Sample records for collaborative scientific research

  1. Exploiting the Use of Social Networking to Facilitate Collaboration in the Scientific Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppock, Edrick G.

    The goal of this project was to exploit social networking to facilitate scientific collaboration. The project objective was to research and identify scientific collaboration styles that are best served by social networking applications and to model the most effective social networking applications to substantiate how social networking can support scientific collaboration. To achieve this goal and objective, the project was to develop an understanding of the types of collaborations conducted by scientific researchers, through classification, data analysis and identification of unique collaboration requirements. Another technical objective in support of this goal was to understand the current state of technology inmore » collaboration tools. In order to test hypotheses about which social networking applications effectively support scientific collaboration the project was to create a prototype scientific collaboration system. The ultimate goal for testing the hypotheses and research of the project was to refine the prototype into a functional application that could effectively facilitate and grow collaboration within the U.S. Department of Energy (DOE) research community.« less

  2. Social network analysis of international scientific collaboration on psychiatry research.

    PubMed

    Wu, Ying; Duan, Zhiguang

    2015-01-01

    Mental disorder is harmful to human health, effects social life seriously and still brings a heavy burden for countries all over the world. Scientific collaboration has become the indispensable choice for progress in the field of biomedicine. However, there have been few scientific publications on scientific collaboration in psychiatry research so far. The aim of this study was to measure the activities of scientific collaboration in psychiatry research at the level of authors, institutions and countries. We retrieved 36557 papers about psychiatry from Science Ciation Index Expanded (SCI-Expanded) in web of science. Additionally, some methods such as social network analysis (SNA), K-plex analysis and Core-Periphery were used in this study. Collaboration has been increasing at the level of authors, institutions and countries in psychiatry in the last ten years. We selected the top 100 prolific authors, institutions and 30 countries to construct collaborative map respectively. Freedman, R and Seidman, LJ were the central authors, Harvard university was the central institution and the USA was the central country of the whole network. Notably, the rate of economic development of countries affected collaborative behavior. The results show that we should encourage multiple collaboration types in psychiatry research as they not only help researchers to master the current research hotspots but also provide scientific basis for clinical research on psychiatry and suggest policies to promote the development of this area.

  3. Objects of Desire: Power and Passion in Collaborative Activity

    ERIC Educational Resources Information Center

    Nardi, Bonnie A.

    2005-01-01

    This article uses activity theory to analyze the conduct of collaborative scientific research, showing how the conceptualization of object is critical to understanding key aspects of scientific collaboration. I argue that the passions and desires behind objects of scientific research are missing in most accounts. I suggest refinements to the…

  4. [Scientific productivity, collaboration and research areas in Enfermedades Infecciosas y Microbiología Clínica (2003-2007)].

    PubMed

    González-Alcaide, Gregorio; Valderrama-Zurián, Juan Carlos; Ramos-Rincón, José Manuel

    2010-10-01

    Collaboration is essential for biomedical research. The Carlos III Health Institute (the Spanish national public organization responsible for promoting biomedical research) has encouraged scientific collaboration by promoting Thematic Networks and Cooperative Research Centres. Scientific collaboration in Enfermedades Infecciosas y Microbiología Clinica journal is investigated. Papers published in Enfermedades Infecciosas y Microbiología Clinica in the period 2002-2007 have been identified. Bibliometrics and Social Network Analysis methods have been carried out in order to quantify and characterise scientific collaboration and research areas. A total of 805 papers generated by 2,289 authors and 326 institutions have been analysed. There were 36 research groups involving 138 authors identified. The Collaboration Index for articles was 5.5. Institutional collaboration was determined in 75% of articles. The collaboration between departments or units of the same institution prevails (43%), followed by intra-regional domestic collaboration (41%) and inter-regional domestic collaboration (14%). Hospital centres were the main institutional sector responsible of research (88% of papers), with 68% of articles cited. Sida/VIH (AIDS/HIV) is the main research area (n=114), followed by Staphylococcal Infections (n=33). Notable collaboration and citation rates have been observed. Research is focused on diseases with the highest mortality rates caused by infectious diseases in Spain. Copyright © 2009 Elsevier España, S.L. All rights reserved.

  5. Measuring scientific research in emerging nano-energy field

    NASA Astrophysics Data System (ADS)

    Guan, Jiancheng; Liu, Na

    2014-04-01

    The purpose of this paper is to comprehensively explore scientific research profiles in the field of emerging nano-energy during 1991-2012 based on bibliometrics and social network analysis. We investigate the growth pattern of research output, and then carry out across countries/regions comparisons on research performances. Furthermore, we examine scientific collaboration across countries/regions by analyzing collaborative intensity and networks in 3- to 4-year intervals. Results indicate with an impressively exponential growth pattern of nano-energy articles, the world share of scientific "giants," such as the USA, Germany, England, France and Japan, display decreasing research trends, especially in the USA. Emerging economies, including China, South Korea and India, exhibit a rise in terms of the world share, illustrating strong development momentum of these countries in nano-energy research. Strikingly, China displays a remarkable rise in scientific influence rivaling Germany, Japan, France, and England in the last few years. Finally, the scientific collaborative network in nano-energy research has expanded steadily. Although the USA and several major European countries play significantly roles on scientific collaboration, China and South Korea exert great influence on scientific collaboration in recent years. The findings imply that emerging economies can earn competitive advantages in some emerging fields by properly engaging a catch-up strategy.

  6. Evolution and convergence of the patterns of international scientific collaboration.

    PubMed

    Coccia, Mario; Wang, Lili

    2016-02-23

    International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.

  7. World scientific collaboration in coronary heart disease research.

    PubMed

    Yu, Qi; Shao, Hongfang; He, Peifeng; Duan, Zhiguang

    2013-08-10

    Coronary heart disease (CHD) will continue to exert a heavy burden for countries all over the world. Scientific collaboration has become the only choice for progress in biomedicine. Unfortunately, there is a scarcity of scientific publications about scientific collaboration in CHD research. This study examines collaboration behaviors across multiple collaboration types in the CHD research. 294,756 records about CHD were retrieved from Web of Science. Methods such as co-authorship, social network analysis, connected component, cliques, and betweenness centrality were used in this study. Collaborations have increased at the author, institution and country/region levels in CHD research over the past three decades. 3000 most collaborative authors, 572 most collaborative institutions and 52 countries/regions are extracted from their corresponding collaboration network. 766 cliques are found in the most collaborative authors. 308 cliques are found in the most collaborative institutions. Western countries/regions represent the core of the world's collaboration. The United States ranks first in terms of number of multi-national publications, while Hungary leads in the ranking measured by their proportion of collaborative output. The rate of economic development in the countries/regions also affects the multi-national collaboration behavior. Collaborations among countries/regions need to be encouraged in the CHD research. The visualization of overlapping cliques in the most collaborative authors and institutions are considered "skeleton" of the collaboration network. Eastern countries/regions should strengthen cooperation with western countries/regions in the CHD research. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Detecting and analyzing research communities in longitudinal scientific networks.

    PubMed

    Leone Sciabolazza, Valerio; Vacca, Raffaele; Kennelly Okraku, Therese; McCarty, Christopher

    2017-01-01

    A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes.

  9. Detecting and analyzing research communities in longitudinal scientific networks

    PubMed Central

    Vacca, Raffaele; Kennelly Okraku, Therese; McCarty, Christopher

    2017-01-01

    A growing body of evidence shows that collaborative teams and communities tend to produce the highest-impact scientific work. This paper proposes a new method to (1) Identify collaborative communities in longitudinal scientific networks, and (2) Evaluate the impact of specific research institutes, services or policies on the interdisciplinary collaboration between these communities. First, we apply community-detection algorithms to cross-sectional scientific collaboration networks and analyze different types of co-membership in the resulting subgroups over time. This analysis summarizes large amounts of longitudinal network data to extract sets of research communities whose members have consistently collaborated or shared collaborators over time. Second, we construct networks of cross-community interactions and estimate Exponential Random Graph Models to predict the formation of interdisciplinary collaborations between different communities. The method is applied to longitudinal data on publication and grant collaborations at the University of Florida. Results show that similar institutional affiliation, spatial proximity, transitivity effects, and use of the same research services predict higher degree of interdisciplinary collaboration between research communities. Our application also illustrates how the identification of research communities in longitudinal data and the analysis of cross-community network formation can be used to measure the growth of interdisciplinary team science at a research university, and to evaluate its association with research policies, services or institutes. PMID:28797047

  10. CGH U.S.-China Program for Biomedical Research Cooperation

    Cancer.gov

    The International Bilateral Programs for Collaborative Scientific Research seeks to enhance the global activities of NCI’s intramural researchers and grantees through co-funded support for collaborative research between NIH and international scientific research agencies.

  11. Structure and Evolution of Scientific Collaboration Networks in a Modern Research Collaboratory

    ERIC Educational Resources Information Center

    Pepe, Alberto

    2010-01-01

    This dissertation is a study of scientific collaboration at the Center for Embedded Networked Sensing (CENS), a modern, multi-disciplinary, distributed laboratory involved in sensor network research. By use of survey research and network analysis, this dissertation examines the collaborative ecology of CENS in terms of three networks of…

  12. The Interplay between Scientific Overlap and Cooperation and the Resulting Gain in Co-Authorship Interactions.

    PubMed

    Mayrose, Itay; Freilich, Shiri

    2015-01-01

    Considering the importance of scientific interactions, understanding the principles that govern fruitful scientific research is crucial to policy makers and scientists alike. The outcome of an interaction is to a large extent dependent on the balancing of contradicting motivations accompanying the establishment of collaborations. Here, we assembled a dataset of nearly 20,000 publications authored by researchers affiliated with ten top universities. Based on this data collection, we estimated the extent of different interaction types between pairwise combinations of researchers. We explored the interplay between the overlap in scientific interests and the tendency to collaborate, and associated these estimates with measures of scientific quality and social accessibility aiming at studying the typical resulting gain of different interaction patterns. Our results show that scientists tend to collaborate more often with colleagues with whom they share moderate to high levels of mutual interests and knowledge while cooperative tendency declines at higher levels of research-interest overlap, suggesting fierce competition, and at the lower levels, suggesting communication gaps. Whereas the relative number of alliances dramatically differs across a gradient of research overlap, the scientific impact of the resulting articles remains similar. When considering social accessibility, we find that though collaborations between remote researchers are relatively rare, their quality is significantly higher than studies produced by close-circle scientists. Since current collaboration patterns do not necessarily overlap with gaining optimal scientific quality, these findings should encourage scientists to reconsider current collaboration strategies.

  13. An analysis of national collaboration with Spanish researchers abroad in the health sciences.

    PubMed

    Aceituno-Aceituno, Pedro; Romero-Martínez, Sonia Janeth; Victor-Ponce, Patricia; García-Núñez, José

    2015-11-07

    The establishment of scientific collaborations with researchers abroad can be considered a good practice to make appropriate use of their knowledge and to increase the possibilities of them returning to their country. This paper analyses the collaboration between Spanish researchers abroad devoted to health sciences and national science institutions. We used the Fontes' approach to perform a study on this collaboration with Spanish researchers abroad. We measured the level of national and international cooperation, the opportunity provided by the host country to collaborate, the promotion of collaboration by national science institutions, and the types of collaboration. A total of 88 biomedical researchers out of the 268 Spanish scientists who filled up the survey participated in the study. Different data analyses were performed to study the variables selected to measure the scientific collaboration and profile of Spanish researchers abroad. There is a high level of cooperation between Spanish health science researchers abroad and international institutions, which contrasts with the small-scale collaboration with national institutions. Host countries facilitate this collaboration with national and international scientific institutions to a larger extent than the level of collaboration promotion carried out by Spanish institutions. The national collaboration with Spanish researchers abroad in the health sciences is limited. Thus, the practice of making appropriate use of the potential of their expertise should be promoted and the opportunities for Spanish health science researchers to return home should be improved.

  14. Collaboration in Action: Office of Research and Development ...

    EPA Pesticide Factsheets

    The "Collaboration in Action: US EPA's Office of Research and Develop - Current Wildfire Research Program" was invited by the USDA's US Forest Service's Scientific Executive Committee to provide USFS scientific leadership active and potential future opportunities for cooperation/collaboration. Health impacts of wildfire smoke merit the attention and action of the US EPA and current research is supported in the ACE and SHC Research Programs. Wildland fire smoke research has taken on greater importance because the 1) contribution of wildland fire PM emissions relative to total US PM emissions is increasing, 2) the population health impacts are measurable and costly, 3) vulnerable and sensitive populations at-risk are increasing attendant to our aging U.S. population and the increasing area of the wildland-urban interface, and 4) health impacts of smoke could be minimized by identifying at-risk individuals and reducing their exposures. Examples are provided. The "Collaboration in Action: US EPA's Office of Research and Develop - Current Wildfire Research Program" was invited by the USDA's US Forest Service's Scientific Executive Committee to provide USFS scientific leadership active and potential future opportunities for cooperation/collaboration.

  15. Reflections on scientific collaboration between basic researchers and clinicians.

    PubMed

    Muia, J; Casari, C

    2016-10-01

    Early career researchers face uncertainties with respect to their job prospects due to dwindling job markets, decreased availability of funding and undefined career paths. As basic researchers and clinicians tend to have different approaches to scientific problems, there are many advantages from successful collaborations between them. Here, we discuss how collaborations between basic and clinical scientists should be promoted early in their careers. To achieve this, researchers, both basic and clinical, must be proactive during their training and early stages of their careers. Mentors can further augment collaborative links in many ways. We suggest that universities and institutions might reassess their involvement in promoting collaborations between basic and clinical researchers. We hope that this paper will serve as a reminder of the importance of such collaborations, and provide the opportunity for all members of the scientific community to reflect on and ameliorate their own contributions. © 2016 International Society on Thrombosis and Haemostasis.

  16. A survey of scientific production and collaboration rate among of medical library and information sciences in ISI, scopus and Pubmed databases during 2001-2010.

    PubMed

    Yousefy, Alireza; Malekahmadi, Parisa

    2013-01-01

    Research is essential for development. In other words, scientific development of each country can be evaluated by researchers' scientific production. Understanding and assessing the activities of researchers for planning and policy making is essential. The significance of collaboration in the production of scientific publications in today's complex world where technology is everything is very apparent. Scientists realized that in order to get their work wildly used and cited to by experts, they must collaborate. The collaboration among researchers results in the development of scientific knowledge and hence, attainment of wider information. The main objective of this research is to survey scientific production and collaboration rate in philosophy and theoretical bases of medical library and information sciences in ISI, SCOPUS, and Pubmed databases during 2001-2010. This is a descriptive survey and scientometrics methods were used for this research. Then data gathered via check list and analyzed by the SPSS software. Collaboration rate was calculated according to the formula. Among the 294 related abstracts about philosophy, and theoretical bases of medical library and information science in ISI, SCOPUS, and Pubmed databases during 2001-2010, the year 2007 with 45 articles has the most and the year 2003 with 16 articles has the least number of related collaborative articles in this scope. "B. Hjorland" with eight collaborative articles had the most one among Library and Information Sciences (LIS) professionals in ISI, SCOPUS, and Pubmed. Journal of Documentation with 29 articles and 12 collaborative articles had the most related articles. Medical library and information science challenges with 150 articles had first place in number of articles. Results also show that the most elaborative country in terms of collaboration point of view and number of articles was US. "University of Washington" and "University Western Ontario" are the most elaborative affiliation from a collaboration point. The average collaboration rate between researchers in this field during the years studied is 0.25. The most completive reviewed articles are single authors that included 60.54% of the whole articles. Only 30.46% of articles were provided with two or more than two authors.

  17. A study of the bibliometry and areas of the research groups of Archivos de Bronconeumología (2003-2007).

    PubMed

    González-Alcaide, Gregorio; Aleixandre-Benavent, Rafael; de Granda-Orive, José Ignacio

    2010-02-01

    Scientific cooperation is essential for the advance of biomedical research. Scientists set up informal groups to work together on common issues, who are the main units in the research funding system. Bibliometric and Social Network Analysis methods allow informal groups in scientific papers to be identified and characterised. The objective of the study is to identify research groups in Archivos de Bronconeumología between 2003 and 2007 period with the aim of characterizing their scientific collaboration patterns and research areas. Co-authorships, institutional collaboration relationships and the main research areas of papers published in Archivos de Bronconeumología have been identified. Co-authorship networks and institutional collaboration networks have been constructed by using Pajek software tool. A total of 41 research groups involving 171 investigators have been identified. The Collaboration Index for articles was 5.59 and the Transcience Index was 73.11%. There was institutional collaboration in 60.33% of papers. The collaboration between institutions of the same region prevails (41.03%), followed by collaborations between departments, services or units of the same institution (39.74%), inter-regional collaboration (14,97%) and international collaboration (6.83%). A total of 83.03% of articles were cited. The main research areas covered by groups were chronic obstructive pulmonary disease, asthma, lung neoplasm, bronchogenic carcinoma, smoking and pulmonary embolism. The scientific production of a large number of Respiratory System Spanish research groups is published in Archivos de Bronconeumología. A notable collaboration and citation rate has been observed. Nevertheless, it is still essential to encourage inter-regional and international collaboration. Copyright 2009 SEPAR. Published by Elsevier Espana. All rights reserved.

  18. Visualization analysis of author collaborations in schizophrenia research.

    PubMed

    Wu, Ying; Duan, Zhiguang

    2015-02-19

    Schizophrenia is a serious mental illness that levies a heavy medical toll and cost burden throughout the world. Scientific collaborations are necessary for progress in psychiatric research. However, there have been few publications on scientific collaborations in schizophrenia. The aim of this study was to investigate the extent of author collaborations in schizophrenia research. This study used 58,107 records on schizophrenia from 2003 to 2012 which were downloaded from Science Citation Index Expanded (SCI Expanded) via Web of Science. CiteSpace III, an information visualization and analysis software, was used to make a visual analysis. Collaborative author networks within the field of schizophrenia were determined using published documents. We found that external author collaboration networks were more scattered while potential author collaboration networks were more compact. Results from hierarchical clustering analysis showed that the main collaborative field was genetic research in schizophrenia. Based on the results, authors belonging to different institutions and in different countries should be encouraged to collaborate in schizophrenia research. This will help researchers focus their studies on key issues, and allow each other to offer reasonable suggestions for making polices and providing scientific evidence to effectively diagnose, prevent, and cure schizophrenia.

  19. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... guidance, and opportunities for scientific collaboration with qualified researchers at the host university...

  20. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... guidance, and opportunities for scientific collaboration with qualified researchers at the host university...

  1. Forging a link between mentoring and collaboration: a new training model for implementation science.

    PubMed

    Luke, Douglas A; Baumann, Ana A; Carothers, Bobbi J; Landsverk, John; Proctor, Enola K

    2016-10-13

    Training investigators for the rapidly developing field of implementation science requires both mentoring and scientific collaboration. Using social network descriptive analyses, visualization, and modeling, this paper presents results of an evaluation of the mentoring and collaborations fostered over time through the National Institute of Mental Health (NIMH) supported by Implementation Research Institute (IRI). Data were comprised of IRI participant self-reported collaborations and mentoring relationships, measured in three annual surveys from 2012 to 2014. Network descriptive statistics, visualizations, and network statistical modeling were conducted to examine patterns of mentoring and collaboration among IRI participants and to model the relationship between mentoring and subsequent collaboration. Findings suggest that IRI is successful in forming mentoring relationships among its participants, and that these mentoring relationships are related to future scientific collaborations. Exponential random graph network models demonstrated that mentoring received in 2012 was positively and significantly related to the likelihood of having a scientific collaboration 2 years later in 2014 (p = 0.001). More specifically, mentoring was significantly related to future collaborations focusing on new research (p = 0.009), grant submissions (p = 0.003), and publications (p = 0.017). Predictions based on the network model suggest that for every additional mentoring relationships established in 2012, the likelihood of a scientific collaboration 2 years later is increased by almost 7 %. These results support the importance of mentoring in implementation science specifically and team science more generally. Mentoring relationships were established quickly and early by the IRI core faculty. IRI fellows reported increasing scientific collaboration of all types over time, including starting new research, submitting new grants, presenting research results, and publishing peer-reviewed papers. Statistical network models demonstrated that mentoring was strongly and significantly related to subsequent scientific collaboration, which supported a core design principle of the IRI. Future work should establish the link between mentoring and scientific productivity. These results may be of interest to team science, as they suggest the importance of mentoring for future team collaborations, as well as illustrate the utility of network analysis for studying team characteristics and activities.

  2. Build It: Will They Come?

    NASA Astrophysics Data System (ADS)

    Corrie, Brian; Zimmerman, Todd

    Scientific research is fundamentally collaborative in nature, and many of today's complex scientific problems require domain expertise in a wide range of disciplines. In order to create research groups that can effectively explore such problems, research collaborations are often formed that involve colleagues at many institutions, sometimes spanning a country and often spanning the world. An increasingly common manifestation of such a collaboration is the collaboratory (Bos et al., 2007), a “…center without walls in which the nation's researchers can perform research without regard to geographical location — interacting with colleagues, accessing instrumentation, sharing data and computational resources, and accessing information from digital libraries.” In order to bring groups together on such a scale, a wide range of components need to be available to researchers, including distributed computer systems, remote instrumentation, data storage, collaboration tools, and the financial and human resources to operate and run such a system (National Research Council, 1993). Media Spaces, as both a technology and a social facilitator, have the potential to meet many of these needs. In this chapter, we focus on the use of scientific media spaces (SMS) as a tool for supporting collaboration in scientific research. In particular, we discuss the design, deployment, and use of a set of SMS environments deployed by WestGrid and one of its collaborating organizations, the Centre for Interdisciplinary Research in the Mathematical and Computational Sciences (IRMACS) over a 5-year period.

  3. Program of scientific investigations and development of solid-oxide fuel cells (SOFC) in VNIITF. Proposals on scientific and technical collaboration and SOFC commercialization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleschev, Yu.N.; Chukharev, V.F.

    1996-04-01

    This paper describes proposals on scientific and technical collaborations pertaining to solid oxide fuel cell commercialization. Topics included for discussion are: materials research and manufacture; market estimation and cost; directions of collaboration; and project of proposals on joint enterprise creation.

  4. Global and Local Collaborators: A Study of Scientific Collaboration.

    ERIC Educational Resources Information Center

    Pao, Miranda Lee

    1992-01-01

    Describes an empirical study that was conducted to examine the relationship among scientific co-authorship (i.e., collaboration), research funding, and productivity. Bibliographic records from the MEDLINE database that used the subject heading for schistosomiasis are analyzed, global and local collaborators are discussed, and scientific…

  5. Collaboration in Action: Office of Research and Development (ORD) at the US Environmental Protection Agency (USEPA)-Current Wildfire Program

    EPA Science Inventory

    The "Collaboration in Action: US EPA's Office of Research and Develop - Current Wildfire Research Program" was invited by the USDA's US Forest Service's Scientific Executive Committee to provide USFS scientific leadership active and potential future opportunities for co...

  6. Research Networks Map | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States. Seven Major Programs' sites are shown on this map. | The Division of Cancer Prevention supports major scientific collaborations and research networks at more than 100 sites across the United States.

  7. 21st Annual Spring Research Festival Highlights Science, Celebrates Collaboration | Poster

    Cancer.gov

    For two days at the annual Spring Research Festival, Fort Detrick was abuzz with scientific discussion as researchers and visitors from the site’s many resident government agencies and contractors gathered to share findings and recognize collaborative research. Each year, the festival focuses on intermural scientific work, as well as challenges and discoveries in the fight

  8. The Influence of Group Dynamics on Collaborative Scientific Argumentation

    ERIC Educational Resources Information Center

    Ryu, Suna; Sandoval, William A.

    2015-01-01

    Research has addressed what instructional conditions may inhibit or promote scientific argumentation. Little research, however, has paid attention to interpersonal factors that influence collaborative argumentation. The present study examines the ways interpersonal factors affected group dynamics, which influence the features of collaborative…

  9. [Health-related scientific and technological capabilities and university-industry research collaboration].

    PubMed

    Britto, Jorge; Vargas, Marco Antônio; Gadelha, Carlos Augusto Grabois; Costa, Laís Silveira

    2012-12-01

    To examine recent developments in health-related scientific capabilities, the impact of lines of incentives on reducing regional scientific imbalances, and university-industry research collaboration in Brazil. Data were obtained from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazilian National Council for Scientific and Technological Development) databases for the years 2000 to 2010. There were assessed indicators of resource mobilization, research network structuring, and knowledge transfer between science and industry initiatives. Based on the regional distribution map of health-related scientific and technological capabilities there were identified patterns of scientific capabilities and science-industry collaboration. There was relative spatial deconcentration of health research groups and more than 6% of them worked in six areas of knowledge areas: medicine, collective health, dentistry, veterinary medicine, ecology and physical education. Lines of incentives that were adopted from 2000 to 2009 contributed to reducing regional scientific imbalances and improving preexisting capabilities or, alternatively, encouraging spatial decentralization of these capabilities. Health-related scientific and technological capabilities remain highly spatially concentrated in Brazil and incentive policies have contributed to reduce to some extent these imbalances.

  10. Network effects on scientific collaborations.

    PubMed

    Uddin, Shahadat; Hossain, Liaquat; Rasmussen, Kim

    2013-01-01

    The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality), we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count) and formation (tie strength between authors) of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of 'steel structure' for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s) in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s). Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. Authors' network positions in co-authorship networks influence the performance (i.e., citation count) and formation (i.e., tie strength) of scientific collaborations.

  11. Role of Scientific Societies in International Collaboration

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.

    2007-12-01

    Geophysical research increasingly requires global multidisciplinary approaches. Understanding how deeply interrelated are Earth components and processes, population growth, increased needs of mineral and energy resources, global impact of human activities, and view of our planet as an interconnected system emphasizes the need of international cooperation. International research collaboration has an immense potential and is needed for further development of Earth science research and education. The Union Session is planned to provide a forum for analysis and discussion of the status of research and education of geosciences in developing countries, international collaboration programs and new initiatives for promoting and strengthening scientific cooperation. A theme of particular relevance in the analyses and discussions is the role of scientific societies in international collaboration. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities. They may further assist communities in developing countries in providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. What else can be done? This is a complex subject and scientific societies may not be seen independently from the many factors involved in research and education. Developing countries present additional challenges resulting from limited economic resources and social and political problems, while urgently requiring improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources, and identification of major problems and needs. What are the major limitations and needs in research and postgraduate education in developing countries? What and how should international collaboration do? What are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions from analyses and examples in Latin America. We concentrate on current situation, size and characteristics of research community, education programs, facilities, economic support, and bilateral and multinational collaborations, and then move to perspectives for future development in an international context.

  12. International Collaborative Research Partnerships: Blending Science with Management and Diplomacy.

    PubMed

    Lau, Chuen-Yen; Wang, Crystal; Orsega, Susan; Tramont, Edmund C; Koita, Ousmane; Polis, Michael A; Siddiqui, Sophia

    2014-12-01

    As globalization progressively connects and impacts the health of people across the world, collaborative research partnerships provide mutual advantages by sharing knowledge and resources to address locally and globally relevant scientific and public health questions. Partnerships undertaken for scientific research are similar to business collaborations in that they require attention to partner systems, whether local, international, political, academic, or non-academic. Scientists, like diplomats or entrepreneurs, are representatives of their field, culture, and country and become obligatory agents in health diplomacy. This role significantly influences current and future collaborations with not only the immediate partner but with other in country partners as well. Research partnerships need continuous evaluation of the collaboration's productivity, perspectives of all partners, and desired outcomes for success to avoid engaging in "research tourism", particularly in developing regions. International engagement is a cornerstone in addressing the impact of infectious diseases globally. Global partnerships are strategically aligned with national, partner and global health priorities and may be based on specific requests for assistance from the partnering country governments. Here we share experiences from select research collaborations to highlight principles that we have found key in building long-term relationships with collaborators and in meeting the aim to address scientific questions relevant to the host country and strategic global health initiatives.

  13. South American collaboration in scientific publications on leishmaniasis: bibliometric analysis in SCOPUS (2000-2011).

    PubMed

    Huamaní, Charles; Romaní, Franco; González-Alcaide, Gregorio; Mejia, Miluska O; Ramos, José Manuel; Espinoza, Manuel; Cabezas, César

    2014-01-01

    Evaluate the production and the research collaborative network on Leishmaniasis in South America. A bibliometric research was carried out using SCOPUS database. The analysis unit was original research articles published from 2000 to 2011, that dealt with leishmaniasis and that included at least one South American author. The following items were obtained for each article: journal name, language, year of publication, number of authors, institutions, countries, and others variables. 3,174 articles were published, 2,272 of them were original articles. 1,160 different institutional signatures, 58 different countries and 398 scientific journals were identified. Brazil was the country with more articles (60.7%) and Oswaldo Cruz Foundation (FIOCRUZ) had 18% of Brazilian production, which is the South American nucleus of the major scientific network in Leishmaniasis. South American scientific production on Leishmaniasis published in journals indexed in SCOPUS is focused on Brazilian research activity. It is necessary to strengthen the collaboration networks. The first step is to identify the institutions with higher production, in order to perform collaborative research according to the priorities of each country.

  14. SOUTH AMERICAN COLLABORATION IN SCIENTIFIC PUBLICATIONS ON LEISHMANIASIS: BIBLIOMETRIC ANALYSIS IN SCOPUS (2000-2011)

    PubMed Central

    Huamaní, Charles; Romaní, Franco; González-Alcaide, Gregorio; Mejia, Miluska O.; Ramos, José Manuel; Espinoza, Manuel; Cabezas, César

    2014-01-01

    Objectives: Evaluate the production and the research collaborative network on Leishmaniasis in South America. Methods: A bibliometric research was carried out using SCOPUS database. The analysis unit was original research articles published from 2000 to 2011, that dealt with leishmaniasis and that included at least one South American author. The following items were obtained for each article: journal name, language, year of publication, number of authors, institutions, countries, and others variables. Results: 3,174 articles were published, 2,272 of them were original articles. 1,160 different institutional signatures, 58 different countries and 398 scientific journals were identified. Brazil was the country with more articles (60.7%) and Oswaldo Cruz Foundation (FIOCRUZ) had 18% of Brazilian production, which is the South American nucleus of the major scientific network in Leishmaniasis. Conclusions: South American scientific production on Leishmaniasis published in journals indexed in SCOPUS is focused on Brazilian research activity. It is necessary to strengthen the collaboration networks. The first step is to identify the institutions with higher production, in order to perform collaborative research according to the priorities of each country. PMID:25229217

  15. Apprenticeships, Collaboration and Scientific Discovery in Academic Field Studies

    ERIC Educational Resources Information Center

    Madden, Derek Scott; Grayson, Diane J.; Madden, Erinn H.; Milewski, Antoni V.; Snyder, Cathy Ann

    2012-01-01

    Teachers may use apprenticeships and collaboration as instructional strategies that help students to make authentic scientific discoveries as they work as amateur researchers in academic field studies. This concept was examined with 643 students, ages 14-72, who became proficient at field research through cognitive apprenticeships with the…

  16. Our Journal Unites Us: Global Responsibilities and Possibilities for Pediatric Physical Therapy.

    PubMed

    Van Sant, Ann F

    2018-04-01

    This article was designed to describe personal and social responsibilities for strengthening the science of pediatric physical therapy and effective international research collaboration and communication. Common flaws in research design and analysis are reviewed with recommendations for developing research students' design and analytical skills. Our social responsibility to be informed by global knowledge is highlighted. Barriers to scientific collaboration and communication including international disparities in scientific development and language barriers are presented. Suggestions to reduce these barriers are outlined. The importance of free access to scientific literature in developing countries is reviewed. The journal should assume a leadership role in building a strong science of pediatric physical therapy through encouraging personal and social responsibility in research and serving as a model of international collaboration and communication. Treatment for children with movement disorders will be improved by stronger science, international collaboration, and communication.

  17. Scientific collaboration and team science: a social network analysis of the centers for population health and health disparities.

    PubMed

    Okamoto, Janet

    2015-03-01

    The past decade has seen dramatic shifts in the way that scientific research is conducted as networks, consortia, and large research centers are funded as transdisciplinary, team-based enterprises to tackle complex scientific questions. Key investigators (N = 167) involved in ten health disparities research centers completed a baseline social network and collaboration readiness survey. Collaborative ties existed primarily between investigators from the same center, with just 7 % of ties occurring across different centers. Grants and work groups were the most common types of ties between investigators, with shared presentations the most common tie across different centers. Transdisciplinary research orientation was associated with network position and reciprocity. Center directors/leaders were significantly more likely to form ties with investigators in other roles, such as statisticians and trainees. Understanding research collaboration networks can help to more effectively design and manage future team-based research, as well as pinpoint potential issues and continuous evaluation of existing efforts.

  18. A study on scientific collaboration and co-authorship patterns in library and information science studies in Iran between 2005 and 2009.

    PubMed

    Siamaki, Saba; Geraei, Ehsan; Zare-Farashbandi, Firoozeh

    2014-01-01

    Scientific collaboration is among the most important subjects in scientometrics, and many studies have investigated this concept to this day. The goal of the current study is investigation of scientific collaboration and co-authorship patterns of researchers in the field of library and information science in Iran between years 2005 and 2009. The current study uses scientometrics method. The statistical population consists of 942 documents published in Iranian library and information science journals between years 2005 and 2009. Collaboration coefficient, collaboration index (CI), and degree of collaboration (DC) were used for data analysis. The findings showed that among 942 investigated documents, 506 documents (53.70%) was created by one individual researcher and 436 documents (46.30%) were the result of collaboration between two or more researchers. Also, the highest rank of different authorship patterns belonged to National Journal of Librarianship and Information Organization (code H). The average collaboration coefficient for the library and information science researchers in the investigated time frame was 0.23. The closer this coefficient is to 1, the higher is the level of collaboration between authors, and a coefficient near zero shows a tendency to prefer individual articles. The highest collaboration index with an average of 1.92 authors per paper was seen in year 1388. The five year collaboration index in library and information science in Iran was 1.58, and the average degree of collaboration between researchers in the investigated papers was 0.46, which shows that library and information science researchers have a tendency for co-authorship. However, the co-authorship had increased in recent years reaching its highest number in year 1388. The researchers' collaboration coefficient also shows relative increase between years 1384 and 1388. National Journal of Librarianship and Information Organization has the highest rank among all the investigated journals based on collaboration coefficient, collaboration index (CI), and degree of collaboration (DC).

  19. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    PubMed

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  20. Cross-border data exchange - a case study on international collaboration gone wrong

    NASA Astrophysics Data System (ADS)

    Yanko-Hombach, Valentina

    2016-04-01

    The subject of ethics in science has become a hot topic recently (Gleick, 2011). As publication pressure on researchers increases and use of the internet allows faster turn-around, the quality of the peer review process has suffered. This presentation describes one case of scientific ethics violation in which the editors of a high-ranking scientific journal improperly permitted publication of a paper that was based upon unethical acquisition of data and failed to acknowledge scientific collaboration and exchange of intellectual property. We will present "Case description" and "Ethical issues" with a hope that our experience draws attention to important ethical issues in international collaborative research, and prevents such misconduct in the future. Since international research involves cooperation and coordination among many people in different disciplines and institutions across national borders, ethical standards should promote values that are essential to integrity and collaborative work, including trust, accountability, mutual respect, and fairness. One lesson to be learned is not to engage in collaboration without a written agreement stating clearly who is responsible for what and how the results of collaborative research are to be shared. This is especially important in cases of international collaborations, particularly those involving smaller or developing nations who often do not have the high-tech facilities of developed nations. There is also need to establish clear regulations regarding co-authorship on papers in which intellectual property and significant financial investment was made to allow the research to proceed. As such, a system of ethics to guide the practice of science from data collection to publication and beyond is timely and much needed to protect the integrity of scientific collaboration. It will keep science moving forward by validating research findings and confirming or raising questions about results. References Benos, D. J., Fabres, J., Farmer, J., Gutierrez, J.P., Hennessy, K., Kosek, D., Joo Hyoung Lee, Olteanu, D., Russell, T., Shaikh, F., Wang, K. 2005. Ethics and scientific publication. Adv. Physiol. Educ. 29: 59-74. Gleick, P. 2011. AGU's new task force on scientific ethics and integrity begins work. EOS 92(47): 22. Guidelines for responsible conduct of research. http://www.provost.pitt.edu/documents/GUIDELINES FOR ETHICAL PRACTICES IN RESEARCH-FINALrevised2-March 2011.pdf

  1. Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks

    PubMed Central

    Ding, Ying

    2010-01-01

    Scientific collaboration and endorsement are well-established research topics which utilize three kinds of methods: survey/questionnaire, bibliometrics, and complex network analysis. This paper combines topic modeling and path-finding algorithms to determine whether productive authors tend to collaborate with or cite researchers with the same or different interests, and whether highly cited authors tend to collaborate with or cite each other. Taking information retrieval as a test field, the results show that productive authors tend to directly coauthor with and closely cite colleagues sharing the same research interests; they do not generally collaborate directly with colleagues having different research topics, but instead directly or indirectly cite them; and highly cited authors do not generally coauthor with each other, but closely cite each other. PMID:21344057

  2. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System

    PubMed Central

    Myneni, Sahiti; Patel, Vimla L.

    2010-01-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers’ time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment. PMID:20543892

  3. Collaborative research among academia, business, and government

    EPA Science Inventory

    SETAC is a tripartite organization comprised chiefly of three sectors: academia, government, and industry. Collaborative connections within and among these sectors provide the basis for scientific structural integrity. Such interactions generally foster scientific integrity, tra...

  4. International Collaborative Research Partnerships: Blending Science with Management and Diplomacy

    PubMed Central

    Lau, Chuen-Yen; Wang, Crystal; Orsega, Susan; Tramont, Edmund C; Koita, Ousmane; Polis, Michael A; Siddiqui, Sophia

    2015-01-01

    As globalization progressively connects and impacts the health of people across the world, collaborative research partnerships provide mutual advantages by sharing knowledge and resources to address locally and globally relevant scientific and public health questions. Partnerships undertaken for scientific research are similar to business collaborations in that they require attention to partner systems, whether local, international, political, academic, or non-academic. Scientists, like diplomats or entrepreneurs, are representatives of their field, culture, and country and become obligatory agents in health diplomacy. This role significantly influences current and future collaborations with not only the immediate partner but with other in country partners as well. Research partnerships need continuous evaluation of the collaboration’s productivity, perspectives of all partners, and desired outcomes for success to avoid engaging in “research tourism”, particularly in developing regions. International engagement is a cornerstone in addressing the impact of infectious diseases globally. Global partnerships are strategically aligned with national, partner and global health priorities and may be based on specific requests for assistance from the partnering country governments. Here we share experiences from select research collaborations to highlight principles that we have found key in building long-term relationships with collaborators and in meeting the aim to address scientific questions relevant to the host country and strategic global health initiatives. PMID:26225217

  5. A study on scientific collaboration and co-authorship patterns in library and information science studies in Iran between 2005 and 2009

    PubMed Central

    Siamaki, Saba; Geraei, Ehsan; Zare- Farashbandi, Firoozeh

    2014-01-01

    Background: Scientific collaboration is among the most important subjects in scientometrics, and many studies have investigated this concept to this day. The goal of the current study is investigation of scientific collaboration and co-authorship patterns of researchers in the field of library and information science in Iran between years 2005 and 2009. Materials and Methods: The current study uses scientometrics method. The statistical population consists of 942 documents published in Iranian library and information science journals between years 2005 and 2009. Collaboration coefficient, collaboration index (CI), and degree of collaboration (DC) were used for data analysis. Findings: The findings showed that among 942 investigated documents, 506 documents (53.70%) was created by one individual researcher and 436 documents (46.30%) were the result of collaboration between two or more researchers. Also, the highest rank of different authorship patterns belonged to National Journal of Librarianship and Information Organization (code H). Conclusion: The average collaboration coefficient for the library and information science researchers in the investigated time frame was 0.23. The closer this coefficient is to 1, the higher is the level of collaboration between authors, and a coefficient near zero shows a tendency to prefer individual articles. The highest collaboration index with an average of 1.92 authors per paper was seen in year 1388. The five year collaboration index in library and information science in Iran was 1.58, and the average degree of collaboration between researchers in the investigated papers was 0.46, which shows that library and information science researchers have a tendency for co-authorship. However, the co-authorship had increased in recent years reaching its highest number in year 1388. The researchers’ collaboration coefficient also shows relative increase between years 1384 and 1388. National Journal of Librarianship and Information Organization has the highest rank among all the investigated journals based on collaboration coefficient, collaboration index (CI), and degree of collaboration (DC). PMID:25250365

  6. Collaborative Problem-Solving Environments; Proceedings for the Workshop CPSEs for Scientific Research, San Diego, California, June 20 to July 1, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George

    1999-01-11

    A workshop on collaborative problem-solving environments (CPSEs) was held June 29 through July 1, 1999, in San Diego, California. The workshop was sponsored by the U.S. Department of Energy and the High Performance Network Applications Team of the Large Scale Networking Working Group. The workshop brought together researchers and developers from industry, academia, and government to identify, define, and discuss future directions in collaboration and problem-solving technologies in support of scientific research.

  7. Network Effects on Scientific Collaborations

    PubMed Central

    Uddin, Shahadat; Hossain, Liaquat; Rasmussen, Kim

    2013-01-01

    Background The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. Methodology/Principal Findings Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality), we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count) and formation (tie strength between authors) of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of ‘steel structure’ for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s) in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s). Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. Conclusions/Significance Authors’ network positions in co-authorship networks influence the performance (i.e., citation count) and formation (i.e., tie strength) of scientific collaborations. PMID:23469021

  8. New project to support scientific collaboration electronically

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Rasmussen, C. E.; Niciejewski, R. J.; Killeen, T. L.; Kelly, J. D.; Zambre, Y.; Rosenberg, T. J.; Stauning, P.; Friis-Christensen, E.; Mende, S. B.; Weymouth, T. E.; Prakash, A.; McDaniel, S. E.; Olson, G. M.; Finholt, T. A.; Atkins, D. E.

    A new multidisciplinary effort is linking research in the upper atmospheric and space, computer, and behavioral sciences to develop a prototype electronic environment for conducting team science worldwide. A real-world electronic collaboration testbed has been established to support scientific work centered around the experimental operations being conducted with instruments from the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland. Such group computing environments will become an important component of the National Information Infrastructure initiative, which is envisioned as the high-performance communications infrastructure to support national scientific research.

  9. Zebrafish in Brazilian Science: Scientific Production, Impact, and Collaboration.

    PubMed

    Gheno, Ediane Maria; Rosemberg, Denis Broock; Souza, Diogo Onofre; Calabró, Luciana

    2016-06-01

    By means of scientometric indicators, this study investigated the characteristics of scientific production and research collaboration involving zebrafish (Danio rerio) in Brazilian Science indexed by the Web of Science (WoS). Citation data were collected from the WoS and data regarding Impact Factor (IF) were gathered from journals in the Journal Citation Reports. Collaboration was evaluated according to coauthorship data, creating representative nets with VOSviewer. Zebrafish has attained remarkable importance as an experimental model organism in recent years and an increase in scientific production with zebrafish is observed in Brazil and around the world. The citation impact of the worldwide scientific production is superior when compared to the Brazilian scientific production. However, the citation impact of the Brazilian scientific production is consistently increasing. Brazil does not follow the international trends with regard to publication research fields. The state of Rio Grande do Sul has the greatest number of articles and the institution with the largest number of publications is Pontifícia Universidade Católica do Rio Grande do Sul. Journals' average IF is higher in Brazilian publications with international coauthorship, and around 90% of articles are collaborative. The Brazilian institutions presenting the greatest number of collaborations are Pontifícia Universidade Católica do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Fundação Universidade Federal de Rio Grande, and Universidade de São Paulo. These data indicate that Brazilian research using zebrafish presents a growth in terms of number of publications, citation impact, and collaborative work.

  10. Zebrafish in Brazilian Science: Scientific Production, Impact, and Collaboration

    PubMed Central

    Gheno, Ediane Maria; Rosemberg, Denis Broock; Souza, Diogo Onofre

    2016-01-01

    Abstract By means of scientometric indicators, this study investigated the characteristics of scientific production and research collaboration involving zebrafish (Danio rerio) in Brazilian Science indexed by the Web of Science (WoS). Citation data were collected from the WoS and data regarding Impact Factor (IF) were gathered from journals in the Journal Citation Reports. Collaboration was evaluated according to coauthorship data, creating representative nets with VOSviewer. Zebrafish has attained remarkable importance as an experimental model organism in recent years and an increase in scientific production with zebrafish is observed in Brazil and around the world. The citation impact of the worldwide scientific production is superior when compared to the Brazilian scientific production. However, the citation impact of the Brazilian scientific production is consistently increasing. Brazil does not follow the international trends with regard to publication research fields. The state of Rio Grande do Sul has the greatest number of articles and the institution with the largest number of publications is Pontifícia Universidade Católica do Rio Grande do Sul. Journals' average IF is higher in Brazilian publications with international coauthorship, and around 90% of articles are collaborative. The Brazilian institutions presenting the greatest number of collaborations are Pontifícia Universidade Católica do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Fundação Universidade Federal de Rio Grande, and Universidade de São Paulo. These data indicate that Brazilian research using zebrafish presents a growth in terms of number of publications, citation impact, and collaborative work. PMID:27045850

  11. What Makes or Breaks Provider--Researcher Collaborations in HIV Research? A Mixed Method Analysis of Providers' Willingness to Partner

    ERIC Educational Resources Information Center

    Pinto, Rogerio M.

    2013-01-01

    Research is lacking about what makes or breaks collaboration between researchers and HIV services providers. This study identified factors that influence providers' levels of willingness to collaborate in HIV prevention scientific research. Survey measures were grounded in in-depth interview data and included providers' "willingness to…

  12. Establishing good collaborative research practices in the responsible conduct of research in nursing science.

    PubMed

    Ulrich, Connie M; Wallen, Gwenyth R; Cui, Naixue; Chittams, Jesse; Sweet, Monica; Plemmons, Dena

    2015-01-01

    Team science is advocated to speed the pace of scientific discovery, yet the goals of collaborative practice in nursing science and the responsibilities of nurse stakeholders are sparse and inconclusive. The purpose of this study was to examine nurse scientists' views on collaborative research as part of a larger study on standards of scientific conduct. Web-based descriptive survey of nurse scientists randomly selected from 50 doctoral graduate programs in the United States. Nearly forty percent of nurse respondents were not able to identify good collaborative practices for the discipline; more than three quarters did not know of any published guidelines available to them. Successful research collaborations were challenged by different expectations of authorship and data ownership, lack of timeliness and communication, poorly defined roles and responsibilities, language barriers, and when they involve junior and senior faculty working together on a project. Individual and organizational standards, practices, and policies for collaborative research needs clarification within the discipline. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Good and Bad Research Collaborations: Researchers' Views on Science and Ethics in Global Health Research.

    PubMed

    Parker, Michael; Kingori, Patricia

    2016-01-01

    There has been a dramatic rise in the scale and scope of collaborative global health research. A number of structural and scientific factors explain this growth and there has been much discussion of these in the literature. Little, if any, attention has been paid, however, to the factors identified by scientists and other research actors as important to successful research collaboration. This is surprising given that their decisions are likely to play a key role in the sustainability and effectiveness of global health research initiatives. In this paper, we report on qualitative research with leading scientists involved in major international research collaborations about their views on good and bad collaborations and the factors that inform their decision-making about joining and participating actively in research networks. We identify and discuss eight factors that researchers see as essential in judging the merits of active participation in global health research collaborations: opportunities for active involvement in cutting-edge, interesting science; effective leadership; competence of potential partners in and commitment to good scientific practice; capacity building; respect for the needs, interests and agendas of partners; opportunities for discussion and disagreement; trust and confidence; and, justice and fairness in collaboration. Our findings suggest that the sustainability and effectiveness of global health research collaborations has an important ethical or moral dimension for the research actors involved.

  14. On the Cutting Edge of Research to Conserve At-Risk Species: Maximizing Impact through Partnerships.

    PubMed

    Marquardt, Shauna R; Annis, Mandy; Drum, Ryan G; Hummel, Stephanie Longstaff; Mosby, David E; Smith, Tamara

    2018-04-25

    Today's conservation challenges are complex. Solving these challenges often requires scientific collaborations that extend beyond the scope, expertise, and capacity of any single agency, organization, or institution. Conservation efforts can benefit from interdisciplinary collaboration, scientific and technological innovations, and the leveraging of capacity and resources among partners. Here we explore a series of case studies demonstrating how collaborative scientific partnerships are furthering the mission of the U.S. Fish and Wildlife Service, including: 1) contaminants of emerging concern in the Great Lakes Basin, 2) Poweshiek skipperling conservation, 3) using technology to improve population survey methods for bats and monarch butterfly, and 4) Big River restoration in the Southeast Missouri lead mining district. These case studies illustrate how strategic and effective scientific collaboration is a multi-stage process that requires investment of time and resources by all participants. Early coordination and communication is crucial to aligning planned work with scientific and decision-making needs. Collaborations between USFWS and external scientists can be mutually beneficial by supporting the agency mission while also providing an avenue for innovative research to be directly applied in conservation decisions and management actions.

  15. Good and Bad Research Collaborations: Researchers’ Views on Science and Ethics in Global Health Research

    PubMed Central

    Parker, Michael; Kingori, Patricia

    2016-01-01

    There has been a dramatic rise in the scale and scope of collaborative global health research. A number of structural and scientific factors explain this growth and there has been much discussion of these in the literature. Little, if any, attention has been paid, however, to the factors identified by scientists and other research actors as important to successful research collaboration. This is surprising given that their decisions are likely to play a key role in the sustainability and effectiveness of global health research initiatives. In this paper, we report on qualitative research with leading scientists involved in major international research collaborations about their views on good and bad collaborations and the factors that inform their decision-making about joining and participating actively in research networks. We identify and discuss eight factors that researchers see as essential in judging the merits of active participation in global health research collaborations: opportunities for active involvement in cutting-edge, interesting science; effective leadership; competence of potential partners in and commitment to good scientific practice; capacity building; respect for the needs, interests and agendas of partners; opportunities for discussion and disagreement; trust and confidence; and, justice and fairness in collaboration. Our findings suggest that the sustainability and effectiveness of global health research collaborations has an important ethical or moral dimension for the research actors involved. PMID:27737006

  16. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    PubMed

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  17. How to Receive More Funding for Your Research? Get Connected to the Right People!

    PubMed

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    Funding has been viewed in the literature as one of the main determinants of scientific activities. Also, at an individual level, securing funding is one of the most important factors for a researcher, enabling him/her to carry out research projects. However, not everyone is successful in obtaining the necessary funds. The main objective of this work is to measure the effect of several important factors such as past productivity, scientific collaboration or career age of researchers, on the amount of funding that is allocated to them. For this purpose, the paper estimates a temporal non-linear multiple regression model. According to the results, although past productivity of researchers positively affects the funding level, our findings highlight the significant role of networking and collaboration. It was observed that being a member of large scientific teams and getting connected to productive researchers who have also a good control over the collaboration network and the flow of information can increase the chances for securing more money. In fact, our results show that in the quest for the research money it is more important how researchers build their collaboration network than what publications they produce and whether they are cited.

  18. How to Receive More Funding for Your Research? Get Connected to the Right People!

    PubMed Central

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    Funding has been viewed in the literature as one of the main determinants of scientific activities. Also, at an individual level, securing funding is one of the most important factors for a researcher, enabling him/her to carry out research projects. However, not everyone is successful in obtaining the necessary funds. The main objective of this work is to measure the effect of several important factors such as past productivity, scientific collaboration or career age of researchers, on the amount of funding that is allocated to them. For this purpose, the paper estimates a temporal non-linear multiple regression model. According to the results, although past productivity of researchers positively affects the funding level, our findings highlight the significant role of networking and collaboration. It was observed that being a member of large scientific teams and getting connected to productive researchers who have also a good control over the collaboration network and the flow of information can increase the chances for securing more money. In fact, our results show that in the quest for the research money it is more important how researchers build their collaboration network than what publications they produce and whether they are cited. PMID:26222598

  19. Dynamics of co-authorship and productivity across different fields of scientific research.

    PubMed

    Parish, Austin J; Boyack, Kevin W; Ioannidis, John P A

    2018-01-01

    We aimed to assess which factors correlate with collaborative behavior and whether such behavior associates with scientific impact (citations and becoming a principal investigator). We used the R index which is defined for each author as log(Np)/log(I1), where I1 is the number of co-authors who appear in at least I1 papers written by that author and Np are his/her total papers. Higher R means lower collaborative behavior, i.e. not working much with others, or not collaborating repeatedly with the same co-authors. Across 249,054 researchers who had published ≥30 papers in 2000-2015 but had not published anything before 2000, R varied across scientific fields. Lower values of R (more collaboration) were seen in physics, medicine, infectious disease and brain sciences and higher values of R were seen for social science, computer science and engineering. Among the 9,314 most productive researchers already reaching Np ≥ 30 and I1 ≥ 4 by the end of 2006, R mostly remained stable for most fields from 2006 to 2015 with small increases seen in physics, chemistry, and medicine. Both US-based authorship and male gender were associated with higher values of R (lower collaboration), although the effect was small. Lower values of R (more collaboration) were associated with higher citation impact (h-index), and the effect was stronger in certain fields (physics, medicine, engineering, health sciences) than in others (brain sciences, computer science, infectious disease, chemistry). Finally, for a subset of 400 U.S. researchers in medicine, infectious disease and brain sciences, higher R (lower collaboration) was associated with a higher chance of being a principal investigator by 2016. Our analysis maps the patterns and evolution of collaborative behavior across scientific disciplines.

  20. sbtools: A package connecting R to cloud-based data for collaborative online research

    USGS Publications Warehouse

    Winslow, Luke; Chamberlain, Scott; Appling, Alison P.; Read, Jordan S.

    2016-01-01

    The adoption of high-quality tools for collaboration and reproducible research such as R and Github is becoming more common in many research fields. While Github and other version management systems are excellent resources, they were originally designed to handle code and scale poorly to large text-based or binary datasets. A number of scientific data repositories are coming online and are often focused on dataset archival and publication. To handle collaborative workflows using large scientific datasets, there is increasing need to connect cloud-based online data storage to R. In this article, we describe how the new R package sbtools enables direct access to the advanced online data functionality provided by ScienceBase, the U.S. Geological Survey’s online scientific data storage platform.

  1. Studying Research Collaboration Patterns via Co-authorship Analysis in the Field of TeL: The Case of "Educational Technology & Society" Journal

    ERIC Educational Resources Information Center

    Zervas, Panagiotis; Tsitmidelli, Asimenia; Sampson, Demetrios G.; Chen, Nian-Shing; Kinshuk

    2014-01-01

    Research collaboration is studied in different research areas, so as to provide useful insights on how researchers combine existing distributed scientific knowledge and transform it into new knowledge. Commonly used metrics for measuring research collaborative activity include, among others, the co-authored publications (concerned with who works…

  2. Conceptions and Expectations of Research Collaboration in the European Social Sciences: Research Policies, Institutional Contexts and the Autonomy of the Scientific Field

    ERIC Educational Resources Information Center

    Lebeau, Yann; Papatsiba, Vassiliki

    2016-01-01

    This paper investigates the interactions between policy drivers and academic practice in international research collaboration. It draws on the case of the Open Research Area (ORA), a funding scheme in the social sciences across four national research agencies, seeking to boost collaboration by supporting "integrated" projects. The paper…

  3. Exploring teachers' beliefs and knowledge about scientific inquiry and the nature of science: A collaborative action research project

    NASA Astrophysics Data System (ADS)

    Fazio, Xavier Eric

    Science curriculum reform goals espouse the need to foster and support the development of scientific literacy in students. Two critical goals of scientific literacy are students' engagement in, and developing more realistic conceptions about scientific inquiry (SI) and the nature of science (NOS). In order to promote the learning of these curriculum emphases, teachers themselves must possess beliefs and knowledge supportive of them. Collaborative action research is a viable form of curriculum and teacher development that can be used to support teachers in developing the requisite beliefs and knowledge that can promote these scientific literacy goals. This research study used a collective case study methodology to describe and interpret the views and actions of four teachers participating in a collaborative action research project. I explored the teachers' SI and NOS views throughout the project as they investigated ideas and theories, critically examined their current curricular practice, and implemented and reflected on these modified curricular practices. By the end of the research study, all participants had uniquely augmented their understanding of SI and NOS. The participants were better able to provide explanatory depth to some SI and NOS ideas; however, specific belief revision with respect to SI and NOS ideas was nominal. Furthermore, their idealized action research plans were not implemented to the extent that they were planned. Explanations for these findings include: impact of significant past educational experiences, prior understanding of SI and NOS, depth of content and pedagogical content knowledge of the discipline, and institutional and instructional constraints. Nonetheless, through participation in the collaborative action research process, the teachers developed professionally, personally, and socially. They identified many positive outcomes from participating in a collaborative action research project; however, they espoused constraints to implementing innovative actions. Indeed, local school cultures were barriers to the participants' development. A model of teacher development embracing all the developmental areas is presented---an integration of social, personal, and professional development. Implications and recommendations for future research on teachers' beliefs and knowledge, as well as the viability of collaborative action research to facilitate teacher and curriculum development are presented.

  4. Identifying Strategic Scientific Opportunities

    Cancer.gov

    As NCI's central scientific strategy office, CRS collaborates with the institute's divisions, offices, and centers to identify research opportunities to advance NCI's vision for the future of cancer research.

  5. Hackathons as a means of accelerating scientific discoveries and knowledge transfer.

    PubMed

    Ghouila, Amel; Siwo, Geoffrey Henry; Entfellner, Jean-Baka Domelevo; Panji, Sumir; Button-Simons, Katrina A; Davis, Sage Zenon; Fadlelmola, Faisal M; Ferdig, Michael T; Mulder, Nicola

    2018-05-01

    Scientific research plays a key role in the advancement of human knowledge and pursuit of solutions to important societal challenges. Typically, research occurs within specific institutions where data are generated and subsequently analyzed. Although collaborative science bringing together multiple institutions is now common, in such collaborations the analytical processing of the data is often performed by individual researchers within the team, with only limited internal oversight and critical analysis of the workflow prior to publication. Here, we show how hackathons can be a means of enhancing collaborative science by enabling peer review before results of analyses are published by cross-validating the design of studies or underlying data sets and by driving reproducibility of scientific analyses. Traditionally, in data analysis processes, data generators and bioinformaticians are divided and do not collaborate on analyzing the data. Hackathons are a good strategy to build bridges over the traditional divide and are potentially a great agile extension to the more structured collaborations between multiple investigators and institutions. © 2018 Ghouila et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Scientific Collaboration in Chinese Nursing Research: A Social Network Analysis Study.

    PubMed

    Hou, Xiao-Ni; Hao, Yu-Fang; Cao, Jing; She, Yan-Chao; Duan, Hong-Mei

    2016-01-01

    Collaboration has become very important in research and in technological progress. Coauthorship networks in different fields have been intensively studied as an important type of collaboration in recent years. Yet there are few published reports about collaboration in the field of nursing. This article aimed to reveal the status and identify the key features of collaboration in the field of nursing in China. Using data from the top 10 nursing journals in China from 2003 to 2013, we constructed a nursing scientific coauthorship network using social network analysis. We found that coauthorship was a common phenomenon in the Chinese nursing field. A coauthorship network with 228 subnetworks formed by 1428 nodes was constructed. The network was relatively loose, and most subnetworks were of small scales. Scholars from Shanghai and from military medical system were at the center of the Chinese nursing scientific coauthorship network. We identified the authors' positions and influences according to the research output and centralities of each author. We also analyzed the microstructure and the evolution over time of the maximum subnetwork.

  7. Sustaining Broader Impacts through Researcher-Teacher Collaboration (A Model Based on Award Abstract #1334935: Collaborative Research: Investigating the Ecological Importance of Iron Storage in Diatoms.)

    NASA Astrophysics Data System (ADS)

    Sutton, M.; Marchetti, A.

    2016-02-01

    Broader impacts have become a vital component of scientific research projects. A variety of outreach avenues are available to assist scientists in reaching larger audiences, however, the translation of cutting-edge scientific content and concepts can be challenging. Collaborating with educators is a viable option to assist researchers in fulfilling NSF's broader impact requirements. A broader impacts model based on collaborations between a teacher and 28 researchers from 14 institutions will demonstrate successful science outreach and engagement through interactions between teachers, researchers, students, and general audiences. Communication styles (i.e., blogs, social media) and outreach data incorporated by researchers and the teacher will be shared to illustrate the magnitude of the broader impacts achieved with this partnership. Inquiry-based investigations and activities developed to translate the science into the classroom will also be demonstrated, including the use of real scientific data collected during the research cruise. "Finding Microbe Needles in a Haystack of Oceans" provides an understanding of how remote sensing technology is used to locate specific ocean environments (e.g. High Nutrient Low Chlorophyll - HNLC) that support diverse microbial food webs. A board game ("Diatom Adventures©") designed to explore the physiology of microbial organisms and microscopic food webs will also be demonstrated. The tentative nature of science requires a constant vigil to stay abreast of the latest hypotheses and discoveries. Researcher/Teacher collaborations allow each professional to focus on his/her strengths while meeting broader impact requirements. These partnerships encourage lifelong learning as educators observe and work with scientists first-hand and then follow appropriate scope, sequence, and pedagogy to assist various audiences in understanding the innovative technologies being used to explore new scientific frontiers.

  8. Sciologer: Visualizing and Exploring Scientific Communities

    ERIC Educational Resources Information Center

    Bales, Michael Eliot

    2009-01-01

    Despite the recognized need to increase interdisciplinary collaboration, there are few information resources available to provide researchers with an overview of scientific communities--topics under investigation by various groups, and patterns of collaboration among groups. The tools that are available are designed for expert social network…

  9. [Coauthorship networks and institutional collaboration in Revista de Neurología].

    PubMed

    González-Alcaide, G; Alonso-Arroyo, A; González de Dios, J; Sempere, A P; Valderrama-Zurián, J C; Aleixandre-Benavent, R

    Scientific cooperation is essential for the advance of science. Bibliometrics and social network analysis offer evaluation indicators to analyse collaboration in scientific papers. The aim of this study is to characterize scientific collaboration patterns in Revista de Neurología between 2002 and 2006. Coauthorships and institutional relationships of papers published in Revista de Neurología have been identified. Collaboration Index, the most productive authors' and institutional collaboration patterns and the types of institutional collaborations have been quantified. Also, it has been constructed the coauthorship networks and the institutional collaboration network. Networks have been identified and represented using Access and Pajek software tools. The Collaboration Index was 4.01. 56.54% of papers involved institutional collaboration. The collaboration between institutions of the same country prevails (52.7%), followed by collaborations between departments, services or units of the same institution (40.47%) and international collaboration (6.83%). 45 coauthorship networks involving 149 investigators with a high intensity of collaboration and a large institutional network involved 80 centres were observed. Revista de Neurología covers scientific production of a high number of research groups. It has been observed a positive evolution in the collaboration patterns over the time. Nevertheless, it is essential to encourage inter-regional and international collaboration.

  10. Scientific research in obstructive sleep apnea syndrome: bibliometric analysis in SCOPUS, 1991-2012.

    PubMed

    Huamaní, Charles; Rey de Castro, Jorge; González-Alcaide, Gregorio; Polesel, Daniel Ninello; Tufik, Sergio; Andersen, Monica Levy

    2015-03-01

    The research in obstructive sleep apnea (OSA) may be beneficial from the collaboration between countries and researchers. In this study, we aimed to analyze the scientific research on OSA from 1991 to 2012 and to evaluate the collaboration networks between countries. We conducted a bibliometric study in the SCOPUS database. The systematic search was limited to "articles" published from 1991 to 2012. Articles are results of original research; we evaluated the following criteria: number of countries represented, number of authors, number of citations, and journal names. We determined which countries were the most productive (more articles published) and the number of collaborations between these countries. The probability of citation was evaluated using adjusted odds ratios in a logistic regression analysis. We found a total of 6,896 OSA-related articles that had been published in 1,422 journals, 50 % of these articles were concentrated in 41 journals. Of the 74 different countries associated with these articles, the USA had the highest involvement with 23.8 % of all articles published. The probability of citation increased by 1.23 times for each additional author, and by 2.23 times for each additional country represented; these findings were independent of time since publication, journal, or the country of the author. Scientific production on OSA is increasing with limited international collaboration. The country with the greatest production in this period (1991-2012) was the USA, which concentrated the international collaboration network on OSA. We recommended that articles should be produced with international collaboration to improve the quantity of scientific publications and their chances of publication in high impact journals.

  11. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hasbrook, Pete

    2016-01-01

    The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging systems mounted on ISS as well as other orbiting spacecraft to improve our understanding of the Earth and its climate. NASA and Roscosmos continue to encourage international scientific cooperation and expanded use of the ISS Laboratory. "Long-term", larger collaborations will achieve scientific objectives that no single national science team or agency can achieve on its own. The joint accomplishments achieved so far have paved the way for a stronger international scientific community and improved results and benefits from ISS.

  12. Pursuing Scientific Excellence Globally: Internationalising Research as a Policy Target

    ERIC Educational Resources Information Center

    Lasthiotakis, Helen; Sigurdson, Kristjan; Sá, Creso M.

    2013-01-01

    International collaboration is a rapidly growing aspect of university research and a priority of research funding agencies. This article investigates the rationales that underlie Canadian federal research councils' support of international research collaborations. Such support has deep roots in Canadian science and technology policy but has taken…

  13. Strengthening International Collaboration: Geosciences Research and Education in Developing Countries

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.

    2009-05-01

    Geophysical research increasingly requires global multidisciplinary approaches and global integration. Global warming, increasing CO2 levels and increased needs of mineral and energy resources emphasize impact of human activities. The planetary view of our Earth as a deeply complex interconnected system also emphasizes the need of international scientific cooperation. International collaboration presents an immense potential and is urgently needed for further development of geosciences research and education. In analyzing international collaboration a relevant aspect is the role of scientific societies. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities and can further assist communities in developing countries providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. Developing countries present additional challenges resulting from limited economic resources and social and political problems. Most countries urgently require improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources and identification of major problems and needs. Questions may include what are the major limitations and needs in research and postgraduate education in developing countries? what and how should international collaboration do? and what are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to examine some of these questions with reference to case examples and AGU role. We focus on current situation, size and characteristics of research community, education programs, facilities, economic support, and then move to perspectives for potential development in an international context.

  14. International scientific collaboration in HIV and HPV: a network analysis.

    PubMed

    Vanni, Tazio; Mesa-Frias, Marco; Sanchez-Garcia, Ruben; Roesler, Rafael; Schwartsmann, Gilberto; Goldani, Marcelo Z; Foss, Anna M

    2014-01-01

    Research endeavours require the collaborative effort of an increasing number of individuals. International scientific collaborations are particularly important for HIV and HPV co-infection studies, since the burden of disease is rising in developing countries, but most experts and research funds are found in developed countries, where the prevalence of HIV is low. The objective of our study was to investigate patterns of international scientific collaboration in HIV and HPV research using social network analysis. Through a systematic review of the literature, we obtained epidemiological data, as well as data on countries and authors involved in co-infection studies. The collaboration network was analysed in respect to the following: centrality, density, modularity, connected components, distance, clustering and spectral clustering. We observed that for many low- and middle-income countries there were no epidemiological estimates of HPV infection of the cervix among HIV-infected individuals. Most studies found only involved researchers from the same country (64%). Studies derived from international collaborations including high-income countries and either low- or middle-income countries had on average three times larger sample sizes than those including only high-income countries or low-income countries. The high global clustering coefficient (0.9) coupled with a short average distance between researchers (4.34) suggests a "small-world phenomenon." Researchers from high-income countries seem to have higher degree centrality and tend to cluster together in densely connected communities. We found a large well-connected community, which encompasses 70% of researchers, and 49 other small isolated communities. Our findings suggest that in the field of HIV and HPV, there seems to be both room and incentives for researchers to engage in collaborations between countries of different income-level. Through international collaboration resources available to researchers in high-income countries can be efficiently used to enroll more participants in low- and middle-income countries.

  15. 21st Annual Spring Research Festival Highlights Science, Celebrates Collaboration | Poster

    Cancer.gov

    For two days at the annual Spring Research Festival, Fort Detrick was abuzz with scientific discussion as researchers and visitors from the site’s many resident government agencies and contractors gathered to share findings and recognize collaborative research. Each year, the festival focuses on intermural scientific work, as well as challenges and discoveries in the fight against cancer and infectious diseases. Spread across three separate venues and packed with seven events that included lectures, a poster session, and a vendor expo, this year’s festival did just that.

  16. The Collaboration Readiness of Transdisciplinary Research Teams and Centers

    PubMed Central

    Hall, Kara L.; Stokols, Daniel; Moser, Richard P.; Taylor, Brandie K.; Thornquist, Mark D.; Nebeling, Linda C.; Ehret, Carolyn C.; Barnett, Matthew J.; McTiernan, Anne; Berger, Nathan A.; Goran, Michael I.; Jeffery, Robert W.

    2009-01-01

    Growing interest in promoting cross-disciplinary collaboration among health scientists has prompted several federal agencies, including the NIH, to establish large, multicenter initiatives intended to foster collaborative research and training. In order to assess whether these initiatives are effective in promoting scientific collaboration that ultimately results in public health improvements, it is necessary to develop new strategies for evaluating research processes and products as well as the longer-term societal outcomes associated with these programs. Ideally, evaluative measures should be administered over the entire course of large initiatives, including their near-term and later phases. The present study focuses on the development of new tools for assessing the readiness for collaboration among health scientists at the outset (during Year One) of their participation in the National Cancer Institute’s Transdisciplinary Research on Energetics and Cancer (TREC) initiative. Indexes of collaborative readiness, along with additional measures of near-term collaborative processes, were administered as part of the TREC Year-One evaluation survey. Additionally, early progress toward scientific collaboration and integration was assessed, using a protocol for evaluating written research products. Results from the Year-One survey and the ratings of written products provide evidence of cross-disciplinary collaboration among participants during the first year of the initiative, and also reveal opportunities for enhancing collaborative processes and outcomes during subsequent phases of the project. The implications of these findings for future evaluations of team science initiatives are discussed. PMID:18619396

  17. Three essays on the economics of science policy: The impact of funding, collaboration and research chairs

    NASA Astrophysics Data System (ADS)

    Mirnezami, Seyed Reza

    This thesis studies the determinants that influence the number of citations, the effect of having a research collaboration with top-funded scientists on scientific productivity, and the effect of holding a research chair on scientific productivity. Based on a review study by Bornmann and Daniel (2008), one can argue that non-scientific factors determining the decision to cite do not significantly alter the role of citation as a measure of research impact. Assuming that the number of citations is a good measure for research impact and, in turn, for a certain kind of quality, we showed that the number of articles and the visibility of a researcher, the impact factor of the journal, the size of the research team, and the institutional setting of the university are the important determinants of citation counts. However, we have found that there is no significant effect of public funding and gender in most of the domains examined. The point that funding amount is not a significant determinant of citation counts does not necessarily contradict the positive effect of funding on scientific productivity. We also developed a theoretical model and proposed some hypotheses about the effect of collaboration with top-funded scientists on scientific productivity. We then validated the hypotheses with empirical analysis and showed that such collaboration has a positive effect on scientific productivity. This significant effect may exist through different channels: transfer of tacit knowledge, more scientific publications, economy of scale in knowledge production because of better research equipment, and expanded research network. The results also verified the positive effect of funding, the positive effect of networking (measured by number of co-authors), the inverted U-shaped effect of age, and the fewer number of publications by women compared to men. Finally, we made a distinction between different attributes of research chairs and their effect on scientific productivity. One of the important questions is to find out whether a research chair still has better scientific productivity (compared to non-chair holders) after controlling for the research funds available to the researchers. To investigate that question, we employed a matching technique to identify pairs of scientists (chair and non-chair holders) of the same gender, funding and research field. After such matching, we found that the effect of the Canada research chair program on scientific productivity remains significant and positive, while the effect of industrial chairs and the chairs appointed by the Canadian federal granting councils (NSERC and CIHR) become non-significant. This finding highlights the effectiveness of our matching technique methodology; because before matching, holding any type of chair had a positive and significant effect on scientific productivity. This finding highlights the special attributes of the Canada research chair program, which are not replicated in other chairs. Those specific attributes may significantly push scientific productivity. For example, Canada research chairs are generally associated with some degree of prestige or higher visibility to recruit talented students or to have research collaboration with top scientists in the field. In addition, the Canada research chair program has a firm and efficient method of allocation (which is explained in the thesis). This approach institutionally synchronizes different chairs in universities and research fields. The fact that other types of research chairs, once matched with equivalent scientists, do not have an impact on scientific output in terms of quantity does not imply that these chair holders are lesser scientists, but that they are devoting part of their time to other endeavours of a more practical nature. Hence universities are maintaining a balance between the pursuit of pure scientific knowledge and its application to socioeconomic benefits. By solely studying scientific articles, we are missing a great deal of the university professors' activities. Although not trivial, future research should aim to cast a wider net on outputs, outcomes and impacts of university research.

  18. Collaborative research, knowledge and emergence.

    PubMed

    Zittoun, Tania; Baucal, Aleksandar; Cornish, Flora; Gillespie, Alex

    2007-06-01

    We use the notion of emergence to consider the sorts of knowledge that can be produced in a collaborative research project. The notion invites us to see collaborative work as a developmental dynamic system in which various changes constantly occur. Among these we examine two sorts of knowledge that can be produced: scientific knowledge, and collaborative knowledge. We argue that collaborative knowledge can enable researchers to reflectively monitor their collaborative project, so as to encourage its most productive changes. On the basis of examples taken from this special issue, we highlight four modes of producing collaborative knowledge and discuss the possible uses of such knowledge.

  19. Preparing Scientists to be Community Partners

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential. There is much more to learn about preparing students for these collaborative approaches, and the principal goal of sharing these strategies is to spark a conversation about the ways we prepare scientists and the public to work together in an increasingly collaborative scientific enterprise.

  20. Apprenticeships, Collaboration and Scientific Discovery in Academic Field Studies

    NASA Astrophysics Data System (ADS)

    Madden, Derek Scott; Grayson, Diane J.; Madden, Erinn H.; Milewski, Antoni V.; Snyder, Cathy Ann

    2012-11-01

    Teachers may use apprenticeships and collaboration as instructional strategies that help students to make authentic scientific discoveries as they work as amateur researchers in academic field studies. This concept was examined with 643 students, ages 14-72, who became proficient at field research through cognitive apprenticeships with the Smithsonian Institute, School for Field Studies and Earthwatch. Control student teams worked from single research goals and sets of methods, while experimental teams varied goals, methods, and collaborative activities in Kenya, Costa Rica, Panama, and Ecuador. Results from studies indicate that students who conducted local pilot studies, collaborative symposia, and ongoing, long-term fieldwork generated significantly more data than did control groups. Research reports of the experimental groups were ranked highest by experts, and contributed the most data to international science journals. Data and anecdotal information in this report indicate that structured collaboration in local long-term studies using apprenticeships may increase the potential for students' academic field studies contribution of new information to science.

  1. International stem cell collaboration: how disparate policies between the United States and the United Kingdom impact research.

    PubMed

    Luo, Jingyuan; Flynn, Jesse M; Solnick, Rachel E; Ecklund, Elaine Howard; Matthews, Kirstin R W

    2011-03-08

    As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most often collaborated. Geographical and traditional collaborative relationships were the predominate considerations in establishing international collaborations.

  2. International Stem Cell Collaboration: How Disparate Policies between the United States and the United Kingdom Impact Research

    PubMed Central

    Solnick, Rachel E.; Ecklund, Elaine Howard; Matthews, Kirstin R. W.

    2011-01-01

    As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most often collaborated. Geographical and traditional collaborative relationships were the predominate considerations in establishing international collaborations. PMID:21408134

  3. Mobility and International Collaboration: Case of the Mexican Scientific Diaspora.

    PubMed

    Marmolejo-Leyva, Rafael; Perez-Angon, Miguel Angel; Russell, Jane M

    2015-01-01

    We use a data set of Mexican researchers working abroad that are included in the Mexican National System of Researchers (SNI). Our diaspora sample includes 479 researchers, most of them holding postdoctoral positions in mainly seven countries: USA, Great Britain, Germany, France, Spain, Canada and Brazil. Their research output and impact is explored in order to determine their patterns of production, mobility and scientific collaboration as compared with previous studies of the SNI researchers in the periods 1991-2001 and 2003-2009. Our findings confirm that mobility has a strong impact on their international scientific collaboration. We found no substantial influence among the researchers that got their PhD degrees abroad from those trained in Mexican universities. There are significant differences among the areas of knowledge studied: biological sciences, physics and engineering have better production and impact rates than mathematics, geosciences, medicine, agrosciences, chemistry, social sciences and humanities. We found a slight gender difference in research production but Mexican female scientists are underrepresented in our diaspora sample. These findings would have policy implications for the recently established program that will open new academic positions for young Mexican scientists.

  4. Technology-Supported Formative and Summative Assessment of Collaborative Scientific Inquiry.

    ERIC Educational Resources Information Center

    Hickey, Daniel T.; DeCuir, Jessica; Hand, Bryon; Kyser, Brandon; Laprocina, Simona; Mordica, Joy

    This study defined and validated a new set of dimensions, new anchoring descriptions, and a new rubric format for assessing participation in collaboration. One strand of the research explored the use of analog video-technology to conduct summative assessment of collaborative inquiry. The second strand of the research explored the use of video…

  5. Communicating Climate Change: Lessons Learned from a Researcher-Museum Collaboration †

    PubMed Central

    Parker, Christopher T.; Cockerham, Debbie; Foss, Ann W.

    2018-01-01

    The need for science education and outreach is great. However, despite the ever-growing body of available scientific information, facts are often misrepresented to or misunderstood by the general public. This can result in uninformed decisions that negatively impact society at both individual and community levels. One solution to this problem is to make scientific information more available to the public through outreach programs. Most outreach programs, however, focus on health initiatives, STEM programs, or young audiences exclusively. This article describes a collaboration between the Research and Learning Center at the Fort Worth Museum of Science and History and an interdisciplinary team of researchers from the Dallas–Fort Worth (DFW) metroplex area. The collaboration was a pilot effort of a science communication fellowship and was designed to train researchers to effectively convey current science information to the public with a focus on lifelong learning. We focus on the broader idea of a university-museum collaboration that bridges the science communication gap as we outline the process of forming this collaboration, lessons we learned from the process, and directions that can support future collaborations. PMID:29904536

  6. Electronic Collaboration Logbook

    NASA Astrophysics Data System (ADS)

    Gysin, Suzanne; Mandrichenko, Igor; Podstavkov, Vladimir; Vittone, Margherita

    2012-12-01

    In HEP, scientific research is performed by large collaborations of organizations and individuals. The logbook of a scientific collaboration is an important part of the collaboration record. Often it contains experimental data. At Fermi National Accelerator Laboratory (FNAL), we developed an Electronic Collaboration Logbook (ECL) application, which is used by about 20 different collaborations, experiments and groups at FNAL. The ECL is the latest iteration of the project formerly known as the Control Room Logbook (CRL). We have been working on mobile (IOS and Android) clients for the ECL. We will present the history, current status and future plans of the project, as well as design, implementation and support solutions made by the project.

  7. Global scientific collaboration in COPD research.

    PubMed

    Su, Yanbing; Long, Chao; Yu, Qi; Zhang, Juan; Wu, Daisy; Duan, Zhiguang

    2017-01-01

    This study aimed to investigate the multiple collaboration types, quantitatively evaluate the publication trends and review the performance of institutions or countries (regions) across the world in COPD research. Scientometric methods and social network analysis were used to survey the development of publication trends and understand current collaboration in the field of COPD research based on the Web of Science publications during the past 18 years. The number of publications developed through different collaboration types has increased. Growth trends indicate that the percentage of papers authored through multinational and domestic multi-institutional collaboration (DMIC) have also increased. However, the percentage of intra-institutional collaboration and single-authored (SA) studies has reduced. The papers that produced the highest academic impact result from international collaboration. The second highest academic impact papers are produced by DMIC. Out of the three, the papers that are produced by SA studies have the least amount of impact upon the scientific community. A handful of internationally renowned institutions not only take the leading role in the development of the research within their country (region) but also play a crucial role in international research collaboration in COPD. Both the amount of papers produced and the amount of cooperation that occurs in each study are disproportionally distributed between high-income countries (regions) and low-income countries (regions). Growing attention has been generated toward research on COPD from more and more different academic domains. Despite the rapid development in COPD research, collaboration in the field of COPD research still has room to grow, especially between different institutions or countries (regions), which would promote the progress of global COPD research.

  8. C3: A Collaborative Web Framework for NASA Earth Exchange

    NASA Astrophysics Data System (ADS)

    Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.

    2010-12-01

    The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.

  9. National Collaboratories: Applying Information Technology for Scientific Research.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Computer Science and Telecommunications Board.

    The Committee on a National Collaboratory: Establishing the User-Developer Partnership was charged to study and report on the need for and potential of information technology to support collaboration in the conduct of scientific research. To do this, the committee focused on three discrete areas of scientific investigation: (1) oceanography, in…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Türkoğlu, Emir Alper, E-mail: eaturkoglu@yandex.com; Ağrı İbrahim Çeçen University, Central Research and Application Laboratory, Ağrı; Kurt, Murat, E-mail: muratkurt60@hotmail.com

    Ağrı İbrahim Çeçen University built a central research and application laboratory (CRAL) in the east of Turkey. The CRAL possesses 7 research and analysis laboratories, 12 experts and researchers, 8 standard rooms for guest researchers, a restaurant, a conference hall, a meeting room, a prey room and a computer laboratory. The CRAL aims certain collaborations between researchers, experts, clinicians and educators in the areas of biotechnology, bioimagining, food safety & quality, omic sciences such as genomics, proteomics and metallomics. It also intends to develop sustainable solutions in agriculture and animal husbandry, promote public health quality, collect scientific knowledge and keepmore » it for future generations, contribute scientific awareness of all stratums of society, provide consulting for small initiatives and industries. It has been collaborated several scientific foundations since 2011.« less

  11. CILogon: An Integrated Identity and Access Management Platform for Science

    NASA Astrophysics Data System (ADS)

    Basney, J.

    2016-12-01

    When scientists work together, they use web sites and other software to share their ideas and data. To ensure the integrity of their work, these systems require the scientists to log in and verify that they are part of the team working on a particular science problem. Too often, the identity and access verification process is a stumbling block for the scientists. Scientific research projects are forced to invest time and effort into developing and supporting Identity and Access Management (IAM) services, distracting them from the core goals of their research collaboration. CILogon provides an IAM platform that enables scientists to work together to meet their IAM needs more effectively so they can allocate more time and effort to their core mission of scientific research. The CILogon platform enables federated identity management and collaborative organization management. Federated identity management enables researchers to use their home organization identities to access cyberinfrastructure, rather than requiring yet another username and password to log on. Collaborative organization management enables research projects to define user groups for authorization to collaboration platforms (e.g., wikis, mailing lists, and domain applications). CILogon's IAM platform serves the unique needs of research collaborations, namely the need to dynamically form collaboration groups across organizations and countries, sharing access to data, instruments, compute clusters, and other resources to enable scientific discovery. CILogon provides a software-as-a-service platform to ease integration with cyberinfrastructure, while making all software components publicly available under open source licenses to enable re-use. Figure 1 illustrates the components and interfaces of this platform. CILogon has been operational since 2010 and has been used by over 7,000 researchers from more than 170 identity providers to access cyberinfrastructure including Globus, LIGO, Open Science Grid, SeedMe, and XSEDE. The "CILogon 2.0" platform, launched in 2016, adds support for virtual organization (VO) membership management, identity linking, international collaborations, and standard integration protocols, through integration with the Internet2 COmanage collaboration software.

  12. The PACA Project : Pro-Am Collaborative Astronomy

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The Pro-Am Collaborative Astronomy (PACA) project is the next stage of evolution of the paradigm developed for the observational campaign of C/2012 S1 or C/ISON. Four different phases of collaboration are identified, and illustrate the integration of scientific investigations with amateur astronomer community via observations, and models; and the rapid dissemination of the results via a multitude of social media for rapid global access. The success of the paradigm shift in scientific research is now implemented in other comet observing campaigns. Both communities (scientific and amateur astronomers) benefit from these collective, collaborative partnerships; while outreach is the instantaneous deliverable that provides both a framework for future data analyses and the dissemination of the results. While PACA identifies a collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed.

  13. The role of collaborative ontology development in the knowledge negotiation process

    NASA Astrophysics Data System (ADS)

    Rivera, Norma

    Interdisciplinary research (IDR) collaboration can be defined as the process of integrating experts' knowledge, perspectives, and resources to advance scientific discovery. The flourishing of more complex research problems, together with the growth of scientific and technical knowledge has resulted in the need for researchers from diverse fields to provide different expertise and points of view to tackle these problems. These collaborations, however, introduce a new set of "culture" barriers as participating experts are trained to communicate in discipline-specific languages, theories, and research practices. We propose that building a common knowledge base for research using ontology development techniques can provide a starting point for interdisciplinary knowledge exchange, negotiation, and integration. The goal of this work is to extend ontology development techniques to support the knowledge negotiation process in IDR groups. Towards this goal, this work presents a methodology that extends previous work in collaborative ontology development and integrates learning strategies and tools to enhance interdisciplinary research practices. We evaluate the effectiveness of applying such methodology in three different scenarios that cover educational and research settings. The results of this evaluation confirm that integrating learning strategies can, in fact, be advantageous to overall collaborative practices in IDR groups.

  14. Research synergy and drug development: Bright stars in neighboring constellations.

    PubMed

    Keserci, Samet; Livingston, Eric; Wan, Lingtian; Pico, Alexander R; Chacko, George

    2017-11-01

    Drug discovery and subsequent availability of a new breakthrough therapeutic or 'cure' is a compelling example of societal benefit from research advances. These advances are invariably collaborative, involving the contributions of many scientists to a discovery network in which theory and experiment are built upon. To document and understand such scientific advances, data mining of public and commercial data sources coupled with network analysis can be used as a digital methodology to assemble and analyze component events in the history of a therapeutic. This methodology is extensible beyond the history of therapeutics and its use more generally supports (i) efficiency in exploring the scientific history of a research advance (ii) documenting and understanding collaboration (iii) portfolio analysis, planning and optimization (iv) communication of the societal value of research. Building upon prior art, we have conducted a case study of five anti-cancer therapeutics to identify the collaborations that resulted in the successful development of these therapeutics both within and across their respective networks. We have linked the work of over 235,000 authors in roughly 106,000 scientific publications that capture the research crucial for the development of these five therapeutics. Applying retrospective citation discovery, we have identified a core set of publications cited in the networks of all five therapeutics and additional intersections in combinations of networks. We have enriched the content of these networks by annotating them with information on research awards from the US National Institutes of Health (NIH). Lastly, we have mapped these awards to their cognate peer review panels, identifying another layer of collaborative scientific activity that influenced the research represented in these networks.

  15. Before You Collaborate, You Should Partner with NCI TTC | Poster

    Cancer.gov

    By Karen Surabian, Thomas Stackhouse, and Jeffrey W. Thomas, Contributing Writers As the fall and winter seasons progress, you may be attending more scientific conferences, where you may find a number of opportunities for research collaborations. To assist your lab in reaching its research goals through collaborations, the staff of the National Cancer Institute Technology

  16. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    PubMed Central

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  17. Profile of central research and application laboratory of Aǧrı İbrahim Çeçen University

    NASA Astrophysics Data System (ADS)

    Türkoǧlu, Emir Alper; Kurt, Murat; Tabay, Dilruba

    2016-04-01

    Aǧrı İbrahim Çeçen University built a central research and application laboratory (CRAL) in the east of Turkey. The CRAL possesses 7 research and analysis laboratories, 12 experts and researchers, 8 standard rooms for guest researchers, a restaurant, a conference hall, a meeting room, a prey room and a computer laboratory. The CRAL aims certain collaborations between researchers, experts, clinicians and educators in the areas of biotechnology, bioimagining, food safety & quality, omic sciences such as genomics, proteomics and metallomics. It also intends to develop sustainable solutions in agriculture and animal husbandry, promote public health quality, collect scientific knowledge and keep it for future generations, contribute scientific awareness of all stratums of society, provide consulting for small initiatives and industries. It has been collaborated several scientific foundations since 2011.

  18. South-south collaboration on HIV/AIDS prevention and treatment research: when birds of a feather rarely flock together.

    PubMed

    Fonseca, Bruna de Paula Fonseca E; Albuquerque, Priscila Costa; Noyons, Ed; Zicker, Fabio

    2018-03-01

    South-south collaboration on health and development research is a critical mechanism for social and economic progress. It allows sharing and replicating experiences to find a "southern solution" to meet shared health challenges, such as access to adequate HIV/AIDS prevention and treatment. This study aimed to generate evidence on the dynamics of south-south collaboration in HIV/AIDS research, which could ultimately inform stakeholders on the progress and nature of collaboration towards increased research capacities in low- and middle-income countries (LMIC). Bibliometric and social network analysis methods were used to assess the 10-year (2006-2015) scientific contribution of LMIC, through the analysis of scientific publications on HIV/AIDS prevention and/or treatment. Five dimensions oriented the study: knowledge production, co-authorship analysis, research themes mapping, research types classification and funding sources. Publications involving LMIC have substantially increased overtime, despite small expression of south-south collaboration. Research themes mapping revealed that publication focus varied according to collaborating countries' income categories, from diagnosis, opportunistic infections and laboratory-based research (LMIC single or LMIC-LMIC) to human behavior and healthcare, drug therapy and mother to child transmission (LMIC-HIC). The analysis of research types showed that south-south collaborations frequently targeted social sciences issues. Funding agencies acknowledged in south-south collaboration also showed diverse focus: LMIC-based funders tended to support basic biomedical research whereas international/HIC-based funders seem to cover predominantly social sciences-oriented research. Although the global environment has fostered an increasing participation of LMIC in collaborative learning models, south-south collaboration on HIV/AIDS prevention and/or treatment research seemed to be lower than expected, stressing the need for strategies to foster these partnerships. The evidence presented in this study can be used to strengthen a knowledge platform to inform future policy, planning and funding decisions, contributing to the development of enhanced collaboration and a priority research agenda for LMICs.

  19. Rigged or rigorous? Partnerships for research and evaluation of complex social problems: Lessons from the field of violence against women and girls.

    PubMed

    Zimmerman, Cathy; Michau, Lori; Hossain, Mazeda; Kiss, Ligia; Borland, Rosilyne; Watts, Charlotte

    2016-09-01

    There is growing demand for robust evidence to address complex social phenomena such as violence against women and girls (VAWG). Research partnerships between scientists and non-governmental or international organizations (NGO/IO) are increasingly popular, but can pose challenges, including concerns about potential conflicts of interest. Drawing on our experience collaborating on VAWG research, we describe challenges and contributions that NGO/IO and academic partners can make at different stages of the research process and the effects that collaborations can have on scientific inquiry. Partners may struggle with differing priorities and misunderstandings about roles, limitations, and intentions. Benefits of partnerships include a shared vision of study goals, differing and complementary expertise, mutual respect, and a history of constructive collaboration. Our experience suggests that when investigating multi-faceted social problems, instead of 'rigging' study results, research collaborations can strengthen scientific rigor and offer the greatest potential for impact in the communities we seek to serve.

  20. A Semantic Web-Based Methodology for Describing Scientific Research Efforts

    ERIC Educational Resources Information Center

    Gandara, Aida

    2013-01-01

    Scientists produce research resources that are useful to future research and innovative efforts. In a typical scientific scenario, the results created by a collaborative team often include numerous artifacts, observations and relationships relevant to research findings, such as programs that generate data, parameters that impact outputs, workflows…

  1. European Training and Research in Peritoneal Dialysis--A Network to Deliver Scientific Peritoneal Dialysis Training to a New Generation of Researchers.

    PubMed

    Machowska, Anna; van Wier, Tanja; Aufricht, Christoph; Beelen, Rob; Rutherford, Peter

    2015-01-01

    Peritoneal dialysis (PD) utilization varies across countries, and of the factors that explain the variation, the scientific and clinical knowledge of health care professionals is potentially important. In this paper, we describe a European collaboration--between 8 academic PD research programs, a small-to-medium-sized enterprise, and a large PD product manufacturer--that received significant research funding from the EU commission to establish a training network. European Training and Research in Peritoneal Dialysis (EuTRiPD) is providing training to 12 PhD students who have moved within the European Union and are completing research training. The underlying structure and processes within EuTRiPD (http://www.eutripd. eu) are described, and the benefits of the collaborative approach are discussed. This model could be useful to other research groups and will assist in maintaining and growing scientific expertise in PD research.

  2. Using the prisms of gender and rank to interpret research collaboration power dynamics.

    PubMed

    Gaughan, Monica; Bozeman, Barry

    2016-08-01

    Collaboration is central to modern scientific inquiry, and increasingly important to the professional experiences of academic scientists. While the effects of collaboration have been widely studied, much less is understood about the motivations to collaborate and collaboration dynamics that generate scientific outcomes. A particular interest of this study is to understand how collaboration experiences differ between women and men, and the attributions used to explain these differences. We use a multi-method study of university Science, Technology, Engineering, and Mathematics faculty research collaborators. We employ 177 anonymous open-ended responses to a web-based survey, and 60 semi-structured interviews of academic scientists in US research universities. We find similarities and differences in collaborative activity between men and women. Open-ended qualitative textual analysis suggests that some of these differences are attributed to power dynamics - both general ones related to differences in organizational status, and in power dynamics related specifically to gender. In analysis of semi-structured interviews, we find that both status and gender were used as interpretive frames for collaborative behavior, with more emphasis placed on status than gender differences. Overall, the findings support that gender structures some part of the collaborative experience, but that status hierarchy exerts more clear effects.

  3. Analysis of Research Collaboration between Universities and Private Companies in Spain Based on Joint Scientific Publications

    ERIC Educational Resources Information Center

    Olmeda-Gómez, Carlos; Ovalle-Perandones, María Antonia; de Moya-Anegón, Félix

    2015-01-01

    Introduction: The article presents the results of a study on scientific collaboration between Spanish universities and private enterprise, measured in terms of the co-authorship of papers published in international journals. Method: Bibliometric analysis of papers published in journals listed in Scopus in 2003-2011. Indicators were calculated for…

  4. Civil Protection issues in urban management of natural hazards

    NASA Astrophysics Data System (ADS)

    Bostenaru, Maria; Georgescu, Sever; Goretti, Agostino; Markus, Michael

    2010-05-01

    This paper reviews different approaches of collaboration with the Civil Protection across Europe, from the experience of the author. The first contact came working as a research assistant at the Universität Karlsruhe (TH), Germany, in frame of the SFB (Collaborative Research Centre) 461 "Strong earthquakes", which featured a collaboration Germany-Romania. The subproject C7, where involved, about Novel Rescue technologies was a collaboration between the Institute for Technology and Management in Construction, formerly Institute for Construction Management and Machinery, and the Romanian Civil Protection. The scientific results of the project were to be lated implemented by the Civil Protection. In course of the work contacts were done also through the work of the research associate, sub-project leader, in the THW (German Technical Assistance). Later on work continued at the same institute but in frame of the Research Training Network "Natural Disasters" when also contacts with the Romanian representative to the European Earthquake Engineering Association, were established. Working further in the same field of Natural Disasters, especially seismic risk, brought the author to the ROSE School in Pavia, Italy, researches of which closely collaborate with the EUCENTRE, founded, among other institutions, by the Italian Civil Protection. Particularly the collaboration with specialists from the Italian Civil Protection resulted in several initiatives, such as: - paper contribution to a special issue edited by the author, - organisation of EGU sessions on the topic of "Natural Hazards' Impact on Urban Areas and Infrastructure", - invited review of papers, - attendance of short course coordinated at the ROSE School on post-earthquake safety assessment, - ellaboration of scientific projects submitted for funding on the topic of earthquake hazard impact at various geographic scales, - further publication collaborations are in work, - it is intended to improve the collaboration between urban planning specialists and specialists in vulnerability studies at the Civil Protection in order to enhance the role of urban planning in disaster mitigation, - collaboration of the Italian Civil Protection with Romania with the National Institute for Building Research, the scientific director and EAEE representative, within the STEP project, on post-earthquake safety assessment, in l'Aquila, before and after the earthquake. This collaboration continued with invitation to the Global Earthquake Model Outreach Meeting of the Scientific Director, supported by the Italian Civil Protection as public participant, and to which we hope to be able to contribute, given the background in socio-economic aspects of the author (research topics in Karlsruhe) and the possibilities of dissemination of results on risks. More recently a training school in the framework of the COST action TU0801 "Semantic enrichment of 3D city models for sustainable urban development" on 3D for natural disaster management brought the author in contact with similar authorities from the Netherlands. More even, she has information first hand about the training held by the Hungarian Civil Protection with school children, where a further collaboration is envisaged. The lessons learned from these experiences are important because recently the author was invited to collaborate with the Centre for Emergency Architecture of the "Ion Mincu" University of Architecture and Urbanism. Emergency interventions are the field where collaboration with the Civil protection is required. In frame of the collaboration she is co-teaching a course on "Risks", from both natural and anthropic hazards. Especially the inclusion of the lessons from l'Aquila was discussed with the specialists mentioned above, but also the way the risk mapping can be done. Thus the lessons from scientific collaboration can be included in the teaching process.

  5. Science and Technology Diplomacy with Cuba

    NASA Astrophysics Data System (ADS)

    Colon, Frances

    President Obama's announcement of U. S. policy change toward Cuba and increased freedom of interaction with the Cuban people opens unprecedented and long-awaited opportunities for the scientific and engineering communities in the U. S. and in Cuba to establish and expand collaborative efforts that will greatly advance U.S. and Cuba science and technology agendas. New rules for export of donated-only items for scientific use will bring researchers closer to the level of their professional peers around the world. Increasing Cubans' access to information will result in greater interactions between scientific communities and enable the sharing of ideas and discoveries that can fuel entrepreneurship on the island. The scientific community has expressed an extraordinary level of interest in the wide range of scientific opportunities that the new policy presents, in collaborating with their Cuban counterparts, and in supporting the development of scientific capacity in Cuba. In response to numerous expressions of interest and inquiries from the scientific community, the Office of the Science and Technology Adviser to the Secretary of State (STAS) has engaged in public outreach to inform the U.S. science and technology community of the implications of the new policy for collaborative research, emerging scientific opportunities, and the standing limitations for engagement with the people of Cuba.

  6. Hot Spots and Hot Moments in Scientific Collaborations and Social Movements

    ERIC Educational Resources Information Center

    Parker, John N.; Hackett, Edward J.

    2012-01-01

    Emotions are essential but little understood components of research; they catalyze and sustain creative scientific work and fuel the scientific and intellectual social movements (SIMs) that propel scientific change. Adopting a micro-sociological focus, we examine how emotions shape two intellectual processes central to all scientific work:…

  7. Global scientific collaboration in COPD research

    PubMed Central

    Su, Yanbing; Long, Chao; Yu, Qi; Zhang, Juan; Wu, Daisy; Duan, Zhiguang

    2017-01-01

    Purpose This study aimed to investigate the multiple collaboration types, quantitatively evaluate the publication trends and review the performance of institutions or countries (regions) across the world in COPD research. Materials and methods Scientometric methods and social network analysis were used to survey the development of publication trends and understand current collaboration in the field of COPD research based on the Web of Science publications during the past 18 years. Results The number of publications developed through different collaboration types has increased. Growth trends indicate that the percentage of papers authored through multinational and domestic multi-institutional collaboration (DMIC) have also increased. However, the percentage of intra-institutional collaboration and single-authored (SA) studies has reduced. The papers that produced the highest academic impact result from international collaboration. The second highest academic impact papers are produced by DMIC. Out of the three, the papers that are produced by SA studies have the least amount of impact upon the scientific community. A handful of internationally renowned institutions not only take the leading role in the development of the research within their country (region) but also play a crucial role in international research collaboration in COPD. Both the amount of papers produced and the amount of cooperation that occurs in each study are disproportionally distributed between high-income countries (regions) and low-income countries (regions). Growing attention has been generated toward research on COPD from more and more different academic domains. Conclusion Despite the rapid development in COPD research, collaboration in the field of COPD research still has room to grow, especially between different institutions or countries (regions), which would promote the progress of global COPD research. PMID:28123294

  8. Mobility and International Collaboration: Case of the Mexican Scientific Diaspora

    PubMed Central

    Marmolejo-Leyva, Rafael; Perez-Angon, Miguel Angel; Russell, Jane M.

    2015-01-01

    We use a data set of Mexican researchers working abroad that are included in the Mexican National System of Researchers (SNI). Our diaspora sample includes 479 researchers, most of them holding postdoctoral positions in mainly seven countries: USA, Great Britain, Germany, France, Spain, Canada and Brazil. Their research output and impact is explored in order to determine their patterns of production, mobility and scientific collaboration as compared with previous studies of the SNI researchers in the periods 1991–2001 and 2003–2009. Our findings confirm that mobility has a strong impact on their international scientific collaboration. We found no substantial influence among the researchers that got their PhD degrees abroad from those trained in Mexican universities. There are significant differences among the areas of knowledge studied: biological sciences, physics and engineering have better production and impact rates than mathematics, geosciences, medicine, agrosciences, chemistry, social sciences and humanities. We found a slight gender difference in research production but Mexican female scientists are underrepresented in our diaspora sample. These findings would have policy implications for the recently established program that will open new academic positions for young Mexican scientists. PMID:26047501

  9. Collaborative Oceanographic Research Opportunities with Schmidt Ocean Institute

    NASA Astrophysics Data System (ADS)

    Zykov, V.

    2014-12-01

    Schmidt Ocean Institute (http://www.schmidtocean.org/) was founded by Dr. Eric Schmidt and Wendy Schmidt in 2009 to support frontier oceanographic research and exploration to expand the understanding of the world's oceans through technological advancement, intelligent, data-rich observation and analysis, and open sharing of information. Schmidt Ocean Institute operates a state-of-the-art globally capable research vessel Falkor (http://www.schmidtocean.org/story/show/47). After two years of scientific operations in the Atlantic Ocean, Gulf of Mexico, Caribbean, Eastern and Central Pacific, R/V Falkor is now preparing to support research in the Western Pacific and Eastern Indian Oceans in 2015 and 2016. As part of the long term research program development for Schmidt Ocean Institute, we aim to identify initiatives and projects that demonstrate strong alignment with our strategic interests. We focus on scientific opportunities that highlight effective use of innovative technologies to better understand the oceans, such as, for example, research enabled with remotely operated and autonomous vehicles, acoustics, in-situ sensing, telepresence, etc. Our technology-first approach to ocean science gave rise to infrastructure development initiatives, such as the development of a new full ocean depth Hybrid Remotely Operated Vehicle, new 6000m scientific Autonomous Underwater Vehicle, live HD video streaming from the ship to YouTube, shipboard high performance supercomputing, etc. We also support projects focusing on oceanographic technology research and development onboard R/V Falkor. We provide our collaborators with access to all of R/V Falkor's facilities and instrumentation in exchange for a commitment to make the resulting scientific data openly available to the international oceanographic community. This presentation aims to expand awareness about the interests and capabilities of Schmidt Ocean Institute and R/V Falkor among our scientific audiences and further develop the network of our research collaborations. We would also like to inform interested scientists and technology developers about our program development and proposal selection processes and explain how they can participate in future collaborations with Schmidt Ocean Institute.

  10. Networking 2.0: Expanding your collaboration circles through the Interagency Arctic Research Policy Committee (IARPC)

    NASA Astrophysics Data System (ADS)

    Rohde, J. A.; Bowden, S.; Stephenson, S. N.; Starkweather, S.

    2015-12-01

    The Interagency Arctic Research Policy Committee (IARPC) envisions a prosperous, sustainable, and healthy Arctic understood through innovative and collaborative research coordinated among Federal agencies and domestic and international partners. IARPC's approach is to harnesses the talent of the scientific and stakeholder community through Federally-run but broadly open collaboration teams, and an innovative website that expands the frontiers of collaborative research. The Obama Administration released the five-year Arctic Research Plan: FY2013-2017 in February 2013. The Plan focuses on advancing knowledge and sustainability of the Arctic by improving collaboration in seven priority research areas: sea ice and marine ecosystems, terrestrial ice and ecosystems, atmospheric studies, observing systems, regional climate models, human health studies, and adaptation tools for communities. From these seven research areas, 12 collaboration teams were formed to respond to the 145 milestones laid out in the Plan. The collaboration teams are charged with enhancing inter-institutional and interdisciplinary implementation of scientific research on local, regional, and circumpolar environmental and societal issues in the Arctic. The collaboration teams are co-chaired by Federal program managers, and, in some cases, external partners and are open to research and stakeholder communities. They meet on a regular basis by web- or teleconference to inform one another about ongoing and planned programs and new research results, as well as to inventory existing programs, identify gaps in knowledge and research, and address and implement the Plan's milestones. In-between meetings, team members communicate via our innovative, user-driven, collaboration website. Members share information about their research activities by posting updates, uploading documents, and including events on our calendar, and entering into dialogue about their research activities. Conversations taking place on the website are open to any other member, enabling new talent to enter into conversations and collaborations to form.

  11. Exploring Institutional Mechanisms for Scientific Input into the Management Cycle of the National Protected Area Network of Peru: Gaps and Opportunities.

    PubMed

    López-Rodríguez, M D; Castro, H; Arenas, M; Requena-Mullor, J M; Cano, A; Valenzuela, E; Cabello, J

    2017-12-01

    Understanding how to improve decision makers' use of scientific information across their different scales of management is a core challenge for narrowing the gap between science and conservation practice. Here, we present a study conducted in collaboration with decision makers that aims to explore the functionality of the mechanisms for scientific input within the institutional setting of the National Protected Area Network of Peru. First, we analyzed institutional mechanisms to assess the scientific information recorded by decision makers. Second, we developed two workshops involving scientists, decision makers and social actors to identify barriers to evidence-based conservation practice. Third, we administered 482 questionnaires to stakeholders to explore social perceptions of the role of science and the willingness to collaborate in the governance of protected areas. The results revealed that (1) the institutional mechanisms did not effectively promote the compilation and application of scientific knowledge for conservation practice; (2) six important barriers hindered scientific input in management decisions; and (3) stakeholders showed positive perceptions about the involvement of scientists in protected areas and expressed their willingness to collaborate in conservation practice. This collaborative research helped to (1) identify gaps and opportunities that should be addressed for increasing the effectiveness of the institutional mechanisms and (2) support institutional changes integrating science-based strategies for strengthening scientific input in decision-making. These insights provide a useful contextual orientation for scholars and decision makers interested in conducting empirical research to connect scientific inputs with operational aspects of the management cycle in other institutional settings around the world.

  12. Exploring Institutional Mechanisms for Scientific Input into the Management Cycle of the National Protected Area Network of Peru: Gaps and Opportunities

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, M. D.; Castro, H.; Arenas, M.; Requena-Mullor, J. M.; Cano, A.; Valenzuela, E.; Cabello, J.

    2017-12-01

    Understanding how to improve decision makers' use of scientific information across their different scales of management is a core challenge for narrowing the gap between science and conservation practice. Here, we present a study conducted in collaboration with decision makers that aims to explore the functionality of the mechanisms for scientific input within the institutional setting of the National Protected Area Network of Peru. First, we analyzed institutional mechanisms to assess the scientific information recorded by decision makers. Second, we developed two workshops involving scientists, decision makers and social actors to identify barriers to evidence-based conservation practice. Third, we administered 482 questionnaires to stakeholders to explore social perceptions of the role of science and the willingness to collaborate in the governance of protected areas. The results revealed that (1) the institutional mechanisms did not effectively promote the compilation and application of scientific knowledge for conservation practice; (2) six important barriers hindered scientific input in management decisions; and (3) stakeholders showed positive perceptions about the involvement of scientists in protected areas and expressed their willingness to collaborate in conservation practice. This collaborative research helped to (1) identify gaps and opportunities that should be addressed for increasing the effectiveness of the institutional mechanisms and (2) support institutional changes integrating science-based strategies for strengthening scientific input in decision-making. These insights provide a useful contextual orientation for scholars and decision makers interested in conducting empirical research to connect scientific inputs with operational aspects of the management cycle in other institutional settings around the world.

  13. Impact of public funding on the development of nanotechnology: A comparison of Quebec, Canada and the US

    NASA Astrophysics Data System (ADS)

    Tahmooresnejad, Leila

    Nanotechnology is considered to be the most promising high technology of this century. Worldwide investment in this technology has rapidly increased in the past two decades, and it will likely drive future economic growth. Research in this new science-based technology requires significant public funding to facilitate knowledge production, reduce related uncertainties and risks, and ensure the success of nanotechnology development. Given its potential in a wide range of domains, governments and policymakers have sought to efficiently allocate funding to maximize economic benefits. It is therefore essential to further our understanding of how public funding influences research performance. The main purpose of this thesis is to analyze the impact of public funding on nanotechnology development, with a special focus on scientific and technological research outputs. The research objectives are twofold: we first seek to examine this funding influence, and second to explore the impact of collaboration and related scientific and innovative networks on nanotechnology development. Afterwards, our goal is to compare the impact of funding and of nanotechnology collaborative networks between Canada and the US on scientific and technological research outputs. This research deals with the prominent outputs of academic research, publications and patents, and characterizes collaborative networks using the co-publication and co-invention links between scientists and inventors. This thesis contributes significantly to the following research questions: how increased public funding to nanotechnology scientists enhances nanotechnology-related publications and patents in terms of (a) number and (b) quality? Are researchers who hold a more influential network position in co-publication/co-invention networks more productive and more cited? Is the influence of public funding on nanotechnology research different in Canada compared with the US? To answer these questions, information about nanotechnology articles, patents and funding was extracted from various databases in Canada and in the US and was used to build the scientific and innovation networks, and to analyze the influence of funding by econometric analyses. Regarding the first research question, our results show that public funding generally increases the number and quality of these outputs. However, this positive impact is more significant in the US and funding is less likely to influence nanotechnology patents in Canada. Regarding the analysis of industry funding in Quebec, private funds are less likely to increase the quality of publications. Concerning our second research question, results show that scientific and technological outputs are correlated with the position of researchers in collaborative networks. Nanotechnology research outputs particularly in Canada show greater returns on publications and patents on network collaborations. Finally, although the impacts are somewhat different between Canada and the US, this research suggests that both funding and collaborative networks play an important role in boosting the quantity and quality of academic research.

  14. The effects of diversity and network ties on innovations: The emergence of a new scientific field.

    PubMed

    Lungeanu, Alina; Contractor, Noshir S

    2015-05-01

    This study examines the influence of different types of diversity, both observable and unobservable, on the creation of innovative ideas. Our framework draws upon theory and research on information processing, social categorization, coordination, and homophily to posit the influence of cognitive, gender, and country diversity on innovation. Our longitudinal model is based on a unique dataset of 1,354 researchers who helped create the new scientific field of Oncofertility, by collaborating on 469 publications over a four-year period. We capture the differences among researchers along cognitive, country and gender dimensions, as well as examine how the resulting diversity or homophily influences the formation of collaborative innovation networks. We find that innovation, operationalized as publishing in a new scientific discipline, benefits from both homophily and diversity. Homophily in country of residence and working with prior collaborators help reduce uncertainty in the interactions associated with innovation, while diversity in knowledge enables the recombinant knowledge required for innovation.

  15. Mother-child health research (IRN-MCH): achievements and prospects of an international network.

    PubMed

    de Thé, Guy; Zetterström, Rolf

    2005-07-01

    The Inter-Academy Panel (IAP) is critical about the scarce support to mother-child health (MCH) research in developing countries. At the request of the IAP, a group of members of the French and Swedish Academies of Science have arrived at the conclusion that an efficient network between scientists in resource-poor and industrialized countries will facilitate MCH research in developing countries. The priorities for such a network have been listed as follows: The present organization for the MCH website at the Pasteur Institute in Paris should be adapted to better promote collaboration between scientists from industrialized and developing countries. To provide short-term courses for young scientists from developing countries in the design of research protocols, and in the writing of scientific reports and manuscripts. To organize workshops on various topics of relevance for MCH in developing countries in order to create new research networks for scientific collaboration between industrialized and resource-poor countries. To establish collaboration between non-governmental organizations (NGOs) that support MCH research in developing countries. Topics for such collaborative studies and the way in which they may be performed are summarized.

  16. When do researchers collaborate? Toward a model of collaboration propensity in science and engineering research

    NASA Astrophysics Data System (ADS)

    Birnholtz, Jeremy P.

    Geographically distributed and multidisciplinary collaborations have proven invaluable in answering a range of important scientific questions, such as understanding and controlling disease threats like SARS and AIDS or exploring the nature of matter in particle physics. Despite this, however, collaboration can often be problematic. There are institutional obstacles, collaboration tools may be poorly designed, and group coordination is difficult. To better design technologies to support research activities, we need an improved understanding of why scientists collaborate and how their collaborations work. To achieve this improved understanding, this study compares two theoretical approaches to collaboration propensity---that is, the extent to which collaboration is perceived as useful by individual researchers. On one hand, cultural comparisons of disciplines suggest that collaboration propensity will be higher in disciplinary cultures that have a more collectivist orientation, as indicated by low levels of competition for individual recognition and few concerns about secrecy related to commercialization and intellectual property. In contrast, an approach based on social and organizational psychology suggests that collaboration propensity will vary as a function of resource concentration, fieldwide focus on a well-defined set of problems, and the need for and availability of help when difficult problems are encountered in day-to-day work. To explore this question, a mail survey of 900 academic researchers in three fields was conducted, along with 100 interviews with practicing researchers at 17 sites in the field. Results support a social and organizational psychological interpretation of collaboration propensity. That is, cultural factors such as competition for individual recognition and concerns about intellectual property were not perceived as significant impediments to collaboration. Instead, characteristics like resource concentration and frequent help-seeking behavior were more important in determining collaboration propensity. Implications of these findings include a call for more careful examination of the day-to-day work of scientists and engineers, and a suggestion that concerns about scientific competition impeding collaboration may be unwarranted.

  17. Games as a Platform for Student Participation in Authentic Scientific Research

    ERIC Educational Resources Information Center

    Magnussen, Rikke; Hansen, Sidse Damgaard; Planke, Tilo; Sherson, Jacob Friis

    2014-01-01

    This paper presents results from the design and testing of an educational version of Quantum Moves, a Scientific Discovery Game that allows players to help solve authentic scientific challenges in the effort to develop a quantum computer. The primary aim of developing a game-based platform for student-research collaboration is to investigate if…

  18. Scientific and technical collaboration between Russian and Ukranian researchers and manufacturers on the development of astronomical instruments equipped with advanced detection services

    NASA Astrophysics Data System (ADS)

    Vishnevsky, G. I.; Galyatkin, I. A.; Zhuk, A. A.; Iblyaminova, A. F.; Kossov, V. G.; Levko, G. V.; Nesterov, V. K.; Rivkind, V. L.; Rogalev, Yu. N.; Smirnov, A. V.; Gumerov, R. I.; Bikmaev, I. F.; Pinigin, G. I.; Shulga, A. V.; Kovalchyk, A. V.; Protsyuk, Yu. I.; Malevinsky, S. V.; Abrosimov, V. M.; Mironenko, V. N.; Savchenko, V. V.; Ivaschenko, Yu. N.; Andruk, V. M.; Dalinenko, I. N.; Vydrevich, M. G.

    2003-01-01

    The paper presents the possibilities and a list of tasks that are solved by collaboration between research and production companies, and astronomical observatories of Russia and Ukraine in the field of development, modernization and equipping of various telescopes (the AMC, RTT-150, Zeiss-600 and quantum-optical system Sazhen-S types) with advanced charge-coupled device (CCD) cameras. CCD imagers and ditital CCD cameras designed and manufactured by the "Electron-Optronic" Research & Production Company, St Petersburg, to equip astronomical telescopes and scientific instruments are described.

  19. Contribution of Health Researches in National Knowledge Production: A Scientometrics Study on 15-Year Research Products of Iran.

    PubMed

    Djalalinia, Shirin; Peykari, Niloofar; Eftekhari, Monir Baradaran; Sobhani, Zahra; Laali, Reza; Qorbani, Omid Ali; Akhondzadeh, Shahin; Malekzadeh, Reza; Ebadifar, Asghar

    2017-01-01

    Researchers, practitioners, and policymakers call for updated valid evidence to monitor, prevent, and control of alarming trends of health problems. To respond to these needs, health researches provide the vast multidisciplinary scientific fields. We quantify the national trends of health research outputs and its contribution in total science products. We systematically searched Scopus database with the most coverage in health and biomedicine discipline as the only sources for multidisciplinary citation reports, for all total and health-related publications, from 2000 to 2014. These scientometrics analyses covered the trends of main index of scientific products, citations, and collaborative papers. We also provided information on top institutions, journals, and collaborative research centers in the fields of health researches. In Iran, over a 15-year period, 237,056 scientific papers have been published, of which 81,867 (34.53%) were assigned to health-related fields. Pearson's Chi-square test showed significant time trends between published papers and their citations. Tehran University of Medical Sciences was responsible for 21.87% of knowledge productions share. The second and the third ranks with 11.15% and 7.28% belonged to Azad University and Shahid Beheshti University of Medical Sciences, respectively. In total fields, Iran had the most collaborative papers with the USA (4.17%), the UK (2.41%), and Canada (0.02%). In health-related papers, similar patterns of collaboration followed by 4.75%, 2.77%, and 1.93% of papers. Despite the ascending trends in health research outputs, more efforts required for the promotion of collaborative outputs that cause synergy of resources and the use of practical results. These analyses also could be useful for better planning and management of planning and conducting studies in these fields.

  20. Scientific retreats with 'speed dating': networking to stimulate new interdisciplinary translational research collaborations and team science.

    PubMed

    Ranwala, Damayanthi; Alberg, Anthony J; Brady, Kathleen T; Obeid, Jihad S; Davis, Randal; Halushka, Perry V

    2017-02-01

    To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical and Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with 'speed dating' networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat begins with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 min scientific 'speed dating' period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. Copyright © 2016 American Federation for Medical Research.

  1. XSIM Final Report: Modelling the Past and Future of Identity Management for Scientific Collaborations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Robert; Jackson, Craig; Welch, Von

    The eXtreme Science Identity Management (XSIM1) research project: collected and analyzed real world data on virtual organization (VO) identity management (IdM) representing the last 15+ years of collaborative DOE science; constructed a descriptive VO IdM model based on that data; used the model and existing trends to project the direction for IdM in the 2020 timeframe; and provided guidance to scientific collaborations and resource providers that are implementing or seeking to improve IdM functionality. XSIM conducted over 20 semi­structured interviews of representatives from scientific collaborations and resource providers, both in the US and Europe; the interviewees supported diverse set ofmore » scientific collaborations and disciplines. We developed a definition of “trust,” a key concept in IdM, to understand how varying trust models affect where IdM functions are performed. The model identifies how key IdM data elements are utilized in collaborative scientific workflows, and it has the flexibility to describe past, present and future trust relationships and IdM implementations. During the funding period, we gave more than two dozen presentations to socialize our work, encourage feedback, and improve the model; we also published four refereed papers. Additionally, we developed, presented, and received favorable feedback on three white papers providing practical advice to collaborations and/or resource providers.« less

  2. Latin American scientific contribution to ecology.

    PubMed

    Wojciechowski, Juliana; Ceschin, Fernanda; Pereto, Suelen C A S; Ribas, Luiz G S; Bezerra, Luis A V; Dittrich, Jaqueline; Siqueira, Tadeu; Padial, André A

    2017-01-01

    Latin America embodies countries of special interest for ecological studies, given that areas with great value for biodiversity are located within their territories. This highlights the importance of an evaluation of ecological research in the Latin America region. We assessed the scientific participation of Latin American researchers in ecological journals, patterns of international collaboration, and defined the main characteristics of the articles. Although Latin American publications have increased in fourteen years, they accounted up to 9% of publications in Ecology. Brazil leaded the scientific production in Latin America, followed by Argentina and Mexico. In general, Latin American articles represented a low percentage of most journals total publication, with particularly low expression in high impact-factor journals. A half of the Latin American publications had international collaboration. Articles with more than five authors and with international collaboration were the most cited. Descriptive studies, mainly based in old theories, are still majority, suggesting that Ecology is in a developing stage in Latin America.

  3. Science discovery in clinician-economist collaboration: legacy and future challenges.

    PubMed

    Wells, Kenneth B

    2002-06-01

    2002 Carl Taube Lecture at the NIMH Mental Health Economics Meeting. To analyze the contribution and process of clinician/economist collaboration. Personal scientific autobiography, using relationships with three economists as case examples. In joint efforts by clinicians and economists, clinicians bring an interest in case examples and in responding to unmet need, while economists bring structured analysis methods and respect for a societal perspective. Through mutual respect and discovery, both clinicians and economists can define unmet need in clinical and economic terms and help develop models and programs to improve clinical care, while maintaining a societal evaluation perspective. Key to scientific discovery is the principle that the emotions generated by data, such as hope and despair, need to be acknowledged and utilized rather than avoided or buried, provided that such feelings are used in a balanced manner in research. According to the author, collaboration helps maintain such a balance. Collaboration requires and builds trust, and improves the depth of research by combining different personal and disciplinary perspectives and strengths. Young investigators should be encouraged to explore collaboration and to consider their feelings in response to health and economic data as an important scientific and creative resource.

  4. A Study of the Relationship of Communication Technology Configurations in Virtual Research Environments and Effectiveness of Collaborative Research

    ERIC Educational Resources Information Center

    Ahmed, Iftekhar

    2009-01-01

    Virtual Research Environments (VRE) are electronic meeting places for interaction among scientists created by combining software tools and computer networking. Virtual teams are enjoying increased importance in the conduct of scientific research because of the rising cost of traditional scientific scholarly communication, the growing importance of…

  5. Scientific Retreats with ‘Speed Dating’: Networking to Stimulate New Interdisciplinary Translational Research Collaborations and Team Science

    PubMed Central

    Alberg, Anthony J.; Brady, Kathleen T.; Obeid, Jihad S.; Davis, Randal; Halushka, Perry V.

    2016-01-01

    To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical & Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with “speed dating” networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat commences with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 minute scientific “speed dating” period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. PMID:27807146

  6. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  7. Virtual Partnerships in Research and Education.

    ERIC Educational Resources Information Center

    Payne, Deborah A.; Keating, Kelly A.; Myers, James D.

    The William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (Washington) is a collaborative user facility with many unique scientific capabilities. The EMSL expects to support many of its remote users and collaborators by electronic means and is creating a collaborative environment for this…

  8. A Peer-Reviewed Research Assignment for Large Classes.

    ERIC Educational Resources Information Center

    Henderson, LaRhee; Buising, Charisse

    2000-01-01

    Introduces a writing exercise students work on in collaborative groups. Aims to enhance students' scientific research paper writing skills and provide experience working in collaborative groups. Presents evaluation criteria for peer-group evaluation of a poster presentation, intra-group evaluation of peer performance, and peer-group evaluation of…

  9. PRINTO scholarships: the Italian experience

    PubMed Central

    Munitis, Pablo Garcia

    2007-01-01

    The increasing availability of the internet allows physicians to access actualized medical information quickly and easily, but it is not comparable with the possibility of working in a well known international medical centre. International collaboration (scholarships, courses and research), such as the PRINTO alpha project, allows professionals not only to increase and share scientific knowledge and experiences but also to integrate into a working team in a foreign country which leads to an understanding among cultures. PRINTO has set up a scientific and technical collaborative research network in Paediatric Rheumatology for Latin American physicians. PMID:17900338

  10. Mentoring perception, scientific collaboration and research performance: is there a 'gender gap' in academic medicine? An Academic Health Science Centre perspective.

    PubMed

    Athanasiou, Thanos; Patel, Vanash; Garas, George; Ashrafian, Hutan; Hull, Louise; Sevdalis, Nick; Harding, Sian; Darzi, Ara; Paroutis, Sotirios

    2016-10-01

    The 'gender gap' in academic medicine remains significant and predominantly favours males. This study investigates gender disparities in research performance in an Academic Health Science Centre, while considering factors such as mentoring and scientific collaboration. Professorial registry-based electronic survey (n=215) using bibliometric data, a mentoring perception survey and social network analysis. Survey outcomes were aggregated with measures of research performance (publications, citations and h-index) and measures of scientific collaboration (authorship position, centrality and social capital). Univariate and multivariate regression models were constructed to evaluate inter-relationships and identify gender differences. One hundred and four professors responded (48% response rate). Males had a significantly higher number of previous publications than females (mean 131.07 (111.13) vs 79.60 (66.52), p=0.049). The distribution of mentoring survey scores between males and females was similar for the quality and frequency of shared core, mentor-specific and mentee-specific skills. In multivariate analysis including gender as a variable, the quality of managing the relationship, frequency of providing corrective feedback and frequency of building trust had a statistically significant positive influence on number of publications (all p<0.05). This is the first study in healthcare research to investigate the relationship between mentoring perception, scientific collaboration and research performance in the context of gender. It presents a series of initiatives that proved effective in marginalising the gender gap. These include the Athena Scientific Women's Academic Network charter, new recruitment and advertisement strategies, setting up a 'Research and Family Life' forum, establishing mentoring circles for women and projecting female role models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Designing a CTSA‐Based Social Network Intervention to Foster Cross‐Disciplinary Team Science

    PubMed Central

    McCarty, Christopher; Conlon, Michael; Nelson, David R.

    2015-01-01

    Abstract This paper explores the application of network intervention strategies to the problem of assembling cross‐disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic‐web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross‐disciplinary scientific teams in CTSA institutions. PMID:25788258

  12. The research data alliance photon and neutron science interest group

    DOE PAGES

    Boehnlein, Amber; Matthews, Brian; Proffen, Thomas; ...

    2015-04-01

    Scientific research data provides unique challenges that are distinct from classic “Big Data” sources. One common element in research data is that the experiment, observations, or simulation were designed, and data were specifically acquired, to shed light on an open scientific question. The data and methods are usually “owned” by the researcher(s) and the data itself might not be viewed to have long-term scientific significance after the results have been published. Often, the data volume was relatively low, with data sometimes easier to reproduce than to catalog and store. Some data and meta-data were not collected in a digital form,more » or were stored on antiquated or obsolete media. Generally speaking, policies, tools, and management of digital research data have reflected an ad hoc approach that varies domain by domain and research group by research group. This model, which treats research data as disposable, is proving to be a serious limitation as the volume and complexity of research data explodes. Changes are required at every level of scientific research: within the individual groups, and across scientific domains and interdisciplinary collaborations. Enabling researchers to learn about available tools, processes, and procedures should encourage a spirit of cooperation and collaboration, allowing researchers to come together for the common good. In conclusion, these community-oriented efforts provide the potential for targeted projects with high impact.« less

  13. The research data alliance photon and neutron science interest group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehnlein, Amber; Matthews, Brian; Proffen, Thomas

    Scientific research data provides unique challenges that are distinct from classic “Big Data” sources. One common element in research data is that the experiment, observations, or simulation were designed, and data were specifically acquired, to shed light on an open scientific question. The data and methods are usually “owned” by the researcher(s) and the data itself might not be viewed to have long-term scientific significance after the results have been published. Often, the data volume was relatively low, with data sometimes easier to reproduce than to catalog and store. Some data and meta-data were not collected in a digital form,more » or were stored on antiquated or obsolete media. Generally speaking, policies, tools, and management of digital research data have reflected an ad hoc approach that varies domain by domain and research group by research group. This model, which treats research data as disposable, is proving to be a serious limitation as the volume and complexity of research data explodes. Changes are required at every level of scientific research: within the individual groups, and across scientific domains and interdisciplinary collaborations. Enabling researchers to learn about available tools, processes, and procedures should encourage a spirit of cooperation and collaboration, allowing researchers to come together for the common good. In conclusion, these community-oriented efforts provide the potential for targeted projects with high impact.« less

  14. The Gulf Cooperation Council.

    PubMed

    Tompkins, Olga

    2012-06-01

    The Gulf Cooperation Council was formed in 1981 to create economic, scientific, and business cooperation among its members. The opportunity exists for scientific collaboration on nursing education, practice, and research. Copyright 2012, SLACK Incorporated.

  15. [Scientific production in clinical medicine and international collaboration networks in South American countries].

    PubMed

    Huamaní, Charles; González A, Gregorio; Curioso, Walter H; Pacheco-Romero, José

    2012-04-01

    International collaboration is increasingly used in biomedical research. To describe the characteristics of scientific production in Latin America and the main international collaboration networks for the period 2000 to 2009. Search for papers generated in Latin American countries in the Clinical Medicine database of ISI Web of Knowledge v.4.10 - Current Contents Connect. The country of origin of the corresponding author was considered the producing country of the paper. International collaboration was analyzed calculating the number of countries that contributed to the generation of a particular paper. Collaboration networks were graphed to determine the centrality of each network. Twelve Latin American countries participated in the production of 253,362 papers. The corresponding author was South American in 79% of these papers. Sixteen percent of papers were on clinical medicine and 36% of these were carried out in collaboration. Brazil had the highest production (22,442 papers) and the lower percentage of international collaboration (31%). North America accounts for 63% of collaborating countries. Only 8% of collaboration is between South American countries. Brazil has the highest tendency to collaborate with other South American countries. Brazil is the South American country with the highest scientific production and indicators of centrality in South America. The most common collaboration networks are with North American countries.

  16. Scientific Misconduct

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2002-12-01

    These cases provide a good basis for discussions of scientific ethics, particularly with respect to the responsibilities of colleagues in collaborative projects. With increasing numbers of students working in cooperative or collaborative groups, there may be opportunities for more than just discussion—similar issues of responsibility apply to the members of such groups. Further, this is an area where, “no clear, widely accepted standards of behavior exist” (1). Thus there is an opportunity to point out to students that scientific ethics, like science itself, is incomplete and needs constant attention to issues that result from new paradigms such as collaborative research. Finally, each of us can resolve to pay more attention to the contributions we and our colleagues make to collaborative projects, applying to our own work no less critical an eye than we would cast on the work of those we don’t know at all.

  17. Brain Tumor Trials Collaborative | Center for Cancer Research

    Cancer.gov

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  18. Collaboration and Productivity in Scientific Synthesis

    ERIC Educational Resources Information Center

    Hampton, Stephanie E.; Parker, John N.

    2011-01-01

    Scientific synthesis has transformed ecological research and presents opportunities for advancements across the sciences; to date, however, little is known about the antecedents of success in synthesis. Building on findings from 10 years of detailed research on social interactions in synthesis groups at the National Center for Ecological Analysis…

  19. Research on Biodiversity and Climate Change at a Distance: Collaboration Networks between Europe and Latin America and the Caribbean

    PubMed Central

    Dangles, Olivier; Loirat, Jean; Freour, Claire; Serre, Sandrine; Vacher, Jean; Le Roux, Xavier

    2016-01-01

    Biodiversity loss and climate change are both globally significant issues that must be addressed through collaboration across countries and disciplines. With the December 2015 COP21 climate conference in Paris and the recent creation of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), it has become critical to evaluate the capacity for global research networks to develop at the interface between biodiversity and climate change. In the context of the European Union (EU) strategy to stand as a world leader in tackling global challenges, the European Commission has promoted ties between the EU and Latin America and the Caribbean (LAC) in science, technology and innovation. However, it is not clear how these significant interactions impact scientific cooperation at the interface of biodiversity and climate change. We looked at research collaborations between two major regions—the European Research Area (ERA) and LAC—that addressed both biodiversity and climate change. We analysed the temporal evolution of these collaborations, whether they were led by ERA or LAC teams, and which research domains they covered. We surveyed publications listed on the Web of Science that were authored by researchers from both the ERA and LAC and that were published between 2003 and 2013. We also run similar analyses on other topics and other continents to provide baseline comparisons. Our results revealed a steady increase in scientific co-authorships between ERA and LAC countries as a result of the increasingly complex web of relationships that has been weaved among scientists from the two regions. The ERA-LAC co-authorship increase for biodiversity and climate change was higher than those reported for other topics and for collaboration with other continents. We also found strong differences in international collaboration patterns within the LAC: co-publications were fewest from researchers in low- and lower-middle-income countries and most prevalent from researchers in emerging countries like Mexico and Brazil. Overall, interdisciplinary publications represented 25.8% of all publications at the interface of biodiversity and climate change in the ERA-LAC network. Further scientific collaborations should be promoted 1) to prevent less developed countries from being isolated from the global cooperation network, 2) to ensure that scientists from these countries are trained to lead visible and recognized biodiversity and climate change research, and 3) to develop common study models that better integrate multiple scientific disciplines and better support decision-making. PMID:27304924

  20. Research on Biodiversity and Climate Change at a Distance: Collaboration Networks between Europe and Latin America and the Caribbean.

    PubMed

    Dangles, Olivier; Loirat, Jean; Freour, Claire; Serre, Sandrine; Vacher, Jean; Le Roux, Xavier

    2016-01-01

    Biodiversity loss and climate change are both globally significant issues that must be addressed through collaboration across countries and disciplines. With the December 2015 COP21 climate conference in Paris and the recent creation of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), it has become critical to evaluate the capacity for global research networks to develop at the interface between biodiversity and climate change. In the context of the European Union (EU) strategy to stand as a world leader in tackling global challenges, the European Commission has promoted ties between the EU and Latin America and the Caribbean (LAC) in science, technology and innovation. However, it is not clear how these significant interactions impact scientific cooperation at the interface of biodiversity and climate change. We looked at research collaborations between two major regions-the European Research Area (ERA) and LAC-that addressed both biodiversity and climate change. We analysed the temporal evolution of these collaborations, whether they were led by ERA or LAC teams, and which research domains they covered. We surveyed publications listed on the Web of Science that were authored by researchers from both the ERA and LAC and that were published between 2003 and 2013. We also run similar analyses on other topics and other continents to provide baseline comparisons. Our results revealed a steady increase in scientific co-authorships between ERA and LAC countries as a result of the increasingly complex web of relationships that has been weaved among scientists from the two regions. The ERA-LAC co-authorship increase for biodiversity and climate change was higher than those reported for other topics and for collaboration with other continents. We also found strong differences in international collaboration patterns within the LAC: co-publications were fewest from researchers in low- and lower-middle-income countries and most prevalent from researchers in emerging countries like Mexico and Brazil. Overall, interdisciplinary publications represented 25.8% of all publications at the interface of biodiversity and climate change in the ERA-LAC network. Further scientific collaborations should be promoted 1) to prevent less developed countries from being isolated from the global cooperation network, 2) to ensure that scientists from these countries are trained to lead visible and recognized biodiversity and climate change research, and 3) to develop common study models that better integrate multiple scientific disciplines and better support decision-making.

  1. [Interagency collaboration in Spanish scientific production in nursing: social network analysis].

    PubMed

    Almero-Canet, Amparo; López-Ferrer, Mayte; Sales-Orts, Rafael

    2013-01-01

    The objectives of this paper are to analyze the Spanish scientific production in nursing, define its temporal evolution, its geographical and institutional distribution, and observe the interinstitutional collaboration. We analyze a comprehensive sample of Spanish scientific production in the nursing area extracted from the multidisciplinary database SciVerse Scopus. The nursing scientific production grows along time. The collaboration rate is 3.7 authors per paper and 61% of the authors only publish one paper. Barcelona and Madrid are the provinces with highest number of authors. Most belong to the hospitalary environment, followed closely by authors belonging to the university. The most institutions that collaborate, sharing authorship of articles are: University of Barcelona, Autonomous University of Barcelona and Clinic Hospital of Barcelona. The nursing scientific production has been increasing since her incorporation at the university. The collaboration rate found is higher than found for other papers. It shows a low decrease of occasional authors. It discusses the outlook of scientific collaboration in nursing in Spain, at the level of institutions by co-authorship of papers, through a network graph. It observes their distribution, importance and interactions or lack thereof. There is a strong need to use international databases for research, care and teaching, in addition to the national specialized information resources. Professionals are encouraged to normalization of the paper's signature, both, surnames and institutions to which they belong. It confirms the limited cooperation with foreign institutions, although there is an increasing trend of collaboration between Spanish authors in this discipline. It is observed, clearly defined three interinstitutional collaboration patterns. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  2. Gender differences in scientific collaborations: Women are more egalitarian than men

    PubMed Central

    Araújo, Eduardo B.; Araújo, Nuno A. M.; Moreira, André A.; Herrmann, Hans J.; Andrade, José S.

    2017-01-01

    By analyzing a unique dataset of more than 270,000 scientists, we discovered substantial gender differences in scientific collaborations. While men are more likely to collaborate with other men, women are more egalitarian. This is consistently observed over all fields and regardless of the number of collaborators a scientist has. The only exception is observed in the field of engineering, where this gender bias disappears with increasing number of collaborators. We also found that the distribution of the number of collaborators follows a truncated power law with a cut-off that is gender dependent and related to the gender differences in the number of published papers. Considering interdisciplinary research, our analysis shows that men and women behave similarly across fields, except in the case of natural sciences, where women with many collaborators are more likely to have collaborators from other fields. PMID:28489872

  3. Gender differences in scientific collaborations: Women are more egalitarian than men.

    PubMed

    Araújo, Eduardo B; Araújo, Nuno A M; Moreira, André A; Herrmann, Hans J; Andrade, José S

    2017-01-01

    By analyzing a unique dataset of more than 270,000 scientists, we discovered substantial gender differences in scientific collaborations. While men are more likely to collaborate with other men, women are more egalitarian. This is consistently observed over all fields and regardless of the number of collaborators a scientist has. The only exception is observed in the field of engineering, where this gender bias disappears with increasing number of collaborators. We also found that the distribution of the number of collaborators follows a truncated power law with a cut-off that is gender dependent and related to the gender differences in the number of published papers. Considering interdisciplinary research, our analysis shows that men and women behave similarly across fields, except in the case of natural sciences, where women with many collaborators are more likely to have collaborators from other fields.

  4. Collaboration in research and the influential factors in Golestan University of Medical Sciences research projects (2005-2007): an academic sample from Iran.

    PubMed

    Borghei, Afsaneh; Qorbani, Mostafa; Rezapour, Aziz; Majdzadeh, Reza; Nedjat, Saharnaz; Asayesh, Hamid; Mansourian, Morteza; Noroozi, Mahdi; Jahahgir, Fereydoon

    2013-08-01

    Number of Iranian articles published in ISI journals has increased significantly in recent years.Despite the quantitative progress, studies performed in Iran represent low collaboration in research; therefore,we decided to evaluate collaboration in Golestan University of Medical Sciences (GOUMS) research projects. In this cross-sectional study, all GOUMS research projects that had got grants from the universitybetween 2005-2007 were studied. Among 107 research projects included in our study, 102 projects were evaluatedand checklists were completed. The researcher's questionnaire was sent to the principle investigators (n=46) of the projects and eventually 40 questionnaires were collected. The review of 102 research proposals shows that 10 projects (9.8%) have been performed in collaborationwith other organizations. Scientific outputs in these projects have been more than projects which wereconfined to the university (98% compare to 68%; p= 0.04). The total cost of the projects under study was a littlemore than 300,000 US$. In just 12 projects (11.8%) a part of the cost had been provided by organizations outsidethe university. About 50% of researchers declared that they had chosen their research topic based on their"personal interest". Only 1 project was performed by the demand of nongovernmental organizations and 12 researchersreported no collaboration in their activities. This study shows that collaboration in GOUMS research projects is low. Moreover, collaborationswith governmental and nongovernmental organizations are trivial. The scientific outputs in collaborativeresearch projects are much more than other projects.

  5. Collaborative WorkBench (cwb): Enabling Experiment Execution, Analysis and Visualization with Increased Scientific Productivity

    NASA Astrophysics Data System (ADS)

    Maskey, Manil; Ramachandran, Rahul; Kuo, Kwo-Sen

    2015-04-01

    The Collaborative WorkBench (CWB) has been successfully developed to support collaborative science algorithm development. It incorporates many features that enable and enhance science collaboration, including the support for both asynchronous and synchronous modes of interactions in collaborations. With the former, members in a team can share a full range of research artifacts, e.g. data, code, visualizations, and even virtual machine images. With the latter, they can engage in dynamic interactions such as notification, instant messaging, file exchange, and, most notably, collaborative programming. CWB also implements behind-the-scene provenance capture as well as version control to relieve scientists of these chores. Furthermore, it has achieved a seamless integration between researchers' local compute environments and those of the Cloud. CWB has also been successfully extended to support instrument verification and validation. Adopted by almost every researcher, the current practice of downloading data to local compute resources for analysis results in much duplication and inefficiency. CWB leverages Cloud infrastructure to provide a central location for data used by an entire science team, thereby eliminating much of this duplication and waste. Furthermore, use of CWB in concert with this same Cloud infrastructure enables co-located analysis with data where opportunities of data-parallelism can be better exploited, thereby further improving efficiency. With its collaboration-enabling features apposite to steps throughout the scientific process, we expect CWB to fundamentally transform research collaboration and realize maximum science productivity.

  6. A perspective on physiological studies supporting the provision of scientific advice for the management of Fraser River sockeye salmon (Oncorhynchus nerka)

    PubMed Central

    Patterson, David A.; Cooke, Steven J.; Hinch, Scott G.; Robinson, Kendra A.; Young, Nathan; Farrell, Anthony P.; Miller, Kristina M.

    2016-01-01

    The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon (Oncorhynchus nerka) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from our experiences of providing scientific advice to management to increase the potential for this growing field of research to have a positive influence on resource management. PMID:27928508

  7. A perspective on physiological studies supporting the provision of scientific advice for the management of Fraser River sockeye salmon (Oncorhynchus nerka).

    PubMed

    Patterson, David A; Cooke, Steven J; Hinch, Scott G; Robinson, Kendra A; Young, Nathan; Farrell, Anthony P; Miller, Kristina M

    2016-01-01

    The inability of physiologists to effect change in fisheries management has been the source of frustration for many decades. Close collaboration between fisheries managers and researchers has afforded our interdisciplinary team an unusual opportunity to evaluate the emerging impact that physiology can have in providing relevant and credible scientific advice to assist in management decisions. We categorize the quality of scientific advice given to management into five levels based on the type of scientific activity and resulting advice (notions, observations, descriptions, predictions and prescriptions). We argue that, ideally, both managers and researchers have concomitant but separate responsibilities for increasing the level of scientific advice provided. The responsibility of managers involves clear communication of management objectives to researchers, including exact descriptions of knowledge needs and researchable problems. The role of the researcher is to provide scientific advice based on the current state of scientific information and the level of integration with management. The examples of scientific advice discussed herein relate to physiological research on the impact of high discharge and water temperature, pathogens, sex and fisheries interactions on in-river migration success of adult Fraser River sockeye salmon ( Oncorhynchus nerka ) and the increased understanding and quality of scientific advice that emerges. We submit that success in increasing the quality of scientific advice is a function of political motivation linked to funding, legal clarity in management objectives, collaborative structures in government and academia, personal relationships, access to interdisciplinary experts and scientific peer acceptance. The major challenges with advancing scientific advice include uncertainty in results, lack of integration with management needs and institutional caution in adopting new research. We hope that conservation physiologists can learn from our experiences of providing scientific advice to management to increase the potential for this growing field of research to have a positive influence on resource management.

  8. Psychiatric brain collection in Macedonia: general lessons for scientific collaboration among countries of differing wealth.

    PubMed

    Rosoklija, G; Duma, A; Dwork, A J

    2013-01-01

    Macedonia is a small country, and the current state has been independent for only 22 years. Medical research, which requires an extensive infrastructure, has been limited. We describe our experience in developing Macedonian research through a mutually beneficial collaboration between institutions in Macedonia and the United States.

  9. [Assessing the correlation between international collaboration and academic influence in parasitic diseases: a case study of National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention].

    PubMed

    Yao, Jia-wen; Jia, Tie-wu; Zhou, Xiao-nong

    2013-08-01

    To investigate the activity of scientific research and international collaboration in National Institute of Parasitic Diseases (NIPD), Chinese Center for Disease Control and Prevention (China CDC) from 2002 to 2012, and assess the relationship between international collaboration and academic influence at an individual level. Non-bibliometric indicators including number and structure of scientific research personnel, number of projects and funds, visiting frequency, etc, were used to assess the activity of scientific research and international collaboration, and bibliometric indicators including publications and h index, were employed to estimate the academic influence of senior professionals in NIPD, China CDC. The relationship between the international collaboration and international academic influence in the control and research of parasitic diseases was evaluated by using analysis of covariance and generalized linear models. There was an increase tendency of the number of projects, funds and visiting frequency in NIPD, China CDC since the foundation of the institute in 2002, notably after 2011. The h2 index of NIPD, China was 7. Analysis of covariance and generalized linear model analysis revealed that the number of international partners (F = 81.75, P < 0.0001) , number of international projects (F = 22.81, P < 0.0001) , number of national projects (F = 7.30, P = 0.0110), and academic degree (F = 3.80, P = 0.0330) contributed greatly to individual academic influence, while visiting frequency, professional title and length of service had no significant association with h index. Elevation of international collaboration projects and development of long-term, stable international partnership may enhance the institutional and individual international academic influence in the field of parasitic diseases.

  10. Dominance and leadership in research activities: Collaboration between countries of differing human development is reflected through authorship order and designation as corresponding authors in scientific publications

    PubMed Central

    Park, Jinseo; Huamaní, Charles; Ramos, José M.

    2017-01-01

    Introduction Scientific collaboration is an important mechanism that enables the integration of the least developed countries into research activities. In the present study, we use the order of author signatures and addresses for correspondence in scientific publications as variables to analyze the interactions between countries of very high (VHHD), high (HHD), medium (MHD), and low human development (LHD). Methodology We identified all documents published between 2011 and 2015 in journals included in the Science Citation Index-Expanded categories’ of Tropical Medicine, Infectious Diseases, Parasitology, and Pediatrics. We then classified the countries participating in the publications according to their Human Development Index (HDI), analyzing the international collaboration; positioning and influence of some countries over others in cooperative networks; their leadership; and the impact of the work based on the HDI and the type of collaboration. Results We observed a high degree of international collaboration in all the areas analyzed, in the case of both LHD and MHD countries. We identified numerous cooperative links between VHHD countries and MHD/LHD countries, reflecting the fact that cooperative links are an important mechanism for integrating research activities into the latter. The countries with large emerging economies, such as Brazil and China stand out due to the dominance they exert in the collaborations established with the United States, the UK, and other European countries. The analysis of the leadership role of the countries, measured by the frequency of lead authorships, shows limited participation by MHD/LHD countries. This reduced participation among less developed countries is further accentuated by their limited presence in the addresses for correspondence. We observed significant statistical differences in the degree of citation according to the HDI of the participating countries. Conclusions The order of signatures and the address for correspondence in scientific publications are bibliographic characteristics that facilitate a precise, in-depth analysis of cooperative practices and their associations with concepts like dominance or leadership. This is useful to monitor the existing balance in research participation in health research publications. PMID:28792519

  11. Ocean Drilling: Forty Years of International Collaboration

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Exon, Neville; Barriga, Fernando J. A. S.; Tatsumi, Yoshiyuki

    2010-10-01

    International cooperation is an essential component of modern scientific research and societal advancement [see Ismail-Zadeh and Beer, 2009], and scientific ocean drilling represents one of Earth science's longest-running and most successful international collaborations. The strength of this collaboration and its continued success result from the realization that scientific ocean drilling provides a unique and powerful tool to study the critical processes of both short-term change and the long-term evolution of Earth systems. A record of Earth's changing tectonics, climate, ocean circulation, and biota is preserved in marine sedimentary deposits and the underlying basement rocks. And because the ocean floor is the natural site for accumulation and preservation of geological materials, it may preserve a continuous record of these processes.

  12. Improving the Quality of Host Country Ethical Oversight of International Research: The Use of a Collaborative 'Pre-Review' Mechanism for a Study of Fexinidazole for Human African Trypanosomiasis.

    PubMed

    Coleman, Carl H; Ardiot, Chantal; Blesson, Séverine; Bonnin, Yves; Bompart, Francois; Colonna, Pierre; Dhai, Ames; Ecuru, Julius; Edielu, Andrew; Hervé, Christian; Hirsch, François; Kouyaté, Bocar; Mamzer-Bruneel, Marie-France; Maoundé, Dionko; Martinent, Eric; Ntsiba, Honoré; Pelé, Gérard; Quéva, Gilles; Reinmund, Marie-Christine; Sarr, Samba Cor; Sepou, Abdoulaye; Tarral, Antoine; Tetimian, Djetodjide; Valverde, Olaf; Van Nieuwenhove, Simon; Strub-Wourgaft, Nathalie

    2015-12-01

    Developing countries face numerous barriers to conducting effective and efficient ethics reviews of international collaborative research. In addition to potentially overlooking important scientific and ethical considerations, inadequate or insufficiently trained ethics committees may insist on unwarranted changes to protocols that can impair a study's scientific or ethical validity. Moreover, poorly functioning review systems can impose substantial delays on the commencement of research, which needlessly undermine the development of new interventions for urgent medical needs. In response to these concerns, the Drugs for Neglected Diseases Initiative (DNDi), an independent nonprofit organization founded by a coalition of public sector and international organizations, developed a mechanism to facilitate more effective and efficient host country ethics review for a study of the use of fexinidazole for the treatment of late stage African Trypanosomiasis (HAT). The project involved the implementation of a novel 'pre-review' process of ethical oversight, conducted by an ad hoc committee of ethics committee representatives from African and European countries, in collaboration with internationally recognized scientific experts. This article examines the process and outcomes of this collaborative process. © 2014 The Authors. Developing World Bioethics published by John Wiley & Sons Ltd.

  13. International Collaboration and Academic Exchange of the CHAIN Project in this Three Years (Period)

    NASA Astrophysics Data System (ADS)

    Ueno, Satoru; Shibata, Kazunari; Morita, Satoshi; Kimura, Goichi; Asai, Ayumi; Kitai, Reizaburo; Ichimoto, Kiyoshi; Nagata, Shin'ichi; Ishii, Takako; Nakatani, Yoshikazu; Masashi, Yamaguchi; et al.

    2014-02-01

    We will introduce contents of international collaboration and academic exchange of the CHAIN project in recent three years (ISWI period). After April of 2010, we have not obtained any enough budget for new instruments. Therefore, we have not been able to install new Flare Monitoring Telescopes (FMT) in new countries, such as Algeria. On the other hand, however, we have continued international academic exchange through scientific and educational collaboration with mainly Peru, such as data-analysis training, holding scientific workshops etc. Additionally, in this year, King Saudi University of Saudi Arabia and CRAAG of Algeria have planned to build a new FMT in their university by their own budget. Therefore, we have started some collaboration in the field of technical advices of instruments and scientific themes etc. Moreover, Pakistan Space and Upper Atmosphere Research Commission (SUPARCO) also offered us participation in the CHAIN-project. We would like to continue to consider the possibility of academic collaboration with such new positive developing nations, too.

  14. Enhance Your Science With Social Media: No ... Really

    NASA Astrophysics Data System (ADS)

    Goss, H.; Aiken, A. C.; Sams, A.

    2016-12-01

    The ability to communicate the societal value of basic research to nonacademic audiences is morphing from an optional soft skill to a crucial tool for scientists who are competing over finite or shrinking resources for research. Former National Academy of Sciences President Ralph Cicerone argued as early as 2006 that "scientists themselves must do a better job of communicating directly to the public," taking advantage of "new, non-traditional outlets" on the Internet. Findings suggest that scientists have begun to embrace social media as a viable tool for communicating research and keeping abreast of advancements in their fields. Social media is changing the way that scientists are interacting with each other and with the global community. Scientists are taking to popular social media (Twitter, Facebook, etc.) to challenge weak research, share replication attempts in real time, and counteract hype. Incorporating social media into the different stages of a scientific publication: Accelerates the pace of scientific communication and collaboration Facilitates interdisciplinary collaboration Makes it possible to communicate results to a large and diverse audience Encourages post-publication conversations about findings Accelerates research evaluation Makes science more transparent Amplifies the positive effects of scientists' interactions with more traditional media Our presentation will demonstrate how scientists can use social media as a tool to support their work, collaborate with peers around the world, and advance the cause of science. Information will be presented by communications experts and research librarians in collaboration with scientists who are already active on social media. Content will focus on pragmatic best practices for engaging peers, other stakeholders, promoting science and scientific research, and measuring success.

  15. Science Partnerships Enabling Rapid Response: Designing a Strategy for Improving Scientific Collaboration during Crisis Response

    NASA Astrophysics Data System (ADS)

    Mease, L.; Gibbs, T.; Adiseshan, T.

    2014-12-01

    The 2010 Deepwater Horizon disaster required unprecedented engagement and collaboration with scientists from multiple disciplines across government, academia, and industry. Although this spurred the rapid advancement of valuable new scientific knowledge and tools, it also exposed weaknesses in the system of information dissemination and exchange among the scientists from those three sectors. Limited government communication with the broader scientific community complicated the rapid mobilization of the scientific community to assist with spill response, evaluation of impact, and public perceptions of the crisis. The lessons and new laws produced from prior spills such as Exxon Valdez were helpful, but ultimately did not lead to the actions necessary to prepare a suitable infrastructure that would support collaboration with non-governmental scientists. As oil demand pushes drilling into increasingly extreme environments, addressing the challenge of effective, science-based disaster response is an imperative. Our study employs a user-centered design process to 1) understand the obstacles to and opportunity spaces for effective scientific collaboration during environmental crises such as large oil spills, 2) identify possible tools and strategies to enable rapid information exchange between government responders and non-governmental scientists from multiple relevant disciplines, and 3) build a network of key influencers to secure sufficient buy-in for scaled implementation of appropriate tools and strategies. Our methods include user ethnography, complex system mapping, individual and system behavioral analysis, and large-scale system design to identify and prototype a solution to this crisis collaboration challenge. In this talk, we will present out insights gleaned from existing analogs of successful scientific collaboration during crises and our initial findings from the 60 targeted interviews we conducted that highlight key collaboration challenges that government agencies, academic research institutions, and industry scientists face during oil spill crises. We will also present a synthesis of leverage points in the system that may amplify the impact of an improved collaboration strategy among scientific stakeholders.

  16. The science of team science: A review of the empirical evidence and research gaps on collaboration in science.

    PubMed

    Hall, Kara L; Vogel, Amanda L; Huang, Grace C; Serrano, Katrina J; Rice, Elise L; Tsakraklides, Sophia P; Fiore, Stephen M

    2018-01-01

    Collaborations among researchers and across disciplinary, organizational, and cultural boundaries are vital to address increasingly complex challenges and opportunities in science and society. In addition, unprecedented technological advances create new opportunities to capitalize on a broader range of expertise and information in scientific collaborations. Yet rapid increases in the demand for scientific collaborations have outpaced changes in the factors needed to support teams in science, such as institutional structures and policies, scientific culture, and funding opportunities. The Science of Team Science (SciTS) field arose with the goal of empirically addressing questions from funding agencies, administrators, and scientists regarding the value of team science (TS) and strategies for successfully leading, engaging in, facilitating, and supporting science teams. Closely related fields have rich histories studying teams, groups, organizations, and management and have built a body of evidence for effective teaming in contexts such as industry and the military. Yet few studies had focused on science teams. Unique contextual factors within the scientific enterprise create an imperative to study these teams in context, and provide opportunities to advance understanding of other complex forms of collaboration. This review summarizes the empirical findings from the SciTS literature, which center around five key themes: the value of TS, team composition and its influence on TS performance, formation of science teams, team processes central to effective team functioning, and institutional influences on TS. Cross-cutting issues are discussed in the context of new research opportunities to further advance SciTS evidence and better inform policies and practices for effective TS. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. A Drupal-Based Collaborative Framework for Science Workflows

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; Gandara, A.

    2010-12-01

    Cyber-infrastructure is built from utilizing technical infrastructure to support organizational practices and social norms to provide support for scientific teams working together or dependent on each other to conduct scientific research. Such cyber-infrastructure enables the sharing of information and data so that scientists can leverage knowledge and expertise through automation. Scientific workflow systems have been used to build automated scientific systems used by scientists to conduct scientific research and, as a result, create artifacts in support of scientific discoveries. These complex systems are often developed by teams of scientists who are located in different places, e.g., scientists working in distinct buildings, and sometimes in different time zones, e.g., scientist working in distinct national laboratories. The sharing of these specifications is currently supported by the use of version control systems such as CVS or Subversion. Discussions about the design, improvement, and testing of these specifications, however, often happen elsewhere, e.g., through the exchange of email messages and IM chatting. Carrying on a discussion about these specifications is challenging because comments and specifications are not necessarily connected. For instance, the person reading a comment about a given workflow specification may not be able to see the workflow and even if the person can see the workflow, the person may not specifically know to which part of the workflow a given comments applies to. In this paper, we discuss the design, implementation and use of CI-Server, a Drupal-based infrastructure, to support the collaboration of both local and distributed teams of scientists using scientific workflows. CI-Server has three primary goals: to enable information sharing by providing tools that scientists can use within their scientific research to process data, publish and share artifacts; to build community by providing tools that support discussions between scientists about artifacts used or created through scientific processes; and to leverage the knowledge collected within the artifacts and scientific collaborations to support scientific discoveries.

  18. Understanding life together: A brief history of collaboration in biology

    PubMed Central

    Vermeulen, Niki; Parker, John N.; Penders, Bart

    2013-01-01

    The history of science shows a shift from single-investigator ‘little science’ to increasingly large, expensive, multinational, interdisciplinary and interdependent ‘big science’. In physics and allied fields this shift has been well documented, but the rise of collaboration in the life sciences and its effect on scientific work and knowledge has received little attention. Research in biology exhibits different historical trajectories and organisation of collaboration in field and laboratory – differences still visible in contemporary collaborations such as the Census of Marine Life and the Human Genome Project. We employ these case studies as strategic exemplars, supplemented with existing research on collaboration in biology, to expose the different motives, organisational forms and social dynamics underpinning contemporary large-scale collaborations in biology and their relations to historical patterns of collaboration in the life sciences. We find the interaction between research subject, research approach as well as research organisation influencing collaboration patterns and the work of scientists. PMID:23578694

  19. Enhancing Science Education Instruction: A Mixed-Methods Study on University and Middle School Collaborations

    NASA Astrophysics Data System (ADS)

    Owen-Stone, Deborah S.

    The purpose of this concurrent mixed methods study was to examine the collaborative relationship between scientists and science teachers and to incorporate and advocate scientific literacy based on past and current educational theories such as inquiry based teaching. The scope of this study included archived student standardized test scores, semi-structured interviews, and a Likert scale survey to include open-ended comments. The methodology was based on the guiding research question: To what extent and in what ways does the collaboration and inquiry methodology, with GTF and PT teams, serve toward contributing to a more comprehensive and nuanced understanding of this predicting relationship between student PASS scores, inquiry skills, and increased scientific literacy for GTF's, PT's, and students via an integrative mixed methods analysis? The data analysis considerations were derived from the qualitative data collected from the three GTF/PT teams by the use of recorded interviews and text answered survey comments. The quantitative data of archived student Palmetto Assessment of State Standards (PASS) scores on scientific literacy and inquiry tests and the Likert-scale portion of the survey were support data to the aforementioned qualitative data findings. Limitations of the study were (1) the population of only the GK-12 teachers and their students versus the inclusion of participants that did not experience the GK-12 Fellow partnerships within their classrooms, should they be considered as participants, (2) involved the researcher as a participant for two years of the program and objectivity remained through interpretation and well documented personal reflections and experiences to inform accuracy, and (3) cultural diversity contributed to the relationship formed between the research Fellow and science educator and communication and scientific language did form a barrier between the Fellow, educator, and student rapport within the classroom. This study's contribution benefits science education, scientists, university science education, and future collaborations. Key Terms: mixed methods, GK-12, scientific literacy, inquiry, collaboration.

  20. From Swords to Plowshares: The US/Russian Collaboration in High Energy Density Physics Using Pulsed Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younger, S.M.; Fowler, C.M.; Lindemuth, I.

    1999-03-15

    Since 1992, the All-Russian Scientific Research Institute of Experimental Physics and the Los Alamos National Laboratory, the institutes that designed the first nuclear weapons of the Soviet Union and the US, respectively, have been working together in fundamental research related to pulsed power and high energy density science. This collaboration has enabled scientists formerly engaged in weapons activities to redirect their attention to peaceful pursuits of wide benefit to the technical community. More than thirty joint experiments have been performed at Sarov and Los Alamos in areas as diverse as solid state physics in high magnetic fields, fusion plasma formation,more » isentropic compression of noble gases, and explosively driven-high current generation technology. Expanding on the introductory comments of the conference plenary presentation, this paper traces the origins of this collaboration and briefly reviews the scientific accomplishments. Detailed reports of the scientific accomplishments can be found in other papers in these proceedings and in other publications.« less

  1. Designing a CTSA-Based Social Network Intervention to Foster Cross-Disciplinary Team Science.

    PubMed

    Vacca, Raffaele; McCarty, Christopher; Conlon, Michael; Nelson, David R

    2015-08-01

    This paper explores the application of network intervention strategies to the problem of assembling cross-disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic-web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross-disciplinary scientific teams in CTSA institutions. © 2015 Wiley Periodicals, Inc.

  2. Towards a New Science: Control and Accountability in Collaborations between Workers and Scientists.

    ERIC Educational Resources Information Center

    Merrifield, Juliet; Lippin, Tobi

    1989-01-01

    An occupational health survey conducted by union members in collaboration with an epidemiologist found that stress is a major occupational hazard. Conflict over dissemination of the results raised issues about who controls the research process and its outcomes, to whom are researchers accountable, and whether the scientific method can be used to…

  3. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    NASA Astrophysics Data System (ADS)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  4. Long-Distance Interdisciplinarity Leads to Higher Scientific Impact

    PubMed Central

    Larivière, Vincent; Haustein, Stefanie; Börner, Katy

    2015-01-01

    Scholarly collaborations across disparate scientific disciplines are challenging. Collaborators are likely to have their offices in another building, attend different conferences, and publish in other venues; they might speak a different scientific language and value an alien scientific culture. This paper presents a detailed analysis of success and failure of interdisciplinary papers—as manifested in the citations they receive. For 9.2 million interdisciplinary research papers published between 2000 and 2012 we show that the majority (69.9%) of co-cited interdisciplinary pairs are “win-win” relationships, i.e., papers that cite them have higher citation impact and there are as few as 3.3% “lose-lose” relationships. Papers citing references from subdisciplines positioned far apart (in the conceptual space of the UCSD map of science) attract the highest relative citation counts. The findings support the assumption that interdisciplinary research is more successful and leads to results greater than the sum of its disciplinary parts. PMID:25822658

  5. Long-distance interdisciplinarity leads to higher scientific impact.

    PubMed

    Larivière, Vincent; Haustein, Stefanie; Börner, Katy

    2015-01-01

    Scholarly collaborations across disparate scientific disciplines are challenging. Collaborators are likely to have their offices in another building, attend different conferences, and publish in other venues; they might speak a different scientific language and value an alien scientific culture. This paper presents a detailed analysis of success and failure of interdisciplinary papers--as manifested in the citations they receive. For 9.2 million interdisciplinary research papers published between 2000 and 2012 we show that the majority (69.9%) of co-cited interdisciplinary pairs are "win-win" relationships, i.e., papers that cite them have higher citation impact and there are as few as 3.3% "lose-lose" relationships. Papers citing references from subdisciplines positioned far apart (in the conceptual space of the UCSD map of science) attract the highest relative citation counts. The findings support the assumption that interdisciplinary research is more successful and leads to results greater than the sum of its disciplinary parts.

  6. Procedural Challenges In International Collaborative Research

    PubMed Central

    Loo, Kek Khee

    2009-01-01

    There is tremendous promise for a rewarding experience in an international research project due to the collaboration, mutual learning and cultural bridging that intrinsically occur. However, knowledge of the procedural requirements for international research is not widely disseminated to investigators who may not have been involved in the administration of a federal grant with a foreign component. The purpose of this article is to highlight the major challenges in administrative, procedural and equipment management aspects of grant implementation when federal funding is involved in international collaborative research. It is hoped that awareness of these difficulties and demystification of the process for future investigators can minimize the potential encumbrances in a rewarding journey towards realizing the scientific goals in an international collaborative research project. PMID:19574522

  7. Strengthening Statistics Graduate Programs with Statistical Collaboration--The Case of Hawassa University, Ethiopia

    ERIC Educational Resources Information Center

    Goshu, Ayele Taye

    2016-01-01

    This paper describes the experiences gained from the established statistical collaboration center at Hawassa University as part of LISA 2020 network. The center has got similar setup as LISA at Virginia Tech. Statisticians are trained on how to become more effective scientific collaborators with researchers. The services are being delivered since…

  8. Hydrological Modeling Reproducibility Through Data Management and Adaptors for Model Interoperability

    NASA Astrophysics Data System (ADS)

    Turner, M. A.

    2015-12-01

    Because of a lack of centralized planning and no widely-adopted standards among hydrological modeling research groups, research communities, and the data management teams meant to support research, there is chaos when it comes to data formats, spatio-temporal resolutions, ontologies, and data availability. All this makes true scientific reproducibility and collaborative integrated modeling impossible without some glue to piece it all together. Our Virtual Watershed Integrated Modeling System provides the tools and modeling framework hydrologists need to accelerate and fortify new scientific investigations by tracking provenance and providing adaptors for integrated, collaborative hydrologic modeling and data management. Under global warming trends where water resources are under increasing stress, reproducible hydrological modeling will be increasingly important to improve transparency and understanding of the scientific facts revealed through modeling. The Virtual Watershed Data Engine is capable of ingesting a wide variety of heterogeneous model inputs, outputs, model configurations, and metadata. We will demonstrate one example, starting from real-time raw weather station data packaged with station metadata. Our integrated modeling system will then create gridded input data via geostatistical methods along with error and uncertainty estimates. These gridded data are then used as input to hydrological models, all of which are available as web services wherever feasible. Models may be integrated in a data-centric way where the outputs too are tracked and used as inputs to "downstream" models. This work is part of an ongoing collaborative Tri-state (New Mexico, Nevada, Idaho) NSF EPSCoR Project, WC-WAVE, comprised of researchers from multiple universities in each of the three states. The tools produced and presented here have been developed collaboratively alongside watershed scientists to address specific modeling problems with an eye on the bigger picture of scientific reproducibility and transparency, and data publication and reuse.

  9. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology.

    PubMed

    Kowalski, Jennifer R; Hoops, Geoffrey C; Johnson, R Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students' experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. © 2016 J. R. Kowalski et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Study of Environmental Arctic Change (SEARCH): Scientific Understanding of Arctic Environmental Change to Help Society Understand and Respond to a Rapidly Changing Arctic.

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Myers, B.

    2015-12-01

    The Study of Environmental Arctic Change (SEARCH) is a U.S. program with a mission to provide a foundation of Arctic change science through collaboration with the research community, funding agencies, and other stakeholders. To achieve this mission, SEARCH: Generates and synthesizes research findings and promotes Arctic science and scientific discovery across disciplines and among agencies. Identifies emerging issues in Arctic environmental change. Provides scientific information to Arctic stakeholders, policy-makers, and the public to help them understand and respond to arctic environmental change. Facilitates research activities across local-to-global scales, with an emphasis on addressing needs of decision-makers. Collaborates with national and international science programs integral to SEARCH goals. This poster presentation will present SEARCH activities and plans, highlighting those focused on providing information for decision-makers. http://www.arcus.org/search

  11. Herbal medicine research and global health: an ethical analysis.

    PubMed

    Tilburt, Jon C; Kaptchuk, Ted J

    2008-08-01

    Governments, international agencies and corporations are increasingly investing in traditional herbal medicine research. Yet little literature addresses ethical challenges in this research. In this paper, we apply concepts in a comprehensive ethical framework for clinical research to international traditional herbal medicine research. We examine in detail three key, underappreciated dimensions of the ethical framework in which particularly difficult questions arise for international herbal medicine research: social value, scientific validity and favourable risk-benefit ratio. Significant challenges exist in determining shared concepts of social value, scientific validity and favourable risk-benefit ratio across international research collaborations. However, we argue that collaborative partnership, including democratic deliberation, offers the context and process by which many of the ethical challenges in international herbal medicine research can, and should be, resolved. By "cross-training" investigators, and investing in safety-monitoring infrastructure, the issues identified by this comprehensive framework can promote ethically sound international herbal medicine research that contributes to global health.

  12. Strengthening and Fostering Science and Technology Programs in Latinamerica and the Caribbean

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.

    2013-05-01

    An overview and discussion of the status of research and education in Latinamerica and the Caribbean is used for developing a proposal for a research foundation or agency in the region and establishing initiatives for capacity building and promoting and strengthening scientific programs and cooperation. Scientific research increasingly requires global multi- and inter-disciplinary approaches and infrastructure. Developing countries face challenges resulting from small academic communities, limited economic resources, and pressing social and political issues. Science and education are not major priorities as compared with more pressing issues related to poverty, diseases, conflicts, drugs and famine. However, solving major problems require improved educational and research programs. International research collaboration, north-south and south-south, has an immense potential, but basic infrastructure and internal organization at national and regional levels are required. For the analysis we concentrate on current situation, size and characteristics of research community, education programs, facilities, economic support, and bilateral and multinational collaborations. Analysis also includes the São Paulo Research Foundation (FAPESP) and the Yucatan Science and Technology System (SIIDETEY). FAPESP is a highly successful public foundation started more than 50 years ago, dedicated to foster scientific and technological development in the State of São Paulo and which has had a major impact in Brazil. SIIDETEY is a more recent effort of the Yucatan Government, also dedicated to support research and technology innovation within the state. We then move to discussion on perspectives for future development and capacity building in regional and international contexts, including international collaboration programs. We propose to establish a Science Foundation for the Latinamerica and Caribbean and develop an agenda for strengthening scientific programs in the region.

  13. Evolution of Cooperation Patterns in Psoriasis Research: Co-Authorship Network Analysis of Papers in Medline (1942–2013)

    PubMed Central

    González-Alcaide, Gregorio; Park, Jinseo; Huamaní, Charles; Belinchón, Isabel; Ramos, José M.

    2015-01-01

    Background Although researchers have worked in collaboration since the origins of modern science and the publication of the first scientific journals in the eighteenth century, this phenomenon has acquired exceptional importance in the last several decades. Since the mid-twentieth century, new knowledge has been generated from within an ever-growing network of investigators, working cooperatively in research groups across countries and institutions. Cooperation is a crucial determinant of academic success. Objective The aim of the present paper is to analyze the evolution of scientific collaboration at the micro level, with regard to the scientific production generated on psoriasis research. Methods A bibliographic search in the Medline database containing the MeSH terms “psoriasis” or “psoriatic arthritis” was carried out. The search results were limited to articles, reviews and letters. After identifying the co-authorships of documents on psoriasis indexed in the Medline database (1942–2013), various bibliometric indicators were obtained, including the average number of authors per document and degree of multi-authorship over time. In addition, we performed a network analysis to study the evolution of certain features of the co-authorship network as a whole: average degree, size of the largest component, clustering coefficient, density and average distance. We also analyzed the evolution of the giant component to characterize the changing research patterns in the field, and we calculated social network indicators for the nodes, namely betweenness and closeness. Results The main active research clusters in the area were identified, along with their authors of reference. Our analysis of 28,670 documents sheds light on different aspects related to the evolution of scientific collaboration in the field, including the progressive increase in the mean number of co-authors (which stood at 5.17 in the 2004–2013 decade), and the rise in multi-authored papers signed by many different authors (in the same decade, 25.77% of the documents had between 6 and 9 co-authors, and 10.28% had 10 or more). With regard to the network indicators, the average degree gradually increased up to 10.97 in the study period. The percentage of authors pertaining to the largest component also rose to 73.02% of the authors. The clustering coefficient, on the other hand, remained stable throughout the entire 70-year period, with values hovering around 0.9. Finally, the average distance peaked in the decades 1974–1983 (8.29) and 1984–2003 (8.12) then fell over the next two decades, down to 5.25 in 2004–2013. The construction of the co-authorship network (threshold of collaboration ≥ 10 co-authored works) revealed a giant component of 161 researchers, containing 6 highly cohesive sub-components. Conclusions Our study reveals the existence of a growing research community in which collaboration is increasingly important. We can highlight an essential feature associated with scientific collaboration: multi-authored papers, with growing numbers of collaborators contributing to them, are becoming more and more common, therefore the formation of research groups of increasing depth (specialization) and breadth (multidisciplinarity) is now a cornerstone of research success. PMID:26658481

  14. Evolution of Cooperation Patterns in Psoriasis Research: Co-Authorship Network Analysis of Papers in Medline (1942-2013).

    PubMed

    González-Alcaide, Gregorio; Park, Jinseo; Huamaní, Charles; Belinchón, Isabel; Ramos, José M

    2015-01-01

    Although researchers have worked in collaboration since the origins of modern science and the publication of the first scientific journals in the eighteenth century, this phenomenon has acquired exceptional importance in the last several decades. Since the mid-twentieth century, new knowledge has been generated from within an ever-growing network of investigators, working cooperatively in research groups across countries and institutions. Cooperation is a crucial determinant of academic success. The aim of the present paper is to analyze the evolution of scientific collaboration at the micro level, with regard to the scientific production generated on psoriasis research. A bibliographic search in the Medline database containing the MeSH terms "psoriasis" or "psoriatic arthritis" was carried out. The search results were limited to articles, reviews and letters. After identifying the co-authorships of documents on psoriasis indexed in the Medline database (1942-2013), various bibliometric indicators were obtained, including the average number of authors per document and degree of multi-authorship over time. In addition, we performed a network analysis to study the evolution of certain features of the co-authorship network as a whole: average degree, size of the largest component, clustering coefficient, density and average distance. We also analyzed the evolution of the giant component to characterize the changing research patterns in the field, and we calculated social network indicators for the nodes, namely betweenness and closeness. The main active research clusters in the area were identified, along with their authors of reference. Our analysis of 28,670 documents sheds light on different aspects related to the evolution of scientific collaboration in the field, including the progressive increase in the mean number of co-authors (which stood at 5.17 in the 2004-2013 decade), and the rise in multi-authored papers signed by many different authors (in the same decade, 25.77% of the documents had between 6 and 9 co-authors, and 10.28% had 10 or more). With regard to the network indicators, the average degree gradually increased up to 10.97 in the study period. The percentage of authors pertaining to the largest component also rose to 73.02% of the authors. The clustering coefficient, on the other hand, remained stable throughout the entire 70-year period, with values hovering around 0.9. Finally, the average distance peaked in the decades 1974-1983 (8.29) and 1984-2003 (8.12) then fell over the next two decades, down to 5.25 in 2004-2013. The construction of the co-authorship network (threshold of collaboration ≥ 10 co-authored works) revealed a giant component of 161 researchers, containing 6 highly cohesive sub-components. Our study reveals the existence of a growing research community in which collaboration is increasingly important. We can highlight an essential feature associated with scientific collaboration: multi-authored papers, with growing numbers of collaborators contributing to them, are becoming more and more common, therefore the formation of research groups of increasing depth (specialization) and breadth (multidisciplinarity) is now a cornerstone of research success.

  15. Envri Cluster - a Community-Driven Platform of European Environmental Researcher Infrastructures for Providing Common E-Solutions for Earth Science

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Sorvari, S.; Kutsch, W. L.; Laj, P.

    2017-12-01

    European long-term environmental research infrastructures (often referred as ESFRI RIs) are the core facilities for providing services for scientists in their quest for understanding and predicting the complex Earth system and its functioning that requires long-term efforts to identify environmental changes (trends, thresholds and resilience, interactions and feedbacks). Many of the research infrastructures originally have been developed to respond to the needs of their specific research communities, however, it is clear that strong collaboration among research infrastructures is needed to serve the trans-boundary research requires exploring scientific questions at the intersection of different scientific fields, conducting joint research projects and developing concepts, devices, and methods that can be used to integrate knowledge. European Environmental research infrastructures have already been successfully worked together for many years and have established a cluster - ENVRI cluster - for their collaborative work. ENVRI cluster act as a collaborative platform where the RIs can jointly agree on the common solutions for their operations, draft strategies and policies and share best practices and knowledge. Supporting project for the ENVRI cluster, ENVRIplus project, brings together 21 European research infrastructures and infrastructure networks to work on joint technical solutions, data interoperability, access management, training, strategies and dissemination efforts. ENVRI cluster act as one stop shop for multidisciplinary RI users, other collaborative initiatives, projects and programmes and coordinates and implement jointly agreed RI strategies.

  16. Concept Similarity in Publications Precedes Cross-disciplinary Collaboration

    PubMed Central

    Post, Andrew R.; Harrison, James H.

    2008-01-01

    Innovative science frequently occurs as a result of cross-disciplinary collaboration, the importance of which is reflected by recent NIH funding initiatives that promote communication and collaboration. If shared research interests between collaborators are important for the formation of collaborations, methods for identifying these shared interests across scientific domains could potentially reveal new and useful collaboration opportunities. MEDLINE represents a comprehensive database of collaborations and research interests, as reflected by article co-authors and concept content. We analyzed six years of citations using information retrieval-based methods to compute articles’ conceptual similarity, and found that articles by basic and clinical scientists who later collaborated had significantly higher average similarity than articles by similar scientists who did not collaborate. Refinement of these methods and characterization of found conceptual overlaps could allow automated discovery of collaboration opportunities that are currently missed. PMID:18999254

  17. Concept similarity in publications precedes cross-disciplinary collaboration.

    PubMed

    Post, Andrew R; Harrison, James H

    2008-11-06

    Innovative science frequently occurs as a result of cross-disciplinary collaboration, the importance of which is reflected by recent NIH funding initiatives that promote communication and collaboration. If shared research interests between collaborators are important for the formation of collaborations,methods for identifying these shared interests across scientific domains could potentially reveal new and useful collaboration opportunities. MEDLINE represents a comprehensive database of collaborations and research interests, as reflected by article co-authors and concept content. We analyzed six years of citations using information retrieval based methods to compute articles conceptual similarity, and found that articles by basic and clinical scientists who later collaborated had significantly higher average similarity than articles by similar scientists who did not collaborate.Refinement of these methods and characterization of found conceptual overlaps could allow automated discovery of collaboration opportunities that are currently missed.

  18. A Summary of Publications on Methods and Tools for Assessing Cumulative Risk, Project Summary

    EPA Science Inventory

    This collection of eight publications on cumulative risk assessment was developed collaboratively among scientists within EPA’s Office of Research and Development and three other organizations. These include scientific collaborations through an Interagency Agreement with Argonne...

  19. Dengue research networks: building evidence for policy and planning in Brazil.

    PubMed

    de Paula Fonseca E Fonseca, Bruna; Zicker, Fabio

    2016-11-08

    The analysis of scientific networks has been applied in health research to map and measure relationships between researchers and institutions, describing collaboration structures, individual roles, and research outputs, and helping the identification of knowledge gaps and cooperation opportunities. Driven by dengue continued expansion in Brazil, we explore the contribution, dynamics and consolidation of dengue scientific networks that could ultimately inform the prioritisation of research, financial investments and health policy. Social network analysis (SNA) was used to produce a 20-year (1995-2014) retrospective longitudinal evaluation of dengue research networks within Brazil and with its partners abroad, with special interest in describing institutional collaboration and their research outputs. The analysis of institutional co-authorship showed a significant expansion of collaboration over the years, increased international involvement, and ensured a shift from public health research toward vector control and basic biomedical research, probably as a reflection of the expansion of transmission, high burden and increasing research funds from the Brazilian government. The analysis identified leading national organisations that maintained the research network connectivity, facilitated knowledge exchange and reduced network vulnerability. SNA proved to be a valuable tool that, along with other indicators, can strengthen a knowledge platform to inform future policy, planning and funding decisions. The paper provides relevant information to policy and planning for dengue research as it reveals: (1) the effectiveness of the research network in knowledge generation, sharing and diffusion; (2) the near-absence of collaboration with the private sector; and (3) the key central organisations that can support strategic decisions on investments, development and implementation of innovations. In addition, the increase in research activities and collaboration has not yet significantly affected dengue transmission, suggesting a limited translation of research efforts into public health solutions.

  20. Setting up spaces for collaboration in industry between researchers from the natural and social sciences.

    PubMed

    Flipse, Steven M; van der Sanden, Maarten C A; Osseweijer, Patricia

    2014-03-01

    Policy makers call upon researchers from the natural and social sciences to collaborate for the responsible development and deployment of innovations. Collaborations are projected to enhance both the technical quality of innovations, and the extent to which relevant social and ethical considerations are integrated into their development. This could make these innovations more socially robust and responsible, particularly in new and emerging scientific and technological fields, such as synthetic biology and nanotechnology. Some researchers from both fields have embarked on collaborative research activities, using various Technology Assessment approaches and Socio-Technical Integration Research activities such as Midstream Modulation. Still, practical experience of collaborations in industry is limited, while much may be expected from industry in terms of socially responsible innovation development. Experience in and guidelines on how to set up and manage such collaborations are not easily available. Having carried out various collaborative research activities in industry ourselves, we aim to share in this paper our experiences in setting up and working in such collaborations. We highlight the possibilities and boundaries in setting up and managing collaborations, and discuss how we have experienced the emergence of 'collaborative spaces.' Hopefully our findings can facilitate and encourage others to set up collaborative research endeavours.

  1. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    PubMed

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy.

  2. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    PubMed Central

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy. PMID:27428071

  3. Measuring Turbulence Mixing in Indonesian Seas Using Microstructure EM-APEX Floats

    DTIC Science & Technology

    We developed scientific plans for collaborative observational programs with Indonesian,Taiwanese, and Japanese researchers. We worked with Taiwanese...and Japanese researchers to plan and execute turbulence experiments using autonomous platforms in the SCS and Kuroshio Current. Our primary platform...and the Applied Physics Laboratory, University of Washington. We are working closely with Japanese collaborators to develop a turbulence observation

  4. Aleksandar Kubičcela (1930-2017) - An Astrophysical Research Pioneer at the Astronomical Observatory of Belgrade

    NASA Astrophysics Data System (ADS)

    Popović, L. Č.; Vince, I.

    2018-06-01

    Here, we give a short biography and summary of scientific contributions of Aleksandar Kubičela, a doyen of astronomy in Serbia, and an astrophysical research pioneer at the Astronomical Observatory of Belgrade. Additionally, we evoke some of our memories concerning scientific collaboration with Aleksandar Kubičcela.

  5. Scientist-teacher collaboration: Integration of real data from a coastal wetland into a high school life science ecology-based research project

    NASA Astrophysics Data System (ADS)

    Hagan, Wendy L.

    Project G.R.O.W. is an ecology-based research project developed for high school biology students. The curriculum was designed based on how students learn and awareness of the nature of science and scientific practices so that students would design and carry out scientific investigations using real data from a local coastal wetland. This was a scientist-teacher collaboration between a CSULB biologist and high school biology teacher. Prior to implementing the three-week research project, students had multiple opportunities to practice building requisite skills via 55 lessons focusing on the nature of science, scientific practices, technology, Common Core State Standards of reading, writing, listening and speaking, and Next Generation Science Standards. Project G.R.O.W. culminated with student generated research papers and oral presentations. Outcomes reveal students struggle with constructing explanations and the use of Excel to create meaningful graphs. They showed gains in data organization, analysis, teamwork and aspects of the nature of science.

  6. Energy and scientific communication

    NASA Astrophysics Data System (ADS)

    De Sanctis, E.

    2013-06-01

    Energy communication is a paradigmatic case of scientific communication. It is particularly important today, when the world is confronted with a number of immediate, urgent problems. Science communication has become a real duty and a big challenge for scientists. It serves to create and foster a climate of reciprocal knowledge and trust between science and society, and to establish a good level of interest and enthusiasm for research. For an effective communication it is important to establish an open dialogue with the audience, and a close collaboration among scientists and science communicators. An international collaboration in energy communication is appropriate to better support international and interdisciplinary research and projects.

  7. The Integrating Role of the LBA and the LPB Programs as an Example of Cyberinfrastructures in International Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Dias, P. L.

    2007-05-01

    International science collaboration is a key component of research programs such as the The Large Scale Biosphere Atmosphere Interaction Program (LBA) and the La Plata Basin Project (LPB). Both are programs with crosscutting science questions permeating different areas of knowledge related to the functioning of the natural and agricultural ecosystems in the Amazon system (LBA) and the change in the hydrological, agricultural and social systems of the Plata Basin (LPB) ecosystem under natural climatic variability and climate change. Both programs are strongly related to GEWEX, CLIVAR and IGBP and are based on extensive use of data information system (LBA/LPB/DIS) with mirror sites in the US, Europe and South America. These international programs have a significant impact in building up regional scientific capabilities at all levels of education and triggered the establishment of new research groups located in remote areas of South America. The cyberinfrastructure has been fundamental to promote the integration of the research groups, and a remarkable feedback with the operational forecasting systems has been detected. The LBA/LPB should be used as examples on how to promote international scientific and operational collaboration.

  8. Research trends and perspectives of male infertility: a bibliometric analysis of 20 years of scientific literature.

    PubMed

    Zhang, Y; Xiao, F; Lu, S; Song, J; Zhang, C; Li, J; Gu, K; Lan, A; Lv, B; Zhang, R; Mo, F; Jiang, G; Zhang, X; Yang, X

    2016-11-01

    To carry out an in-depth analysis of the scientific research on male infertility, we performed the first bibliometric analysis focusing on studies involving male infertility worldwide during the period 1995-2014. Analysis of 6357 articles in the field of male infertility showed a significant increasing trend in the number of publications over the period 1995-2014. Obstetrics and Gynecology was an important subject category and Multidisciplinary Sciences was the newest interest. Authors were mainly from Europe and USA, with researchers from Cleveland Clinic producing the most articles, and those from the Tel Aviv Sourasky Medical Center and the University of Utah having the highest-quality articles. The USA contributed the most independent and international collaborative articles. The Cleveland Clinic and the University of Munster were the most productive institutions. The Cleveland Clinic and the University of Giessen had the most international collaboration publications. Harvard University had the most collaborators. The most common interests were pathogenesis and therapy, and new interests were hypogonadism, obesity, and cryopreservation. In conclusion, rapid development of the male infertility field was observed. Overall, collaborative and multidisciplinary science research has become more popular. The USA and its institutions play a dominant role, followed by European countries. Thanks to the common research focus worldwide, more insight into male fertility has been gained in the scientific literature over the past 20 years. [Correction added on September 21, 2016, after online publication: the term "institute" has been replaced by the term "institution" throughout the text.]. © 2016 American Society of Andrology and European Academy of Andrology.

  9. Best Practices of Collaboration in Arctic Research: How to Succeed, or Fail, in Cross-Disciplinary Efforts

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.

    2014-12-01

    The rapid physical and social changes currently underway in the Arctic - and changes in the way in which we study and manage the region - require coordinated research efforts to improve our understanding of the Arctic's physical, biological, and social systems. At the same time, policy-makers and Arctic communities need decision-support tools and synthesized information to respond and adapt to the "new arctic". There are enormous challenges, however, in collaboration among the disparate groups of people needed for such efforts. A carefully planned strategic approach is required to bridge the scientific disciplinary and organizational boundaries, foster cooperation between local communities and science programs, and effectively communicate between scientists and policy-makers. Efforts must draw on bodies of knowledge from project management, strategic planning, organizational development, group dynamics, and other fields. In addition, collaborations between scientific disciplines face challenges unique to scientific culture. This poster presentation will discuss best practices of building and sustaining networks of people to catalyze successful cross-disciplinary activities. Specific examples and case studies - both successes and failures - will be presented that draw on several projects at the Arctic Research Consortium of the U.S. (ARCUS; www.arcus.org), a nonprofit membership organization composed of universities and institutions that have a substantial commitment to research in the Arctic.

  10. Collaborative Posters Develop Students' Ability to Communicate about Undervalued Scientific Resources to Nonscientists.

    PubMed

    Mayfield, Teresa J; Olimpo, Jeffrey T; Floyd, Kevin W; Greenbaum, Eli

    2018-01-01

    Scientists are increasingly called upon to communicate with the public, yet most never receive formal training in this area. Public understanding is particularly critical to maintaining support for undervalued resources such as biological collections, research data repositories, and expensive equipment. We describe activities carried out in an inquiry-driven organismal biology laboratory course designed to engage a diverse student body using biological collections. The goals of this cooperative learning experience were to increase students' ability to locate and comprehend primary research articles, and to communicate the importance of an undervalued scientific resource to nonscientists. Our results indicate that collaboratively created, research-focused informational posters are an effective tool for achieving these goals and may be applied in other disciplines or classroom settings.

  11. NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - ACCOMPLISHMENTS FOR FY 2001

    EPA Science Inventory

    This Annual Report showcases some of the scientific activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. Where appropriate, the contributions of other collaborating research organizat...

  12. IAI Global Change Agenda and Support of Higher Education in the Andean Amazon Countries.

    NASA Astrophysics Data System (ADS)

    Galarraga, R.; McClain, M.; Fierro, V.

    2007-05-01

    The Andean Amazon River Analysis and Management project, an IAI Collaborative Research Network operating during 1999-2004, examined the impacts of climate and land-use changes on the hydrobiogeochemistry of rivers draining the Amazon Andes of Ecuador, Peru, Colombia and Bolivia. The project also provided a means to strengthen scientific collaboration among these Andean countries and the USA. Research in these countries was carried out under the guidance of investigators with backgrounds in the relevant environmental fields, but the bulk of the research activities were carried out by undergraduate and graduate students who studied within these countries and overseas. Twenty graduate students and 15 undergraduates completed studies within the project, in topics related to monitoring hydrometeorological variables both in time and space. Student research and capacity building were focused in areas central to global environmental change, including modeling of precipitation and precipitation-runoff processes, basin-scale water quality characterization and biogeochemical cycling, and socioeconomic controls on the use and management of riverine resources. The analysis of human dimension aspects of climate change research was also featured, especially those aspects that linked the consequences of water quality degradation on human health. Most of undergraduate and graduate students that collaborated in the AARAM project have joined national environmental institutions and some have continued for higher scientific degrees in fields closely related to the IAI scientific agenda. Through this IAI initiative, the number of trained global change scientists in the Andean countries has grown and there is enhanced awareness of key global change science issues among the scientific community.

  13. Collaboration for rare disease drug discovery research.

    PubMed

    Litterman, Nadia K; Rhee, Michele; Swinney, David C; Ekins, Sean

    2014-01-01

    Rare disease research has reached a tipping point, with the confluence of scientific and technologic developments that if appropriately harnessed, could lead to key breakthroughs and treatments for this set of devastating disorders. Industry-wide trends have revealed that the traditional drug discovery research and development (R&D) model is no longer viable, and drug companies are evolving their approach. Rather than only pursue blockbuster therapeutics for heterogeneous, common diseases, drug companies have increasingly begun to shift their focus to rare diseases. In academia, advances in genetics analyses and disease mechanisms have allowed scientific understanding to mature, but the lack of funding and translational capability severely limits the rare disease research that leads to clinical trials. Simultaneously, there is a movement towards increased research collaboration, more data sharing, and heightened engagement and active involvement by patients, advocates, and foundations. The growth in networks and social networking tools presents an opportunity to help reach other patients but also find researchers and build collaborations. The growth of collaborative software that can enable researchers to share their data could also enable rare disease patients and foundations to manage their portfolio of funded projects for developing new therapeutics and suggest drug repurposing opportunities. Still there are many thousands of diseases without treatments and with only fragmented research efforts. We will describe some recent progress in several rare diseases used as examples and propose how collaborations could be facilitated. We propose that the development of a center of excellence that integrates and shares informatics resources for rare diseases sponsored by all of the stakeholders would help foster these initiatives.

  14. Collaboration for rare disease drug discovery research

    PubMed Central

    Litterman, Nadia K.; Rhee, Michele; Swinney, David C.; Ekins, Sean

    2014-01-01

    Rare disease research has reached a tipping point, with the confluence of scientific and technologic developments that if appropriately harnessed, could lead to key breakthroughs and treatments for this set of devastating disorders. Industry-wide trends have revealed that the traditional drug discovery research and development (R&D) model is no longer viable, and drug companies are evolving their approach. Rather than only pursue blockbuster therapeutics for heterogeneous, common diseases, drug companies have increasingly begun to shift their focus to rare diseases. In academia, advances in genetics analyses and disease mechanisms have allowed scientific understanding to mature, but the lack of funding and translational capability severely limits the rare disease research that leads to clinical trials. Simultaneously, there is a movement towards increased research collaboration, more data sharing, and heightened engagement and active involvement by patients, advocates, and foundations. The growth in networks and social networking tools presents an opportunity to help reach other patients but also find researchers and build collaborations. The growth of collaborative software that can enable researchers to share their data could also enable rare disease patients and foundations to manage their portfolio of funded projects for developing new therapeutics and suggest drug repurposing opportunities. Still there are many thousands of diseases without treatments and with only fragmented research efforts. We will describe some recent progress in several rare diseases used as examples and propose how collaborations could be facilitated. We propose that the development of a center of excellence that integrates and shares informatics resources for rare diseases sponsored by all of the stakeholders would help foster these initiatives. PMID:25685324

  15. Analysis of Scientific Production in Food Science from 2003 to 2013.

    PubMed

    Guerrero-Bote, Vicente P; Moya-Anegón, Félix

    2015-12-01

    Food Science is an active discipline in scientific research. The improvements in Food Technology constitute a challenge for society to eradicate hunger, while achieving food safety. This work analyses the scientific production in Food Science of the 25 countries with the greatest output in this subject area in the period 2003 to 2013. The growth of China's production was striking, with the country becoming top-ranked by the end of the period. Some developing countries (such as Nigeria) achieved a major increase in production but reducing their proportion of scientific collaboration and their works' impact. There appear to be 2 international collaboration networks that get good results--one European and the other Pacific. © 2015 Institute of Food Technologists®

  16. Characteristics of Pre-Service Teachers' Online Discourse: The Study of Local Streams

    NASA Astrophysics Data System (ADS)

    Liang, Ling L.; Ebenezer, Jazlin; Yost, Deborah S.

    2010-02-01

    This study describes the characteristics of pre-service teachers' discourse on a WebCT Bulletin Board in their investigations of local streams in an integrated mathematics and science course. A qualitative analysis of data revealed that the pre-service teachers conducted collaborative discourse in framing their research questions, conducting research and writing reports. The science teacher educator provided feedback and carefully crafted prompts to help pre-service teachers develop and refine their work. Overall, the online discourse formats enhance out-of-class communication and support collaborative group work. But the discourse on the critical examination of one another's point of views rooted in scientific inquiry appeared to be missing. It is suggested that pre-service teachers should be given more guidance and opportunities in science courses in carrying out scientific discourse that reflects reform-based scientific inquiry.

  17. International Cancer Proteogenome Consortium | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The International Cancer Proteogenome Consortium (ICPC), is a voluntary scientific organization that provides a forum for collaboration among some of the world's leading cancer and proteogenomic research centers.

  18. Sierra Nevada Science Review

    Treesearch

    Constance Millar; Amy Lind; Rowan Rowntree; Carl Skinner; Jared Verner; Bill Zielinski; Robert Ziemer

    1998-01-01

    In January, 1998, the Pacific Southwest Region and Pacific Southwest Research Station of the Forest Service initiated a collaborative effort to incorporate new information into planning future management of Sierra Nevada national forests. The project, known as the Sierra Nevada Framework for Conservation and Collaboration, will incorporate the latest scientific...

  19. Investigating global change, environmental response, and adaptation: Jill Baron's 30 years as an ecosystem ecologist

    USGS Publications Warehouse

    Wilson, J.T.

    2012-01-01

    Three decades of research, 145 publications (including two books), 15 graduate students, leadership in scientific organizations, invited talks around the world, and two collaborative entities that facilitate scientific synthesis—it’s a lot to pack into one career. But USGS research ecologist and Colorado State University senior scientist Jill Baron isn’t finished yet.

  20. Office of Science User Facilities Summary Report, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-01-01

    The U.S. Department of Energy Office of Science provides the Nation’s researchers with worldclass scientific user facilities to propel the U.S. to the forefront of science and innovation. A user facility is a federally sponsored research facility available for external use to advance scientific or technical knowledge under the following conditions: open, accessible, free, collaborative, competitive, and unique.

  1. Methods for structuring scientific knowledge from many areas related to aging research.

    PubMed

    Zhavoronkov, Alex; Cantor, Charles R

    2011-01-01

    Aging and age-related disease represents a substantial quantity of current natural, social and behavioral science research efforts. Presently, no centralized system exists for tracking aging research projects across numerous research disciplines. The multidisciplinary nature of this research complicates the understanding of underlying project categories, the establishment of project relations, and the development of a unified project classification scheme. We have developed a highly visual database, the International Aging Research Portfolio (IARP), available at AgingPortfolio.org to address this issue. The database integrates information on research grants, peer-reviewed publications, and issued patent applications from multiple sources. Additionally, the database uses flexible project classification mechanisms and tools for analyzing project associations and trends. This system enables scientists to search the centralized project database, to classify and categorize aging projects, and to analyze the funding aspects across multiple research disciplines. The IARP is designed to provide improved allocation and prioritization of scarce research funding, to reduce project overlap and improve scientific collaboration thereby accelerating scientific and medical progress in a rapidly growing area of research. Grant applications often precede publications and some grants do not result in publications, thus, this system provides utility to investigate an earlier and broader view on research activity in many research disciplines. This project is a first attempt to provide a centralized database system for research grants and to categorize aging research projects into multiple subcategories utilizing both advanced machine algorithms and a hierarchical environment for scientific collaboration.

  2. Building Research Cyberinfrastructure at Small/Medium Research Institutions

    ERIC Educational Resources Information Center

    Agee, Anne; Rowe, Theresa; Woo, Melissa; Woods, David

    2010-01-01

    A 2006 ECAR study defined cyberinfrastructure as the coordinated aggregate of "hardware, software, communications, services, facilities, and personnel that enable researchers to conduct advanced computational, collaborative, and data-intensive research." While cyberinfrastructure was initially seen as support for scientific and…

  3. Connecting Hydrologic Research and Management in American Samoa through Collaboration and Capacity Building

    NASA Astrophysics Data System (ADS)

    Shuler, C. K.; El-Kadi, A. I.; Dulai, H.; Glenn, C. R.; Mariner, M. K. E.; DeWees, R.; Schmaedick, M.; Gurr, I.; Comeros, M.; Bodell, T.

    2017-12-01

    In small-island developing communities, effective communication and collaboration with local stakeholders is imperative for successful implementation of hydrologic or other socially pertinent research. American Samoa's isolated location highlights the need for water resource sustainability, and effective scientific research is a key component to addressing critical challenges in water storage and management. Currently, aquifer degradation from salt-water-intrusion or surface-water contaminated groundwater adversely affects much of the islands' municipal water supply, necessitating an almost decade long Boil-Water-Advisory. This presentation will share the approach our research group, based at the University of Hawaii Water Resources Research Center, has taken for successfully implementing a collaboration-focused water research program in American Samoa. Instead of viewing research as a one-sided activity, our program seeks opportunities to build local capacity, develop relationships with key on-island stakeholders, and involve local community through forward-looking projects. This presentation will highlight three applications of collaborative research with water policy and management, water supply and sustainability, and science education stakeholders. Projects include: 1) working with the island's water utility to establish a long-term hydrological monitoring network, motivated by a need for data to parameterize numerical groundwater models, 2) collaboration with the American Samoa Environmental Protection Agency to better understand groundwater discharge and watershed scale land-use impacts for management of nearshore coral reef ecosystems, and 3) participation of local community college and high school students as research interns to increase involvement in, and exposure to socially pertinent water focused research. Through these innovative collaborative approaches we have utilized resources more effectively, and focused research efforts on more pertinent locally-driven research questions. Additionally, this approach has enhanced our ability to provide technical support and knowledge transfer for on-island scientific needs, and helped overcome data availability barriers faced by water managers, planners, and future investigators.

  4. Diversity of social ties in scientific collaboration networks

    NASA Astrophysics Data System (ADS)

    Shi, Quan; Xu, Bo; Xu, Xiaomin; Xiao, Yanghua; Wang, Wei; Wang, Hengshan

    2011-11-01

    Diversity is one of the important perspectives to characterize behaviors of individuals in social networks. It is intuitively believed that diversity of social ties accounts for competition advantage and idea innovation. However, quantitative evidences in a real large social network can be rarely found in the previous research. Thanks to the availability of scientific publication records on WWW; now we can construct a large scientific collaboration network, which provides us a chance to gain insight into the diversity of relationships in a real social network through statistical analysis. In this article, we dedicate our efforts to perform empirical analysis on a scientific collaboration network extracted from DBLP, an online bibliographic database in computer science, in a systematical way, finding the following: distributions of diversity indices tend to decay in an exponential or Gaussian way; diversity indices are not trivially correlated to existing vertex importance measures; authors of diverse social ties tend to connect to each other and these authors are generally more competitive than others.

  5. Is it all in the game? Flow experience and scientific practices during an INPLACE mobile game

    NASA Astrophysics Data System (ADS)

    Bressler, Denise M.

    Mobile science learning games show promise for promoting scientific practices and high engagement. Researchers have quantified this engagement according to flow theory. Using an embedded mixed methods design, this study investigated whether an INPLACE mobile game promotes flow experience, scientific practices, and effective team collaboration. Students playing the game (n=59) were compared with students in a business-as-usual control activity (n=120). Using an open-ended instrument designed to measure scientific practices and a self-report flow survey, this study empirically assessed flow and learner's scientific practices. The game players had significantly higher levels of flow and scientific practices. Using a multiple case study approach, collaboration among game teams (n=3 teams) were qualitatively compared with control teams (n=3 teams). Game teams revealed not only higher levels of scientific practices but also higher levels of engaged responses and communal language. Control teams revealed lower levels of scientific practice along with higher levels of rejecting responses and command language. Implications for these findings are discussed.

  6. Joint the Center for Applied Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, Todd; Bremer, Timo; Van Essen, Brian

    The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.

  7. How have the Eastern European countries of the former Warsaw Pact developed since 1990? A bibliometric study.

    PubMed

    Kozak, Marcin; Bornmann, Lutz; Leydesdorff, Loet

    Did the demise of the Soviet Union in 1991 influence the scientific performance of the researchers in Eastern European countries? Did this historical event affect international collaboration by researchers from the Eastern European countries with those of Western countries? Did it also change international collaboration among researchers from the Eastern European countries? Trying to answer these questions, this study aims to shed light on international collaboration by researchers from the Eastern European countries (Russia, Ukraine, Belarus, Moldova, Bulgaria, the Czech Republic, Hungary, Poland, Romania, and Slovakia). The number of publications and normalized citation impact values are compared for these countries based on InCites (Thomson Reuters), from 1981 up to 2011. The international collaboration by researchers affiliated to institutions in Eastern European countries at the time points of 1990, 2000 and 2011 was studied with the help of Pajek and VOSviewer software, based on data from the Science Citation Index (Thomson Reuters). Our results show that the breakdown of the communist regime did not lead, on average, to a huge improvement in the publication performance of the Eastern European countries and that the increase in international co-authorship relations by the researchers affiliated to institutions in these countries was smaller than expected. Most of the Eastern European countries are still subject to changes and are still awaiting their boost in scientific development.

  8. Crowdsourcing Scientific Work: A Comparative Study of Technologies, Processes, and Outcomes in Citizen Science

    ERIC Educational Resources Information Center

    Wiggins, Andrea

    2012-01-01

    Citizen science projects involve the public with scientists in collaborative research. Information and communication technologies for citizen science can enable massive virtual collaborations based on voluntary contributions by diverse participants. As the popularity of citizen science increases, scientists need a more thorough understanding of…

  9. Comparing Students' Individual Written and Collaborative Oral Socioscientific Arguments

    ERIC Educational Resources Information Center

    Knight, Amanda M.; McNeill, Katherine L.

    2015-01-01

    Constructing and critiquing scientific arguments has become an increasingly important goal for science education. Yet, the differences in the ways students construct collaborative oral and individual written socioscientific arguments are not well established. Our research with one middle school class in an urban New England school district…

  10. An Active, Collaborative Approach to Learning Skills in Flow Cytometry

    ERIC Educational Resources Information Center

    Fuller, Kathryn; Linden, Matthew D.; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N.; Röhrig, Kimberley J.

    2016-01-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow…

  11. This presentation will discuss how PLOS ONE collaborates with many different scientific communities to help create, share, and preserve the scholarly works produced by their researchers with emphasis on current common difficulties faced by communities, practical solutions, and a broader view of the importance of open data and reproducibility.

    NASA Astrophysics Data System (ADS)

    Kroffe, K.

    2017-12-01

    The mission of the Public Library of Science is to accelerate progress in science and medicine by leading a transformation in research communication. Researchers' ability to share their work without restriction is essential, but critical to sharing is open data, transparency in peer review, and an open approach to science assessment. In this session, we will discuss how PLOS ONE collaborates with many different scientific communities to help create, share, and preserve the scholarly works produced by their researchers with emphasis on current common difficulties faced by communities, practical solutions, and a broader view of the importance of open data and reproducibility.

  12. Benchmarking the scientific output of industrial wastewater research in Arab world by utilizing bibliometric techniques.

    PubMed

    Zyoud, Shaher H; Al-Rawajfeh, Aiman E; Shaheen, Hafez Q; Fuchs-Hanusch, Daniela

    2016-05-01

    Rapid population growth, worsening of the climate, and severity of freshwater scarcity are global challenges. In Arab world countries, where water resources are becoming increasingly scarce, the recycling of industrial wastewater could improve the efficiency of freshwater use. The benchmarking of scientific output of industrial wastewater research in the Arab world is an initiative that could support in shaping up and improving future research activities. This study assesses the scientific output of industrial wastewater research in the Arab world. A total of 2032 documents related to industrial wastewater were retrieved from 152 journals indexed in the Scopus databases; this represents 3.6 % of the global research output. The h-index of the retrieved documents was 70. The total number of citations, at the time of data analysis, was 34,296 with an average citation of 16.88 per document. Egypt, with a total publications of 655 (32.2 %), was ranked the first among the Arab countries followed by Saudi Arabia 300 (14.7 %) and Tunisia 297 (14.6 %). Egypt also had the highest h-index, assumed with Saudi Arabia, the first place in collaboration with other countries. Seven hundred fifteen (35.2 %) documents with 66 countries in Arab/non-Arab country collaborations were identified. Arab researchers collaborated mostly with researchers from France 239 (11.7 %), followed by the USA 127 (6.2 %). The top active journal was Desalination 126 (6.2 %), and the most productive institution was the National Research Center, Egypt 169 (8.3 %), followed by the King Abdul-Aziz University, Saudi Arabia 75 (3.7 %). Environmental Science was the most prevalent field of interest 930 (45.8 %). Despite the promising indicators, there is a need to close the gap in research between the Arab world and the other nations. Optimizing the investments and developing regional experiences are key factors to promote the scientific research.

  13. Scientometric indicators for Brazilian research on High Energy Physics, 1983-2013.

    PubMed

    Alvarez, Gonzalo R; Vanz, Samile A S; Barbosa, Marcia C

    2017-01-01

    This article presents an analysis of Brazilian research on High Energy Physics (HEP) indexed by Web of Science (WoS) from 1983 to 2013. Scientometric indicators for output, collaboration and impact were used to characterize the field under study. The results show that the Brazilian articles account for 3% of total HEP research worldwide and that the sharp rise in the scientific activity between 2009 and 2013 may have resulted from the consolidation of graduate programs, the increase of the funding and of the international collaboration as well as the implementation of the Rede Nacional de Física de Altas Energias (RENAFAE) in 2008. Our results also indicate that the collaboration patterns in terms of the authors, the institutions and the countries confirm the presence of Brazil in multinational Big Science experiments, which may also explain the prevalence of foreign citing documents (all types), emphasizing the international prestige and visibility of the output of Brazilian scientists. We concluded that the scientometric indicators suggested scientific maturity in the Brazilian HEP community due to its long history of experimental research.

  14. Collaborative research: Accomplishments & potential

    PubMed Central

    Katsouyanni, Klea

    2008-01-01

    Although a substantial part of scientific research is collaborative and increasing globalization will probably lead to its increase, very few studies actually investigate the advantages, disadvantages, experiences and lessons learned from collaboration. In environmental epidemiology interdisciplinary collaboration is essential and the contrasting geographical patterns in exposure and disease make multi-location projects essential. This paper is based on a presentation given at the Annual Conference of the International Society for Environmental Epidemiology, Paris 2006, and is attempting to initiate a discussion on a framework for studying collaborative research. A review of the relevant literature showed that indeed collaborative research is rising, in some countries with impressive rates. However, there are substantial differences between countries in their outlook, need and respect for collaboration. In many situations collaborative publications receive more citations than those based on national authorship. The European Union is the most important host of collaborative research, mainly driven by the European Commission through the Framework Programmes. A critical assessment of the tools and trends of collaborative networks under FP6, showed that there was a need for a critical revision, which led to changes in FP7. In conclusion, it is useful to study the characteristics of collaborative research and set targets for the future. The added value for science and for the researchers involved may be assessed. The motivation for collaboration could be increased in the more developed countries. Particular ways to increase the efficiency and interaction in interdisciplinary and intercultural collaboration may be developed. We can work towards "the principles of collaborative research" in Environmental Epidemiology. PMID:18208596

  15. Constructing Scientific Applications from Heterogeneous Resources

    NASA Technical Reports Server (NTRS)

    Schichting, Richard D.

    1995-01-01

    A new model for high-performance scientific applications in which such applications are implemented as heterogeneous distributed programs or, equivalently, meta-computations, is investigated. The specific focus of this grant was a collaborative effort with researchers at NASA and the University of Toledo to test and improve Schooner, a software interconnection system, and to explore the benefits of increased user interaction with existing scientific applications.

  16. Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    2008-05-01

    The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.

  17. The LARI Experience - Young Stellar Light Curves

    NASA Astrophysics Data System (ADS)

    Cook, Michael J.; Coveyl, Kevin; Heiland, Leo; Steffens, Gary W.

    2015-05-01

    The Lowell Observatory has had a long and rich history of professional-amateur (Pro-Am) collaborations beginning with the observatory's founder, Percival Lowell. The Lowell Amateur Research Initiative (LARI) was launched in 2012 to formally involve amateur astronomers in scientific research by bringing them to the attention of and helping professional astronomers with their research endeavours. One of the LARI projects is the BVRI photometric monitoring of Young Stellar Objects (YSOs), wherein amateurs obtain observations to search for new outburst events and characterize the colour evolution of previously identified outbursters. We summarize the scientific and organizational aspects of this LARI program, including its goals and science motivation, the process for getting involved with the project, the current team members and their equipment, our unique methods of collaboration, programme stars, preliminary findings, and lessons learned.

  18. An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the Natural Standard Research Collaboration.

    PubMed

    Ulbricht, Catherine; Basch, Ethan; Cheung, Lisa; Goldberg, Harley; Hammerness, Paul; Isaac, Richard; Khalsa, Karta Purkh Singh; Romm, Aviva; Rychlik, Idalia; Varghese, Minney; Weissner, Wendy; Windsor, Regina C; Wortley, Jayme

    2014-03-01

    An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.

  19. Animal Research, the 3Rs, and the "Internet of Things": Opportunities and Oversight in International Pharmaceutical Development.

    PubMed

    Niemi, Steven M; Davies, Gail F

    2016-12-01

    Stages of drug (and vaccine) discovery and evaluation that involve laboratory animals increasingly occur via scientific collaborations across national borders and continents. Many of these research collaborations are between asset-rich institutions and others in less wealthy parts of the world. The care and use of laboratory animals in geographically disparate locations introduces new complexities, such as different oversight requirements and available resources, as well as diverse organizational and cultural milieus. These complexities can hamper the effectiveness of local animal welfare committees and regulatory compliance, as well as compromise good science and animal welfare. At the same time, new technologies are becoming available that offer greater transparency in how these collaborations and their animal subjects are faring in real time that, in turn, can enable progress towards the 3 Rs. The focus of this essay is to identify potential rewards and risks stemming from new techniques for producing and connecting data in preclinical pharmaceutical development and consider how further social scientific investigations have the potential to enhance the benefits of international research collaborations for both human health and animal welfare. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Major Programs | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention supports major scientific collaborations, research networks, investigator-initiated grants, postdoctoral training, and specialized resources across the United States. |

  1. Contemporary HIV/AIDS research: Insights from knowledge management theory.

    PubMed

    Callaghan, Chris William

    2017-12-01

    Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn's paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the 'crowd,' thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process.

  2. The paradox of scientific excellence and the search for productivity in pharmaceutical research and development.

    PubMed

    Grasela, T H; Slusser, R

    2014-05-01

    Scientific advances in specialty areas are proceeding at a rapid rate, but the research and development enterprise seems unable to take full advantage. Harnessing the steady stream of knowledge and inventions from different disciplines is the critical management issue of our time. This article suggests a framework for a management-directed effort to improve productivity by enhancing interdisciplinary collaboration.

  3. Titles of Scientific Letters and Research Papers in Astrophysics: A Comparative Study of Some Linguistic Aspects and Their Relationship with Collaboration Issues

    ERIC Educational Resources Information Center

    Méndez, David I.; Alcaraz, M. Ángeles

    2017-01-01

    In this study we compare the titles of scientific letters and those of research papers published in the field of astrophysics in order to identify the possible differences and/or similarities between both genres in terms of several linguistic and extra-linguistic variables (length, lexical density, number of prepositions, number of compound…

  4. An introduction to the composition of the Multi-Site University Study of Identity and Culture (MUSIC): a collaborative approach to research and mentorship.

    PubMed

    Weisskirch, Robert S; Zamboanga, Byron L; Ravert, Russell D; Whitbourne, Susan Krauss; Park, Irene J K; Lee, Richard M; Schwartz, Seth J

    2013-04-01

    The Multi-Site University Study of Identity and Culture (MUSIC) is the product of a research collaboration among faculty members from 30 colleges and universities from across the United States. Using Katz and Martin's (1997, p. 7) definition, the MUSIC research collaboration is "the working together of researchers to achieve the common goals of producing new scientific knowledge." The collaboration involved more than just coauthorship; it served "as a strategy to insert more energy, optimism, creativity and hope into the work of [researchers]" (Conoley & Conoley, 2010, p. 77). The philosophy underlying the MUSIC collaborative was intended to foster natural collaborations among researchers, to provide opportunities for scholarship and mentorship for early career and established researchers, and to support exploration of identity, cultural, and ethnic/racial research ideas by tapping the expertise and interests of the broad MUSIC network of collaborators. In this issue, five research articles present innovative findings from the MUSIC datasets. There are two themes across the articles. Research is emerging about broadening the constructs and measures of acculturation and ethnic identity and their relation to health risk behaviors and psychosocial and mental health outcomes. The second theme is about the relationship of perceived discrimination on behavioral and mental health outcomes among immigrant populations.

  5. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    NASA Astrophysics Data System (ADS)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  6. Collaborative Research to Advance Precision Medicine in the Post-Genomic World | Office of Cancer Genomics

    Cancer.gov

    My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.

  7. Integrating visualization and interaction research to improve scientific workflows.

    PubMed

    Keefe, Daniel F

    2010-01-01

    Scientific-visualization research is, nearly by necessity, interdisciplinary. In addition to their collaborators in application domains (for example, cell biology), researchers regularly build on close ties with disciplines related to visualization, such as graphics, human-computer interaction, and cognitive science. One of these ties is the connection between visualization and interaction research. This isn't a new direction for scientific visualization (see the "Early Connections" sidebar). However, momentum recently seems to be increasing toward integrating visualization research (for example, effective visual presentation of data) with interaction research (for example, innovative interactive techniques that facilitate manipulating and exploring data). We see evidence of this trend in several places, including the visualization literature and conferences.

  8. Scientific authorship and collaboration network analysis on malaria research in Benin: papers indexed in the web of science (1996-2016).

    PubMed

    Azondekon, Roseric; Harper, Zachary James; Agossa, Fiacre Rodrigue; Welzig, Charles Michael; McRoy, Susan

    2018-01-01

    To sustain the critical progress made, prioritization and a multidisciplinary approach to malaria research remain important to the national malaria control program in Benin. To document the structure of the malaria collaborative research in Benin, we analyze authorship of the scientific documents published on malaria from Benin. We collected bibliographic data from the Web Of Science on malaria research in Benin from January 1996 to December 2016. From the collected data, a mulitigraph co-authorship network with authors representing vertices was generated. An edge was drawn between two authors when they co-author a paper. We computed vertex degree, betweenness, closeness, and eigenvectors among others to identify prolific authors. We further assess the weak points and how information flow in the network. Finally, we perform a hierarchical clustering analysis, and Monte-Carlo simulations. Overall, 427 publications were included in this study. The generated network contained 1792 authors and 116,388 parallel edges which converted in a weighted graph of 1792 vertices and 95,787 edges. Our results suggested that prolific authors with higher degrees tend to collaborate more. The hierarchical clustering revealed 23 clusters, seven of which form a giant component containing 94% of all the vertices in the network. This giant component has all the characteristics of a small-world network with a small shortest path distance between pairs of three, a diameter of 10 and a high clustering coefficient of 0.964. However, Monte-Carlo simulations suggested our observed network is an unusual type of small-world network. Sixteen vertices were identified as weak articulation points within the network. The malaria research collaboration network in Benin is a complex network that seems to display the characteristics of a small-world network. This research reveals the presence of closed research groups where collaborative research likely happens only between members. Interdisciplinary collaboration tends to occur at higher levels between prolific researchers. Continuously supporting, stabilizing the identified key brokers and most productive authors in the Malaria research collaborative network is an urgent need in Benin. It will foster the malaria research network and ensure the promotion of junior scientists in the field.

  9. Collaborative Research: Further Developments in the Global Resolution of Convex Programs with Complementary Contraints

    DTIC Science & Technology

    2014-10-31

    Grant Number FA9550-11-1-0260. †Air Force Office of Scientific Research Grant Number FA9550-11-1-0151. 1 Abstract We have developed methods for...Report 11/04/2014 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ RTA Arlington, Virginia 22203 Air...Force Research Laboratory Air Force Materiel Command REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 1. REPORT DATE (DD-MM-YYYY) 2. REPORT

  10. 13th ERS Lung Science Conference. The most important take home messages: News from the Underground.

    PubMed

    Bikov, Andras; Boots, Agnes; Bjerg, Anders; Jacinto, Tiago; Olland, Anne; Skoczyński, Szymon

    2015-06-01

    The 13th ERS Lung Science Conference (LSC) was organised to bring academics together from all over the world to present and discuss the latest developments regarding lung infection and immunity. The conference took place in breathtaking Estoril, Portugal; however, it wasn't the beautiful surroundings that were our main motivation to attend, but instead the scientific merit of the conference and the chance to create new scientific collaborations. The scientific programme [1] was packed with the most up-to-date content in the field of lung infection and immunity and included some of the top researchers within this exciting area. Moreover, the convenient size of the LSC offered the opportunity to renew and intensify friendships and collaborations. In particular, for researchers at the start of their career, this is a great feature and we therefore warmly recommend the LSC to ERS Juniors Members!

  11. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    DOE PAGES

    Dart, Eli; Rotman, Lauren; Tierney, Brian; ...

    2014-01-01

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers andmore » research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.« less

  12. NIH/NSF accelerate biomedical research innovations

    Cancer.gov

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  13. Collaboration and Team Science: From Theory to Practice

    PubMed Central

    Gadlin, Howard

    2013-01-01

    Interdisciplinary efforts are becoming more critical for scientific discovery and translational research efforts. Highly integrated and interactive research teams share a number of features that contribute to their success in developing and sustaining their efforts over time. Through analysis of in-depth interviews with members of highly successful research teams and others that did not meet their goals or ended due to conflicts, we identified key elements that appear critical for team success and effectiveness. There is no debate that the scientific goal sits at the center of the collaborative effort. However, supporting features need to be in place to avoid the derailment of the team. Among the most important of these is trust: without trust the team dynamic runs the risk of deteriorating over time. Other critical factors of which both leaders and participants need to be aware include developing a shared vision, strategically identifying team members and purposefully building the team, promoting disagreement while containing conflict, and setting clear expectations for sharing credit and authorship. Self-awareness and strong communication skills contribute greatly to effective leadership and management strategies of scientific teams. While all successful teams share the characteristic of effectively carrying out these activities, there is no single formula for execution with every leader exemplifying different strengths and weaknesses. Successful scientific collaborations have strong leaders who are self -aware and are mindful of the many elements critical for supporting the science at the center of the effort. PMID:22525233

  14. Collaborative workbench for cyberinfrastructure to accelerate science algorithm development

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Kuo, K.; Lynnes, C.

    2013-12-01

    There are significant untapped resources for information and knowledge creation within the Earth Science community in the form of data, algorithms, services, analysis workflows or scripts, and the related knowledge about these resources. Despite the huge growth in social networking and collaboration platforms, these resources often reside on an investigator's workstation or laboratory and are rarely shared. A major reason for this is that there are very few scientific collaboration platforms, and those that exist typically require the use of a new set of analysis tools and paradigms to leverage the shared infrastructure. As a result, adoption of these collaborative platforms for science research is inhibited by the high cost to an individual scientist of switching from his or her own familiar environment and set of tools to a new environment and tool set. This presentation will describe an ongoing project developing an Earth Science Collaborative Workbench (CWB). The CWB approach will eliminate this barrier by augmenting a scientist's current research environment and tool set to allow him or her to easily share diverse data and algorithms. The CWB will leverage evolving technologies such as commodity computing and social networking to design an architecture for scalable collaboration that will support the emerging vision of an Earth Science Collaboratory. The CWB is being implemented on the robust and open source Eclipse framework and will be compatible with widely used scientific analysis tools such as IDL. The myScience Catalog built into CWB will capture and track metadata and provenance about data and algorithms for the researchers in a non-intrusive manner with minimal overhead. Seamless interfaces to multiple Cloud services will support sharing algorithms, data, and analysis results, as well as access to storage and computer resources. A Community Catalog will track the use of shared science artifacts and manage collaborations among researchers.

  15. Collaborative Lab Reports with Google Docs

    NASA Astrophysics Data System (ADS)

    Wood, Michael

    2011-03-01

    Science is a collaborative endeavor. The solitary genius working on the next great scientific breakthrough is a myth not seen much today. Instead, most physicists have worked in a group at one point in their careers, whether as a graduate student, faculty member, staff scientist, or industrial researcher. As an experimental nuclear physicist with research at the Thomas Jefferson National Accelerator Facility, my collaboration consists of over 200 scientists, both national and international. A typical experiment will have a dozen or so principal investigators. Add in the hundreds of staff scientists, engineers, and technicians, and it is clear that science is truly a collaborative effort. This paper will describe the use of Google Docs for collaborative reports for an introductory physics laboratory.

  16. Bibliometric analysis of scientific literature on intestinal parasites in Argentina during the period 1985-2014.

    PubMed

    Basualdo, Juan A; Grenóvero, María S; Bertucci, Evangelina; Molina, Nora B

    2016-01-01

    The study of scientific production is a good indicator of the progress in research and knowledge generation. Bibliometrics is a scientific discipline that uses a set of indicators to quantitatively express the bibliographic characteristics of scientific publications. The scientific literature on the epidemiology of intestinal parasites in Argentina is scattered in numerous sources, hindering access and visibility to the scientific community. Our purpose was to perform a quantitative, bibliometric study of the scientific literature on intestinal parasites in humans in Argentina published in the period 1985-2014. This bibliometric analysis showed an increase in the number of articles on intestinal parasites in humans in Argentina published over the past 30 years. Those articles showed a collaboration index similar to that of the literature, with a high index of institutionality for national institutions and a very low one for international collaboration. The original articles were published in scientific journals in the American Continent, Europe and Asia. The use of bibliometric indicators can provide a solid tool for the diagnosis and survey of the research on epidemiology of intestinal parasites and contributes to the dissemination and visibility of information on the scientific production developed in Argentina. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Facebook for scientists: requirements and services for optimizing how scientific collaborations are established.

    PubMed

    Schleyer, Titus; Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory

    2008-08-13

    As biomedical research projects become increasingly interdisciplinary and complex, collaboration with appropriate individuals, teams, and institutions becomes ever more crucial to project success. While social networks are extremely important in determining how scientific collaborations are formed, social networking technologies have not yet been studied as a tool to help form scientific collaborations. Many currently emerging expertise locating systems include social networking technologies, but it is unclear whether they make the process of finding collaborators more efficient and effective. This study was conducted to answer the following questions: (1) Which requirements should systems for finding collaborators in biomedical science fulfill? and (2) Which information technology services can address these requirements? The background research phase encompassed a thorough review of the literature, affinity diagramming, contextual inquiry, and semistructured interviews. This phase yielded five themes suggestive of requirements for systems to support the formation of collaborations. In the next phase, the generative phase, we brainstormed and selected design ideas for formal concept validation with end users. Then, three related, well-validated ideas were selected for implementation and evaluation in a prototype. Five main themes of systems requirements emerged: (1) beyond expertise, successful collaborations require compatibility with respect to personality, work style, productivity, and many other factors (compatibility); (2) finding appropriate collaborators requires the ability to effectively search in domains other than your own using information that is comprehensive and descriptive (communication); (3) social networks are important for finding potential collaborators, assessing their suitability and compatibility, and establishing contact with them (intermediation); (4) information profiles must be complete, correct, up-to-date, and comprehensive and allow fine-grained control over access to information by different audiences (information quality and access); (5) keeping online profiles up-to-date should require little or no effort and be integrated into the scientist's existing workflow (motivation). Based on the requirements, 16 design ideas underwent formal validation with end users. Of those, three were chosen to be implemented and evaluated in a system prototype, "Digital|Vita": maintaining, formatting, and semi-automated updating of biographical information; searching for experts; and building and maintaining the social network and managing document flow. In addition to quantitative and factual information about potential collaborators, social connectedness, personal and professional compatibility, and power differentials also influence whether collaborations are formed. Current systems only partially model these requirements. Services in Digital|Vita combine an existing workflow, maintaining and formatting biographical information, with collaboration-searching functions in a novel way. Several barriers to the adoption of systems such as Digital|Vita exist, such as potential adoption asymmetries between junior and senior researchers and the tension between public and private information. Developers and researchers may consider one or more of the services described in this paper for implementation in their own expertise locating systems.

  18. On the Compliance of Women Engineers with a Gendered Scientific System.

    PubMed

    Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R

    2015-01-01

    There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers-regardless of their gender-contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse.

  19. Framing new research in science literacy and language use: Authenticity, multiple discourses, and the Third Space

    NASA Astrophysics Data System (ADS)

    Wallace, Carolyn S.

    2004-11-01

    This article presents a theoretical framework in the form of a model on which to base research in scientific literacy and language use. The assumption guiding the framework is that scientific literacy is comprised of the abilities to think metacognitively, to read and write scientific texts, and to apply the elements of a scientific argument. The framework is composed of three theoretical constructs: authenticity, multiple discourses, and Bhabha's Third Space. Some of the implications of the framework are that students need opportunities to (a) use scientific language in everyday situations; (b) negotiate readily among the many discourse genres of science; and (c) collaborate with teachers and peers on the meaning of scientific language. These ideas are illustrated with data excerpts from contemporary research studies. A set of potential research issues for the future is posed at the end of the article.

  20. Collaborative Projects Increase Student Learning Outcome Performance in Nonmajors Environmental Science Course

    ERIC Educational Resources Information Center

    Chace, Jameson F.

    2014-01-01

    Between 2007 and 2010, three types of semester research projects were assigned in BIO 140 Humans and Their Environment, a nonmajors introductory course at Salve Regina University. Specific environmental impact-type assessments were used to foster scientific inquiry and achieve higher scientific literacy. Quantitative and qualitative measurements…

  1. Metadata Management on the SCEC PetaSHA Project: Helping Users Describe, Discover, Understand, and Use Simulation Data in a Large-Scale Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    Okaya, D.; Deelman, E.; Maechling, P.; Wong-Barnum, M.; Jordan, T. H.; Meyers, D.

    2007-12-01

    Large scientific collaborations, such as the SCEC Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA) Project, involve interactions between many scientists who exchange ideas and research results. These groups must organize, manage, and make accessible their community materials of observational data, derivative (research) results, computational products, and community software. The integration of scientific workflows as a paradigm to solve complex computations provides advantages of efficiency, reliability, repeatability, choices, and ease of use. The underlying resource needed for a scientific workflow to function and create discoverable and exchangeable products is the construction, tracking, and preservation of metadata. In the scientific workflow environment there is a two-tier structure of metadata. Workflow-level metadata and provenance describe operational steps, identity of resources, execution status, and product locations and names. Domain-level metadata essentially define the scientific meaning of data, codes and products. To a large degree the metadata at these two levels are separate. However, between these two levels is a subset of metadata produced at one level but is needed by the other. This crossover metadata suggests that some commonality in metadata handling is needed. SCEC researchers are collaborating with computer scientists at SDSC, the USC Information Sciences Institute, and Carnegie Mellon Univ. in order to perform earthquake science using high-performance computational resources. A primary objective of the "PetaSHA" collaboration is to perform physics-based estimations of strong ground motion associated with real and hypothetical earthquakes located within Southern California. Construction of 3D earth models, earthquake representations, and numerical simulation of seismic waves are key components of these estimations. Scientific workflows are used to orchestrate the sequences of scientific tasks and to access distributed computational facilities such as the NSF TeraGrid. Different types of metadata are produced and captured within the scientific workflows. One workflow within PetaSHA ("Earthworks") performs a linear sequence of tasks with workflow and seismological metadata preserved. Downstream scientific codes ingest these metadata produced by upstream codes. The seismological metadata uses attribute-value pairing in plain text; an identified need is to use more advanced handling methods. Another workflow system within PetaSHA ("Cybershake") involves several complex workflows in order to perform statistical analysis of ground shaking due to thousands of hypothetical but plausible earthquakes. Metadata management has been challenging due to its construction around a number of legacy scientific codes. We describe difficulties arising in the scientific workflow due to the lack of this metadata and suggest corrective steps, which in some cases include the cultural shift of domain science programmers coding for metadata.

  2. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  3. Adaptive and Intelligent Systems for Collaborative Learning Support: A Review of the Field

    ERIC Educational Resources Information Center

    Magnisalis, I.; Demetriadis, S.; Karakostas, A.

    2011-01-01

    This study critically reviews the recently published scientific literature on the design and impact of adaptive and intelligent systems for collaborative learning support (AICLS) systems. The focus is threefold: 1) analyze critical design issues of AICLS systems and organize them under a unifying classification scheme, 2) present research evidence…

  4. Collaborative Lab Reports with Google Docs

    ERIC Educational Resources Information Center

    Wood, Michael

    2011-01-01

    Science is a collaborative endeavor. The solitary genius working on the next great scientific breakthrough is a myth not seen much today. Instead, most physicists have worked in a group at one point in their careers, whether as a graduate student, faculty member, staff scientist, or industrial researcher. As an experimental nuclear physicist with…

  5. Designing the RiverCare knowledge base and web-collaborative platform to exchange knowledge in river management

    NASA Astrophysics Data System (ADS)

    Cortes Arevalo, Juliette; den Haan, Robert-Jan; van der Voort, Mascha; Hulscher, Suzanne

    2016-04-01

    Effective communication strategies are necessary between different scientific disciplines, practitioners and non-experts for a shared understanding and better implementation of river management measures. In that context, the RiverCare program aims to get a better understanding of riverine measures that are being implemented towards self-sustaining multifunctional rivers in the Netherlands. During the RiverCare program, user committees are organized between the researchers and practitioners to discuss the aim and value of RiverCare outputs, related assumptions and uncertainties behind scientific results. Beyond the RiverCare program end, knowledge about river interventions, integrated effects, management and self-sustaining applications will be available to experts and non-experts by means of River Care communication tools: A web-collaborative platform and a serious gaming environment. As part of the communication project of RiverCare, we are designing the RiverCare web-collaborative platform and the knowledge-base behind that platform. We aim at promoting collaborative efforts and knowledge exchange in river management. However, knowledge exchange does not magically happen. Consultation and discussion of RiverCare outputs as well as elicitation of perspectives and preferences from different actors about the effects of riverine measures has to be facilitated. During the RiverCare research activities, the platform will support the user committees or collaborative sessions that are regularly held with the organizations directly benefiting from our research, at project level or in study areas. The design process of the collaborative platform follows an user centred approach to identify user requirements, co-create a conceptual design and iterative develop and evaluate prototypes of the platform. The envisioned web-collaborative platform opens with an explanation and visualisation of the RiverCare outputs that are available in the knowledge base. Collaborative sessions are initiated by one facilitator that invites other users to contribute by agreeing on an objective for the session and ways and period of collaboration. Upon login, users can join the different sessions that they are invited or will be willing to participate. Within these sessions, users collaboratively engage on the topic at hand, acquiring knowledge about the ongoing results of RiverCare, sharing knowledge between actors and co-constructing new knowledge in the process as input for RiverCare research activities. An overview of each session will be presented to registered and non-registered users to document collaboration efforts and promote interaction with actors outside RiverCare. At the user requirements analysis stage of the collaborative platform, a questionnaire and workshop session was launched to uncover the end user's preferences and expectations about the tool to be designed. Results comprised insights about design criteria of the collaborative platform. The user requirements will be followed by interview sessions with RiverCare researchers and user committee members to identify considerations for data management, objectives of collaboration, expected outputs and indicators to evaluate the collaborative platform. On one side, considerations of intended users are important for co-designing tools that effectively communicate and promote a shared understanding of scientific outputs. On the other one, active involvement of end-users is important for the establishment of measurable indicators to evaluate the tool and the collaborative process.

  6. Quantifying the impact of weak, strong, and super ties in scientific careers

    PubMed Central

    Petersen, Alexander Michael

    2015-01-01

    Scientists are frequently faced with the important decision to start or terminate a creative partnership. This process can be influenced by strategic motivations, as early career researchers are pursuers, whereas senior researchers are typically attractors, of new collaborative opportunities. Focusing on the longitudinal aspects of scientific collaboration, we analyzed 473 collaboration profiles using an egocentric perspective that accounts for researcher-specific characteristics and provides insight into a range of topics, from career achievement and sustainability to team dynamics and efficiency. From more than 166,000 collaboration records, we quantify the frequency distributions of collaboration duration and tie strength, showing that collaboration networks are dominated by weak ties characterized by high turnover rates. We use analytic extreme value thresholds to identify a new class of indispensable super ties, the strongest of which commonly exhibit >50% publication overlap with the central scientist. The prevalence of super ties suggests that they arise from career strategies based upon cost, risk, and reward sharing and complementary skill matching. We then use a combination of descriptive and panel regression methods to compare the subset of publications coauthored with a super tie to the subset without one, controlling for pertinent features such as career age, prestige, team size, and prior group experience. We find that super ties contribute to above-average productivity and a 17% citation increase per publication, thus identifying these partnerships—the analog of life partners—as a major factor in science career development. PMID:26261301

  7. Brazilian Science and Research Integrity: Where are We? What Next?

    PubMed

    Vasconcelos, Sonia M R; Sorenson, Martha M; Watanabe, Edson H; Foguel, Debora; Palácios, Marisa

    2015-01-01

    Building a world-class scientific community requires first-class ingredients at many different levels: funding, training, management, international collaborations, creativity, ethics, and an understanding of research integrity practices. All over the world, addressing these practices has been high on the science policy agenda of major research systems. Universities have a central role in fostering a culture of research integrity, which has posed additional challenges for faculty, students and administrators - but also opportunities. In Brazil, the leading universities and governmental funding agencies are collaborating on this project, but much remains to be done.

  8. A Conceptual Framework for the Future of Successful Research Administration

    ERIC Educational Resources Information Center

    Lintz, Elizabeth M.

    2008-01-01

    Research administration has experienced dramatic changes over the past decades. As scientific research has evolved, higher education institutions have tried to adapt, with varying degrees of success. This paper presents a conceptual framework based on six cornerstones of research administration: mission, information, communication, collaboration,…

  9. The Integration of Science and Education as Assessed by the Scientific Community: (Based on the Results of a Sociological Survey)

    ERIC Educational Resources Information Center

    Zubova, Larisa; Arzhanykh, Elena

    2009-01-01

    One of the main tasks of a survey by the Center for Science Research and Statistics was to assess the interaction between science and higher education from the standpoint of collaboration between scientific organizations and university science, as well as participation in the educational process by scientific organizations. This article presents a…

  10. Understanding collaboration in a multi-national research capacity-building partnership: a qualitative study.

    PubMed

    Varshney, Dinansha; Atkins, Salla; Das, Arindam; Diwan, Vishal

    2016-08-18

    Research capacity building and its impact on policy and international research partnership is increasingly seen as important. High income and low- and middle-income countries frequently engage in research collaborations. These can have a positive impact on research capacity building, provided such partnerships are long-term collaborations with a unified aim, but they can also have challenges. What are these challenges, which often result in a short term/ non viable collaboration? Does such collaboration results in capacity building? What are the requirements to make any collaboration sustainable? This study aimed to answer these and other research questions through examining an international collaboration in one multi-country research capacity building project ARCADE RSDH (Asian Regional Capacity Development for Research on Social Determinants of Health). A qualitative study was conducted that focused on the reasons for the collaboration, collaboration patterns involved, processes of exchanging information, barriers faced and perceived growth in research capacity. In-depth interviews were conducted with the principal investigators (n = 12), research assistants (n = 2) and a scientific coordinator (n = 1) of the collaborating institutes. Data were analysed using thematic framework analysis. The initial contact between institutes was through previous collaborations. The collaboration was affected by the organisational structure of the partner institutes, political influences and the collaboration design. Communication was usually conducted online, which was affected by differences in time and language and inefficient infrastructure. Limited funding resulted in restricted engagement by some partners. This study explored work in a large, North-South collaboration project focusing on building research capacity in partner institutes. The project helped strengthen research capacity, though differences in organization types, existing research capacity, culture, time, and language acted as obstacles to the success of the project. Managing these differences requires preplanned strategies to develop functional communication channels among the partners, maintaining transparency, and sharing the rewards and benefits at all stages of collaboration.

  11. About DCP | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) is the division of the National Cancer Institute (NCI) devoted to cancer prevention research. DCP provides funding and administrative support to clinical and laboratory researchers, community and multidisciplinary teams, and collaborative scientific networks. |

  12. Community Capacity Building as a vital mechanism for enhancing the growth and efficacy of a sustainable scientific software ecosystem: experiences running a real-time bi-coastal "Open Science for Synthesis" Training Institute for young Earth and Environmental scientists

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.; Jones, M. B.; Bolker, B.; Lenhardt, W. C.; Hampton, S. E.; Idaszak, R.; Rebich Hespanha, S.; Ahalt, S.; Christopherson, L.

    2014-12-01

    Continuing advances in computational capabilities, access to Big Data, and virtual collaboration technologies are creating exciting new opportunities for accomplishing Earth science research at finer resolutions, with much broader scope, using powerful modeling and analytical approaches that were unachievable just a few years ago. Yet, there is a perceptible lag in the abilities of the research community to capitalize on these new possibilities, due to lacking the relevant skill-sets, especially with regards to multi-disciplinary and integrative investigations that involve active collaboration. UC Santa Barbara's National Center for Ecological Analysis and Synthesis (NCEAS), and the University of North Carolina's Renaissance Computing Institute (RENCI), were recipients of NSF OCI S2I2 "Conceptualization awards", charged with helping define the needs of the research community relative to enabling science and education through "sustained software infrastructure". Over the course of our activities, a consistent request from Earth scientists was for "better training in software that enables more effective, reproducible research." This community-based feedback led to creation of an "Open Science for Synthesis" Institute— a innovative, three-week, bi-coastal training program for early career researchers. We provided a mix of lectures, hands-on exercises, and working group experience on topics including: data discovery and preservation; code creation, management, sharing, and versioning; scientific workflow documentation and reproducibility; statistical and machine modeling techniques; virtual collaboration mechanisms; and methods for communicating scientific results. All technologies and quantitative tools presented were suitable for advancing open, collaborative, and reproducible synthesis research. In this talk, we will report on the lessons learned from running this ambitious training program, that involved coordinating classrooms among two remote sites, and included developing original synthesis research activities as part of the course. We also report on the feedback provided by participants as to the learning approaches and topical issues they found most engaging, and why.

  13. Big Data Analytics and Machine Intelligence Capability Development at NASA Langley Research Center: Strategy, Roadmap, and Progress

    NASA Technical Reports Server (NTRS)

    Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward

    2016-01-01

    In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.

  14. Tools and collaborative environments for bioinformatics research

    PubMed Central

    Giugno, Rosalba; Pulvirenti, Alfredo

    2011-01-01

    Advanced research requires intensive interaction among a multitude of actors, often possessing different expertise and usually working at a distance from each other. The field of collaborative research aims to establish suitable models and technologies to properly support these interactions. In this article, we first present the reasons for an interest of Bioinformatics in this context by also suggesting some research domains that could benefit from collaborative research. We then review the principles and some of the most relevant applications of social networking, with a special attention to networks supporting scientific collaboration, by also highlighting some critical issues, such as identification of users and standardization of formats. We then introduce some systems for collaborative document creation, including wiki systems and tools for ontology development, and review some of the most interesting biological wikis. We also review the principles of Collaborative Development Environments for software and show some examples in Bioinformatics. Finally, we present the principles and some examples of Learning Management Systems. In conclusion, we try to devise some of the goals to be achieved in the short term for the exploitation of these technologies. PMID:21984743

  15. SensorWeb Hub infrastructure for open access to scientific research data

    NASA Astrophysics Data System (ADS)

    de Filippis, Tiziana; Rocchi, Leandro; Rapisardi, Elena

    2015-04-01

    The sharing of research data is a new challenge for the scientific community that may benefit from a large amount of information to solve environmental issues and sustainability in agriculture and urban contexts. Prerequisites for this challenge is the development of an infrastructure that ensure access, management and preservation of data, technical support for a coordinated and harmonious management of data that, in the framework of Open Data Policies, should encourages the reuse and the collaboration. The neogeography and the citizen as sensors approach, highlight that new data sources need a new set of tools and practices so to collect, validate, categorize, and use / access these "crowdsourced" data, that integrate the data sets produced in the scientific field, thus "feeding" the overall available data for analysis and research. When the scientific community embraces the dimension of collaboration and sharing, access and re-use, in order to accept the open innovation approach, it should redesign and reshape the processes of data management: the challenges of technological and cultural innovation, enabled by web 2.0 technologies, bring to the scenario where the sharing of structured and interoperable data will constitute the unavoidable building block to set up a new paradigm of scientific research. In this perspective the Institute of Biometeorology, CNR, whose aim is contributing to sharing and development of research data, has developed the "SensorWebHub" (SWH) infrastructure to support the scientific activities carried out in several research projects at national and international level. It is designed to manage both mobile and fixed open source meteorological and environmental sensors, in order to integrate the existing agro-meteorological and urban monitoring networks. The proposed architecture uses open source tools to ensure sustainability in the development and deployment of web applications with geographic features and custom analysis, as requested by the different research projects. The SWH components are organized in typical client-server architecture and interact from the sensing process to the representation of the results to the end-users. The Web Application enables to view and analyse the data stored in the GeoDB. The interface is designed following Internet browsers specifications allowing the visualization of collected data in different formats (tabular, chart and geographic map). The services for the dissemination of geo-referenced information, adopt the OGC specifications. SWH is a bottom-up collaborative initiative to share real time research data and pave the way for a open innovation approach in the scientific research. Until now this framework has been used for several WebGIS applications and WebApp for environmental monitoring at different temporal and spatial scales.

  16. Papers published from 1995 to 2012 by six Traditional Chinese Medicine universities in China: a bibliometric analysis based on science citation index.

    PubMed

    Gao, Kuo; Tian, Guihua; Ye, Qing; Zhai, Xing; Chen, Jianxin; Liu, Tiegang; Liu, Kaifeng; Zhao, Jingyi; Ding, Shengyun

    2013-12-01

    The quality and quantity of published research papers are important in both scientific and technology fields. Although there are several bibliometric studies based on citation analysis, very few have focused on research related to Traditional Chinese Medicine in China. The bibliometric method used in this study included the following focuses: publication outputs for each year, paper type, language of publication, distribution of internationally collaborative countries, sources of funding, authorization number, distribution of institutes regarding collaborative publications, research fields, distribution of outputs in journals, citation, data, and h-index. A total of 3809 papers published from 1995 to 2012 were extracted from the science citation index (SCI). The cumulative number of papers from all six universities is constantly increasing. The United States attained the dominant position regarding complementary and alternative medicine research. The Chinese Academy of Sciences was the greatest participator in collaborative efforts. Research field analysis showed that the research mainly focused on pharmacology pharmacy, chemistry, integrative complementary medicine, plant sciences, and biochemistry molecular biology. The Shanghai University of Chinese Medicine had the most citations. In recent years, in terms of SCI papers, the six Traditional Chinese Medicine universities studied here have made great advances in scientific research.

  17. Bibliometric analysis of regional Latin America's scientific output in Public Health through SCImago Journal & Country Rank

    PubMed Central

    2014-01-01

    Background In the greater framework of the essential functions of Public Health, our focus is on a systematic, objective, external evaluation of Latin American scientific output, to compare its publications in the area of Public Health with those of other major geographic zones. We aim to describe the regional distribution of output in Public Health, and the level of visibility and specialization, for Latin America; it can then be characterized and compared in the international context. Methods The primary source of information was the Scopus database, using the category “Public Health, Environmental and Occupational Health”, in the period 1996–2011. Data were obtained through the portal of SCImago Journal and Country Rank. Using a set of qualitative (citation-based), quantitative (document recount) and collaborative (authors from more than one country) indicators, we derived complementary data. The methodology serves as an analytical tool for researchers and scientific policy-makers. Results The contribution of Latin America to the arsenal of world science lies more or less midway on the international scale in terms of its output and visibility. Revealed as its greatest strengths are the high level of specialization in Public Health and the sustained growth of output. The main limitations identified were a relative decrease in collaboration and low visibility. Conclusions Collaboration is a key factor behind the development of scientific activity in Latin America. Although this finding can be useful for formulating research policy in Latin American countries, it also underlines the need for further research into patterns of scientific communication in this region, to arrive at more specific recommendations. PMID:24950735

  18. Orchestrating student discourse opportunities and listening for conceptual understandings in high school science classrooms

    NASA Astrophysics Data System (ADS)

    Kinard, Melissa Grass

    Scientific communities have established social mechanisms for proposing explanations, questioning evidence, and validating claims. Opportunities like these are often not a given in science classrooms (Vellom, Anderson, & Palincsar, 1993) even though the National Science Education Standards (NSES, 1996) state that a scientifically literate person should be able to "engage intelligently in public discourse and debate about important issues in science and technology" (National Research Council [NRC], 1996). Research further documents that students' science conceptions undergo little modification with the traditional teaching experienced in many high school science classrooms (Duit, 2003, Dykstra, 2005). This case study is an examination of the discourse that occurred as four high school physics students collaborated on solutions to three physics lab problems during which the students made predictions and experimentally generated data to support their predictions. The discourse patterns were initially examined for instances of concept negotiations. Selected instances were further examined using Toulmin's (2003) pattern for characterizing argumentation in order to understand the students' scientific reasoning strategies and to document the role of collaboration in facilitating conceptual modifications and changes. Audio recordings of the students' conversations during the labs, written problems turned in to the teacher, interviews of the students, and observations and field notes taken during student collaboration were used to document and describe the students' challenges and successes encountered during their collaborative work. The findings of the study indicate that collaboration engaged the students and generated two types of productive science discourse: concept negotiations and procedure negotiations. Further analysis of the conceptual and procedure negotiations revealed that the students viewed science as sensible and plausible but not as a tool they could employ to answer their questions. The students' conceptual growth was inhibited by their allegiance to the authority of the science laws as learned in their school classroom. Thus, collaboration did not insure conceptual change. Describing student discourse in situ contributes to science education research about teaching practices that facilitate conceptual understandings in the science classroom.

  19. Arguing to learn in science: the role of collaborative, critical discourse.

    PubMed

    Osborne, Jonathan

    2010-04-23

    Argument and debate are common in science, yet they are virtually absent from science education. Recent research shows, however, that opportunities for students to engage in collaborative discourse and argumentation offer a means of enhancing student conceptual understanding and students' skills and capabilities with scientific reasoning. As one of the hallmarks of the scientist is critical, rational skepticism, the lack of opportunities to develop the ability to reason and argue scientifically would appear to be a significant weakness in contemporary educational practice. In short, knowing what is wrong matters as much as knowing what is right. This paper presents a summary of the main features of this body of research and discusses its implications for the teaching and learning of science.

  20. The Undergraduate ALFALFA Team: Collaborative Research Projects

    NASA Astrophysics Data System (ADS)

    Cannon, John M.; Koopmann, Rebecca A.; Haynes, Martha P.; Undergraduate ALFALFA Team, ALFALFA Team

    2016-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) has allowed faculty and students from a wide range of public and private colleges and especially those with small astronomy programs to learn how science is accomplished in a large collaboration while contributing to the scientific goals of a legacy radio astronomy survey. The UAT has achieved this through close collaboration with ALFALFA PIs to identify research areas accessible to undergraduates. In this talk we will summarize the main research efforts of the UAT, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey. This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, and AST-1211005.

  1. Research Institute for Technical Careers

    NASA Technical Reports Server (NTRS)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  2. How Does the Scientific Community Contribute to Gene Ontology?

    PubMed

    Lovering, Ruth C

    2017-01-01

    Collaborations between the scientific community and members of the Gene Ontology (GO) Consortium have led to an increase in the number and specificity of GO terms, as well as increasing the number of GO annotations. A variety of approaches have been taken to encourage research scientists to contribute to the GO, but the success of these approaches has been variable. This chapter reviews both the successes and failures of engaging the scientific community in GO development and annotation, as well as, providing motivation and advice to encourage individual researchers to contribute to GO.

  3. The Petascale Data Storage Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Garth; Long, Darrell; Honeyman, Peter

    2013-07-01

    Petascale computing infrastructures for scientific discovery make petascale demands on information storage capacity, performance, concurrency, reliability, availability, and manageability.The Petascale Data Storage Institute focuses on the data storage problems found in petascale scientific computing environments, with special attention to community issues such as interoperability, community buy-in, and shared tools.The Petascale Data Storage Institute is a collaboration between researchers at Carnegie Mellon University, National Energy Research Scientific Computing Center, Pacific Northwest National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Los Alamos National Laboratory, University of Michigan, and the University of California at Santa Cruz.

  4. Building a Robust 21st Century Chemical Testing Program at the U.S. Environmental Protection Agency: Recommendations for Strengthening Scientific Engagement

    PubMed Central

    Dantzker, Heather C.; Portier, Christopher J.

    2014-01-01

    Background: Biological pathway-based chemical testing approaches are central to the National Research Council’s vision for 21st century toxicity testing. Approaches such as high-throughput in vitro screening offer the potential to evaluate thousands of chemicals faster and cheaper than ever before and to reduce testing on laboratory animals. Collaborative scientific engagement is important in addressing scientific issues arising in new federal chemical testing programs and for achieving stakeholder support of their use. Objectives: We present two recommendations specifically focused on increasing scientific engagement in the U.S. Environmental Protection Agency (EPA) ToxCast™ initiative. Through these recommendations we seek to bolster the scientific foundation of federal chemical testing efforts such as ToxCast™ and the public health decisions that rely upon them. Discussion: Environmental Defense Fund works across disciplines and with diverse groups to improve the science underlying environmental health decisions. We propose that the U.S. EPA can strengthen the scientific foundation of its new chemical testing efforts and increase support for them in the scientific research community by a) expanding and diversifying scientific input into the development and application of new chemical testing methods through collaborative workshops, and b) seeking out mutually beneficial research partnerships. Conclusions: Our recommendations provide concrete actions for the U.S. EPA to increase and diversify engagement with the scientific research community in its ToxCast™ initiative. We believe that such engagement will help ensure that new chemical testing data are scientifically robust and that the U.S. EPA gains the support and acceptance needed to sustain new testing efforts to protect public health. Citation: McPartland J, Dantzker HC, Portier CJ. 2015. Building a robust 21st century chemical testing program at the U.S. Environmental Protection Agency: recommendations for strengthening scientific engagement. Environ Health Perspect 123:1–5; http://dx.doi.org/10.1289/ehp.1408601 PMID:25343778

  5. Research on Orbital Plasma Electrodynamics (ROPE)

    NASA Technical Reports Server (NTRS)

    Intriligator, Devrie S.

    1998-01-01

    This final report summarizes some of the important scientific contributions to the Research on Orbital Plasma Electrodynamics (ROPE) investigation, to the Tethered Satellite System (TSS) mission, and to NASA that resulted from the work carried out under this contract at Carmel Research Center. These include Dr. Intriligator's participation in the PIT for the TSS-1R simulations and flight, her participation in ROPE team meetings and IWG meetings, her scientific analyses, and her writing and submitting technical papers to scientific journals. The scientific analyses concentrated on the characterization of energetic ions and their possible relation to pickup ion effects, correlation of particle and other effects (e.g., magnetic field, satellite surface), and collaboration with theorists including with ROPE co-investigators. In addition, scientific analyses were carried out of the effects due to satellite gas releases.

  6. On the relation between the small world structure and scientific activities.

    PubMed

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers' productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications.

  7. 76 FR 576 - National Cancer Institute; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ..., Cancer Centers Support; 93.398, Cancer Research Manpower; 93.399, Cancer Control, National Institutes of...: Wlodek Lopaczynski, M.D., PhD, Scientific Review Officer, Research Programs Review Branch, Division of... Institute Special Emphasis Panel; Collaborative Research in Integrative Cancer Biology and the Tumor...

  8. Environmental Research Puts Science into Action

    ERIC Educational Resources Information Center

    Zaikowski, Lori; Lichtman, Paul

    2007-01-01

    The new paradigm for student research should be articulations and collaborations with local governmental, academic, and civic entities. This will enable students to make lasting contributions to bettering their communities through scientific research, and to better understand the practical relevance of science. This article presents two such…

  9. Conducting research and collaborating with researchers: the experience of clinicians in a residential treatment center.

    PubMed

    Adelman, Robert W; Castonguay, Louis G; Kraus, David R; Zack, Sanno E

    2015-01-01

    This paper describes the experience of clinicians in conducting research and collaborating with academic researchers. As part of clinical routine of a residential program for adolescent substance abusers, empirical data have been collected to assess client's needs before and after treatment, improve clinical practice, and identify barriers to change. Some of the challenges faced and the benefits learned in conducting these studies are presented. In addition to highlighting the convergence of research interests between clinicians and academicians, the conclusion offers general recommendations to foster these partnerships and solidify the scientific-practitioner model.

  10. NASA's Solar System Exploration Research Virtual Institute: Building Collaboration Through International Partnerships

    NASA Technical Reports Server (NTRS)

    Gibbs, K. E.; Schmidt, G. K.

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  11. Implications of Scientific Collaboration Networks on Studies of Aquatic Vertebrates in the Brazilian Amazon.

    PubMed

    Salinero, María Celeste; Michalski, Fernanda

    2016-01-01

    The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the generation of new collaborations.

  12. Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer's disease neuroimaging initiative.

    PubMed

    Yao, Xiaohui; Yan, Jingwen; Ginda, Michael; Börner, Katy; Saykin, Andrew J; Shen, Li

    2017-01-01

    Alzheimer's disease neuroimaging initiative (ADNI) is a landmark imaging and omics study in AD. ADNI research literature has increased substantially over the past decade, which poses challenges for effectively communicating information about the results and impact of ADNI-related studies. In this work, we employed advanced information visualization techniques to perform a comprehensive and systematic mapping of the ADNI scientific growth and impact over a period of 12 years. Citation information of ADNI-related publications from 01/01/2003 to 05/12/2015 were downloaded from the Scopus database. Five fields, including authors, years, affiliations, sources (journals), and keywords, were extracted and preprocessed. Statistical analyses were performed on basic publication data as well as journal and citations information. Science mapping workflows were conducted using the Science of Science (Sci2) Tool to generate geospatial, topical, and collaboration visualizations at the micro (individual) to macro (global) levels such as geospatial layouts of institutional collaboration networks, keyword co-occurrence networks, and author collaboration networks evolving over time. During the studied period, 996 ADNI manuscripts were published across 233 journals and conference proceedings. The number of publications grew linearly from 2008 to 2015, so did the number of involved institutions. ADNI publications received much more citations than typical papers from the same set of journals. Collaborations were visualized at multiple levels, including authors, institutions, and research areas. The evolution of key ADNI research topics was also plotted over the studied period. Both statistical and visualization results demonstrate the increasing attention of ADNI research, strong citation impact of ADNI publications, the expanding collaboration networks among researchers, institutions and ADNI core areas, and the dynamic evolution of ADNI research topics. The visualizations presented here can help improve daily decision making based on a deep understanding of existing patterns and trends using proven and replicable data analysis and visualization methods. They have great potential to provide new insights and actionable knowledge for helping translational research in AD.

  13. Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer’s disease neuroimaging initiative

    PubMed Central

    Yao, Xiaohui; Yan, Jingwen; Ginda, Michael; Börner, Katy; Saykin, Andrew J.

    2017-01-01

    Background Alzheimer’s disease neuroimaging initiative (ADNI) is a landmark imaging and omics study in AD. ADNI research literature has increased substantially over the past decade, which poses challenges for effectively communicating information about the results and impact of ADNI-related studies. In this work, we employed advanced information visualization techniques to perform a comprehensive and systematic mapping of the ADNI scientific growth and impact over a period of 12 years. Methods Citation information of ADNI-related publications from 01/01/2003 to 05/12/2015 were downloaded from the Scopus database. Five fields, including authors, years, affiliations, sources (journals), and keywords, were extracted and preprocessed. Statistical analyses were performed on basic publication data as well as journal and citations information. Science mapping workflows were conducted using the Science of Science (Sci2) Tool to generate geospatial, topical, and collaboration visualizations at the micro (individual) to macro (global) levels such as geospatial layouts of institutional collaboration networks, keyword co-occurrence networks, and author collaboration networks evolving over time. Results During the studied period, 996 ADNI manuscripts were published across 233 journals and conference proceedings. The number of publications grew linearly from 2008 to 2015, so did the number of involved institutions. ADNI publications received much more citations than typical papers from the same set of journals. Collaborations were visualized at multiple levels, including authors, institutions, and research areas. The evolution of key ADNI research topics was also plotted over the studied period. Conclusions Both statistical and visualization results demonstrate the increasing attention of ADNI research, strong citation impact of ADNI publications, the expanding collaboration networks among researchers, institutions and ADNI core areas, and the dynamic evolution of ADNI research topics. The visualizations presented here can help improve daily decision making based on a deep understanding of existing patterns and trends using proven and replicable data analysis and visualization methods. They have great potential to provide new insights and actionable knowledge for helping translational research in AD. PMID:29095836

  14. Implications of Scientific Collaboration Networks on Studies of Aquatic Vertebrates in the Brazilian Amazon

    PubMed Central

    Salinero, María Celeste; Michalski, Fernanda

    2016-01-01

    The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the generation of new collaborations. PMID:27352247

  15. Alzforum and SWAN: the present and future of scientific web communities.

    PubMed

    Clark, Tim; Kinoshita, June

    2007-05-01

    Scientists drove the early development of the World Wide Web, primarily as a means for rapid communication, document sharing and data access. They have been far slower to adopt the web as a medium for building research communities. Yet, web-based communities hold great potential for accelerating the pace of scientific research. In this article, we will describe the 10-year experience of the Alzheimer Research Forum ('Alzforum'), a unique example of a thriving scientific web community, and explain the features that contributed to its success. We will then outline the SWAN (Semantic Web Applications in Neuromedicine) project, in which Alzforum curators are collaborating with informatics researchers to develop novel approaches that will enable communities to share richly contextualized information about scientific data, claims and hypotheses.

  16. ScienceDesk Project Overview

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  17. The John Wesley Powell Center for Analysis and Synthesis

    USGS Publications Warehouse

    Baron, Jill S.; Goldhaber, Martin

    2011-01-01

    The Powell Center provides an environment for cross-disciplinary scientific collaboration. The Center expands U.S. Geological Survey earth system science synthesis research activities by fostering the innovation that results from accumulated knowledge, constructive errors, and the "information spillover" that emerges from collaborative settings. Working Groups at the Powell Center use existing data to produce new knowledge..

  18. RMS: a platform for managing cross-disciplinary and multi-institutional research project collaboration.

    PubMed

    Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang

    2014-11-30

    Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and increase research interactions among investigators.

  19. Coordinating Centers in Cancer-Epidemiology Research: The Asia Cohort Consortium Coordinating Center

    PubMed Central

    Rolland, Betsy; Smith, Briana R; Potter, John D

    2011-01-01

    Although it is tacitly recognized that a good Coordinating Center (CC) is essential to the success of any multi-site collaborative project, very little study has been done on what makes a CC successful, why some CCs fail, or how to build a CC that meets the needs of a given project. Moreover, very little published guidance is available, as few CCs outside the clinical-trial realm write about their work. The Asia Cohort Consortium (ACC) is a collaborative cancer-epidemiology research project that has made strong scientific and organizational progress over the past three years by focusing its CC on the following activities: collaboration development; operations management; statistical and data management; and communications infrastructure and tool development. Our hope is that, by sharing our experience building the ACC CC, we can begin a conversation about what it means to run a coordinating center for multi-institutional collaboration in cancer epidemiology, help other collaborative projects solve some of the issues associated with collaborative research, and learn from others. PMID:21803842

  20. Ciência & Saúde Coletiva: scientific production analysis and collaborative research networks.

    PubMed

    Conner, Norma; Provedel, Attilio; Maciel, Ethel Leonor Noia

    2017-03-01

    The purpose of this metric and descriptive study was to identify the most productive authors and their collaborative research networks from articles published in Ciência & Saúde Coletiva between, 2005, and 2014. Authors meeting the cutoff criteria of at least 10 articles were considered the most productive authors. VOSviewer and Network Workbench technologies were applied for visual representations of collaborative research networks involving the most productive authors in the period. Initial analysis recovered 2511 distinct articles, with 8920 total authors with an average of 3.55 authors per article. Author analysis revealed 6288 distinct authors, 24 of these authors were identified as the most productive. These 24 authors generated 287 articles with an average of 4.31 authors per article, and represented 8 separate collaborative partnerships, the largest of which had 14 authors, indicating a significant degree of collaboration among these authors. This analysis provides a visual representation of networks of knowledge development in public health and demonstrates the usefulness of VOSviewer and Network Workbench technologies in future research.

  1. Bioconductor: open software development for computational biology and bioinformatics

    PubMed Central

    Gentleman, Robert C; Carey, Vincent J; Bates, Douglas M; Bolstad, Ben; Dettling, Marcel; Dudoit, Sandrine; Ellis, Byron; Gautier, Laurent; Ge, Yongchao; Gentry, Jeff; Hornik, Kurt; Hothorn, Torsten; Huber, Wolfgang; Iacus, Stefano; Irizarry, Rafael; Leisch, Friedrich; Li, Cheng; Maechler, Martin; Rossini, Anthony J; Sawitzki, Gunther; Smith, Colin; Smyth, Gordon; Tierney, Luke; Yang, Jean YH; Zhang, Jianhua

    2004-01-01

    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples. PMID:15461798

  2. An Evidence-Based Systematic Review of Beta-Sitosterol, Sitosterol (22,23- dihydrostigmasterol, 24-ethylcholesterol) by the Natural Standard Research Collaboration.

    PubMed

    Ulbricht, Catherine E

    2016-01-01

    An evidence-based systematic review of beta-sitosterol, sitosterol (22,23-dihydrostigmasterol, 24-ethylcholesterol) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.

  3. Research synthesis and dissemination as a bridge to knowledge management: the Cochrane Collaboration.

    PubMed Central

    Volmink, Jimmy; Siegfried, Nandi; Robertson, Katharine; Gülmezoglu, A. Metin

    2004-01-01

    In the current information age, research synthesis is a particularly useful tool for keeping track of scientific research and making sense of the large volumes of frequently conflicting data derived from primary studies. The Cochrane Collaboration is a global initiative "to help people make well-informed decisions about health care by preparing, maintaining and promoting the accessibility of systematic reviews of the effects of healthcare interventions". In this paper we set the work of the Cochrane Collaboration in historical perspective, explain what a Cochrane review is, and describe initiatives for promoting worldwide dissemination of synthesized information. We also consider emerging evidence of the Cochrane Collaboration's impact on health-care practice, policy, research and education. Finally, we highlight the need for increased investment in the preparation and maintenance of Cochrane reviews, particularly those that address health issues that are relevant to people living in low- and middle-income countries. PMID:15643800

  4. Sun-downing and integration for the advancement of science and therapeutics: the National Institute on Substance Use Disorders (NISUD).

    PubMed

    Grabowski, John

    2010-12-01

    The National Institutes of Health (NIH) is the most prominent funding source for scientific research in the world. It is also a complex and diverse organization, having multiple institutes, centers and offices. NIH emphasizes the need for innovation and collaboration in research to discover critical knowledge, enhance health and prevent disease. Advancement in science requires not only sophisticated methods, but also logical organization. Here, an overview of ‘behavioral research’ (writ large) at NIH is presented, focusing upon the common trinity of ‘alcohol, tobacco/nicotine and other drugs’ and programmatic overlap across entities. Consideration is also given to the origins of institutes and their historical movement across organizational boundaries. Specific issues, concerns and advantages of integration of the National Institute on Drug Abuse and National Institute on Alcoholism and Alcohol Abuse are addressed. It is concluded that advances in understanding, treating and preventing substance use disorders would best be served by (1)review and integration of all related research throughout NIH, (2) logical placement of leadership for this activity in a single institute, here entitled the National Institute on Substance Use Disorders, and (3) close collaboration of this institute with its complementary partner, the National Institute on Mental Health. Thus, NIH can establish an organizational structure and collaborations reflecting the realities of the scientific and disease/health domains. This would make a prominent statement to the world scientific and health communities regarding NIH recognition of the need for innovation (scientific and organizational) and focus upon these myriad interrelated and costly problems.

  5. Leveraging e-Science infrastructure for electrochemical research.

    PubMed

    Peachey, Tom; Mashkina, Elena; Lee, Chong-Yong; Enticott, Colin; Abramson, David; Bond, Alan M; Elton, Darrell; Gavaghan, David J; Stevenson, Gareth P; Kennedy, Gareth F

    2011-08-28

    As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere. e-Science, or cyber-infrastructure, underpins such collaborations by providing a unified platform for accessing scientific instruments, computers and data archives, and collaboration tools. In this paper we discuss the application of advanced e-Science software tools to electrochemistry research performed in three different laboratories--two at Monash University in Australia and one at the University of Oxford in the UK. We show that software tools that were originally developed for a range of application domains can be applied to electrochemical problems, in particular Fourier voltammetry. Moreover, we show that, by replacing ad-hoc manual processes with e-Science tools, we obtain more accurate solutions automatically.

  6. Extreme-Scale Computing Project Aims to Advance Precision Oncology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru

  7. Transporting Clinical Research to Community Settings: Designing and Conducting a Multisite Trial of Brief Strategic Family Therapy

    PubMed Central

    Robbins, Michael S.; Alonso, Elizabeth; Horigian, Viviana E.; Bachrach, Ken; Burlew, Kathy; Carrión, Ibis S.; Hodgkins, Candace C.; Miller, Michael; Schindler, Eric; VanDeMark, Nancy; Henderson, Craig; Szapocznik, José

    2010-01-01

    This paper describes the development and implementation of a trial of Brief Strategic Family Therapy (BSFT), an evidence-based drug intervention for adolescents, in eight community substance abuse treatment programs. Researchers and treatment programs collaborated closely to identify and overcome challenges, many of them related to achieving results that were both scientifically rigorous and applicable to the widest possible variety of adolescent substance abuse treatment programs. To meet these challenges, the collaborative team drew on lessons and practices from efficacy, effectiveness, and implementation research. PMID:22002455

  8. Data Mining Research with the LSST

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; Strauss, M. A.; Tyson, J. A.

    2007-12-01

    The LSST catalog database will exceed 10 petabytes, comprising several hundred attributes for 5 billion galaxies, 10 billion stars, and over 1 billion variable sources (optical variables, transients, or moving objects), extracted from over 20,000 square degrees of deep imaging in 5 passbands with thorough time domain coverage: 1000 visits over the 10-year LSST survey lifetime. The opportunities are enormous for novel scientific discoveries within this rich time-domain ultra-deep multi-band survey database. Data Mining, Machine Learning, and Knowledge Discovery research opportunities with the LSST are now under study, with a potential for new collaborations to develop to contribute to these investigations. We will describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. We also give some illustrative examples of current scientific data mining research in astronomy, and point out where new research is needed. In particular, the data mining research community will need to address several issues in the coming years as we prepare for the LSST data deluge. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; visual data mining algorithms for visual exploration of the data; indexing of multi-attribute multi-dimensional astronomical databases (beyond RA-Dec spatial indexing) for rapid querying of petabyte databases; and more. Finally, we will identify opportunities for synergistic collaboration between the data mining research group and the LSST Data Management and Science Collaboration teams.

  9. Communicating Scientific Findings to Lawyers, Policy-Makers, and the Public (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, W.; Velsko, S. P.

    2013-12-01

    This presentation will summarize the authors' collaborative research on inferential errors, bias and communication difficulties that have arisen in the area of WMD forensics. This research involves analysis of problems that have arisen in past national security investigations, interviews with scientists from various disciplines whose work has been used in WMD investigations, interviews with policy-makers, and psychological studies of lay understanding of forensic evidence. Implications of this research for scientists involved in nuclear explosion monitoring will be discussed. Among the issues covered will be: - Potential incompatibilities between the questions policy makers pose and the answers that experts can provide. - Common misunderstandings of scientific and statistical data. - Advantages and disadvantages of various methods for describing and characterizing the strength of scientific findings. - Problems that can arise from excessive hedging or, alternatively, insufficient qualification of scientific conclusions. - Problems that can arise from melding scientific and non-scientific evidence in forensic assessments.

  10. Mapping the Sloan Digital Sky Survey's Global Impact

    NASA Astrophysics Data System (ADS)

    Chen, Chaomei; Zhang, Jian; Vogeley, Michael S.

    2009-07-01

    The scientific capacity of a country is essential in todayâ's increasingly globalized science and technology ecosystem. Scientific capacity has four increasingly advanced levels of capabilities: absorbing, applying, creating, and retaining scientific knowledge. Moving to a advanced level requires additional skills and training. For example, it requires more specialized skills to apply scientific knowledge than to absorb knowledge. Similarly, making new discoveries requires more knowledge than applying existing procedures. Research has shown the importance of addressing specific, local problems while tapping into globally available expertise and resources. Accessing scientific knowledge is the first step towards absorbing knowledge. Low-income countries have increased their access to scientific literature on the Internet, but to what extent has this access led to more advanced levels of scientific capacity? Interdisciplinary and international collaboration may hold the key to creating and retaining knowledge. For example, creative ideas tend to be associated with inspirations originated from a diverse range of perspectives On the other hand, not all collaborations are productive. Assessing global science and technology needs to address both successes and failures and reasons behind them.

  11. [Scientific production and cancer-related collaboration networks in Peru 2000-2011: a bibliometric study in Scopus and Science Citation Index].

    PubMed

    Mayta-Tristán, Percy; Huamaní, Charles; Montenegro-Idrogo, Juan José; Samanez-Figari, César; González-Alcaide, Gregorio

    2013-03-01

    A bibliometric study was carried out to describe the scientific production on cancer written by Peruvians and published in international health journals, as well as to assess the scientific collaboration networks. It included articles on cancer written in Peru between the years 2000 and 2011 and published in health journals indexed in SCOPUS or Science Citation Index Expanded. In the 358 articles identified, an increase in the production was seen, from 4 articles in 2000 to 57 in 2011.The most studied types were cervical cancer (77 publications); breast cancer (53), and gastric cancer (37). The National Institute of Neoplastic Diseases (INEN) was the most productive institution (121 articles) and had the highest number of collaborations (180 different institutions). 52 clinical trials were identified, 29 of which had at least one author from INEN. We can conclude that, cancer research is increasing in Peru, the INEN being the most productive institution, with an important participation in clinical trials.

  12. On the Relation between the Small World Structure and Scientific Activities

    PubMed Central

    Ebadi, Ashkan; Schiffauerova, Andrea

    2015-01-01

    The modern science has become more complex and interdisciplinary in its nature which might encourage researchers to be more collaborative and get engaged in larger collaboration networks. Various aspects of collaboration networks have been examined so far to detect the most determinant factors in knowledge creation and scientific production. One of the network structures that recently attracted much theoretical attention is called small world. It has been suggested that small world can improve the information transmission among the network actors. In this paper, using the data on 12 periods of journal publications of Canadian researchers in natural sciences and engineering, the co-authorship networks of the researchers are created. Through measuring small world indicators, the small worldiness of the mentioned network and its relation with researchers’ productivity, quality of their publications, and scientific team size are assessed. Our results show that the examined co-authorship network strictly exhibits the small world properties. In addition, it is suggested that in a small world network researchers expand their team size through getting connected to other experts of the field. This team size expansion may result in higher productivity of the whole team as a result of getting access to new resources, benefitting from the internal referring, and exchanging ideas among the team members. Moreover, although small world network is positively correlated with the quality of the articles in terms of both citation count and journal impact factor, it is negatively related with the average productivity of researchers in terms of the number of their publications. PMID:25780922

  13. Facebook for Scientists: Requirements and Services for Optimizing How Scientific Collaborations Are Established

    PubMed Central

    Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory

    2008-01-01

    Background As biomedical research projects become increasingly interdisciplinary and complex, collaboration with appropriate individuals, teams, and institutions becomes ever more crucial to project success. While social networks are extremely important in determining how scientific collaborations are formed, social networking technologies have not yet been studied as a tool to help form scientific collaborations. Many currently emerging expertise locating systems include social networking technologies, but it is unclear whether they make the process of finding collaborators more efficient and effective. Objective This study was conducted to answer the following questions: (1) Which requirements should systems for finding collaborators in biomedical science fulfill? and (2) Which information technology services can address these requirements? Methods The background research phase encompassed a thorough review of the literature, affinity diagramming, contextual inquiry, and semistructured interviews. This phase yielded five themes suggestive of requirements for systems to support the formation of collaborations. In the next phase, the generative phase, we brainstormed and selected design ideas for formal concept validation with end users. Then, three related, well-validated ideas were selected for implementation and evaluation in a prototype. Results Five main themes of systems requirements emerged: (1) beyond expertise, successful collaborations require compatibility with respect to personality, work style, productivity, and many other factors (compatibility); (2) finding appropriate collaborators requires the ability to effectively search in domains other than your own using information that is comprehensive and descriptive (communication); (3) social networks are important for finding potential collaborators, assessing their suitability and compatibility, and establishing contact with them (intermediation); (4) information profiles must be complete, correct, up-to-date, and comprehensive and allow fine-grained control over access to information by different audiences (information quality and access); (5) keeping online profiles up-to-date should require little or no effort and be integrated into the scientist’s existing workflow (motivation). Based on the requirements, 16 design ideas underwent formal validation with end users. Of those, three were chosen to be implemented and evaluated in a system prototype, “Digital|Vita”: maintaining, formatting, and semi-automated updating of biographical information; searching for experts; and building and maintaining the social network and managing document flow. Conclusions In addition to quantitative and factual information about potential collaborators, social connectedness, personal and professional compatibility, and power differentials also influence whether collaborations are formed. Current systems only partially model these requirements. Services in Digital|Vita combine an existing workflow, maintaining and formatting biographical information, with collaboration-searching functions in a novel way. Several barriers to the adoption of systems such as Digital|Vita exist, such as potential adoption asymmetries between junior and senior researchers and the tension between public and private information. Developers and researchers may consider one or more of the services described in this paper for implementation in their own expertise locating systems. PMID:18701421

  14. Academia, advocacy, and industry: a collaborative method for clinical research advancement.

    PubMed

    Vanzo, Rena J; Lortz, Amanda; Calhoun, Amy R U L; Carey, John C

    2014-07-01

    Professionals who work in academia, advocacy, and industry often carry out mutually exclusive activities related to research and clinical care. However, there are several examples of collaboration among such professionals that ultimately allows for improved scientific and clinical understanding. This commentary recounts our particular experience (a collaboration between geneticists at the Universities of Minnesota and Utah, the 4p- Support Group, and Lineagen, Inc) and reviews other similar projects. We formally propose this collaborative method as a conduit for future clinical research programs. Specifically, we encourage academicians, directors of family/advocacy/support groups, and members of industry to establish partnerships and document their experiences. The medical community as a whole will benefit from such partnerships and, specifically, families will teach us lessons that could never be learned in a laboratory or textbook. © 2014 Wiley Periodicals, Inc.

  15. On the Compliance of Women Engineers with a Gendered Scientific System

    PubMed Central

    Ghiasi, Gita; Larivière, Vincent; Sugimoto, Cassidy R.

    2015-01-01

    There has been considerable effort in the last decade to increase the participation of women in engineering through various policies. However, there has been little empirical research on gender disparities in engineering which help underpin the effective preparation, co-ordination, and implementation of the science and technology (S&T) policies. This article aims to present a comprehensive gendered analysis of engineering publications across different specialties and provide a cross-gender analysis of research output and scientific impact of engineering researchers in academic, governmental, and industrial sectors. For this purpose, 679,338 engineering articles published from 2008 to 2013 are extracted from the Web of Science database and 974,837 authorships are analyzed. The structures of co-authorship collaboration networks in different engineering disciplines are examined, highlighting the role of female scientists in the diffusion of knowledge. The findings reveal that men dominate 80% of all the scientific production in engineering. Women engineers publish their papers in journals with higher Impact Factors than their male peers, but their work receives lower recognition (fewer citations) from the scientific community. Engineers—regardless of their gender—contribute to the reproduction of the male-dominated scientific structures through forming and repeating their collaborations predominantly with men. The results of this study call for integration of data driven gender-related policies in existing S&T discourse. PMID:26716831

  16. Academic Cross-Pollination: The Role of Disciplinary Affiliation in Research Collaboration

    PubMed Central

    Dhand, Amar; Luke, Douglas A.; Carothers, Bobbi J.; Evanoff, Bradley A.

    2016-01-01

    Academic collaboration is critical to knowledge production, especially as teams dominate scientific endeavors. Typical predictors of collaboration include individual characteristics such as academic rank or institution, and network characteristics such as a central position in a publication network. The role of disciplinary affiliation in the initiation of an academic collaboration between two investigators deserves more attention. Here, we examine the influence of disciplinary patterns on collaboration formation with control of known predictors using an inferential network model. The study group included all researchers in the Institute of Clinical and Translational Sciences (ICTS) at Washington University in St. Louis. Longitudinal data were collected on co-authorships in grants and publications before and after ICTS establishment. Exponential-family random graph models were used to build the network models. The results show that disciplinary affiliation independently predicted collaboration in grant and publication networks, particularly in the later years. Overall collaboration increased in the post-ICTS networks, with cross-discipline ties occurring more often than within-discipline ties in grants, but not publications. This research may inform better evaluation models of university-based collaboration, and offer a roadmap to improve cross-disciplinary collaboration with discipline-informed network interventions. PMID:26760302

  17. Collaborative Research for Water Resource Management under Climate Change Conditions

    NASA Astrophysics Data System (ADS)

    Brundiers, K.; Garfin, G. M.; Gober, P.; Basile, G.; Bark, R. H.

    2010-12-01

    We present an ongoing project to co-produce science and policy called Collaborative Planning for Climate Change: An Integrated Approach to Water-Planning, Climate Downscaling, and Robust Decision-Making. The project responds to motivations related to dealing with sustainability challenges in research and practice: (a) state and municipal water managers seek research that addresses their planning needs; (b) the scientific literature and funding agencies call for more meaningful engagement between science and policy communities, in ways that address user needs, while advancing basic research; and (c) empirical research contributes to methods for the design and implementation of collaborative projects. To understand how climate change might impact water resources and management in the Southwest US, our project convenes local, state, and federal water management practitioners with climate-, hydrology-, policy-, and decision scientists. Three areas of research inform this collaboration: (a) the role of paleo-hydrology in water resources scenario construction; (b) the types of uncertainties that impact decision-making beyond climate and modeling uncertainty; and (c) basin-scale statistical and dynamical downscaling of climate models to generate hydrologic projections for regional water resources planning. The project engages all participants in the research process, from research design to workshops that build capacity for understanding data generation and sources of uncertainty to the discussion of water management decision contexts. A team of “science-practice translators” facilitates the collaboration between academic and professional communities. In this presentation we contextualize the challenges and opportunities of use-inspired science-policy research collaborations by contrasting the initial project design with the process of implementation. We draw from two sources to derive lessons learned: literature on collaborative research, and evaluations provided by participating scientists and water managers throughout the process. Lessons learned include: RESULTS: The research process needs to generate academic (peer-reviewed publications, grant proposals) and applied (usable dataset, communication support) products. Additionally, the project also strives for intangible products, e.g., the research currently continues to support efforts to predict future regional hydroclimatology, whereas management requires a paradigm shift toward anticipation of needs for adapting to multiple possible futures. APPROACH: Collaborative research is not a one-off event or consultation, but a process of mutual engagement that needs to allow for adaptive evolution of the project and its organization. TOPICS: With the acceptance of hydroclimatic non-stationarity, the focus of water managers shifts from reducing scientific uncertainty to enhancing their ability to present academically and politically defensible scenarios to their constituencies. This requires addressing the related need for exploring how to deal with political and institutional uncertainties in decision-making.

  18. Ties That Bind International Research Teams: A Network Multilevel Model of Interdisciplinary Collaboration

    ERIC Educational Resources Information Center

    Kollasch, Aurelia Wiktoria

    2012-01-01

    Today large research projects require substantial involvement of researchers from different organizations, disciplines, or cultures working in groups or teams to accomplish a common goal of producing, sharing, and disseminating scientific knowledge. This study focuses on the international research team that was launched in response to pressing…

  19. A strategic framework for forest research and development in the south

    Treesearch

    Southern Research Station USDA Forest Service

    2006-01-01

    The Southern Research Station serves 13 States, with a scientific workforce of about 135 researchers; supporting technical, professional, and administrative employees; and a system of laboratories and experimental forests stretching from eastern Texas to northern Virginia. We conduct research in collaboration with universities across the country and with partners in...

  20. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the... EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Projects Does the...

  1. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the... EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Projects Does the...

  2. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... Rehabilitation Research Training Project? 350.12 Section 350.12 Education Regulations of the Offices of the... EDUCATION DISABILITY AND REHABILITATION RESEARCH PROJECTS AND CENTERS PROGRAM What Projects Does the...

  3. 22nd Spring Research Festival Just One Week Away | Poster

    Cancer.gov

    This year’s annual Spring Research Festival, scheduled for May 9 and 10, is nearly here. As usual, it is free and open to the public and promises to offer a forum for sharing scientific research and celebrating collaboration at Fort Detrick and NCI at Frederick.

  4. The SWITCH-ON Virtual Water-Science Laboratory

    NASA Astrophysics Data System (ADS)

    Arheimer, Berit; Boot, Gerben; Calero, Joan; Ceola, Serena; Gyllensvärd, Frida; Hrachowitz, Markus; Little, Lorna; Montanari, Alberto; Nijzink, Remko; Parajka, Juraj; Wagener, Thorsten

    2017-04-01

    The SWITCH-ON Virtual Water-Science Laboratory (VWSL) aims to facilitate collaboration and support reproducible experiments in water research. The goal is to overcome geographical distance for comparative hydrology and increase transparency when using computational tools in hydrological sciences. The VWSL gives access to open data through dedicated software tools for data search and upload, and helps creating collaborative protocols for joint experiments in the virtual environment. The VWSL will help scientists with: • Cooperation around the world - straightforward connections with other scientists in comparative analyses and collaboration, as a mean to accelerate scientific advance in hydrology. • Repeatability of experiments -thorough review of a large variety of numerical experiments, which is a foundational principle in scientific research, and improvement of research standards. • New forms of scientific research - by using online 'living' protocols, scientists you can elaborate ideas incrementally with a large group of colleagues and share data, tools, models, etc. in open science. The VWSL was developed within the EU project "Sharing Water Information to Tackle Changes in Hydrology - for Operational Needs" (Grant agreement No 603587). Visitors can choose to Define, Participate or Review experiments by clicking the start buttons (http://www.switch-on-vwsl.eu/). Anyone can view protocols without log-in (that's important for Open Science) - but to create, participate and edit protocols, you need to Log-in for security reasons. During the work process, the protocol is moved from one view to another as the experiment evolves from idea, to on-going, to be completed. The users of the Lab also get access to useful tools for running collaborative experiments, for instance: Open data Search, Data (and metadata) Upload, and Create Protocol tools. So far, eight collaborative experiments have been completed in the VWSL and resulted in research papers (published or submitted), and there are currently four on-going experiments, which also involves external participants, not paid by the project. The VWSL is now launched and open to everyone but it will be continuously developed and sustained also after the project. This presentation will give an on-line demonstration of the major features of the present VWSL and discuss some future visions and major challenges in this e-infrastructure.

  5. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such disciplines. This year we are pleased to honor Amanda Cook. We hope that you will make time to join us for the day in meeting fellow Division members, expanding knowledge of our activities, and creating new collaborations within the Space Science and Astrobiology Division.

  6. From tsunami hazard assessment to risk management in Guadeloupe (F.W.I.)

    NASA Astrophysics Data System (ADS)

    Zahibo, Narcisse; Dudon, Bernard; Krien, Yann; Arnaud, Gaël; Mercado, Aurelio; Roger, Jean

    2017-04-01

    The Caribbean region is prone to numerous natural hazards such as earthquakes, landslides, storm surges, tsunamis, coastal erosion or hurricanes. All these threats may cause great human and economic losses and are thus of prime interest for applied research. One of the main challenges for the scientific community is to conduct state-of-the-art research to assess hazards and share the results with coastal planners and decision makers so that they can regulate land use and develop mitigation strategies. We present here the results of a scientific collaborative project between Guadeloupe and Porto Rico which aimed at bringing a decision-making support to the authorities regarding tsunami hazards. This project led us to build a database of potential extreme events, and to study their impacts on Guadeloupe to investigate storm surge and tsunami hazards. The results were used by local authorities to develop safeguarding and mitigation measures in coastal areas. This project is thus a good example to demonstrate the benefit of inter Caribbean scientific collaboration for natural risks management.

  7. Working with and promoting early career scientists within a larger community

    NASA Astrophysics Data System (ADS)

    Pratt, K.

    2017-12-01

    For many scientific communities, engaging early career researchers is critical for success. These young scientists (graduate students, postdocs, and newly appointed professors) are actively forming collaborations and instigating new research programs. They also stand to benefit hugely from being part of a scientific community, gaining access to career development activities, becoming part of strong collaborator networks, and achieving recognition in their field of study — all of which will help their professional development. There are many ways community leaders can work proactively to support and engage early career scientists, and it it is often a community manager's job to work with leadership to implement such activities. In this presentation, I will outline ways of engaging early career scientists at events and tailored workshops, of promoting development of their leadership skills, and of creating opportunities for recognizing early career scientists within larger scientific communities. In this talk, I will draw from my experience working with the Deep Carbon Observatory Early Career Scientist Network, supported by the Alfred P. Sloan Foundation.

  8. Reconfiguring REU programs to build links between institutions is an efficiient way of expanding student participation in research.

    NASA Astrophysics Data System (ADS)

    Halpern, J. B.

    2016-12-01

    There is good evidence that STEM career recruiting would be bettered by a shift in REU programs from an individual student focus to building institutional links with faculty participation. This would improve recruiting, duration and the scientific productivity of the REU system. Student commitment would benefit from a more sophisticated and productive project that this would enable as would research groups and mentors at all institutions. Such programs build long lasting links between the institutions and individual faculty. For teaching institutions, scientifically centered collaborations bring faculty and students into the research culture. Faculty who teach at such institutions will maintain their research skills as well as their links to the field and gain respect both internally and externally. Visibility of the collaboration at the non-research centered institution will attract other students into the area. An on-going collaboration offers benefits to the research institution as well. First, recruitment becomes less hit and miss because the partners have observed and taught their students. Second partners will provide appropriate training and context before the summer starts for new students. Third, the availability of partners to help mentoring the students during the summer and into the academic year makes it easier for graduate students, post-docs and the research university faculty as well. Fourth, a good collaboration builds respect and understanding on all sides, which, since many in the research group will go on to teach at teaching centered institutions is important. Building respect for transfer students from Community Colleges and smaller teaching institutions among the research faculty is another benefit. I will describe programs that I have designed an led that successfully implement these ideas.

  9. The Internet and science communication: blurring the boundaries

    PubMed Central

    Warden, R

    2010-01-01

    Scientific research is heavily dependent on communication and collaboration. Research does not exist in a bubble; scientific work must be communicated in order to add it to the body of knowledge within a scientific community, so that its members may ‘stand on the shoulders of giants’ and benefit from all that has come before. The effectiveness of scientific communication is crucial to the pace of scientific progress: in all its forms it enables ideas to be formulated, results to be compared, and replications and improvements to be made. The sharing of science is a foundational aspect of the scientific method. This paper, part of the policy research within the FP7 EUROCANCERCOMS project, discusses how the Internet has changed communication by cancer researchers and how it has the potential to change it still more in the future. It will detail two broad types of communication: formal and informal, and how these are changing with the use of new web tools and technologies. PMID:22276045

  10. WATER ENVIRONMENT RESEARCH FOUNDATION (WERF)'S NATIONAL CENTER FOR RESOURCE RECOVERY AND NUTRIENT MANAGEMENT

    EPA Science Inventory

    • Research findings that will inform the long-term attainment of sustainable water management.
    • Better collaboration and communication by scientific community, facility owners/operators, policy makers, and the public at the intersections of wastewater, ...

    • The Aldo Leopold Wilderness Research Institute: a national wilderness research program in support of wilderness management

      Treesearch

      Vita Wright

      2000-01-01

      The Aldo Leopold Wilderness Research Institute strives to provide scientific leadership in developing and applying the knowledge necessary to sustain wilderness ecosystems and values. Since its 1993 dedication, researchers at this federal, interagency Institute have collaborated with researchers and managers from other federal, academic and private institutions to...

    • Analysis of Collaboration and Co-Citation Networks between Researchers Studying Violence Involving Women

      ERIC Educational Resources Information Center

      Muñoz-Muñoz, Ana M.; Mirón-Valdivieso, M. Dolores

      2017-01-01

      Introduction: We analyse the collaboration and co-citation networks at the international level in scientific articles about violence against women. The aim is to identify who are writing about this subject, if they are women and/or men, who the most influential authors are and which institutions they belong to, and finally which authors are cited…

    • VA/DoD Collaboration Guidebook for Healthcare Research

      DTIC Science & Technology

      2011-01-24

      specific time periods. The VA has academic affiliates that, in some instances, may supplement a researcher’s income and provide tenure and academic ...Clinical care dollars only Career Scientist and Research Scientist Research efforts paid by research funds Academic Researcher Research or...their graduate medical education (GME) program training director. DoD researchers may have scientific academic affiliations with the Uniformed

    • Contemporary HIV/AIDS research: Insights from knowledge management theory

      PubMed Central

      Callaghan, Chris William

      2017-01-01

      Abstract Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn’s paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the ‘crowd,’ thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process. PMID:28922967

    • Improving Scientific Research and Writing Skills through Peer Review and Empirical Group Learning †

      PubMed Central

      Senkevitch, Emilee; Smith, Ann C.; Marbach-Ad, Gili; Song, Wenxia

      2011-01-01

      Here we describe a semester-long, multipart activity called “Read and wRite to reveal the Research process” (R3) that was designed to teach students the elements of a scientific research paper. We implemented R3 in an advanced immunology course. In R3, we paralleled the activities of reading, discussion, and presentation of relevant immunology work from primary research papers with student writing, discussion, and presentation of their own lab findings. We used reading, discussing, and writing activities to introduce students to the rationale for basic components of a scientific research paper, the method of composing a scientific paper, and the applications of course content to scientific research. As a final part of R3, students worked collaboratively to construct a Group Research Paper that reported on a hypothesis-driven research project, followed by a peer review activity that mimicked the last stage of the scientific publishing process. Assessment of student learning revealed a statistically significant gain in student performance on writing in the style of a research paper from the start of the semester to the end of the semester. PMID:23653760

    • EVEREST: a virtual research environment for the Earth Sciences

      NASA Astrophysics Data System (ADS)

      Glaves, H. M.; Marelli, F.; Albani, M.

      2015-12-01

      There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Data providers will be also able to monitor user experiences and collect feedback through the VRE, improving their capacity to adapt to the changing requirements of their end-users. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary ES domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and seismicity). Each of the VRC represents a different collaborative use case for the VRE according to its own specific requirements for data, software, best practice and community engagement. The diverse use cases will demonstrate how the VRE can be used for a range of activities from straight forward data/software sharing to investigating ways to improve cooperative working. Development of the EVEREST VRE will leverage on the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those initiatives which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows.

    • Art-Science-Technology collaboration through immersive, interactive 3D visualization

      NASA Astrophysics Data System (ADS)

      Kellogg, L. H.

      2014-12-01

      At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

    • Assessing the scientific research productivity of Puerto Rican cancer researchers: bibliometric analysis from the Science Citation Index.

      PubMed

      Calo, William A; Suárez-Balseiro, Carlos; Suárez, Erick; Soto-Salgado, Marievelisse; Santiago-Rodríguez, Eduardo J; Ortiz, Ana P

      2010-09-01

      The analysis of cancer scientific production in Puerto Rico is largely unexplored. The objective of this study was to characterize trends in cancer-related research publications by authors affiliated to Puerto Rican institutions in recent decades. Manuscripts were retrieved from the Science Citation Index (SCI) database from 1982 to 2009. Search criterions were that the author's affiliation field contained some institution located in Puerto Rico and that the manuscripts were related to cancer research (according to keywords from the National Cancer Institute' cancer definition). Indexes measured in our analysis included number and type of manuscript, scientific collaboration, author's affiliation, and journal visibility. All the analyses were conducted using ProCite for bibliographic information management and STATA and SEER Joinpoint for the statistical inquiry. From 1982-2009, cancer-related papers authored by scientists located in Puerto Rico came to 451. Over the last three decades the scientific production underwent significant growth (APC = 6.4%, p < 0.05) with the highest peak between 2000 and 2009 (61.4% of all articles). Universities are the local institutional sector with the highest number of authors (81.4%), and the University of Puerto Rico is the most active center in this regard (68.5%). Forty-three percent of the manuscripts (n = 195) were published in 20 journals from which 14 are observed to have high visibility when compared to similar thematic journals. Cancer-scientific production in Puerto Rico underwent constant growth during the last three decades. A complete understanding of citing, publishing, and collaboration patterns in Puerto Rico is critical to researchers, policy makers, and health-care professionals in order to make informed decisions about cancer research priorities.

    • Virtual Research Environments for Natural Hazard Modelling

      NASA Astrophysics Data System (ADS)

      Napier, Hazel; Aldridge, Tim

      2017-04-01

      The Natural Hazards Partnership (NHP) is a group of 17 collaborating public sector organisations providing a mechanism for co-ordinated advice to government and agencies responsible for civil contingency and emergency response during natural hazard events. The NHP has set up a Hazard Impact Model (HIM) group tasked with modelling the impact of a range of UK hazards with the aim of delivery of consistent hazard and impact information. The HIM group consists of 7 partners initially concentrating on modelling the socio-economic impact of 3 key hazards - surface water flooding, land instability and high winds. HIM group partners share scientific expertise and data within their specific areas of interest including hydrological modelling, meteorology, engineering geology, GIS, data delivery, and modelling of socio-economic impacts. Activity within the NHP relies on effective collaboration between partners distributed across the UK. The NHP are acting as a use case study for a new Virtual Research Environment (VRE) being developed by the EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution). The VRE is allowing the NHP to explore novel ways of cooperation including improved capabilities for e-collaboration, e-research, automation of processes and e-learning. Collaboration tools are complemented by the adoption of Research Objects, semantically rich aggregations of resources enabling the creation of uniquely identified digital artefacts resulting in reusable science and research. Application of the Research Object concept to HIM development facilitates collaboration, by encapsulating scientific knowledge in a shareable format that can be easily shared and used by partners working on the same model but within their areas of expertise. This paper describes the application of the VRE to the NHP use case study. It outlines the challenges associated with distributed partnership working and how they are being addressed in the VRE. A case study is included focussing on the application of Research Objects to development work for the surface water flooding hazard impact model, a key achievement for the HIM group.

    • EPA Collaboration with Israel

      EPA Pesticide Factsheets

      The United States and Israel focus on scientific and technical collaboration to protect the environment, by exchanging scientific and technical information, arranging visits of scientific personnel, cooperating in scientific symposia and workshops, etc.

  1. Protecting Traditional Knowledge Related to Biological Resources: Is Scientific Research Going to Become More Bureaucratized?

    PubMed Central

    Reddy, Prashant; Lakshmikumaran, Malathi

    2015-01-01

    For the past several decades, there has been a world debate on the need for protecting traditional knowledge. A global treaty appears to be a distant reality. Of more immediate concern are the steps taken by the global community to protect access to biological resources in the name of protecting traditional knowledge. The Indian experience with implementing the Convention on Biological Diversity has created substantial legal uncertainty in collaborative scientific research between Indians and foreigners apart from bureaucratizing the entire process of scientific research, especially with regard to filing of applications for intellectual property rights. The issue therefore is whether the world needs to better balance the needs of the scientific community with the rights of those who have access to traditional knowledge. PMID:26101205

  2. Seamless online science workflow development and collaboration using IDL and the ENVI Services Engine

    NASA Astrophysics Data System (ADS)

    Harris, A. T.; Ramachandran, R.; Maskey, M.

    2013-12-01

    The Exelis-developed IDL and ENVI software are ubiquitous tools in Earth science research environments. The IDL Workbench is used by the Earth science community for programming custom data analysis and visualization modules. ENVI is a software solution for processing and analyzing geospatial imagery that combines support for multiple Earth observation scientific data types (optical, thermal, multi-spectral, hyperspectral, SAR, LiDAR) with advanced image processing and analysis algorithms. The ENVI & IDL Services Engine (ESE) is an Earth science data processing engine that allows researchers to use open standards to rapidly create, publish and deploy advanced Earth science data analytics within any existing enterprise infrastructure. Although powerful in many ways, the tools lack collaborative features out-of-box. Thus, as part of the NASA funded project, Collaborative Workbench to Accelerate Science Algorithm Development, researchers at the University of Alabama in Huntsville and Exelis have developed plugins that allow seamless research collaboration from within IDL workbench. Such additional features within IDL workbench are possible because IDL workbench is built using the Eclipse Rich Client Platform (RCP). RCP applications allow custom plugins to be dropped in for extended functionalities. Specific functionalities of the plugins include creating complex workflows based on IDL application source code, submitting workflows to be executed by ESE in the cloud, and sharing and cloning of workflows among collaborators. All these functionalities are available to scientists without leaving their IDL workbench. Because ESE can interoperate with any middleware, scientific programmers can readily string together IDL processing tasks (or tasks written in other languages like C++, Java or Python) to create complex workflows for deployment within their current enterprise architecture (e.g. ArcGIS Server, GeoServer, Apache ODE or SciFlo from JPL). Using the collaborative IDL Workbench, coupled with ESE for execution in the cloud, asynchronous workflows could be executed in batch mode on large data in the cloud. We envision that a scientist will initially develop a scientific workflow locally on a small set of data. Once tested, the scientist will deploy the workflow to the cloud for execution. Depending on the results, the scientist may share the workflow and results, allowing them to be stored in a community catalog and instantly loaded into the IDL Workbench of other scientists. Thereupon, scientists can clone and modify or execute the workflow with different input parameters. The Collaborative Workbench will provide a platform for collaboration in the cloud, helping Earth scientists solve big-data problems in the Earth and planetary sciences.

  3. It Takes a Village: Documenting the Contributions of Non-Scientific Staff to Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Valerie

    Documenting the Contributions of Non-Scientific Staff to Scientific Research Science, especially large-scale basic research, is a collaborative endeavor, often drawing on the skills of people from a wide variety of disciplines. These people include not just scientists, but also administrators, engineers, and many others. Fermilab, a Department of Energy National Laboratory and the United States’ premier particle physics laboratory, exemplifies this kind of research; many of its high-energy physics experiments involve hundreds of collaborators from all over the world. The Fermilab Archives seeks to document the history of the lab and the unique scientific research its staff and visitors perform.more » Adequately documenting the lab’s work often requires us to go far beyond things like the writings and correspondence of scientists to also capture the administrative and social histories of the experiments and the context in which they were performed. At Fermilab, we have sought to capture these elements of the lab’s activities through an oral history program that focuses on support staff as well as physicists and collection development choices that recognize the importance of records documenting the cultural life of the lab. These materials are not merely supplementary, but rather essential documentation of the many types of labor that go into the planning and execution of an experiment or the construction of an accelerator and the context in which this work is performed. Any picture of these experiments and accelerators that did not include this type of information would be incomplete. While the importance and richness of this material is especially pronounced at Fermilab due to the massive size of its experiments and accelerator facilities and its vibrant cultural life, the fruitfulness of these collecting efforts at Fermilab suggests that other archives documenting modern STEM research should also make sure the contributions of non-technical and non-scientific staff are preserved and that researchers interested in this subject should not neglect such sources.« less

  4. The ethics weathervane.

    PubMed

    Knoppers, Bartha Maria; Chadwick, Ruth

    2015-09-04

    Global collaboration in genomic research is increasingly both a scientific reality and an ethical imperative. This past decade has witnessed the emergence of six new, interconnected areas of ethical consensus and emphasis for policy in genomics: governance, security, empowerment, transparency, the right not to know, and globalization. The globalization of genomic research warrants an approach to governance policies grounded in human rights. A human rights approach activates the ethical principles underpinning genomic research. It lends force to the right of all citizens to benefit from scientific progress, and to the right of all scientists to be recognized for their contributions.

  5. Using Collaborate Writing Groups in Undergraduate Courses to Improve Scientific Writing Skills and Confidence

    NASA Astrophysics Data System (ADS)

    Maclachlan, J. C.; Feist, S.

    2016-12-01

    Communication of primary scientific research is an aspect of undergraduate teaching that rarely researches platforms outside of the classroom. One method to encourage the dissemination of scientific findings to an international audience is the implementation of Collaborative Writing Groups (CWG). This paper will discuss the development, implementation and successful results of two Collaborative Writing Group creating within two different senior undergraduate classes offered at McMaster University in Hamilton, Ontario, Canada through discussion of the implementation of the assignment coupled with challenges and opportunities the process provided. A key to the successful implementation of the CWG is a detailed timeline for the students to follow with achievable goals throughout the process. The eight-week process began with students creating groups and choosing a topic of interest. As groups form it became apparent the diversity of academic skills and interest within the classroom made selecting a research project all group members could agree on difficult. Throughout the course students were given time to not only review their colleagues writing but also have discussions on particularly challenging aspects of their research and help in providing solutions. While the timeline for this project was ambitious it was necessary to allow time for effective feedback on the scientific writing from both the students and the instructional team. Overall this process has produced 11 peer-reviewed undergraduate student written papers within two special editions of the journal Cartographica published by the University of Toronto Press (Maclachlan and Lee, 2015). The papers topics are quite diverse including: the modelling of glacier melt in Iceland; a look into the effects of urban sprawl; and an exploration of the spatial characteristics of dunes in southern Ontario. This encouragement of dissemination to an international audience will create an experience that promotes self-authorship and challenges students to evaluate their knowledge claims and take ownership of their ideas. Maclachlan, J.C. & Lee, R.E. 2015. Student Collaborative Writing Groups: Mapping Glacial Geomorphology and Glacial Sedimentology. Cartographica, 50(3), pp. 163-164

  6. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, Robert E.

    "PARC - Scientific Exchange Program" was submitted by the Photosynthetic Antenna Research Center (PARC) to the "Life at the Frontiers of Energy Research" video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) inmore » 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.« less

  7. PARC - Scientific Exchange Program (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema

    Blankenship, Robert E. (Director, Photosynthetic Antenna Research Center); PARC Staff

    2017-12-09

    'PARC - Scientific Exchange Program' was submitted by the Photosynthetic Antenna Research Center (PARC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. PARC, an EFRC directed by Robert E. Blankenship at Washington University in St. Louis, is a partnership of scientists from ten institutions. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  8. COLLABORATIVE RESEARCH, MONITORING AND ASSESSMENT IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    EPA Region 3 to implement a long-term research, monitoring, and assessment program in the Mid-Atlantic region - the Mid-Atlantic Integrated Assessment (MAIA). The MAIA mission is to develop a broad-based partnership to integrate scientific knowledge into the decision-making proc...

  9. Creatiing a Collaborative Research Network for Scientists

    NASA Astrophysics Data System (ADS)

    Gunn, W.

    2012-12-01

    This abstract proposes a discussion of how professional science communication and scientific cooperation can become more efficient through the use of modern social network technology, using the example of Mendeley. Mendeley is a research workflow and collaboration tool which crowdsources real-time research trend information and semantic annotations of research papers in a central data store, thereby creating a "social research network" that is emergent from the research data added to the platform. We describe how Mendeley's model can overcome barriers for collaboration by turning research papers into social objects, making academic data publicly available via an open API, and promoting more efficient collaboration. Central to the success of Mendeley has been the creation of a tool that works for the researcher without the requirement of being part of an explicit social network. Mendeley automatically extracts metadata from research papers, and allows a researcher to annotate, tag and organize their research collection. The tool integrates with the paper writing workflow and provides advanced collaboration options, thus significantly improving researchers' productivity. By anonymously aggregating usage data, Mendeley enables the emergence of social metrics and real-time usage stats on top of the articles' abstract metadata. In this way a social network of collaborators, and people genuinely interested in content, emerges. By building this research network around the article as the social object, a social layer of direct relevance to academia emerges. As science, particularly Earth sciences with their large shared resources, become more and more global, the management and coordination of research is more and more dependent on technology to support these distributed collaborations.

  10. The diplomacy of scientific research in the South China Sea: the case of join to oceanographic marine scientific research expedition between Vietnam and the Philippines

    NASA Astrophysics Data System (ADS)

    Satyawan, I. A.

    2018-03-01

    The South China Sea is one of the hot-spot areas in the world. This area is claimed by China, Malaysia, Brunei, Taiwan, Vietnam and the Philippines. It also noted, the South China Sea is rich in biodiversity as well as oil and gas. On the other side, environmental degradation is still happening in the South China Sea due to the reluctance of surrounding states to conduct a preservation program and mitigating action on climate change effects. Joint Oceanographic Marine Scientific Research Expedition between Vietnam and the Philippines is a breakthrough to start collaboration actions as well as to conduct Science Diplomacy.

  11. Global scientific research commons under the Nagoya Protocol: Towards a collaborative economy model for the sharing of basic research assets.

    PubMed

    Dedeurwaerdere, Tom; Melindi-Ghidi, Paolo; Broggiato, Arianna

    2016-01-01

    This paper aims to get a better understanding of the motivational and transaction cost features of building global scientific research commons, with a view to contributing to the debate on the design of appropriate policy measures under the recently adopted Nagoya Protocol. For this purpose, the paper analyses the results of a world-wide survey of managers and users of microbial culture collections, which focused on the role of social and internalized motivations, organizational networks and external incentives in promoting the public availability of upstream research assets. Overall, the study confirms the hypotheses of the social production model of information and shareable goods, but it also shows the need to complete this model. For the sharing of materials, the underlying collaborative economy in excess capacity plays a key role in addition to the social production, while for data, competitive pressures amongst scientists tend to play a bigger role.

  12. Teachers, Researchers, and Students Collaborating in Arctic Climate Change Research: The Partnership Between the Svalbard REU and ARCUS PolarTREC programs

    NASA Astrophysics Data System (ADS)

    Roof, S.; Warburton, J.; Oddo, B.; Kane, M.

    2007-12-01

    Since 2004, the Arctic Research Consortium of the U.S. (ARCUS) "TREC" program (Teachers and Researchers Exploring and Collaborating, now "PolarTREC") has sent four K-12 teachers to Svalbard, Norway to work alongside researchers and undergraduate students conducting climate change research as part of the Svalbard Research Experiences for Undergraduates (REU) Program. The benefits of this scientist/educator/student partnership are many. Researchers benefit from teacher participation as it increases their understanding of student learning and the roles and responsibilities of K-12 teachers. The TREC teacher contributes to the research by making observations, analyzing data, and carrying heavy loads of equipment. In collaborating with K- 12 teachers, undergraduate student participants discover the importance of teamwork in science and the need for effective communication of scientific results to a broad audience. The questions that K-12 teachers ask require the scientists and students in our program to explain their work in terms that non-specialists can understand and appreciate. The K-12 teacher provides a positive career role model and several Svalbard REU undergraduate students have pursued K-12 teaching careers after graduating. TREC teachers benefit from working alongside the researchers and by experiencing the adventures of real scientific research in a remote arctic environment. They return to their schools with a heightened status that allows them to share the excitement and importance of scientific research with their students. Together, all parties contribute to greatly enhance public outreach. With ARCUS logistical support, TREC teachers and researchers do live web conferences from the field, reaching hundreds of students and dozens of school administrators and even local politicians. Teachers maintain web journals, describing the daily activities and progress of the researcher team. Online readers from around the world write in to ask questions, which the TREC teacher answers after consulting the research team. TREC teachers have developed and distributed teaching modules using real questions and data from the research program. Our collaboration is successful in part because the teachers are well prepared by ARCUS in advance of the field experience and the Svalbard REU leaders treat the TREC teacher as a senior member of the research team. Reliable telephone and internet communication from the field site is also important because it greatly facilitates the daily outreach. Our success is measured by the hundreds of K-12 students exposed to arctic climate change research (some of which are now going to college to pursue geoscience studies!) and the mutual desire for continued collaboration between the Svalbard REU Program and the ARCUS PolarTREC Program.

  13. Improving Scientific Research for the GEO Geohazard Supersites through a Virtual Research Environment

    NASA Astrophysics Data System (ADS)

    Salvi, S.; Trasatti, E.; Rubbia, G.; Romaniello, V.; Spinetti, C.; Corradini, S.; Merucci, L.

    2016-12-01

    The EU's H2020 EVER-EST Project is dedicated to the realization of a Virtual Research Environment (VRE) for Earth Science researchers, during 2015-2018. EVER-EST implements state-of-the-art technologies in the area of Earth Science data catalogues, data access/processing and long-term data preservation together with models, techniques and tools for the computational methods, such as scientific workflows. The VRE is designed with the aim of providing the Earth Science user community with an innovative virtual environment to enhance their ability to interoperate and share knowledge and experience, exploiting also the Research Object concept. The GEO Geohazard Supersites is one of the four Research Communities chosen to validate the e-infrastructure. EVER-EST will help the exploitation of the full potential of the GEO Geohazard Supersite and Natural Laboratories (GSNL) initiative demonstrating the use case in the Permanent Supersites of Mt Etna, Campi Flegrei-Vesuvius, and Icelandic volcanoes. Besides providing tools for active volcanoes monitoring and studies, we intend to demonstrate how a more organized and collaborative research environment, such as a VRE, can improve the quality of the scientific research on the Geohazard Supersites, addressing at the same time the problem of the slow uptake of scientific research findings in Disaster Risk Management. Presently, the full exploitation of the in situ and satellite data made available for each Supersite is delayed by the difficult access (especially for researchers in developing countries) to intensive processing and modeling capabilities. EVER-EST is designed to provide these means and also a friendly virtual environment for the easy transfer of scientific knowledge as soon as it is acquired, promoting collaboration among researchers located in distant regions of the world. A further benefit will be to increase the societal impact of the scientific advancements obtained in the Supersites, allowing a more uniform interface towards the different user communities, who will use part of the services provided by EVER-EST during research result uptake. We show a few test cases of use of the Geohazard Supersite VRE at the actual state of development, and its future development.

  14. The joint cardiovascular research profile of the university medical centres in the Netherlands.

    PubMed

    van Welie, S D; van Leeuwen, T N; Bouma, C J; Klaassen, A B M

    2016-05-01

    Biomedical scientific research in the Netherlands has a good reputation worldwide. Quantitatively, the university medical centres (UMCs) deliver about 40 % of the total number of scientific publications of this research. Analysis of the bibliometric output data of the UMCs shows that their research is highly cited. These output-based analyses also indicate the high impact of cardiovascular scientific research in these centres, illustrating the strength of this research in the Netherlands. A set of six joint national cardiovascular research topics selected by the UMCs can be recognised. At the top are heart failure, rhythm disorder research and atherosclerosis. National collaboration of top scientists in consortia in these three areas is successful in acquiring funding of large-scale programs. Our observations suggest that funding national consortia of experts focused on a few selected research topics may increase the international competitiveness of cardiovascular research in the Netherlands.

  15. An annotated bibliography of scientific literature on research and management activities conducted in Manitou Experimental Forest

    Treesearch

    Ilana Abrahamson

    2012-01-01

    The Manitou Experimental Forest (MEF) is part of the USDA Forest Service Rocky Mountain Research Station. Established in 1936, its early research focused on range and watershed management. Currently, the site is home to several meteorological, ecological and biological research initiatives. Our collaborators include the University of Colorado, Colorado State University...

  16. Long-term avian research at the San Joaquin Experimental Range: recommendations for monitoring and managing oak woodlands

    Treesearch

    Kathryn L. Purcell

    2011-01-01

    Experimental forests and ranges are living laboratories that provide opportunities for conducting scientific research and transferring research results to partners and stakeholders. They are invaluable for their long-term data and capacity to foster collaborative, interdisciplinary research. The San Joaquin Experimental Range (SJER) was established to develop...

  17. From Chaos To MAOS: Launching an Oceanography High School.

    ERIC Educational Resources Information Center

    Martin, Marlene

    1997-01-01

    Discusses the background of a specialty high school in Monterey Bay, California focusing on oceanography. Describes the collaborative research relationship that exists between the school and the scientific community. (DDR)

  18. Tides, Krill, Penguins, Oh My!: Scientists and Teachers Partner in Project CONVERGE to Bring Collaborative Antarctic Research, Authentic Data, and Scientific Inquiry into the Hands of NJ and NY Students

    NASA Astrophysics Data System (ADS)

    Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.

    2016-02-01

    How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and education program.

  19. Exploration Science Opportunities for Students within Higher Education

    NASA Astrophysics Data System (ADS)

    Bailey, Brad; Minafra, Joseph; Schmidt, Gregory

    2016-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on exploration science related to near-term human exploration targets, training the next generation of lunar scientists, and education and public outreach. As part of the SSERVI mission, we act as a hub for opportunities that engage the public through education and outreach efforts in addition to forming new interdisciplinary, scientific collaborations.SSERVI provides opportunities for students to bridge the scientific and generational gap currently existing in the planetary exploration field. This bridge is essential to the continued international success of scientific, as well as human and robotic, exploration.The decline in funding opportunities after the termination of the Apollo missions to the Moon in the early 1970's produced a large gap in both the scientific knowledge and experience of the original lunar Apollo researchers and the resurgent group of young lunar/NEA researchers that have emerged within the last 15 years. One of SSERVI's many goals is to bridge this gap through the many networking and scientific connections made between young researchers and established planetary principle investigators. To this end, SSERVI has supported the establishment of NextGen Lunar Scientists and Engineers group (NGLSE), a group of students and early-career professionals designed to build experience and provide networking opportunities to its members. SSERVI has also created the LunarGradCon, a scientific conference dedicated solely to graduate and undergraduate students working in the lunar field. Additionally, SSERVI produces monthly seminars and bi-yearly virtual workshops that introduce students to the wide variety of exploration science being performed in today's research labs. SSERVI also brokers opportunities for domestic and international student exchange between collaborating laboratories as well as internships at our member institutions. SSERVI provides a bridge that is essential to the continued international success of scientific, as well as human and robotic, exploration.

  20. World citation and collaboration networks: uncovering the role of geography in science

    PubMed Central

    Pan, Raj Kumar; Kaski, Kimmo; Fortunato, Santo

    2012-01-01

    Modern information and communication technologies, especially the Internet, have diminished the role of spatial distances and territorial boundaries on the access and transmissibility of information. This has enabled scientists for closer collaboration and internationalization. Nevertheless, geography remains an important factor affecting the dynamics of science. Here we present a systematic analysis of citation and collaboration networks between cities and countries, by assigning papers to the geographic locations of their authors’ affiliations. The citation flows as well as the collaboration strengths between cities decrease with the distance between them and follow gravity laws. In addition, the total research impact of a country grows linearly with the amount of national funding for research & development. However, the average impact reveals a peculiar threshold effect: the scientific output of a country may reach an impact larger than the world average only if the country invests more than about 100,000 USD per researcher annually. PMID:23198092

  1. World citation and collaboration networks: uncovering the role of geography in science

    NASA Astrophysics Data System (ADS)

    Pan, Raj Kumar; Kaski, Kimmo; Fortunato, Santo

    2012-11-01

    Modern information and communication technologies, especially the Internet, have diminished the role of spatial distances and territorial boundaries on the access and transmissibility of information. This has enabled scientists for closer collaboration and internationalization. Nevertheless, geography remains an important factor affecting the dynamics of science. Here we present a systematic analysis of citation and collaboration networks between cities and countries, by assigning papers to the geographic locations of their authors' affiliations. The citation flows as well as the collaboration strengths between cities decrease with the distance between them and follow gravity laws. In addition, the total research impact of a country grows linearly with the amount of national funding for research & development. However, the average impact reveals a peculiar threshold effect: the scientific output of a country may reach an impact larger than the world average only if the country invests more than about 100,000 USD per researcher annually.

  2. Conceptualizing and Advancing Research Networking Systems.

    PubMed

    Schleyer, Titus; Butler, Brian S; Song, Mei; Spallek, Heiko

    2012-03-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture , and evaluation . Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers' need for comprehensive information and potential collaborators' desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user's primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems.

  3. Anatomy of funded research in science

    PubMed Central

    Ma, Athen; Mondragón, Raúl J.; Latora, Vito

    2015-01-01

    Seeking research funding is an essential part of academic life. Funded projects are primarily collaborative in nature through internal and external partnerships, but what role does funding play in the formulation of these partnerships? Here, by examining over 43,000 scientific projects funded over the past three decades by one of the major government research agencies in the world, we characterize how the funding landscape has changed and its impacts on the underlying collaboration networks across different scales. We observed rising inequality in the distribution of funding and that its effect was most noticeable at the institutional level—the leading universities diversified their collaborations and increasingly became the knowledge brokers in the collaboration network. Furthermore, it emerged that these leading universities formed a rich club (i.e., a cohesive core through their close ties) and this reliance among them seemed to be a determining factor for their research success, with the elites in the core overattracting resources but also rewarding in terms of both research breadth and depth. Our results reveal how collaboration networks organize in response to external driving forces, which can have major ramifications on future research strategy and government policy. PMID:26504240

  4. From "sit and listen" to "shake it out yourself": Helping urban middle school students to bridge personal knowledge to scientific knowledge through a collaborative environmental justice curriculum

    NASA Astrophysics Data System (ADS)

    Sadeh, Shamu Fenyvesi

    Science education and environmental education are not meeting the needs of marginalized communities such as urban, minority, and poor communities (Seller, 2001; U.S. Environmental Protection Agency [EPA], 1996). There exists an equity gap characterized by the racial and socioeconomic disparities in: levels of participation in scientific and environmental careers and environmental organizations (Lewis & James, 1995; Sheppard, 1995), access to appropriate environmental education programs (U.S. EPA, 1996), exposure to environmental toxins (Bullard, 1993), access to environmental amenities and legal protections (Bullard, 1993), and in grades and standardized test scores in K-12 science (Jencks & Phillips, 1998; Johnston & Viadero, 2000). Researchers point to the cultural divide between home and school culture as one of the reasons for the equity gap in science education (Barton, 2003; Delpit, 1995; Seiler, 2001). This study is designed to address the equity gap by helping students connect personal/cultural knowledge to scientific knowledge. A collaborative action research study was conducted in 8th-grade science classrooms of low-income African American and Latino students. The participating teacher and the researcher developed, enacted and evaluated a curriculum that elicited students' personal and cultural knowledge in the investigation of local community issues. Using qualitative methods, data were collected through student and teacher interviews, observation, and written documents. Data were analyzed to answer questions on student participation and learning, bridging between personal and scientific knowledge, and student empowerment. The most compelling themes from the data were described as parts of three stories: tensions between the empire of school and the small student nation, bridging between the two nations, and students gaining empowerment. This study found that the bridging the curriculum intended was successful in that many students brought personal knowledge to class and started to bring scientific knowledge into their personal worlds. Students translated between scientific language and their own language, displayed an understanding of community environmental health issues, and expressed a sense of empowerment as students and community members. Recommendations to science educators and researchers included: eliciting students' personal and cultural knowledge in the classroom, helping students to create new ways of participating in science, and engaging in collaborative research efforts.

  5. Science and Literacy: Incorporating Vocabulary, Reading Comprehension, Research Methods, and Writing into the Science Curriculum

    NASA Astrophysics Data System (ADS)

    Nieser, K.; Carlson, C.; Bering, E. A.; Slagle, E.

    2012-12-01

    Part of preparing the next generation of STEM researchers requires arming these students with the requisite literacy and research skills they will need. In a unique collaboration, the departments of Physics (ECE) and Psychology at the University of Houston have teamed up with NASA in a grant to develop a supplemental curriculum for elementary (G3-5) and middle school (G6-8) science teachers called Mars Rover. During this six week project, students work in teams to research the solar system, the planet Mars, design a research mission to Mars, and create a model Mars Rover to carry out this mission. Targeted Language Arts skills are embedded in each lesson so that students acquire the requisite academic vocabulary and research skills to enable them to successfully design their Mars Rover. Students learn academic and scientific vocabulary using scientifically based reading research. They receive direct instruction in research techniques, note-taking, summarizing, writing and other important language skills. The interdisciplinary collaboration empowers students as readers, writers and scientists. After the curriculum is completed, a culminating Mars Rover event is held at a local university, bringing students teams in contact with real-life scientists who critique their work, ask questions, and generate excite about STEM careers. Students have the opportunity to showcase their Mars Rover and to orally demonstrate their knowledge of Mars. Students discover the excitement of scientific research, STEM careers, important research and writing tools in a practical, real-life setting.

  6. Studying the Study Section: How Group Decision Making in Person and via Videoconferencing Affects the Grant Peer Review Process. WCER Working Paper No. 2015-6

    ERIC Educational Resources Information Center

    Pier, Elizabeth L.; Raclaw, Joshua; Nathan, Mitchell J.; Kaatz, Anna; Carnes, Molly; Ford, Cecilia E.

    2015-01-01

    Grant peer review is a foundational component of scientific research. In the context of grant review meetings, the review process is a collaborative, socially mediated, locally constructed decision-making task. The current study examines how collaborative discussion affects reviewers' scores of grant proposals, how different review panels score…

  7. Analysis of citation networks as a new tool for scientific research

    DOE PAGES

    Vasudevan, R. K.; Ziatdinov, M.; Chen, C.; ...

    2016-12-06

    The rapid growth of scientific publications necessitates new methods to understand the direction of scientific research within fields of study, ascertain the importance of particular groups, authors, or institutions, compute metrics that can determine the importance (centrality) of particular seminal papers, and provide insight into the social (collaboration) networks that are present. We present one such method based on analysis of citation networks, using the freely available CiteSpace Program. We use citation network analysis on three examples, including a single material that has been widely explored in the last decade (BiFeO 3), two small subfields with a minimal number ofmore » authors (flexoelectricity and Kitaev physics), and a much wider field with thousands of publications pertaining to a single technique (scanning tunneling microscopy). Interpretation of the analysis and key insights into the fields, such as whether the fields are experiencing resurgence or stagnation, are discussed, and author or collaboration networks that are prominent are determined. Such methods represent a paradigm shift in our way of dealing with the large volume of scientific publications and could change the way literature searches and reviews are conducted, as well as how the impact of specific work is assessed.« less

  8. Analysis of citation networks as a new tool for scientific research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, R. K.; Ziatdinov, M.; Chen, C.

    The rapid growth of scientific publications necessitates new methods to understand the direction of scientific research within fields of study, ascertain the importance of particular groups, authors, or institutions, compute metrics that can determine the importance (centrality) of particular seminal papers, and provide insight into the social (collaboration) networks that are present. We present one such method based on analysis of citation networks, using the freely available CiteSpace Program. We use citation network analysis on three examples, including a single material that has been widely explored in the last decade (BiFeO 3), two small subfields with a minimal number ofmore » authors (flexoelectricity and Kitaev physics), and a much wider field with thousands of publications pertaining to a single technique (scanning tunneling microscopy). Interpretation of the analysis and key insights into the fields, such as whether the fields are experiencing resurgence or stagnation, are discussed, and author or collaboration networks that are prominent are determined. Such methods represent a paradigm shift in our way of dealing with the large volume of scientific publications and could change the way literature searches and reviews are conducted, as well as how the impact of specific work is assessed.« less

  9. Analysis of scientific collaboration in Chinese psychiatry research.

    PubMed

    Wu, Ying; Jin, Xing

    2016-05-26

    In recent decades, China has changed profoundly, becoming the country with the world's second-largest economy. The proportion of the Chinese population suffering from mental disorder has grown in parallel with the rapid economic development, as social stresses have increased. The aim of this study is to shed light on the status of collaborations in the Chinese psychiatry field, of which there is currently limited research. We sampled 16,224 publications (2003-2012) from 10 core psychiatry journals from Chinese National Knowledge Infrastructure (CNKI) and WanFang Database. We used various social network analysis (SNA) methods such as centrality analysis, and Core-Periphery analysis to study collaboration. We also used hierarchical clustering analysis in this study. From 2003-2012, there were increasing collaborations at the level of authors, institutions and regions in the Chinese psychiatry field. Geographically, these collaborations were distributed unevenly. The 100 most prolific authors and institutions and 32 regions were used to construct the collaboration map, from which we detected the core author, institution and region. Collaborative behavior was affected by economic development. We should encourage collaborative behavior in the Chinese psychiatry field, as this facilitates knowledge distribution, resource sharing and information acquisition. Collaboration has also helped the field narrow its current research focus, providing further evidence to inform policymakers to fund research in order to tackle the increase in mental disorder facing modern China.

  10. Centers of Excellence on Environmental Health Disparities Research

    EPA Pesticide Factsheets

    collaborative effort that encourages basic, biological, clinical, epidemiological, behavioral, and/or social scientific investigations of disease conditions that are known to be a significant burden in low socioeconomic and health disparate populations

  11. Benefits of International Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Hasbrook, Pete; Tate Brown, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki; hide

    2017-01-01

    The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the e orts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible \\open data" repositories. For ISS data, these repositories include GeneLab, the Physical Science Informatics System, and different Earth science data systems. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research. The paper explores effectiveness of international collaboration in the course of the ISS Program execution. The collaboration history, its evolution and maturation, change of focus during its different phases, and growth of its effectiveness (in accordance with the especially established criteria) are also considered in the paper in the light of benefits for the entire ISS community. With the International Space Station extended through at least 2024, more crew time becoming available and new facilities arriving on board the ISS, these benefits of international scientific collaboration on the ISS can only increase.

  12. The PACA Project: Convergence of Scientific Research, Social Media and Citizen Science in the Era of Astronomical Big Data

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.

    2015-08-01

    The Pro-Am Collaborative Astronomy (PACA) project promotes and supports the professional-amateur astronomer collaboration in scientific research via social media and has been implemented in several comet observing campaigns. In 2014, two comet observing campaigns involving pro-am collaborations were initiated: (1) C/2013 A1 (C/SidingSpring) and (2) 67P/Churyumov-Gerasimenko (CG), target for ESA/Rosetta mission. The evolving need for individual customized observing campaigns has been incorporated into the evolution of The PACA Project that currently is focused on comets: from supporting observing campaigns of current comets, legacy data, historical comets; interconnected with social media and a set of shareable documents addressing observational strategies; consistent standards for data; data access, use, and storage, to align with the needs of professional observers in the era of astronmical big data. The empowerment of amateur astronomers vis-à-vis their partnerships with the professional scientists creates a new demographic of data scientists, enabling citizen science of the integrated data from both the professional and amateur communities.While PACA identifies a consistent collaborative approach to pro-am collaborations, given the volume of data generated for each campaign, new ways of rapid data analysis, mining access and storage are needed. Several interesting results emerged from the synergistic inclusion of both social media and amateur astronomers. The PACA Project is expanding to include pro-am collaborations on other solar system objects; allow for immersive outreach and include various types of astronomical communities, ranging from individuals, to astronmical societies and telescopic networks. Enabling citizen science research in the era of astronomical big data is a challenge which requires innovative approaches and integration of professional and amateur astronomers with data scientists and some examples of recent projects will be highlighted.

  13. C-ME: A 3D Community-Based, Real-Time Collaboration Tool for Scientific Research and Training

    PubMed Central

    Kolatkar, Anand; Kennedy, Kevin; Halabuk, Dan; Kunken, Josh; Marrinucci, Dena; Bethel, Kelly; Guzman, Rodney; Huckaby, Tim; Kuhn, Peter

    2008-01-01

    The need for effective collaboration tools is growing as multidisciplinary proteome-wide projects and distributed research teams become more common. The resulting data is often quite disparate, stored in separate locations, and not contextually related. Collaborative Molecular Modeling Environment (C-ME) is an interactive community-based collaboration system that allows researchers to organize information, visualize data on a two-dimensional (2-D) or three-dimensional (3-D) basis, and share and manage that information with collaborators in real time. C-ME stores the information in industry-standard databases that are immediately accessible by appropriate permission within the computer network directory service or anonymously across the internet through the C-ME application or through a web browser. The system addresses two important aspects of collaboration: context and information management. C-ME allows a researcher to use a 3-D atomic structure model or a 2-D image as a contextual basis on which to attach and share annotations to specific atoms or molecules or to specific regions of a 2-D image. These annotations provide additional information about the atomic structure or image data that can then be evaluated, amended or added to by other project members. PMID:18286178

  14. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    NASA Astrophysics Data System (ADS)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  15. Benefits of International Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hasbrook, Pete; Robinson, Julie A.; Brown Tate, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki; hide

    2017-01-01

    The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the efforts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible "open data" repositories. For ISS data, these repositories include GeneLab and the Physical Science Informatics System. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research results publications, maintained by the ISS international partnership and accessible via nasa.gov, make ISS results available worldwide, and encourage new users, ideas and research. The paper explores international collaboration history, its evolution and maturation, change of focus during its different phases, and growth of its effectiveness (in accordance with the especially established criteria) in the light of benefits for the entire ISS community. With the International Space Station extended through at least 2024, more crew time becoming available and new facilities arriving on board the ISS, these benefits of international scientific collaboration on the ISS can only increase.

  16. Art-technology Collaboration and Motivation Sources in Technologically Supported Artwork Buildup Project

    NASA Astrophysics Data System (ADS)

    Happonen, Ari; Stepanov, Alexander; Hirvimäki, Marika; Manninen, Matti; Dennisuk, William; Piili, Heidi; Salminen, Antti

    This study is based on observed outcomes of motivation sources and collaboration elements from a living lab style co-operation project. In this project, researchers of engineering science and an individual artist co-operated closely. The goal was to create an artwork made from corrugated board by utilizing laser cutting technology. In the context of this study, the scientist and the artist participated in the whole process and the research was done in living lab style arrangement. The research process integrated multiple experts from different scientific fields and experts from practical contexts to develop a new art design and art forming process with utilization of laser cutting technology. The purpose of this study was to find out and discuss about the key elements for high motivation to work together and then reveal the best practice findings in this co-operative development process. Elements were studied from three different points of view: artists view, collaboration motivation view and practical cutting point of view. The elements were analysed by utilizing an active documentation collection methodology, during the whole process, and by using story-telling methodology. The documents were used to reflect facts and feelings from the co-operation, the work process and the challenges encountered within collaboration. This article contributes to research methodology and best practice context by revealing the key elements, which build the motivation compelling (as personal inner motivation) the participant to work out of office hours as well as on weekends. Furthermore, as the artist-engineer co-operation is not frequently reported in scientific literature, this study reveals valuable information for practitioners and co-operation researchers.

  17. Librarians and Scientists Partner to Address Data Management: Taking Collaboration to the Next Level.

    PubMed

    Medina-Smith, Andrea; Tryka, Kimberly A; Silcox, Barbara P; Hanisch, Robert J

    2016-01-01

    This study looks at the changing way in which the Information Services Office (ISO) at the National Institute of Standards and Technology (NIST) provides services to NIST scientific and technical staff throughout their research and publishing cycles. These services include the more traditional services of a research library as well as publishing NIST technical reports and The Journal of Research of NIST , and preserving and exhibiting scientific instruments and other artifacts. ISO has always prided itself on having a close relationship with its customers, providing a high level of service, and developing new services to stay in front of NIST researcher needs. Through a concerted, strategic effort since the late 1990s, ISO has developed and promoted relationships with its key customers through its Lab Liaison Program. This paper discusses the relationship ISO has developed with the Office of Data and Informatics (ODI), how this relationship was forged, and how this collaboration will serve as a model for working with the other labs and programs at NIST. It will also discuss the risks and opportunities of this new collaborative service model, how ISO positioned itself to become an equal partner with ODI in the exploration of solutions to data management issues, and the benefits of the relationship from ODI's perspective. A pattern of strategic changes to the services and activities offered by the Lab Liaison program has put ISO in the position to collaborate as peers with researchers at NIST. This study provides an overview of how ISO made strategic decisions to incorporate non-traditional services to support data management at NIST.

  18. Comparative case study of two biomedical research collaboratories.

    PubMed

    Schleyer, Titus K L; Teasley, Stephanie D; Bhatnagar, Rishi

    2005-10-25

    Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific activity of two biomedical research centers. The two centers were the Great Lakes Regional Center for AIDS Research (HIV/AIDS Center) and the New York University Oral Cancer Research for Adolescent and Adult Health Promotion Center (Oral Cancer Center). In each collaboratory, we used semistructured interviews, surveys, and contextual inquiry to assess user needs and define the technology requirements. We evaluated and selected commercial software applications by comparing their feature sets with requirements and then pilot-testing the applications. Local and remote support staff cooperated in the implementation and end user training for the collaborative tools. Collaboratory staff evaluated each implementation by analyzing utilization data, administering user surveys, and functioning as participant observers. The HIV/AIDS Center primarily required real-time interaction for developing projects and attracting new participants to the center; the Oral Cancer Center, on the other hand, mainly needed tools to support distributed and asynchronous work in small research groups. The HIV/AIDS Center's collaboratory included a center-wide website that also served as the launch point for collaboratory applications, such as NetMeeting, Timbuktu Conference, PlaceWare Auditorium, and iVisit. The collaboratory of the Oral Cancer Center used Groove and Genesys Web conferencing. The HIV/AIDS Center was successful in attracting new scientists to HIV/AIDS research, and members used the collaboratory for developing and implementing new research studies. The Oral Cancer Center successfully supported highly distributed and asynchronous research, and the collaboratory facilitated real-time interaction for analyzing data and preparing publications. The two collaboratory implementations demonstrated the feasibility of supporting biomedical research centers using off-the-shelf commercial tools, but they also identified several barriers to successful collaboration. These barriers included computing platform incompatibilities, network infrastructure complexity, variable availability of local versus remote IT support, low computer and collaborative software literacy, and insufficient maturity of available collaborative software. Factors enabling collaboratory use included collaboration incentives through funding mechanism, a collaborative versus competitive relationship of researchers, leadership by example, and tools well matched to tasks and technical progress. Integrating electronic collaborative tools into routine scientific practice can be successful but requires further research on the technical, social, and behavioral factors influencing the adoption and use of collaboratories.

  19. The new approach to science and technology in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karczewski, W.

    1993-01-01

    In the past, the entire field of science and technology in Poland was divided into three sectors: the Academy of Sciences, the universities and other academic institutions, and the research and development institutes. The level of collaboration among these sectors was low, and the system of financing science and technology was centralized, bureaucratic, and inefficient. The present Science Bill,' which came into force in January, 1991, has three important new features: autonomy, scientific merit, and openness. The coordination of government policy in this field has been entrusted to the KBN (State Committee for Scientific Research). Members of the Committee andmore » its two commissions - one each for basic and applied research - are elected by the scientific community in direct two-stage elections. This new approach to the management of scientific research organization and financing should result in better utilization of budgetary resources allocated for science in Poland.« less

  20. Partners in Science: A Suggested Framework for Inclusive Research

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.

    2012-12-01

    Public participation in scientific research, also known as citizen science, is effective on many levels: it produces sound, publishable science and data, helps participants gain scientific knowledge and learn about the methods and practices of modern science, and can help communities advance their own priorities. Unfortunately, the demographics of citizen science programs do not reflect the demographics of the US; in general people of color and less affluent members of society are under-represented. To understand the reasons for this disparity, it is useful to look to the broader research about participation in science in a variety of informal and formal settings. From this research, the causes for unequal participation in science can be grouped into three broad categories: accessibility challenges, cultural differences, and a gap between scientific goals and community priorities. Many of these challenges are addressed in working with communities to develop an integrated program of scientific research, education, and community action that addresses community priorities and invites community participation at every stage of the process from defining the question to applying the results. In the spectrum of ways to engage the public in scientific research, this approach of "co-creation" is the most intensive. This talk will explore several examples of co-creation of science, including collaborations with tribal communities around climate change adaptation, work in the Louisiana Delta concerning land loss, and the link between weather and disease in Africa. We will articulate some of the challenges of working this intensively with communities, and suggest a general framework for guiding this kind of work with communities. This model of intensive collaboration at every stage is a promising one for adding to the diversity of citizen science efforts. It also provides a powerful strategy for science more generally, and may help us diversify our field, ensure the use and usability of our science, and help strengthen public support for and acceptance of scientific results.

  1. Does Collocation Inform the Impact of Collaboration?

    PubMed Central

    Lee, Kyungjoon; Brownstein, John S.; Mills, Richard G.; Kohane, Isaac S.

    2010-01-01

    Background It has been shown that large interdisciplinary teams working across geography are more likely to be impactful. We asked whether the physical proximity of collaborators remained a strong predictor of the scientific impact of their research as measured by citations of the resulting publications. Methodology/Principal Findings Articles published by Harvard investigators from 1993 to 2003 with at least two authors were identified in the domain of biomedical science. Each collaboration was geocoded to the precise three-dimensional location of its authors. Physical distances between any two coauthors were calculated and associated with corresponding citations. Relationship between distance of coauthors and citations for four author relationships (first-last, first-middle, last-middle, and middle-middle) were investigated at different spatial scales. At all sizes of collaborations (from two authors to dozens of authors), geographical proximity between first and last author is highly informative of impact at the microscale (i.e. within building) and beyond. The mean citation for first-last author relationship decreased as the distance between them increased in less than one km range as well as in the three categorized ranges (in the same building, same city, or different city). Such a trend was not seen in other three author relationships. Conclusions/Significance Despite the positive impact of emerging communication technologies on scientific research, our results provide striking evidence for the role of physical proximity as a predictor of the impact of collaborations. PMID:21179507

  2. Promoting research and audit at medical school: evaluating the educational impact of participation in a student-led national collaborative study.

    PubMed

    Chapman, Stephen J; Glasbey, James C D; Khatri, Chetan; Kelly, Michael; Nepogodiev, Dmitri; Bhangu, Aneel; Fitzgerald, J Edward F

    2015-03-13

    Medical students often struggle to engage in extra-curricular research and audit. The Student Audit and Research in Surgery (STARSurg) network is a novel student-led, national research collaborative. Student collaborators contribute data to national, clinical studies while gaining an understanding of audit and research methodology and ethical principles. This study aimed to evaluate the educational impact of participation. Participation in the national, clinical project was supported with training interventions, including an academic training day, an online e-learning module, weekly discussion forums and YouTube® educational videos. A non-mandatory, online questionnaire assessed collaborators' self-reported confidence in performing key academic skills and their perceptions of audit and research prior to and following participation. The group completed its first national clinical study ("STARSurgUK") with 273 student collaborators across 109 hospital centres. Ninety-seven paired pre- and post-study participation responses (35.5%) were received (male = 51.5%; median age = 23). Participation led to increased confidence in key academic domains including: communication with local research governance bodies (p < 0.001), approaching clinical staff to initiate local collaboration (p < 0.001), data collection in a clinical setting (p < 0.001) and presentation of scientific results (p < 0.013). Collaborators also reported an increased appreciation of research, audit and study design (p < 0.001). Engagement with the STARSurg network empowered students to participate in a national clinical study, which increased their confidence and appreciation of academic principles and skills. Encouraging active participation in collaborative, student-led, national studies offers a novel approach for delivering essential academic training.

  3. Curating Big Data Made Simple: Perspectives from Scientific Communities.

    PubMed

    Sowe, Sulayman K; Zettsu, Koji

    2014-03-01

    The digital universe is exponentially producing an unprecedented volume of data that has brought benefits as well as fundamental challenges for enterprises and scientific communities alike. This trend is inherently exciting for the development and deployment of cloud platforms to support scientific communities curating big data. The excitement stems from the fact that scientists can now access and extract value from the big data corpus, establish relationships between bits and pieces of information from many types of data, and collaborate with a diverse community of researchers from various domains. However, despite these perceived benefits, to date, little attention is focused on the people or communities who are both beneficiaries and, at the same time, producers of big data. The technical challenges posed by big data are as big as understanding the dynamics of communities working with big data, whether scientific or otherwise. Furthermore, the big data era also means that big data platforms for data-intensive research must be designed in such a way that research scientists can easily search and find data for their research, upload and download datasets for onsite/offsite use, perform computations and analysis, share their findings and research experience, and seamlessly collaborate with their colleagues. In this article, we present the architecture and design of a cloud platform that meets some of these requirements, and a big data curation model that describes how a community of earth and environmental scientists is using the platform to curate data. Motivation for developing the platform, lessons learnt in overcoming some challenges associated with supporting scientists to curate big data, and future research directions are also presented.

  4. Massage for Cancer Pain: A Study with University and Hospice Collaboration

    PubMed Central

    Gorman, Geraldine; Forest, Jeannine; Stapleton, Stephen J.; Hoenig, Noreen A.; Marschke, Michael; Durham, Jan; Suarez, Marie L.

    2009-01-01

    Conducting scientific research within a clinical practice area presents a variety of challenges. When the specialty area is hospice and palliative care, the collaborative task is particularly daunting. In this paper, we describe an ongoing study being conducted as a partnership between the University of Illinois at Chicago and a large metropolitan hospice organization. Our research is focused on engaging patients and their caregivers in a study measuring the effects of massage on cancer pain. The purpose of this paper is to describe both the lessons learned and the benefits accrued from collaboration between hospice practitioners and academic researchers. We present these process findings as guideposts for others considering end-of-life or palliative care research. Upon completion of the study in 2009, we will disseminate outcome findings in future papers. PMID:19337585

  5. Pro-Am Collaborations with research grade robotic instruments and their contribution to outreach

    NASA Astrophysics Data System (ADS)

    Howes, N.

    2014-04-01

    Robotic telescopes in both the commercial sector and outreach area have increasingly provided both professional and amateur astronomers with high quality data. Projects like the Faulkes Telescope, which is an educational and research arm of the Las Cumbres Observatory Global Telescope Network (LCOGTN) with their network of 1 and 2-metre robotic telescopes, have been directly involved in support for missions such as the European Space Agency Rosetta and Gaia missions, as well as involvement in a variety of NASA Comet missions such as the EPOXI/Comet 103P encounter. These telescope networks are unique in that they provide school students and high end amateur astronomers, with access to research grade instrumentation and equipment which may not have been affordable to them in many instances. With social media collaboration and dedicated websites, increasingly bridging the gap between the professional and amateur community, more and more amateurs are working as collaborators with scientists in not only providing data, but also in data reduction. Amateur astronomers have increasingly also been working with schools suggesting projects which have provided valuable scientific input to professional astronomers, whilst also giving young scientists in secondary education, an opportunity to work with professional instrumentation and methods, albeit at an entry level. We aim to demonstrate the long term value of these collaborations, and propose better working methodologies to help the professional community get more from amateur input. We will cite some examples of research paper collaborations, and scientifically valuable data sharing between professional and amateur astronomers, • Observations and results from the global campaign on Comet C/2007 Q3; Ref.[1] • Observations of the fragmentation of Comet 168P; Ref.[2] • Observations relating to the evolution of Comet C/2012 S1; Ref.[3

  6. Electronic collaboration: Some effects of telecommunication media and machine intelligence on team performance

    NASA Technical Reports Server (NTRS)

    Wellens, A. Rodney

    1991-01-01

    Both NASA and DoD have had a long standing interest in teamwork, distributed decision making, and automation. While research on these topics has been pursued independently, it is becoming increasingly clear that the integration of social, cognitive, and human factors engineering principles will be necessary to meet the challenges of highly sophisticated scientific and military programs of the future. Images of human/intelligent-machine electronic collaboration were drawn from NASA and Air Force reports as well as from other sources. Here, areas of common concern are highlighted. A description of the author's research program testing a 'psychological distancing' model of electronic media effects and human/expert system collaboration is given.

  7. Advancing Fire Weather Research via Interagency Collaboration: The NOAA/USFS MOU

    NASA Astrophysics Data System (ADS)

    Schranz, S.; Pouyat, R.

    2012-12-01

    In 2005, the Western Governors' Association (WGA) first articulated the need for closer collaboration between NOAA and the land management agencies to improve our services - and to ensure the best new technology and scientific advances are infused into fire weather information and services. NOAA has taken the WGA advice very seriously and, over the past few years, have followed up by polling users of our fire weather information. This was done both by our Office of the Federal Coordinator for Meteorology, and via an examination of internal and collaborative research activities as conducted by NOAA's Science Advisory Board. Through these processes, and given the tight budget environment, it's become clear we can't make needed progress alone. We need to call upon our joint expertise, along with the expertise of partners across the federal, state, academic, and research communities. This talk will outline the NOAA/USFS MOU signed in August, 2012 and the collaborative research already begun with the USFS and other partners.

  8. UCSF Small Molecule Discovery Center: innovation, collaboration and chemical biology in the Bay Area.

    PubMed

    Arkin, Michelle R; Ang, Kenny K H; Chen, Steven; Davies, Julia; Merron, Connie; Tang, Yinyan; Wilson, Christopher G M; Renslo, Adam R

    2014-05-01

    The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.

  9. Reengineering the National Clinical and Translational Research Enterprise: The Strategic Plan of the National Clinical and Translational Science Awards Consortium

    PubMed Central

    Reis, Steven E.; Berglund, Lars; Bernard, Gordon R.; Califf, Robert M.; FitzGerald, Garret A.; Johnson, Peter C.

    2009-01-01

    Advances in human health require the efficient and rapid translation of scientific discoveries into effective clinical treatments; this process in turn depends upon observational data gathered from patients, communities, and public-health research that can be used to guide basic scientific investigation. Such bidirectional translational science, however, faces unprecedented challenges due to the rapid pace of scientific and technological development, as well as the difficulties of negotiating increasingly complex regulatory and commercial environments that overlap the research domain. Further, numerous barriers to translational science have emerged among the nation’s academic research centers, including basic structural and cultural impediments to innovation and collaboration, shortages of trained investigators, and inadequate funding. To address these serious and systemic problems, in 2006, the National Institutes of Health created the Clinical and Translational Science Awards (CTSA) program, which aims to catalyze the transformation of biomedical research at a national level, speeding the discovery and development of therapies, fostering collaboration, engaging communities, and training succeeding generations of clinical and translational researchers. The authors report in detail on the planning process, begun in 2008, that was used to engage stakeholders and to identify, refine, and ultimately implement the CTSA program’s overarching strategic goals. They also discuss the implications and likely impact of this strategic planning process as it is applied among the nation’s academic health centers. PMID:20182119

  10. Reengineering the national clinical and translational research enterprise: the strategic plan of the National Clinical and Translational Science Awards Consortium.

    PubMed

    Reis, Steven E; Berglund, Lars; Bernard, Gordon R; Califf, Robert M; Fitzgerald, Garret A; Johnson, Peter C

    2010-03-01

    Advances in human health require the efficient and rapid translation of scientific discoveries into effective clinical treatments; this process, in turn, depends on observational data gathered from patients, communities, and public health research that can be used to guide basic scientific investigation. Such bidirectional translational science, however, faces unprecedented challenges due to the rapid pace of scientific and technological development, as well as the difficulties of negotiating increasingly complex regulatory and commercial environments that overlap the research domain. Further, numerous barriers to translational science have emerged among the nation's academic research centers, including basic structural and cultural impediments to innovation and collaboration, shortages of trained investigators, and inadequate funding.To address these serious and systemic problems, in 2006 the National Institutes of Health created the Clinical and Translational Science Awards (CTSA) program, which aims to catalyze the transformation of biomedical research at a national level, speeding the discovery and development of therapies, fostering collaboration, engaging communities, and training succeeding generations of clinical and translational researchers. The authors report in detail on the planning process, begun in 2008, that was used to engage stakeholders and to identify, refine, and ultimately implement the CTSA program's overarching strategic goals. They also discuss the implications and likely impact of this strategic planning process as it is applied among the nation's academic health centers.

  11. Public, environmental, and occupational health research activity in Arab countries: bibliometric, citation, and collaboration analysis.

    PubMed

    Sweileh, Waleed M; Zyoud, Sa'ed H; Al-Jabi, Samah W; Sawalha, Ansam F

    2015-01-01

    The objective of this study was to analyze quantity, assess quality, and investigate international collaboration in research from Arab countries in the field of public, environmental and occupational health. Original scientific articles and reviews published from the 22 Arab countries in the category "public, environmental & occupational health" during the study period (1900 - 2012) were screened using the ISI Web of Science database. The total number of original and review research articles published in the category of "public, environmental & occupational health" from Arab countries was 4673. Main area of research was tropical medicine (1862; 39.85%). Egypt with 1200 documents (25.86%) ranked first in quantity and ranked first in quality of publications (h-index = 51). The study identified 2036 (43.57%) documents with international collaboration. Arab countries actively collaborated with authors in Western Europe (22.91%) and North America (21.04%). Most of the documents (79.9%) were published in public health related journals while 21% of the documents were published in journals pertaining to prevention medicine, environmental, occupational health and epidemiology. Research in public, environmental and occupational health in Arab countries is in the rise. Public health research was dominant while environmental and occupation health research was relatively low. International collaboration was a good tool for increasing research quantity and quality.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal researchmore » community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.« less

  13. [Researchers training in the context of the collaborative projects: experiences of Instituto de Medicina Tropical "Alexander von Humbolt", Universidad Peruana Cayetano Heredia].

    PubMed

    Gotuzzo, Eduardo; González, Elsa; Verdonck, Kristien

    2010-09-01

    Research is a main element for human and social development. Under this point of view, it involves particular challenges and opportunities for the so-called "developing countries". An approach for those challenges and opportunities comes from the analysis of two interrelated activities; the training of new researchers and the research development with institutions or researchers which are external to the institution ("collaborative research"). Both activities are essential for the consolidation, widening and updating of the institutional capabilities for scientific production. We present here the experiences of the Instituto de Medicina Tropical "Alexander von Humboldt" of the Universidad Peruana Cayetano Heredia, in relation to the training of new researchers, we discuss the four elements we consider key for this process; the promotion of stimulating environments for research, the proactive identification of fellows, the complementary advice and networks consolidation; and we analyze three successful models of international collaboration for the training of new researchers under different institutional approaches.

  14. Sino-Canadian collaborations in stem cell research: a scientometric analysis.

    PubMed

    Ali-Khan, Sarah E; Ray, Monali; McMahon, Dominique S; Thorsteinsdóttir, Halla

    2013-01-01

    International collaboration (IC) is essential for the advance of stem cell research, a field characterized by marked asymmetries in knowledge and capacity between nations. China is emerging as a global leader in the stem cell field. However, knowledge on the extent and characteristics of IC in stem cell science, particularly China's collaboration with developed economies, is lacking. We provide a scientometric analysis of the China-Canada collaboration in stem cell research, placing this in the context of other leading producers in the field. We analyze stem cell research published from 2006 to 2010 from the Scopus database, using co-authored papers as a proxy for collaboration. We examine IC levels, collaboration preferences, scientific impact, the collaborating institutions in China and Canada, areas of mutual interest, and funding sources. Our analysis shows rapid global expansion of the field with 48% increase in papers from 2006 to 2010. China now ranks second globally after the United States. China has the lowest IC rate of countries examined, while Canada has one of the highest. China-Canada collaboration is rising steadily, more than doubling during 2006-2010. China-Canada collaboration enhances impact compared to papers authored solely by China-based researchers This difference remained significant even when comparing only papers published in English. While China is increasingly courted in IC by developed countries as a partner in stem cell research, it is clear that it has reached its status in the field largely through domestic publications. Nevertheless, IC enhances the impact of stem cell research in China, and in the field in general. This study establishes an objective baseline for comparison with future studies, setting the stage for in-depth exploration of the dynamics and genesis of IC in stem cell research.

  15. Sino-Canadian Collaborations in Stem Cell Research: A Scientometric Analysis

    PubMed Central

    Ali-Khan, Sarah E.; Ray, Monali; McMahon, Dominique S.; Thorsteinsdóttir, Halla

    2013-01-01

    Background International collaboration (IC) is essential for the advance of stem cell research, a field characterized by marked asymmetries in knowledge and capacity between nations. China is emerging as a global leader in the stem cell field. However, knowledge on the extent and characteristics of IC in stem cell science, particularly China’s collaboration with developed economies, is lacking. Methods and Findings We provide a scientometric analysis of the China–Canada collaboration in stem cell research, placing this in the context of other leading producers in the field. We analyze stem cell research published from 2006 to 2010 from the Scopus database, using co-authored papers as a proxy for collaboration. We examine IC levels, collaboration preferences, scientific impact, the collaborating institutions in China and Canada, areas of mutual interest, and funding sources. Our analysis shows rapid global expansion of the field with 48% increase in papers from 2006 to 2010. China now ranks second globally after the United States. China has the lowest IC rate of countries examined, while Canada has one of the highest. China–Canada collaboration is rising steadily, more than doubling during 2006–2010. China–Canada collaboration enhances impact compared to papers authored solely by China-based researchers This difference remained significant even when comparing only papers published in English. Conclusions While China is increasingly courted in IC by developed countries as a partner in stem cell research, it is clear that it has reached its status in the field largely through domestic publications. Nevertheless, IC enhances the impact of stem cell research in China, and in the field in general. This study establishes an objective baseline for comparison with future studies, setting the stage for in-depth exploration of the dynamics and genesis of IC in stem cell research. PMID:23468927

  16. Understanding the assembly of interdisciplinary teams and its impact on performance.

    PubMed

    Lungeanu, Alina; Huang, Yun; Contractor, Noshir S

    2014-01-01

    Interdisciplinary teams are assembled in scientific research and are aimed at solving complex problems. Given their increasing importance, it is not surprising that considerable attention has been focused on processes of collaboration in interdisciplinary teams. Despite such efforts, we know less about the factors affecting the assembly of such teams in the first place. In this paper, we investigate the structure and the success of interdisciplinary scientific research teams. We examine the assembly factors using a sample of 1,103 grant proposals submitted to two National Science Foundation interdisciplinary initiatives during a 3-year period, including both awarded and non-awarded proposals. The results indicate that individuals' likelihood of collaboration on a proposal is higher among those with longer tenure, lower institutional tier, lower H-index, and with higher levels of prior co-authorship and citation relationships. However, successful proposals have a little bit different relational patterns: individuals' likelihood of collaboration is higher among those with lower institutional tier, lower H-index, (female) gender, higher levels of prior co-authorship, but with lower levels of prior citation relationships.

  17. Understanding the assembly of interdisciplinary teams and its impact on performance

    PubMed Central

    Lungeanu, Alina; Huang, Yun; Contractor, Noshir S.

    2013-01-01

    Interdisciplinary teams are assembled in scientific research and are aimed at solving complex problems. Given their increasing importance, it is not surprising that considerable attention has been focused on processes of collaboration in interdisciplinary teams. Despite such efforts, we know less about the factors affecting the assembly of such teams in the first place. In this paper, we investigate the structure and the success of interdisciplinary scientific research teams. We examine the assembly factors using a sample of 1,103 grant proposals submitted to two National Science Foundation interdisciplinary initiatives during a 3-year period, including both awarded and non-awarded proposals. The results indicate that individuals’ likelihood of collaboration on a proposal is higher among those with longer tenure, lower institutional tier, lower H-index, and with higher levels of prior co-authorship and citation relationships. However, successful proposals have a little bit different relational patterns: individuals’ likelihood of collaboration is higher among those with lower institutional tier, lower H-index, (female) gender, higher levels of prior co-authorship, but with lower levels of prior citation relationships. PMID:24470806

  18. Rethinking antibiotic research and development: World War II and the penicillin collaborative.

    PubMed

    Quinn, Roswell

    2013-03-01

    Policy leaders and public health experts may be overlooking effective ways to stimulate innovative antibiotic research and development. I analyzed archival resources concerning the US government's efforts to produce penicillin during World War II, which demonstrate how much science policy can differ from present approaches. By contrast to current attempts to invigorate commercial participation in antibiotic development, the effort to develop the first commercially produced antibiotic did not rely on economic enticements or the further privatization of scientific resources. Rather, this extremely successful scientific and, ultimately, commercial endeavor was rooted in government stewardship, intraindustry cooperation, and the open exchange of scientific information. For policymakers facing the problem of stimulating antibiotic research and development, the origins of the antibiotic era offer a template for effective policy solutions that concentrate primarily on scientific rather than commercial goals.

  19. Protecting Traditional Knowledge Related to Biological Resources: Is Scientific Research Going to Become More Bureaucratized?

    PubMed

    Reddy, Prashant; Lakshmikumaran, Malathi

    2015-06-22

    For the past several decades, there has been a world debate on the need for protecting traditional knowledge. A global treaty appears to be a distant reality. Of more immediate concern are the steps taken by the global community to protect access to biological resources in the name of protecting traditional knowledge. The Indian experience with implementing the Convention on Biological Diversity has created substantial legal uncertainty in collaborative scientific research between Indians and foreigners apart from bureaucratizing the entire process of scientific research, especially with regard to filing of applications for intellectual property rights. The issue therefore is whether the world needs to better balance the needs of the scientific community with the rights of those who have access to traditional knowledge. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Rethinking Antibiotic Research and Development: World War II and the Penicillin Collaborative

    PubMed Central

    2013-01-01

    Policy leaders and public health experts may be overlooking effective ways to stimulate innovative antibiotic research and development. I analyzed archival resources concerning the US government’s efforts to produce penicillin during World War II, which demonstrate how much science policy can differ from present approaches. By contrast to current attempts to invigorate commercial participation in antibiotic development, the effort to develop the first commercially produced antibiotic did not rely on economic enticements or the further privatization of scientific resources. Rather, this extremely successful scientific and, ultimately, commercial endeavor was rooted in government stewardship, intraindustry cooperation, and the open exchange of scientific information. For policymakers facing the problem of stimulating antibiotic research and development, the origins of the antibiotic era offer a template for effective policy solutions that concentrate primarily on scientific rather than commercial goals. PMID:22698031

  1. Report on the Joint EU-US Workshop on Microbial Community Dynamics: Cooperation and Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Judy D.

    2013-07-01

    The European Commission (EC)-United States (US) Task Force on Biotechnology Research has a longstanding joint Working Group on Biotechnology for the Environment whose mission is to foster collaborations between researchers in the European Union (EU) and US in the field of environmental biotechnology. A special focus of the Working Group is to increase scientific interchange between early career scientists in the US and EU. Such interactions initiate a foundation of respect and trust needed to develop long-term collaborations. In order to realize the full potential for the application of modern technologies to obtain a sustainable biosphere, it is vital tomore » create conduits for knowledge exchange among scientists worldwide engaged in environmental microbial biotechnology research. Since its formation in 1994, the Working Group has organized many activities for early career scientists designed to promote this scientific exchange, including two week courses with hands-on research experience, intensive workshops of two or three days, and research scholar exchanges of one to six months. These interactions are focused on environmental problems that respect no international boundaries.« less

  2. Visualizing Forensic Publication Impacts and Collaborations: Presenting at a Scientific Venue Leads to Increased Collaborations between Researchers and Information Professionals

    PubMed Central

    Makar, Susan; Malanowski, Amanda; Rapp, Katie

    2016-01-01

    The Information Services Office (ISO) of the National Institute of Standards and Technology (NIST) proactively sought out an opportunity to present the findings of a study that showed the impact of NIST’s forensic research output to its internal customers and outside researchers. ISO analyzed the impact of NIST’s contributions to the peer-reviewed forensic journal literature through citation analysis and network visualizations. The findings of this study were compiled into a poster that was presented during the Forensics@NIST Symposium in December 2014. ISO’s study informed the forensic research community where NIST has had some of the greatest scholarly impact. This paper describes the methodology used to assess the impact of NIST’s forensic publications and shares the results, outcomes, and impacts of ISO’s study and poster presentation. This methodology is adaptable and applicable to other research fields and to other libraries. It has improved the recognition of ISO’s capabilities within NIST and resulted in application of the methodology to additional scientific disciplines. PMID:27956754

  3. Mass Spectrometry Data Set for Renal Cell Carcinoma and Polycystic Kidney Disease Cell Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B. J.

    This data set will be evaluated by collaborators at UC Davis for possible inclusion in a research paper for publication in a scientific journal and to assist in the design of additional experiments. Researchers from UC Davis and LLNL will contribute to the manuscript.

  4. Essential Tensions in Interdisciplinary Scholarship: Navigating Challenges in Affect, Epistemologies, and Structure in Environment-Society Research Centers

    ERIC Educational Resources Information Center

    Turner, V. Kelly; Benessaiah, Karina; Warren, Scott; Iwaniec, David

    2015-01-01

    Scholars have enumerated unique challenges to collaborative interdisciplinary research, many of which evade prescriptive solutions. Some of these challenges can be understood as "essential tensions," necessary and persistent contradictory imperatives in the scientific process. Drawing from interviews with internationally renowned…

  5. Long-term Ecological Research: Coweeta History and Perspectives

    Treesearch

    Wayne T. Swank; Judith L. Meyer; Deyree A. Crossley

    2001-01-01

    The Coweeta Hydrologic Laboratory-Institute of Ecology cooperative research program is one of the longest continuous collaborations on forest-ecosystem structure and function between a federal agency and academia in the country. Formally established in 1968, the program continues to mature in scientific scope, interdisciplinary expertise, administrative challenges,...

  6. Marigold (Calendula officinalis L.): an evidence-based systematic review by the Natural Standard Research Collaboration.

    PubMed

    Basch, Ethan; Bent, Steve; Foppa, Ivo; Haskmi, Sadaf; Kroll, David; Mele, Michelle; Szapary, Philippe; Ulbricht, Catherine; Vora, Mamta; Yong, Sophanna

    2006-01-01

    An evidence-based systematic review including written and statistical analysis of scientific literature, expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology and dosing.

  7. PARTNERING TO COLLECT IMPROVED HUMAN EXPOSURE MEASUREMENT DATA

    EPA Science Inventory

    Partnering allows complex environmental challenges to be efficiently addressed by leveraging resources and scientific expertise. The US Environmental Protection Agency's Office of Research and Development (ORD) routinely collaborates with other federal, state, and local governme...

  8. An evidence-based systematic review of saffron (Crocus sativus) by the Natural Standard Research Collaboration.

    PubMed

    Ulbricht, Catherine; Conquer, Julie; Costa, Dawn; Hollands, Whitney; Iannuzzi, Carmen; Isaac, Richard; Jordan, Joseph K; Ledesma, Natalie; Ostroff, Cathy; Serrano, Jill M Grimes; Shaffer, Michael D; Varghese, Minney

    2011-03-01

    An evidence-based systematic review including written and statistical analysis of scientific literature, expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.

  9. Evidence-based systematic review of saw palmetto by the Natural Standard Research Collaboration.

    PubMed

    Ulbricht, Catherine; Basch, Ethan; Bent, Steve; Boon, Heather; Corrado, Michelle; Foppa, Ivo; Hashmi, Sadaf; Hammerness, Paul; Kingsbury, Eileen; Smith, Michael; Szapary, Philippe; Vora, Mamta; Weissner, Wendy

    2006-01-01

    Here presented is an evidence-based systematic review including written and statistical analysis of scientific literature, expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.

  10. The open research system: a web-based metadata and data repository for collaborative research

    Treesearch

    Charles M. Schweik; Alexander Stepanov; J. Morgan Grove

    2005-01-01

    Beginning in 1999, a web-based metadata and data repository we call the "open research system" (ORS) was designed and built to assist geographically distributed scientific research teams. The purpose of this innovation was to promote the open sharing of data within and across organizational lines and across geographic distances. As the use of the system...

  11. What Does It Mean for Something to Be "Scientific"? Community Understandings of Science, Educational Attainment, and Community Representation among a Sample of 25 CBPR Projects

    ERIC Educational Resources Information Center

    Spears Johnson, Chaya R.; Kraemer Diaz, Anne E.; Arcury, Thomas A.

    2017-01-01

    Community-based participatory research (CBPR) seeks to conduct relevant, sustainable research that is tailored to the needs of the communities with which it is engaged through equitable collaboration between community representatives and professional researchers. Like other participatory approaches to research and planning, CBPR has been…

  12. Social Impact of Participatory Health Research: Collaborative Non-Linear Processes of Knowledge Mobilization

    ERIC Educational Resources Information Center

    Abma, Tineke A.; Cook, Tina; Rämgård, Margaretha; Kleba, Elisabeth; Harris, Janet; Wallerstein, Nina

    2017-01-01

    Social impact, defined as an effect on society, culture, quality of life, community services, or public policy beyond academia, is widely considered as a relevant requirement for scientific research, especially in the field of health care. Traditionally, in health research, the process of knowledge transfer is rather linear and one-sided and has…

  13. Researchers warn of neglect to basic science

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-03-01

    Russia is losing its standing as a scientific powerhouse and its science is in a state of decline, according to a new report by the information-services provider Thomson Reuters. Entitled "The New Geography of Science: Research and Collaboration in Russia", the report warns that the country's research base "has a problem, and it shows little sign of a solution".

  14. The common characteristics and outcomes of multidisciplinary collaboration in primary health care: a systematic literature review

    PubMed Central

    Schepman, Sanneke; Hansen, Johan; de Putter, Iris D.; Batenburg, Ronald S.; de Bakker, Dinny H.

    2015-01-01

    Introduction Research on collaboration in primary care focuses on specific diseases or types of collaboration. We investigate the effects of such collaboration by bringing together the results of scientific studies. Theory and methods We conducted a systematic literature review of PubMed, CINAHL, Cochrane and EMBASE. The review was restricted to publications that test outcomes of multidisciplinary collaboration in primary care in high-income countries. A conceptual model is used to structure the analysis. Results Fifty-one studies comply with the selection criteria about collaboration in primary care. Approximately half of the 139 outcomes in these studies is non-significant. Studies among older patients, in particular, report non-significant outcomes (p < .05). By contrast, a higher proportion of significant results were found in studies that report on clinical outcomes. Conclusions and discussion This review shows a large diversity in the types of collaboration in primary care; and also thus a large proportion of outcomes do not seem to be positively affected by collaboration. Both the characteristics of the structure of the collaboration and the collaboration processes themselves affect the outcomes. More research is necessary to understand the mechanism behind the success of collaboration, especially on the exact nature of collaboration and the context in which collaboration takes place. PMID:26150765

  15. A Complexity Approach to Evaluating National Scientific Systems through International Scientific Collaborations

    ERIC Educational Resources Information Center

    Zelnio, Ryan J.

    2013-01-01

    This dissertation seeks to contribute to a fuller understanding of how international scientific collaboration has affected national scientific systems. It does this by developing three methodological approaches grounded in social complexity theory and applying them to the evaluation of national scientific systems. The first methodology identifies…

  16. Public-private collaboration in clinical research during pregnancy, lactation, and childhood: joint position statement of the Early Nutrition Academy and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition.

    PubMed

    Koletzko, Berthold; Benninga, Marc A; Godfrey, Keith M; Hornnes, Peter J; Kolaček, Sanja; Koletzko, Sibylle; Lentze, Michael J; Mader, Silke; McAuliffe, Fionnuala M; Oepkes, Dick; Oddy, Wendy H; Phillips, Alan; Rzehak, Peter; Socha, Piotr; Szajewska, Hania; Symonds, Michael E; Taminiau, Jan; Thapar, Nikhil; Troncone, Riccardo; Vandenplas, Yvan; Veereman, Gigi

    2014-04-01

    This position statement summarises a view of academia regarding standards for clinical research in collaboration with commercial enterprises, focussing on trials in pregnant women, breast-feeding women, and children. It is based on a review of the available literature and an expert workshop cosponsored by the Early Nutrition Academy and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. Clinical research collaborations between academic investigators and commercial enterprises are encouraged by universities, public funding agencies, and governmental organisations. One reason is a pressing need to obtain evidence on the effects, safety, and benefits of drugs and other commercial products and services. The credibility and value of results obtained through public-private research collaborations have, however, been questioned because many examples of inappropriate research practice have become known. Clinical research in pregnant and breast-feeding women, and in infants and children, raises sensitive scientific, ethical, and societal questions and requires the application of particularly high standards. Here we provide recommendations for the conduct of public-private research collaborations in these populations. In the interest of all stakeholders, these recommendations should contribute to more reliable, credible, and acceptable results of commercially sponsored trials and to reducing the existing credibility gap.

  17. Sierra Nevada Science Review. Report of the Science Review Team charged to synthesize new information of rangewide urgency to the national forests of the Sierra Nevada.

    Treesearch

    Constance Millar; Amy Lind; Rowan Rowntree; Carl Skinner; Jared Verner; William J. Zielinski; Robert R. Ziemer

    1998-01-01

    In January, 1998, the Pacific Southwest Region and Pacific Southwest Research Station of the Forest Service initiated a collaborative effort to incorporate new information into planning future management of Sierra Nevada national forests. The project, known as the Sierra Nevada Framework for Conservation and Collaboration, will incorporate the latest scientific...

  18. The Medical Education Partnership Initiative (MEPI), a collaborative paradigm for institutional and human resources capacity building between high- and low- and middle-income countries: the Mozambique experience

    PubMed Central

    Noormahomed, Emilia Virginia; Carrilho, Carla; Ismail, Mamudo; Noormahomed, Sérgio; Nguenha, Alcido; Benson, Constance A.; Mocumbi, Ana Olga; Schooley, Robert T.

    2017-01-01

    ABSTRACT Background: Collaborations among researchers based in lower and middle income countries (LMICs) and high income countries (HICs) have made major discoveries related to diseases disproportionately affecting LMICs and have been vital to the development of research communities in LMICs. Such collaborations have generally been scientifically and structurally driven by HICs. Objectives: In this report we outline a paradigm shift in collaboration, exemplified by the Medical Education Partnership Initiative (MEPI), in which the formulation of priorities and administrative infrastructure reside in the LMIC. Methods: This descriptive report outlines the critical features of the MEPI partnership. Results: In the MEPI, LMIC program partners translate broad program goals and define metrics into priorities that are tailored to local conditions. Program funds flow to a LMIC-based leadership group that contracts with peers from HICs to provide technical and scientific advice and consultation in a 'reverse funds flow' model. Emphasis is also placed on strengthening administrative capacity within LMIC institutions. A rigorous monitoring and evaluation process modifies program priorities on the basis of evolving opportunities to maximize program impact. Conclusions: Vesting LMIC partners with the responsibility for program leadership, and building administrative and fiscal capacity in LMIC institutions substantially enhances program relevance, impact and sustainability. PMID:28452653

  19. Team science as interprofessional collaborative research practice: a systematic review of the science of team science literature.

    PubMed

    Little, Meg M; St Hill, Catherine A; Ware, Kenric B; Swanoski, Michael T; Chapman, Scott A; Lutfiyya, M Nawal; Cerra, Frank B

    2017-01-01

    The National Institute of Health's concept of team science is a means of addressing complex clinical problems by applying conceptual and methodological approaches from multiple disciplines and health professions. The ultimate goal is the improved quality of care of patients with an emphasis on better population health outcomes. Collaborative research practice occurs when researchers from >1 health-related profession engage in scientific inquiry to jointly create and disseminate new knowledge to clinical and research health professionals in order to provide the highest quality of patient care to improve population health outcomes. Training of clinicians and researchers is necessary to produce clinically relevant evidence upon which to base patient care for disease management and empirically guided team-based patient care. In this study, we hypothesized that team science is an example of effective and impactful interprofessional collaborative research practice. To assess this hypothesis, we examined the contemporary literature on the science of team science (SciTS) produced in the past 10 years (2005-2015) and related the SciTS to the overall field of interprofessional collaborative practice, of which collaborative research practice is a subset. A modified preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach was employed to analyze the SciTS literature in light of the general question: Is team science an example of interprofessional collaborative research practice? After completing a systematic review of the SciTS literature, the posed hypothesis was accepted, concluding that team science is a dimension of interprofessional collaborative practice. Copyright © 2016 American Federation for Medical Research.

  20. Proceedings of the Annual Meeting of the Council for Programs in Technical and Scientific Communication (12th, Oxford, Ohio, February 13-15, 1985).

    ERIC Educational Resources Information Center

    Samuels, Marilyn Schauer, Ed.

    The papers in this proceedings of the Council for Programs in Technical and Scientific Communication (CPTSC) conference discuss collaboration with other disciplines, with business and industry, and with research foundations, reflecting the readiness to reach out that characterizes CPTSC in its second decade. Papers in the proceedings are:…

  1. Scientific Cooperation Between the U.S. and the Republic of South Africa Funds 7 Cancer-Specific Pro

    Cancer.gov

    The NIH has recently awarded its first round of grants in a parallel U.S.-South Africa funding opportunity. Initiatives funded through this program will advance biomedical research for tuberculosis and HIV/AIDS in not only the US and South Africa, but will contribute to the global wealth of knowledge of these diseases. The scope of this initiative includes HIV/AIDS co-morbidities, and resulting malignancies. This opportunity was further targeted at expanding basic, translational, behavioral and applied research that will stimulate scientific discovery, and engage U.S. and South African researcher collaboration.

  2. Outlining and dictating scientific manuscripts is a useful method for health researchers: A focus group interview.

    PubMed

    Andresen, Kristoffer; Laursen, Jannie; Rosenberg, Jacob

    2018-01-01

    Young researchers may experience difficulties when writing scientific articles for publication in biomedical journals. Various methods may facilitate the writing process including outlining the paper before the actual writing and using dictation instead of writing the first draft. The aim of this study was to investigate the experiences and difficulties for young, experienced researchers when writing articles using a detailed outline and dictation of the first draft. We used qualitative focus group interviews and the study was reported according to the COnsolidated criteria for REporting Qualitative research guideline. Participants were sampled from a group of researchers participating in a writing retreat/course. The interviews were recorded on a digital recorder and transcribed. The text was analyzed according to content analysis and coded and condensed into themes and subthemes. Groups of participants were added until data saturation was reached. A total of 14 researchers participated (9 women and 5 men). Their clinical experience was median (range) of 6 (1-11) years since graduation from medical school. Two themes arose during the analyses of the data: "Process guidance with the outline as the map" and "arrival at dictation." The outline was used in the preparation phase leading up to the day of dictation and was used in collaboration with co-authors and supervisors. The participants found it to be a useful tool for preparing the manuscript and dictating their initial first full draft. Experienced young researchers found beneficial effects of using a structured outline to prepare for dictation of scientific articles. The outline was a tool that would develop in close collaboration with co-authors and mentors. With dictation, a full first draft of a manuscript can be produced in a few hours. Participants positively evaluated this structured and reproducible way of producing scientific articles.

  3. Integrating scientific knowledge into large-scale restoration programs: the CALFED Bay-Delta Program experience

    USGS Publications Warehouse

    Taylor, Kimberly A.; Short, A.

    2009-01-01

    Integrating science into resource management activities is a goal of the CALFED Bay-Delta Program, a multi-agency effort to address water supply reliability, ecological condition, drinking water quality, and levees in the Sacramento-San Joaquin Delta of northern California. Under CALFED, many different strategies were used to integrate science, including interaction between the research and management communities, public dialogues about scientific work, and peer review. This paper explores ways science was (and was not) integrated into CALFED's management actions and decision systems through three narratives describing different patterns of scientific integration and application in CALFED. Though a collaborative process and certain organizational conditions may be necessary for developing new understandings of the system of interest, we find that those factors are not sufficient for translating that knowledge into management actions and decision systems. We suggest that the application of knowledge may be facilitated or hindered by (1) differences in the objectives, approaches, and cultures of scientists operating in the research community and those operating in the management community and (2) other factors external to the collaborative process and organization.

  4. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  5. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  6. Collaborative, Data-Intensive Science Key to Science & Commerce Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleese van Dam, Kerstin

    2013-05-28

    This article coincides with the release of "Data-Intensive Science," co-edited by Dr. Kerstin Kleese van Dam. In the piece, Dr. Kleese van Dam explains how data-intensive science has the potential to transform not only how we do science but how quickly we can translate scientific progress into complete solutions, policies, decisions and, ultimately, economic success. In the article, she states it is clear that nations that can most effectively transform tons of scientific data into actionable knowledge are going to be the leaders in the future of science and commerce and how creating the required new insights for complex challengesmore » cannot be done without effective collaboration. Because many science domains already are unable to explore all of the data they collect (or which is relevant to their research), progress in collaborative, data-intensive science is crucial toward unlocking the potential of big data.« less

  7. Interorganizational collaboration for health care between nongovernmental organizations (NGOs) in Pakistan.

    PubMed

    Gulzar, Laila; Henry, Beverly

    2005-11-01

    The complexity and cost of health systems requires innovative forms of organization to provide accessible health services of an acceptable quality and at an acceptable cost. Interorganizational collaboration (IoC) is an innovation to increase the availability of organizational resources, improve service effectiveness, and improve access to health care. In Pakistan, a weak health system and little collaboration limit access, especially of women and children, to health services. Many nongovernmental organizations (NGOs) provide primary health care to the very poor, and some appear to collaborate to varying degrees; however, this has not been systematically analyzed. The purpose of this qualitative research, the first scientific study of collaboration between NGOs providing health services in Pakistan, was to describe collaboration between three pairs of NGOs providing community-based health services to women in Karachi. A long-term goal is to build a basis for future research linking IoC to access to health care and health outcomes. Findings indicated that collaboration was strongest when there was willingness to cooperate, a need for expertise and funds, and adaptive efficiency. In Pakistan's complex social environment, collaboration tended to be stronger when there was fairly high organizational formalization. Broader IoC appears to be positively associated with women's access to health care. Recommendations are made for future research, education, and management.

  8. A Scientometric Evaluation of the Chagas Disease Implementation Research Programme of the PAHO and TDR

    PubMed Central

    Carbajal-de-la-Fuente, Ana Laura; Yadón, Zaida E.

    2013-01-01

    The Special Programme for Research and Training in Tropical Diseases (TDR) is an independent global programme of scientific collaboration cosponsored by the United Nations Children's Fund, the United Nations Development Program, the World Bank, and the World Health Organization. TDR's strategy is based on stewardship for research on infectious diseases of poverty, empowerment of endemic countries, research on neglected priority needs, and the promotion of scientific collaboration influencing global efforts to combat major tropical diseases. In 2001, in view of the achievements obtained in the reduction of transmission of Chagas disease through the Southern Cone Initiative and the improvement in Chagas disease control activities in some countries of the Andean and the Central American Initiatives, TDR transferred the Chagas Disease Implementation Research Programme (CIRP) to the Communicable Diseases Unit of the Pan American Health Organization (CD/PAHO). This paper presents a scientometric evaluation of the 73 projects from 18 Latin American and European countries that were granted by CIRP/PAHO/TDR between 1997 and 2007. We analyzed all final reports of the funded projects and scientific publications, technical reports, and human resource training activities derived from them. Results about the number of projects funded, countries and institutions involved, gender analysis, number of published papers in indexed scientific journals, main topics funded, patents inscribed, and triatomine species studied are presented and discussed. The results indicate that CIRP/PAHO/TDR initiative has contributed significantly, over the 1997–2007 period, to Chagas disease knowledge as well as to the individual and institutional-building capacity. PMID:24244761

  9. ASPIRE: Teachers and researchers working together to enhance student learning

    NASA Astrophysics Data System (ADS)

    Yager, P. L.; Garay, D. L.; Warburton, J.

    2016-02-01

    Given the impact of human activities on the ocean, involving teachers, students, and their families in scientific inquiry has never been more important. Science, Technology, Engineering, and Math (STEM) disciplines have become key focus areas in the education community of the United States. Newly adopted across the nation, Next Generation Science Standards require that educators embrace innovative approaches to teaching. Transforming classrooms to actively engage students through a combination of knowledge and practice develops conceptual understanding and application skills. The partnerships between researchers and educators during the Amundsen Sea Polynya International Research Expedition (ASPIRE) offer an example of how academic research can enhance K-12 student learning. In this presentation, we illustrate how ASPIRE teacher-scientist partnerships helped engage students with actual and virtual authentic scientific investigations. Scientists benefit from teacher/researcher collaborations as well, as funding for scientific research also depends on effective communication between scientists and the public. While contributing to broader impacts needed to justify federal funding, scientists also benefit by having their research explained in ways that the broader public can understand: collaborations with teachers produce classroom lessons and published work that generate interest in the scientists' research specifically and in marine science in general. Researchers can also learn from their education partners about more effective teaching strategies that can be transferred to the college level. Researchers who work with teachers in turn gain perspectives on the constraints that teachers and students face in the pre-college classroom. Crosscutting concepts of research in polar marine science can serve as intellectual tools to connect important ideas about ocean and climate science for the public good.

  10. Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT.

    PubMed

    Ditty, Jayna L; Williams, Kayla M; Keller, Megan M; Chen, Grischa Y; Liu, Xianxian; Parales, Rebecca E

    2013-01-01

    It has become clear in current scientific pedagogy that the emersion of students in the scientific process in terms of designing, implementing, and analyzing experiments is imperative for their education; as such, it has been our goal to model this active learning process in the classroom and laboratory in the context of a genuine scientific question. Toward this objective, the National Science Foundation funded a collaborative research grant between a primarily undergraduate institution and a research-intensive institution to study the chemotactic responses of the bacterium Pseudomonas putida F1. As part of the project, a new Bioinformatics course was developed in which undergraduates annotate relevant regions of the P. putida F1 genome using Integrated Microbial Genomes Annotation Collaboration Toolkit, a bioinformatics interface specifically developed for undergraduate programs by the Department of Energy Joint Genome Institute. Based on annotations of putative chemotaxis genes in P. putida F1 and comparative genomics studies, undergraduate students from both institutions developed functional genomics research projects that evolved from the annotations. The purpose of this study is to describe the nature of the NSF grant, the development of the Bioinformatics lecture and wet laboratory course, and how undergraduate student involvement in the project that was initiated in the classroom has served as a springboard for independent undergraduate research projects. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  11. A visiting scientist program for the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Kerr, Frank J.

    1995-01-01

    During this project, Universities Space Research Association provided program management and the administration for overseeing the performance of the total contractual effort. The program director and administrative staff provided the expertise and experience needed to efficiently manage the program.USRA provided a program coordinator and v visiting scientists to perform scientific research with Burst and Transient Source Experiment (BATSE) data. This research was associated with the primary scientific objectives of BATSE and with the various BATSE collaborations which were formed in response to the Compton Gamma Ray Observatory Guest Investigator Program. USRA provided administration for workshops, colloquia, the preparation of scientific documentation, etc. and also provided flexible program support in order to meet the on-going needs of MSFC's BATSE program. USRA performed tasks associated with the recovery, archiving, and processing of scientific data from BATSE. A bibliography of research in the astrophysics discipline is attached as Appendix 1. Visiting Scientists and Research Associates performed activities on this project, and their technical reports are attached as Appendix 2.

  12. Extreme-Scale Computing Project Aims to Advance Precision Oncology | FNLCR Staging

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru

  13. UNIQUE CHEMISTRY SOLUTIONS TO REGIONAL ISSUES

    EPA Science Inventory

    Many of ORD's research projects relate to broad scientific themes, such as biological and chemical indicators or computational toxicology .Others are discrete studies resulting from requests from or informal contacts with clients and collaborators. This poster presents a montage ...

  14. WDS Trusted Data Services in Support of International Science

    NASA Astrophysics Data System (ADS)

    Mokrane, M.; Minster, J. B. H.

    2014-12-01

    Today's research is international, transdisciplinary, and data-enabled, which requires scrupulous data stewardship, full and open access to data, and efficient collaboration and coordination. New expectations on researchers based on policies from governments and funders to share data fully, openly, and in a timely manner present significant challenges but are also opportunities to improve the quality and efficiency of research and its accountability to society. Researchers should be able to archive and disseminate data as required by many institutions or funders, and civil society to scrutinize datasets underlying public policies. Thus, the trustworthiness of data services must be verifiable. In addition, the need to integrate large and complex datasets across disciplines and domains with variable levels of maturity calls for greater coordination to achieve sufficient interoperability and sustainability. The World Data System (WDS) of the International Council for Science (ICSU) promotes long-term stewardship of, and universal and equitable access to, quality-assured scientific data and services across a range of disciplines in the natural and social sciences. WDS aims at coordinating and supporting trusted scientific data services for the provision, use, and preservation of relevant datasets to facilitate scientific research, in particular under the ICSU umbrella, while strengthening their links with the research community. WDS certifies it Members, holders and providers of data or data products, using internationally recognized standards. Thus, providing the building blocks of a searchable common infrastructure, from which a data system that is both interoperable and distributed can be formed. This presentation will describe the coordination role of WDS and more specifically activities developed by its Scientific Committee to: Improve and stimulate basic level Certification for Scientific Data Services, in particular through collaboration with the Data Seal of Approval. Identify and define best practices for Publishing Data and to test their implementation by involving the core stakeholders i.e. researchers, institutions, data centres, scholarly publishers, and funders. Establish an open WDS Metadata Catalogue, Knowledge Network, and Global Registry of Trusted Data Services.

  15. JCESR Scientific Sprints – Better Polymers for Better Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brushett, Fikile; Moore, Jeff; Zhang, Lu

    2016-02-19

    Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific “Sprints.” The Sprint described in this video involved a multidisciplinary team from Argonne, the University of Illinois at Urbana-Champaign, Massachusetts Institute of Technology, and the University of Michigan. As they studied how polymers in solution can react electrochemically to store energy, the team solved a crucial battery problem: “crossover,” which is caused by molecules mixing together when they should not, resulting in reduced performance. Manymore » possible materials were tested, and a set of candidate polymers were chosen that are stable, cheap to make, and suitable for conditions required in batteries. The collaboration allowed timely development that would have taken much longer had the groups been working independently.« less

  16. JCESR Scientific Sprints – Better Polymers for Better Batteries

    ScienceCinema

    Brushett, Fikile; Moore, Jeff; Zhang, Lu; Rodriguez-Lopez, Joaquin; Sevov, Christo; Gavvalapalli, Nagarjuna; Montoto, Elena

    2018-06-25

    Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific “Sprints.” The Sprint described in this video involved a multidisciplinary team from Argonne, the University of Illinois at Urbana-Champaign, Massachusetts Institute of Technology, and the University of Michigan. As they studied how polymers in solution can react electrochemically to store energy, the team solved a crucial battery problem: “crossover,” which is caused by molecules mixing together when they should not, resulting in reduced performance. Many possible materials were tested, and a set of candidate polymers were chosen that are stable, cheap to make, and suitable for conditions required in batteries. The collaboration allowed timely development that would have taken much longer had the groups been working independently.

  17. Team science as interprofessional collaborative research practice: a systematic review of the science of team science literature

    PubMed Central

    Little, Meg M; St Hill, Catherine A; Ware, Kenric B; Swanoski, Michael T; Chapman, Scott A; Lutfiyya, M Nawal; Cerra, Frank B

    2017-01-01

    The National Institute of Health's concept of team science is a means of addressing complex clinical problems by applying conceptual and methodological approaches from multiple disciplines and health professions. The ultimate goal is the improved quality of care of patients with an emphasis on better population health outcomes. Collaborative research practice occurs when researchers from >1 health-related profession engage in scientific inquiry to jointly create and disseminate new knowledge to clinical and research health professionals in order to provide the highest quality of patient care to improve population health outcomes. Training of clinicians and researchers is necessary to produce clinically relevant evidence upon which to base patient care for disease management and empirically guided team-based patient care. In this study, we hypothesized that team science is an example of effective and impactful interprofessional collaborative research practice. To assess this hypothesis, we examined the contemporary literature on the science of team science (SciTS) produced in the past 10 years (2005–2015) and related the SciTS to the overall field of interprofessional collaborative practice, of which collaborative research practice is a subset. A modified preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach was employed to analyze the SciTS literature in light of the general question: Is team science an example of interprofessional collaborative research practice? After completing a systematic review of the SciTS literature, the posed hypothesis was accepted, concluding that team science is a dimension of interprofessional collaborative practice. PMID:27619555

  18. Trends in clinical reproductive medicine research: 10 years of growth.

    PubMed

    Aleixandre-Benavent, Rafael; Simon, Carlos; Fauser, Bart C J M

    2015-07-01

    To study the most important metrics of publication in the field of reproductive medicine over the decade 2003-2012 to aid in discerning the clinical, social, and epidemiologic implications of this relatively new but rapidly emerging area in medical sciences. Bibliometric analysis of most-cited publications from Web of Science databases. Not applicable. None. None. Most productive and frequently cited investigators, institutions, and countries and specific areas of research, scientific collaborations, and comparison of the growth of reproductive medicine research compared with other areas of medical investigation such as obstetrics and gynecology and related science categories. We found that 90 investigators with more than 1,000 citations had jointly published 4,010 articles. A continued rise in the impact factor of reproductive medicine journals was seen. The number of publications in reproductive medicine grew more rapidly compared with other science categories. Presently 22% of highly cited articles in reproductive medicine research are published in journals belonging to science categories outside reproductive medicine. The most-cited study groups are situated in the Netherlands, Belgium, Spain, the United States, and the United Kingdom, and collaborative studies have been increasing. Reproductive medicine research and subsequent clinical development have attained scientific growth and maturity. High-quality research is increasingly being published in high-impact journals. The increase in (inter)national collaborations seems to be key to the field's success. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    PubMed

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  20. Development of Early Warning System for Landslide Using Electromagnetic, Hydrological, Geotechnical, and Geological Approaches

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Hattori, K.; Chae, B.

    2011-12-01

    The Joint Research Collaboration Program (JRCP) for Chinese-Korean-Japanese (CKJ) Research Collaboration is a new cooperative scheme for joint funding from Chinese Department of International Cooperation of the Ministry of Science and Technology (DOIC), Korea Foundation for International Cooperation of Science and Technology (KICOS) and Japan Science and Technology Agency (JST). In this paper, we will introduce the funded CKJ project entitled "Development of early warning system for landslide using electromagnetic, hydrological, geotechnical, and geological approaches". The final goal of the project is to develop a simple methodology for landslide monitoring/forecasting (early warning system) using self potential method in the frame work of joint research among China, Korea, and Japan. The project is developing a new scientific and technical methodology for prevention of natural soil disasters. The outline of the project is as follows: (1) basic understanding on the relationship between resistivity distribution and moisture in soil and their visualization of their dynamical changes in space and time using tomography technique, (2) laboratory experiments of rainfall induced landslides and sandbox for practical use of the basic understanding, (3) in-situ experiments for evaluation. Annual workshops/symposia, seminars will be organized for strengthening the scientific collaborations and exchanges. In consideration of the above issues, integration of geological, hydrological, geotechnical characteristics with electromagnetic one are adopted as the key approach in this project. This study is partially supported by the Joint Research Collaboration Program, DOIC, MOST, China (2010DFA21570) and the National Natural Science Foundation of China (40974038, 41025014).

  1. Use of a secure Internet Web site for collaborative medical research.

    PubMed

    Marshall, W W; Haley, R W

    2000-10-11

    Researchers who collaborate on clinical research studies from diffuse locations need a convenient, inexpensive, secure way to record and manage data. The Internet, with its World Wide Web, provides a vast network that enables researchers with diverse types of computers and operating systems anywhere in the world to log data through a common interface. Development of a Web site for scientific data collection can be organized into 10 steps, including planning the scientific database, choosing a database management software system, setting up database tables for each collaborator's variables, developing the Web site's screen layout, choosing a middleware software system to tie the database software to the Web site interface, embedding data editing and calculation routines, setting up the database on the central server computer, obtaining a unique Internet address and name for the Web site, applying security measures to the site, and training staff who enter data. Ensuring the security of an Internet database requires limiting the number of people who have access to the server, setting up the server on a stand-alone computer, requiring user-name and password authentication for server and Web site access, installing a firewall computer to prevent break-ins and block bogus information from reaching the server, verifying the identity of the server and client computers with certification from a certificate authority, encrypting information sent between server and client computers to avoid eavesdropping, establishing audit trails to record all accesses into the Web site, and educating Web site users about security techniques. When these measures are carefully undertaken, in our experience, information for scientific studies can be collected and maintained on Internet databases more efficiently and securely than through conventional systems of paper records protected by filing cabinets and locked doors. JAMA. 2000;284:1843-1849.

  2. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt

    2013-01-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  3. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.

    2013-12-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  4. The QuarkNet Collaboration: How "Doing Science" is Changing Science Education

    NASA Astrophysics Data System (ADS)

    Whelan, K.

    2004-12-01

    QuarkNet is a national initiative to involve high-school teachers and their students in real scientific research. Students and teachers assist in seeking to resolve some of the mysteries about the structure of matter and the fundamental forces of nature It is supported by the Department and Energy and the National Science Foundation. This long-term project, beginning its sixth year of implementation, has provided a successful framework that might be adapted to similar endeavors. It is an international collaboration of universities, high schools and research centers including CERN in Switzerland, and Fermilab, LBNL, and SLAC in the United States. The goals of this program include the involvement of students and teachers in authentic scientific research projects. By actually "doing science", they gain first hand knowledge of the research procedure and the inquiry method of learning. Teachers increase their content knowledge and enhance their teaching skills by solving scientific research problems through the inquiry method of learning. Students involved in this program learn fundamental physics and research-based skills through the analysis of real data. Particle physicists also benefit by being exposed to some of the current issues in science education. Through an understanding of National Science Education Standards, physicist-mentors are made aware of the needs of local science education and gain a better grasp of age appropriate content. The QuarkNet program was developed while consulting with research physicists throughout the United States. There are three main program areas that have been established-teacher research experiences, teacher development programs, and an online resource that makes available numerous inquiry-based activities. Select teachers are given eight-week appointments allowing them to gain first hand experience as a part of a scientific research team. Those teachers become lead teachers during the following summer and, along with physicist mentors, work with other teachers on a short research scenario or activity over a period of several weeks. The scenarios can then be adapted for classroom use at virtually any level. The QuarkNet website provides a wide variety of resources for teacher and student use including- samples of experimental data for use in inquiry based activities, venues for communication and collaboration between students, teachers and physicists, student publication areas where ideas can be exchanged, and numerous other resources, activities, and simulations. Currently, the QuarkNet program involves over 50 research institutions and hundreds of teachers. This year, we have also added a student research component at several of the centers. This component will be expanded in the coming years so that many more students will have the opportunity to become an active part and contributing member of a scientific research team.

  5. The Scottish Government's Rural and Environmental Science and Analytical Services Strategic Research Progamme

    NASA Astrophysics Data System (ADS)

    Dawson, Lorna; Bestwick, Charles

    2013-04-01

    The Strategic Research Programme focuses on the delivery of outputs and outcomes within the major policy agenda areas of climate change, land use and food security, and to impact on the 'Wealthier', 'Healthier' and 'Greener' strategic objectives of the Scottish Government. The research is delivered through two programmes: 'Environmental Change' and 'Food, Land and People'; the core strength of which is the collaboration between the Scottish Government's Main Research Providers-The James Hutton Institute, the Moredun Research Institute, Rowett Institute of Nutrition and Health University of Aberdeen, Scotland's Rural College, Biomathematics and Statistics Scotland and The Royal Botanic Gardens Edinburgh. The research actively seeks to inform and be informed by stakeholders from policy, farming, land use, water and energy supply, food production and manufacturing, non-governmental organisations, voluntary organisations, community groups and general public. This presentation will provide an overview of the programme's interdisciplinary research, through examples from across the programme's themes. Examples will exemplify impact within the Strategic Programme's priorities of supporting policy and practice, contributing to economic growth and innovation, enhancing collaborative and multidisciplinary research, growing scientific resilience and delivering scientific excellence. http://www.scotland.gov.uk/Topics/Research/About/EBAR/StrategicResearch/future-research-strategy/Themes/ http://www.knowledgescotland.org/news.php?article_id=295

  6. Conceptualizing and Advancing Research Networking Systems

    PubMed Central

    SCHLEYER, TITUS; BUTLER, BRIAN S.; SONG, MEI; SPALLEK, HEIKO

    2013-01-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers’ need for comprehensive information and potential collaborators’ desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user’s primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309

  7. Accelerating Scientific Advancement for Pediatric Rare Lung Disease Research. Report from a National Institutes of Health-NHLBI Workshop, September 3 and 4, 2015.

    PubMed

    Young, Lisa R; Trapnell, Bruce C; Mandl, Kenneth D; Swarr, Daniel T; Wambach, Jennifer A; Blaisdell, Carol J

    2016-12-01

    Pediatric rare lung disease (PRLD) is a term that refers to a heterogeneous group of rare disorders in children. In recent years, this field has experienced significant progress marked by scientific discoveries, multicenter and interdisciplinary collaborations, and efforts of patient advocates. Although genetic mechanisms underlie many PRLDs, pathogenesis remains uncertain for many of these disorders. Furthermore, epidemiology and natural history are insufficiently defined, and therapies are limited. To develop strategies to accelerate scientific advancement for PRLD research, the NHLBI of the National Institutes of Health convened a strategic planning workshop on September 3 and 4, 2015. The workshop brought together a group of scientific experts, intramural and extramural investigators, and advocacy groups with the following objectives: (1) to discuss the current state of PRLD research; (2) to identify scientific gaps and barriers to increasing research and improving outcomes for PRLDs; (3) to identify technologies, tools, and reagents that could be leveraged to accelerate advancement of research in this field; and (4) to develop priorities for research aimed at improving patient outcomes and quality of life. This report summarizes the workshop discussion and provides specific recommendations to guide future research in PRLD.

  8. The neuroscience of psychological treatments.

    PubMed

    Barlow, David H

    2014-11-01

    The series of articles in this issue of Behavior Research and Therapy presages a new field of translational research that could be called "the neuroscience of psychological treatments". After a brief retrospective on the origins and promise of this focus of study several cautions are adumbrated. As in any new field of scientific endeavor, close collaboration among stakeholders with interest in this field and the integration of a healthy scientific skepticism will best ensure the continued development of ever more powerful psychological treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  10. Women peers in the scientific realm: Sarah Bowdich (Lee)'s expert collaborations with Georges Cuvier, 1825–33

    PubMed Central

    Orr, Mary

    2015-01-01

    The accepted rule for women contributing to nineteenth-century science before 1851 was that they could play only secondary roles in its production and authorship—as translators, illustrators, popularizers—and these by virtue of kinship or marriage to eminent scientists in the field or the laboratory. Sarah Bowdich (Lee) (1791–1856) presents an important amendment to this rule. As an explorer of West Africa on an equal scientific footing with her husband, and then a writer of science independently after his early death, she had other key roles as Georges Cuvier's cross-Channel scientific collaborator and as his first biographer. This article investigates and reframes Sarah's many individual achievements in science and its writing, to examine the larger questions of her case. How were her publications and ‘uneasy career’ in science possible? Can research on women in science today find inspiration in her example? PMID:26489182

  11. A scientometrics and social network analysis of Malaysian research in physics

    NASA Astrophysics Data System (ADS)

    Tan, H. X.; Ujum, E. A.; Ratnavelu, K.

    2014-03-01

    This conference proceeding presents an empirical assessment on the domestic publication output and structure of scientific collaboration of Malaysian authors for the field of physics. Journal articles with Malaysian addresses for the subject area "Physics" and other sub-discipline of physics were retrieved from the Thomson Reuters Web of Knowledge database spanning the years 1980 to 2011. A scientometrics and social network analysis of the Malaysian physics field was conducted to examine the publication growth and distribution of domestic collaborative publications; the giant component analysis; and the degree, closeness, and betweenness centralisation scores for the domestic co-authorship networks. Using these methods, we are able to gain insights on the evolution of collaboration and scientometric dimensions of Malaysian research in physics over time.

  12. Cloud-based Jupyter Notebooks for Water Data Analysis

    NASA Astrophysics Data System (ADS)

    Castronova, A. M.; Brazil, L.; Seul, M.

    2017-12-01

    The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.

  13. Librarians and Scientists Partner to Address Data Management: Taking Collaboration to the Next Level

    PubMed Central

    Medina-Smith, Andrea; Tryka, Kimberly A.; Silcox, Barbara P.; Hanisch, Robert J.

    2016-01-01

    Purpose This study looks at the changing way in which the Information Services Office (ISO) at the National Institute of Standards and Technology (NIST) provides services to NIST scientific and technical staff throughout their research and publishing cycles. These services include the more traditional services of a research library as well as publishing NIST technical reports and The Journal of Research of NIST, and preserving and exhibiting scientific instruments and other artifacts. ISO has always prided itself on having a close relationship with its customers, providing a high level of service, and developing new services to stay in front of NIST researcher needs. Through a concerted, strategic effort since the late 1990s, ISO has developed and promoted relationships with its key customers through its Lab Liaison Program. Design/methodology/approach This paper discusses the relationship ISO has developed with the Office of Data and Informatics (ODI), how this relationship was forged, and how this collaboration will serve as a model for working with the other labs and programs at NIST. It will also discuss the risks and opportunities of this new collaborative service model, how ISO positioned itself to become an equal partner with ODI in the exploration of solutions to data management issues, and the benefits of the relationship from ODI's perspective. Findings A pattern of strategic changes to the services and activities offered by the Lab Liaison program has put ISO in the position to collaborate as peers with researchers at NIST. Originality/value This study provides an overview of how ISO made strategic decisions to incorporate non-traditional services to support data management at NIST. PMID:27891247

  14. Riding Alone on the Elevator: A Class Experiment in Interdisciplinary Education

    ERIC Educational Resources Information Center

    Frank, Anna M.; Froese, Rebecca; Hof, Barbara C.; Scheffold, Maike I. E.; Schreyer, Felix; Zeller, Mathias; Rödder, Simone

    2017-01-01

    The ability to conduct interdisciplinary research is crucial to address complex real-world problems that require the collaboration of different scientific fields, with global warming being a case in point. To produce integrated climate-related knowledge, climate researchers should be trained early on to work across boundaries and gain an…

  15. Wild Data: Collaborative E-Research and University Libraries

    ERIC Educational Resources Information Center

    Kennan, Mary Anne; Williamson, Kirsty; Johanson, Graeme

    2012-01-01

    The literature speaks of a "deluge" of scientific and research data and the importance of capturing and managing it for use beyond its original creating community, purpose, and time. Data value increases as it is interconnected, networked, shared, used, and re-used. This paper extends the conversation about data sharing to "wild…

  16. Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest

    Treesearch

    John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso

    2007-01-01

    Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.

  17. Developing "Argumentation" with the 4-11 Age Range

    ERIC Educational Resources Information Center

    Russell, Terry; McGuigan, Linda; Hamilton, Janet; Geldard, Joanne

    2016-01-01

    Terry Russell and Linda McGuigan of the University of Liverpool draw on their classroom research to offer their thoughts on argumentation, an aspect of "working scientifically," with contributions from two recent research collaborators: Janet Hamilton teaching 4-6 year-olds and Joanne Geldard teaching science to 10-11 year-olds. Between…

  18. The RxCADRE study: A new approach to interdisciplinary fire research

    Treesearch

    David L. Peterson; Colin C. Hardy

    2016-01-01

    Much like other scientific endeavours, most fire research is conducted either within individual disciplines - fuels, physics, chemistry, ecology, modelling, and so forth - or, at best, across only two or three disciplines. This is primarily because fire scientists have particular areas of expertise and most collaborations are between scientists within that...

  19. What Drives Academic Data Sharing?

    PubMed Central

    Fecher, Benedikt; Friesike, Sascha; Hebing, Marcel

    2015-01-01

    Despite widespread support from policy makers, funding agencies, and scientific journals, academic researchers rarely make their research data available to others. At the same time, data sharing in research is attributed a vast potential for scientific progress. It allows the reproducibility of study results and the reuse of old data for new research questions. Based on a systematic review of 98 scholarly papers and an empirical survey among 603 secondary data users, we develop a conceptual framework that explains the process of data sharing from the primary researcher’s point of view. We show that this process can be divided into six descriptive categories: Data donor, research organization, research community, norms, data infrastructure, and data recipients. Drawing from our findings, we discuss theoretical implications regarding knowledge creation and dissemination as well as research policy measures to foster academic collaboration. We conclude that research data cannot be regarded as knowledge commons, but research policies that better incentivise data sharing are needed to improve the quality of research results and foster scientific progress. PMID:25714752

  20. Celebrating Achievement and Fostering Collaboration at the Spring Research Festival | Poster

    Cancer.gov

    The 20th annual Spring Research Festival (SRF) took place at Fort Detrick on May 3 and 4. The event included two seminar sessions, a keynote speaker, a Poster Blitz, and two poster sessions. During the event, scientific staff, including students, technical support staff, postdoctoral fellows, and principal investigators, had the opportunity to present their research to the

  1. SSERVI: Merging Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Gregory; Gibbs, Kristina

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research and the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for the opportunities that engage the larger scientific and exploration communities in order to form a new interdisciplinary, research-focused collaborations.

  2. Nanoscience and nanotechnology in Venezuela

    NASA Astrophysics Data System (ADS)

    López Cadenas, María Sonsiré; Hasmy, Anwar; Vessuri, Hebe

    2011-08-01

    Nanoscale research in Venezuela is briefly reviewed, with emphasis on research groups, research lines, and institutions involved. A summary exploration is made of international collaboration through scientific co-authorship, as well of the efforts to build nano capacities, available infrastructure, relationships to the productive sector and a weak presence in Venezuelan public policies, although there is some expectation that the situation may soon begin to change.

  3. 50 Years of renal physiology from one man and the perfused tubule: Maurice B. Burg.

    PubMed

    Hamilton, Kirk L; Moore, Antoni B

    2016-08-01

    Technical advancements in research techniques in science are made in slow increments. Even so, large advances from insight and hard work of an individual with a single technique can have astonishing ramifications. Here, we examine the impact of Dr. Maurice B. Burg and the isolated perfused renal tubule technique and celebrate the 50th anniversary of the publication by Dr. Burg and his colleagues of their landmark paper in the American Journal of Physiology in 1966. In this study, we have taken a scientific visualization approach to study the scientific contributions of Dr. Burg and the isolated perfused tubule preparation as determining research impact by the number of research students, postdoctoral fellows, visiting scientists, and national and international collaborators. Additionally, we have examined the research collaborations (first and second generation scientists), established the migrational visualization of the first generation scientists who worked directly with Dr. Burg, quantified the metrics indices, identified and quantified the network of coauthorship of the first generation scientists with their second generation links, and determined the citations analyses of outputs of Dr. Burg and/or his first generation collaborators as coauthors. We also review the major advances in kidney physiology that have been made with the isolated perfused tubule technique. Finally, we are all waiting for the discoveries that the isolated perfused preparation technique will bring during the next 50 years. Copyright © 2016 the American Physiological Society.

  4. Rett Syndrome Turns 50: Themes From a Chronicle: Medical Perspectives and the Human Face of Rett Syndrome.

    PubMed

    Ronen, Gabriel M; Rosenbaum, Peter L

    2016-08-01

    Fifty years ago Andreas Rett first described in great detail what came to be known as "Rett syndrome." Understanding girls and women with this syndrome and their families helped in many ways to revolutionize modern neurodevelopmental medicine. For some people the identification of the genetic underpinning of the syndrome and the ongoing biological research into this condition represented the peak of the scientific accomplishments in Rett syndrome. For others, it was developments in clinical research methodologies that were especially important. Above all, the patient- and family-oriented empathetic and collaborative approach to care by professionals collaborating with families has led to immense achievements, both scientific and humanistic. The aim of this narrative was to describe the medical and personal life story of a young woman with Rett syndrome and to offer a history that highlights developments in the unraveling of this condition from its initial recognition to our current understanding. We believe that much can be learned from the humanistic style of care provision combined with the best possible level of assisted autonomy and life enjoyment of the young woman with Rett syndrome. In addition, the approach to collaborative research by dedicated and often charitable leaders in the field can teach us many important lessons about the ethics of clinical and health services research. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Placing Science into Its Human Context: Using Scientific Autobiography to Teach Chemistry

    NASA Astrophysics Data System (ADS)

    Carroll, Felix A.; Seeman, Jeffrey I.

    2001-12-01

    Scientific autobiography and biography can improve chemistry learning by helping students relate otherwise abstract concepts to important events in the lives of fellow human beings. In advanced courses, reading scientific autobiography and biography can help students see how scientific collaboration, advances in instrumentation, and major events in human lives influence the development of chemical ideas over time. In addition, studying many years of an individual's research program can demonstrate the progress of science, the connectivity of research findings, and the validity of experimental results over many decades. This paper describes the use of an autobiography of an eminent chemist in an advanced undergraduate chemistry course. This approach not only enhances the teaching of chemical concepts, but it also provides students with expanded opportunities for cooperative and self-directed learning activities.

  6. Co-authorship network analysis in health research: method and potential use.

    PubMed

    Fonseca, Bruna de Paula Fonseca E; Sampaio, Ricardo Barros; Fonseca, Marcus Vinicius de Araújo; Zicker, Fabio

    2016-04-30

    Scientific collaboration networks are a hallmark of contemporary academic research. Researchers are no longer independent players, but members of teams that bring together complementary skills and multidisciplinary approaches around common goals. Social network analysis and co-authorship networks are increasingly used as powerful tools to assess collaboration trends and to identify leading scientists and organizations. The analysis reveals the social structure of the networks by identifying actors and their connections. This article reviews the method and potential applications of co-authorship network analysis in health. The basic steps for conducting co-authorship studies in health research are described and common network metrics are presented. The application of the method is exemplified by an overview of the global research network for Chikungunya virus vaccines.

  7. 15 CFR 256.1 - Introduction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... facilities available to persons other than Bureau employees to work with scientists and engineers in collaborative research aimed at furthering the Nation's scientific, industrial, and economic growth. Such cooperative programs may be sponsored by professional, technical, or industrial organizations or associations...

  8. 15 CFR 256.1 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities available to persons other than Bureau employees to work with scientists and engineers in collaborative research aimed at furthering the Nation's scientific, industrial, and economic growth. Such cooperative programs may be sponsored by professional, technical, or industrial organizations or associations...

  9. Building international genomics collaboration for global health security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  10. Mine, thine, and ours: collaboration and co-authorship in the material culture of the mid-twentieth century chemical laboratory.

    PubMed

    Nye, Mary Jo

    2014-08-01

    Patterns of collaboration and co-authorship in chemical science from the 1920s to the 1960s are examined with an eye to frequency of co-authorship and differences in allocation of credit during a period of increasing team research and specialization within chemical research groups. Three research leaders in the cross-disciplinary and cutting edge field of X-ray crystallography and molecular structure are the focus of this historical study within a framework of sociological literature on different collaborative patterns followed by eminent scientists. The examples of Michael Polanyi in Berlin and Manchester, Linus Pauling in Pasadena, and Dorothy Crowfoot Hodgkin in Oxford demonstrate the need to de-centre historical narrative from the heroic 'he' or 'she' to the collaborative 'they.' These cases demonstrate, too, the roles of disciplinary apprenticeships, local conditions, and individual personalities for historical explanation that transcends universal generalizations about scientific practice, material culture, and sociological trends.

  11. Building international genomics collaboration for global health security

    DOE PAGES

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; ...

    2015-12-07

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  12. Assessment of Collaboration and Interoperability in an Information Management System to Support Bioscience Research

    PubMed Central

    Myneni, Sahiti; Patel, Vimla L.

    2009-01-01

    Biomedical researchers often have to work on massive, detailed, and heterogeneous datasets that raise new challenges of information management. This study reports an investigation into the nature of the problems faced by the researchers in two bioscience test laboratories when dealing with their data management applications. Data were collected using ethnographic observations, questionnaires, and semi-structured interviews. The major problems identified in working with these systems were related to data organization, publications, and collaboration. The interoperability standards were analyzed using a C4I framework at the level of connection, communication, consolidation, and collaboration. Such an analysis was found to be useful in judging the capabilities of data management systems at different levels of technological competency. While collaboration and system interoperability are the “must have” attributes of these biomedical scientific laboratory information management applications, usability and human interoperability are the other design concerns that must also be addressed for easy use and implementation. PMID:20351900

  13. ISCR Annual Report: Fical Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGraw, J R

    2005-03-03

    Large-scale scientific computation and all of the disciplines that support and help to validate it have been placed at the focus of Lawrence Livermore National Laboratory (LLNL) by the Advanced Simulation and Computing (ASC) program of the National Nuclear Security Administration (NNSA) and the Scientific Discovery through Advanced Computing (SciDAC) initiative of the Office of Science of the Department of Energy (DOE). The maturation of computational simulation as a tool of scientific and engineering research is underscored in the November 2004 statement of the Secretary of Energy that, ''high performance computing is the backbone of the nation's science and technologymore » enterprise''. LLNL operates several of the world's most powerful computers--including today's single most powerful--and has undertaken some of the largest and most compute-intensive simulations ever performed. Ultrascale simulation has been identified as one of the highest priorities in DOE's facilities planning for the next two decades. However, computers at architectural extremes are notoriously difficult to use efficiently. Furthermore, each successful terascale simulation only points out the need for much better ways of interacting with the resulting avalanche of data. Advances in scientific computing research have, therefore, never been more vital to LLNL's core missions than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, LLNL must engage researchers at many academic centers of excellence. In Fiscal Year 2004, the Institute for Scientific Computing Research (ISCR) served as one of LLNL's main bridges to the academic community with a program of collaborative subcontracts, visiting faculty, student internships, workshops, and an active seminar series. The ISCR identifies researchers from the academic community for computer science and computational science collaborations with LLNL and hosts them for short- and long-term visits with the aim of encouraging long-term academic research agendas that address LLNL's research priorities. Through such collaborations, ideas and software flow in both directions, and LLNL cultivates its future workforce. The Institute strives to be LLNL's ''eyes and ears'' in the computer and information sciences, keeping the Laboratory aware of and connected to important external advances. It also attempts to be the ''feet and hands'' that carry those advances into the Laboratory and incorporates them into practice. ISCR research participants are integrated into LLNL's Computing and Applied Research (CAR) Department, especially into its Center for Applied Scientific Computing (CASC). In turn, these organizations address computational challenges arising throughout the rest of the Laboratory. Administratively, the ISCR flourishes under LLNL's University Relations Program (URP). Together with the other five institutes of the URP, it navigates a course that allows LLNL to benefit from academic exchanges while preserving national security. While it is difficult to operate an academic-like research enterprise within the context of a national security laboratory, the results declare the challenges well met and worth the continued effort.« less

  14. Astronomy in Georgia - Present Status and Perspectives

    NASA Astrophysics Data System (ADS)

    Todua, M.

    2016-09-01

    Astronomy in Georgia is generally represented in Abastumani Astrophysical Observatory found in 1932. It is one of the leading scientific institutes in the country. Main fields of research are solar system bodies (including near-Earth asteroids), various aspects of solar physics, stellar astronomy (including binary stars and open clusters), extragalactic objects (AGNs), theoretical astrophysics, cosmology, atmospheric and solar-terrestrial physics. Several telescopes are operational today, as well as the instruments for atmospheric studies. In 2007 the Observatory was integrated with Ilia State University, merging scientific research and education which facilitated the growth of a new generation of researchers. There are groups of astronomers and astrophysicists in other Georgian universities and institutions as well. Georgian scientists collaborate with research centers and universities worldwide. Research groups participate in various international scientific projects. The interest in astronomy in Georgia has been growing, which increases future perspectives of its development in the country.

  15. Evaluating Research and Impact: A Bibliometric Analysis of Research by the NIH/NIAID HIV/AIDS Clinical Trials Networks

    PubMed Central

    Rosas, Scott R.; Kagan, Jonathan M.; Schouten, Jeffrey T.; Slack, Perry A.; Trochim, William M. K.

    2011-01-01

    Evaluative bibliometrics uses advanced techniques to assess the impact of scholarly work in the context of other scientific work and usually compares the relative scientific contributions of research groups or institutions. Using publications from the National Institute of Allergy and Infectious Diseases (NIAID) HIV/AIDS extramural clinical trials networks, we assessed the presence, performance, and impact of papers published in 2006–2008. Through this approach, we sought to expand traditional bibliometric analyses beyond citation counts to include normative comparisons across journals and fields, visualization of co-authorship across the networks, and assess the inclusion of publications in reviews and syntheses. Specifically, we examined the research output of the networks in terms of the a) presence of papers in the scientific journal hierarchy ranked on the basis of journal influence measures, b) performance of publications on traditional bibliometric measures, and c) impact of publications in comparisons with similar publications worldwide, adjusted for journals and fields. We also examined collaboration and interdisciplinarity across the initiative, through network analysis and modeling of co-authorship patterns. Finally, we explored the uptake of network produced publications in research reviews and syntheses. Overall, the results suggest the networks are producing highly recognized work, engaging in extensive interdisciplinary collaborations, and having an impact across several areas of HIV-related science. The strengths and limitations of the approach for evaluation and monitoring research initiatives are discussed. PMID:21394198

  16. Citation Impact of Collaboration in Radiology Research.

    PubMed

    Rosenkrantz, Andrew B; Parikh, Ujas; Duszak, Richard

    2018-02-01

    Team science involving multidisciplinary and multi-institutional collaboration is increasingly recognized as a means of strengthening the quality of scientific research. The aim of this study was to assess associations between various forms of collaboration and the citation impact of published radiology research. In 2010, 876 original research articles published in Academic Radiology, the American Journal of Roentgenology, JACR, and Radiology were identified with at least one radiology-affiliated author. All articles were manually reviewed to extract features related to all authors' disciplines and institutions. Citations to these articles through September 2016 were extracted from Thomson Reuters Web of Science. Subsequent journal article citation counts were significantly higher (P < .05) for original research articles with at least seven versus six or fewer authors (26.2 ± 30.8 versus 20.3 ± 23.1, respectively), with authors from multiple countries versus from a single country (32.3 ± 39.2 versus 22.0 ± 25.0, respectively), with rather than without a nonuniversity collaborator (28.7 ± 38.6 versus 22.4 ± 24.9, respectively), and with rather than without a nonclinical collaborator (26.5 ± 33.1 versus 21.9 ± 24.4, respectively). On multivariate regression analysis, the strongest independent predictors of the number of citations were authors from multiple countries (β = 9.14, P = .002), a nonuniversity collaborator (β = 4.80, P = .082), and at least seven authors (β = 4.11, P = .038). With respect to subsequent journal article citations, various forms of collaboration are associated with greater scholarly impact of published radiology research. To enhance the relevance of their research, radiology investigators are encouraged to pursue collaboration across traditional disciplinary, institutional, and geographic boundaries. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. Comparative Case Study of Two Biomedical Research Collaboratories

    PubMed Central

    Teasley, Stephanie D; Bhatnagar, Rishi

    2005-01-01

    Background Working together efficiently and effectively presents a significant challenge in large-scale, complex, interdisciplinary research projects. Collaboratories are a nascent method to help meet this challenge. However, formal collaboratories in biomedical research centers are the exception rather than the rule. Objective The main purpose of this paper is to compare and describe two collaboratories that used off-the-shelf tools and relatively modest resources to support the scientific activity of two biomedical research centers. The two centers were the Great Lakes Regional Center for AIDS Research (HIV/AIDS Center) and the New York University Oral Cancer Research for Adolescent and Adult Health Promotion Center (Oral Cancer Center). Methods In each collaboratory, we used semistructured interviews, surveys, and contextual inquiry to assess user needs and define the technology requirements. We evaluated and selected commercial software applications by comparing their feature sets with requirements and then pilot-testing the applications. Local and remote support staff cooperated in the implementation and end user training for the collaborative tools. Collaboratory staff evaluated each implementation by analyzing utilization data, administering user surveys, and functioning as participant observers. Results The HIV/AIDS Center primarily required real-time interaction for developing projects and attracting new participants to the center; the Oral Cancer Center, on the other hand, mainly needed tools to support distributed and asynchronous work in small research groups. The HIV/AIDS Center’s collaboratory included a center-wide website that also served as the launch point for collaboratory applications, such as NetMeeting, Timbuktu Conference, PlaceWare Auditorium, and iVisit. The collaboratory of the Oral Cancer Center used Groove and Genesys Web conferencing. The HIV/AIDS Center was successful in attracting new scientists to HIV/AIDS research, and members used the collaboratory for developing and implementing new research studies. The Oral Cancer Center successfully supported highly distributed and asynchronous research, and the collaboratory facilitated real-time interaction for analyzing data and preparing publications. Conclusions The two collaboratory implementations demonstrated the feasibility of supporting biomedical research centers using off-the-shelf commercial tools, but they also identified several barriers to successful collaboration. These barriers included computing platform incompatibilities, network infrastructure complexity, variable availability of local versus remote IT support, low computer and collaborative software literacy, and insufficient maturity of available collaborative software. Factors enabling collaboratory use included collaboration incentives through funding mechanism, a collaborative versus competitive relationship of researchers, leadership by example, and tools well matched to tasks and technical progress. Integrating electronic collaborative tools into routine scientific practice can be successful but requires further research on the technical, social, and behavioral factors influencing the adoption and use of collaboratories. PMID:16403717

  18. WDS/DSA Certification - International collaboration for a trustworthy research data infrastructure

    NASA Astrophysics Data System (ADS)

    Mokrane, Mustapha; Hugo, Wim; Harrison, Sandy

    2016-04-01

    Today's research is international, transdisciplinary, and data-enabled, which requires scrupulous data stewardship, full and open access to data, and efficient collaboration and coordination. New expectations on researchers based on policies from governments and funders to share data fully, openly, and in a timely manner present significant challenges but are also opportunities to improve the quality and efficiency of research and its accountability to society. Researchers should be able to archive and disseminate data as required by many institutions or funders, and civil society to scrutinize datasets underlying public policies. Thus, the trustworthiness of data services must be verifiable. In addition, the need to integrate large and complex datasets across disciplines and domains with variable levels of maturity calls for greater coordination to achieve sufficient interoperability and sustainability. The World Data System (WDS) of the International Council for Science (ICSU) promotes long-term stewardship of, and universal and equitable access to, quality-assured scientific data and services across a range of disciplines in the natural and social sciences. WDS aims at coordinating and supporting trusted scientific data services for the provision, use, and preservation of relevant datasets to facilitate scientific research, in particular under the ICSU umbrella, while strengthening their links with the research community. WDS certifies its Members, holders and providers of data or data products, using internationally recognized standards. Certification of scientific data services is essential to ensure trustworthiness of the global research data infrastructure. It contributes to building a searchable, distributed, interoperable and sustainable research data infrastructure. Several certification standards have been developed over the last decade, such as the Network of Expertise in long-term Storage and Accessibility of Digital Resources in Germany (NESTOR) seal, German Institute for Standardization (DIN) standard 31644, Trustworthy Repositories Audit and Certification (TRAC) criteria and the International Organization for Standardization (ISO) standard 16363. In addition, the Data Seal of Approval (DSA) and WDS have set up core certification mechanisms for trusted digital repositories in 2009, which are increasingly recognized as de facto standards. While DSA emerged in Europe in the Humanities and Social Sciences, WDS started as an international initiative with historical roots in the Earth and Space Sciences. Their catalogues of requirements and review procedures are based on the same principles of openness, transparency. A unique feature of the DSA and WDS certification is that it strikes a balance between simplicity, robustness and the effort required to complete. A successful international cross-project collaboration was initiated between WDS and DSA under the umbrella of the Research Data Alliance (RDA), an international initiative started in 2013 to promote data interoperability which provided a useful and neutral forum. A joint working group was established in early 2014 to reconcile and simplify the array of certification options and improve and stimulate core certification for scientific data services. The outputs of this collaboration are a Catalogue of Common Requirements (https://goo.gl/LJZqDo) and a Catalogue of Common Procedures (https://goo.gl/vNR0q1) which will be implemented jointly by WDS and DSA.

  19. Catalyzing Cross-Disciplinary Research and Education Within and Beyond the Environmental and Geosciences to Address Emerging, Societally-Relevant Issues

    NASA Astrophysics Data System (ADS)

    Cak, A. D.; Vigdor, L. J.; Vorosmarty, C. J.; Giebel, B. M.; Santistevan, C.; Chasteau, C.

    2017-12-01

    Tackling emergent, societally-relevant problems in the environmental sciences is hardly confined to a single research discipline, but rather requires collaborations that bridge diverse domains and perspectives. While new technologies (e.g., Skype) can in theory unite otherwise geographically distributed participation in collaborative research, physical distance nevertheless raises the bar on intellectual dialogue. Such barriers may reveal perceptions of or real differences across disciplines, reflecting particular traditions in their histories and academic cultures. Individual disciplines are self-defined by their scientific, epistemologic, methodologic, or philosophical traditions (e.g., difficulties in understanding processes occurring at different scales, insufficient research funding for interdisciplinary work), or cultural and discursive hurdles (e.g., navigating a new field's jargon). Coupled with these challenges is a considerable deficiency in educating the next generation of scientists to help them develop a sufficient comfort level with thinking critically across multiple disciplinary domains and conceptual frameworks. To address these issues, the City University of New York (CUNY), the largest public urban university in the U.S., made a significant investment in advancing cross-disciplinary research and education, culminating in the opening of the CUNY Advanced Science Research Center (ASRC) in New York City (NYC) in late 2014. We report here on our experiences incubating new collaborative efforts to address environmental science-related research as it is interwoven with the ASRC's five research initiatives (Environmental Sciences, Neuroscience, Structural Biology, Photonics, and Nanoscience). We describe the ASRC's overall structure and function as both a stand-alone interdisciplinary center and one that collaborates more broadly with CUNY's network of twenty-four campuses distributed across NYC's five boroughs. We identify challenges we have faced so far, particularly in attempting to overcome traditional scientific, discursive, and cultural barriers, and how we are addressing them. We also describe several outreach and educational programming efforts designed to promote cross-disciplinarity, including informal science education.

  20. Cyberinfrastructure and Scientific Collaboration: Application of a Virtual Team Performance Framework with Potential Relevance to Education. WCER Working Paper No. 2010-12

    ERIC Educational Resources Information Center

    Kraemer, Sara; Thorn, Christopher A.

    2010-01-01

    The purpose of this exploratory study was to identify and describe some of the dimensions of scientific collaborations using high throughput computing (HTC) through the lens of a virtual team performance framework. A secondary purpose was to assess the viability of using a virtual team performance framework to study scientific collaborations using…

  1. Long-Term Engagement in Authentic Research with NASA (LEARN): Innovative Practices Suggested By a New Model for Teacher Research Experiences

    NASA Astrophysics Data System (ADS)

    Pippin, M. R.; Joseph, J. D.; Yang, M. M.; Omar, A. H.; Crecelius, S.; Harte, T.; Lewis, P. M., Jr.; Taylor, J.; Bujosa, R.; Moulton, C.; Haggard, C. S.; Hyater-Adams, S.; Kollmeyer, R.; Weisman, A.

    2014-12-01

    NASA's LEARN Project is an innovative program that provides long-term immersion in the practice of atmospheric science for middle and high school in-service teachers. Working alongside NASA scientists and using authentic NASA Science Mission Directorate research data, teachers develop individual research topics of interest during two weeks in the summer while on-site at NASA Langley. With continued, intensive mentoring by NASA scientists, the teachers further develop their research throughout the academic year through virtual group meetings and data team meetings mirroring scientific collaborations. At the end of the first year, LEARN teachers present scientific posters. The LEARN experience has had such an impact that multiple teachers from the first two cohorts have elected to continue their research. The LEARN project evaluation has provided insights into particularly effective elements of this new approach. Findings indicate that teachers' perceptions of the scientific enterprise have changed, and that LEARN provided substantial resources to help them take real-world research to their students. This presentation will focus on key factors from LEARN's implementation that inform best practices for the incorporation of authentic scientific research into teacher professional development experiences. We suggest that these factors should be considered in the development of other such experiences, including: (1) The involvement of a single scientist as both the project leader/manager and the project scientist, to ensure that the project can meet teachers' needs. (2) An emphasis on framing and approaching scientific research questions, so that teachers can learn to evaluate the feasibility of studies based on scope, scale, and availability of data. (3) Long term, ongoing relationships where teachers and scientists work as collaborators, beyond the workshop "mold." (4) A focus on meeting the needs of individual teachers, whether their needs relate to elements of research and analysis, or to their tight professional schedules. (5) Above all, flexibility and patience. LEARN builds relationships with teachers slowly, over a long period of time. In the middle, life often intervenes. LEARN has emphasized that teachers' success is more important than deadlines or following a rigid protocol.

  2. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2002-01-01

    The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.

  3. Metrics in academic profiles: a new addictive game for researchers?

    PubMed

    Orduna-Malea, Enrique; Martín-Martín, Alberto Martín-Martín; Delgado López-Cózar, Emilio

    2016-09-22

    This study aims to promote reflection and bring attention to the potential adverse effects of academic social networks on science. These academic social networks, where authors can display their publications, have become new scientific communication channels, accelerating the dissemination of research results, facilitating data sharing, and strongly promoting scientific collaboration, all at no cost to the user.One of the features that make them extremely attractive to researchers is the possibility to browse through a wide variety of bibliometric indicators. Going beyond publication and citation counts, they also measure usage, participation in the platform, social connectivity, and scientific, academic and professional impact. Using these indicators they effectively create a digital image of researchers and their reputations.However, although academic social platforms are useful applications that can help improve scientific communication, they also hide a less positive side: they are highly addictive tools that might be abused. By gamifying scientific impact using techniques originally developed for videogames, these platforms may get users hooked on them, like addicted academics, transforming what should only be a means into an end in itself.

  4. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  5. Research data management support for large-scale, long-term, interdisciplinary collaborative research centers with a focus on environmental sciences

    NASA Astrophysics Data System (ADS)

    Curdt, C.; Hoffmeister, D.; Bareth, G.; Lang, U.

    2017-12-01

    Science conducted in collaborative, cross-institutional research projects, requires active sharing of research ideas, data, documents and further information in a well-managed, controlled and structured manner. Thus, it is important to establish corresponding infrastructures and services for the scientists. Regular project meetings and joint field campaigns support the exchange of research ideas. Technical infrastructures facilitate storage, documentation, exchange and re-use of data as results of scientific output. Additionally, also publications, conference contributions, reports, pictures etc. should be managed. Both, knowledge and data sharing is essential to create synergies. Within the coordinated programme `Collaborative Research Center' (CRC), the German Research Foundation offers funding to establish research data management (RDM) infrastructures and services. CRCs are large-scale, interdisciplinary, multi-institutional, long-term (up to 12 years), university-based research institutions (up to 25 sub-projects). These CRCs address complex and scientifically challenging research questions. This poster presents the RDM services and infrastructures that have been established for two CRCs, both focusing on environmental sciences. Since 2007, a RDM support infrastructure and associated services have been set up for the CRC/Transregio 32 (CRC/TR32) `Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation' (www.tr32.de). The experiences gained have been used to arrange RDM services for the CRC1211 `Earth - Evolution at the Dry Limit' (www.crc1211.de), funded since 2016. In both projects scientists from various disciplines collect heterogeneous data at field campaigns or by modelling approaches. To manage the scientific output, the TR32DB data repository (www.tr32db.de) has been designed and implemented for the CRC/TR32. This system was transferred and adapted to the CRC1211 needs (www.crc1211db.uni-koeln.de) in 2016. Both repositories support secure and sustainable data storage, backup, documentation, publication with DOIs, search, download, statistics as well as web mapping features. Moreover, RDM consulting and support services as well as training sessions are carried out regularly.

  6. AmeriFlux and EuroFlux: History of a Strong Collaboration that Provided Unique Resources to the Scientific Community

    NASA Astrophysics Data System (ADS)

    Papale, D.; Agarwal, D.; Biraud, S.; Canfora, E.; Pastorello, G.; Torn, M. S.; Trotta, C.

    2017-12-01

    In 1995 scientific communities in Europe and North America using the eddy covariance technique to measure carbon, water, and energy exchanges between the terrestrial biosphere and the atmosphere started to organize their respective regional networks. Although there was a general interest and agreement to collaborate and exchange information and data between the two communities, these mainly occurred at the single site or individual levels through direct communications rather than systematically across networks. Between 2000 and 2008 common strategies to facilitate data sharing, promote data use across the two networks, and outreach to the scientific community, started to be more deeply discussed. Early on, harmonization across networks was deemed necessary to the success of both networks. This actually required major effort including lengthy discussions, compromises, and interactions between the networks for concrete implementation of common platforms and tools. Topics such as measurement units, variable definitions and labeling, data processing methods, data sharing policy, data distribution systems and formats, were key elements that had to be addressed and agreed upon carefully to build integrated and inter-operable research infrastructures (RIs). Today, AmeriFlux and EuroFlux are the basis, not only of the continental research infrastructures (ICOS in Europe), but they are also the driving force behind FLUXNET, where other regional networks are joining this coalition and contributing to the definition of a common system to make complex measurements accessible and comparable across continents. The latest dataset produced from this collaboration includes data contributed by over 200 sites around the world, with records spanning over two decades of data, and has been downloaded by over 900 users in the first 1.5 years of its publication. The core strategy of this collaboration, critical aspects and implemented solutions, as well as the current state of this effort will be presented to stimulate a community discussion aiming at growing the number of participating RIs and/or to stimulate similar processes in other research areas.

  7. Humans on the International Space Station-How Research, Operations, and International Collaboration are Leading to New Understanding of Human Physiology and Performance in Microgravity

    NASA Technical Reports Server (NTRS)

    Ronbinson, Julie A.; Harm, Deborah L.

    2009-01-01

    As the International Space Station (ISS) nears completion, and full international utilization is achieved, we are at a scientific crossroads. ISS is the premier location for research aimed at understanding the effects of microgravity on the human body. For applications to future human exploration, it is key for validation, quantification, and mitigation of a wide variety of spaceflight risks to health and human performance. Understanding and mitigating these risks is the focus of NASA s Human Research Program. However, NASA s approach to defining human research objectives is only one of many approaches within the ISS international partnership (including Roscosmos, the European Space Agency, the Canadian Space Agency, and the Japan Aerospace Exploration Agency). Each of these agencies selects and implements their own ISS research, with independent but related objectives for human and life sciences research. Because the science itself is also international and collaborative, investigations that are led by one ISS partner also often include cooperative scientists from around the world. The operation of the ISS generates significant additional data that is not directly linked to specific investigations. Such data comes from medical monitoring of crew members, life support and radiation monitoring, and from the systems that have been implemented to protect the health of the crew (such as exercise hardware). We provide examples of these international synergies in human research on ISS and highlight key early accomplishments that derive from these broad interfaces. Taken as a whole, the combination of diverse research objectives, operational data, international sharing of research resources on ISS, and scientific collaboration provide a robust research approach and capability that no one partner could achieve alone.

  8. Collaborative Co-Mentored Dissertations Spanning Institutions: Influences on Student Development

    PubMed Central

    DeLong, Mary J.

    2007-01-01

    The Graduate Partnerships Program (GPP), established in 2000, links universities with National Institutes of Health (NIH) laboratories for predoctoral training. Several partnerships required that students create collaborative dissertations between at least one NIH and one university research mentor. More than 60 students have entered into these co-mentored research collaborations, and many others established them even though not required. Much was learned about the experiences of these and other GPP students by using structured interviews as part of a formal self-study of the GPP in 2005. Complications of trying to work with two mentors are managed through careful program design and mentor selection. In the collaborative model, students develop a complex set of scientific and interpersonal skills. They lead their own independent research projects, drawing on the expertise of multiple mentors and acquiring skills at negotiating everyone's interests. They develop high levels of independence, maturity, flexibility, and the ability to see research questions from different perspectives. No evidence was found that co-mentoring diminishes the normally expected accomplishments of a student during the Ph.D. Multi-mentored dissertations require skills not all graduate students may possess this early in training, but for those who do, they can promote rapid and extensive development of skills needed for collaborative, interdisciplinary research. PMID:17548874

  9. Interdisciplinary Laboratory Course Facilitating Knowledge Integration, Mutualistic Teaming, and Original Discovery.

    PubMed

    Full, Robert J; Dudley, Robert; Koehl, M A R; Libby, Thomas; Schwab, Cheryl

    2015-11-01

    Experiencing the thrill of an original scientific discovery can be transformative to students unsure about becoming a scientist, yet few courses offer authentic research experiences. Increasingly, cutting-edge discoveries require an interdisciplinary approach not offered in current departmental-based courses. Here, we describe a one-semester, learning laboratory course on organismal biomechanics offered at our large research university that enables interdisciplinary teams of students from biology and engineering to grow intellectually, collaborate effectively, and make original discoveries. To attain this goal, we avoid traditional "cookbook" laboratories by training 20 students to use a dozen research stations. Teams of five students rotate to a new station each week where a professor, graduate student, and/or team member assists in the use of equipment, guides students through stages of critical thinking, encourages interdisciplinary collaboration, and moves them toward authentic discovery. Weekly discussion sections that involve the entire class offer exchange of discipline-specific knowledge, advice on experimental design, methods of collecting and analyzing data, a statistics primer, and best practices for writing and presenting scientific papers. The building of skills in concert with weekly guided inquiry facilitates original discovery via a final research project that can be presented at a national meeting or published in a scientific journal. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Effective Broader Impacts - Lessons Learned by the Ocean Science Community

    NASA Astrophysics Data System (ADS)

    Scowcroft, G.

    2014-12-01

    Effective broader impact activities have the potential for scientists to engage with educators, students, and the public in meaningful ways that lead to increased scientific literacy. These interactions provide opportunities for the results and discoveries of federally funded research projects, along with their implications for society, to reach non-scientist audiences. This is especially important for climate, ocean, and environmental science research that will aid citizens in better understanding how they affect Earth's systems and how these systems affect their daily lives. The National Centers for Ocean Sciences Excellence (COSEE) Network has over 12 years of experience in conducting successful broader impact activities and has provided thousands of ocean scientists the opportunity to share the fruits of their research well beyond the scientific enterprise. COSEE evaluators and principal investigators collaborated over several years to determine the impacts of COSEE broader impact activities and to identify best practices. The lessons learned by the ocean science community can help to inform other disciplines. Fruitful broader impact activities require key elements, no matter the composition of the audience. For example, a high degree of success can be achieved when a "bridge builder" facilitates the interactions between scientists and non-science audiences. This presentation will offer other examples of best practices and successful strategies for engaging scientists in broader impact activities, increasing societal impacts of scientific research, and providing opportunities for collaboration on a national scale. http://www.cosee.net

  11. Computing through Scientific Abstractions in SysBioPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George; Stephan, Eric G.; Gracio, Deborah K.

    2004-10-13

    Today, biologists and bioinformaticists have a tremendous amount of computational power at their disposal. With the availability of supercomputers, burgeoning scientific databases and digital libraries such as GenBank and PubMed, and pervasive computational environments such as the Grid, biologists have access to a wealth of computational capabilities and scientific data at hand. Yet, the rapid development of computational technologies has far exceeded the typical biologist’s ability to effectively apply the technology in their research. Computational sciences research and development efforts such as the Biology Workbench, BioSPICE (Biological Simulation Program for Intra-Cellular Evaluation), and BioCoRE (Biological Collaborative Research Environment) are importantmore » in connecting biologists and their scientific problems to computational infrastructures. On the Computational Cell Environment and Heuristic Entity-Relationship Building Environment projects at the Pacific Northwest National Laboratory, we are jointly developing a new breed of scientific problem solving environment called SysBioPSE that will allow biologists to access and apply computational resources in the scientific research context. In contrast to other computational science environments, SysBioPSE operates as an abstraction layer above a computational infrastructure. The goal of SysBioPSE is to allow biologists to apply computational resources in the context of the scientific problems they are addressing and the scientific perspectives from which they conduct their research. More specifically, SysBioPSE allows biologists to capture and represent scientific concepts and theories and experimental processes, and to link these views to scientific applications, data repositories, and computer systems.« less

  12. CIOC_ISON: Pro-Am Collaboration for Support of NASA Comet ISON Observing Campaign (CIOC) via Social Media

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.; ISON, CIOC; CIOC, NASA

    2013-10-01

    From the initial discovery of C/2012 S1 (ISON) by Russian amateur astronomers in September 2012 to present day, amateur astronomers provide valuable resources of global coverage, data and legacy knowledge to the professional community. C/ISON promises to be the rare and brightest of comets if predictions of its evolution are correct. NASA has requested a small group of cometary scientists to facilitate, support and coordinate the observations of this potential bright comet. The Comet ISON Observing Campaign (CIOC) goals (www.isoncampaign.org) are: (i) a detailed characterization of a subset of comets (sun grazers) that are usually difficult to identify and study in the few hours before their demise; and (ii) facilitate collaborations between various investigators for the best science possible. One of the tangible products is the creation of CIOC_ISON, a professional - amateur astronomer collaboration network established on Facebook, with members from the scientific, amateur, science outreach/education, public from around the globe (www.facebook.com/groups/482774205113931/). Members, by invitation or request, provide the details of their equipment, location and observations and post their observations to both share and provide a forum for interactive discussions. Guidelines for observations and their logs are provided and updated as deemed necessary by the scientists for useful data. The long lead time between initial discovery of C/ISON in September 2012 and its perihelion in November 2013 provides a rare opportunity for the scientific and amateur astronomer communities to study a sungrazer comet on its initial (and possibly) only passage through the inner solar system. These collaborations, once an occasional connection, are now becoming essential and necessary, changing the paradigm of research. Unlike Citizen Science, these interactive and collaborative activities are the equivalent of Inverse Citizen Science, with the scientific community relying on the amateur astronomer community and its data to develop research strategy for observations and an outreach bridge to the public.

  13. Extreme-Scale Computing Project Aims to Advance Precision Oncology | Poster

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict drug response, and improve treatments for patients.

  14. The "DGPPN-Cohort": A national collaboration initiative by the German Association for Psychiatry and Psychotherapy (DGPPN) for establishing a large-scale cohort of psychiatric patients.

    PubMed

    Anderson-Schmidt, Heike; Adler, Lothar; Aly, Chadiga; Anghelescu, Ion-George; Bauer, Michael; Baumgärtner, Jessica; Becker, Joachim; Bianco, Roswitha; Becker, Thomas; Bitter, Cosima; Bönsch, Dominikus; Buckow, Karoline; Budde, Monika; Bührig, Martin; Deckert, Jürgen; Demiroglu, Sara Y; Dietrich, Detlef; Dümpelmann, Michael; Engelhardt, Uta; Fallgatter, Andreas J; Feldhaus, Daniel; Figge, Christian; Folkerts, Here; Franz, Michael; Gade, Katrin; Gaebel, Wolfgang; Grabe, Hans-Jörgen; Gruber, Oliver; Gullatz, Verena; Gusky, Linda; Heilbronner, Urs; Helbing, Krister; Hegerl, Ulrich; Heinz, Andreas; Hensch, Tilman; Hiemke, Christoph; Jäger, Markus; Jahn-Brodmann, Anke; Juckel, Georg; Kandulski, Franz; Kaschka, Wolfgang P; Kircher, Tilo; Koller, Manfred; Konrad, Carsten; Kornhuber, Johannes; Krause, Marina; Krug, Axel; Lee, Mahsa; Leweke, Markus; Lieb, Klaus; Mammes, Mechthild; Meyer-Lindenberg, Andreas; Mühlbacher, Moritz; Müller, Matthias J; Nieratschker, Vanessa; Nierste, Barbara; Ohle, Jacqueline; Pfennig, Andrea; Pieper, Marlenna; Quade, Matthias; Reich-Erkelenz, Daniela; Reif, Andreas; Reitt, Markus; Reininghaus, Bernd; Reininghaus, Eva Z; Riemenschneider, Matthias; Rienhoff, Otto; Roser, Patrik; Rujescu, Dan; Schennach, Rebecca; Scherk, Harald; Schmauss, Max; Schneider, Frank; Schosser, Alexandra; Schott, Björn H; Schwab, Sybille G; Schwanke, Jens; Skrowny, Daniela; Spitzer, Carsten; Stierl, Sebastian; Stöckel, Judith; Stübner, Susanne; Thiel, Andreas; Volz, Hans-Peter; von Hagen, Martin; Walter, Henrik; Witt, Stephanie H; Wobrock, Thomas; Zielasek, Jürgen; Zimmermann, Jörg; Zitzelsberger, Antje; Maier, Wolfgang; Falkai, Peter G; Rietschel, Marcella; Schulze, Thomas G

    2013-12-01

    The German Association for Psychiatry and Psychotherapy (DGPPN) has committed itself to establish a prospective national cohort of patients with major psychiatric disorders, the so-called DGPPN-Cohort. This project will enable the scientific exploitation of high-quality data and biomaterial from psychiatric patients for research. It will be set up using harmonised data sets and procedures for sample generation and guided by transparent rules for data access and data sharing regarding the central research database. While the main focus lies on biological research, it will be open to all kinds of scientific investigations, including epidemiological, clinical or health-service research.

  15. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    ERIC Educational Resources Information Center

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  16. CO2 Urban Synthesis and Analysis ("CO2-USA") Network

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Hutyra, L.; Loughner, C.; Stein, A. F.; Lusk, K.; Mitchell, L.; Gately, C.; Wofsy, S. C.

    2017-12-01

    Emissions of carbon associated with cities comprise a large component of the anthropogenic source. A number of cities have announced plans to reduce greenhouse gas emissions, but the scientific knowledge to quantitatively track emissions and assess the efficacy of mitigation is lacking. As the global population increasingly resides in urban regions, scientific knowledge about how much, where, and why a particular city emits carbon becomes increasingly important. To address this gap, researchers have initiated studies of carbon emissions and cycling in several U.S. cities, making it timely to develop a collaborative network to exchange information on community standards and common measurements, facilitate data sharing, and create analysis frameworks and cross-city syntheses to catalyze a new generation of researchers and enable new collaborations tackling important objectives that are difficult to address in isolation. We describe initial results from an incipient network focusing initially on cities in the U.S. with low barriers of entry that entrains a cross-section of U.S. urban centers with varying characteristics: size, population density, vegetation, urban form, infrastructure, development rates, climate, and meteorological patterns. Results will be reported that emerge from an initial workshop covering data harmonization & integration, inventory comparison, stakeholder outreach, network design, inverse modeling, and collaboration.

  17. Environmental Defense Fund Oil and Gas Methane Studies: Principles for Collaborating with Industry Partners while Maintaining Scientific Objectivity

    NASA Astrophysics Data System (ADS)

    Hamburg, S.

    2016-12-01

    Environmental Defense Fund (EDF) launched a series of 16 research studies in 2012 to quantify methane emissions from the U.S. oil and gas (O&G) supply chain. In addition to EDF's funding from philanthropic individuals and foundations and in-kind contributions from universities, over forty O&G companies contributed money to the studies. For a subset of studies that required partner companies to provide site access to measure their equipment, five common principles were followed to assure that research was objective and scientifically rigorous. First, academic scientists were selected as principal investigators (PIs) to lead the studies. In line with EDF's policy of not accepting money from corporate partners, O&G companies provided funding directly to academic PIs. Technical work groups and steering committees consisting of EDF and O&G partner staff advised the PIs in the planning and implementation of research, but PIs had the final authority in scientific decisions including publication content. Second, scientific advisory panels of independent experts advised the PIs in the study design, data analysis, and interpretation. Third, studies employed multiple methodologies when possible, including top-down and bottom-up measurements. This helped overcome the limitations of individual approaches to decrease the uncertainty of emission estimates and minimize concerns with data being "cherry-picked". Fourth, studies were published in peer-reviewed journals to undergo an additional round of independent review. Fifth, transparency of data was paramount. Study data were released after publication, although operator and site names of individual data points were anonymized to ensure transparency and allow independent analysis. Following these principles allowed an environmental organization, O&G companies, and academic scientists to collaborate in scientific research while minimizing conflicts of interest. This approach can serve as a model for a scientifically rigorous process minimally influenced by study partners.

  18. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    PubMed Central

    Horowitz, Carol R.; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N.; Smith, Geoffrey W.; Dudley, Joel; Manning, Rachel; Bickell, Nina A.; Galvez, Maida P.

    2017-01-01

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities. PMID:28241508

  19. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research.

    PubMed

    Horowitz, Carol R; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N; Smith, Geoffrey W; Dudley, Joel; Manning, Rachel; Bickell, Nina A; Galvez, Maida P

    2017-02-23

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific "accelerators", tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators-digital health, big data, genomics and environmental health-and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities.

  20. Bridging the Gap Between Earth Science Open Data Producers and Consumers Using a Standards based approach

    NASA Astrophysics Data System (ADS)

    Stephan, E.; Sivaraman, C.

    2016-12-01

    The Web brought together science communities creating collaborative opportunities that were previously unimaginable. This was due to the novel ways technology enabled users to share information that would otherwise not be available. This means that data and software that previously could not be discovered without direct contact with data or software creators can now be downloaded with the click of a mouse button, and the same products can now outlive the lifespan of their research projects. While in many ways these technological advancements provide benefit to collaborating scientists, a critical producer-consumer knowledge gap is created when collaborating scientists rely solely on web sites, web browsers, or similar technology to exchange services, software, and data. Without some best practices and common approaches from Web publishers, collaborating scientific consumers have no inherent way to trust the results or other products being shared, producers have no way to convey their scientific credibility, and publishers risk obscurity where data is hidden in the deep Web. By leveraging recommendations from the W3C Data Activity, scientific communities can adopt best practices for data publication enabling consumers to explore, reuse, reproduce, and contribute their knowledge about the data. This talk will discuss the application of W3C Data on the Web Best Practices in support of published earth science data and feature the Data Usage Vocabulary.

  1. Sustaining Scientist-Community Partnerships that are Just, Equitable, and Trustworthy

    NASA Astrophysics Data System (ADS)

    Sheats, N.

    2016-12-01

    Communities of color, indigenous people, and low income communities throughout the United States are on the front lines of environmental and health impacts from polluting sources, and yet don't fully benefit from public policies that are intended to reduce or prevent those impacts. Many of the challenges faced by environmental justice communities can and should be addressed, in part, through science-based public policies. Community-relevant scientific information and equal access to this information is needed to protect people from public health and environmental hazards. Too often, however, the scientific community has failed to work collaboratively with environmental justice communities. This session will explore the challenges and opportunities faced by environmental justice advocates and scientists in working with one another. This talk will share findings from a recently-held forum, specifically discussing a formal set of principles and best practices for community-scientist partnerships to guide future collaborations between scientists and communities. When community members and scientists collaborate, they bring together unique strengths and types of knowledge that can help address our most pressing challenges, inform decision making, and develop solutions that benefit all people. The speaker will address institutional and historic barriers that hinder such collaboration, potential pitfalls to avoid, and share how institutional systems of scientific research can incorporate equity analyses into their work to ensure solutions that are truly effective.

  2. Developing human functioning and rehabilitation research. Part II: Interdisciplinary university centers and national and regional collaboration networks.

    PubMed

    Stucki, Gerold; Celio, Marco

    2007-05-01

    There is a strong movement towards interdisciplinary research around common and scientifically competitive themes, both at universities and at the national and regional level. Human functioning and rehabilitation is a new, highly innovative and relevant theme. It has the potential to attract researchers from a wide range of disciplines, institutions and organizations. It is thus of interest for universities seeking to embark upon a new and unique research area. Similarly, it is a promising theme for individual researchers, institutions and organizations aiming to develop a national or regional collaboration network for interdisciplinary research. Human functioning and rehabilitation complements established themes from the biomedical perspective. In the context of the life sciences, it can be seen as an extension of the biosciences towards a comprehensive understanding of human life, including human interaction and communication, against the background of the natural and social environment. Based on a better understanding of human functioning and disability, there is a wide range of largely unexplored possibilities to optimize populations' functioning and minimize persons' experience of disability in the presence of a health condition. Rehabilitation research is uniquely positioned to integrate and translate scientific advances into benefits for people and the society. Rehabilitation research from the comprehensive perspective can thus become a catalyst of interdisciplinary research that crosses the boundaries of the natural sciences and engineering research, the human and behavioral sciences, the social sciences and a wide range of related scientific areas. Rehabilitation research is also uniquely positioned to cross the boundaries of medicine and the health sector at large, and to translate knowledge across sectors including education, labor and social affairs.

  3. Community Science: creating equitable partnerships for the advancement of scientific knowledge for action.

    NASA Astrophysics Data System (ADS)

    Lewis, E. S.; Gehrke, G. E.

    2017-12-01

    In a historical moment where the legitimacy of science is being questioned, it is essential to make science more accessible to the public. Active participation increases the legitimacy of projects within communities (Sidaway 2009). Creating collaborations in research strengthens not only the work by adding new dimensions, but also the social capital of communities through increased knowledge, connections, and decision making power. In this talk, Lewis will discuss how engagement at different stages of the scientific process is possible, and how researchers can actively develop opportunities that are open and inviting. Genuine co-production in research pushes scientists to work in new ways, and with people from different backgrounds, expertise, and lived experiences. This approach requires a flexible and dynamic balance of learning, sharing, and creating for all parties involved to ensure more meaningful and equitable participation. For example, in community science such as that by Public Lab, the community is at the center of scientific exploration. The research is place-based and is grounded in the desired outcomes of community members. Researchers are able to see themselves as active participants in this work alongside community members. Participating in active listening, developing plans together, and using a shared language built through learning can be helpful tools in all co-production processes. Generating knowledge is powerful. Through genuine collaboration and co-creation, science becomes more relevant. When community members are equitable stakeholders in the scientific process, they are better able to engage and advocate for the changes they want to see in their communities. Through this talk, session attendees will learn about practices that promote equitable participation in science, and hear examples of how the community science process engages people in both the knowledge production, and in the application of science.

  4. E-Labs - Learning with Authentic Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, Marjorie G.; Wayne, Mitchell

    the success teachers have had providing an opportunity for students to: • Organize and conduct authentic research. • Experience the environment of scientific collaborations. • Possibly make real contributions to a burgeoning scientific field. We've created projects that are problem-based, student driven and technology dependent. Students reach beyond classroom walls to explore data with other students and experts and share results, publishing original work to a worldwide audience. Students can discover and extend the research of other students, modeling the processes of modern, large-scale research projects. From start to finish e-Labs are student-led, teacher-guided projects. Students need only a Webmore » browser to access computing techniques employed by professional researchers. A Project Map with milestones allows students to set the research plan rather than follow a step-by-step process common in other online projects. Most importantly, e-Labs build the learning experience around the students' own questions and let them use the very tools that scientists use. Students contribute to and access shared data, most derived from professional research databases. They use common analysis tools, store their work and use metadata to discover, replicate and confirm the research of others. This is where real scientific collaboration begins. Using online tools, students correspond with other research groups, post comments and questions, prepare summary reports, and in general participate in the part of scientific research that is often left out of classroom experiments. Teaching tools such as student and teacher logbooks, pre- and post-tests and an assessment rubric aligned with learner outcomes help teachers guide student work. Constraints on interface designs and administrative tools such as registration databases give teachers the "one-stop-shopping" they seek for multiple e-Labs. Teaching and administrative tools also allow us to track usage and assess the impact on student learning.« less

  5. The Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance (CTA): Scientific Vision, Approach, and Translational Paths

    DTIC Science & Technology

    2012-09-01

    The Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance (CTA): Scientific Vision, Approach, and Translational Paths by...The Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance (CTA): Scientific Vision, Approach, and Translational Paths Kelvin S. Oie...REPORT DATE (DD-MM-YYYY) September 2012 2. REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE The Cognition and Neuroergonomics

  6. SEA Semester Undergraduates Research the Ocean's Role in Climate Systems in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Meyer, A. W.; Becker, M. K.; Grabb, K. C.

    2014-12-01

    Sea Education Association (SEA)'s fully accredited Oceans & Climate SEA Semester program provides upper-level science undergraduates a unique opportunity to explore the ocean's role in the global climate system as they conduct real-world oceanographic research and gain first-hand understanding of and appreciation for the collaborative nature of the scientific research process. Oceans & Climate is an interdisciplinary science and policy semester in which students also explore public policy perspectives to learn how scientific knowledge is used in making climate-related policy. Working first at SEA's shore campus, students collaborate with SEA faculty and other researchers in the local Woods Hole scientific community to design and develop an original research project to be completed at sea. Students then participate as full, working members of the scientific team and sailing crew aboard the 134-foot brigantine SSV Robert C. Seamans; they conduct extensive oceanographic sampling, manage shipboard operations, and complete and present the independent research project they designed onshore. Oceans & Climate SEA Semester Cruise S-250 sailed from San Diego to Tahiti on a 7-week, >4000nm voyage last fall (November-December 2013). This remote open-ocean cruise track traversed subtropical and equatorial regions of the Pacific particularly well suited for a diverse range of climate-focused studies. Furthermore, as SEA has regularly collected scientific data along similar Pacific cruise tracks for more than a decade, students often undertake projects that require time-series analyses. 18 undergraduates from 15 different colleges and universities participated in the S-250 program. Two examples of the many projects completed by S-250 students include a study of the possible relationship between tropical cyclone intensification, driven by warm sea surface temperatures, and the presence of barrier layers; and a study of nutrient cycling in the eastern Pacific, focusing on primary nitrite maximum changes in various oceanographic regions with differing levels of stratification and accompanying localization of microbial communities. These studies, as well as additional scientific and policy projects conducted by other Oceans & Climate students, will be highlighted in this poster presentation.

  7. Stop, Collaborate, and Listen: Lessons Learned from Collaborating with a Houston Environmental Justice Organization

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Arellano, Y.; Phartiyal, P.

    2016-12-01

    Scientists are increasingly showing interest in conducting research at the community level, yet community groups often struggle with lack of access to scientific information. Collaborations between the two are mutually beneficial: scientists can include assessment of societal implications in their research, and community-specific scientific evidence can be used by local groups to inform public decisions that benefit community interests. Recognizing the need for and utility of such partnerships, the Center for Science and Democracy at the Union of Concerned Scientists, a science-based policy and advocacy organization, partnered with Texas Environmental Justice Advocacy Services (TEJAS), an environmental justice organization based in Manchester in Houston, to provide the technical support and resources needed to strengthen TEJAS' advocacy work. Working closely with TEJAS, we connected community members with local experts, developed educational products to inform community members about environmental health risks in their neighborhoods, published a report highlighting chemical safety issues in the community, and assisted in constructing a community survey to assess residents' health concerns. The products were created with the intention of raising the profile of these issues with local government and regional EPA officials. This talk will discuss the projects done in collaboration with TEJAS, as well as important lessons learned that offer insight into best practices for other organizations and technical experts to partner with community groups on local projects.

  8. 75 FR 24971 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Intellegere...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... Production Act of 1993--Intellegere Foundation Notice is hereby given that, on April 7, 2010, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq...) to facilitate scientific collaboration by addressing challenges of national security; (b) to promote...

  9. Covariation between Variables in a Modelling Process: The ACODESA (Collaborative Learning, Scientific Debate and Self-Reflection) Method

    ERIC Educational Resources Information Center

    Hitt, Fernando; González-Martín, Alejandro S.

    2015-01-01

    Semiotic representations have been an important topic of study in mathematics education. Previous research implicitly placed more importance on the development of institutional representations of mathematical concepts in students rather than other types of representations. In the context of an extensive research project, in progress since 2005,…

  10. A Research Study of Tropospheric Ozone and Meteorological Parameters to Introduce High School Students to Scientific Procedures

    ERIC Educational Resources Information Center

    Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso; Adame, Jose Antonio; Parra, Alfonso; Romero, Eugenio; Parra, Jesus; Munoz, Fernando

    2011-01-01

    An environmental research project was carried out by a consortium established among scientists and university lecturers in collaboration with two high schools. High school students participated in a long-term study of the local temporal profiles of tropospheric ozone and the relationship to pollution and meteorological parameters. Low-cost…

  11. Second RAS Symposium Brings Together World’s Leading RAS Scientists | Poster

    Cancer.gov

    From December 6–8, the Advanced Technology Research Facility of the Frederick National Laboratory for Cancer Research was abuzz with conversation and collaboration as nearly 450 scientists, academics, and industry partners gathered for the Second RAS Initiative Symposium. Attendees hailed from 14 nations, dozens of institutions, and diverse scientific backgrounds, but they

  12. The Wisconsin Network for Health Research (WiNHR): a statewide, collaborative, multi-disciplinary, research group.

    PubMed

    Bailey, Howard; Agger, William; Baumgardner, Dennis; Burmester, James K; Cisler, Ron A; Evertsen, Jennifer; Glurich, Ingrid; Hartman, David; Yale, Steven H; DeMets, David

    2009-12-01

    In response to the goals of the Wisconsin Partnership Program and the National Institutes of Health (NIH) Initiatives to Improve Healthcare, the Wisconsin Network for Health Research (WiNHR) was formed. As a collaborative, multi-disciplinary statewide research network, WiNHR encourages and fosters the discovery and application of scientific knowledge for researchers and practitioners throughout Wisconsin. The 4 founding institutions--Aurora Health Care/Center for Urban Population Health (CUPH), Gundersen Lutheran Medical Foundation, Marshfield Clinic Research Foundation, and the University of Wisconsin-Madison--representing geographically diverse areas of the state, are optimistic and committed to WiNHR's success. This optimism is based on the relevance of its goals to public health, the quality of statewide health care research, and, most importantly, the residents of Wisconsin who recognize the value of health research.

  13. The Wisconsin Network for Health Research (WiNHR): A Statewide, Collaborative, Multi-disciplinary, Research Group

    PubMed Central

    Bailey, Howard; Agger, William; Baumgardner, Dennis; Burmester, James K.; Cisler, Ron A.; Evertsen, Jennifer; Glurich, Ingrid; Hartman, David; Yale, Steven H.; DeMets, David

    2010-01-01

    In response to the goals of the Wisconsin Partnership Program and the National Institutes of Health (NIH) Initiatives to Improve Healthcare, the Wisconsin Network for Health Research (WiNHR) was formed. As a collaborative, multi-disciplinary statewide research network, WiNHR encourages and fosters the discovery and application of scientific knowledge for researchers and practitioners throughout Wisconsin. The 4 founding institutions—Aurora Health Care/Center for Urban Population Health (CUPH), Gundersen Lutheran Medical Foundation, Marshfield Clinic Research Foundation, and the University of Wisconsin-Madison—representing geographically diverse areas of the state, are optimistic and committed to WiNHR’s success. This optimism is based on the relevance of its goals to public health, the quality of statewide health care research, and, most importantly, the residents of Wisconsin who recognize the value of health research. PMID:20131687

  14. Locally-sourced: How climate science can collaborate with arts & humanities museums to achieve widespread public trust and communication

    NASA Astrophysics Data System (ADS)

    Walker, C. G.

    2017-12-01

    Local history, art and culture museums have a large role to play in climate science communication. Unfortunately, in our current society, scientific evidence and logic is not universally accepted as truth. These messages can be dispersed through trusted institutional allies like humanities and arts museums. There are many reasons for scientific institutions to work with humanities and arts museums of all sizes, especially local museums that have personal, trusted relationships with their communities. First, museums (by definition) are public educators; the work that they do is to disperse challenging information in an understandable way to a wide array of audiences. Museums are located in every state, with over 35,000 museums in the nation; 26% of those are located in rural areas. These museums serve every demographic and age range, inspiring even those with difficulty accepting climate change information to act. Second, in a recent public opinion survey commissioned by the American Alliance of Museums, museums - especially history museums - are considered the most trustworthy source of information in America, rated higher than newspapers, nonprofit researchers, the U.S. government, or academic researchers. Scientific institutions must collaborate with local museums to improve science communication going forward. Not only will important climate and sustainability research be dispersed via trusted sources, but the public will engage with this information in large numbers. In 2012 alone, over 850 million people visited museums - more than the attendance for all major league sports and theme parks combined. A recent impact study shows that history and art museums, especially, are not seen as "having a political agenda," with over 78% of the public seeing these museums as trusted institutions. There are many ways in which the scientific community can collaborate with "the arts." This presentation will speak to the larger benefit of working with sister arts & humanities institutions for widespread public education, with examples and actionable ideas.

  15. Literature-Based Scientific Learning: A Collaboration Model

    ERIC Educational Resources Information Center

    Elrod, Susan L.; Somerville, Mary M.

    2007-01-01

    Amidst exponential growth of knowledge, student insights into the knowledge creation practices of the scientific community can be furthered by science faculty collaborations with university librarians. The Literature-Based Scientific Learning model advances undergraduates' disciplinary mastery and information literacy through experience with…

  16. Inter-institutional Development of a Poster-Based Cancer Biology Learning Tool

    PubMed Central

    Andraos-Selim, Cecile; Modzelewski, Ruth A.; Steinman, Richard A.

    2010-01-01

    There is a paucity of African-American Cancer researchers. To help address this, an educational collaboration was developed between a Comprehensive Cancer Center and a distant undergraduate biology department at a minority institution that sought to teach students introductory cancer biology while modeling research culture. A student-centered active learning curriculum was established that incorporated scientific poster presentations and simulated research exercises to foster learning of cancer biology. Students successfully mined primary literature for supportive data to test cancer-related hypotheses. Student feedback indicated that the poster project substantially enhanced depth of understanding of cancer biology and laid the groundwork for subsequent laboratory work. This inter-institutional collaboration modeled the research process while conveying facts and concepts about cancer. PMID:20237886

  17. Mapping a research agenda for the science of team science

    PubMed Central

    Falk-Krzesinski, Holly J; Contractor, Noshir; Fiore, Stephen M; Hall, Kara L; Kane, Cathleen; Keyton, Joann; Klein, Julie Thompson; Spring, Bonnie; Stokols, Daniel; Trochim, William

    2012-01-01

    An increase in cross-disciplinary, collaborative team science initiatives over the last few decades has spurred interest by multiple stakeholder groups in empirical research on scientific teams, giving rise to an emergent field referred to as the science of team science (SciTS). This study employed a collaborative team science concept-mapping evaluation methodology to develop a comprehensive research agenda for the SciTS field. Its integrative mixed-methods approach combined group process with statistical analysis to derive a conceptual framework that identifies research areas of team science and their relative importance to the emerging SciTS field. The findings from this concept-mapping project constitute a lever for moving SciTS forward at theoretical, empirical, and translational levels. PMID:23223093

  18. Workplan for Catalyzing Collaboration with Amazonian Universities in the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)

    NASA Technical Reports Server (NTRS)

    Brown, I. Foster; Moreira, Adriana

    1997-01-01

    Success of the Large-Scale Biosphere-Atmospheric Experiment in Amazonia (LBA) program depends on several critical factors, the most important being the effective participation of Amazonian researchers and institutions. Without host-county counterparts, particularly in Amazonia, many important studies cannot he undertaken due either to lack of qualified persons or to legal constraints. No less important, the acceptance of the LBA program in Amazonia is also dependent on what LBA can do for improving the scientific expertise in Amazonia. Gaining the active investment of Amazonian scientists in a comprehensive research program is not a trivial task. Potential collaborators are few, particularly where much of the research was to be originally focused - the southern arc of Brazilian Amazonia. The mid-term goals of the LBA Committee on Training and Education are to increase the number of collaborators and to demonstrate that LBA will be of benefit to the region.

  19. Transforming Epidemiology for 21st Century Medicine and Public Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoury, Muin J; Lam, Tram Kim; Ioannidis, John

    2013-01-01

    n 2012, the National Cancer Institute (NCI) engaged the scientific community to provide a vision for cancer epidemiology in the 21st century. Eight overarching thematic recommendations, with proposed corresponding actions for consideration by funding agencies, professional societies, and the research community emerged from the collective intellectual discourse. The themes are (i) extending the reach of epidemiology beyond discovery and etiologic research to include multilevel analysis, intervention evaluation, implementation, and outcomes research; (ii) transforming the practice of epidemiology by moving toward more access and sharing of protocols, data, metadata, and specimens to foster collaboration, to ensure reproducibility and replication, and acceleratemore » translation; (iii) expanding cohort studies to collect exposure, clinical, and other information across the life course and examining multiple health-related endpoints; (iv) developing and validating reliable methods and technologies to quantify exposures and outcomes on a massive scale, and to assess concomitantly the role of multiple factors in complex diseases; (v) integrating big data science into the practice of epidemiology; (vi) expanding knowledge integration to drive research, policy, and practice; (vii) transforming training of 21st century epidemiologists to address interdisciplinary and translational research; and (viii) optimizing the use of resources and infrastructure for epidemiologic studies. These recommendations can transform cancer epidemiology and the field of epidemiology, in general, by enhancing transparency, interdisciplinary collaboration, and strategic applications of new technologies. They should lay a strong scientific foundation for accelerated translation of scientific discoveries into individual and population health benefits.« less

  20. Transforming Epidemiology for 21st Century Medicine and Public Health

    PubMed Central

    Khoury, Muin J.; Lam, Tram Kim; Ioannidis, John P.A.; Hartge, Patricia; Spitz, Margaret R.; Buring, Julie E.; Chanock, Stephen J.; Croyle, Robert T.; Goddard, Katrina A.; Ginsburg, Geoffrey S.; Herceg, Zdenko; Hiatt, Robert A.; Hoover, Robert N.; Hunter, David J.; Kramer, Barnet S.; Lauer, Michael S.; Meyerhardt, Jeffrey A.; Olopade, Olufunmilayo I.; Palmer, Julie R.; Sellers, Thomas A.; Seminara, Daniela; Ransohoff, David F.; Rebbeck, Timothy R.; Tourassi, Georgia; Winn, Deborah M.; Zauber, Ann; Schully, Sheri D.

    2013-01-01

    In 2012, the National Cancer Institute (NCI) engaged the scientific community to provide a vision for cancer epidemiology in the 21st century. Eight overarching thematic recommendations, with proposed corresponding actions for consideration by funding agencies, professional societies, and the research community emerged from the collective intellectual discourse. The themes are (i) extending the reach of epidemiology beyond discovery and etiologic research to include multilevel analysis, intervention evaluation, implementation, and outcomes research; (ii) transforming the practice of epidemiology by moving towards more access and sharing of protocols, data, metadata, and specimens to foster collaboration, to ensure reproducibility and replication, and accelerate translation; (iii) expanding cohort studies to collect exposure, clinical and other information across the life course and examining multiple health-related endpoints; (iv) developing and validating reliable methods and technologies to quantify exposures and outcomes on a massive scale, and to assess concomitantly the role of multiple factors in complex diseases; (v) integrating “big data” science into the practice of epidemiology; (vi) expanding knowledge integration to drive research, policy and practice; (vii) transforming training of 21st century epidemiologists to address interdisciplinary and translational research; and (viii) optimizing the use of resources and infrastructure for epidemiologic studies. These recommendations can transform cancer epidemiology and the field of epidemiology in general, by enhancing transparency, interdisciplinary collaboration, and strategic applications of new technologies. They should lay a strong scientific foundation for accelerated translation of scientific discoveries into individual and population health benefits. PMID:23462917

Top