilde; Campbell, Karen A; Service, Dorothea; Sanchez, Otto
2015-06-01
The use of wiki technology fits well in courses that encourage constructive knowledge building and social learning by a community of learners. Pedagogically, wikis have attracted interest in higher education environments because they facilitate the collaborative processes required for developing student group assignments. This article describes a pilot project to assess the implementation of wikis in two online small- and mid-sized elective courses comprising nursing students in third- or fourth-year undergraduate levels within interdisciplinary health sciences courses. The need exists to further develop the pedagogical use of wiki environments before they can be expected to support collaboration among undergraduate nursing students. Adapting wiki implementation to suitable well-matched courses will make adaptation of wikis into nursing curricula more effective and may increase the chances that nursing students will hone the collaborative abilities that are essential in their future professional roles in communities of practice. Copyright 2015, SLACK Incorporated.
NASA Astrophysics Data System (ADS)
Fisher-Maltese, Carley B.
Recently, schools nationwide have expressed a renewed interest in school gardens (California School Garden Network, 2010), viewing them as innovative educational tools. Most of the scant studies on these settings investigate the health/nutritional impacts, environmental attitudes, or emotional dispositions of students. However, few studies examine the science learning potential of a school garden from an informal learning perspective. Those studies that do examine learning emphasize individual learning of traditional school content (math, science, etc.) (Blaire, 2009; Dirks & Orvis, 2005; Klemmer, Waliczek & Zajicek, 2005a & b; Smith & Mostenbocker, 2005). My study sought to demonstrate the value of school garden learning through a focus on measures of learning typically associated with traditional learning environments, as well as informal learning environments. Grounded in situated, experiential, and contextual model of learning theories, the purpose of this case study was to examine the impacts of a school garden program at a K-3 elementary school. Results from pre/post tests, pre/post surveys, interviews, recorded student conversations, and student work reveal a number of affordances, including science learning, cross-curricular lessons in an authentic setting, a sense of school community, and positive shifts in attitude toward nature and working collaboratively with other students. I also analyzed this garden-based unit as a type curriculum reform in one school in an effort to explore issues of implementing effective practices in schools. Facilitators and barriers to implementing a garden-based science curriculum at a K-3 elementary school are discussed. Participants reported a number of implementation processes necessary for success: leadership, vision, and material, human, and social resources. However, in spite of facilitators, teachers reported barriers to implementing the garden-based curriculum, specifically lack of time and content knowledge.
Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead
NASA Astrophysics Data System (ADS)
Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.
2017-12-01
The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.
A Festival of Contemporary Science for Science Teachers
ERIC Educational Resources Information Center
Harrison, Tim; Berry, Bryan; Shallcross, Dudley
2010-01-01
In this article, the authors describe the first Festival of Contemporary Science for Science Teachers which was held in January 2010. Focusing on a number of leading-edge science topics, this new festival was organised by Bristol ChemLabS, in collaboration with the Science Learning Centre South West, and involved academics from several departments…
NASA Astrophysics Data System (ADS)
Coll, Sandhya Devi; Coll, Richard Kevin
2018-04-01
Background: Recent research and curriculum reforms have indicated the need for diversifying teaching approaches by drawing upon student interest and engagement in ways which makes learning science meaningful. Purpose: This study examines the integration of informal/free choice learning which occurred during learning experiences outside school (LEOS) with classroom learning using digital technologies. Specifically, the digital technologies comprised a learning management system (LMS), Moodle, which fits well with students' lived experiences and their digital world. Design and Method: This study examines three out-of-school visits to Informal Science Institutes (ISI) using a digitally integrated fieldtrip inventory (DIFI) Model. Research questions were analysed using thematic approach emerging along with semi-structured interviews, before, during and after the visit, and assessing students' learning experiences. Data comprised photographs, field notes, and unobtrusive observations of the classroom, wiki postings, student work books and teacher planning diaries. Results: We argue, that pre- and post-visit planning using the DIFI Model is more likely to engage learners, and the use of a digital learning platform was even more likely to encourage collaborative learning. The conclusion can also be drawn that students' level of motivation for collaborative learning positively correlates with their improvement in academic achievement.
Urban schools' teachers enacting project-based science
NASA Astrophysics Data System (ADS)
Tal, Tali; Krajcik, Joseph S.; Blumenfeld, Phyllis C.
2006-09-01
What teaching practices foster inquiry and promote students to learn challenging subject matter in urban schools? Inquiry-based instruction and successful inquiry learning and teaching in project-based science (PBS) were described in previous studies (Brown & Campione, [1990]; Crawford, [1999]; Krajcik, Blumenfeld, Marx, Bass, & Fredricks, [1998]; Krajcik, Blumenfeld, Marx, & Solloway, [1994]; Minstrell & van Zee, [2000]). In this article, we describe the characteristics of inquiry teaching practices that promote student learning in urban schools. Teaching is a major factor that affects both achievement of and attitude of students toward science (Tamir, [1998]). Our involvement in reform in a large urban district includes the development of suitable learning materials and providing continuous and practiced-based professional development (Fishman & Davis, in press; van Es, Reiser, Matese, & Gomez, [2002]). Urban schools face particular challenges when enacting inquiry-based teaching practices like those espoused in PBS. In this article, we describe two case studies of urban teachers whose students achieved high gains on pre- and posttests and who demonstrated a great deal of preparedness and commitment to their students. Teachers' attempts to help their students to perform well are described and analyzed. The teachers we discuss work in a school district that strives to bring about reform in mathematics and science through systemic reform. The Center for Learning Technologies in Urban Schools (LeTUS) collaborates with the Detroit Public Schools to bring about reform in middle-school science. Through this collaboration, diverse populations of urban-school students learn science through inquiry-oriented projects and the use of various educational learning technologies. For inquiry-based science to succeed in urban schools, teachers must play an important role in enacting the curriculum while addressing the unique needs of students. The aim of this article is to describe patterns of good science teaching in urban school.
NASA Astrophysics Data System (ADS)
Smith, Denise; Lestition, Kathleen; Squires, Gordon; Biferno, Anya A.; Cominsky, Lynn; Manning, Colleen; NASA's Universe of Learning Team
2018-01-01
NASA's Universe of Learning creates and delivers science-driven, audience-driven resources and experiences designed to engage and immerse learners of all ages and backgrounds in exploring the universe for themselves. The project is the result of a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, Jet Propulsion Laboratory, Smithsonian Astrophysical Observatory, and Sonoma State University, and is one of 27 competitively-selected cooperative agreements within the NASA Science Mission Directorate STEM Activation program. The NASA's Universe of Learning team draws upon cutting-edge science and works closely with Subject Matter Experts (scientists and engineers) from across the NASA Astrophysics Physics of the Cosmos, Cosmic Origins, and Exoplanet Exploration themes. Together we develop and disseminate data tools and participatory experiences, multimedia and immersive experiences, exhibits and community programs, and professional learning experiences that meet the needs of our audiences, with attention to underserved and underrepresented populations. In doing so, scientists and educators from the partner institutions work together as a collaborative, integrated Astrophysics team to support NASA objectives to enable STEM education, increase scientific literacy, advance national education goals, and leverage efforts through partnerships. Robust program evaluation is central to our efforts, and utilizes portfolio analysis, process studies, and studies of reach and impact. This presentation will provide an overview of NASA's Universe of Learning, our direct connection to NASA Astrophysics, and our collaborative work with the NASA Astrophysics science community.
Enhancing the Conceptual Understanding of Science.
ERIC Educational Resources Information Center
Gabel, Dorothy
2003-01-01
Describes three levels of understanding science: the phenomena (macroscopic), the particle (microscopic), and the symbolic. Suggests that the objective of science instruction at all levels is conceptual understanding of scientific inquiry. Discusses effective instructional strategies, including analogy, collaborative learning, concept mapping,…
Science Learning: Processes and Applications.
ERIC Educational Resources Information Center
Santa, Carol Minnick, Ed.; Alvermann, Donna E., Ed.
Reflecting a collaboration in terms of content areas, levels, and audience, this volume represents the efforts of science teachers and reading teachers to understand and help one another fine tune their craft. Chapters in the volume include: (1) "Metacognition, Reading and Science Education" (Linda Baker); (2) "Science and Reading:…
Bringing nursing science to the classroom: a collaborative project.
Reams, Susan; Bashford, Carol
2009-01-01
This project resulted as a collaborative effort on the part of a public school system and nursing faculty. The fifth grade student population utilized in this study focused on the skeletal, muscular, digestive, circulatory, respiratory, and nervous systems as part of their school system's existing science and health curriculum. The intent of the study was to evaluate the impact on student learning outcomes as a result of nursing-focused, science-based, hands-on experiential activities provided by nursing faculty in the public school setting. An assessment tool was created for pretesting and posttesting to evaluate learning outcomes resulting from the intervention. Over a two day period, six classes consisting of 25 to 30 students each were divided into three equal small groups and rotated among three interactive stations. Students explored the normal function of the digestive system, heart, lungs, and skin. Improvement in learning using the pretest and posttest assessment tools were documented.
AMOEBA: Designing for Collaboration in Computer Science Classrooms through Live Learning Analytics
ERIC Educational Resources Information Center
Berland, Matthew; Davis, Don; Smith, Carmen Petrick
2015-01-01
AMOEBA is a unique tool to support teachers' orchestration of collaboration among novice programmers in a non-traditional programming environment. The AMOEBA tool was designed and utilized to facilitate collaboration in a classroom setting in real time among novice middle school and high school programmers utilizing the IPRO programming…
Earth System Science Education for the 21st Century: Progress and Plans
NASA Astrophysics Data System (ADS)
Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.
2005-12-01
Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.
2013-01-01
outreach, and (4) social science and historical research/lessons learned . In some instances, the research entity fit into more than one category. We...Bureau of Intelligence and Research (INR) and the Analytic Outreach Initiative (AOI) at ODNI. Social science and historical research/lessons learned ...its coordination efforts, CSIR was interested in learning more about potential interagency research partners and how collaboration could be improved
NASA Astrophysics Data System (ADS)
Olin, Anette; Ingerman, Åke
2016-10-01
This study concerns teaching and learning development in science through collaboration between science teachers and researchers. At the core was the ambition to integrate research outcomes of science education—here `didactic models'—with teaching practice, aligned with professional development. The phase where the collaboration moves from initial establishment towards a stable practice is investigated. The study aims to identifying features of formation and exploring consequences for the character of contact between research and teaching. Specific questions are "What may be identified as actions and arrangements impacting the quality and continuation of the emerging practice?" and "What and in what ways may support teacher growth?" The analysis draws on practice architectures as a theoretical framework and specifically investigates the initial meetings as a practice-node for a new practice, empirically drawing on documented reflections on science teaching, primarily from meetings and communication. The results take the form of an analytical-narrative account of meetings that focused planning, enactment and reflection on teaching regarding the human body. We identify enabling actions such as collaborative work with concrete material from the classroom and arrangements such as the regular meetings and that the collaborative group had a core of shared competence—in science teaching and learning. Constraining were actions such as introducing research results with weak connection to practical action in the school practice and arrangements such as differences between school and university practice architectures and the general `oppression' of teachers' classroom practice. The discussion includes reflections on researchers' roles and on a research and practice base for school development.
NASA Astrophysics Data System (ADS)
Yin, Xinying; Buck, Gayle A.
2015-09-01
This study explored integrating formative assessment to a Chinese high school chemistry classroom, where the extremely high-stakes testing and Confucian-heritage culture constituted a particular context, through a collaborative action research. One researcher worked with a high school chemistry teacher in China to integrate formative assessment into his teaching with 54 students in one of his classes. Data resources included transcripts from planning sessions, lesson plans, teacher interviews, classroom observations, student work, student interviews and surveys. The findings of this study revealed that as the teacher allowed his original views about students' learning and assessment tasks to be challenged by the students' learning, his teaching practice and understandings of formative assessment were transformed. Students' learning experience was also examined in the formative assessment process. The potentials and challenges of integrating formative assessment in the Chinese high school science classroom are discussed. This study indicated that formative assessment is promising to implement in Chinese high school science classrooms to enhance students' learning and meet the imperative needs for high-stakes exam preparation as well; and writing formative assessment tasks are favorable in this particular socio-cultural context. Further, this study suggested that facilitating in-service science teachers to integrate formative assessment through collaborative action research is a powerful professional development on improving teaching and learning under the highly constraint context.
NASA Astrophysics Data System (ADS)
Bunt, Nancy R.
Designed as a regional approach to the coordination of efforts and focusing of resources in fragmented southwestern Pennsylvania, the Collaborative's story is narrated by its founding director. Drawing from office archives, including letters of invitation, meeting notes, and participant evaluations of each event, the study describes the genesis of the Collaborative. It begins with identification of the problem and the resulting charge by a founding congress. It details the building of an organizational framework, the creation of a shared vision, the development of a blueprint for action, and the decision-making involved in determining how to strengthen mathematics and science education in the region. The study notes several influences on the Collaborative's leadership. Considering the role of other collaboratives, the study notes that knowledge of the Los Angeles Educational Partnership's LA SMART jump-started the Collaborative's initial planning process. Knowledge of San Francisco's SEABA influenced the size and naming of the Collaborative's Journal. Fred Newmann's definition of authentic instruction, learning and assessment are reflected in the shared vision and belief statements of the Collaborative. The five disciplines of Peter Senge influenced the nature of the organizational framework as well as the day-to-day operations of the Collaborative. The study also notes that the five organizational tensions identified in Ann Lieberman's work on "intentional learning communities" were present in every aspect of the evolution of the Collaborative. The study suggests that leaders of evolving collaboratives: (1) engage all relevant stakeholders in assessing the current situation and defining a desired future state, (2) take advantage of the lessons learned by others and the resources available at the state and national levels to design strategies and build action plans, (3) model the practices to be inspired in the learning community, (4) constantly gather feedback on process and content--and act on the recommendations as soon as possible, and (5) keep the focus of efforts on achieving the desired future--and measure progress toward it.
Fifth Graders' Flow Experience in a Digital Game-Based Science Learning Environment
ERIC Educational Resources Information Center
Zheng, Meixun; Spires, Hiller A.
2014-01-01
This mixed methods study examined 73 5th graders' flow experience in a game-based science learning environment using two gameplay approaches (solo and collaborative gameplay). Both survey and focus group interview findings revealed that students had high flow experience; however, there were no flow experience differences that were contingent upon…
ERIC Educational Resources Information Center
Thornton, Amanda; McKissick, Bethany R.; Spooner, Fred; Lo, Ya-yu; Anderson, Adrienne L.
2015-01-01
Investigating the effectiveness of inclusive practices in science instruction and determining how to best support high school students with specific learning disabilities (SLD) in the general education classroom is a topic of increasing research attention in the field. In this study, the researchers conducted a single-subject multiple probe across…
ERIC Educational Resources Information Center
Walsh, Elizabeth M.
2012-01-01
Preparing a generation of citizens to respond to the impacts of climate change will require collaborative interactions between natural scientists, learning scientists, educators and learners. Promoting effective involvement of scientists in climate change education is especially important as climate change science and climate impacts are…
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit; Xie, Wenting
2014-01-01
Though discussion of the teacher factor in ICT-enabled science learning abounds in the literature, the investigation of Teacher Enactments (TEs) of ICT-facilitated lessons through exploring teaching practices is still under-explored and under-recognized. Current studies are still lacking in evidence-based findings of TEs based on the investigation…
The PROFILES Project Promoting Science Teaching in a Foreign Language
ERIC Educational Resources Information Center
Blanchard, B.; Masserot, V.; Holbrook, J.
2014-01-01
School subjects can provide a good context for learning a second language. This is especially true for science as it can involve a range of student centred activities, which involve students in collaborative communication related to a range of different competences. This paper reflects on one approach to learning in a second language, using the…
CosmoQuest: Building a Community of Skilled Citizen Science Contributors
NASA Astrophysics Data System (ADS)
Gay, P.; Lehan, C.; Bracey, G.; Durrell, P.; Komatsu, T.; Yamani, A.; Francis, M. R.
2016-12-01
The CosmoQuest Virtual Research Facility invites the public to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. CosmoQuest projects range in difficulty from simple crater and transient marking tasks to more complicated mapping tasks. To successfully engage contributors in creating usable results, training and validation are required. This is accomplished through activities that are designed to mirror the experiences students would have in a university, and include mentoring by team scientists, feedback on contributor efforts, seminars to learn about new science, and even formal classes to provide needed background. Recruitment is accomplished using new and social media, and planetarium and Science on the Sphere™ trailers and shows, and community is built through online and real-world collaboration spaces and events. In this presentation, we detail CosmoQuest's four-pronged approach of media recruitment, science education, citizen science, and community collaboration. We also discuss how it is leveraged to create a skilled collaboration of citizen scientists. Training and data validation activities will be be emphasized, with examples of both what can go right and lessons learned from when things go wrong. We conclude with strategies on how to utilize best practices in user interface design to create virtual experiences that allow major citizen science efforts to be scalable to large audiences.
NASA Astrophysics Data System (ADS)
Pearson, V. K.; Greenwood, R. C.; Bridges, J.; Watson, J.; Brooks, V.
The Rocks From Space outreach initiative and The Space Safari: the development of virtual learning environments for planetary science outreach in the UK. V.K. Pearson (1), R.C. Greenwood (1), J. Bridges (1), J. Watson (2) and V. Brooks (2) (1) Plantetary and Space Sciences Research Institute (PSSRI), The Open University, Milton Keynes, MK7 6AA. (2) Stockton-on-Tees City Learning Centre, Marsh House Avenue, Billingham, TS23 3QJ. (v.k.pearson@open.ac.uk Fax: +44 (0) 858022 Phone: +44 (0) 1908652814 The Rocks From Space (RFS) project is a PPARC and Open University supported planetary science outreach initiative. It capitalises on the successes of Open University involvement in recent space missions such as Genesis and Stardust which have brought planetary science to the forefront of public attention.Our traditional methods of planetary science outreach have focussed on activities such as informal school visits and public presentations. However, these traditional methods are often limited to a local area to fit within time and budget constraints and therefore RFS looks to new technologies to reach geographically dispersed audiences. In collaboration with Stockton-on-Tees City Learning Centre, we have conducted a pilot study into the use of Virtual Learning Environments (VLEs) for planetary science outreach. The pilot study was undertaken under the guise of a "Space Safari" in which pupils dispersed across the Teesside region of the UK could collaboratively explore the Solar System. Over 300 students took part in the pilot from 11 primary schools (ages 6-10). Resources for their exploration were provided by Open University scientists in Milton Keynes and hosted on the VLE. Students were encouraged to post their findings, ideas and questions via wikis and a VLE forum. This combination of contributions from students, teachers and scientists encouraged a collaborative learning environment. These asynchronous activities were complemented by synchronous virtual classroom activities using Elluminate Live! facilities where students could attend "drop-in" sessions with scientists to discuss their exploration. Following these activities, schools were asked to produce a collaborative piece of work about their exploration that could be hosted on the Rocks From Space website (www.rocksfromspace.open.ac.uk; designed by Milton Keynes HE college students) as a resource for future projects and wider public access. Submissions included powerpoint presentations, animations, poems and murals and illustrates the cross curriculum nature of this project. We present the outcomes and evaluation of this pilot study with recommendations for the future use of VLEs in planetary science outreach.
Garcia-Milian, Rolando; Norton, Hannah F.; Auten, Beth; Davis, Valrie I.; Holmes, Kristi L.; Johnson, Margeaux; Tennant, Michele R.
2013-01-01
Cross-disciplinary, team-based collaboration is essential for addressing today’s complex research questions, and librarians are increasingly entering into such collaborations. This study identifies skills needed as librarians integrate into cross-disciplinary teams, based on the experiences of librarians involved in the development and implementation of VIVO, a research discovery and collaboration platform. Participants discussed the challenges, skills gained, and lessons learned throughout the project. Their responses were analyzed in the light of the science of team science literature, and factors affecting collaboration on the VIVO team were identified. Skills in inclusive thinking, communication, perseverance, adaptability, and leadership were found to be essential. PMID:23833333
Geoscience Education Research, Development, and Practice at Arizona State University
NASA Astrophysics Data System (ADS)
Semken, S. C.; Reynolds, S. J.; Johnson, J.; Baker, D. R.; Luft, J.; Middleton, J.
2009-12-01
Geoscience education research and professional development thrive in an authentically trans-disciplinary environment at Arizona State University (ASU), benefiting from a long history of mutual professional respect and collaboration among STEM disciplinary researchers and STEM education researchers--many of whom hold national and international stature. Earth science education majors (pre-service teachers), geoscience-education graduate students, and practicing STEM teachers richly benefit from this interaction, which includes team teaching of methods and research courses, joint mentoring of graduate students, and collaboration on professional development projects and externally funded research. The geologically, culturally, and historically rich Southwest offers a superb setting for studies of formal and informal teaching and learning, and ASU graduates the most STEM teachers of any university in the region. Research on geoscience teaching and learning at ASU is primarily conducted by three geoscience faculty in the School of Earth and Space Exploration and three science-education faculty in the Mary Lou Fulton Institute and Graduate School of Education. Additional collaborators are based in the College of Teacher Education and Leadership, other STEM schools and departments, and the Center for Research on Education in Science, Mathematics, Engineering, and Technology (CRESMET). Funding sources include NSF, NASA, US Dept Ed, Arizona Board of Regents, and corporations such as Resolution Copper. Current areas of active research at ASU include: Visualization in geoscience learning; Place attachment and sense of place in geoscience learning; Affective domain in geoscience learning; Culturally based differences in geoscience concepts; Use of annotated concept sketches in learning, teaching, and assessment; Student interactions with textbooks in introductory courses; Strategic recruitment and retention of secondary-school Earth science teachers; Research-based professional development for STEM teachers; Design and evaluation of innovative transdisciplinary and online curricula; and Visitor cognition of geologic time and basic principles in Southwestern National Parks.
Learning and the transformative potential of citizen science.
Bela, Györgyi; Peltola, Taru; Young, Juliette C; Balázs, Bálint; Arpin, Isabelle; Pataki, György; Hauck, Jennifer; Kelemen, Eszter; Kopperoinen, Leena; Van Herzele, Ann; Keune, Hans; Hecker, Susanne; Suškevičs, Monika; Roy, Helen E; Itkonen, Pekka; Külvik, Mart; László, Miklós; Basnou, Corina; Pino, Joan; Bonn, Aletta
2016-10-01
The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social-learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Preparing Scientists to be Community Partners
NASA Astrophysics Data System (ADS)
Pandya, R. E.
2012-12-01
Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential. There is much more to learn about preparing students for these collaborative approaches, and the principal goal of sharing these strategies is to spark a conversation about the ways we prepare scientists and the public to work together in an increasingly collaborative scientific enterprise.
Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.
2014-12-01
As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.
Operationalizing the 21st Century Learning Skills Framework for the NASA Mission to Mars Program
NASA Astrophysics Data System (ADS)
Smith, Burgess; Research, MSI; Evaluation Team; Interactive Videoconferences Teamlt/p>, MSI
2013-06-01
Internal evaluators working with the NASA Mission to Mars program, an out-of-school collaborative videoconferencing program at the Museum of Science and Industry Chicago (MSI), developed an observation protocol to collect evidence about the collaborative learning opportunities offered by the program’s unique technology. Details about the protocol’s development are discussed, along with results of the pilot observations of the program.
NASA Astrophysics Data System (ADS)
Idaszak, R.; Lenhardt, W. C.; Jones, M. B.; Ahalt, S.; Schildhauer, M.; Hampton, S. E.
2014-12-01
The NSF, in an effort to support the creation of sustainable science software, funded 16 science software institute conceptualization efforts. The goal of these conceptualization efforts is to explore approaches to creating the institutional, sociological, and physical infrastructures to support sustainable science software. This paper will present the lessons learned from two of these conceptualization efforts, the Institute for Sustainable Earth and Environmental Software (ISEES - http://isees.nceas.ucsb.edu) and the Water Science Software Institute (WSSI - http://waters2i2.org). ISEES is a multi-partner effort led by National Center for Ecological Analysis and Synthesis (NCEAS). WSSI, also a multi-partner effort, is led by the Renaissance Computing Institute (RENCI). The two conceptualization efforts have been collaborating due to the complementarity of their approaches and given the potential synergies of their science focus. ISEES and WSSI have engaged in a number of activities to address the challenges of science software such as workshops, hackathons, and coding efforts. More recently, the two institutes have also collaborated on joint activities including training, proposals, and papers. In addition to presenting lessons learned, this paper will synthesize across the two efforts to project a unified vision for a science software institute.
Good Intentions Are Not Enough: A Story of Collaboration in Science, Education, and Technology.
ERIC Educational Resources Information Center
Collins, Angelo; Bercaw, Lynne; Palmeri, Amy; Altman, Jan; Singer-Gabella, Marcy; Gary, Todd
1999-01-01
Explains what collaboration in education means and presents a study conducted in an interdisciplinary course in which preservice teachers were responsible for developing a CD-ROM on Cystic Fibrosis that was to be used by upper middle grade students. Discusses the impact of the interdisciplinary collaboration on student learning. (YDS)
ERIC Educational Resources Information Center
Loera, Gustavo; Nakamoto, Jonathan; Rueda, Robert; Oh, Youn Joo; Beck, Cindy; Cherry, Carla
2013-01-01
The social and collaborative aspects of work settings are becoming increasingly important. For example, recent research has placed emphasis on the social nature of learning. In addition, many authors have suggested that 21st century skills that will be required in future work and professional environments will involve collaborative skills, making…
Information empowerment: predeparture resource training for students in global health.
Rana, Gurpreet K
2014-04-01
The Taubman Health Sciences Library (THL) collaborates with health sciences schools to provide information skills instruction for students preparing for international experiences. THL enhances students' global health learning through predeparture instruction for students who are involved in global health research, clinical internships, and international collaborations. This includes teaching international literature searching skills, providing country-specific data sources, building awareness of relevant mobile resources, and encouraging investigation of international news. Information skills empower creation of stronger global partnerships. Use of information resources has enhanced international research and training experiences, built lifelong learning foundations, and contributed to the university's global engagement. THL continues to assess predeparture instruction.
JR Live: Lessons Learned from Ship-to-Shore Interactions with the JOIDES Resolution
NASA Astrophysics Data System (ADS)
Cooper, S. K.
2016-02-01
Live ship-to-shore events have been conducted regularly from the International Ocean Discovery Program (IODP) research vessel JOIDES Resolution since 2009. These 45-minute events have reached thousands of students, educators and members of the general public with the JR's cutting edge science and technology and the excitement of discovery, science process and careers. Conducted by trained on-board Education/Outreach Officers on board the JR's two-month expeditions, the programs vary over time and have evolved with available technology. Each event incorporates collaboration between the Education Officer, scientists who are a part of the expedition science party, and requests from shore-side audiences. These collaborations have been successful in igniting interest among students and educators, providing scientists with outreach experiences and in meeting education standards and goals. Over the past six years, many lessons have been learned about procedures, technology, content, follow-up and impact. This session will share some of these lessons, identify opportunities for collaboration and engagement, and explore growth opportunities and directions.
NASA Astrophysics Data System (ADS)
Piliouras, Panagiotis; Evangelou, Odysseas
2012-04-01
The demographic changes in Greek schools underline the need for reconsidering the way in which migrant pupils move from their everyday culture into the culture of school science (a process known as "cultural border crossing"). Migrant pupils might face difficulties when they attempt to transcend cultural borders and this may influence their progress in science as well as the construction of suitable academic identities as a means of promoting scientific literacy. In the research we present in this paper, adopting the socioculturally driven thesis that learning can be viewed and studied as a meaning-making, collaborative inquiry process, we implemented an action research program (school year 2008-2009) in cooperation with two teachers, in a primary school of Athens with 85% migrant pupils. We examined whether the two teachers, who became gradually acquainted with cross-cultural pedagogy during the project, act towards accommodating the crossing of cultural borders by implementing a variety of inclusive strategies in science teaching. Our findings reveal that both teachers utilized suitable cross-border strategies (strategies concerning the establishment of a collaborative inquiry learning environment, and strategies that were in accordance with a cross-border pedagogy) to help students cross smoothly from their "world" to the "world of science". A crucial key to the teachers' expertise was their previous participation in collaborative action research (school years 2004-2006), in which they analyzed their own discourse practices during science lessons in order to establish more collaborative inquiry environments.
NASA Technical Reports Server (NTRS)
Ambur, Manjula; Schwartz, Katherine G.; Mavris, Dimitri N.
2016-01-01
The fields of machine learning and big data analytics have made significant advances in recent years, which has created an environment where cross-fertilization of methods and collaborations can achieve previously unattainable outcomes. The Comprehensive Digital Transformation (CDT) Machine Learning and Big Data Analytics team planned a workshop at NASA Langley in August 2016 to unite leading experts the field of machine learning and NASA scientists and engineers. The primary goal for this workshop was to assess the state-of-the-art in this field, introduce these leading experts to the aerospace and science subject matter experts, and develop opportunities for collaboration. The workshop was held over a three day-period with lectures from 15 leading experts followed by significant interactive discussions. This report provides an overview of the 15 invited lectures and a summary of the key discussion topics that arose during both formal and informal discussion sections. Four key workshop themes were identified after the closure of the workshop and are also highlighted in the report. Furthermore, several workshop attendees provided their feedback on how they are already utilizing machine learning algorithms to advance their research, new methods they learned about during the workshop, and collaboration opportunities they identified during the workshop.
ERIC Educational Resources Information Center
Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.
During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This guide…
ERIC Educational Resources Information Center
Hafner, Christoph A.; Miller, Lindsay
2011-01-01
This paper reports on the syllabus design and implementation of an English for Science and Technology (EST) course at an English-medium university in Hong Kong. The course combined elements of project-based learning and a "pedagogy for multiliteracies" (New London Group, 1996) to produce a strong learner autonomy focus. A major component…
ERIC Educational Resources Information Center
Howitt, Christine
2011-01-01
"Planting the Seeds of Science" is a new early childhood science resource developed through a collaboration between science/engineering academics, early childhood teacher educators and early childhood pre-service teachers, with funding from the Australian Learning and Teaching Council. Based on best practice early childhood principles,…
Visualising the Invisible: A Network Approach to Reveal the Informal Social Side of Student Learning
ERIC Educational Resources Information Center
Hommes, J.; Rienties, B.; de Grave, W.; Bos, G.; Schuwirth, L.; Scherpbier, A.
2012-01-01
World-wide, universities in health sciences have transformed their curriculum to include collaborative learning and facilitate the students' learning process. Interaction has been acknowledged to be the synergistic element in this learning context. However, students spend the majority of their time outside their classroom and interaction does not…
Effects of Web based inquiry on physical science teachers and students in an urban school district
NASA Astrophysics Data System (ADS)
Stephens, Joanne
An inquiry approach in teaching science has been advocated by many science educators for the past few decades. Due to insufficient district funding for science teaching, inadequate science laboratory facilities, and outdated science materials, inquiry teaching has been difficult for many science teachers, particularly science teachers in urban settings. However, research shows that the availability of computers with high speed Internet access has increased in all school districts. This study focused on the effects of inservice training on teachers and using web based science inquiry activities with ninth grade physical science students. Participants were 16 science teachers and 474 physical science students in an urban school district of a large southern U.S. city. Students were divided into control and experimental groups. The students in the experimental group participated in web based inquiry activities. Students in the control group were taught using similar methods, but not web based science activities. Qualitative and quantitative data were collected over a nine-week period using instruments and focus group interviews of students' and teachers' perceptions of the classroom learning environment, students' achievement, lesson design and classroom implementation, science content of lesson, and classroom culture. The findings reported that there were no significant differences in teachers' perception of the learning environment before and after implementing web based inquiry activities. The findings also reported that there were no overall significant differences in students' perceptions of the learning environment and achievement, pre-survey to post-survey, pre-test to post-test, between the control group and experimental group. Additional findings disclosed that students in the experimental group learned in a collaborative environment. The students confirmed that collaborating with others contributed to a deeper understanding of the science content. This study provides insights about utilizing technology to promote science inquiry teaching and learning. This study describes students' and teachers' perceptions of using web based inquiry to support scientific inquiry.
NASA Astrophysics Data System (ADS)
Zainfeld, S.
2017-12-01
Teacher-led inquiry into student learning is a promising method of formative assessment to gain insight into student achievement. NGSS-aligned K-12 Climate Science curricula taught with citizen science and teacher-led inquiry methods are described, along with results from a scientist-teacher collaboration survey.
ERIC Educational Resources Information Center
Schielack, Jane F., Ed.; Knight, Stephanie L., Ed.
2012-01-01
How can we use new technology to support and educate the science leaders of tomorrow? This unique book describes the design, development, and implementation of an effective science leadership program that promotes collaboration among scientists and science educators, provides authentic research experiences for educators, and facilitates adaptation…
Harris, Thomas R; Brophy, Sean P
2005-09-01
Vanderbilt University, Northwestern University, the University of Texas and the Harvard/MIT Health Sciences Technology Program have collaborated since 1999 to develop means to improve bioengineering education. This effort, funded by the National Science Foundation as the VaNTH Engineering Research Center in Bioengineering Educational Technologies, has sought a synthesis of learning science, learning technology, assessment and the domains of bioengineering in order to improve learning by bioengineering students. Research has shown that bioengineering educational materials may be designed to emphasize challenges that engage the student and, when coupled with a learning cycle and appropriate technologies, can lead to improvements in instruction.
A Scientist's Guide to Achieving Broader Impacts through K-12 STEM Collaboration.
Komoroske, Lisa M; Hameed, Sarah O; Szoboszlai, Amber I; Newsom, Amanda J; Williams, Susan L
2015-03-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students' capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K-12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists' research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach.
NASA Astrophysics Data System (ADS)
Nelson, Adrienne Fleurette
The purpose of this mixed method research study was to examine the constructivist beliefs and instructional practices of secondary science teachers. The research also explored situations that impacted whether or not student centered instruction occurred. The study revealed science teachers held constructive beliefs pertaining to student questioning of the learning process and student autonomy in interacting with other learners. Teachers held the least constructivist beliefs pertaining to student teacher collaboration on lesson design. Additionally, teacher beliefs and practice were not congruent due to instructional practices being deemed less constructivist than reported. The study found that curricular demands, teacher perceptions about students, inadequate laboratory resources, and the lack of teacher understanding about the components of constructivist instruction inhibited student centered instruction. The results of this study led to six recommendations that can be implemented by school districts in collaboration with science teachers to promote constructivist instruction.
Variations on an Historical Case Study
ERIC Educational Resources Information Center
Field, Patrick
2006-01-01
The National Inquiry Standard for Science Education Preparation requires science teachers to introduce students to scientific inquiry to solve problems by various methods, including active learning in a collaborative environment. In order for science teachers to comply with this inquiry standard, activities must be designed for students to…
Collegiality and Better Science Teaching
ERIC Educational Resources Information Center
Weiser, Brenda
2012-01-01
For the past five years, teachers from four Houston-area school districts have joined together in a professional learning community (PLC) to improve their science teaching. Through the University of Houston-Clear Lake (UHCL) Regional Collaborative for Excellence in Science and Mathematics Teaching, the teachers strengthen content knowledge and…
NASA Astrophysics Data System (ADS)
Chase, M.; Brunacini, J.; Sparrow, E. B.
2016-12-01
As interest in Indigenous Knowledge (IK) grows, how can researchers ensure that collaboration is meaningful, relevant, and valuable for those involved? The Signs of the Land: Reaching Arctic Communities Facing Climate Change Camp is a collaborative project developed by the Association for Interior Native Educators (AINE), the International Arctic Research Center (IARC), and the PoLAR Partnership. Modeled on AINE's Elder Academy and supported by a grant from the National Science Foundation, the camp facilitates in-depth dialogue about climate change and explores causes, impacts, and solutions through the cultural lens of Alaska Native communities. The project integrates local observations, IK, and western climate science. Participants engage with Alaska Native Elders, local climate researchers, and learn about climate communication tools and resources for responding. Following camps in 2014 and 2016, project partners identified a variety of questions about the challenges and opportunities of the collaboration that will be discussed in this presentation. For instance, what does it mean to equitably integrate IK, and in what ways are Native communities able to participate in research project design, delivery, and evaluation? How are decisions made and consensus built within cultural practices, project goals, and funding expectations? How do opportunities available to Indigenous communities to engage with western climate science broaden understanding and response? And, how does the ability to connect with and learn from Alaska Native Elders affect motivation, engagement, and community action? Finally, what is the effect of learning about climate change in a cultural camp setting?
Problem- and case-based learning in science: an introduction to distinctions, values, and outcomes.
Allchin, Douglas
2013-01-01
Case-based learning and problem-based learning have demonstrated great promise in reforming science education. Yet an instructor, in newly considering this suite of interrelated pedagogical strategies, faces a number of important instructional choices. Different features and their related values and learning outcomes are profiled here, including: the level of student autonomy; instructional focus on content, skills development, or nature-of-science understanding; the role of history, or known outcomes; scope, clarity, and authenticity of problems provided to students; extent of collaboration; complexity, in terms of number of interpretive perspectives; and, perhaps most importantly, the role of applying versus generating knowledge.
Problem- and Case-Based Learning in Science: An Introduction to Distinctions, Values, and Outcomes
Allchin, Douglas
2013-01-01
Case-based learning and problem-based learning have demonstrated great promise in reforming science education. Yet an instructor, in newly considering this suite of interrelated pedagogical strategies, faces a number of important instructional choices. Different features and their related values and learning outcomes are profiled here, including: the level of student autonomy; instructional focus on content, skills development, or nature-of-science understanding; the role of history, or known outcomes; scope, clarity, and authenticity of problems provided to students; extent of collaboration; complexity, in terms of number of interpretive perspectives; and, perhaps most importantly, the role of applying versus generating knowledge. PMID:24006385
NASA Astrophysics Data System (ADS)
Metoyer, S.; Prouhet, T.; Radencic, S.
2007-12-01
The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case studies, survey results, and descriptive categories. Costs and benefits to the scientist are discussed through the use of case studies, surveys, and observations. Third, student learning outcomes from a case study are presented. It is argued that the partnership created the opportunity for the integration of imaginative tools of science (specifically GIS in the case study) and authentic science inquiry. The last component is the discussion of the various tools of science utilized by the scientists for their research, taught to the science teachers by the scientists, and then taught to the students by the science teachers. At each step the technology was modified to fit the levels and applications of the specific science teacher, the grade level taught, and the content area taught. Examples of imaginative tools utilized include Geographic Information System (GIS), Global Positioning System (GPS), Google Earth, time-lapse photography, digital microscopy, and Excel. In summary, by examining this collaborative partnership through the lens of the scientists, the science teachers, and the science teachers' students it is evident that this partnership has created new science education specialists and can ultimately improve scientific literacy in K-12 students. Reference: NRC (2005). How Students Learn. The National Academies Press. Washington D.C.
Creating Catalytic Collaborations between Theater Artists, Scientists, and Research Institutions
NASA Astrophysics Data System (ADS)
Wise, Debra
2012-02-01
Catalyst Collaborative@MIT (CC@MIT) is a collaboration between MIT and Underground Railway Theater (URT), a company with 30 years experience creating theater through interdisciplinary inquiry and engaging community. CC@MIT is dedicated to creating and presenting plays that deepen public understanding about science, while simultaneously providing artistic and emotional experiences not available in other forms of dialogue about science. CC@MIT engages audiences in thinking about themes in science of social and ethical concern; provides insight into the culture of science and the impact of that culture on society; and examines the human condition through the lens of science that intersects our lives and the lives of scientists. Original productions range from Einstein's Dreams to From Orchids to Octopi -- an evolutionary love story; classics re-framed include The Life of Galileo and Breaking the Code (about Alan Turing). CC@MIT commissions playwrights and scientists to create plays; engages audiences with scientists; performs at MIT and a professional venue near the campus; collaborates with the Cambridge Science Festival and MIT Museum; engages MIT students, as well as youth and children. Artistic Director Debra Wise will address how the collaboration developed, what opportunities are provided by collaborations between theaters and scientific research institutions, and lessons learned of value to the field.
NASA Astrophysics Data System (ADS)
van Zee, Emily; Lay, Diantha; Roberts, Deborah
2003-07-01
The purpose of this study was to document the perspectives and experiences of participants in a complex collaboration. Prospective teachers planned and conducted science lessons and small educational research projects with mentoring from teacher researchers who are science enthusiasts. These group investigations seemed to be effective in modifying the self-perceptions of many of the prospective teachers enrolled in a course on methods of teaching science in elementary school. According to responses on an informal evaluation at the end of the Spring 2000 group investigation, for example, most of the prospective teachers indicated that they perceived themselves to be more confident and more competent to teach science than at the beginning of the course; a few indicated they had already felt confident and competent. Common themes in the prospective teachers' responses indicated that they had learned about teaching science through inquiry, taking ownership of their own learning, researching while teaching, working in groups, and understanding themselves as learners and teachers. The teacher researchers also perceived themselves as benefiting from the collaborative process. Their responses to an e-mail questionnaire suggested that they found working with the prospective teachers to be stimulating and cheering. They enjoyed the discussions, appreciated the help with demanding activities, grew in their own knowledge about teaching and learning, and valued the opportunities for reflection. However, organizing the group investigation was complex, due to time issues, driving distances, school schedules, unexpected teacher responsibilities, and unpredictable weather.
NASA Astrophysics Data System (ADS)
Len, Patrick M.
Electronic response systems ("clickers") are used in introductory astronomy classes as a real-time assessment tool. Different reward structures for student responses to clicker questions are used to motivate individual participation or group collaboration before responding. The impact of two reward structures on student behavior and learning is investigated. This study finds that a success-bonus incentive (in which individual participation points are doubled when the class attains a threshold success rate) strongly motivated students to collaborate, whereas a participation-only credit (no success-bonus) incentive resulted in one-third of the students answering individually without collaboration. With a participation-only incentive, students who answered individually ("self-testers") were found to have more positive attitudes toward astronomy and science, and higher self-confidence in their learning than students who interacted before answering without a success-bonus incentive ("collaborators"). These collaborators experienced downward shifts in attitudes and self-confidence, in contrast to the static attitudes and self-confidence of self-testers. The implication is that students with little or no background in science prefer to answer collaboratively rather than independently and that these students are also negatively impacted by a one-semester introductory astronomy course.
Digital collaborative learning: identifying what students value
Hemingway, Claire; Adams, Catrina; Stuhlsatz, Molly
2015-01-01
Digital technologies are changing the learning landscape and connecting classrooms to learning environments beyond the school walls. Online collaborations among students, teachers, and scientists are new opportunities for authentic science experiences. Here we present findings generated on PlantingScience ( www.plantingscience.org), an online community where scientists from more than 14 scientific societies have mentored over 14,000 secondary school students as they design and think through their own team investigations on plant biology. The core intervention is online discourse between student teams and scientist mentors to enhance classroom-based plant investigations. We asked: (1) what attitudes about engaging in authentic science do students reveal, and (2) how do student attitudes relate to design principles of the program? Lexical analysis of open-ended survey questions revealed that students most highly value working with plants and scientists. By examining student responses to this cognitive apprenticeship model, we provide new perspectives on the importance of the personal relationships students form with scientists and plants when working as members of a research community. These perspectives have implications for plant science instruction and e-mentoring programs. PMID:26097690
Digital collaborative learning: identifying what students value.
Hemingway, Claire; Adams, Catrina; Stuhlsatz, Molly
2015-01-01
Digital technologies are changing the learning landscape and connecting classrooms to learning environments beyond the school walls. Online collaborations among students, teachers, and scientists are new opportunities for authentic science experiences. Here we present findings generated on PlantingScience ( www.plantingscience.org), an online community where scientists from more than 14 scientific societies have mentored over 14,000 secondary school students as they design and think through their own team investigations on plant biology. The core intervention is online discourse between student teams and scientist mentors to enhance classroom-based plant investigations. We asked: (1) what attitudes about engaging in authentic science do students reveal, and (2) how do student attitudes relate to design principles of the program? Lexical analysis of open-ended survey questions revealed that students most highly value working with plants and scientists. By examining student responses to this cognitive apprenticeship model, we provide new perspectives on the importance of the personal relationships students form with scientists and plants when working as members of a research community. These perspectives have implications for plant science instruction and e-mentoring programs.
Engaging Scientists in NASA Education and Public Outreach: Informal Science Education and Outreach
NASA Astrophysics Data System (ADS)
Lawton, Brandon L.; Smith, D. A.; Bartolone, L.; Meinke, B. K.; Discovery Guides Collaborative, Universe; Collaborative, NASAScience4Girls; SEPOF Informal Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the Informal Science Education and Outreach communities. Members of the Informal Science Education and Outreach communities include museum/science center/planetarium professionals, librarians, park rangers, amateur astronomers, and other out-of-school-time educators. The Forums’ efforts for the Informal Science Education and Outreach communities include a literature review, appraisal of informal educators’ needs, coordination of audience-based NASA resources and opportunities, and professional development. Learn how to join in our collaborative efforts to reach the informal science education and outreach communities based upon mutual needs and interests.
Real-time Science and Educational Collaboration Online from the Indian Ocean
NASA Astrophysics Data System (ADS)
Wilson, R. H.; Sager, W. W.
2007-12-01
During Summer of 2007, scientists and students (via the web) jointly participated in research during the Ninety East Ridge Expedition (cruise KNOX06RR) . Staff organizers from Joint Oceanographic Institutions" JOI Learning and the Integrated Ocean Drilling Program planned and implemented an interactive website to allow students to directly participate with scientists during the site survey aboard the R/V Roger Revelle. Dr. Will Sager and middle school teacher Rory Wilson collaborated daily during the scientific expedition with science team, ship crew and students. From the outset, students were involved and helped to guide the program; this included coming up with the website name and initial design work. Communication with students included the website, individual and group emails and video conferences with student groups. Seven secondary schools from the USA, Europe, India and Thailand participated actively in the project from June to August. Students viewed daily updates on the website, sent in answers for weekly science challenge questions, and interacted with scientists and crew. Student participants learned about navigation, geophysics and petrology, as well as ship operations and technology. Students and educators tracked the expedition's progress in a multi-media environment. Website statistics were recorded; participation began well and increased during the expedition as more people became engaged with the website. All of the crew and scientists wrote self-profiles to help students learn about the range of ocean careers; several of the scientists and graduate students on board wrote or co- authored website articles for students. During this presentation, we will explore and review the major features of the outreach program using the Sea90e website to demonstrate how this real-time interaction engages students in science learning. We will discuss the benefits of collaboration for science and education in our "classroom at sea."
Cultural Memory Banking in Preservice Science Teacher Education
ERIC Educational Resources Information Center
Handa, Vicente C.; Tippins, Deborah J.
2012-01-01
This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers…
Meanings teachers make of teaching science outdoors as they explore citizen science
NASA Astrophysics Data System (ADS)
Benavides, Aerin Benavides
This descriptive case study examined the meanings public elementary school teachers (N = 13) made of learning to enact citizen science projects in their schoolyards in partnership with a local Arboretum. Utilizing Engestrom's (2001) framework of cultural-historical activity theory (CHAT), the Arboretum's outreach program for area Title 1 schools was viewed as an activity system composed of and acting in partnership with the teachers. The major finding was that teachers designed and mastered new ways of teaching (expansive learning) and transformed their citizen science activity to facilitate student engagement and learning. I highlight four important themes in teachers' expansive learning: (a) discussion, (b) inclusion, (c) integration, and (d) collaboration. Teacher learning communities formed when colleagues shared responsibilities, formed mentor/mentee relationships, and included student teachers and interns in the activity. This program could serve as a model for elementary school citizen science education, as well as a model for professional development for teachers to learn to teach science and Environmental Education outdoors.
NASA Astrophysics Data System (ADS)
van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam
2013-06-01
The ability to listen closely, speak clearly, write coherently, read with comprehension, and to create and critique media offerings in science contexts is essential for effective science teaching. How might instructors develop such abilities in a physics course for prospective elementary and middle school teachers? We describe here such a course, involving collaboration among physics, science education, and literacy faculty members and two graduate assistants. Meeting twice a week for 10 weeks, the course emphasized questioning, predicting, exploring, observing, discussing, writing, and reading in physical science contexts. We report common themes about aspects that fostered or hindered science and literacy learning, changes in views about science teaching and learning, and positive shifts in interest in science and intended teaching practices.
NASA Astrophysics Data System (ADS)
Branch, B. D.; Raskin, R. G.; Rock, B.; Gagnon, M.; Lecompte, M. A.; Hayden, L. B.
2009-12-01
With the nation challenged to comply with Executive Order 12906 and its needs to augment the Science, Technology, Engineering and Mathematics (STEM) pipeline, applied focus on geosciences pipelines issue may be at risk. The Geosciences pipeline may require intentional K-12 standard course of study consideration in the form of project based, science based and evidenced based learning. Thus, the K-12 to geosciences to informatics pipeline may benefit from an earth science experience that utilizes a community based “learning by doing” approach. Terms such as Community GIS, Community Remotes Sensing, and Community Based Ontology development are termed Community Informatics. Here, approaches of interdisciplinary work to promote and earth science literacy are affordable, consisting of low cost equipment that renders GIS/remote sensing data processing skills necessary in the workforce. Hence, informal community ontology development may evolve or mature from a local community towards formal scientific community collaboration. Such consideration may become a means to engage educational policy towards earth science paradigms and needs, specifically linking synergy among Math, Computer Science, and Earth Science disciplines.
NASA Astrophysics Data System (ADS)
Hendrick, Alan W.
The vision presented by the National Academy of Science Standards is for all students to spend more time 'doing' science in order to develop science literacy and be better prepared not only for college but also in understanding and participation in global current events. A course in observational Astronomy is just that, an opportunity for student to "do 'science by collaborating with actual scientists in real research. The course follows a path in which students learn foundational knowledge and apply this knowledge to complete a successful celestial observation, interpreting the results by making inferences and predictions. This paper begins with a statement of need followed by specific learning objectives in a Texas Essential Knowledge and Skills format. Resources and activities follow along with specific directions on how to plan and operate the Observatory at Las Palms State Park in Olmito Texas. Participation in this course will give students confidence to pursue science related subjects in higher education.
NASA Astrophysics Data System (ADS)
Peters, Angela W.
2005-04-01
Teaching chemistry particularly at a historically black college and university (HBCU) involves understanding and being aware of the cultural and intellectual diversity of the class. Therefore, it is imperative that instructional methodologies include creative and alternative pedagogical approaches that enhance student performance. Collaborative learning strategies were used to transform a failing biochemistry class into motivated, critical thinkers whose interest in research careers were enhanced through this process. Through collaborative learning we have decreased failing rates by 50% on biochemistry examinations. Attrition rates have dropped drastically and there has been a remarkable improvement on the final examination, which includes the ACS biochemistry examination, by 18% over two years. This collaborative approach has changed the way that students study chemistry and the way that instruction is delivered.
ERIC Educational Resources Information Center
Elliott, Emily R.; Reason, Robert D.; Coffman, Clark R.; Gangloff, Eric J.; Raker, Jeffrey R.; Powell-Coffman, Jo Anne; Ogilvie, Craig A.
2016-01-01
Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture…
Collaborative Learning Works! Resources for Faculty
NASA Astrophysics Data System (ADS)
Brissenden, G. A.; Mathieu, R. D.; National InstituteScience Education; College Level-One Team
2000-12-01
Recent calls for instructional innovation in college Science, Mathematics, Engineering, and Technology (SMET) courses highlight the need for a solid foundation of education research at the undergraduate level on which to base policy and practice. We report the results of a meta-analysis that integrates research on undergraduate SMET education since 1980. The meta-analysis demonstrates that various forms of small-group learning are effective in promoting greater academic achievement, more favorable attitudes toward learning, and increased persistence through SMET courses and programs. Specifically, the effect of small-group learning on achievement reported in this study would move a student from the 50th percentile to the 70th percentile on a standardized test. Similarly, the effect on students'persistence is enough to reduce attrition from SMET courses and programs by 22 widespread implementation of small-group learning in college SMET courses. We have created a Collaborative Learning website designed to assist instructors who wish to incorporate collaborative learning in their lectures, classrooms, and laboratories. The site provides straightforward, easy-to-use ideas for those just getting started, extensive additional resources for those already using small-group techniques, and the educational research foundation for the use of collaborative learning (including the meta-analysis). The Collaborative Learning site can be found at the NISE "Innovations in SMET Education" website at www.wcer.wisc.edu/nise/cl1
NASA Astrophysics Data System (ADS)
Hughes, Janet
2001-07-01
The purpose of this study was to determine the extent of agreement among science supervisors and public high school science teachers regarding Actual and Desired role responsibilities for science supervisors in six categories, Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment and a seventh category measuring the supervisor's degree of Fostering Collaboration within the department. The Science Supervisor Questionnaire was developed specifically for this study and consisted of items that comprised the most current research on the roles of the science supervisor. The instrument was based on the responsibilities of department heads as delineated through a consolidation of the current research. Although the supervisors and the science teachers agreed among themselves to some extent on the seven subscales, the six role expectations of supervisors (Curriculum, Methodology, Involvement in the Science Field, Staff Development, Procedural Duties, and Assessment) and the Fostering of Collaboration, the amount and degree of consensus varied. There was more consensus in the desired roles of science supervisors suggesting that the groups understand and agree upon the expectations of the position. Those top priorities of science supervisor role expectations for both groups were Methodology, Curriculum, Procedural Duties and Staff Development. There was a difference in perceptions between the two groups of the actual role of the supervisor, indicating that what is actually happening in the science supervisor role conflicts with what is expected. Fostering Collaboration ranked lowest for both groups in both perceived actual and desired science supervisor performance. Fostering Collaboration was not seen as a priority by the supervisors and teachers in the teaching and learning environment. Teachers report that supervisors did not play a key role in fostering collaboration in this study.
NASA Astrophysics Data System (ADS)
Shipp, S.; Nelson, B.; Stockman, S.; Weir, H.; Carter, B.; Bleacher, L.
2008-07-01
Libraries are vibrant learning places, seeking partners in science programming. LPI's Explore! program offers a model for public engagement in lunar exploration in libraries, as shown by materials created collaboratively with the LRO E/PO team.
Connecting Students and Policymakers through Science and Service-Learning
NASA Astrophysics Data System (ADS)
Szymanski, D. W.
2017-12-01
Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present their findings to the non-profit partner and make policy recommendations to legislators in Capitol Hill visits. The projects have been highly impactful as a form of community science, creating passionate science advocacy among non-majors, improving collaborations with community partners, and spurring action by federal policymakers.
Campbell Monograph Series on Education and Human Sciences, Volume 3.
ERIC Educational Resources Information Center
Jory, Brian, Ed.
This monograph contains three papers. "Collaboration and Team Teaching in Higher Education" (Leslie Marlow and Duane Inman), describes the implementation of team teaching at three institutions of higher education and provides suggestions and outcomes for future collaborators. "In Their Own Words: Student Learning Experiences from a…
Lessons Learned from a Collaborative Sensor Web Prototype
NASA Technical Reports Server (NTRS)
Ames, Troy; Case, Lynne; Krahe, Chris; Hess, Melissa; Hennessy, Joseph F. (Technical Monitor)
2002-01-01
This paper describes the Sensor Web Application Prototype (SWAP) system that was developed for the Earth Science Technology Office (ESTO). The SWAP is aimed at providing an initial engineering proof-of-concept prototype highlighting sensor collaboration, dynamic cause-effect relationship between sensors, dynamic reconfiguration, and remote monitoring of sensor webs.
Game Design through Mentoring and Collaboration
ERIC Educational Resources Information Center
Clark, Kevin; Sheridan, Kimberly
2010-01-01
The findings from an after-school program entitled Game Design through Mentoring and Collaboration (GDMC) funded by the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program. A total of 139 middle and high schools students in the Washington, D.C. metropolitan area to learn the basics of…
Assessing the Impact of Group Projects on Examination Performance in Social Statistics
ERIC Educational Resources Information Center
Delucchi, Michael
2007-01-01
College teachers in the sciences and professional studies have endorsed collaborative learning group strategies for teaching undergraduate statistics courses, but few researchers provide empirical evidence that students' quantitative skills actually increase as a result of the collaborative experience. Assessment of the efficacy of collaborative…
Challenges of Using CSCL in Open Distributed Learning.
ERIC Educational Resources Information Center
Nilsen, Anders Grov; Instefjord, Elen J.
As a compulsory part of the study in Pedagogical Information Science at the University of Bergen and Stord/Haugesund College (Norway) during the spring term of 1999, students participated in a distributed group activity that provided experience on distributed collaboration and use of online groupware systems. The group collaboration process was…
NASA Astrophysics Data System (ADS)
Goodnough, Karen Catherine
2000-10-01
Since the publication of Frames of Mind: The Theory in Practice, multiple intelligences, theory (Gardner, 1983) has been used by practitioners in a variety of ways to make teaching and learning more meaningful. However, little attention has been focused on exploring the potential of the theory for science teaching and learning. Consequently, this research study was designed to: (1) explore Howard Gardner's theory of multiple intelligences (1983) and its merit for making science teaching and learning more meaningful; (2) provide a forum for teachers to engage in critical self-reflection about their theory and practice in science education; (3) study the process of action research in the context of science education; and (4) describe the effectiveness of collaborative action research as a framework for teacher development and curriculum development. The study reports on the experiences of four teachers (two elementary teachers, one junior high teacher, and one high school teacher) and myself, a university researcher-facilitator, as we participated in a collaborative action research project. The action research group held weekly meetings over a five-month period (January--May, 1999). The inquiry was a qualitative case study (Stake, 1994) that aimed to understand the perspectives of those directly involved. This was achieved by using multiple methods to collect data: audiotaped action research meetings, fieldnotes, semi-structured interviews, journal writing, and concept mapping. All data were analysed on an ongoing basis. Many positive outcomes resulted from the study in areas such as curriculum development, teacher development, and student learning in science. Through the process of action research, research participants became more reflective about their practice and thus, enhanced their pedagogical content knowledge (Shulman, 1987) in science. Students became more engaged in learning science, gained a greater understanding of how they learn, and experienced a science curriculum that was more relevant and personalized. In addition, the action research process provided a feasible and effective forum for both curriculum development and professional development.
Improving together: collaborative learning in science communication, ClimateSnack case study
NASA Astrophysics Data System (ADS)
Heuzé, C.; Reeve, M. A.
2016-02-01
Most scientists today recognize that science communication is an important part of the scientific process, yet science writing and communication are often taught outside the normal academic schedule. If universities offer such courses, they are generally intensive but short-term: the participants rarely complete a science communication course with an immediate and pressing need to apply these skills. So the skills fade, stalling real progress in science communication. Continuity is key to success! Whilst waiting for the academic system to truly integrate science communication, other methods can be tested. ClimateSnack / SciSnack is a new approach that aims to motivate scientists to develop their communication skills. It adopts a collaborative learning framework where scientists voluntarily form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online, where they are further discussed and improved by the global ClimateSnack community. This way, the participants learn and cement basic science communication skills. These skills are transferrable, and can be applied both to scientific articles and broader science media. Some writing groups are highly productive, while others exist no more. The reasons for success are here investigated with respect to issues both internal and external to the different groups, in particular leadership strategies. Possible further development, in particular using the online community, is suggested. ClimateSnack is one solution to fill the critical gap left by a lack of adequate teaching in early-career scientists' curriculum.
Gormally, Cara
2017-01-01
For science learning to be successful, students must develop attitudes toward support future engagement with challenging social issues related to science. This is especially important for increasing participation of students from underrepresented populations. This study investigated how participation in inquiry-based biology laboratory classes affected students' attitudes toward science, focusing on deaf, hard-of-hearing, and hearing signing students in bilingual learning environments (i.e., taught in American Sign Language and English). Analysis of reflection assignments and interviews revealed that the majority of students developed positive attitudes toward science and scientific attitudes after participating in inquiry-based biology laboratory classes. Attitudinal growth appears to be driven by student value of laboratory activities, repeated direct engagement with scientific inquiry, and peer collaboration. Students perceived that hands-on experimentation involving peer collaboration and a positive, welcoming learning environment were key features of inquiry-based laboratories, affording attitudinal growth. Students who did not perceive biology as useful for their majors, careers, or lives did not develop positive attitudes. Students highlighted the importance of the climate of the learning environment for encouraging student contribution and noted both the benefits and pitfalls of teamwork. Informed by students' characterizations of their learning experiences, recommendations are made for inquiry-based learning in college biology. © 2017 C. Gormally. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Weather, Climate, Web 2.0: 21st Century Students Speak Climate Science Well
ERIC Educational Resources Information Center
Sundberg, Cheryl White; Kennedy, Teresa; Odell, Michael R. L.
2013-01-01
Problem-based learning (PBL) and inquiry learning (IL) employ extensive scaffolding that results in cognitive load reduction and allows students to learn in complex domains. Hybrid teacher professional development models (PDM) using 21st century social collaboration tools embedding PBL and IL shows promise as a systemic approach for increasing…
A Collaborative Learning Environment for Management Education Based on Experiential Learning
ERIC Educational Resources Information Center
Lidon, Ivan; Rebollar, Ruben; Moller, Charles
2011-01-01
In many areas of applied sciences, such as management and engineering, the generation and dissemination of theory and knowledge is increasingly woven into practice. This leaves teaching and research institutions with the challenge of developing and organising teaching activities that are effective from a student learning perspective. This paper…
Integrating Collaborative Learning and Competition in a Hematology/Oncology Training Program.
Makhoul, Issam; Motwani, Pooja; Schafer, Liudmila; Arnaoutakis, Konstantinos; Mahmoud, Fade; Safar, Mazin; Graves, Dorothy; Mehta, Paulette; Govindarajan, Rang; Hutchins, Laura; Thrush, Carol
2018-02-01
New educational methods and structures to improve medical education are needed to face the challenge of an exponential increase and complexity of medical knowledge. Collaborative learning has been increasingly used in education, but its use in medical training programs is in its infancy, and its impact is still unknown; the role of competition in education is more controversial. We introduced these pedagogical methods to the hematology/oncology fellowship program at the University of Arkansas for Medical Sciences to improve attendance and performance at didactic activities and different educational outcomes. One year after the adoption of these methods, the fellowship program has reached many of the expected goals from this intervention without the negative consequences of competition observed in younger learners. The most important conclusion of this project is that collaboration and cross-generational team work provide a healthy and effective learning environment and competition may not add further benefit. Analysis, interpretation, and discussion of our experience are provided. This study was approved by the University of Arkansas for Medical Sciences IRB as a low risk educational intervention not requiring a consent form.
Strømme, Torunn Aa; Furberg, Anniken
2015-09-01
This paper reports on a case study of the teacher's role as facilitator in computer-supported collaborative learning (CSCL) settings in science. In naturalistic classroom settings, the teacher most often acts as an important resource and provides various forms of guidance during students' learning activities. Few studies, however, have focused on the role of teacher intervention in CSCL settings. By analyzing the interactions between secondary school students and their teacher during a science project, the current study provides insight into the concerns that teachers might encounter when facilitating students' learning processes in these types of settings. The analyses show that one main concern was creating a balance between providing the requested information and supporting students in utilizing each other's knowledge and understanding. Another concern was balancing support on an individual versus group level, and a third concern was directing the students' attention to coexisting conceptual perspectives. Most importantly, however, the analyses show how teacher intervention constitutes the pivotal "glue" that aids students in linking and using coexisting aspects of support such as peer collaboration, digital tools, and instructional design.
FURBERG, ANNIKEN
2015-01-01
ABSTRACT This paper reports on a case study of the teacher's role as facilitator in computer‐supported collaborative learning (CSCL) settings in science. In naturalistic classroom settings, the teacher most often acts as an important resource and provides various forms of guidance during students’ learning activities. Few studies, however, have focused on the role of teacher intervention in CSCL settings. By analyzing the interactions between secondary school students and their teacher during a science project, the current study provides insight into the concerns that teachers might encounter when facilitating students’ learning processes in these types of settings. The analyses show that one main concern was creating a balance between providing the requested information and supporting students in utilizing each other's knowledge and understanding. Another concern was balancing support on an individual versus group level, and a third concern was directing the students’ attention to coexisting conceptual perspectives. Most importantly, however, the analyses show how teacher intervention constitutes the pivotal “glue” that aids students in linking and using coexisting aspects of support such as peer collaboration, digital tools, and instructional design. PMID:26900182
Developing Inquiry-as-Stance and Repertoires of Practice: Teacher Learning across Two Settings
ERIC Educational Resources Information Center
Braaten, Melissa L.
2011-01-01
Sixteen science educators joined a science teacher video club for one school year to collaboratively inquire into each other's classroom practice through the use of records of practice including classroom video clips and samples of student work. This group was focused on developing ambitious, equitable science teaching that capitalizes on…
Students Designing Video Games about Immunology: Insights for Science Learning
ERIC Educational Resources Information Center
Khalili, Neda; Sheridan, Kimberly; Williams, Asia; Clark, Kevin; Stegman, Melanie
2011-01-01
Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a…
The Multicultural Science Framework: Research on Innovative Two-Way Immersion Science Classrooms.
ERIC Educational Resources Information Center
Hadi-Tabassum, Samina
2000-01-01
Reviews the different approaches to multicultural science teaching that have emerged in the past decade, focusing on the Spanish-English two-way immersion classroom, which meets the needs of Spanish speakers learning English and introduces students to the idea of collaboration across languages and cultures. Two urban two-way immersion classrooms…
ERIC Educational Resources Information Center
Dalvi, Tejaswini; Wendell, Kristen
2015-01-01
A team of science teacher educators working in collaboration with local elementary schools explored opportunities for science and engineering "learning by doing" in the particular context of urban elementary school communities. In this article, the authors present design task that helps students identify and find solutions to a…
NASA Astrophysics Data System (ADS)
Prahani, B. K.; Suprapto, N.; Suliyanah; Lestari, N. A.; Jauhariyah, M. N. R.; Admoko, S.; Wahyuni, S.
2018-03-01
In the previous research, Collaborative Problem Based Physic Learning (CPBPL) model has been developed to improve student’s science process skills, collaborative problem solving, and self-confidence on physics learning. This research is aimed to analyze the effectiveness of CPBPL model towards the improvement of student’s self-confidence on physics learning. This research implemented quasi experimental design on 140 senior high school students who were divided into 4 groups. Data collection was conducted through questionnaire, observation, and interview. Self-confidence measurement was conducted through Self-Confidence Evaluation Sheet (SCES). The data was analyzed using Wilcoxon test, n-gain, and Kruskal Wallis test. Result shows that: (1) There is a significant score improvement on student’s self-confidence on physics learning (α=5%), (2) n-gain value student’s self-confidence on physics learning is high, and (3) n-gain average student’s self-confidence on physics learning was consistent throughout all groups. It can be concluded that CPBPL model is effective to improve student’s self-confidence on physics learning.
ERIC Educational Resources Information Center
McClune, Billy; Alexander, Joy
2015-01-01
It is important for young people to be able to read science-related media reports with discernment. "Getting Newswise" was a research project designed to enable science and English teachers, working collaboratively, to equip pupils through the curriculum with critical reading skills appropriate for science news. Phase 1 of the study…
ERIC Educational Resources Information Center
Lehman, James D.; Kim, WooRi; Harris, Constance
2014-01-01
The new standards for K-12 science education in the United States call for science teachers to integrate engineering concepts and practices within their science teaching in order to improve student learning. To accomplish this, teachers need appropriate instructional materials as well as the knowledge and skills to effectively use them. This mixed…
NASA Astrophysics Data System (ADS)
Johnson, M. A.
2016-12-01
We applied a new approach to the design and development of citizen science learning opportunities to enhance outreach to diverse student populations, while advancing water quality research and aerospace education. This collaborative approach to informal science, technology, engineering, and math (STEM) and aerospace education required innovative partnerships between private general aviation pilots, researchers, teachers, and students. This research explored the development of active partnerships required to facilitate community engaged science, with an emphasis on increased participation of women and girls and people of color, while creating new exploratory pathways for broadening access to and engagement in STEM learning experiences. We developed an outreach program through collaborative planning with local schools to create new STEM learning experiences based upon basic aerospace education concepts and an existing water quality research project designed to track harmful algal blooms (HAB) that can produce toxins called cyanobacteria, also known as blue-green algae, which can impact drinking, fishing, and recreational waters. General aviation pilots functioning as citizen scientists obtained high-resolution aerial images while flying over potentially impacted waters. Aerial data was made available to teachers and students, as well as researchers participating in the existing water quality program lead by NASA Glenn Research Center. Teachers used the images and results to educate in climate change and the dangers of HAB. Students were able to compare aerial data with their own observations, and also gained experience in aeronautical science through field trips to local airports, hands-on experience with private research aircraft, specialized equipment used for data collection, and advanced ground instruction from research pilots. As a result of reaching out to local educators serving diverse student populations and facilitating collaborative planning, we successfully created new educational opportunities with active partnerships between formal educational institutions and informal citizen science research programs, which broadened access to and engagement in aerospace education and STEM learning experiences in our local community.
Design and Evaluation of Dedicated Smartphone Applications for Collaborative Science Education
NASA Astrophysics Data System (ADS)
Fertitta, John A., Jr.
2011-12-01
Over the past several years, the use of scientific probes is becoming more common in science classrooms. The goal of teaching with these science probes is to engage students in inquiry-based learning. However, they are often complicated and stationary, forcing experiments to remain in the classroom and limiting their use. The Internet System for Networked Sensor Experimentation (iSENSE) was created to address these limitations. iSENSE is a web-system for storing and visualizing sensor data. The project also includes a hardware package, the PINPoint, that interfaces to existing probes, and acts as a probe itself. As the mobile phone industry continues to advance, we are beginning to see smartphones that are just as powerful, if not more powerful, than many desktop computers. These devices are often equipped with advanced sensors, making them as capable as some science probes at a lower cost. With this background, this thesis explores the use of smartphones in secondary school science classrooms. By collaborating with one teacher, three custom applications were developed for four separate curriculum-based learning activities. The smartphones replaced existing traditional tools and science probes. Some data collected with the smartphones were uploaded to the iSENSE web-system for analysis. Student use of the smartphones and the subsequent scientific visualizations using the iSENSE web-system were observed. A teacher interview was conducted afterward. It was found that a collaborative design process involving the teacher resulted in the successful integration of smartphone applications into learning activities. In one case, the smartphones and use of iSENSE did not improve the students' understanding of the learning objectives. In several others, however, the smartphones out-performed traditional probeware as a data collector, and with the classroom teachers guidance, the iSENSE web-system facilitated more in-depth discussions of the data.
Interactive, Collaborative, Electronic Learning Logs in the Physics Classroom
NASA Astrophysics Data System (ADS)
Gosling, Chris
2006-12-01
I describe my experiences using Hickman's Interactive Collaborative Electronic Learning Logs teaching HS Physics. ICE Learning Logs are written in student groups to answer questions posed by the instructor, who then in turn responds to each group’s entry before the next class. These logs were used with non-physics majors in both algebra and calculus-based introductory physics courses, and also at the high school level. I found ICE Learning Logs were found to be a clear improvement over traditional student journals. Excerpts from group entries will be presented to demonstrate the group identities that formed as well as the utility of the journals to probe for conceptual understanding. In addition, the ICE Learning Logs served as an excellent resource for students to review before exams and also to examine for critical moments to reflect on in formal essays. Hickman, P. (2000). Assessing student understanding with interactive-electronic-collaborative learning logs. ENC Focus, 7(2), 24-27. Sponsored by the National Science Foundation DUE0302097 and SUNY-Buffalo State Physics
The Region 4 collaborative virtual reference project.
Parker, Sandi K; Johnson, E Diane
2003-01-01
In May 2002, the Denison Memorial Library at the University of Colorado Health Sciences Center and the J. Otto Lottes Health Sciences Library at the University of Missouri-Columbia, with funding from the National Network of Libraries of Medicine-Midcontinental Region, embarked on a collaborative, real-time reference project using the 24/7 Reference, Inc., software package. This paper describes how the project was conceived, and includes details on the service hours, staffing, training, marketing, lessons learned, and future plans for the service.
NASA Astrophysics Data System (ADS)
Reuter, Jamie M.
The recent decades have seen an increased focus on improving early science education. Goals include helping young children learn about pertinent concepts in science, and fostering early scientific reasoning and inquiry skills (e.g., NRC 2007, 2012, 2015). However, there is still much to learn about what constitutes appropriate frameworks that blend science education with developmentally appropriate learning environments. An important goal for the construction of early science is a better understanding of appropriate learning experiences and expectations for preschool children. This dissertation examines some of these concerns by focusing on three dimensions of science learning in the preschool classroom: (1) the learner; (2) instructional tools and pedagogy; and (3) the social context of learning with peers. In terms of the learner, the dissertation examines some dimensions of preschool children's scientific reasoning skills in the context of potentially relevant, developing general reasoning abilities. As young children undergo rapid cognitive changes during the preschool years, it is important to explore how these may influence scientific thinking. Two features of cognitive functioning have been carefully studied: (1) the demonstration of an epistemic awareness through an emerging theory of mind, and (2) the rapid improvement in executive functioning capacity. Both continue to develop through childhood and adolescence, but changes in early childhood are especially striking and have been neglected as regards their potential role in scientific thinking. The question is whether such skills relate to young children's capacity for scientific thinking. Another goal was to determine whether simple physics diagrams serve as effective instructional tools in supporting preschool children's scientific thinking. Specifically, in activities involving predicting and checking in scientific contexts, the question is whether such diagrams facilitate children's ability to accurately recall initial predictions, as well as discriminate between the outcome of a scientific manipulation and their original predictions (i.e., to determine whether one's predictions were confirmed). Finally, this dissertation also explores the social context of learning science with peers in the preschool classroom. Due to little prior research in this area, it is currently unclear whether and how preschool children may benefit from working with peers on science activities in the classroom. This work aims to examine preschoolers' collaboration on a science learning activity, as well as the developmental function for such collaborative skills over the preschool years.
The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences.
Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker
2016-01-01
The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant's platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses.
ERIC Educational Resources Information Center
Morales, Hector
2010-01-01
Incorporating business skills such as problem-solving, public presentations, collaboration, and self-direction into STEM (science, technology, engineering and mathematics) subjects is an excellent way to build students' enthusiasm for these disciplines. When educators add workplace internships to the learning experience, they are well on their way…
Pathways Seen for Acquiring Languages
ERIC Educational Resources Information Center
Sparks, Sarah D.
2010-01-01
New studies on how language learning occurs are beginning to chip away at some long-held notions about second-language acquisition and point to potential learning benefits for students who speak more than one language. New National Science Foundation-funded collaborations among educators, cognitive scientists, neuroscientists, psychologists, and…
Ramirez, Jasmine; Pinedo, Catalina Arango; Forster, Brian M
2015-12-01
Today's science classrooms are addressing the need for non-scientists to become scientifically literate. A key aspect includes the recognition of science as a process for discovery. This process relies upon interdisciplinary collaboration. We designed a semester-long collaborative exercise that allows science majors taking a general microbiology course and non-science majors taking an introductory environmental science course to experience collaboration in science by combining their differing skill sets to identify microorganisms enriched in Winogradsky columns. These columns are self-sufficient ecosystems that allow researchers to study bacterial populations under specified environmental conditions. Non-science majors identified phototrophic bacteria enriched in the column by analyzing the signature chlorophyll absorption spectra whereas science majors used 16S rRNA gene sequencing to identify the general bacterial diversity. Students then compiled their results and worked together to generate lab reports with their final conclusions identifying the microorganisms present in their column. Surveys and lab reports were utilized to evaluate the learning objectives of this activity. In pre-surveys, nonmajors' and majors' answers diverged considerably, with majors providing responses that were more accurate and more in line with the working definition of collaboration. In post-surveys, the answers between majors and nonmajors converged, with both groups providing accurate responses. Lab reports showed that students were able to successfully identify bacteria present in the columns. These results demonstrate that laboratory exercises designed to group students across disciplinary lines can be an important tool in promoting science education across disciplines.
Designing a Virtual Research Facility to motivate Professional-Citizen Collaboration
NASA Astrophysics Data System (ADS)
Gay, Pamela
In order to handle the onslaught of data spilling from telescopes on the Earth and on orbit, CosmoQuest has created a virtual research facility that allows the public to collaborate with science teams on projects that would otherwise lack the necessary human resources. This second-generation citizen science site goes beyond asking people to click on images to also engaging them in taking classes, attending virtual seminars, and participating in virtual star parties. These features were introduced to try and expand the diversity of motivations that bring people to the project and to keep them engaged overtime - just as a research center seeks to bring a diversity of people together to work and learn over time. In creating the CosmoQuest Virtual Research Facility, we sought to answer the question, “What would happen if we provided the public with the same kinds of facilities scientists have, and invite them to be our collaborators?” It had already been observed that the public readily attends public science lectures, open houses at science facilities, and education programs such as star parties. It was hoped that by creating a central facility, we could build a community of people learning and doing science in a productive manner. In order to be successful, we needed to first create the facility, then test if people were coming both to learn and to do science, and finally to verify that people were doing legitimate science. During the past 18 months of operations, we have continued to work through each of these stages, as discussed talk. At this early date, progress is on-going, and much research remains to be done, but all indications show that we are on our way to building a community of people learning and doing science. During 2013-2014, a series of studies looked at the motivations of CosmoQuest users, as well as their forms of site interactions. During this talk, we will review these results, as well as the demographics of our user population.
Growing scientists: A partnership between a university and a school district
NASA Astrophysics Data System (ADS)
Woods, Teresa Marie
Precollege science education in the United States has virtually always been influenced by university scientists to one degree or another. Partnership models for university scientist---school district collaborations are being advocated to replace outreach models. Although the challenges for such partnerships are well documented, the means of fostering successful and sustainable science education partnerships are not well studied. This study addresses this need by empirically researching a unique scientist-educator partnership between a university and a school district utilizing case study methods. The development of the partnership, emerging issues, and multiple perspectives of participants were examined in order to understand the culture of the partnership and identify means of fostering successful science education partnerships. The findings show the partnership was based on a strong network of face-to-face relationships that fostered understanding, mutual learning and synergy. Specific processes instituted ensured equity and respect, and created a climate of trust so that an evolving common vision was maintained. The partnership provided synergy and resilience during the recent economic crisis, indicating the value of partnerships when public education institutions must do more with less. High staff turnover, however, especially of a key leader, threatened the partnership, pointing to the importance of maintaining multiple-level integration between institutions. The instrumental roles of a scientist-educator coordinator in bridging cultures and nurturing the collaborative environment are elucidated. Intense and productive collaborations between teams of scientists and educators helped transform leading edge disciplinary science content into school science learning. The innovative programs that resulted not only suggest important roles science education partnerships can play in twenty-first century learning, but they also shed light on the processes of educational innovation itself. Further, the program and curriculum development revealed insights into areas of teaching and learning. Multiple perspectives of participants were considered in this study, with student perspectives demonstrating the critical importance of investigating student views in future studies. When educational institutions increasingly need to address a diverse population, and scientists increasingly want to recruit diverse students into the fields of science, partnerships show promise in creating a seamless K-20+ continuum of science education.
NASA Astrophysics Data System (ADS)
Nottingham, Mary E.
The purpose of this study was to investigate the impact of a 2-year professional development model in math and science on the self-efficacy of the teacher and its effects on teacher practice and student outcomes. Further, this study sought to incorporate the instructional use of Inquiry-Based Learning methods of Problem-Based Learning, Japanese Lesson Study, and Action Research. Additionally, this study examined the impacts of these interventions on teacher efficacy and student outcomes. Thirty-eight collaborating participants were purposefully selected by the Math and Science Teacher Academy (MASTA) project grant co-directors because of their content-focused classrooms of mathematics and science. This quasi-experimental study included mathematics and science in-service teachers working on their masters in education. The 2-year, bi-monthly professional development model included collaborating Inquiry-Based Learning communities with in-depth focus on Japanese Lesson Study, Problem-Based Learning instruction, and Action Research. A chi-square analysis was conducted by grade on the difference in passing rate from the Texas Assessment of Knowledge and Skills mathematics and science tests between the MASTA participants and the state passing average. In mathematics there were significant v differences only at grades 3 and 7 where the state passing average was significantly higher than the MASTA students' passing rate. Only at grade 5 was the MASTA students' passing rate higher than the state, but the difference was not significantly different. The science passing rate received from three grade 5 MASTA participants was compared to the state average and a chi-squared was conducted. Although the passing rate for the grade 5 science test was 6% higher for MASTA student that the state, the difference was not statistically significant. However, after analyzing the qualitative participant responses from data gathered during the 2-year MASTA grant the data clearly reflected that teachers participating in the MASTA grant felt the professional development helped to improve their own teacher-efficacy and knowledge in their content areas.
Science for ELLs: Rethinking Our Approach
ERIC Educational Resources Information Center
Medina-Jerez, William; Clark, Douglas B.; Medina, Amelia; Ramirez-Marin, Frank
2007-01-01
A rich amount of research suggests that native-English speaking and linguistically diverse students are equally capable of learning scientific concepts and terminology through collaborative inquiry-based experiences. Yet, a full understanding of how to address English Language Learner (ELL) issues during science instruction and assessment will…
NASA Astrophysics Data System (ADS)
Novak, Elena; Wisdom, Sonya
2018-05-01
3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.
A Scientist's Guide to Achieving Broader Impacts through K–12 STEM Collaboration
Komoroske, Lisa M.; Hameed, Sarah O.; Szoboszlai, Amber I.; Newsom, Amanda J.; Williams, Susan L.
2015-01-01
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help scientists overcome obstacles that inhibit their engagement in K–12 IBL outreach and to attain the accrued benefits. Strategies to overcome these challenges include scaling outreach projects to the time available, building collaborations in which scientists’ research overlaps with curriculum, employing backward planning to target specific learning objectives, encouraging scientists to share their passion, as well as their expertise with students, and transforming institutional incentives to support scientists engaging in educational outreach. PMID:26955078
Interdisciplinary Intellect: HASTAC and the Commitment to Encourage Collective Intelligence
ERIC Educational Resources Information Center
Singletary, Kimberly Alecia
2012-01-01
This article explores the role of the Humanities, Arts, Science, and Technology Advanced Collaboratory (HASTAC) in facilitating and encouraging a collaborative community of junior and senior scholars on issues of technology and humanistic learning. As a result of its emphasis on collaboration and discussion, HASTAC encourages a form of collective…
Instructional Design for Online Learning Environments and the Problem of Collaboration in the Cloud
ERIC Educational Resources Information Center
Mehlenbacher, Brad; Kelly, Ashley Rose; Kampe, Christopher; Kittle Autry, Meagan
2018-01-01
To investigate how college students understand and use cloud technology for collaborative writing, the authors studied two asynchronous online courses, on science communication and on technical communication. Students worked on a group assignment (3-4 per group) using Google Docs and individually reflected on their experience writing…
ERIC Educational Resources Information Center
Wiske, Martha Stone; And Others
Twin aims--to advance theory and to improve practice in science, mathematics, and computing education--guided the Educational Technology Center's (ETC) research from its inception in 1983. These aims led ETC to establish collaborative research groups in which people whose primary interest was classroom teaching and learning, and researchers…
Assessment and Support of the Idea Co-Construction Process that Influences Collaboration
ERIC Educational Resources Information Center
Gweon, Gahgene
2012-01-01
Research in team science suggests strategies for addressing difficulties that groups face when working together. This dissertation examines how student teams work in project based learning (PBL) environments, with the goal of creating strategies and technology to improve collaboration. The challenge of working in such a group is that the members…
ERIC Educational Resources Information Center
Tsompanoudi, Despina; Satratzemi, Maya; Xinogalos, Stelios
2016-01-01
The results presented in this paper contribute to research on two different areas of teaching methods: distributed pair programming (DPP) and computer-supported collaborative learning (CSCL). An evaluation study of a DPP system that supports collaboration scripts was conducted over one semester of a computer science course. Seventy-four students…
Playful Talk: Negotiating Opportunities to Learn in Collaborative Groups
ERIC Educational Resources Information Center
Sullivan, Florence R.; Wilson, Nicholas C.
2015-01-01
This case study examines the role of playful talk in negotiating the "how" of collaborative group work in a 6th-grade science classroom. Here we develop and test a Vygotsky-derived hypothesis that postulates playful talk as a mechanism for identity exploration and group status negotiation. Our findings indicate that students utilized the…
Angel, Vini M; Friedman, Marvin H; Friedman, Andrea L
This article describes an innovative project involving the integration of bar-code medication administration technology competencies in the nursing curriculum through interprofessional collaboration among nursing, pharmacy, and computer science disciplines. A description of the bar-code medication administration technology project and lessons learned are presented.
Classroom management of situated group learning: A research study of two teaching strategies
NASA Astrophysics Data System (ADS)
Smeh, Kathy; Fawns, Rod
2000-06-01
Although peer-based work is encouraged by theories in developmental psychology and although classroom interventions suggest it is effective, there are grounds for recognising that young pupils find collaborative learning hard to sustain. Discontinuities in collaborative skill during development have been suggested as one interpretation. Theory and research have neglected situational continuities that the teacher may provide in management of formal and informal collaborations. This experimental study, with the collaboration of the science faculty in one urban secondary college, investigated the effect of two role attribution strategies on communication in peer groups of different gender composition in three parallel Year 8 science classes. The group were set a problem that required them to design an experiment to compare the thermal insulating properties of two different materials. This presents the data collected and key findings, and reviews the findings from previous parallel studies that have employed the same research design in different school settings. The results confirm the effectiveness of social role attribution strategies in teacher management of communication in peer-based work.
NASA Astrophysics Data System (ADS)
Jones, Kathleen M.
Inquiry science, including a focus on evidence-based discourse, is essential to spark interest in science education in the early grades and maintain that interest throughout children's schooling. The researcher was interested in two broad areas: inquiry science in the elementary classroom and the need/desire for professional development opportunities for elementary teachers related to science education, and specifically professional development focused on inquiry science. A cross sectional survey design was prepared and distributed in May 2005 and usable responses were received from 228 elementary teachers from the south-central area of Pennsylvania which was a representative sample of socio-economical and geographical factors. Areas of particular interest in the results section include: (1) The use of Science Kits which is popular, but may not have the desired impact since they are "adjusted" by teachers often removing the opportunity for evidence-based discourse by the students. This may be partly based on the lack of time dedicated to science instruction and, secondly, the teachers' lack of comfort with the science topics. Another issue arising from science kits is the amount of preparation time required to utilize them. (2) Teachers demonstrated understanding of the high qualities of professional development but, when it came to science content professional development, they were more inclined to opt for short-term opportunities as opposed to long-term learning opportunities. Since elementary teachers are generalists and most schools are not focusing on science, the lack of attention to a subject where they are least comfortable is understandable, but disappointing. (3) There is a great need for more training in evidence--based discourse so teachers can implement this needed skill and increase students' understanding of science content so they are more able to compete in the international science and math measurements. (4) Professional development, especially in the science area, needs to be a long-term, grass-roots effort in all schools. We need to dedicate funding, and make time available for teachers to participate in long-term collaborative learning opportunities. Teachers want to observe each other and collaborate on lessons but, unless it becomes a priority of the school, it will not happen. Time must be dedicated throughout the day that allows small groups of teachers across the board to get together and share, learn, attempt new approaches, reflect and revise. Various forms of professional learning are available, and each school must choose the one that works for them. (5) The principal as the educational leader in the school needs to be more fully engaged with the learning process of the teachers and the students. The principal should not be viewed only as the evaluator of teachers, but as a collaborator of learning and teaching. Suggestions for further research include longitudinal studies of the impact on students of long term professional development of the teachers that specifically targets science content, inquiry and evidence--based discourse.
The Learning Assistant Model for Science Teacher Recruitment and Preparation
NASA Astrophysics Data System (ADS)
Otero, Valerie
2006-04-01
There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning assistants, increased interest in K-12 teaching as a career, and increased appreciation and understanding of student-centered and inquiry-based learning. Data to support these claims will be presented. Neuschatz, M. & McFarling, M. (2003). Broadning the Base: High School Physics Education at the Turn of a New Century, AIP Report No. R-439.
ERIC Educational Resources Information Center
Secret, Mary; Bryant, Nita L.; Cummings, Cory R.
2017-01-01
Our paper describes the design and delivery of an online interdisciplinary social science research methods course (ISRM) for graduate students in sociology, education, social work, and public administration. Collaborative activities and learning took place in two types of computer-mediated learning environments: a closed Blackboard course…
ERIC Educational Resources Information Center
Longo, Christopher M.
2016-01-01
Educators need to delve further into effective ways to spark student interest, motivation, and curiosity both in the middle school classroom and in the online environment. A thoughtfully crafted blended learning process, infused with inquiry learning, can provide students with opportunities to collaborate, think critically, and pose questions,…
"A Dance with the Butterflies:" A Metamorphosis of Teaching and Learning through Technology
ERIC Educational Resources Information Center
McPherson, Sarah
2009-01-01
This paper describes a web-based collaborative project called "A Dance with the Butterflies" that applied the brain-based research of the Center for Applied Special Technologies (CAST) and principles of Universal Design for Learning (UDL) to Pre-K-4 science curriculum. Learning experiences were designed for students to invoke the Recognition,…
ERIC Educational Resources Information Center
Berry, Stacy Jane
2013-01-01
There has been an increased emphasis for college instruction to incorporate more active and collaborative involvement of students in the learning process. These views have been asserted by The Association of American Colleges (AAC), the National Science Foundation (NSF), and The National Research Counsel (NRC), which are advocating for the…
NASA Astrophysics Data System (ADS)
Potter, Robert; Meisels, Gerry
2005-06-01
In a highly collaborative process we developed an introductory science course sequence to improve science literacy especially among future elementary and middle school education majors. The materials and course features were designed using the results of research on teaching and learning to provide a rigorous, relevant and engaging, standard based science experience. More than ten years of combined planning, development, implementation and assessment of this college science course sequence for nonmajors/future teachers has provided significant insights and success in achieving our goal. This paper describes the history and iterative nature of our ongoing improvements, changes in faculty instructional practice, strategies used to overcome student resistance, significant student learning outcomes, support structures for faculty, and the essential and informative role of assessment in improving the outcomes. Our experience with diverse institutions, students and faculty provides the basis for the lessons we have learned and should be of help to others involved in advancing science education.
Singing in Science: Writing and Recording Student Lyrics to Express Learning
ERIC Educational Resources Information Center
Nelson, Sara D.; Norton-Meier, Lori
2009-01-01
This article explores the use of lyric writing in elementary science. It details an exploratory project in which elementary students and a professional musician collaborated to write and record lyrics at the conclusion of an inquiry-based science unit. What we found was that lyric writing when used as a summary reflection activity in science…
ERIC Educational Resources Information Center
Rahm, Jrene
2012-01-01
Temporal and spatial configurations that constitute learning and identity work across practices have been little explored in studies of science literacy development. Grounded in multi-sited ethnography, this paper explores diverse girls' engagement with and identity work in science locally, inside a newsletter activity in an afterschool programme…
Science-policy processes for transboundary water governance.
Armitage, Derek; de Loë, Rob C; Morris, Michelle; Edwards, Tom W D; Gerlak, Andrea K; Hall, Roland I; Huitema, Dave; Ison, Ray; Livingstone, David; MacDonald, Glen; Mirumachi, Naho; Plummer, Ryan; Wolfe, Brent B
2015-09-01
In this policy perspective, we outline several conditions to support effective science-policy interaction, with a particular emphasis on improving water governance in transboundary basins. Key conditions include (1) recognizing that science is a crucial but bounded input into water resource decision-making processes; (2) establishing conditions for collaboration and shared commitment among actors; (3) understanding that social or group-learning processes linked to science-policy interaction are enhanced through greater collaboration; (4) accepting that the collaborative production of knowledge about hydrological issues and associated socioeconomic change and institutional responses is essential to build legitimate decision-making processes; and (5) engaging boundary organizations and informal networks of scientists, policy makers, and civil society. We elaborate on these conditions with a diverse set of international examples drawn from a synthesis of our collective experiences in assessing the opportunities and constraints (including the role of power relations) related to governance for water in transboundary settings.
Case-based pedagogy as a context for collaborative inquiry in the Philippines
NASA Astrophysics Data System (ADS)
Arellano, Elvira L.; Barcenal, Tessie L.; Bilbao, Purita P.; Castellano, Merilin A.; Nichols, Sharon; Tippins, Deborah J.
2001-05-01
The purpose of this study was to investigate the potential for using case-based pedagogy as a context for collaborative inquiry into the teaching and learning of elementary science. The context for this study was the elementary science teacher preparation program at West Visayas State University on the the island of Panay in Iloilo City, the Philippines. In this context, triple linguistic conventions involving the interactions of the local Ilonggo dialect, the national language of Philipino (predominantly Tagalog) and English create unique challenges for science teachers. Participants in the study included six elementary student teachers, their respective critic teachers and a research team composed of four Filipino and two U.S. science teacher educators. Two teacher-generated case narratives serve as the centerpiece for deliberation, around which we highlight key tensions that reflect both the struggles and positive aspects of teacher learning that took place. Theoretical perspectives drawn from assumptions underlying the use of case-based pedagogy and scholarship surrounding the community metaphor as a referent for science education curriculum inquiry influenced our understanding of tensions at the intersection of re-presentation of science, authority of knowledge, and professional practice, at the intersection of not shared language, explicit moral codes, and indigenization, and at the intersection of identity and dilemmas in science teaching. Implications of this study are discussed with respect to the building of science teacher learning communities in both local and global contexts of reform.
ERIC Educational Resources Information Center
Windale, Mark
2010-01-01
During the past three years, a team from the Centre for Science Education at Sheffield Hallam University, the University of Salford, the University of York, Glasshead and Teachers TV, has been working in collaboration to develop a series of blended media resources to support the teaching and learning of How Science Works (HSW) at Key Stages 3 and…
Meseke, Jamie K; Nafziger, Rita; Meseke, Christopher A
2008-05-01
This pilot study examines the effect collaborative testing has on achievement of students taking a basic science course at a chiropractic college. The grades of 2 cohorts of students taking a basic science course were compared: the control group from the first academic term (n = 73) and the experimental group from the second academic term (n = 41). The control cohort completed weekly quizzes as individuals. The experimental cohort completed the weekly quizzes in small collaborative groups. All unit examinations and the final examination were taken by both cohorts individually. Grades for each cohort were derived from 6 weekly unit quizzes, 3 unit examinations, and a comprehensive final examination. Overall, the experimental group differed from the control group (Wilks' Lambda = 0.318; F(10,103) = 22.052; and P < .001). All quiz scores were significantly higher for the experimental group as compared with the control group. In addition, overall point totals and final course grades also differed significantly. No significant differences, however, were observed in either the first 2 unit examination scores or the final examination scores. These results confirm previous reports that student performance is enhanced by collaborative learning. Collaborative testing provided students with the opportunity to discuss their reasoning and receive immediate feedback from other group members regarding their rationale, which potentially enhanced understanding of course material. Students were encouraged to become more active in the course as group discussions emerged from individual perspectives. The collaborative learning process may enhance critical thinking abilities, which are vital for future chiropractic practitioners.
Professional Learning Communities
ERIC Educational Resources Information Center
Eley, Alison
2017-01-01
There are many professional development programmes on offer for primary science. The best of these involve teachers in developing practice over time, alongside engaging with theory. In this article, the author considers how working as part of a professional learning community can support a collaborative and evidence informed approach to improving…
Collaboration with Community Partners
ERIC Educational Resources Information Center
Sterling, Donna R.; Frazier, Wendy M.
2006-01-01
For eight years, relationships with community partners have been the mainstay of a science enrichment program for secondary students. Through the use of problem-based learning, science classes use, the techniques and tools of scientists to solve authentic problems directly related to students' interests and needs. In this article, the author…
Enriching Science and Math through Engineering
ERIC Educational Resources Information Center
Redmond, Adrienne; Thomas, Julie; High, Karen; Scott, Margaret; Jordan, Pat; Dockers, Jean
2011-01-01
This case study reviewed the collaborative efforts of university engineers, teacher educators, and middle school teachers to advance sixth- and seventh-grade students' learning through a series of project-based engineering activities. This two-year project enriched regular school curricula by introducing real-world applications of science and…
Supporting Teachers Learning through the Collaborative Design of Technology-Enhanced Science Lessons
ERIC Educational Resources Information Center
Kafyulilo, Ayoub C.; Fisser, Petra; Voogt, Joke
2015-01-01
This study used the Interconnected Model of Professional Growth (Clarke & Hollingsworth in "Teaching and Teacher Education," 18, 947-967, 2002) to unravel how science teachers' technology integration knowledge and skills developed in a professional development arrangement. The professional development arrangement used Technological…
A New Virtual and Remote Experimental Environment for Teaching and Learning Science
NASA Astrophysics Data System (ADS)
Lustigova, Zdena; Lustig, Frantisek
This paper describes how a scientifically exact and problem-solving-oriented remote and virtual science experimental environment might help to build a new strategy for science education. The main features are: the remote observations and control of real world phenomena, their processing and evaluation, verification of hypotheses combined with the development of critical thinking, supported by sophisticated relevant information search, classification and storing tools and collaborative environment, supporting argumentative writing and teamwork, public presentations and defense of achieved results, all either in real presence, in telepresence or in combination of both. Only then real understanding of generalized science laws and their consequences can be developed. This science learning and teaching environment (called ROL - Remote and Open Laboratory), has been developed and used by Charles University in Prague since 1996, offered to science students in both formal and informal learning, and also to science teachers within their professional development studies, since 2003.
NASA Astrophysics EPO Resources For Engaging Girls in Science
NASA Astrophysics Data System (ADS)
Sharma, M.; Mendoza, D.; Smith, D.; Hasan, H.
2011-09-01
A new collaboration among the NASA Science Mission Directorate (SMD) Astrophysics EPO community is to engage girls in science who do not self-select as being interested in science, through the library setting. The collaboration seeks to (i) improve how girls view themselves as someone who knows about, uses, and sometimes contributes to science, and (ii) increase the capacity of EPO practitioners and librarians (both school and public) to engage girls in science. As part of this collaboration, we are collating the research on audience needs and best practices, and SMD EPO resources, activities and projects that focus on or can be recast toward engaging girls in science. This ASP article highlights several available resources and individual projects, such as: (i) Afterschool Universe, an out-of-school hands-on astronomy curriculum targeted at middle school students and an approved Great Science for Girls curriculum; (ii) Big Explosions and Strong Gravity, a Girl Scout patch-earning event for middle school aged girls to learn astronomy through hands-on activities and interaction with actual astronomers; and (iii) the JWST-NIRCAM Train the Trainer workshops and activities for Girl Scouts of USA leaders; etc. The NASA Astrophysics EPO community welcomes the broader EPO community to discuss with us how best to engage non-science-attentive girls in science, technology, engineering, and mathematics (STEM), and to explore further collaborations on this theme.
NASA Astrophysics Data System (ADS)
Fung, Dennis; Lui, Wai-mei
2016-05-01
This paper, through discussion of a teaching intervention at two secondary schools in Hong Kong, demonstrates the learning advancement brought about by group work and dissects the facilitating role of teachers in collaborative discussions. One-hundred and fifty-two Secondary Two (Grade 8) students were divided into three pedagogical groups, namely 'whole-class teaching', 'self-directed group work' and 'teacher-supported group work' groups, and engaged in peer-review, team debate, group presentation and reflection tasks related to a junior secondary science topic (i.e. current electricity). Pre- and post-tests were performed to evaluate students' scientific conceptions, alongside collected written responses and audio-recorded discussions. The results indicate that students achieved greater cognitive growth when they engaged in cooperative learning activities, the interactive and multi-sided argumentative nature of which is considered to apply particularly well to science education and Vygotsky's zone of proximal development framework. Group work learning is also found to be most effective when teachers play a role in navigating students during the joint construction of conceptual knowledge.
Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M
2017-02-01
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.
NASA Astrophysics Data System (ADS)
Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.
2017-02-01
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.
An emerging research framework for studying informal learning and schools
NASA Astrophysics Data System (ADS)
Martin, Laura M. W.
2004-07-01
In recognition of the fact that science centers and other informal educational institutions can play a role in the reform of science, technology, engineering, and mathematics (STEM) education, several major research and professional programs are currently underway. This article discusses one such effort, the Center for Informal Learning and Schools (CILS), a collaboration of the Exploratorium, the University of California, Santa Cruz, and King's College, London and the need for a theoretical framework based on socio-cultural theory to link discussion of varied efforts characterizing science learning in informal settings. The article discusses two key problematics related to developments in the science education field of the past decade: (1) integrating studies that are undertaken from multiple disciplinary perspectives, namely, science education, developmental psychology, and cultural studies, and (2) characterizing critical properties of informal learning in museums. It reviews work that has been conducted in nonschool settings and, using examples from research conducted by the Center for Informal Learning and Schools, it reviews questions currently under investigation.
Science education through informal education
NASA Astrophysics Data System (ADS)
Kim, Mijung; Dopico, Eduardo
2016-06-01
To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.
NASA Astrophysics Data System (ADS)
Chan, Man Ching Esther; Clarke, David; Cao, Yiming
2018-03-01
Interactive problem solving and learning are priorities in contemporary education, but these complex processes have proved difficult to research. This project addresses the question "How do we optimise social interaction for the promotion of learning in a mathematics classroom?" Employing the logic of multi-theoretic research design, this project uses the newly built Science of Learning Research Classroom (ARC-SR120300015) at The University of Melbourne and equivalent facilities in China to investigate classroom learning and social interactions, focusing on collaborative small group problem solving as a way to make the social aspects of learning visible. In Australia and China, intact classes of local year 7 students with their usual teacher will be brought into the research classroom facilities with built-in video cameras and audio recording equipment to participate in purposefully designed activities in mathematics. The students will undertake a sequence of tasks in the social units of individual, pair, small group (typically four students) and whole class. The conditions for student collaborative problem solving and learning will be manipulated so that student and teacher contributions to that learning process can be distinguished. Parallel and comparative analyses will identify culture-specific interactive patterns and provide the basis for hypotheses about the learning characteristics underlying collaborative problem solving performance documented in the research classrooms in each country. The ultimate goals of the project are to generate, develop and test more sophisticated hypotheses for the optimisation of social interaction in the mathematics classroom in the interest of improving learning and, particularly, student collaborative problem solving.
Kwon, Jae Yung; Bulk, Laura Yvonne; Giannone, Zarina; Liva, Sarah; Chakraborty, Bubli; Brown, Helen
2018-01-01
Despite numerous studies on formal interprofessional education programes, less attention has been focused on informal interprofessional learning opportunities. To provide such an opportunity, a collaborative peer review process (CPRP) was created as part of a peer-reviewed journal. Replacing the traditional peer review process wherein two or more reviewers review the manuscript separately, the CPRP brings together students from different professions to collaboratively review a manuscript. The aim of this study was to assess whether the CPRP can be used as an informal interprofessional learning tool using an exploratory qualitative approach. Eight students from Counselling Psychology, Occupational and Physical Therapy, Nursing, and Rehabilitation Sciences were invited to participate in interprofessional focus groups. Data were analysed inductively using thematic analysis. Two key themes emerged, revealing that the CPRP created new opportunities for interprofessional learning and gave practice in negotiating feedback. The results reveal that the CPRP has the potential to be a valuable interprofessional learning tool that can also enhance reviewing and constructive feedback skills.
Species Loss: Exploring Opportunities with Art-Science.
Harrower, Jennifer; Parker, Jennifer; Merson, Martha
2018-04-25
Human-induced global change has triggered the sixth major extinction event on earth with profound consequences for humans and other species. A scientifically literate public is necessary to find and implement approaches to prevent or slow species loss. Creating science-inspired art can increase public understanding of the current anthropogenic biodiversity crisis and help people connect emotionally to difficult concepts. In spite of the pressure to avoid advocacy and emotion, there is a rich history of scientists who make art, as well as art-science collaborations resulting in provocative work that engages public interest; however, such interdisciplinary partnerships can often be challenging to initiate and navigate. Here we explore the goals, impacts, cascading impacts and lessons learned from art-science collaborations, as well as ideas for collaborative projects. Using three case studies based on Harrower's scientific research into species interactions, we illustrate the importance of artists as a primary audience and the potential for a combination of art and science presentations to influence public understanding and concern related to species loss.
Effect of collaborative testing on learning and retention of course content in nursing students.
Rivaz, Mozhgan; Momennasab, Marzieh; Shokrollahi, Paymaneh
2015-10-01
Collaborative testing is a learning strategy that provides students with the opportunity to learn and practice collaboration. This study aimed to determine the effect of collaborative testing on test performance and retention of course content in nursing students of Shiraz University of Medical Sciences, Shiraz, Iran. This quasi-experimental study was carried out on 84 students enrolled in the course of Medical-Surgical 2 in Spring 2013 and Fall 2013 semesters. The control group consisting of 39 students participated in the first mid-term exam in an individual format. The intervention group, on the other hand, consisted of 45 students who took the test in a two-stage process. The first stage included an individual testing, while the second stage was a collaborative one given in groups of five individuals chosen randomly. Four weeks later, in order to investigate retention of the course content, both groups took part in the second mid-term exam held individually. The study findings showed significant difference between the mean scores in the intervention group in the Fall 2013 semester (p=0.001). Besides, a statistically significant difference was found between the two groups regarding the tests mean scores (p=0.001). Moreover, retention of course content improved in the collaborative group (p=0.001). The results indicated an increase in test performance and a long-term learning enhancement in collaborative testing compared with the traditional method. Collaborative testing, as an active learning technique and a valuable assessment method, can help nursing instructors provide the alumni with strong problem-solving and critical thinking abilities at healthcare environments.
2009-03-27
to learning and collaborative working • Developing more immersive learning where learning is promoted through experiencing the style of thinking of... Student Talk in Promoting Quality Learning in Science Classroom”, MS. Morrison, P., Barlow, M., Bethel, G. and Clothier, S. (2005), “Proficient Soldier...on student perceptions of learning effectiveness. 1 Computer self-efficacy: “The learner’s perception of their ability to carry out a series of
ERIC Educational Resources Information Center
Fung, Dennis; Lui, Wai-mei
2016-01-01
This paper, through discussion of a teaching intervention at two secondary schools in Hong Kong, demonstrates the learning advancement brought about by group work and dissects the facilitating role of teachers in collaborative discussions. One-hundred and fifty-two Secondary Two (Grade 8) students were divided into three pedagogical groups, namely…
ERIC Educational Resources Information Center
Walton, Kristen L. W.; Baker, Jason C.
2009-01-01
Communication of scientific and medical information and collaborative work are important skills for students pursuing careers in health professions and other biomedical sciences. In addition, group work and active learning can increase student engagement and analytical skills. Students in our public health microbiology class were required to work…
ERIC Educational Resources Information Center
Brandon, Paul R.; Young, Donald B.; Shavelson, Richard J.; Jones, Rachael; Ayala, Carlos C.; Ruiz-Primo, Maria Araceli; Yin, Yue; Tomita, Miki K.; Furtak, Erin Marie
2008-01-01
Our project to embed formative student assessments in the Foundational Approaches in Science Teaching curriculum required a close collaboration between curriculum developers at the Curriculum Research & Development Group (CRDG) and assessment developers at the Stanford Educational Assessment Laboratory (SEAL). This was a new endeavor for each…
ERIC Educational Resources Information Center
Gates, Alexander E.
2017-01-01
A simulated physical model of volcanic processes using a glass art studio greatly enhanced enthusiasm and learning among urban, middle- to high-school aged, largely underrepresented minority students in Newark, New Jersey. The collaboration of a geoscience department with a glass art studio to create a science, technology, engineering, arts, and…
ERIC Educational Resources Information Center
Nussli, Natalie; Oh, Kevin; McCandless, Kevin
2014-01-01
The purpose of this mixed methods study was to help pre-service teachers experience and evaluate the potential of Second Life, a three-dimensional immersive virtual environment, for potential integration into their future teaching. By completing collaborative assignments in Second Life, nineteen pre-service general education teachers explored an…
Group Practices: A New Way of Viewing CSCL
ERIC Educational Resources Information Center
Stahl, Gerry
2017-01-01
The analysis of "group practices" can make visible the work of novices learning how to inquire in science or mathematics. These ubiquitous practices are invisibly taken for granted by adults, but can be observed and rigorously studied in adequate traces of online collaborative learning. Such an approach contrasts with traditional…
Identifying Key Components of Teaching and Learning in a STEM School
ERIC Educational Resources Information Center
Morrison, Judith; Roth McDuffie, Amy; French, Brian
2015-01-01
This study was conducted at an innovative science, technology, engineering, and mathematics high school, providing a rich contextual description of the teaching and learning at the school, specifically focusing on problem solving and inquiry approaches, and students' motivation, social interactions, and collaborative work. Data were collected…
Expeditionary Learning in Information Systems: Definition, Implementation, and Assessment
ERIC Educational Resources Information Center
Abrahams, Alan S.; Singh, Tirna
2013-01-01
In the natural sciences, collecting, cataloguing, and comparing living specimens have long been a popular, collaborative mode of discovery and learning. New species are discovered, and the relationships between species are theorized. From Aristotle's "History of Animals" to Darwin's "On the Origin of Species", and beyond, this…
Trying Out Genes for Size: Experiential Learning in the High School Classroom
ERIC Educational Resources Information Center
Blazek, Joshua D.; Cooper, Gary L.; Judd, Mariah V.; Roper, Randall J.; Marrs, Kathleen A.
2013-01-01
The National Science Foundation's GK-12 program provides a unique opportunity for STEM collaboration between the K-12 classroom and university research. This partnership benefits students through experiential learning, exposure to research, exceptional mentorship, and preparation for postsecondary education. Additionally, researchers gain…
Green Action through Education: A Model for Fostering Positive Attitudes about STEM
ERIC Educational Resources Information Center
Wheland, Ethel R.; Donovan, William J.; Dukes, J. Thomas; Qammar, Helen K.; Smith, Gregory A.; Williams, Bonnie L.
2013-01-01
This paper describes an innovative collaboration between instructors of non-STEM (science, technology, engineering, and mathematics) courses and scientists who teach STEM courses in the GATE (Green Action Through Education) learning community. The scientists in this project presented engaging science--in such diverse locations as a sewage…
Sinking Your Teeth into Tooth Decay
ERIC Educational Resources Information Center
Stone, Jody H.
2012-01-01
With the increased focus on both inquiry and 21st-century skills such as collaboration and problem-solving, teachers at all levels are looking for engaging ways to create more student-centered classrooms in which students can learn more than "just" science content. Discovering and developing creative science activities designed to accomplish…
Formal Methods, Design, and Collaborative Learning in the First Computer Science Course.
ERIC Educational Resources Information Center
Troeger, Douglas R.
1995-01-01
A new introductory computer science course at City College of New York builds on a foundation of logic to teach programming based on a "design idea," a strong departure from conventional programming courses. Reduced attrition and increased student and teacher enthusiasm have resulted. (MSE)
ERIC Educational Resources Information Center
Nelson, Barbara J., Comp.; Wallner, Barbara K., Comp.; Powers, Myra L. Ed.; Hartley, Nancy K., Ed.
This publication is a compilation of examples of practical, easily implemented activities to help mathematics, science, and education faculty duplicate efforts by the Rocky Mountain Teacher Education Collaborative (RMTEC) to reform and revise curriculum for preservice educators. Activities are organized by content areas: mathematics; geology,…
Improving Science Education and Understanding through Editing Wikipedia
ERIC Educational Resources Information Center
Moy, Cheryl L.; Locke, Jonas R.; Coppola, Brian P.; McNeil, Anne J.
2010-01-01
This paper describes a graduate-level class project centered on editing chemistry-related entries in Wikipedia. This project enables students to work collaboratively, explore advanced concepts in chemistry, and learn how to communicate science to a diverse audience, including the general public. The format and structure of the project is outlined…
Simulation and Collaborative Learning in Political Science and Sociology Classrooms.
ERIC Educational Resources Information Center
Peters, Sandra; Saxon, Deborah
The program described here used cooperative, content-based computer writing projects to teach Japanese students at an intermediate level of English proficiency enrolled in first-year, English-language courses in political science/environmental issues and sociology/environmental issues in an international college program. The approach was taken to…
ERIC Educational Resources Information Center
Shonkoff, Jack P.; Bales, Susan Nall
2011-01-01
Science has an important role to play in advising policymakers on crafting effective responses to social problems that affect the development of children. This article describes lessons learned from a multiyear, working collaboration among neuroscientists, developmental psychologists, pediatricians, economists, and communications researchers who…
Identifying and Supporting Productive Collaborative Teacher Talk
NASA Astrophysics Data System (ADS)
Flarend, Alice M.
As improvements and changes in science education are promulgated, science teachers must be educated about these changes. Professional development programs are central to promoting teacher learning. Although the field seems to have agreed upon large-scalepedagogical features of high quality professional development with an emphasis on building a collaborative community of learners, effective implementation of these features is still problematic. The connections between these collaborative features and actual teacher work during the professional development remain unclear. This qualitative discourse study investigated how teachers engaged in small group discussions use discourse to collaborate during a weeklong professional development program that employed these useful pedagogical features. Small group discussions among the forty-two participants, diverse in their demographics and teaching experiences, were video and audio recorded. A collaborative discourse framework is developed and applied to the discussions, successfully categorizing episodes of discourse according to their productive potential for learning. The structure of the PD activities is then investigated to determine characteristics encouraging to these productive learning conversations. The analysis in this study indicated requiring groups to come to a consensus helps groups dig deeper into the content, promoting a more productive negotiation of concepts. Building consensus around an artifact such as a graph strengthened the need for consensus and thereby strengthened the opportunities for productive conversation. In addition, professional development activities that target building and using specific language were also opportunities for productive learning talk, providing opportunities to negotiate the deep meaning of words and concepts rather then leaving them unexamined. When viewed through the lens of Wenger's Community of Practice (1998) these findings are ways of strengthening the community. Consensus strengthens the mutual accountability and the purposeful building of vocabulary strengthens the shared repertoire, as did having the consensus artifact.
NASA Astrophysics Data System (ADS)
Setyaningsih, S.
2018-03-01
Lesson Study for Learning Community is one of lecturer profession building system through collaborative and continuous learning study based on the principles of openness, collegiality, and mutual learning to build learning community in order to form professional learning community. To achieve the above, we need a strategy and learning method with specific subscription technique. This paper provides a description of how the quality of learning in the field of science can be improved by implementing strategies and methods accordingly, namely by applying lesson study for learning community optimally. Initially this research was focused on the study of instructional techniques. Learning method used is learning model Contextual teaching and Learning (CTL) and model of Problem Based Learning (PBL). The results showed that there was a significant increase in competence, attitudes, and psychomotor in the four study programs that were modelled. Therefore, it can be concluded that the implementation of learning strategies in Lesson study for Learning Community is needed to be used to improve the competence, attitude and psychomotor of science students.
NASA Astrophysics Data System (ADS)
Liljeström, Anu; Enkenberg, Jorma; Pöllänen, Sinikka
2013-03-01
This design experiment aimed to answer the question of how to mediate the practices of authentic science inquiries in primary education. An instructional approach based on activity theory was designed and carried out with multi-age students in a small village school. An open-ended learning task was offered to the older students. Their task was to design and implement instruction about the Ice Age to their younger fellows. The objective was collaborative learning among students, the teacher, and outside domain experts. Mobile phones and GPS technologies were applied as the main technological mediators in the learning process. Technology provided an opportunity to expand the learning environment outside the classroom, including the natural environment. Empirically, the goal was to answer the following questions: What kind of learning project emerged? How did the students' knowledge develop? What kinds of science learning processes, activities, and practices were represented? Multiple and parallel data were collected to achieve this aim. The data analysis revealed that the learning project both challenged the students to develop explanations for the phenomena and generated high quality conceptual and physical models in question. During the learning project, the roles of the community members were shaped, mixed, and integrated. The teacher also repeatedly evaluated and adjusted her behavior. The confidence of the learners in their abilities raised the quality of their learning outcomes. The findings showed that this instructional approach can not only mediate the kind of authentic practices that scientists apply but also make learning more holistic than it has been. Thus, it can be concluded that nature of the task, the tool-integrated collaborative inquiries in the natural environment, and the multiage setting can make learning whole.
Hydromania: Summer Science Camp Curriculum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moura, Joan
1995-07-01
In 1992, Bonneville Power Administration (BPA) and the US Department of Energy (DOE) began a collaborative pilot project with the Portland Parks and Recreation Community Schools Program and others to provide summer science camps to children in Grades 4--6. Camps run two weeks in duration between late June and mid-August. Sessions are five days per week, from 9 a.m. to 3 p.m. In addition to hands-on science and math curriculum, at least three field trips are incorporated into the educational learning experience. The purpose of the BPA/DOE summer camps is to make available opportunities for fun, motivating experiences in sciencemore » to students who otherwise would have difficulty accessing them. This includes inner city, minority, rural and low income students. Public law 101-510, which Congress passed in 1990, authorizes DOE facilities to establish collaborative inner-city and rural partnership programs in science and math. A primary goal of the BPA summer hands on science camps is to bring affordable science camp experiences to students where they live. It uses everyday materials to engage students` minds and to give them a sense that they have succeeded through a fun hands-on learning environment.« less
The iPlant Collaborative: Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences
Merchant, Nirav; Lyons, Eric; Goff, Stephen; Vaughn, Matthew; Ware, Doreen; Micklos, David; Antin, Parker
2016-01-01
The iPlant Collaborative provides life science research communities access to comprehensive, scalable, and cohesive computational infrastructure for data management; identity management; collaboration tools; and cloud, high-performance, high-throughput computing. iPlant provides training, learning material, and best practice resources to help all researchers make the best use of their data, expand their computational skill set, and effectively manage their data and computation when working as distributed teams. iPlant’s platform permits researchers to easily deposit and share their data and deploy new computational tools and analysis workflows, allowing the broader community to easily use and reuse those data and computational analyses. PMID:26752627
Teamwork situated in multiteam systems: Key lessons learned and future opportunities.
Shuffler, Marissa L; Carter, Dorothy R
2018-01-01
Many important contexts requiring teamwork, including health care, space exploration, national defense, and scientific discovery, present important challenges that cannot be addressed by a single team working independently. Instead, the complex goals these contexts present often require effectively coordinated efforts of multiple specialized teams working together as a multiteam system (MTS). For almost 2 decades, researchers have endeavored to understand the novelties and nuances for teamwork and collaboration that ensue when teams operate together as "component teams" in these interdependent systems. In this special issue on the settings of teamwork, we aim to synthesize what is known thus far regarding teamwork situated in MTS contexts and offer new directions and considerations for developing, maintaining, and sustaining effective collaboration in MTSs. Our review of extant research on MTSs reveals 7 key lessons learned regarding teamwork situated in MTSs, but also reveals that much is left to learn about the science and practice of ensuring effective multiteam functioning. We elaborate these lessons and delineate 4 major opportunities for advancing the science of MTSs as a critical embedding context for collaboration and teamwork, now and in the future. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
ERIC Educational Resources Information Center
Azevedo, Roger; Winters, Fielding I.; Moos, Daniel C.
2004-01-01
This classroom study examined the role of low-achieving students' self-regulated learning (SRL) behaviors and their teacher's scaffolding of SRL while using a Web-based water quality simulation environment to learn about ecological systems. Forty-nine 11th and 12th grade students learned about ecology and the effects of land use on water quality…
Future Scenarios for Mobile Science Learning
NASA Astrophysics Data System (ADS)
Burden, Kevin; Kearney, Matthew
2016-04-01
This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.
NASA Astrophysics Data System (ADS)
Robertson, Amy Michelle
This is a study of a collaboration between multiple stakeholders in science education for the purpose of creating educational field trip experiences. The collaboration involves four major facets of science education: formal education at the elementary and university levels, informal education, and educational research. The primary participants in the collaboration include two elementary school teachers, a scientist from a local university, an informal educator from an environmental education site, and the researcher acting as a participant observer. The coming together of these different sides of science education provided a unique opportunity to explore the issues and experiences that emerged as such a partnership was formed and developed. Strongly influenced by action research, this study is a qualitative case study. The data was collected by means of observation, semi-structured interviews, and written document review, in order to provide both a descriptive and an interpretive account of this collaboration. The final analysis integrates a description of the participants' experiences as evidenced in the data with the issues that arose from these experiences. The evolution of the collaborators' roles was examined, as was the development of shared vision. In this study, there were several factors that significantly affected the progress towards a shared vision and a successful collaboration. These factors include time, communication, understanding others' perspectives, dedication and ownership, as well as the collaborative environment. Each collaborator benefited both professionally and personally from their participation in the collaboration. In addition, the students gained cognitively, affectively, and socially from the educational experiences created through the collaboration. Steps, such as working towards communication and understanding others' perspectives, should continue to be taken to ensure the collaboration continues beyond the term of the current key participants.
The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments
NASA Astrophysics Data System (ADS)
Goldstein, Jessica; Puntambekar, Sadhana
2004-12-01
This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students' attitudes towards using computers and working in groups during scientific inquiry. Students' attitudes towards technology and group work were analyzed using questionnaires. To add depth to the findings from the survey research, the role of gender was also investigated through the analysis of student conversations in the context of two activities: exploring science information on a hypertext text and conducting hands-on investigations. The data suggest that not only are girls and boys are similar with regard to attitudes about computers and group work, but that during collaborative learning activities, girls may actually participate more actively and persistently regardless of the nature of the task.
Granheim, Benedikte M; Shaw, Julie M; Mansah, Martha
2018-03-01
To identify how simulation and interprofessional learning are used together in undergraduate nursing programs and undertaken in schools of nursing to address interprofessional communication and collaboration. An integrative literature review. The databases CINAHL, ProQuest, PubMed, Scopus, PsycInfo and Science Direct were searched to identify articles from 2006 to 2016 that reported on the use of IPL and simulation together in undergraduate nursing education. Whittemore and Knafl's five step process was used to guide the integrative review of quantitative and qualitative literature. Only peer reviewed articles written in English that addressed undergraduate nursing studies, were included in the review. Articles that did not aim to improve communication and collaboration were excluded. All articles selected were examined to determine their contribution to interprofessional learning and simulation in undergraduate nursing knowledge. The faculties of nursing used interprofessional learning and simulation in undergraduate nursing programs that in some cases were connected to a specific course. A total of nine articles, eight research papers and one narrative report, that focused on collaboration and communication were selected for this review. Studies predominantly used nursing and medical student participants. None of the included studies identified prior student experience with interprofessional learning and simulation. Four key themes were identified: communication, collaboration/teamwork, learning in practice and understanding of roles, and communication. This review highlights the identified research relating to the combined teaching strategy of interprofessional learning and simulation that addressed communication and collaboration in undergraduate nursing programs. Further research into the implementation of interprofessional learning and simulation may benefit the emergent challenges. Information drawn from this review can be used in informing education and educational development in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Encouraging Teachers to Build Collaborations with Researchers; Examples From the Classroom (Invited)
NASA Astrophysics Data System (ADS)
Kane, M.
2013-12-01
Bringing experts into our schools allows for highly engaging lessons, encourages career thinking, adds authenticity to the topic, and allows student's questions to be answered by experts. Researchers can physically visit classrooms or appear through presentation technologies, such as Skype, or Google Hangouts. Virtual visits allow students to see laboratories and field sites. Collaborating with scientists builds the connective tissue that helps all educators and our students learn more deeply. When K-12 teachers collaborate with scientists and graduate students, teachers learn more science, and scientists learn more teaching. This growth of background knowledge is a win-win situation and helps us meet the expectations of the Common Core State Standards. Teachers need to feel encouraged to contact their local or regional scientists for support. Reaching out into the universities to make contact with polar scientists or graduate students is a good place to start. Building professional networks allows PI's to address the 'broader impact' requirement on many grant applications, and helps spread the university's work in the polar regions out to the general public. These collaborations also give teachers expert insights and current data to build authentic lessons, and excite their students to seek careers in the sciences. This presentation will focus on three completed interactive opportunities I have built with researchers in my classroom. Students adding daily sediment to their sediment core, after communications from the field with scientist Heidi Roop in Alaska.
NASA Astrophysics Data System (ADS)
Denning, S.; Burt, M. A.; Jones, B.
2015-12-01
Since 2006, the Center for Multiscale Modeling of Atmospheric Processes (CMMAP) has sponsored a fertile collaboration among researchers in many fields, graduate and undergraduate student, K-12 teachers, science outreach professionals, and evaluators. This collaboration included groundbreaking work in climate modeling, ecology, political science, sociology, psychology, and English. At the undergraduate level, we engaged more than 80 faculty in 26 Departments at a major public university who now teach one another's content in dozens of classes. Hundreds of English Composition students learned about climate change while developing basic writing skills. We also worked very closely with public schools to develop and test curriculum enhancement kits for teaching standards-aligned climate science in K-12 classrooms and built a successful series of Professional Development workshops for teachers at three different grade levels. Nearly 200,000 students participated in these programs in public schools and millions of individuals around the world used our web-based tools. The success of this collaborative program is apparent in traditional metrics and assessments of content knowledge. Equally important, the sustained interaction with education professionals had a substantial impact on the climate scientists and faculty involved in the program, and on our graduate students. We outline some of the key elements that made CMMAP's program successful, and offer suggestions for other institutions seeking to enhance climate literacy.
NASA Astrophysics Data System (ADS)
Goodnough, Karen
2010-03-01
In this study, the author implemented a problem-based learning (PBL) experience that allowed students in an advanced science methodology course to explore differentiated instruction. Through working systematically in small, collaborative groups, students explored the nature of differentiated instruction. The objective of the study was to examine pre-service teachers’ developing conceptions of differentiated instruction (DI) as a way to teach for diversity. The author adopted action research as a strategy to explore students’ perceptions of DI in the context of science teaching and learning. Several data collection methods and sources were adopted in the study, including student-generated products, student interviews, classroom observation, and journal writing. Outcomes report on students’ perceptions of both the potential and challenges associated with adopting a DI approach to science teaching and learning.
Collaborative Learning Works! Resources for Faculty
NASA Astrophysics Data System (ADS)
Mathieu, R. D.; Brissenden, G.; NISE College Level-1 Team
1998-12-01
Recent calls for instructional innovation in undergraduate science, mathematics, engineering, and technology (SMET) courses highlight the need for a solid foundation of education research at the undergraduate level on which to base policy and practice. We report the results of a meta-analysis that integrates research on undergraduate SMET education since 1980. The meta-analysis demonstrates that various forms of small-group learning are effective in promoting greater academic achievement, more favorable attitudes toward learning, and increased persistence through SMET courses and programs. The magnitude of the effects reported in this study exceeds most findings in comparable reviews of research on educational innovations and supports more widespread implementation of small-group learning in undergraduate SMET courses. We have created a web-site to assist instructors who wish to incorporate collaborative learning in their lectures, classrooms, and laboratories. The site provides straightforward, easy-to-use ideas for those just getting started, extensive additional resources for those already using small-group techniques, and the educational research foundation for the use of collaborative learning (including the meta-analysis). You can visit the site at www.wcer.wisc.edu/nise/cl1.
Science As A Second Language: Acquiring Fluency through Science Enterprises
NASA Astrophysics Data System (ADS)
Shope, R.; EcoVoices Expedition Team
2013-05-01
Science Enterprises are problems that students genuinely want to solve, questions that students genuinely want to answer, that naturally entail reading, writing, investigation, and discussion. Engaging students in personally-relevant science enterprises provides both a diagnostic opportunity and a context for providing students the comprehensible input they need. We can differentiate instruction by creating science enterprise zones that are set up for the incremental increase in challenge for the students. Comprehensible input makes reachable, those just-out-of-reach concepts in the mix of the familiar and the new. EcoVoices takes students on field research expeditions within an urban natural area, the San Gabriel River Discovery Center. This project engages students in science enterprises focused on understanding ecosystems, ecosystem services, and the dynamics of climate change. A sister program, EcoVoces, has been launched in Mexico, in collaboration with the Universidad Loyola del Pacífico. 1) The ED3U Science Inquiry Model, a learning cycle model that accounts for conceptual change: Explore { Diagnose, Design, Discuss } Use. 2) The ¿NQUIRY Wheel, a compass of scientific inquiry strategies; 3) Inquiry Science Expeditions, a way of laying out a science learning environment, emulating a field and lab research collaboratory; 4) The Science Educative Experience Scale, a diagnostic measure of the quality of the science learning experience; and 5) Mimedia de la Ciencia, participatory enactment of science concepts using techniques of mime and improvisational theater. BACKGROUND: Science has become a vehicle for teaching reading, writing, and other communication skills, across the curriculum. This new emphasis creates renewed motivation for Scientists and Science Educators to work collaboratively to explore the common ground between acquiring science understanding and language acquisition theory. Language Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, reading for pleasure, conversing, discussing, where the focus is not specifically on language development, but on the activity, which is of interest to the participant. Language Learning is a formal education process, the language arts aspect of the school day: the direct teaching of reading, writing, grammar, spelling, and speaking. Fluency results primarily from language acquisition and secondarily from language learning. We can view the problem of science education and communication as similar to language acquisition. Science Learning is a formal education process, the school science aspect of the school day: the direct teaching of standards-aligned science content. Science Acquisition is an informal process that occurs in the midst of exploring, solving problems, seeking answers to questions, playing, experimenting for pleasure, conversing, discussing, where the focus is not specifically on science content development, but on the inquiry activity, driven by the curiosity of the participant. Treating Science as a Second Language shifts the evaluation of science learning to include gauging the extent to which students choose to deepen their pursuit of science learning.
Live Storybook Outcomes of Pilot Multidisciplinary Elementary Earth Science Collaborative Project
NASA Astrophysics Data System (ADS)
Soeffing, C.; Pierson, R.
2017-12-01
Live Storybook Outcomes of pilot multidisciplinary elementary earth science collaborative project Anchoring phenomena leading to student led investigations are key to applying the NGSS standards in the classroom. This project employs the GLOBE elementary storybook, Discoveries at Willow Creek, as an inspiration and operational framework for a collaborative pilot project engaging 4th grade students in asking questions, collecting relevant data, and using analytical tools to document and understand natural phenomena. The Institute of Global Environmental Strategies (IGES), a GLOBE Partner, the Outdoor Campus, an informal educational outdoor learning facility managed by South Dakota Game, Fish and Parks, University of Sioux Falls, and All City Elementary, Sioux Falls are collaborating partners in this project. The Discoveries at Willow Creek storyline introduces young students to the scientific process, and models how they can apply science and engineering practices (SEPs) to discover and understand the Earth system in which they live. One innovation associated with this project is the formal engagement of elementary students in a global citizen science program (for all ages), GLOBE Observer, and engaging them in data collection using GLOBE Observer's Cloud and Mosquito Habitat Mapper apps. As modeled by the fictional students from Willow Creek, the 4th grade students will identify their 3 study sites at the Outdoor Campus, keep a journal, and record observations. The students will repeat their investigations at the Outdoor Campus to document and track change over time. Students will be introduced to "big data" in a manageable way, as they see their observations populate GLOBE's map-based data visualization and . Our research design recognizes the comfort and familiarity factor of literacy activities in the elementary classroom for students and teachers alike, and postulates that connecting a science education project to an engaging storybook text will contribute to a successful implementation and measurable learning outcomes. We will report on the Fall 2017 pilot metrics of success, along with a discussion of multi partner collaborations, project scale-up and sustainability.
NASA Astrophysics Data System (ADS)
Robinson, E.; Meyer, C. B.; Benedict, K. K.
2013-12-01
A critical part of effective Earth science data and information system interoperability involves collaboration across geographically and temporally distributed communities. The Federation of Earth Science Information Partners (ESIP) is a broad-based, distributed community of science, data and information technology practitioners from across science domains, economic sectors and the data lifecycle. ESIP's open, participatory structure provides a melting pot for coordinating around common areas of interest, experimenting on innovative ideas and capturing and finding best practices and lessons learned from across the network. Since much of ESIP's work is distributed, the Foundation for Earth Science was established as a non-profit home for its supportive collaboration infrastructure. The infrastructure leverages the Internet and recent advances in collaboration web services. ESIP provides neutral space for self-governed groups to emerge around common Earth science data and information issues, ebbing and flowing as the need for them arises. As a group emerges, the Foundation quickly equips the virtual workgroup with a set of ';commodity services'. These services include: web meeting technology (Webex), a wiki and an email listserv. WebEx allows the group to work synchronously, dynamically viewing and discussing shared information in real time. The wiki is the group's primary workspace and over time creates organizational memory. The listserv provides an inclusive way to email the group and archive all messages for future reference. These three services lower the startup barrier for collaboration and enable automatic content preservation to allow for future work. While many of ESIP's consensus-building activities are discussion-based, the Foundation supports an ESIP testbed environment for exploring and evaluating prototype standards, services, protocols, and best practices. After community review of testbed proposals, the Foundation provides small seed funding and a toolbox of collaborative development resources including Amazon Web Services to quickly spin-up the testbed instance and a GitHub account for maintaining testbed project code enabling reuse. Recently, the Foundation supported development of the ESIP Commons (http://commons.esipfed.org), a Drupal-based knowledge repository for non-traditional publications to preserve community products and outcomes like white papers, posters and proceedings. The ESIP Commons adds additional structured metadata, provides attribution to contributors and allows those unfamiliar with ESIP a straightforward way to find information. The success of ESIP Federation activities is difficult to measure. The ESIP Commons is a step toward quantifying sponsor return on investment and is one dataset used in network map analysis of the ESIP community network, another success metric. Over the last 15 years, ESIP has continually grown and attracted experts in the Earth science data and informatics field becoming a primary locus of research and development on the application and evolution of Earth science data standards and conventions. As funding agencies push toward a more collaborative approach, the lessons learned from ESIP and the collaboration services themselves are a crucial component of supporting science research.
Creating contextually authentic science in a low-performing urban elementary school
NASA Astrophysics Data System (ADS)
Buxton, Cory A.
2006-09-01
This article reports on a 2-year collaborate project to reform the teaching and learning of science in the context of Mae Jemison Elementary, the lowest performing elementary school in the state of Louisiana. I outline a taxonomy of authentic science inquiry experiences and then use the resulting framework to focus on how project participants interpreted and enacted ideas about collaboration and authenticity. The resulting contextually authentic science inquiry model links the strengths of a canonically authentic model of science inquiry (grounded in the Western scientific canon) with the strengths of a youth-centered model of authenticity (grounded in student-generated inquiry), thus bringing together relevant content standards and topics with critical social relevance. I address the question of how such enactments may or may not promote doing science together and consider the implications of this model for urban science education.
NASA Astrophysics Data System (ADS)
Esa, Suraya; Mohamed, Nurul Akmal
2017-05-01
This study aims to identify the relationship between students' learning styles and mathematics anxiety amongst Form Four students in Kerian, Perak. The study involves 175 Form Four students as respondents. The instrument which is used to assess the students' learning styles and mathematic anxiety is adapted from the Grasha's Learning Styles Inventory and the Mathematics Anxiety Scale (MAS) respectively. The types of learning styles used are independent, avoidant, collaborative, dependent, competitive and participant. The collected data is processed by SPSS (Statistical Packages for Social Sciences 16.0). The data is analysed by using descriptive statistics and inferential statistics that include t-test and Pearson correlation. The results show that majority of the students adopt collaborative learning style and the students have moderate level of mathematics anxiety. Moreover, it is found that there is significant difference between learning style avoidant, collaborative, dependent and participant based on gender. Amongst all students' learning style, there exists a weak but significant correlation between avoidant, independent and participant learning style and mathematics anxiety. It is very important for the teachers need to be concerned about the effects of learning styles on mathematics anxiety. Therefore, the teachers should understand mathematics anxiety and implement suitable learning strategies in order for the students to overcome their mathematics anxiety.
Orsini, Muhsin Michael; Wyrick, David L; Milroy, Jeffrey J
2012-11-01
Blending high-quality and rigorous research with pure evaluation practice can often be best accomplished through thoughtful collaboration. The evaluation of a high school drug prevention program (All Stars Senior) is an example of how perceived competing purposes and methodologies can coexist to investigate formative and summative outcome variables that can be used for program improvement. Throughout this project there were many examples of client learning from evaluator and evaluator learning from client. This article presents convincing evidence that collaborative evaluation can improve the design, implementation, and findings of the randomized control trial. Throughout this paper, we discuss many examples of good science, good evaluation, and other practical benefits of practicing collaborative evaluation. Ultimately, the authors created the term pre-formative evaluation to describe the period prior to data collection and before program implementation, when collaborative evaluation can inform program improvement. Copyright © 2012 Elsevier Ltd. All rights reserved.
Milutinović, Dragana; Lovrić, Robert; Simin, Dragana
2018-06-01
There is an implicit expectation for medical sciences students to work together effectively as members of health-care team, and interprofessional education is therefore widely accepted. Students' attitudes, which are affected by various factors, have been recognized as the most important predictors of successful implementation of interprofessional education with the aim of developing collaborative practice. The Readiness for Interprofessional Learning Scale has often been used in studies to measure these perspectives. To describe the psychometric properties of the Serbian cross-culturally adapted version of the original Readiness for Interprofessional Learning Scale, to assess the attitudes of undergraduate health science students towards interprofessional education and to evaluate whether a professional group and student characteristics have influence on attitudes towards collaborative practice and shared learning. A descriptive/analytical and comparative cross-sectional study. Faculty of Medicine in Serbia. Nursing and medical students after completed first clinical rotations (n = 257). The Readiness for Interprofessional Learning Scale for assessing attitudes among students towards interprofessional learning, Professional Identity Questionnaire for Nursing Students for assessing professional identity in nursing students, Professional Nursing Image Survey for assessing attitudes of medical students towards the nursing profession, as well as a socio-demographic questionnaire were the instruments used in this research study. The data were analysed using descriptive and inferential statistics. Exploratory factor analysis on 19 items revealed two-factors accounting for 51.1% of the total variance with the internal reliability α = 0.90. The mean total score of the Readiness for Interprofessional Learning Scale was 73.5 (SD = 11.5) indicating that students are ready for interprofessional learning. Nursing students, female students; students in their first years of studies, and those with previously completed education in the field of health care, have been more ready for interprofessional learning and collaborative practice. In the multiple linear regression analysis, gender and assessing professional nursing skills and abilities were significant predictors of medical students' readiness for interprofessional learning, whereas professional identity was for nursing students. The Serbian version of the Readiness for Interprofessional Learning Scale has proven to be reliable and valid for the "teamwork, collaboration and shared learning" subscale, while the "role and responsibilities" subscale showed lower stability. The results of this study revealed positive students' attitudes towards interprofessional learning, which is important for Serbia, as a candidate country for European Union membership, and thus making our educational system more inclusive for joining the European Higher Education Area. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Feng; Chan, Carol K. K.
2018-04-01
This study examined the role of computer-supported knowledge-building discourse and epistemic reflection in promoting elementary-school students' scientific epistemology and science learning. The participants were 39 Grade 5 students who were collectively pursuing ideas and inquiry for knowledge advance using Knowledge Forum (KF) while studying a unit on electricity; they also reflected on the epistemic nature of their discourse. A comparison class of 22 students, taught by the same teacher, studied the same unit using the school's established scientific investigation method. We hypothesised that engaging students in idea-driven and theory-building discourse, as well as scaffolding them to reflect on the epistemic nature of their discourse, would help them understand their own scientific collaborative discourse as a theory-building process, and therefore understand scientific inquiry as an idea-driven and theory-building process. As hypothesised, we found that students engaged in knowledge-building discourse and reflection outperformed comparison students in scientific epistemology and science learning, and that students' understanding of collaborative discourse predicted their post-test scientific epistemology and science learning. To further understand the epistemic change process among knowledge-building students, we analysed their KF discourse to understand whether and how their epistemic practice had changed after epistemic reflection. The implications on ways of promoting epistemic change are discussed.
Building Ocean Learning Communities: A COSEE Science and Education Partnership
NASA Astrophysics Data System (ADS)
Robigou, V.; Bullerdick, S.; Anderson, A.
2007-12-01
The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups including research scientists, formal and informal educators, business representatives, and non-profit groups to identify ocean-related problems, and develop solutions to share with their own communities. COSEE OLC practices and studies the skills of developing these collaborations.
Art-Science-Technology collaboration through immersive, interactive 3D visualization
NASA Astrophysics Data System (ADS)
Kellogg, L. H.
2014-12-01
At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.
ERIC Educational Resources Information Center
Marx, Joseph G.; Honeycutt, Kimberly A.; Clayton, Sonia Rahmati; Moreno, Nancy P.
2006-01-01
The Elizabeth Towns Incident (ETI), a set of inquiry lessons on human anatomy, was developed as part of a partnership between the Houston Independent School District (HISD) and Baylor College of Medicine. This collaboration was funded by the National Science Foundation's program, Graduate Teaching Fellowship in K-12 Education. The Houston-based…
NASA Astrophysics Data System (ADS)
Kinard, Melissa Grass
Scientific communities have established social mechanisms for proposing explanations, questioning evidence, and validating claims. Opportunities like these are often not a given in science classrooms (Vellom, Anderson, & Palincsar, 1993) even though the National Science Education Standards (NSES, 1996) state that a scientifically literate person should be able to "engage intelligently in public discourse and debate about important issues in science and technology" (National Research Council [NRC], 1996). Research further documents that students' science conceptions undergo little modification with the traditional teaching experienced in many high school science classrooms (Duit, 2003, Dykstra, 2005). This case study is an examination of the discourse that occurred as four high school physics students collaborated on solutions to three physics lab problems during which the students made predictions and experimentally generated data to support their predictions. The discourse patterns were initially examined for instances of concept negotiations. Selected instances were further examined using Toulmin's (2003) pattern for characterizing argumentation in order to understand the students' scientific reasoning strategies and to document the role of collaboration in facilitating conceptual modifications and changes. Audio recordings of the students' conversations during the labs, written problems turned in to the teacher, interviews of the students, and observations and field notes taken during student collaboration were used to document and describe the students' challenges and successes encountered during their collaborative work. The findings of the study indicate that collaboration engaged the students and generated two types of productive science discourse: concept negotiations and procedure negotiations. Further analysis of the conceptual and procedure negotiations revealed that the students viewed science as sensible and plausible but not as a tool they could employ to answer their questions. The students' conceptual growth was inhibited by their allegiance to the authority of the science laws as learned in their school classroom. Thus, collaboration did not insure conceptual change. Describing student discourse in situ contributes to science education research about teaching practices that facilitate conceptual understandings in the science classroom.
NASA Astrophysics Data System (ADS)
Botella, J.; Warburton, J.; Bartholow, S.; Reed, L. F.
2014-12-01
The Joint Antarctic School Expedition (JASE) is an international collaboration program between high school students and teachers from the United States and Chile aimed at providing the skills required for establishing the scientific international collaborations that our globalized world demands, and to develop a new approach for science education. The National Antarctic Programs of Chile and the United States worked together on a pilot program that brought high school students and teachers from both countries to Punta Arenas, Chile, in February 2014. The goals of this project included strengthening the partnership between the two countries, and building relationships between future generations of scientists, while developing the students' awareness of global scientific issues and expanding their knowledge and interest in Antarctica and polar science. A big component of the project involved the sharing by students of the acquired knowledge and experiences with the general public. JASE is based on the successful Chilean Antarctic Science Fair developed by Chile´s Antarctic Research Institute. For 10 years, small groups of Chilean students, each mentored by a teacher, perform experimental or bibliographical Antarctic research. Winning teams are awarded an expedition to the Chilean research station on King George Island. In 2014, the Chileans invited US participation in this program in order to strengthen science ties for upcoming generations. On King George Island, students have hands-on experiences conducting experiments and learning about field research. While the total number of students directly involved in the program is relatively small, the sharing of the experience by students with the general public is a novel approach to science education. Research experiences for students, like JASE, are important as they influence new direction for students in science learning, science interest, and help increase science knowledge. We will share experiences with the planning of the pilot program as well as the expedition itself. We also share the results of the assessment report prepared by an independent party. Lastly, we will offer recommendations for initiating international science education collaborations. United States participation was funded by the NSF Division of Polar Programs.
The Role of Outdoor Art in Urban Environmental Education
NASA Astrophysics Data System (ADS)
Filippelli, G. M.; Kesling, M.; Ryan, T.; Fraser, J.; McDonald, F.; Rollings, A.; Miss, M.; Kanpetch, B.; Trueblood, M.
2015-12-01
Finding ways to engage youth in inadvertent learning about nature and the environment is challenging, particularly in urban areas where environmental literacy is profoundly limited by access to safe and representative spaces. Termed the Nature Deficit Disorder, the lack of contact and connection between people and their environment leads to a less than holistic approach to environmental management at the personal and governmental levels. One of the challenges is developing ways to engage youth in science learning not by bringing them indoors to a science museum but rather by taking the science museum outdoors. Funded by the NSF Informal Science Learning program, we launched a collaborative between scientists and artists to understand the nature and impact of environmental learning through outdoor art and science programming, called StreamLines. Launched in 2014 and now near full deployment, the program is part of a bigger initiative in Indianapolis (Reconnecting to Our Waterways) to embrace the multiple waterways that traverse the city as a valuable community and health resource. This collaborative is designed to function on multiple levels. An Artist and Scientists Roundtable engages practitioners in regular conversations supplemented by external readings to share how practitioners use concepts and tools from the "opposite" side to inform their work and scholarship. Physical installations of iconic art at individual sites reflect the environmental conditions at individual sites are designed as tools for explicit and implicit learning and exploration about the environment. Music, poetry, and dance programming developed for individual sites portray cogent characteristics of place and are meant to allow visitors to see how artists engage with and draw from the environment for inspiration. A research approach unpins all of these efforts, utilizing a set of different sample populations to explore environmental education and potential advocacy after interactions with components of StreamLines.
Using "Facebook" to Improve Communication in Undergraduate Software Development Teams
ERIC Educational Resources Information Center
Charlton, Terence; Devlin, Marie; Drummond, Sarah
2009-01-01
As part of the CETL ALiC initiative (Centre of Excellence in Teaching and Learning: Active Learning in Computing), undergraduate computing science students at Newcastle and Durham universities participated in a cross-site team software development project. To ensure we offer adequate resources to support this collaboration, we conducted an…
From Website to Moodle in a Blended Learning Context
ERIC Educational Resources Information Center
Buus, Lillian
2016-01-01
This paper presents findings collected from a collaborative implementation project established in Spring 2008 between Aalborg University's IT-department in the Faculty of Social Science (FSS) and the E-Learning Cooperation Unit (ELSA) with the view to implement Moodle in FSS. The purpose of this cooperation was conceived from an organisational…
Collaborative Learning in Teaching Information Management
ERIC Educational Resources Information Center
Natho, N.; Knipping, L.; Pfeiffer, O.; Schroder, C.; Zorn, E.; Jeschke, S.
2010-01-01
In this paper, we present the course called "New Media in Education and Research", which employs a blended learning approach. This course is a part of a new bachelor's programme "Natural Sciences in the Information Society" that is in place in TU Berlin. The main goal of this course is to provide the students with the…
ERIC Educational Resources Information Center
Canelas, Dorian A.; Hill, Jennifer L.; Novicki, Andrea
2017-01-01
Science and engineering educators and employers agree that students should graduate from college with expertise in their major subject area as well as the skills and competencies necessary for productive participation in diverse work environments. These competencies include problem-solving, communication, leadership, and collaboration, among…
ERIC Educational Resources Information Center
Vellucci, Sherry L.; Hsieh-Yee, Ingrid; Moen, William E.
2007-01-01
The networked environment forced a sea change in Library and Information Science (LIS) education. Most LIS programs offer a mixed-mode of instruction that integrates online learning materials with more traditional classroom pedagogical methods and faculty are now responsible for developing content and digital learning objects. The teaching commons…
ERIC Educational Resources Information Center
Palocsay, Susan W.; White, Marion M.; Zimmerman, D. Kent
2004-01-01
This article describes an experiential learning activity designed to promote the development of decision-making skills in international management students at the undergraduate level. Students from an undergraduate management science course in decision analysis served as consultants on a case assigned to teams in an international management class.…
Interdisciplinary Facilities that Support Collaborative Teaching and Learning
ERIC Educational Resources Information Center
Asoodeh, Mike; Bonnette, Roy
2006-01-01
It has become widely accepted that the computer is an indispensable tool in the study of science and technology. Thus, in recent years curricular programs such as Industrial Technology and associated scientific disciplines have been adopting and adapting the computer as a tool in new and innovative ways to support teaching, learning, and research.…
PISA 2015 Results (Volume V): Collaborative Problem Solving
ERIC Educational Resources Information Center
OECD Publishing, 2017
2017-01-01
The OECD Programme for International Student Assessment (PISA) examines not just what students know in science, reading and mathematics, but what they can do with what they know. Results from PISA show educators and policy makers the quality and equity of learning outcomes achieved elsewhere, and allow them to learn from the policies and practices…
A Review of Global Learning & Observations to Benefit the Environment (GLOBE)
ERIC Educational Resources Information Center
Executive Office of the President, 2010
2010-01-01
The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide, hands-on, primary and secondary school-based science and education program. GLOBE supports students, teachers, and scientists in collaborations using inquiry-based investigations of the environment and the earth system. GLOBE currently works in close…
Web 2.0 Technologies and Back Channel Communication in an Online Learning Community
ERIC Educational Resources Information Center
Kearns, Lorna R.; Frey, Barbara A.
2010-01-01
Communication, collaboration and community development are processes that contribute to student satisfaction and learning in online courses. This paper describes a study that investigated how campus and distance graduate students in a library science program communicated with one another outside the official boundaries of their courses. We…
Negotiating the Use of Formative Assessment for Learning in an Era of Accountability Testing
ERIC Educational Resources Information Center
Yin, Xinying
2013-01-01
The purpose of this collaborative action research was to understand how science educators can negotiate the tension between integrating formative assessment (FA) for students' learning and meeting the need for standardized summative assessment (testing) from a critical perspective. Using formative assessment in the era of accountability testing…
Service-Learning and Emergent Communities of Practice: A Teacher Education Case Study
ERIC Educational Resources Information Center
Kaschak, Jennifer Cutsforth; Letwinsky, Karim Medico
2015-01-01
This study investigates the unexpected emergence of a community of practice in a middle level mathematics and science methods course. The authors describe how preservice teacher participation in a collaborative, project-based service-learning experience resulted in the formation of a community of practice characterized by teamwork, meaningful…
Purposeful Instruction: Mixing up the "I," "We," and "You"
ERIC Educational Resources Information Center
Grant, Maria; Lapp, Diane; Fisher, Douglas; Johnson, Kelly; Frey, Nancy
2012-01-01
This article discusses the flexible nature of the gradual release of responsibility (GRR) as a frame for inquiry-based science instruction. Given the mandate for the use of text-supported learning (Common Core Standards), the GRR can be used to allow students to learn as scientists as they collaboratively develop testable questions and experiments…
Scaffolding scientific discussion using socially relevant representations in networked multimedia
NASA Astrophysics Data System (ADS)
Hoadley, Christopher M.
1999-11-01
How do students make use of social cues when learning on the computer? This work examines how students in a middle-school science course learned through on-line peer discussion. Cognitive accounts of collaboration stress interacting with ideas, while socially situated accounts stress the interpersonal context. The design of electronic environments allows investigation into the interrelation of cognitive and social dimensions. I use on-line peer discussion to investigate how socially relevant representations in interfaces can aid learning. First, I identify some of the variables that affect individual participation in on-line discussion, including interface features. Individual participation is predicted by student attitudes towards learning from peers. Second, I describe the range of group outcomes for these on-line discussions. There is a large effect of discussion group on learning outcomes which is not reducible to group composition or gross measures of group process. Third, I characterize how students (individually) construct understanding from these group discussions. Learning in the on-line discussions is shown to be a result of sustained interaction over time, not merely encountering or expressing ideas. Experimental manipulations in the types of social cues available to students suggest that many students do use socially relevant representations to support their understanding of multiple viewpoints and science reasoning. Personalizing scientific disputes can afford reflection on the nature of scientific discovery and advance. While there are many individual differences in how social representations are used by students in learning, overall learning benefits for certain social representations can be shown. This work has profound implications for design of collaborative instructional methods, equitable access to science learning, design of instructional technology, and understanding of learning and cognition in social settings.
Evidence-Based Professional Development of Science Teachers in Two Countries
ERIC Educational Resources Information Center
Harrison, Christine; Hofstein, Avi; Eylon, Bat-Sheva; Simon, Shirley
2008-01-01
The focus of this collaborative research project of King's College London, and the Weizmann Institute, Israel is on investigating the ways in which teachers can demonstrate accomplished teaching in a specific domain of science and on the teacher learning that is generated through continuing professional development (CPD) programmes that lead…
Using Picture Storybooks to Support Young Children's Science Learning
ERIC Educational Resources Information Center
Pringle, Rose M.; Lamme, Linda Leonard
2005-01-01
Children's books are an important classroom resource for the study of animals because it is not practical for students to study many animals in their natural habitat. This article is the result of a collaborative research project undertaken by a science methods specialist and a children's literature specialist. We analyzed books about animals that…
Professional Development: Building Effective Virtual Communities through Cooperative Learning.
ERIC Educational Resources Information Center
Meyers, Robert; Davis, Hilarie; Botti, James
A web site for an online graduate course in Earth systems science for middle school teachers was designed to affect teachers' knowledge about Earth systems science and resources and their use of constructivist teaching practices, particularly collaboration, rubrics and the use of journals. In the 16-week course 44 teachers experienced…
Developing Critical Thinking Skills Using the Science Writing Heuristic in the Chemistry Laboratory
ERIC Educational Resources Information Center
Stephenson, N. S.; Sadler-McKnight, N. P.
2016-01-01
The Science Writing Heuristic (SWH) laboratory approach is a teaching and learning tool which combines writing, inquiry, collaboration and reflection, and provides scaffolding for the development of critical thinking skills. In this study, the California Critical Thinking Skills Test (CCTST) was used to measure the critical thinking skills of…
Collection and Collaboration: Science in Michigan Middle School Media Centers
ERIC Educational Resources Information Center
Mardis, Marcia; Hoffman, Ellen
2007-01-01
In many ways, science classrooms and school library media centers are parallel universes struggling with their own reform issues and with documenting their own positive impacts. As the trend toward data-driven decisions grows in the school setting, it is increasingly important for every component of the learning environment to have demonstrable…
"Operation Magpie": Inspiring Teachers' Professional Learning through Environmental Science
ERIC Educational Resources Information Center
Zeegers, Yvonne; Paige, Kathryn; Lloyd, David; Roetman, Philip
2012-01-01
Operation Magpie was a citizen science project that involved the community in collecting data about magpies. This article describes one aspect of the project from an education perspective. The study began with a collaboration of teacher educators, environmental scientists and a local radio station. After an initial workshop with 75 teachers, three…
Integrating Literacy, Math, and Science to Make Learning Come Alive
ERIC Educational Resources Information Center
Bintz, William P.; Moore, Sara D.; Hayhurst, Elaine; Jones, Rubin; Tuttle, Sherry
2006-01-01
In this article, the authors who are an interdisciplinary team of middle school educators collaboratively developed and implemented an interdisciplinary unit designed to help middle school students: (1) think like mathematicians and scientists; (2) develop specific areas of expertise in math and science; and (3) use literature as a tool to learn…
Service Learning in an FCS: A Community-Campus Collaboration
ERIC Educational Resources Information Center
Friesen, Carol A.; Whitaker, Sue H.; Piotrowicz, Kay
2004-01-01
The new core for the Department of Family and Consumer Sciences at Ball State University was designed to provide students with a better understanding of the integrative nature of the family and consumer sciences (FCS) profession. The resultant 9-credit core includes an introductory course, a capstone course, and one student-selected course. The…
ERIC Educational Resources Information Center
McClennen, Nate
2004-01-01
Events in a community can lead to valuable learning experiences in science. By the end of the summer of 2001, the Green Knoll Fire had burned almost 4000 acres of forest south of Wilson, Wyoming. This article describes how students at the Journeys School of Teton Science Schools participated in a collaborative project with the United States Forest…
NASA Astrophysics Data System (ADS)
Keil, R. G.; Bell, P. L.; Bittner, M. S.; Robigou, V.; Sider, K.
2005-12-01
The College of Ocean and Fishery Sciences and the College of Education at the University of Washington, the Seattle Aquarium, and the California Maritime Academy formed a partnership to establish a Center for Ocean Sciences Education Excellence (COSEE) labeled "Ocean Learning Communities." The COSEE-OLC will join the national network of NSF-funded centers that provide a catalytic environment in which partnerships between ocean researchers and educators flourish. The COSEE network contributes to the national advancement of ocean science education by sharing high-quality K-12 or informal education programs, best practices and methodologies, and offering exemplary courses through the network and at national professional meetings. Building on the successes and lessons of the existing COSEE centers, the COSEE-OLC will foster collaborations among the oceanography research community, the science of learning community, informal and formal educators, the general public, and the maritime industry in the Northwest region and the West coast. The concept for this partnership is based on reaching out to traditionally underserved populations (from the businesses that use the sea or for which economic success depends on the oceans to the united native tribes), listening to their concerns and needs and how these can be addressed within the context of ocean-based research. The challenges of integrating education and outreach with scientific research programs are addressed by the center's main catalytic activity to create Ocean Learning Communities. These communities will be gatherings of traditionally disparate stakeholders including scientists, educators, representatives of businesses with a connection to the oceans, and citizens who derive economic or recreational sustenance from the oceans. The center's principal goal is to, through time and structured learning activities, support various communities 1) to develop a common language and 2) to make a commitment to creating collaborations that will improve ocean research and public awareness at the regional scale. Researchers in the science of learning will evaluate and study the successes and challenges of these regional approaches to better understand the development and sustainability of productive partnerships and to develop learning models to share and apply at the national level.
Project-Based Learning as a Vehicle for Teaching Science at the University Level
NASA Astrophysics Data System (ADS)
Courtney, A. R.; Wade, P.
2012-12-01
In a typical science course learning is teacher directed. Students are presented with knowledge and concepts via textbooks and lecture and then given the opportunity to apply them. Project-based learning (PBL) creates a context and reason to learn information and concepts. In PBL, learning is student directed and teacher facilitated. Students take ownership of their learning by finding, evaluating and synthesizing information from a variety of resources and via interaction between each other. In PBL, the project is central rather than peripheral to the curriculum. It is not just an activity that provides examples, additional practice or applications of the course content, but rather, the vehicle through which major concepts are discovered. The PBL process requires students to do revision and reflection encouraging them to think about what and how they are learning. PBL projects also allow students to develop important life-work skills such as collaboration, communication and critical thinking within the discipline. We have employed PBL in both Liberal Arts courses for non-science majors and upper division courses for science students. Three examples will be discussed. The first will be the production of video documentaries in a non-science major course; the second, a student generated electronic textbook in a 300-level energy course for science students; and lastly, a student designed analysis project in a chemistry major capstone laboratory course. The product in each of these examples was used to deliver knowledge to others in the class as well as members of the public providing motivation for students to do high-quality work. In our examples, student documentaries are publicly screened as part of a university-wide Academic Excellence Showcase; the student generated electronic textbook is available for public use on the internet; and the results of the student designed analysis were communicated to the real-world clients via letters and reports. We will discuss various technology tools employed in these projects such as the internet, wikis for collaborative writing, bookmarking management tools for sharing literature resources, photo sharing sites, and electronic literature searching tools. Also described will be assessment methods to gauge how the projects affected student learning.
Elliott, Emily R; Reason, Robert D; Coffman, Clark R; Gangloff, Eric J; Raker, Jeffrey R; Powell-Coffman, Jo Anne; Ogilvie, Craig A
2016-01-01
Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning. © 2016 E. R. Elliott et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Lesson Study-Building Communities of Learning Among Pre-Service Science Teachers
NASA Astrophysics Data System (ADS)
Hamzeh, Fouada
Lesson Study is a widely used pedagogical approach that has been used for decades in its country of origin, Japan. It is a teacher-led form of professional development that involves the collaborative efforts of teachers in co-planning and observing the teaching of a lesson within a unit for evidence that the teaching practices used help the learning process (Lewis, 2002a). The purpose of this research was to investigate if Lesson Study enables pre-service teachers to improve their own teaching in the area of science inquiry-based approaches. Also explored are the self-efficacy beliefs of one group of science pre-service teachers related to their experiences in Lesson Study. The research investigated four questions: 1) Does Lesson Study influence teacher preparation for inquiry-based instruction? 2) Does Lesson Study improve teacher efficacy? 3) Does Lesson Study impact teachers' aspiration to collaborate with colleagues? 4) What are the attitudes and perceptions of pre-service teachers to the Lesson Study idea in Science? The 12 participants completed two pre- and post-study surveys: STEBI- B, Science Teaching Efficacy Belief Instrument (Enochs & Riggs, 1990) and ASTQ, Attitude towards Science Teaching. Data sources included student teaching lesson observations, lesson debriefing notes and focus group interviews. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. This study added to the body of research on teaching learning communities, professional development programs and teacher empowerment.
Creating Successful Scientist-Teacher-Student Collaborations: Examples From the GLOBE Program
NASA Astrophysics Data System (ADS)
Geary, E.; Wright, E.; Yule, S.; Randolph, G.; Larsen, J.; Smith, D.
2007-12-01
Actively engaging students in research on the environment at local, regional, and globe scales is a primary objective of the GLOBE (Global Learning and Observations to Benefit the Environment) Program. During the past 18 months, GLOBE, an international education and science program in 109 countries and tens of thousands of schools worldwide, has been working with four NSF-funded Earth System Science Projects to involve K-12 students, teachers, and scientists in collaborative research investigations of Seasons and Biomes, the Carbon Cycle, Local and Extreme Environments, and Watersheds. This talk will discuss progress to date in each of these investigation areas and highlight successes and challenges in creating effective partnerships between diverse scientific and educational stakeholders. More specifically we will discuss lessons learned in the following areas: (a) mutual goal and responsibility setting, (b) resource allocation, (c) development of adaptable learning activities, tools, and services, (d) creation of scientist and school networks, and (e) development of evaluation metrics, all in support of student research.
Engaging Scientists in NASA Education and Public Outreach: K - 12 Formal Education
NASA Astrophysics Data System (ADS)
Bartolone, Lindsay; Smith, D. A.; Eisenhamer, B.; Lawton, B. L.; Universe Professional Development Collaborative, Multiwavelength; NASA Data Collaborative, Use of; SEPOF K-12 Formal Education Working Group; E/PO Community, SMD
2014-01-01
The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present opportunities for the astronomy community to participate in collaborations supporting the NASA SMD efforts in the K - 12 Formal Education community. Members of the K - 12 Formal Education community include classroom educators, homeschool educators, students, and curriculum developers. The Forums’ efforts for the K - 12 Formal Education community include a literature review, appraisal of educators’ needs, coordination of audience-based NASA resources and opportunities, professional development, and support with the Next Generation Science Standards. Learn how to join in our collaborative efforts to support the K - 12 Formal Education community based upon mutual needs and interests.
NASA Astrophysics Data System (ADS)
Sparrow, E. B.
2003-12-01
The GLOBE program has provided opportunities for environmental science research and education collaborations among scientists, teachers and K-12 students, and for cross-cultural enrichment nationally and abroad. In Alaska, GLOBE has also provided funding leverage in some cases, and a base for several other science education programs that share a common goal of increasing student interest, understanding, process skills and achievement in science, through involvement in ongoing research investigations. These programs that use GLOBE methodologies (standardized scientific measurements and learning activities developed by scientists and educators) are: Global Change Education Using Western Science and Native Knowledge also known as "Observing Locally, Connecting Globally" (OLCG); Alaska Earth System Science Education Alliance: Improving Understanding of Climate Variability and Its Relevance to Rural Alaska; Schoolyard Long Term Ecological Research; Alaska Rural Research Partnership; Alaska Partnership for Teacher Enhancement; Alaska Lake Ice and Snow Observatory Network; Alaska Boreal Forest Council Education Outreach; Calypso Farm and Ecology Center; Environmental Education Outreach; and also GLOBE Arctic POPs (persistent organic pollutants) a program that involves countries in the circumpolar North. The University of Alaska GLOBE Partnership has collaborated with the BLM Campbell Creek Science Center Globe Partnership in facilitating GLOBE Training Workshops and providing teacher support. GLOBE's extensive website including data entry, archive, analysis and visualization capabilities; GLOBE Teacher Guide, videos and other materials provided; excellent GLOBE science research and education staff, training support office, GLOBE help desk, alignment of GLOBE curriculum with national science education standards and GLOBE certification of teachers trained on even just one GLOBE investigation, have made it easier to implement GLOBE in the classroom. Using GLOBE, whole classes of students have engaged in and contributed data to science investigations. In Alaska, classes and individual students have conducted their own inquiry studies and have successfully presented their investigations and competed at science fairs and statewide high school science symposium and international conferences. Two students presented their research investigations at the GLOBE Learning Expedition in Croatia and four students presented their study at the GLOBE Arctic POPs Conference in Sweden. These students increased not only their understanding and knowledge of science but also in appreciation of people in other countries and their cultures. Friendships have also bloomed. The learning community in Alaska has expanded to include family and community members including Native elders (using OLCG), teachers, scientists and students from other countries. The following challenges remain: 1) getting funds to be able to provide GLOBE equipment and continuous support to GLOBE teachers and students throughout the year, 2) reaching teachers and students in remote areas, 3) rapid teacher turn-over rate in rural areas, 4) using inquiry-based pedagogies during GLOBE professional development workshops including the opportunity for teacher participants to conduct their own inquiries during the workshop, 5) time, school curriculum and national education requirement constraints, 6) involving school administrators, and more local scientists and community members, and 7) providing culturally relevant and responsive science education programs and life-long learning communities.
Mars mission science operations facilities design
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.
2002-01-01
A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.
ERIC Educational Resources Information Center
Johnston, Bill; Buzzelli, Cary A.
2002-01-01
Considers the way moral meanings are created, Expressed, and negotiated in the actions and words of participants as they engage in a collaborative science activity. Offers an analysis of two excerpts from a video recording of a third grade classroom in which two students work with each other and with a visiting teacher on an experiment that…
ERIC Educational Resources Information Center
Singh, Madhu, Ed.; Duvekot, Ruud, Ed.
2013-01-01
This publication is the outcome of the international conference organized by UNESCO Institute for Lifelong Learning (UIL), in collaboration with the Centre for Validation of Prior Learning at Inholland University of Applied Sciences, the Netherlands, and in partnership with the French National Commission for UNESCO that was held in Hamburg in…
Empowering Students in Science through Active Learning: Voices From Inside the Classroom
NASA Astrophysics Data System (ADS)
Erickson, Sabrina Ann
Preparing students for success in the 21st century has shifted the focus of science education from acquiring information and knowledge to mastery of critical thinking and problem-solving skills. The purpose of this qualitative case study was to examine teacher and student perspectives of the relationship between (a) active learning, problem solving, and achievement in science and (b) the conditions that help facilitate this environment. Adapting a social constructivist theoretical framework, high school science teachers and students were interviewed, school records analyzed, curriculum documents studied, and classes observed. The findings revealed that students were engaged with the material in an active learning environment, which led to a sense of involvement, interest, and meaningful learning. Students felt empowered to take ownership of their learning, developed the critical thinking skills necessary to solve problems independently and became aware of how they learn best, which students reported as interactive learning. Moreover, student reflections revealed that an active environment contributed to deeper understanding and higher skills through interaction and discussion, including questioning, explaining, arguing, and contemplating scientific concepts with their peers. Recommendations are for science teachers to provide opportunities for students to work actively, collaborate in groups, and discuss their ideas to develop the necessary skills for achievement and for administrators to facilitate the conditions needed for active learning to occur.
NASA Astrophysics Data System (ADS)
2001-05-01
LINKS WITH PRIMARY SCIENCE SAD Physics; PHYSICS RESEARCH In a hurry...; PHYSICS COMMUNITY Scottish Stirling Meeting; PHYSICS AT CONGRESS Global warming forecasts rise in skin cancer; EVENTS 2001 SET week; E-MAIL DISCUSSIONS Learning in science; STUDENT ACTIVITY Paperclip Physics; CURRICULUM DEVELOPMENT Perspectives on Science; AWARDS Award for causing chaos; PHYSICS AT CONGRESS Physics and public heath: Do electrical power lines cause cancer? HIGHER EDUCATION First-year course development; INTERSCHOOL COLLABORATION Monitoring geomagnetic storms; CURRICULUM DEVELOPMENT UK course goes international; PHYSICS IN SCIENCE YEAR Website launched
Teaching science to English Language Learners: Instructional approaches of high school teachers
NASA Astrophysics Data System (ADS)
Frank, Betty-Vinca N.
Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional approaches including, the structure of the school, working on instructional teams, collaborating and working with other teachers especially English teachers and including science teachers, and participating in various professional development activities. The findings indicated that the instructional approaches used by teachers were largely supported by literacy education and science education done at elementary level. Findings also revealed that teachers in this study encouraged their ELLs to participate in classroom conversations and involved them in answering open-ended questions. However, not all teachers in this study had the same repertoire of instructional strategies for their ELL students and some teachers demonstrated a better understanding of these approaches than others. All teachers perceived that the structure of the school as well as collaborating and working with other teachers, especially English teachers, as their main source of support in designing instructional approaches. This study suggests that teacher educators and professional development providers need to develop courses and programs to help high school teachers learn about how to design instructional activities that simultaneously promote both academic science and English literacy. Also, administrators need to create conditions at their schools that would allow teachers to interact, collaborate, and learn from each other.
ERIC Educational Resources Information Center
Fernandez, Anne, Ed.; Sproats, Lee, Ed.; Sorensen, Stacey, Ed.
2000-01-01
The science community has been trying to use computers in teaching for many years. There has been much conformity in how this was to be achieved, and the wheel has been re-invented again and again as enthusiast after enthusiast has "done their bit" towards getting computers accepted. Computers are now used by science undergraduates (as well as…
Exploring multiliteracies, student voice, and scientific practices in two elementary classrooms
NASA Astrophysics Data System (ADS)
Allison, Elizabeth Rowland
This study explored the voices of children in a changing world with evolving needs and new opportunities. The workplaces of rapidly moving capitalist societies value creativity, collaboration, and critical thinking skills which are of growing importance and manifesting themselves in modern K-12 science classroom cultures (Gee, 2000; New London Group, 2000). This study explored issues of multiliteracies and student voice set within the context of teaching and learning in 4th and 5th grade science classrooms. The purpose of the study was to ascertain what and how multiliteracies and scientific practices (NGSS Lead States, 2013c) are implemented, explore how multiliteracies influence students' voices, and investigate teacher and student perceptions of multiliteracies, student voice, and scientific practices. Grounded in a constructivist framework, a multiple case study was employed in two elementary classrooms. Through observations, student focus groups and interviews, and teacher interviews, a detailed narrative was created to describe a range of multiliteracies, student voice, and scientific practices that occurred with the science classroom context. Using grounded theory analysis, data were coded and analyzed to reveal emergent themes. Data analysis revealed that these two classrooms were enriched with multiliteracies that serve metaphorically as breeding grounds for student voice. In the modern classroom, defined as a space where information is instantly accessible through the Internet, multiliteracies can be developed through inquiry-based, collaborative, and technology-rich experiences. Scientific literacy, cultivated through student communication and collaboration, is arguably a multiliteracy that has not been considered in the literature, and should be, as an integral component of overall individual literacy in the 21st century. Findings revealed four themes. Three themes suggest that teachers address several modes of multiliteracies in science, but identify barriers to integrating multiliteracies and scientific practices into science teaching. The issues include time, increased standards accountability, and lack of comfort with effective integration of technology. The fourth theme revealed that students have the ability to shape and define their learning while supporting other voices through collaborative science experiences.
A Service-Learning Project in Chemistry: Environmental Monitoring of a Nature Preserve
ERIC Educational Resources Information Center
Kammler, David C.; Truong, Triet M.; VanNess, Garrett; McGowin, Audrey E.
2012-01-01
A collaborative environmental service-learning project was implemented between upper-level undergraduate science majors and graduate chemistry students at a large state school and first-year students at a small private liberal arts college. Students analyzed the water quality in a nature preserve by determining the quantities of 12 trace metals,…
ERIC Educational Resources Information Center
Saylor, John M.
The National Science Foundation (NSF) is providing funds for coalitions of engineering educational institutions to improve the quality of undergraduate engineering education. A hypothesis that is being tested is that people can learn better in environments that allow self-paced and/or collaborative learning. The main tools for providing this…
Going Further: A Roadmap to the Works of the ACCLAIM Research Initiative. Working Paper No. 42
ERIC Educational Resources Information Center
Wilson, Zach; Howley, Craig
2012-01-01
"Going Further" presents a roadmap to the works of the ACCLAIM (Appalachian Collaborative Center for Learning, Assessment, and Instruction in Mathematics) Research Initiative, the research effort of one the Centers for Learning and Teaching (CLTs) created with a grant (2001-2005) from the National Science Foundation. The Center began…
An Investigation into the Efficacy of the Studio Model at the High School Level
ERIC Educational Resources Information Center
Faro, Salvatore; Swan, Karen
2006-01-01
The Studio Model was developed at Rensselaer Polytechnic Institute (RPI) to improve teaching and learning in introductory science classes. The study reported in this article explored the efficacy of the Studio Model at the high school level. The Studio Model combines collaborative learning with the use of online materials designed to support and…
The Collaboratory Notebook: A Networked Knowledge-Building Environment for Project Learning.
ERIC Educational Resources Information Center
O'Neill, D. Kevin; Gomez, Louis M.
The Collaboratory Notebook, developed as part of the Learning Through Collaborative Visualization Project (CoVis), is a networked, multimedia knowledge-building environment which has been designed to help students, teachers and scientists share inquiry over the boundaries of time and space. CoVis is an attempt to change the way that science is…
Using Ants, Animal Behavior & the Learning Cycle to Investigate Scientific Processes
ERIC Educational Resources Information Center
Ligon, Russell A.; Dolezal, Adam G.; Hicks, Michael R.; Butler, Michael W.; Morehouse, Nathan I.; Ganesh, Tirupalavanam G.
2014-01-01
The behavior of animals is an intrinsically fascinating topic for students from a wide array of backgrounds. We describe a learning experience using animal behavior that we created for middle school students as part of a graduate-student outreach program, Graduate Partners in Science Education, at Arizona State University in collaboration with a…
ERIC Educational Resources Information Center
Kukkonen, Jari; Dillon, Patrick; Kärkkäinen, Sirpa; Hartikainen-Ahia, Anu; Keinonen, Tuula
2016-01-01
Scaffolding helps the novice to accomplish a task goal or solve a problem that otherwise would be beyond unassisted efforts. Scaffolding firstly aims to support the learner in accomplishing the task and secondly in learning from the task and improving future performance. This study has examined pre-service teachers' experiences of…
ERIC Educational Resources Information Center
Luetmer, Marianne T.; Cloud, Beth A.; Youdas, James W.; Pawlina, Wojciech; Lachman, Nirusha
2018-01-01
Quality of healthcare delivery is dependent on collaboration between professional disciplines. Integrating opportunities for interprofessional learning in health science education programs prepares future clinicians to function as effective members of a multi-disciplinary care team. This study aimed to create a modified team-based learning (TBL)…
The Learning Outcomes of Mentoring Library Science Students in Virtual World Reference: A Case Study
ERIC Educational Resources Information Center
Purpur, Geraldine; Morris, Jon Levi
2015-01-01
This article reports on the cognitive and affective development of students being mentored in virtual reference interview skills by professional librarians. The authors present a case study which examines the impact on student learning resulting from librarian mentor participation and collaboration with students on a course assignment. This study…
Personal and Shared Experiences as Resources for Meaning Making in a Philosophy of Science Course
ERIC Educational Resources Information Center
Arvaja, Maarit
2012-01-01
The aim of this case study was to explore health-education students' personal and collaborative meaning making activities during an online science philosophy course in the higher-education context. Through applying the dialogical perspective for learning, the focus was on studying how different contextual resources were used in building…
ERIC Educational Resources Information Center
Yost, Robert W.; Gonzalez, Edward L. F.
2008-01-01
Analogical reasoning is integral to everyday living. The diversity associated with a coral reef provides a familiar model for initiating discussions focusing on cultural diversity and gender of past and present scientists with non-western science endeavors. These concepts are strengthened through the use of scientific biographical and historical…
ERIC Educational Resources Information Center
Kvenild, Cassandra; Shepherd, Craig E.; Smith, Shannon M.; Thielk, Emma
2017-01-01
In a climate of increased interest in science, technology, engineering, and math (STEM), school libraries have unique opportunities to grow collections and cultivate partnerships in the sciences. At the federal level and in many states, STEM initiatives encourage hands-on exposure to technologies and open the door for student-led discovery of…
ERIC Educational Resources Information Center
Charli-Joseph, Lakshmi; Escalante, Ana E.; Eakin, Hallie; Solares, Ma. José; Mazari-Hiriart, Marisa; Nation, Marcia; Gómez-Priego, Paola; Pérez-Tejada, César A. Domínguez; Bojórquez-Tapia, Luis A.
2016-01-01
Purpose: The authors describe the challenges and opportunities associated with developing an interdisciplinary sustainability programme in an emerging economy and illustrate how these are addressed through the approach taken for the development of the first postgraduate programme (MSc and PhD) in sustainability science at the National Autonomous…
ERIC Educational Resources Information Center
Trauth-Nare, Amy; Buck, Gayle
2011-01-01
Our purpose was to investigate the efficacy of using reflective practice to guide our action research study of incorporating formative assessment into middle school science teaching and learning. Using participatory action research, we worked collaboratively to incorporate formative assessment into two instructional units, and then engaged in…
Outcomes of a Self-Regulated Learning Curriculum Model
ERIC Educational Resources Information Center
Peters-Burton, Erin E.
2015-01-01
The purpose of this study was to describe connections among students' views of nature of science in relation to the goals of a curriculum delivered in a unique setting, one where a researcher and two teachers collaborated to develop a course devoted to teaching students about how knowledge is built in science. Students proceeded through a cycle of…
ERIC Educational Resources Information Center
Clayton, Christine D.; Ardito, Gerald
2009-01-01
The authors of this study document one middle school classroom in an attempt to understand how inquiry learning, supported with technological tools, can provide students with opportunities to develop ownership of science content knowledge. Case study and collaborative teacher researcher methods were utilized to document the implementation of a…
Seven Years of Linking Scottish Schools and Industry with SSTN
ERIC Educational Resources Information Center
Whittington, Gary; Lowson, Sandra
2007-01-01
The Scottish Science and Technology Network (SSTN) is a major collaboration between Careers Scotland and Scottish industry to promote science and technology via an on-line and integrated learning programme. An initial two-year pilot project has grown considerably and has now been running for over 7 years. The SSTN programme is a web-based…
Inquiry, Play, and Problem Solving in a Process Learning Environment
ERIC Educational Resources Information Center
Thwaits, Anne Y.
2016-01-01
What is the nature of art/science collaborations in museums? How do art objects and activities contribute to the successes of science centers? Based on the premise that art exhibitions and art-based activities engage museum visitors in different ways than do strictly factual, information-based displays, I address these questions in a case study…
ERIC Educational Resources Information Center
Pacific Resources for Education and Learning, Honolulu, HI.
The Pacific Eisenhower Mathematics and Science Regional Consortium was established at Pacific Resources for Education and Learning (PREL) in October, 1992 and completed its second funding cycle in February 2001. The Consortium is a collaboration among PREL, the Curriculum Research and Development Group (CRDG) at the University of Hawaii, and the…
Citizen Science in Libraries: Results and Insights from a Unique NASA Collaboration
NASA Astrophysics Data System (ADS)
Janney, D. W.; Schwerin, T. G.; Riebeek Kohl, H.; Dusenbery, P.; LaConte, K.; Taylor, J.; Weaver, K. L. K.
2017-12-01
Libraries are local community centers and hubs for learning, with more and more libraries responding to the need to increase science literacy and support 21st century skills by adding STEM programs and resources for patrons of all ages. A collaboration has been developed between two NASA Science Mission Directorate projects - the NASA Earth Science Education Collaborative and NASA@ My Library - each bringing unique STEM assets and networks to support library staff and bring authentic STEM experiences and resources to learners in public library settings. The collaboration used Earth Day 2017 as a high profile event to engage and support 100 libraries across the U.S. (>50% serving rural communities), in developing locally-relevant programs and events that incorporated cloud observing and resources using NASA GLOBE Observer (GO) citizen science program. GO cloud observations are helping NASA scientists understand clouds from below (the ground) and above (from space). Clouds play an important role in transferring energy from the Sun to different parts of the Earth system. Because clouds can change rapidly, scientists need frequent observations from citizen scientists. Insights from the library focus groups and evaluation include promising practices, requested resources, programming ideas and approaches, particularly approaches to leveraging NASA subject matter experts and networks, to support local library programming.
NASA Astrophysics Data System (ADS)
Katz, Phyllis; McGinnis, J. Randy; Hestness, Emily; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy; Pease, Rebecca
2011-06-01
This study investigated the professional identity development of teacher candidates participating in an informal afterschool science internship in a formal science teacher preparation programme. We used a qualitative research methodology. Data were collected from the teacher candidates, their informal internship mentors, and the researchers. The data were analysed through an identity development theoretical framework, informed by participants' mental models of science teaching and learning. We learned that the experience in an afterschool informal internship encouraged the teacher candidates to see themselves, and to be seen by others, as enacting key recommendations by science education standards documents, including exhibiting: positive attitudes, sensitivity to diversity, and increasing confidence in facilitating hands-on science participation, inquiry, and collaborative work. Our study provided evidence that the infusion of an informal science education internship in a formal science teacher education programme influenced positively participants' professional identity development as science teachers.
Science Alive!: Connecting with Elementary Students through Science Exploration.
Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin
2016-05-01
A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.
Elliott, Emily R.; Reason, Robert D.; Coffman, Clark R.; Gangloff, Eric J.; Raker, Jeffrey R.; Powell-Coffman, Jo Anne; Ogilvie, Craig A.
2016-01-01
Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning. PMID:27252298
Professional development for teaching in higher education
NASA Astrophysics Data System (ADS)
Wood, Leigh N.; Vu, Tori; Bower, Matt; Brown, Natalie; Skalicky, Jane; Donovan, Diane; Loch, Birgit; Joshi, Nalini; Bloom, Walter
2011-10-01
Due to the changing nature of learning and teaching in universities, there is a growing need for professional development for lecturers and tutors teaching in disciplines in the mathematical sciences. Mathematics teaching staff receive some training in learning and teaching but many of the courses running at university level are not tailored to the mathematical sciences. This article reports on a collaborative research project aimed at investigating the type of professional development that Australian tertiary mathematics teachers need and their preference for delivery modes. Effective teaching promotes effective learning in our students and discipline-specific professional development will enhance outcomes for teachers, students, and mathematics.
A team-based interprofessional education course for first-year health professions students.
Peeters, Michael J; Sexton, Martha; Metz, Alexia E; Hasbrouck, Carol S
2017-11-01
Interprofessional education (IPE) is required within pharmacy education, and should include classroom-based education along with experiential interprofessional collaboration. For classroom-based education, small-group learning environments may create a better platform for engaging students in the essential domain of interprofessional collaboration towards meaningful learning within IPE sub-domains (interprofessional communication, teams and teamwork, roles and responsibilities, and values and ethics). Faculty envisioned creating a small-group learning environment that was inviting, interactive, and flexible using situated learning theory. This report describes an introductory, team-based, IPE course for first-year health-professions students; it used small-group methods for health-professions students' learning of interprofessional collaboration. The University of Toledo implemented a 14-week required course involving 554 first-year health-sciences students from eight professions. The course focused on the Interprofessional Education Collaborative's (IPEC) Core Competencies for Interprofessional Collaboration. Students were placed within interprofessional teams of 11-12 students each and engaged in simulations, standardized-patient interviews, case-based communications exercises, vital signs training, and patient safety rotations. Outcomes measured were students' self-ratings of attaining learning objectives, perceptions of other professions (from word cloud), and satisfaction through end-of-course evaluations. This introductory, team-based IPE course with 554 students improved students' self-assessed competency in learning objectives (p < 0.01, Cohen's d = 0.9), changed students' perceptions of other professions (via word clouds), and met students' satisfaction through course evaluations. Through triangulation of our various assessment methods, we considered this course offering a success. This interprofessional, team-based, small-group strategy to teaching and learning IPE appeared helpful within this interactive, classroom-based course. Copyright © 2017 Elsevier Inc. All rights reserved.
Improving medical education in Kenya: an international collaboration.
Mayo, Alexa
2014-04-01
This paper describes a partnership between the University of Nairobi College of Health Sciences (CHS) Library and the University of Maryland Health Sciences and Human Services Library (HS/HSL). The libraries are collaborating to develop best practices for the CHS Library as it meets the challenge of changing medical education information needs in a digital environment. The collaboration is part of a Medical Education Partnership Initiative. The library project has several components: an assessment of the CHS Library, learning visits in the United States and Kenya, development of recommendations to enhance the CHS Library, and ongoing evaluation of the program's progress. Development of new services and expertise at the CHS Library is critical to the project's success. A productive collaboration between the HS/HSL and CHS Library is ongoing. A successful program to improve the quality of medical education will have a beneficial impact on health outcomes in Kenya.
Improving medical education in Kenya: an international collaboration*†
Mayo, Alexa
2014-01-01
This paper describes a partnership between the University of Nairobi College of Health Sciences (CHS) Library and the University of Maryland Health Sciences and Human Services Library (HS/HSL). The libraries are collaborating to develop best practices for the CHS Library as it meets the challenge of changing medical education information needs in a digital environment. The collaboration is part of a Medical Education Partnership Initiative. The library project has several components: an assessment of the CHS Library, learning visits in the United States and Kenya, development of recommendations to enhance the CHS Library, and ongoing evaluation of the program's progress. Development of new services and expertise at the CHS Library is critical to the project's success. A productive collaboration between the HS/HSL and CHS Library is ongoing. A successful program to improve the quality of medical education will have a beneficial impact on health outcomes in Kenya. PMID:24860265
NASA Astrophysics Data System (ADS)
Burrell, S.
2012-12-01
Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open-ended questionnaires about impact on students identify higher order thinking, critical evaluation of quantitative and qualitative information, cooperative learning, and engagement in STEM content through inquiry as core competencies of this educational method. This presentation will describe the program model and results from internal evaluation.
NASA Astrophysics Data System (ADS)
Martinez, A. O.; Bohls-Graham, E.; Jacobs, B. E.; Ellins, K. K.
2014-12-01
Texas teachers have expressed a need for engaging activities for use in high school Earth science courses. With funding from the NSF, geoscience and education faculty from different institutions around the state collaborated with ten Earth science teachers to create five online Earth science instructional blueprints. The work is part of the DIG (Diversity and Innovation for Geosciences) Texas Instructional Blueprint project. A blueprint stitches together nine units for a yearlong Earth science course (scope and sequence). Each unit covers three weeks of teaching and contains lectures, readings, visualizations, lab investigations, learning activities, and other educational materials from credible sources, which are aligned with Texas state science standards for Earth and Space Science and the Earth Science Literacy Principles. Taken together, the collection of activities address the Next Generation Science Standards (NGSS). During summer 2014, three minority-serving secondary teachers completed a six-week internship at The University of Texas Institute for Geophysics (UTIG). As DIG Texas Education Interns, we organized and revised the content of the units, created scaffolding notes, and built blueprints by selecting groups of nine units from the project's current collection of twenty-one units. Because fieldwork is an important element of geoscience learning, we integrated virtual field trips into each unit. We (1) gained expertise in selecting high quality activities that directly correlate with state standards and address the Earth Science Literacy Principles; (2) developed a keen awareness of the value of the NGSS; (3) learned how to navigate through the NGSS website to track the relationships between the Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts for Earth science, as well as connections to other disciplines in the same grade level. Collaborating with other secondary Earth science teachers introduced each of us to new teaching practices, allowing us to build relationships that we expect to last for many years. UTIG researchers mentored and introduced us to their research and methodology. In addition, they helped us find high quality activities for the units. In turn, we shared our knowledge of pedagogy and classroom expertise with them.
Scientists and Educators Working Together: Everyone Teaches, Everyone Learns
NASA Astrophysics Data System (ADS)
Lebofsky, Larry A.; Lebofsky, N. R.; McCarthy, D. W.; Canizo, T. L.; Schmitt, W.; Higgins, M. L.
2013-10-01
The primary author has been working with three of the authors (Lebofsky, McCarthy, and Cañizo) for nearly 25 years and Schmitt and Higgins for 17 and 8 years, respectively. This collaboration can be summed up with the phrase: “everyone teaches, everyone learns.” What NASA calls E/PO and educators call STEM/STEAM, requires a team effort. Exploration of the Solar System and beyond is a team effort, from research programs to space missions. The same is true for science education. Research scientists with a long-term involvement in science education have come together with science educators, classroom teachers, and informal science educators to create a powerful STEM education team. Scientists provide the science content and act as role models. Science educators provide the pedagogy and are the bridge between the scientists and the teacher. Classroom teachers and informal science educators bring their real-life experiences working in classrooms and in informal settings and can demonstrate scientists’ approaches to problem solving and make curriculum more engaging. Together, we provide activities that are grade-level appropriate, inquiry-based, tied to the literacy, math, and science standards, and connected directly to up-to-date science content and ongoing research. Our programs have included astronomy camps for youth and adults, professional development for teachers, in-school and after-school programs, family science events, and programs in libraries, science centers, and museums. What lessons have we learned? We are all professionals and can learn from each other. By engaging kids and having them participate in activities and ask questions, we can empower them to be the presenters for others, even their families. The activities highlighted on our poster represent programs and collaborations that date back more than two decades: Use models and engage the audience, do not just lecture. Connect the activity with ongoing science and get participants outside to look at the real sky: do a Moon journal, measure shadows, observe constellations, and look through a telescope—the sky is more than just string, balls, or a computer program.
NASA Astrophysics Data System (ADS)
Lewis, E. S.; Gehrke, G. E.
2017-12-01
In a historical moment where the legitimacy of science is being questioned, it is essential to make science more accessible to the public. Active participation increases the legitimacy of projects within communities (Sidaway 2009). Creating collaborations in research strengthens not only the work by adding new dimensions, but also the social capital of communities through increased knowledge, connections, and decision making power. In this talk, Lewis will discuss how engagement at different stages of the scientific process is possible, and how researchers can actively develop opportunities that are open and inviting. Genuine co-production in research pushes scientists to work in new ways, and with people from different backgrounds, expertise, and lived experiences. This approach requires a flexible and dynamic balance of learning, sharing, and creating for all parties involved to ensure more meaningful and equitable participation. For example, in community science such as that by Public Lab, the community is at the center of scientific exploration. The research is place-based and is grounded in the desired outcomes of community members. Researchers are able to see themselves as active participants in this work alongside community members. Participating in active listening, developing plans together, and using a shared language built through learning can be helpful tools in all co-production processes. Generating knowledge is powerful. Through genuine collaboration and co-creation, science becomes more relevant. When community members are equitable stakeholders in the scientific process, they are better able to engage and advocate for the changes they want to see in their communities. Through this talk, session attendees will learn about practices that promote equitable participation in science, and hear examples of how the community science process engages people in both the knowledge production, and in the application of science.
Internships in Public Science Education program: a model for informal science education
NASA Astrophysics Data System (ADS)
Zenner, Greta
2005-03-01
The NSF-funded Internships in Public Science Education (IPSE) program provides a unique opportunity for undergraduate and graduate students with varied academic background to experience learning and teaching science--specifically nanotechnology--to the general public and middle-school students. The program is in collaboration with Discovery World Museum of Milwaukee, Wisconsin. IPSE interns have created a number of classroom activities ranging from understanding the scale of a nanometer to experimenting with liquid crystal sensors to critically examining the societal implications of nanotechnology. In a new phase of the program, the interns are developing a museum exhibit on nanotechnology to be housed at the Discovery World Museum. Through this experience, intern teams learn about nanotechnology, brainstorm ideas, present and receive feedback on their ideas, and create an exhibit prototype to explain nanotechnology and related science concepts. The program also focuses on professional development, during which interns learn techniques for presenting to non-technical audiences, strategies for assessing their materials, and work on their skills in teamwork, project design, leadership, and science communication.
Science Teaching Orientations and Technology-Enhanced Tools for Student Learning
NASA Astrophysics Data System (ADS)
Campbell, Todd; Longhurst, Max; Duffy, Aaron M.; Wolf, Paul G.; Shelton, Brett E.
2013-10-01
This qualitative study examines teacher orientations and technology-enhanced tools for student learning within a science literacy framework. Data for this study came from a group of 10 eighth grade science teachers. Each of these teachers was a participant in a professional development (PD) project focused on reformed and technology-enhanced science instruction shaped by national standards documents. The research is focused on identifying teacher orientations and use of technology-enhanced tools prior to or unaffected by PD. The primary data sources for this study are drawn from learning journals and classroom observations. Qualitative methods were used to analyze learning journals, while descriptive statistics were used from classroom observations to further explore and triangulate the emergent qualitative findings. Two teacher orientation teacher profiles were developed to reveal the emergent teacher orientation dimensions and technology-enhanced tool categories found: "more traditional teacher orientation profile" and "toward a reformed-based teacher orientation profile." Both profiles were founded on "knowledge of" beliefs about the goals and purposes for science education, while neither profile revealed sophisticated beliefs about the nature of science. The "traditional" profile revealed more teacher-centered beliefs about science teaching and learning, and the "towards reformed-based" profile revealed student-centered beliefs. Finally, only technology-enhanced tools supportive of collaborative construction of science knowledge were found connected to the "towards reformed-based" profile. This research is concluded with a proposed "reformed-based teacher orientation profile" as a future target for science teaching and learning with technology-enhanced tools in a science literacy framework.
Khosa, Deep K; Volet, Simone E; Bolton, John R
2014-01-01
The value of collaborative concept mapping in assisting students to develop an understanding of complex concepts across a broad range of basic and applied science subjects is well documented. Less is known about students' learning processes that occur during the construction of a concept map, especially in the context of clinical cases in veterinary medicine. This study investigated the unfolding collaborative learning processes that took place in real-time concept mapping of a clinical case by veterinary medical students and explored students' and their teacher's reflections on the value of this activity. This study had two parts. The first part investigated the cognitive and metacognitive learning processes of two groups of students who displayed divergent learning outcomes in a concept mapping task. Meaningful group differences were found in their level of learning engagement in terms of the extent to which they spent time understanding and co-constructing knowledge along with completing the task at hand. The second part explored students' and their teacher's views on the value of concept mapping as a learning and teaching tool. The students' and their teacher's perceptions revealed congruent and contrasting notions about the usefulness of concept mapping. The relevance of concept mapping to clinical case-based learning in veterinary medicine is discussed, along with directions for future research.
NASA Earth Science Education Collaborative
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.
2016-12-01
The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.
NASA Astrophysics Data System (ADS)
Madsen, J.; Skalak, K.; Watson, G.; Scantlebury, K.; Allen, D.; Quillen, A.
2006-12-01
With funding from the National Science Foundation, the University of Delaware (UD) in partnership with the New Castle County Vocational Technical School District (NCCoVoTech) in Delaware has initiated a GK-12 Program. In each of year this program, nine full time UD graduate students in the sciences, who have completed all or most of their coursework, will be selected to serve as fellows. Participation in the GK-12 program benefits the graduate fellows in many ways. In addition to gaining general insight into current issues of science education, the fellows enhance their experience as scientific researchers by directly improving their ability to effectively communicate complex quantitative and technical knowledge to an audience with multiple and diverse learning needs. In the first year of this project, fellows have been paired with high school science teachers from NCCoVoTech. These pairs, along with the principal investigators (PIs) of this program have formed a learning community that is taking this opportunity to examine and to reflect on current issues in science education while specifically addressing critical needs in teaching science in vocational technical high schools. By participating in summer workshops and follow-up meetings facilitated by the PIs, the fellows have been introduced to a number of innovative teaching strategies including problem-based learning (PBL). Fellow/teacher pairs have begun to develop and teach PBL activities that are in agreement with State of Delaware science standards and that support student learning through inquiry. Fellows also have the opportunity to engage in coteaching with their teacher partner. In this "teaching at the elbow of another", fellows will gain a better understanding of and appreciation for the complexities and nuances of teaching science in vocational technical high schools. While not taught as a stand-alone course in NCCoVoTech high schools, earth science topics are integrated into the science curriculum at nearly all levels from the freshman through the senior year. Three of the current group of nine fellows are engaged in Ph.D.-level research within the disciplines of astronomy and hydrology. They will bring this expertise into their collaboration with their practicing teachers with the goal of improving the understanding of earth science topics by high school students within a vocational technical school setting.
Contextualizing learning to improve care using collaborative communities of practices.
Jeffs, Lianne; McShane, Julie; Flintoft, Virginia; White, Peggy; Indar, Alyssa; Maione, Maria; Lopez, A J; Bookey-Bassett, Sue; Scavuzzo, Lauren
2016-09-02
The use of interorganizational, collaborative approaches to build capacity in quality improvement (QI) in health care is showing promise as a useful model for scaling up and accelerating the implementation of interventions that bridge the "know-do" gap to improve clinical care and provider outcomes. Fundamental to a collaborative approach is interorganizational learning whereby organizations acquire, share, and combine knowledge with other organizations and have the opportunity to learn from their respective successes and challenges in improvement areas. This learning approach aims to create the conditions for collaborative, reflective, and innovative experiential systems that enable collective discussions regarding daily practice issues and finding solutions for improvement. The concepts associated with interorganizational learning and deliberate learning activities within a collaborative 'Communities-of-practice'(CoP) approach formed the foundation of the of an interactive QI knowledge translation initiative entitled PERFORM KT. Nine teams participated including seven teams from two acute care hospitals, one from a long term care center, and one from a mental health sciences center. Six monthly CoP learning sessions were held and teams, with the support of an assigned mentor, implemented a QI project and monitored their results which were presented at an end of project symposium. 47 individuals participated in either a focus group or a personal interview. Interviews were transcribed and analyzed using an iterative content analysis. Four key themes emerged from the narrative dataset around experiences and perceptions associated with the PERFORM KT initiative: 1) being successful and taking it to other levels by being systematic, structured, and mentored; 2) taking it outside the comfort zone by being exposed to new concepts and learning together; 3) hearing feedback, exchanging stories, and getting new ideas; and 4) having a pragmatic and accommodating approach to apply new learnings in local contexts. Study findings offer insights into collaborative, inter-organizational CoP learning approaches to build QI capabilities amongst clinicians, staff, and managers. In particular, our study delineates the need to contextualize QI learning by using deliberate learning activities to balance systematic and structured approaches alongside pragmatic and accommodating approaches with expert mentors.
Educational Opportunities in Pro-Am Collaboration
NASA Astrophysics Data System (ADS)
Fienberg, R. T.; Stencel, R. E.
2006-08-01
While many backyard stargazers take up the hobby just for fun, many others are attracted to it because of their keen interest in learning more about the universe. The best way to learn science is to do science. Happily, the technology available to today's amateur astronomers — including computer-controlled telescopes, CCD cameras, powerful astronomical software, and the Internet — gives them the potential to make real contributions to scientific research and to help support local educational objectives. Meanwhile, professional astronomers are losing access to small telescopes as funding is shifted to larger projects, including survey programs that will soon discover countless interesting objects needing follow-up observations. Clearly the field is ripe with opportunities for amateurs, professionals, and educators to collaborate. Amateurs will benefit from mentoring by expert professionals, pros will benefit from observations and data processing by increasingly knowledgeable amateurs, and educators will benefit from a larger pool of skilled talent to help them carry out astronomy-education initiatives. We will look at some successful pro-am collaborations that have already borne fruit and examine areas where the need and/or potential for new partnerships is especially large. In keeping with the theme of this special session, we will focus on how pro-am collaborations in astronomy can contribute to science education both inside and outside the classroom, not only for students of school age but also for adults who may not have enjoyed particularly good science education when they were younger. Because nighttime observations with sophisticated equipment are not always possible in formal educational settings, we will also mention other types of pro-am partnerships, including those involving remote observing, data mining, and/or distributed computing.
Validity of "Hi_Science" as instructional media based-android refer to experiential learning model
NASA Astrophysics Data System (ADS)
Qamariah, Jumadi, Senam, Wilujeng, Insih
2017-08-01
Hi_Science is instructional media based-android in learning science on material environmental pollution and global warming. This study is aimed: (a) to show the display of Hi_Science that will be applied in Junior High School, and (b) to describe the validity of Hi_Science. Hi_Science as instructional media created with colaboration of innovative learning model and development of technology at the current time. Learning media selected is based-android and collaborated with experiential learning model as an innovative learning model. Hi_Science had adapted student worksheet by Taufiq (2015). Student worksheet had very good category by two expert lecturers and two science teachers (Taufik, 2015). This student worksheet is refined and redeveloped in android as an instructional media which can be used by students for learning science not only in the classroom, but also at home. Therefore, student worksheet which has become instructional media based-android must be validated again. Hi_Science has been validated by two experts. The validation is based on assessment of meterials aspects and media aspects. The data collection was done by media assessment instrument. The result showed the assessment of material aspects has obtained the average value 4,72 with percentage of agreement 96,47%, that means Hi_Science on the material aspects is in excellent category or very valid category. The assessment of media aspects has obtained the average value 4,53 with percentage of agreement 98,70%, that means Hi_Science on the media aspects is in excellent category or very valid category. It was concluded that Hi_Science as instructional media can be applied in the junior high school.
Game-Based Learning in Science Education: A Review of Relevant Research
NASA Astrophysics Data System (ADS)
Li, Ming-Chaun; Tsai, Chin-Chung
2013-12-01
The purpose of this study is to review empirical research articles regarding game-based science learning (GBSL) published from 2000 to 2011. Thirty-one articles were identified through the Web of Science and SCOPUS databases. A qualitative content analysis technique was adopted to analyze the research purposes and designs, game design and implementation, theoretical backgrounds and learning foci of these reviewed studies. The theories and models employed by these studies were classified into four theoretical foundations including cognitivism, constructivism, the socio-cultural perspective, and enactivism. The results indicate that cognitivism and constructivism were the major theoretical foundations employed by the GBSL researchers and that the socio-cultural perspective and enactivism are two emerging theoretical paradigms that have started to draw attention from GBSL researchers in recent years. The analysis of the learning foci showed that most of the digital games were utilized to promote scientific knowledge/concept learning, while less than one-third were implemented to facilitate the students' problem-solving skills. Only a few studies explored the GBSL outcomes from the aspects of scientific processes, affect, engagement, and socio-contextual learning. Suggestions are made to extend the current GBSL research to address the affective and socio-contextual aspects of science learning. The roles of digital games as tutor, tool, and tutee for science education are discussed, while the potentials of digital games to bridge science learning between real and virtual worlds, to promote collaborative problem-solving, to provide affective learning environments, and to facilitate science learning for younger students are also addressed.
NASA Astrophysics Data System (ADS)
van Zee, Emily H.; Hammer, David; Bell, Mary; Roy, Patricia; Peter, Jennifer
2005-11-01
This case study documents an example of inquiry learning and teaching during a summer institute for elementary and middle school teachers. A small group constructed an explanatory model for an intriguing optical phenomenon that they were observing. Research questions included: What physics thinking did the learners express? What aspects of scientific inquiry were evident in what the learners said and did? What questions did the learners ask one another as they worked? How did these learners collaborate in constructing understanding? How did the instructor foster their learning? Data sources included video- and audio- tapes of instruction, copies of the participants' writings and drawings, field notes, interviews, and staff reflections. An interpretative narrative of what three group members said and did presents a detailed account of their learning process. Analyses of their utterances provide evidence of physics thinking, scientific inquiry, questioning, collaborative sense making, and insight into ways to foster inquiry learning.
Situating cognitive/socio-cognitive approaches to student learning in genetics
NASA Astrophysics Data System (ADS)
Kindfield, Ann C. H.
2009-03-01
In this volume, Furberg and Arnseth report on a study of genetics learning from a socio-cultural perspective, focusing on students' meaning making as they engage in collaborative problem solving. Throughout the paper, they criticize research on student understanding and conceptual change conducted from a cognitive/socio-cognitive perspective on several reasonable grounds. However, their characterization of work undertaken from this perspective sometimes borders on caricature, failing to acknowledge the complexities of the research and the contexts within which it has been carried out. In this commentary, I expand their characterization of the cognitive/socio-cognitive perspective in general and situate my own work on genetics learning so as to provide a richer view of the enterprise. From this richer, more situated view, I conclude that research from both perspectives and collaboration between those looking at learning from different perspectives will ultimately provide a more complete picture of science learning.
NASA Astrophysics Data System (ADS)
Holzer, M. A.; Zimmerman, T.; Doesken, N. J.; Reges, H. W.; Newman, N.; Turner, J.; Schwalbe, Z.
2010-12-01
CoCoRaHS (The Community Collaborative Rain, Hail and Snow network) is based out of Fort Collins Colorado and is an extremely successful citizen science project with over 15,000 volunteers collecting valuable precipitation data. Forecasters and scientists use data from this dense network to illuminate and illustrate the high small-scale variability of precipitation across the nation. This presentation will discuss the results of a survey of CoCoRaHS participants as related to 1) citizen scientists’ motivation and learning; 2) the challenges of identifying how people learn science in citizen science projects; and 3) a potential research-based framework for how people learn through engaging in the data collection within in a citizen science project. A comprehensive survey of 14,500 CoCoRaHS observers was recently conducted to uncover participant perceptions of numerous aspects of the CoCoRaHS program, including its goal of increasing climate literacy. The survey yielded a response rate of over 50%, and included measures of motivation, engagement and learning. In relationship to motivation and learning, the survey revealed that most (57.1%) observers would make precipitation observations regardless of being a CoCoRaHS volunteer, therefore their motivation is related to their inherent level of interest in weather. Others are motivated by their desire to learn more about weather and climate, they want to contribute to a scientific project, they think its fun, and/or it provides a sense of community. Because so many respondents already had knowledge and interest in weather and climate, identifying how and what people learn through participating was a challenge. However, the narrow project focus of collecting and reporting of local precipitation assisted in identifying aspects of learning. For instance, most (46.4%) observers said they increased their knowledge about the local variability in precipitation even though they had been collecting precipitation data for many years. Because the focus of the survey was to solicit participant opinions and not question their content knowledge, we were limited in our ability to unpack the issue of how people learn while engaging in the project. The next phase of this study will use a theoretical framework shaped from research in the learning sciences and based on social cognition and conceptual change to question a small subset of the volunteers about the data they collect. Citizen science projects such as CoCoRaHS provide a win-win situation for project scientists and participants. Project scientists gather necessary data for their studies, and motivated participants gain skills and knowledge related to the science content and science practices employed in the project. We discuss how these survey results can be applied to similar projects where learning is a key goal for their volunteers. We also discuss pathways for future research to identify aspects of scientific learning in the context of citizen science projects.
Resolving Bottlenecks: Converting Three High-Enrollment Nursing Courses to an Online Format.
Chen, Ken-Zen; Anderson, Jeff; Hannah, Elizabeth Lyon; Bauer, Christine; Provant-Robishaw, Corinna
2015-07-01
Converting large undergraduate classes from the classroom to online has been an effective way to increase enrollments in high-demand courses in undergraduate education. However, challenges exist to maintaining students' high-quality learning interaction and engagement in large online courses. This article presents a collaborative model between faculty in health sciences and instructional designers to redesign and redevelop three high-enrollment courses to online at Boise State University. Health studies course faculty and eCampus instructional designers conducted this study to reflect the collaborative online course development process at Boise State. The offering of high-enrollment nursing courses met enrollment demand and maintained student retention. Challenges related to instruction were addressed by using a careful course redesign process and continuous improvement. Implications of this educational innovation for health science educators, instructional designers, and lessons learned are provided. Copyright 2015, SLACK Incorporated.
Climate Voices: Bridging Scientist Citizens and Local Communities across the United States
NASA Astrophysics Data System (ADS)
Wegner, K.; Ristvey, J. D., Jr.
2016-12-01
Based out of the University Corporation for Atmospheric Research (UCAR), the Climate Voices Science Speakers Network (climatevoices.org) has more than 400 participants across the United States that volunteer their time as scientist citizens in their local communities. Climate Voices experts engage in nonpartisan conversations about the local impacts of climate change with groups such as Rotary clubs, collaborate with faith-based groups on climate action initiatives, and disseminate their research findings to K-12 teachers and classrooms through webinars. To support their participants, Climate Voices develops partnerships with networks of community groups, provides trainings on how to engage these communities, and actively seeks community feedback. In this presentation, we will share case studies of science-community collaborations, including meta-analyses of collaborations and lessons learned.
C3Conflict a Simulation Environment for Studying Teamwork in Command and Control
2011-06-01
the Sciences (pp. 173- 217). Amsterdam/New York: Rodopi. Kolb , D. A. (1984). Experiential Learning – Experience as a source of learning and...increases dramatically when the students can see a replay and discuss their collaboration. Kolb has expressed a generally accepted model of experiential ... learning ( Kolb , 1998). The model can be adapted for research and team training performed with computer-based simulations (Granlund, 2008). The main
A team approach to an undergraduate interprofessional communication course.
Doucet, Shelley; Buchanan, Judy; Cole, Tricia; McCoy, Carolyn
2013-05-01
Interprofessional communication is a team-taught upper-level undergraduate course for Nursing and Health Sciences students. In addition to teaching fundamental communication skills, this course weaves interprofessional competencies into weekly learning activities and assignments. The utilization of the principles and practices of team-based learning in the classroom enhances the attainment and practice of communication and interprofessional collaboration skills. Lessons learned from conducting informal course evaluations and delivering the course multiple times are presented.
NASA Astrophysics Data System (ADS)
Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.
2004-12-01
With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome that swirls around this remarkable arthropod, students are exposed to interactions between the hydrosphere, atmosphere, and geosphere and they examine ways in which climate change can affect this ecosystem.
NASA Astrophysics Data System (ADS)
Ljung-Djärf, Agneta; Magnusson, Andreas; Peterson, Sam
2014-03-01
We explored the use of the learning study (LS) model in developing Swedish pre-school science learning. This was done by analysing a 3-cycle LS project implemented to help a group of pre-school teachers (n = 5) understand their science educational practice, by collaboratively and systematically challenging it. Data consisted of video recordings of 1 screening (n = 7), 1 initial planning meeting, 3 analysis meetings, 3 interventions, and 78 individual test interviews with the children (n = 26). The study demonstrated that the teachers were initially uncomfortable with using scientific concepts and with maintaining the children's focus on the object of learning without framing it with play. During the project, we noted a shift in focus towards the object of learning and how to get the children to discern it. As teachers' awareness changed, enhanced learning was noted among the children. The study suggests that the LS model can promote pre-school science learning as follows: by building on, re-evaluating, and expanding children's experiences; and by helping the teachers focus on and contrast critical aspects of an object of learning, and to reflect on the use of play, imagination, and concepts and on directing the children's focus when doing so. Our research showed that the LS model holds promise to advance pre-school science learning by offering a theoretical tool useable to shift the focus from doing to learning while teaching science using learning activities.
1.2 million kids and counting-Mobile science laboratories drive student interest in STEM.
Jones, Amanda L; Stapleton, Mary K
2017-05-01
In today's increasingly technological society, a workforce proficient in science, technology, engineering, and mathematics (STEM) skills is essential. Research has shown that active engagement by K-12 students in hands-on science activities that use authentic science tools promotes student learning and retention. Mobile laboratory programs provide this type of learning in schools and communities across the United States and internationally. Many programs are members of the Mobile Lab Coalition (MLC), a nonprofit organization of mobile and other laboratory-based education programs built on scientist and educator collaborations. A recent survey of the member programs revealed that they provide an impressive variety of programming and have collectively served over 1.2 million students across the US.
ERIC Educational Resources Information Center
Roth, Wolff-Michael; Tobin, Kenneth
2010-01-01
This ethnographic study of teaching and learning in urban high school science classes investigates the ways in which teachers and students talk, gesture, and use space and time in interaction rituals. In situations where teachers coteach as a means of learning to teach in inner-city schools, successful teacher-teacher collaborations are…
ERIC Educational Resources Information Center
Moni, Roger W.; Depaz, Iris; Lluka, Lesley J.
2008-01-01
We report findings from a case study of co-operative, group-based assessment in Pharmacology for second-year undergraduates at The University of Queensland, Australia. Students enrolled in the 2005 Bachelor of Science and 2006 Bachelor of Pharmacy degree programs, were early users of the university's new Collaborative Teaching and Learning Centre…
ERIC Educational Resources Information Center
Furberg, Anniken
2016-01-01
This paper reports on a study of teacher support in a setting where students engaged with computer-supported collaborative learning (CSCL) in science. The empirical basis is an intervention study where secondary school students and their teacher performed a lab experiment in genetics supported by a digital learning environment. The analytical…
ERIC Educational Resources Information Center
Angel, Christine M.
2016-01-01
Finding innovative ways to deliver effective classroom instruction resulting in demonstration of student proficiency of the eight American Library Association core competencies within the online learning environment is challenging. While the use of technology is very important in the delivery of course content, focusing on the pedagogy of teaching…
NASA Astrophysics Data System (ADS)
Dohn, Niels Bonderup; Dohn, Nina Bonderup
2017-12-01
The sciences are often perceived by students as irrelevant as they do not see the content of science as related to their daily lives. Web 2.0-mediated activities are characterized by user-driven content production, collaboration, and multi-way communication. It has been proposed that employing Web 2.0 in educational activities will promote richer opportunities for making learning personally meaningful, collaborative, and socially relevant. Since Facebook is already in use among youths, it potentially provides a communicative link between educational content and students' lives. The present study was conducted as a case study to provide an inductive, explorative investigation of whether and how the integration of Facebook into upper secondary biology can affect interest in biology and participation in learning communication. The results indicate that the coupling of formal and informal communication practices on Facebook serves to maintain interest and open up new learning possibilities while at the same time creating barriers to communication. These barriers are due to distractions, ethical issues, and a certain depreciation of the activities ensuing from the everydayness of Facebook as a communication platform. In conclusion, use of Facebook as an educational platform is not clearly good or bad.
ERIC Educational Resources Information Center
Shymansky, James A.; Yore, Larry D.; Henriques, Laura; Dunkhase, John A.; Bancroft, Jean
This study took place within the context of a four-year local systemic reform effort collaboratively undertaken by the Science Education Center at the University of Iowa and the Iowa City Community School District. The goal of the project was to move teachers towards an interactive-constructivist model of teaching and learning that assumes a…
ERIC Educational Resources Information Center
Grant, Donna M.; Malloy, Alisha D.; Hollowell, Gail P.
2013-01-01
Twenty-nine rising high school 12th grade students participated in a 4-week summer program designed to increase their interest in science and technology. The program was a blend of hands-on biology, chemistry, and technology modules that addressed the global issue of obesity. Student groups developed websites to address obesity in one of five…
An Incubator for Better Outcomes: Innovation at work at Prince George's Community College
ERIC Educational Resources Information Center
Boerner, Heather
2016-01-01
In this article, the author describes the college-school district collaboration called the "Academy of Health Sciences," an innovative approach to learning that located a high school on the college campus and gave students the opportunity to earn a college degree, too. The Academy of Health Sciences is just one of a slew of ideas that…
Virtual working systems to support R&D groups
NASA Astrophysics Data System (ADS)
Dew, Peter M.; Leigh, Christine; Drew, Richard S.; Morris, David; Curson, Jayne
1995-03-01
The paper reports on the progress at Leeds University to build a Virtual Science Park (VSP) to enhance the University's ability to interact with industry, grow its applied research and workplace learning activities. The VSP exploits the advances in real time collaborative computing and networking to provide an environment that meets the objectives of physically based science parks without the need for the organizations to relocate. It provides an integrated set of services (e.g. virtual consultancy, workbased learning) built around a structured person- centered information model. This model supports the integration of tools for: (a) navigating around the information space; (b) browsing information stored within the VSP database; (c) communicating through a variety of Person-to-Person collaborative tools; and (d) the ability to the information stored in the VSP including the relationships to other information that support the underlying model. The paper gives an overview of a generic virtual working system based on X.500 directory services and the World-Wide Web that can be used to support the Virtual Science Park. Finally the paper discusses some of the research issues that need to be addressed to fully realize a Virtual Science Park.
Physics, Dyslexia and Learning: A Collaboration for Disabled Students
NASA Astrophysics Data System (ADS)
Moskal, Barbara M.; Wright, Lyndsey; Taylor, P. C.
2014-03-01
Researchers have found that children with dyslexia reason differently with respect to language from those who do not have dyslexia. Dyslexic students' brains work differently than do students without dyslexia. Some researchers speculate that these differences provide dyslexic students with an advantage in science. The presentation will describe an outreach activity which developed and delivered instructional modules in physics to students in grades kindergarten through sixth. These modules were tested on thirty students who attended a summer camp designed for students who have been diagnosed with dyslexia. Eighty percent of students who have learning disabilities have dyslexia. Many of the students who attended this camp have experienced repeated failure in the traditional school system, which emphasizes literacy with little attention to science. A number of science and engineering professors collaborated with this camp to build instructional modules that were delivered one hour per day, during two weeks of this five week summer camp (ten hours of hands-on physics instruction). Both quantitative and qualitative data were collected with respect to the impact that this camp had on students' understanding and interests in science. The results of these efforts will be presented.
Exploring the use of lesson study with six Canadian middle-school science teachers
NASA Astrophysics Data System (ADS)
Bridges, Terry James
This qualitative case study explores the use of lesson study over a ten-week period with six Ontario middle school science teachers. The research questions guiding this study were: (1) How does participation in science-based lesson study influence these teachers': (a) science subject matter knowledge (science SMK), (b) science pedagogical content knowledge (science PCK), and (c) confidence in teaching science?, and (2) What benefits and challenges do they associate with lesson study? Data sources for this study were: teacher questionnaires, surveys, reflections, pre- and post- interviews, and follow-up emails; researcher field notes and reflections; pre- and post- administration of the Science Teaching Efficacy Belief Instrument; and audio recordings of group meetings. The teachers demonstrated limited gains in science SMK. There was evidence for an overall improvement in teacher knowledge of forces and simple machines, and two teachers demonstrated improvement in over half of the five scenarios assessing teacher science SMK. Modest gains in teacher science PCK were found. One teacher expressed more accurate understanding of students' knowledge of forces and a better knowledge of effective science teaching strategies. The majority of teachers reported that they would be using three-part lessons and hands-on activities more in their science teaching. Gains in teacher pedagogical knowledge (PK) were found in four areas: greater emphasis on anticipation of student thinking and responses, recognition of the importance of observing students, more intentional teaching, and anticipated future use of student video data. Most teachers reported feeling more confident in teaching structures and mechanisms, and attributed this increase in confidence to collaboration and seeing evidence of student learning and engagement during the lesson teachings. Teacher benefits included: learning how to increase student engagement and collaboration, observing students, including video data, observing colleagues teach, time to collaborate, plan, and reflect, teaching the same lesson to two classes, more intentional teaching, and increasing social interactions. Teacher challenges included: teacher unfamiliarity with the students being taught, time spent taking part in lesson study, teachers in the role of observers, and impact of observers and videotaping on students and teachers during lesson enactments.
Designing learning spaces for interprofessional education in the anatomical sciences.
Cleveland, Benjamin; Kvan, Thomas
2015-01-01
This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.
A narrative study of novice elementary teachers' perceptions of science instruction
NASA Astrophysics Data System (ADS)
Harrell, Roberta
It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).
3-D Teaching of Climate Change: An innovative professional learning model for K-12 teachers
NASA Astrophysics Data System (ADS)
Stapleton, M.; Wolfson, J.; Sezen-Barrie, A.
2017-12-01
In spite of the presumed controversy over the evidence for climate change, the recently released Next Generation Science Standards (NGSS) for K-12 include a focus on climate literacy and explicitly use the term `climate change.' In addition to the increased focus on climate change, the NGSS are also built upon a new three dimensional framework for teaching and learning science. Three dimensional learning has students engaging in scientific and engineering practices (Dimension 1), while using crosscutting concepts (Dimension 2) to explore and explain natural phenomena using disciplinary core ideas (Dimension 3). The adoption of these new standards in many states across the nation has created a critical need for on-going professional learning as in-service science educators begin to implement both climate change instruction and three dimensional teaching and learning in their classrooms. In response to this need, we developed an innovative professional learning model for preparing teachers to effectively integrate climate change into their new curriculum and engage students in three dimensional learning. Our professional learning model utilized ideas that have emerged from recent science education research and include: a) formative assessment probes for three dimensional learning that monitor students' progress; b) collaboration with scientists with expertise in climate science to understand the domain specific ways of doing science; and c) development of a community of practice for in-service teachers to provide feedback to each other on their implementation. In this poster presentation, we will provide details on the development of this professional learning model and discuss the affordances and challenges of implementing this type of professional learning experience.
Young children's emergent science competencies in family and school contexts: A case study
NASA Astrophysics Data System (ADS)
Andrews, Kathryn Jean
To address the lack of research in early science learning and on young children's informal science experiences, this 6-month long case study investigated an 8-year-old boy's emergent science competencies and his science experiences in family and school contexts. The four research questions used to guide this investigation were: (1) What are Nathan's emergent science competencies? (2) What are Nathan's science experiences in a family context? How does family learning contribute to his emergent science competencies? (3) What are Nathan's science experiences in school? How does school learning contribute to his emergent science competencies? (4) What is the role of parents and teachers in fostering emergent science competencies? My intensive 6-month fieldwork generated multiple data sources including field notes of 12 classroom observations, one parent interview, eight child interviews, one classroom teacher interview, and observation of eight family produced videos. In addition, I collected a parent journal including 38 entries of the child's how and why questions, a child digital photo journal including 15 entries of when Nathan saw or participated in science, and 25 various documents of work completed in the classroom. First, I analyzed data through an on-going and recursive process. Then, I applied several cycles of open coding to compare and contrast science learning between home and school, establish clear links between research questions and data, and form categories. Finally, I applied a cycle of holistic coding to categorized data that eventually culminated into themes. As a method of quality control, I shared my interpretations with the family and classroom teacher throughout the study. Findings revealed, Nathan's pre-scientific views of science were fluid and playful, he saw differences between the science he did at home and that he did in school, but he was able to articulate a relatively complex understanding of scientists' collaborative efforts. Nathan's emergent science competencies were a result of his experiences both in the home and classroom. His science experiences at home often involved engaging in conversation with his parents about the world around him and was driven by the things he was interested in or wondered about. He enjoyed daily family activities like cooking, playing, and building models with his dad. These experiences contributed to his naive conceptions of science. By contrast, his science experiences in school were also collaborative but less facilitated by Mrs. Young. His wide range of experiences at home and in the classroom illustrated that doing, learning, knowing, and demonstrating knowledge are intertwined and not easily distinguished from each other. Nathan's emergent science competencies were fueled by a child-environment loop. The child-environment loop is a concept that captures the reciprocal nature between a child's curiosities and his or her environment. As his curiosities were met, new questions and activity were produced. As a result, Nathan's activity continually influenced the environment in which his emergent science competencies emerged. Likewise, the changing environment contributed to new curiosities, interest, and science competencies. Findings extend current research of informal science learning by illustrating how family learning contributed to a child's naive scientific views through the development of non-spontaneous concepts. Findings also extend current research by illustrating how a child with a solid foundation of spontaneous concepts might be unable to further develop non-spontaneous concepts in a classroom where learning took a similar form (working with others and talking about ideas) as learning in the classroom was less mediated. Main implications of this project include a call for research and practice to more aggressively contribute to a learning progressions approach to provide a map of educational opportunities that neither under- or overestimate children's ability. Curriculum ought to view naive science conceptions developed in family learning as a necessary element in the learning continuum rather than a deficit in science knowledge to contend with during the development of non-spontaneous concepts in classroom learning to achieve this goal. Finally, to extract meaningful experiences from inquiry-based science learning, teachers need to incorporate students' naive science conceptions by explicitly connecting everyday family learning to science through disciplinary engagement where inquiry is mediated.
Next Generation Science Partnerships
NASA Astrophysics Data System (ADS)
Magnusson, J.
2016-02-01
I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.
ERIC Educational Resources Information Center
Emerson, Allen; And Others
1994-01-01
Three cases of use of collaborative learning techniques in the college classroom are described: a developmental mathematics course, a graduate-level writing project, and college science instruction. Each case includes description of specific class activities and assignments, results, and teacher concerns and comments. (MSE)