Sample records for collaborative visualization covis

  1. The Collaboratory Notebook: A Networked Knowledge-Building Environment for Project Learning.

    ERIC Educational Resources Information Center

    O'Neill, D. Kevin; Gomez, Louis M.

    The Collaboratory Notebook, developed as part of the Learning Through Collaborative Visualization Project (CoVis), is a networked, multimedia knowledge-building environment which has been designed to help students, teachers and scientists share inquiry over the boundaries of time and space. CoVis is an attempt to change the way that science is…

  2. The path to COVIS: A review of acoustic imaging of hydrothermal flow regimes

    NASA Astrophysics Data System (ADS)

    Bemis, Karen G.; Silver, Deborah; Xu, Guangyu; Light, Russ; Jackson, Darrell; Jones, Christopher; Ozer, Sedat; Liu, Li

    2015-11-01

    Acoustic imaging of hydrothermal flow regimes started with the incidental recognition of a plume on a routine sonar scan for obstacles in the path of the human-occupied submersible ALVIN. Developments in sonar engineering, acoustic data processing and scientific visualization have been combined to develop technology which can effectively capture the behavior of focused and diffuse hydrothermal discharge. This paper traces the development of these acoustic imaging techniques for hydrothermal flow regimes from their conception through to the development of the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS has monitored such flow eight times a day for several years. Successful acoustic techniques for estimating plume entrainment, bending, vertical rise, volume flux, and heat flux are presented as is the state-of-the-art in diffuse flow detection.

  3. Perceptual category learning and visual processing: An exercise in computational cognitive neuroscience.

    PubMed

    Cantwell, George; Riesenhuber, Maximilian; Roeder, Jessica L; Ashby, F Gregory

    2017-05-01

    The field of computational cognitive neuroscience (CCN) builds and tests neurobiologically detailed computational models that account for both behavioral and neuroscience data. This article leverages a key advantage of CCN-namely, that it should be possible to interface different CCN models in a plug-and-play fashion-to produce a new and biologically detailed model of perceptual category learning. The new model was created from two existing CCN models: the HMAX model of visual object processing and the COVIS model of category learning. Using bitmap images as inputs and by adjusting only a couple of learning-rate parameters, the new HMAX/COVIS model provides impressively good fits to human category-learning data from two qualitatively different experiments that used different types of category structures and different types of visual stimuli. Overall, the model provides a comprehensive neural and behavioral account of basal ganglia-mediated learning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Vehicle Detection in Emplaced Sensor Fields: A User’s Guide to a Simulation Model and a Track-Identification Algorithm

    DTIC Science & Technology

    1973-01-01

    KCNOT NRTRUK* NRTJC , NBRTRK* NENI ) , NSIZ3 ,CHKA 100 5 NSNS 9 RETA , IWCNT , NSENSR, MSFNS 9 CSENS ,CHKA 110 NO, NB9 1 9 NTRAJC, LSTCNV9 WCAP, NqARAY...CELL COVI. 760 N aN + I COVI 770 If (N .GT. NENI ’, N a 1 CUVI 7RO 18(IK) 0 N COVI 790 c CDVI 791 C**** THIS SECTION T’STS TO SEE IF THIS NEW WINDOW NOW...TMELST9 TSHAR , UPW.\\j0 9 14 VALO 110 3 WL14TM, W0PTM , IK o 9EGTME, FINTME, NRGEN , VALn 120 4 NCNDT 9 NRTROK, NRTJC 9 NH4RTRK, NENI ) , NSIz3 ,VALO 130

  5. A neurocomputational account of cognitive deficits in Parkinson’s disease

    PubMed Central

    Hélie, Sébastien; Paul, Erick J.; Ashby, F. Gregory

    2014-01-01

    Parkinson’s disease (PD) is caused by the accelerated death of dopamine (DA) producing neurons. Numerous studies documenting cognitive deficits of PD patients have revealed impairments in a variety of tasks related to memory, learning, visuospatial skills, and attention. While there have been several studies documenting cognitive deficits of PD patients, very few computational models have been proposed. In this article, we use the COVIS model of category learning to simulate DA depletion and show that the model suffers from cognitive symptoms similar to those of human participants affected by PD. Specifically, DA depletion in COVIS produced deficits in rule-based categorization, non-linear information-integration categorization, probabilistic classification, rule maintenance, and rule switching. These were observed by simulating results from younger controls, older controls, PD patients, and severe PD patients in five well-known tasks. Differential performance among the different age groups and clinical populations was modeled simply by changing the amount of DA available in the model. This suggests that COVIS may not only be an adequate model of the simulated tasks and phenomena but also more generally of the role of DA in these tasks and phenomena. PMID:22683450

  6. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China

    PubMed Central

    Shao, Zhenfeng; Zhang, Linjing

    2016-01-01

    Estimation of forest aboveground biomass is critical for regional carbon policies and sustainable forest management. Passive optical remote sensing and active microwave remote sensing both play an important role in the monitoring of forest biomass. However, optical spectral reflectance is saturated in relatively dense vegetation areas, and microwave backscattering is significantly influenced by the underlying soil when the vegetation coverage is low. Both of these conditions decrease the estimation accuracy of forest biomass. A new optical and microwave integrated vegetation index (VI) was proposed based on observations from both field experiments and satellite (Landsat 8 Operational Land Imager (OLI) and RADARSAT-2) data. According to the difference in interaction between the multispectral reflectance and microwave backscattering signatures with biomass, the combined VI (COVI) was designed using the weighted optical optimized soil-adjusted vegetation index (OSAVI) and microwave horizontally transmitted and vertically received signal (HV) to overcome the disadvantages of both data types. The performance of the COVI was evaluated by comparison with those of the sole optical data, Synthetic Aperture Radar (SAR) data, and the simple combination of independent optical and SAR variables. The most accurate performance was obtained by the models based on the COVI and optical and microwave optimal variables excluding OSAVI and HV, in combination with a random forest algorithm and the largest number of reference samples. The results also revealed that the predictive accuracy depended highly on the statistical method and the number of sample units. The validation indicated that this integrated method of determining the new VI is a good synergistic way to combine both optical and microwave information for the accurate estimation of forest biomass. PMID:27338378

  7. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a similar methodology but a different sonar system) provide references to the consistency of the methodology. Second, the vertical flow rate measurement made in 2007 at an adjacent vent complex (Dante) using a different acoustic method (acoustic scintillation) can serve as a first order estimation of the plume vertical velocity. Third, another first order estimation can be obtained by combining the plume bending angle with the horizontal current measured by a current meter array deployed to the north of the vent field. Finally, statistical techniques are used to quantify the errors due to the ambient noises, inherent uncertainties of the methodology, and the fluctuation of the plume structure.

  8. The role of assessment infrastructures in crafting project-based science classrooms

    NASA Astrophysics Data System (ADS)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research and practice associated with assessment and pedagogical reform in three ways. First, it provides a theoretical frame for the relationship between assessment and pedagogical reform. Second, it provides a set of taxonomies which outline both the challenges of project-based science activity and typical assessment strategies to meet them. Finally, it provides a set of cautions and recommendations for designing classroom assessment infrastructures in support of project-based science.

  9. Due Process in Dual Process: Model-Recovery Simulations of Decision-Bound Strategy Analysis in Category Learning

    ERIC Educational Resources Information Center

    Edmunds, Charlotte E. R.; Milton, Fraser; Wills, Andy J.

    2018-01-01

    Behavioral evidence for the COVIS dual-process model of category learning has been widely reported in over a hundred publications (Ashby & Valentin, 2016). It is generally accepted that the validity of such evidence depends on the accurate identification of individual participants' categorization strategies, a task that usually falls to…

  10. A Comparison of the neural correlates that underlie rule-based and information-integration category learning.

    PubMed

    Carpenter, Kathryn L; Wills, Andy J; Benattayallah, Abdelmalek; Milton, Fraser

    2016-10-01

    The influential competition between verbal and implicit systems (COVIS) model proposes that category learning is driven by two competing neural systems-an explicit, verbal, system, and a procedural-based, implicit, system. In the current fMRI study, participants learned either a conjunctive, rule-based (RB), category structure that is believed to engage the explicit system, or an information-integration category structure that is thought to preferentially recruit the implicit system. The RB and information-integration category structures were matched for participant error rate, the number of relevant stimulus dimensions, and category separation. Under these conditions, considerable overlap in brain activation, including the prefrontal cortex, basal ganglia, and the hippocampus, was found between the RB and information-integration category structures. Contrary to the predictions of COVIS, the medial temporal lobes and in particular the hippocampus, key regions for explicit memory, were found to be more active in the information-integration condition than in the RB condition. No regions were more activated in RB than information-integration category learning. The implications of these results for theories of category learning are discussed. Hum Brain Mapp 37:3557-3574, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. The Division of Military Air Transportation between Civilian and Military Carriers,

    DTIC Science & Technology

    1969-05-01

    because rates covi’r thle chartor ing oif tilt whole atircra ft antd thuis total capacity. Tlhi’ raft’s woo Id hi’ the( same ifr the aircraft wore thle...Control of Identification Cards, 14 June 1965, p. 16 . See the comments about the operations of Air America in Cecil Brownlow, "Sustained Viet Buildup... depreciation . A detailed account of the assumptions that lie behind the equa- tions may be found in the RAC document describing the model. Here we

  12. Correction on the distortion of Scheimpflug imaging for dynamic central corneal thickness

    NASA Astrophysics Data System (ADS)

    Li, Tianjie; Tian, Lei; Wang, Like; Hon, Ying; Lam, Andrew K. C.; Huang, Yifei; Wang, Yuanyuan; Zheng, Yongping

    2015-05-01

    The measurement of central corneal thickness (CCT) is important in ophthalmology. Most studies concerned the value at normal status, while rare ones focused on its dynamic changing. The commercial Corvis ST is the only commercial device currently available to visualize the two-dimensional image of dynamic corneal profiles during an air puff indentation. However, the directly observed CCT involves the Scheimpflug distortion, thus misleading the clinical diagnosis. This study aimed to correct the distortion for better measuring the dynamic CCTs. The optical path was first derived to consider the influence of factors on the use of Covis ST. A correction method was then proposed to estimate the CCT at any time during air puff indentation. Simulation results demonstrated the feasibility of the intuitive-feasible calibration for measuring the stationary CCT and indicated the necessity of correction when air puffed. Experiments on three contact lenses and four human corneas verified the prediction that the CCT would be underestimated when the improper calibration was conducted for air and overestimated when it was conducted on contact lenses made of polymethylmethacrylate. Using the proposed method, the CCT was finally observed to increase by 66±34 μm at highest concavity in 48 normal human corneas.

  13. Comparing Learning Performance of Students Using Algorithm Visualizations Collaboratively on Different Engagement Levels

    ERIC Educational Resources Information Center

    Laakso, Mikko-Jussi; Myller, Niko; Korhonen, Ari

    2009-01-01

    In this paper, two emerging learning and teaching methods have been studied: collaboration in concert with algorithm visualization. When visualizations have been employed in collaborative learning, collaboration introduces new challenges for the visualization tools. In addition, new theories are needed to guide the development and research of the…

  14. Arrays of Very Small Voltammetric Electrodes Based on Reticulated Vitreous Carbon.

    DTIC Science & Technology

    1983-10-14

    1H D-fli34 73ifARRAYS OF VERY SMALL YOLTAMMETRIC ELECTRODES BA5ED ON i/i RETICULATED VITREOUS CARBON (U) STATE UNIV OF NEW YORK I AT BUFFALO AMHERST N...PEIOiUD COVI[R9 1^. Arrays of Very Small Voltametric Electrodes 0 Based on Reticulated Vitreous Carbon - S. PRFROG OG. REPORT NUM A 7. AUTNOR) 0...Cofigi nueu eav’e,o *ee i necesaery and Iden lly by block number) L.Uj Reticulated vitreous carbon ; microelectrodes; nonlinear diffusion; vol tammetry

  15. Guiding science expeditions: The design of a learning environment for project-based science

    NASA Astrophysics Data System (ADS)

    Polman, Joseph Louis

    Project-based pedagogy has been revived recently as a teaching strategy for promoting students' active engagement in learning science by doing science. Numerous reform efforts have encouraged project-based teaching in high schools, along with a range of supports for its implementation, often including computers and the Internet. History has shown, however, that academic research and new technologies are not enough to effect real change in classrooms. Ultimately, teachers accomplish activity with their students daily in classrooms. Putting the idea of project-based teaching into practice depends on many particulars of teachers' situated work with students. To better understand the complexity of project-based science teaching in schools, I conducted an interpretive case study of one exceptional teacher's work. The teacher devotes all class time after the beginning of the year to open-ended, student-designed Earth Science research projects. Over four years of involvement with the Learning through Collaborative Visualization (CoVis) reform effort, this teacher has developed, implemented, and refined strategies for supporting and guiding students in conducting open-ended inquiry. Through a close examination of the teacher's work supporting student projects, I explore the design issues involved in such an endeavor, including affordances, constraints, and tradeoffs. In particular, I show how time constrains both student and teacher action, how the traditional school culture and grading create stumbling blocks for change, and how conflicting beliefs about teaching and learning undermine the accomplishment of guided inquiry. I also show how Internet tools including Usenet news, email, and the World Wide Web afford students an opportunity to gather and make use of distributed expertise and scientific data resources; how an activity structure, combined with a corresponding structure to the artifact of the final written product, supports student accomplishment of unfamiliar practices; and how the teacher guides students in real time through mutually transformative communication. I synthesize the important design elements into a framework for conducting project-based science, especially in settings where such pedagogy is relatively new. This study will inform teachers and reformers of the practical and complex work of implementing project-based teaching in schools.

  16. Statistical Analysis Software for the TRS-80 Microcomputer.

    DTIC Science & Technology

    1981-09-01

    1160 3 W640 : KSa3 ; GOSUB 760 1170 CLS : PRINT"Is the variance known?" 1190 ZP64: TI"’T" 1 T2S-N : CIOSU1 710 1190 IF 70- en " OR mO"N" 0070 1250 1200...Paul Isbell September 1981 C--) Thesis Advisor: Charles F. Taylor, Jr. LLU __ Approved for public release; distribution unlimited C. 3 - ? 01 12 032...ACCUIiON no . 3 . 1CIPIIT*S CATALOG NMUNIRO, 4. TITLE (god Su feiej) S. TYPE OP MI[PORT 6 PEIOo COVI[EO Stastical Analysis Software for the Master’s Thesis

  17. CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.

    2014-01-01

    Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477

  18. Collaborative interactive visualization: exploratory concept

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Lavigne, Valérie; Drolet, Frédéric

    2015-05-01

    Dealing with an ever increasing amount of data is a challenge that military intelligence analysts or team of analysts face day to day. Increased individual and collective comprehension goes through collaboration between people. Better is the collaboration, better will be the comprehension. Nowadays, various technologies support and enhance collaboration by allowing people to connect and collaborate in settings as varied as across mobile devices, over networked computers, display walls, tabletop surfaces, to name just a few. A powerful collaboration system includes traditional and multimodal visualization features to achieve effective human communication. Interactive visualization strengthens collaboration because this approach is conducive to incrementally building a mental assessment of the data meaning. The purpose of this paper is to present an overview of the envisioned collaboration architecture and the interactive visualization concepts underlying the Sensemaking Support System prototype developed to support analysts in the context of the Joint Intelligence Collection and Analysis Capability project at DRDC Valcartier. It presents the current version of the architecture, discusses future capabilities to help analyst(s) in the accomplishment of their tasks and finally recommends collaboration and visualization technologies allowing to go a step further both as individual and as a team.

  19. Collaborative volume visualization with applications to underwater acoustic signal processing

    NASA Astrophysics Data System (ADS)

    Jarvis, Susan; Shane, Richard T.

    2000-08-01

    Distributed collaborative visualization systems represent a technology whose time has come. Researchers at the Fraunhofer Center for Research in Computer Graphics have been working in the areas of collaborative environments and high-end visualization systems for several years. The medical application. TeleInVivo, is an example of a system which marries visualization and collaboration. With TeleInvivo, users can exchange and collaboratively interact with volumetric data sets in geographically distributed locations. Since examination of many physical phenomena produce data that are naturally volumetric, the visualization frameworks used by TeleInVivo have been extended for non-medical applications. The system can now be made compatible with almost any dataset that can be expressed in terms of magnitudes within a 3D grid. Coupled with advances in telecommunications, telecollaborative visualization is now possible virtually anywhere. Expert data quality assurance and analysis can occur remotely and interactively without having to send all the experts into the field. Building upon this point-to-point concept of collaborative visualization, one can envision a larger pooling of resources to form a large overview of a region of interest from contributions of numerous distributed members.

  20. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannotmore » be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem important to the nations scientific progress as described shortly. Further, SLAC researchers routinely generate massive amounts of data, and frequently collaborate with other researchers located around the world. Thus SLAC is an ideal teammate through which to develop, test and deploy this technology. The nature of the datasets generated by simulations performed at SLAC presented unique visualization challenges especially when dealing with higher-order elements that were addressed during this Phase II. During this Phase II, we have developed a strong platform for collaborative visualization based on ParaView. We have developed and deployed a ParaView Web Visualization framework that can be used for effective collaboration over the Web. Collaborating and visualizing over the Web presents the community with unique opportunities for sharing and accessing visualization and HPC resources that hitherto with either inaccessible or difficult to use. The technology we developed in here will alleviate both these issues as it becomes widely deployed and adopted.« less

  1. Light Helicopter Family Trade-Off Analysis. Volume 4. Appendix N

    DTIC Science & Technology

    1985-05-15

    Figur«! N -V1I-9 through N -VII-U ahow th« futl flow CMp«rlsoas chac comt|>oad r.o th« powar r«qutr«««nt* thown by flguraa (J-VII-l through M-VII-4...HELICOPTER. FAMILY TRADE-OFF ANALYSIS APPENDIX N VOLUME IV ACN: 69396 • Copy l_Q] of 130 c:optea. 15 Nay 198S ~ .. 8 06 .0&1 OTIC ELECTE AU613...TITLE (- ..... do) I. TYPf ’!! ~POitT a PI!I’IOD COVI:IU!O LIGHT HELICOPTER FAMILY TRADE-OFF ANALYSIS, Fina t y Report, APPENDIX N , VOLUME IV of XI

  2. Visualization Forms in the Cross-Cultural Collaborative Activities of Design and Development of a Digital Resource for Education

    ERIC Educational Resources Information Center

    Quan, Guolong; Gu, Xiaoqing

    2018-01-01

    Recent studies have demonstrated the integration of visualization technology to support collaboration and stimulate learning performance. The use of visualization tools during the collaborative activities of international students is a worthy topic for further exploration. Based on grounded and activity theories, this research uses observation and…

  3. Analyzing Earth Science Research Networking through Visualizations

    NASA Astrophysics Data System (ADS)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  4. Human image tracking technique applied to remote collaborative environments

    NASA Astrophysics Data System (ADS)

    Nagashima, Yoshio; Suzuki, Gen

    1993-10-01

    To support various kinds of collaborations over long distances by using visual telecommunication, it is necessary to transmit visual information related to the participants and topical materials. When people collaborate in the same workspace, they use visual cues such as facial expressions and eye movement. The realization of coexistence in a collaborative workspace requires the support of these visual cues. Therefore, it is important that the facial images be large enough to be useful. During collaborations, especially dynamic collaborative activities such as equipment operation or lectures, the participants often move within the workspace. When the people move frequently or over a wide area, the necessity for automatic human tracking increases. Using the movement area of the human being or the resolution of the extracted area, we have developed a memory tracking method and a camera tracking method for automatic human tracking. Experimental results using a real-time tracking system show that the extracted area fairly moves according to the movement of the human head.

  5. A study on haptic collaborative game in shared virtual environment

    NASA Astrophysics Data System (ADS)

    Lu, Keke; Liu, Guanyang; Liu, Lingzhi

    2013-03-01

    A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.

  6. A collaborative interaction and visualization multi-modal environment for surgical planning.

    PubMed

    Foo, Jung Leng; Martinez-Escobar, Marisol; Peloquin, Catherine; Lobe, Thom; Winer, Eliot

    2009-01-01

    The proliferation of virtual reality visualization and interaction technologies has changed the way medical image data is analyzed and processed. This paper presents a multi-modal environment that combines a virtual reality application with a desktop application for collaborative surgical planning. Both visualization applications can function independently but can also be synced over a network connection for collaborative work. Any changes to either application is immediately synced and updated to the other. This is an efficient collaboration tool that allows multiple teams of doctors with only an internet connection to visualize and interact with the same patient data simultaneously. With this multi-modal environment framework, one team working in the VR environment and another team from a remote location working on a desktop machine can both collaborate in the examination and discussion for procedures such as diagnosis, surgical planning, teaching and tele-mentoring.

  7. Dosimetric comparison of four different external beams for breast irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Yoon Hee; Chung, Weon Kuu; Kim, Dong Wook; Kwon, Oh Young

    2017-02-01

    An intensity-modulated radiation-therapy (IMRT)-based technique, blocked single iso-centric IMRT (IMRT), is compared to multi-center IMRT (MIRT) and other conventional techniques such as three dimensional conformal radiation therapy (3D-CRT) and volumetric modulated arc therapy (VMAT) for the treatment of breast cancer patients. Four different plans were devised and compared for 15 breast cancer patients, all of whom had early stage disease and had undergone breast conserving surgery. A total dose of 50.4 Gy in 28 fractions was prescribed as the planning target volume in all treatment plans. The doses to the ipsilateral lung, heart, and opposite breast were compared using a dose-volume histogram. The conformity index (CI), homogeneity index (HI), and coverage index (CoVI) were evaluated and compared among the four treatment techniques. The lifetime attributable risk (LAR) associated with each of the four techniques from age at exposure of 30 to 100 years was measured for the organs at risk. We found that MIRT had a better CoVI (1.02 ± 0.13 and 1.01 ± 0.04, respectively) and IMRT had a better CI (0.88 ± 0.04, and 0.87 ± 0.02, respectively) compared to the other three modalities. All four techniques had similar HIs. Moreover, we found that IMRT and MIRT were less likely to cause radiation induced-pneumonitis, 3D-CRT had the lowest LAR, IMRT and MIRT had similar LARs and VMAT had the highest LAR. In study we found that compared to the VMAT, MIRT and IMRT provided adequate the planning target volume (PTV) coverage and reduced the risk of secondary cancers in most of the organs at risk (OARs), while 3D-CRT had the lowest secondary-cancer risks. Therefore, 3D-CRT is still a reasonable choice for whole breast RT except for patients with complex PTV shapes, in which cases IMRT and MIRT may provide better target coverage.

  8. The social computing room: a multi-purpose collaborative visualization environment

    NASA Astrophysics Data System (ADS)

    Borland, David; Conway, Michael; Coposky, Jason; Ginn, Warren; Idaszak, Ray

    2010-01-01

    The Social Computing Room (SCR) is a novel collaborative visualization environment for viewing and interacting with large amounts of visual data. The SCR consists of a square room with 12 projectors (3 per wall) used to display a single 360-degree desktop environment that provides a large physical real estate for arranging visual information. The SCR was designed to be cost-effective, collaborative, configurable, widely applicable, and approachable for naive users. Because the SCR displays a single desktop, a wide range of applications is easily supported, making it possible for a variety of disciplines to take advantage of the room. We provide a technical overview of the room and highlight its application to scientific visualization, arts and humanities projects, research group meetings, and virtual worlds, among other uses.

  9. Visualization analysis of author collaborations in schizophrenia research.

    PubMed

    Wu, Ying; Duan, Zhiguang

    2015-02-19

    Schizophrenia is a serious mental illness that levies a heavy medical toll and cost burden throughout the world. Scientific collaborations are necessary for progress in psychiatric research. However, there have been few publications on scientific collaborations in schizophrenia. The aim of this study was to investigate the extent of author collaborations in schizophrenia research. This study used 58,107 records on schizophrenia from 2003 to 2012 which were downloaded from Science Citation Index Expanded (SCI Expanded) via Web of Science. CiteSpace III, an information visualization and analysis software, was used to make a visual analysis. Collaborative author networks within the field of schizophrenia were determined using published documents. We found that external author collaboration networks were more scattered while potential author collaboration networks were more compact. Results from hierarchical clustering analysis showed that the main collaborative field was genetic research in schizophrenia. Based on the results, authors belonging to different institutions and in different countries should be encouraged to collaborate in schizophrenia research. This will help researchers focus their studies on key issues, and allow each other to offer reasonable suggestions for making polices and providing scientific evidence to effectively diagnose, prevent, and cure schizophrenia.

  10. Musician Map: visualizing music collaborations over time

    NASA Astrophysics Data System (ADS)

    Yim, Ji-Dong; Shaw, Chris D.; Bartram, Lyn

    2009-01-01

    In this paper we introduce Musician Map, a web-based interactive tool for visualizing relationships among popular musicians who have released recordings since 1950. Musician Map accepts search terms from the user, and in turn uses these terms to retrieve data from MusicBrainz.org and AudioScrobbler.net, and visualizes the results. Musician Map visualizes relationships of various kinds between music groups and individual musicians, such as band membership, musical collaborations, and linkage to other artists that are generally regarded as being similar in musical style. These relationships are plotted between artists using a new timeline-based visualization where a node in a traditional node-link diagram has been transformed into a Timeline-Node, which allows the visualization of an evolving entity over time, such as the membership in a band. This allows the user to pursue social trend queries such as "Do Hip-Hop artists collaborate differently than Rock artists".

  11. Visual analytics for aviation safety: A collaborative approach to sensemaking

    NASA Astrophysics Data System (ADS)

    Wade, Andrew

    Visual analytics, the "science of analytical reasoning facilitated by interactive visual interfaces", is more than just visualization. Understanding the human reasoning process is essential for designing effective visualization tools and providing correct analyses. This thesis describes the evolution, application and evaluation of a new method for studying analytical reasoning that we have labeled paired analysis. Paired analysis combines subject matter experts (SMEs) and tool experts (TE) in an analytic dyad, here used to investigate aircraft maintenance and safety data. The method was developed and evaluated using interviews, pilot studies and analytic sessions during an internship at the Boeing Company. By enabling a collaborative approach to sensemaking that can be captured by researchers, paired analysis yielded rich data on human analytical reasoning that can be used to support analytic tool development and analyst training. Keywords: visual analytics, paired analysis, sensemaking, boeing, collaborative analysis.

  12. A case study of collaborative facilities use in engineering design

    NASA Astrophysics Data System (ADS)

    Monroe, Laura; Pugmire, David

    2010-01-01

    In this paper we describe the use of visualization tools and facilities in the collaborative design of a replacement weapons system, the Reliable Replacement Warhead (RRW). We used not only standard collaboration methods but also a range of visualization software and facilities to bring together domain specialists from laboratories across the country to collaborate on the design and integrate this disparate input early in the design. This was the first time in U.S. weapons history that a weapon had been designed in this collaborative manner. Benefits included projected cost savings, design improvements and increased understanding across the project.

  13. D3: A Collaborative Infrastructure for Aerospace Design

    NASA Technical Reports Server (NTRS)

    Walton, Joan; Filman, Robert E.; Knight, Chris; Korsmeyer, David J.; Lee, Diana D.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid dynamics) model executions. DARWIN captures, stores and indexes data, manages derived knowledge (such as visualizations across multiple data sets) and provides an environment for designers to collaborate in the analysis of the results of testing. DARWIN is an interesting application because it supports high volumes of data, integrates multiple modalities of data display (e.g. images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and view of data.

  14. Ultrascale collaborative visualization using a display-rich global cyberinfrastructure.

    PubMed

    Jeong, Byungil; Leigh, Jason; Johnson, Andrew; Renambot, Luc; Brown, Maxine; Jagodic, Ratko; Nam, Sungwon; Hur, Hyejung

    2010-01-01

    The scalable adaptive graphics environment (SAGE) is high-performance graphics middleware for ultrascale collaborative visualization using a display-rich global cyberinfrastructure. Dozens of sites worldwide use this cyberinfrastructure middleware, which connects high-performance-computing resources over high-speed networks to distributed ultraresolution displays.

  15. The global lambda visualization facility: An international ultra-high-definition wide-area visualization collaboratory

    USGS Publications Warehouse

    Leigh, J.; Renambot, L.; Johnson, Aaron H.; Jeong, B.; Jagodic, R.; Schwarz, N.; Svistula, D.; Singh, R.; Aguilera, J.; Wang, X.; Vishwanath, V.; Lopez, B.; Sandin, D.; Peterka, T.; Girado, J.; Kooima, R.; Ge, J.; Long, L.; Verlo, A.; DeFanti, T.A.; Brown, M.; Cox, D.; Patterson, R.; Dorn, P.; Wefel, P.; Levy, S.; Talandis, J.; Reitzer, J.; Prudhomme, T.; Coffin, T.; Davis, B.; Wielinga, P.; Stolk, B.; Bum, Koo G.; Kim, J.; Han, S.; Corrie, B.; Zimmerman, T.; Boulanger, P.; Garcia, M.

    2006-01-01

    The research outlined in this paper marks an initial global cooperative effort between visualization and collaboration researchers to build a persistent virtual visualization facility linked by ultra-high-speed optical networks. The goal is to enable the comprehensive and synergistic research and development of the necessary hardware, software and interaction techniques to realize the next generation of end-user tools for scientists to collaborate on the global Lambda Grid. This paper outlines some of the visualization research projects that were demonstrated at the iGrid 2005 workshop in San Diego, California.

  16. Comparing art-science collaboration efforts to highlight changes in the marine environment of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lee, O. A.

    2016-12-01

    Significant changes to the Arctic marine environment is anticipated as a result of decreasing sea ice and increasing anthropogenic activity that may occur with increasing access to ice-free waters. Two different collaboration efforts between scientists and artists on projects related to changes in the Alaskan Arctic waters are compared to present different outcomes from two collaboration strategies. The first collaboration involved a funded project to develop visualizations of change on the North Slope as part of an outreach effort for the North Slope Science Initiative Scenarios project. The second collaboration was a voluntary art-science collaboration to develop artwork about changing sea ice habitat for walrus as one contribution to a featured art show during the 2016 Arctic Science Summit Week. Both collaboration opportunities resulted in compelling visualizations. However the funded collaboration provided for more iterative discussions between the scientist and the collaborators for the film and animation products throughout the duration of the project. This ensured that the science remained an important focal point. In contrast, the product of the voluntary collaboration effort was primarily driven by the artist's perspective, although the discussions with the scientist played a role in connecting the content of the three panels in the final art and sculpture piece. This comparison of different levels of scientist-involvement and resources used to develop the visualizations highlights the importance of defining the intended audience and expectations for all collaborators early.

  17. An optimized web-based approach for collaborative stereoscopic medical visualization

    PubMed Central

    Kaspar, Mathias; Parsad, Nigel M; Silverstein, Jonathan C

    2013-01-01

    Objective Medical visualization tools have traditionally been constrained to tethered imaging workstations or proprietary client viewers, typically part of hospital radiology systems. To improve accessibility to real-time, remote, interactive, stereoscopic visualization and to enable collaboration among multiple viewing locations, we developed an open source approach requiring only a standard web browser with no added client-side software. Materials and Methods Our collaborative, web-based, stereoscopic, visualization system, CoWebViz, has been used successfully for the past 2 years at the University of Chicago to teach immersive virtual anatomy classes. It is a server application that streams server-side visualization applications to client front-ends, comprised solely of a standard web browser with no added software. Results We describe optimization considerations, usability, and performance results, which make CoWebViz practical for broad clinical use. We clarify technical advances including: enhanced threaded architecture, optimized visualization distribution algorithms, a wide range of supported stereoscopic presentation technologies, and the salient theoretical and empirical network parameters that affect our web-based visualization approach. Discussion The implementations demonstrate usability and performance benefits of a simple web-based approach for complex clinical visualization scenarios. Using this approach overcomes technical challenges that require third-party web browser plug-ins, resulting in the most lightweight client. Conclusions Compared to special software and hardware deployments, unmodified web browsers enhance remote user accessibility to interactive medical visualization. Whereas local hardware and software deployments may provide better interactivity than remote applications, our implementation demonstrates that a simplified, stable, client approach using standard web browsers is sufficient for high quality three-dimensional, stereoscopic, collaborative and interactive visualization. PMID:23048008

  18. Collaborative visual analytics of radio surveys in the Big Data era

    NASA Astrophysics Data System (ADS)

    Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.

    2017-06-01

    Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.

  19. Modeling mid-ocean ridge hydrothermal response to earthquakes, tides, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Bemis, K. G.

    2014-12-01

    Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the response of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the response of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal response to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal response to ocean tides and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic theories to estimate the crustal permeability, a fundamental property of subsurface hydrothermal circulation, from the phase shift of the tidal oscillations of venting temperature relative to ambient ocean tides. These results together shed light on the influences of seismic and oceanic processes on a seafloor hydrothermal system.

  20. VisSearch: A Collaborative Web Searching Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2005-01-01

    VisSearch is a collaborative Web searching environment intended for sharing Web search results among people with similar interests, such as college students taking the same course. It facilitates students' Web searches by visualizing various Web searching processes. It also collects the visualized Web search results and applies an association rule…

  1. Using Visualization to Motivate Student Participation in Collaborative Online Learning Environments

    ERIC Educational Resources Information Center

    Jin, Sung-Hee

    2017-01-01

    Online participation in collaborative online learning environments is instrumental in motivating students to learn and promoting their learning satisfaction, but there has been little research on the technical supports for motivating students' online participation. The purpose of this study was to develop a visualization tool to motivate learners…

  2. VRML and Collaborative Environments: New Tools for Networked Visualization

    NASA Astrophysics Data System (ADS)

    Crutcher, R. M.; Plante, R. L.; Rajlich, P.

    We present two new applications that engage the network as a tool for astronomical research and/or education. The first is a VRML server which allows users over the Web to interactively create three-dimensional visualizations of FITS images contained in the NCSA Astronomy Digital Image Library (ADIL). The server's Web interface allows users to select images from the ADIL, fill in processing parameters, and create renderings featuring isosurfaces, slices, contours, and annotations; the often extensive computations are carried out on an NCSA SGI supercomputer server without the user having an individual account on the system. The user can then download the 3D visualizations as VRML files, which may be rotated and manipulated locally on virtually any class of computer. The second application is the ADILBrowser, a part of the NCSA Horizon Image Data Browser Java package. ADILBrowser allows a group of participants to browse images from the ADIL within a collaborative session. The collaborative environment is provided by the NCSA Habanero package which includes text and audio chat tools and a white board. The ADILBrowser is just an example of a collaborative tool that can be built with the Horizon and Habanero packages. The classes provided by these packages can be assembled to create custom collaborative applications that visualize data either from local disk or from anywhere on the network.

  3. Art-Science-Technology collaboration through immersive, interactive 3D visualization

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2014-12-01

    At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.

  4. Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer's disease neuroimaging initiative.

    PubMed

    Yao, Xiaohui; Yan, Jingwen; Ginda, Michael; Börner, Katy; Saykin, Andrew J; Shen, Li

    2017-01-01

    Alzheimer's disease neuroimaging initiative (ADNI) is a landmark imaging and omics study in AD. ADNI research literature has increased substantially over the past decade, which poses challenges for effectively communicating information about the results and impact of ADNI-related studies. In this work, we employed advanced information visualization techniques to perform a comprehensive and systematic mapping of the ADNI scientific growth and impact over a period of 12 years. Citation information of ADNI-related publications from 01/01/2003 to 05/12/2015 were downloaded from the Scopus database. Five fields, including authors, years, affiliations, sources (journals), and keywords, were extracted and preprocessed. Statistical analyses were performed on basic publication data as well as journal and citations information. Science mapping workflows were conducted using the Science of Science (Sci2) Tool to generate geospatial, topical, and collaboration visualizations at the micro (individual) to macro (global) levels such as geospatial layouts of institutional collaboration networks, keyword co-occurrence networks, and author collaboration networks evolving over time. During the studied period, 996 ADNI manuscripts were published across 233 journals and conference proceedings. The number of publications grew linearly from 2008 to 2015, so did the number of involved institutions. ADNI publications received much more citations than typical papers from the same set of journals. Collaborations were visualized at multiple levels, including authors, institutions, and research areas. The evolution of key ADNI research topics was also plotted over the studied period. Both statistical and visualization results demonstrate the increasing attention of ADNI research, strong citation impact of ADNI publications, the expanding collaboration networks among researchers, institutions and ADNI core areas, and the dynamic evolution of ADNI research topics. The visualizations presented here can help improve daily decision making based on a deep understanding of existing patterns and trends using proven and replicable data analysis and visualization methods. They have great potential to provide new insights and actionable knowledge for helping translational research in AD.

  5. Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer’s disease neuroimaging initiative

    PubMed Central

    Yao, Xiaohui; Yan, Jingwen; Ginda, Michael; Börner, Katy; Saykin, Andrew J.

    2017-01-01

    Background Alzheimer’s disease neuroimaging initiative (ADNI) is a landmark imaging and omics study in AD. ADNI research literature has increased substantially over the past decade, which poses challenges for effectively communicating information about the results and impact of ADNI-related studies. In this work, we employed advanced information visualization techniques to perform a comprehensive and systematic mapping of the ADNI scientific growth and impact over a period of 12 years. Methods Citation information of ADNI-related publications from 01/01/2003 to 05/12/2015 were downloaded from the Scopus database. Five fields, including authors, years, affiliations, sources (journals), and keywords, were extracted and preprocessed. Statistical analyses were performed on basic publication data as well as journal and citations information. Science mapping workflows were conducted using the Science of Science (Sci2) Tool to generate geospatial, topical, and collaboration visualizations at the micro (individual) to macro (global) levels such as geospatial layouts of institutional collaboration networks, keyword co-occurrence networks, and author collaboration networks evolving over time. Results During the studied period, 996 ADNI manuscripts were published across 233 journals and conference proceedings. The number of publications grew linearly from 2008 to 2015, so did the number of involved institutions. ADNI publications received much more citations than typical papers from the same set of journals. Collaborations were visualized at multiple levels, including authors, institutions, and research areas. The evolution of key ADNI research topics was also plotted over the studied period. Conclusions Both statistical and visualization results demonstrate the increasing attention of ADNI research, strong citation impact of ADNI publications, the expanding collaboration networks among researchers, institutions and ADNI core areas, and the dynamic evolution of ADNI research topics. The visualizations presented here can help improve daily decision making based on a deep understanding of existing patterns and trends using proven and replicable data analysis and visualization methods. They have great potential to provide new insights and actionable knowledge for helping translational research in AD. PMID:29095836

  6. Chemistry in Second Life

    PubMed Central

    Lang, Andrew SID; Bradley, Jean-Claude

    2009-01-01

    This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students. PMID:19852781

  7. Chemistry in second life.

    PubMed

    Lang, Andrew S I D; Bradley, Jean-Claude

    2009-10-23

    This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students.

  8. Using a Semantic Diagram to Structure a Collaborative Problem Solving Process in the Classroom

    ERIC Educational Resources Information Center

    Cai, Huiying; Lin, Lin; Gu, Xiaoqing

    2016-01-01

    This study provides an in-depth look into the implementation process of visualization-based tools for structuring collaborative problem solving (CPS) in the classroom. A visualization-based learning platform--the semantic diagram for structuring CPS in a real classroom was designed and implemented. Metafora, the preliminary vehicle of the semantic…

  9. Mobile collaborative medical display system.

    PubMed

    Park, Sanghun; Kim, Wontae; Ihm, Insung

    2008-03-01

    Because of recent advances in wireless communication technologies, the world of mobile computing is flourishing with a variety of applications. In this study, we present an integrated architecture for a personal digital assistant (PDA)-based mobile medical display system that supports collaborative work between remote users. We aim to develop a system that enables users in different regions to share a working environment for collaborative visualization with the potential for exploring huge medical datasets. Our system consists of three major components: mobile client, gateway, and parallel rendering server. The mobile client serves as a front end and enables users to choose the visualization and control parameters interactively and cooperatively. The gateway handles requests and responses between mobile clients and the rendering server for efficient communication. Through the gateway, it is possible to share working environments between users, allowing them to work together in computer supported cooperative work (CSCW) mode. Finally, the parallel rendering server is responsible for performing heavy visualization tasks. Our experience indicates that some features currently available to our mobile clients for collaborative scientific visualization are limited due to the poor performance of mobile devices and the low bandwidth of wireless connections. However, as mobile devices and wireless network systems are experiencing considerable elevation in their capabilities, we believe that our methodology will be utilized effectively in building quite responsive, useful mobile collaborative medical systems in the very near future.

  10. Classroom Guitar and Students with Visual Impairments: A Positive Approach to Music Learning and Artistry

    ERIC Educational Resources Information Center

    Coleman, Jeremy M.

    2016-01-01

    In 2011, a collaborative effort began between the Texas School for the Blind and Visually Impaired (TSBVI) and Austin Classical Guitar (ACG), a local 501(c) nonprofit music organization. The idea behind this collaboration was to start a small guitar program that would provide TSBVI students with quality classroom guitar instruction. At that time,…

  11. Developing Teachers' Work for Improving Teaching and Learning of Children with Visual Impairment Accommodated in Ordinary Primary Schools

    ERIC Educational Resources Information Center

    Mnyanyi, Cosmas B. F.

    2009-01-01

    The study investigated how to facilitate teachers in developing their work in improving the teaching and learning of children with visual impairment (CVI) accommodated in ordinary classrooms. The study takes the form of collaborative action research where the researcher works in collaboration with the teachers. The project is being conducted in…

  12. Bridging the Gap between Physical Therapy and Orientation and Mobility in Schools: Using a Collaborative Team Approach for Students with Visual Impairments

    ERIC Educational Resources Information Center

    Szabo, Joanne; Panikkar, Rajiv K.

    2017-01-01

    This article explores transdisciplinary collaboration and role-release strategies that would allow physical therapists and orientation and mobility (O&M) specialists to more effectively support students with visual impairments (that is, those who are blind or have low vision) and additional disabilities with their expanded core curriculum…

  13. WebViz:A Web-based Collaborative Interactive Visualization System for large-Scale Data Sets

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; McArthur, E.; Weiss, R. M.; Zhou, J.; Yao, B.

    2010-12-01

    WebViz is a web-based application designed to conduct collaborative, interactive visualizations of large data sets for multiple users, allowing researchers situated all over the world to utilize the visualization services offered by the University of Minnesota’s Laboratory for Computational Sciences and Engineering (LCSE). This ongoing project has been built upon over the last 3 1/2 years .The motivation behind WebViz lies primarily with the need to parse through an increasing amount of data produced by the scientific community as a result of larger and faster multicore and massively parallel computers coming to the market, including the use of general purpose GPU computing. WebViz allows these large data sets to be visualized online by anyone with an account. The application allows users to save time and resources by visualizing data ‘on the fly’, wherever he or she may be located. By leveraging AJAX via the Google Web Toolkit (http://code.google.com/webtoolkit/), we are able to provide users with a remote, web portal to LCSE's (http://www.lcse.umn.edu) large-scale interactive visualization system already in place at the University of Minnesota. LCSE’s custom hierarchical volume rendering software provides high resolution visualizations on the order of 15 million pixels and has been employed for visualizing data primarily from simulations in astrophysics to geophysical fluid dynamics . In the current version of WebViz, we have implemented a highly extensible back-end framework built around HTTP "server push" technology. The web application is accessible via a variety of devices including netbooks, iPhones, and other web and javascript-enabled cell phones. Features in the current version include the ability for users to (1) securely login (2) launch multiple visualizations (3) conduct collaborative visualization sessions (4) delegate control aspects of a visualization to others and (5) engage in collaborative chats with other users within the user interface of the web application. These features are all in addition to a full range of essential visualization functions including 3-D camera and object orientation, position manipulation, time-stepping control, and custom color/alpha mapping.

  14. Supporting Patient-Provider Collaboration to Identify Individual Triggers using Food and Symptom Journals

    PubMed Central

    Schroeder, Jessica; Hoffswell, Jane; Chung, Chia-Fang; Fogarty, James; Munson, Sean; Zia, Jasmine

    2017-01-01

    Patient-generated data can allow patients and providers to collaboratively develop accurate diagnoses and actionable treatment plans. Unfortunately, patients and providers often lack effective support to make use of such data. We examine patient-provider collaboration to interpret patient-generated data. We focus on irritable bowel syndrome (IBS), a chronic illness in which particular foods can exacerbate symptoms. IBS management often requires patient-provider collaboration using a patient’s food and symptom journal to identify the patient’s triggers. We contribute interactive visualizations to support exploration of such journals, as well as an examination of patient-provider collaboration in interpreting the journals. Drawing upon individual and collaborative interviews with patients and providers, we find that collaborative review helps improve data comprehension and build mutual trust. We also find a desire to use tools like our interactive visualizations within and beyond clinic appointments. We discuss these findings and present guidance for the design of future tools. PMID:28516172

  15. Does the Medium Matter in Collaboration? Using Visually Supported Collaboration Technology in an Interior Design Studio

    ERIC Educational Resources Information Center

    Cho, Ji Young; Cho, Moon-Heum; Kozinets, Nadya

    2016-01-01

    With the recognition of the importance of collaboration in a design studio and the advancement of technology, increasing numbers of design students collaborate with others in a technology-mediated learning environment (TMLE); however, not all students have positive experiences in TMLEs. One possible reason for unsatisfactory collaboration…

  16. Web-based Collaboration and Visualization in the ANDRILL Program

    NASA Astrophysics Data System (ADS)

    Reed, J.; Rack, F. R.; Huffman, L. T.; Cattadori, M.

    2009-12-01

    ANDRILL has embraced the web as a platform for facilitating collaboration and communicating science with educators, students and researchers alike. Two recent ANDRILL education and outreach projects, Project Circle 2008 and the Climate Change Student Summit, brought together classrooms from around the world to participate in cutting edge science. A large component of each project was the online collaboration achieved through project websites, blogs, and the GroupHub--a secure online environment where students could meet to send messages, exchange presentations and pictures, and even chat live. These technologies enabled students from different countries and time zones to connect and participate in a shared 'conversation' about climate change research. ANDRILL has also developed several interactive, web-based visualizations to make scientific drilling data more engaging and accessible to the science community and the public. Each visualization is designed around three core concepts that enable the Web 2.0 platform, namely, that they are: (1) customizable - a user can customize the visualization to display the exact data she is interested in; (2) linkable - each view in the visualization has a distinct URL that the user can share with her friends via sites like Facebook and Twitter; and (3) mashable - the user can take the visualization, mash it up with data from other sites or her own research, and embed it in her blog or website. The web offers an ideal environment for visualization and collaboration because it requires no special software and works across all computer platforms, which allows organizations and research projects to engage much larger audiences. In this presentation we will describe past challenges and successes, as well as future plans.

  17. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  18. Coordinating Cognition: The Costs and Benefits of Shared Gaze during Collaborative Search

    ERIC Educational Resources Information Center

    Brennan, Susan E.; Chen, Xin; Dickinson, Christopher A.; Neider, Mark B.; Zelinsky, Gregory J.

    2008-01-01

    Collaboration has its benefits, but coordination has its costs. We explored the potential for remotely located pairs of people to collaborate during visual search, using shared gaze and speech. Pairs of searchers wearing eyetrackers jointly performed an O-in-Qs search task alone, or in one of three collaboration conditions: shared gaze (with one…

  19. Toward Collaboration Sensing

    ERIC Educational Resources Information Center

    Schneider, Bertrand; Pea, Roy

    2014-01-01

    We describe preliminary applications of network analysis techniques to eye-tracking data collected during a collaborative learning activity. This paper makes three contributions: first, we visualize collaborative eye-tracking data as networks, where the nodes of the graph represent fixations and edges represent saccades. We found that those…

  20. Toward visual user interfaces supporting collaborative multimedia content management

    NASA Astrophysics Data System (ADS)

    Husein, Fathi; Leissler, Martin; Hemmje, Matthias

    2000-12-01

    Supporting collaborative multimedia content management activities, as e.g., image and video acquisition, exploration, and access dialogues between naive users and multi media information systems is a non-trivial task. Although a wide variety of experimental and prototypical multimedia storage technologies as well as corresponding indexing and retrieval engines are available, most of them lack appropriate support for collaborative end-user oriented user interface front ends. The development of advanced user adaptable interfaces is necessary for building collaborative multimedia information- space presentations based upon advanced tools for information browsing, searching, filtering, and brokering to be applied on potentially very large and highly dynamic multimedia collections with a large number of users and user groups. Therefore, the development of advanced and at the same time adaptable and collaborative computer graphical information presentation schemes that allow to easily apply adequate visual metaphors for defined target user stereotypes has to become a key focus within ongoing research activities trying to support collaborative information work with multimedia collections.

  1. Collaborations in art/science: Renaissance teams.

    PubMed

    Cox, D J

    1991-01-01

    A Renaissance Team is a group of specialists who collaborate and provide synergism in the quest for knowledge and information. Artists can participate in Renaissance Teams with scientists and computer specialists for scientific visualization projects. Some projects are described in which the author functioned as programmer and color expert, as interface designer, as visual paradigm maker, as animator, and as producer. Examples are provided for each of these five projects.

  2. IdentityMap Visualization of the Super Identity Model

    ScienceCinema

    None

    2018-06-08

    The Super Identity Model is a collaboration with six United Kingdom universities to develop use cases used to piece together a person's identity across biological, cyber, psychological, and biographical domains. PNNL visualized the model in a web-based application called IdentityMap. This is the first step in a promising new field of research. Interested future collaborators are welcome to find out more by emailing superid@pnnl.gov.

  3. IdentityMap Visualization of the Super Identity Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Super Identity Model is a collaboration with six United Kingdom universities to develop use cases used to piece together a person's identity across biological, cyber, psychological, and biographical domains. PNNL visualized the model in a web-based application called IdentityMap. This is the first step in a promising new field of research. Interested future collaborators are welcome to find out more by emailing superid@pnnl.gov.

  4. Rocinante, a virtual collaborative visualizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, M.J.; Ice, L.G.

    1996-12-31

    With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired.more » Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.« less

  5. An Affordance-Based Framework for Human Computation and Human-Computer Collaboration.

    PubMed

    Crouser, R J; Chang, R

    2012-12-01

    Visual Analytics is "the science of analytical reasoning facilitated by visual interactive interfaces". The goal of this field is to develop tools and methodologies for approaching problems whose size and complexity render them intractable without the close coupling of both human and machine analysis. Researchers have explored this coupling in many venues: VAST, Vis, InfoVis, CHI, KDD, IUI, and more. While there have been myriad promising examples of human-computer collaboration, there exists no common language for comparing systems or describing the benefits afforded by designing for such collaboration. We argue that this area would benefit significantly from consensus about the design attributes that define and distinguish existing techniques. In this work, we have reviewed 1,271 papers from many of the top-ranking conferences in visual analytics, human-computer interaction, and visualization. From these, we have identified 49 papers that are representative of the study of human-computer collaborative problem-solving, and provide a thorough overview of the current state-of-the-art. Our analysis has uncovered key patterns of design hinging on human and machine-intelligence affordances, and also indicates unexplored avenues in the study of this area. The results of this analysis provide a common framework for understanding these seemingly disparate branches of inquiry, which we hope will motivate future work in the field.

  6. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-07-20

    This report summarizes work carried out by the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Team for the period of January 1, 2011 through June 30, 2011. It discusses highlights, overall progress, period goals, and collaborations and lists papers and presentations. To learn more about our project, please visit our UV-CDAT website (URL: http://uv-cdat.org). This report will be forwarded to the program manager for the Department of Energy (DOE) Office of Biological and Environmental Research (BER), national and international collaborators and stakeholders, and to researchers working on a wide range of other climate model, reanalysis, and observation evaluation activities. Themore » UV-CDAT executive committee consists of Dean N. Williams of Lawrence Livermore National Laboratory (LLNL); Dave Bader and Galen Shipman of Oak Ridge National Laboratory (ORNL); Phil Jones and James Ahrens of Los Alamos National Laboratory (LANL), Claudio Silva of Polytechnic Institute of New York University (NYU-Poly); and Berk Geveci of Kitware, Inc. The UV-CDAT team consists of researchers and scientists with diverse domain knowledge whose home institutions also include the National Aeronautics and Space Administration (NASA) and the University of Utah. All work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Working directly with BER climate science analysis projects, this consortium will develop and deploy data and computational resources useful to a wide variety of stakeholders, including scientists, policymakers, and the general public. Members of this consortium already collaborate with other institutions and universities in researching data discovery, management, visualization, workflow analysis, and provenance. The UV-CDAT team will address the following high-level visualization requirements: (1) Alternative parallel streaming statistics and analysis pipelines - Data parallelism, Task parallelism, Visualization parallelism; (2) Optimized parallel input/output (I/O); (3) Remote interactive execution; (4) Advanced intercomparison visualization; (5) Data provenance processing and capture; and (6) Interfaces for scientists - Workflow data analysis and visualization construction tools, and Visualization interfaces.« less

  7. Supporting awareness through collaborative brushing and linking of tabular data.

    PubMed

    Hajizadeh, Amir Hossein; Tory, Melanie; Leung, Rock

    2013-12-01

    Maintaining an awareness of collaborators' actions is critical during collaborative work, including during collaborative visualization activities. Particularly when collaborators are located at a distance, it is important to know what everyone is working on in order to avoid duplication of effort, share relevant results in a timely manner and build upon each other's results. Can a person's brushing actions provide an indication of their queries and interests in a data set? Can these actions be revealed to a collaborator without substantially disrupting their own independent work? We designed a study to answer these questions in the context of distributed collaborative visualization of tabular data. Participants in our study worked independently to answer questions about a tabular data set, while simultaneously viewing brushing actions of a fictitious collaborator, shown directly within a shared workspace. We compared three methods of presenting the collaborator's actions: brushing & linking (i.e. highlighting exactly what the collaborator would see), selection (i.e. showing only a selected item), and persistent selection (i.e. showing only selected items but having them persist for some time). Our results demonstrated that persistent selection enabled some awareness of the collaborator's activities while causing minimal interference with independent work. Other techniques were less effective at providing awareness, and brushing & linking caused substantial interference. These findings suggest promise for the idea of exploiting natural brushing actions to provide awareness in collaborative work.

  8. Neural network based visualization of collaborations in a citizen science project

    NASA Astrophysics Data System (ADS)

    Morais, Alessandra M. M.; Santos, Rafael D. C.; Raddick, M. Jordan

    2014-05-01

    Citizen science projects are those in which volunteers are asked to collaborate in scientific projects, usually by volunteering idle computer time for distributed data processing efforts or by actively labeling or classifying information - shapes of galaxies, whale sounds, historical records are all examples of citizen science projects in which users access a data collecting system to label or classify images and sounds. In order to be successful, a citizen science project must captivate users and keep them interested on the project and on the science behind it, increasing therefore the time the users spend collaborating with the project. Understanding behavior of citizen scientists and their interaction with the data collection systems may help increase the involvement of the users, categorize them accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Users behavior can be actively monitored or derived from their interaction with the data collection systems. Records of the interactions can be analyzed using visualization techniques to identify patterns and outliers. In this paper we present some results on the visualization of more than 80 million interactions of almost 150 thousand users with the Galaxy Zoo I citizen science project. Visualization of the attributes extracted from their behaviors was done with a clustering neural network (the Self-Organizing Map) and a selection of icon- and pixel-based techniques. These techniques allows the visual identification of groups of similar behavior in several different ways.

  9. Real-Time Mutual Gaze Perception Enhances Collaborative Learning and Collaboration Quality

    ERIC Educational Resources Information Center

    Schneider, Bertrand; Pea, Roy

    2013-01-01

    In this paper we present the results of an eye-tracking study on collaborative problem-solving dyads. Dyads remotely collaborated to learn from contrasting cases involving basic concepts about how the human brain processes visual information. In one condition, dyads saw the eye gazes of their partner on the screen; in a control group, they did not…

  10. Large High Resolution Displays for Co-Located Collaborative Sensemaking: Display Usage and Territoriality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradel, Lauren; Endert, Alexander; Koch, Kristen

    2013-08-01

    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next,more » we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.« less

  11. Avatar-Mediated Networking: Increasing Social Presence and Interpersonal Trust in Net-Based Collaborations

    ERIC Educational Resources Information Center

    Bente, Gary; Ruggenberg, Sabine; Kramer, Nicole C.; Eschenburg, Felix

    2008-01-01

    This study analyzes the influence of avatars on social presence, interpersonal trust, perceived communication quality, nonverbal behavior, and visual attention in Net-based collaborations using a comparative approach. A real-time communication window including a special avatar interface was integrated into a shared collaborative workspace.…

  12. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  13. Visualization and characterization of users in a citizen science project

    NASA Astrophysics Data System (ADS)

    Morais, Alessandra M. M.; Raddick, Jordan; Coelho dos Santos, Rafael D.

    2013-05-01

    Recent technological advances allowed the creation and use of internet-based systems where many users can collaborate gathering and sharing information for specific or general purposes: social networks, e-commerce review systems, collaborative knowledge systems, etc. Since most of the data collected in these systems is user-generated, understanding of the motivations and general behavior of users is a very important issue. Of particular interest are citizen science projects, where users without scientific training are asked for collaboration labeling and classifying information (either automatically by giving away idle computer time or manually by actually seeing data and providing information about it). Understanding behavior of users of those types of data collection systems may help increase the involvement of the users, categorize users accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Behavior of those users could be estimated through analysis of their collaboration track: registers of which user did what and when can be easily and unobtrusively collected in several different ways, the simplest being a log of activities. In this paper we present some results on the visualization and characterization of almost 150.000 users with more than 80.000.000 collaborations with a citizen science project - Galaxy Zoo I, which asked users to classify galaxies' images. Basic visualization techniques are not applicable due to the number of users, so techniques to characterize users' behavior based on feature extraction and clustering are used.

  14. How Pictorial Knowledge Representations Mediate Collaborative Knowledge Construction in Groups

    ERIC Educational Resources Information Center

    Naykki, Piia; Jarvela, Sanna

    2008-01-01

    This study investigates the process of collaborative knowledge construction when technology and pictorial knowledge representations are used for visualizing individual and groups' shared ideas. The focus of the study is on how teacher-students contribute to the group's collaborative knowledge construction and use each other's ideas and tools as an…

  15. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research

    NASA Technical Reports Server (NTRS)

    Casas, Joseph

    2017-01-01

    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  16. Ciência & Saúde Coletiva: scientific production analysis and collaborative research networks.

    PubMed

    Conner, Norma; Provedel, Attilio; Maciel, Ethel Leonor Noia

    2017-03-01

    The purpose of this metric and descriptive study was to identify the most productive authors and their collaborative research networks from articles published in Ciência & Saúde Coletiva between, 2005, and 2014. Authors meeting the cutoff criteria of at least 10 articles were considered the most productive authors. VOSviewer and Network Workbench technologies were applied for visual representations of collaborative research networks involving the most productive authors in the period. Initial analysis recovered 2511 distinct articles, with 8920 total authors with an average of 3.55 authors per article. Author analysis revealed 6288 distinct authors, 24 of these authors were identified as the most productive. These 24 authors generated 287 articles with an average of 4.31 authors per article, and represented 8 separate collaborative partnerships, the largest of which had 14 authors, indicating a significant degree of collaboration among these authors. This analysis provides a visual representation of networks of knowledge development in public health and demonstrates the usefulness of VOSviewer and Network Workbench technologies in future research.

  17. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt

    2013-01-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  18. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.

    2013-12-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  19. Project UNITY: Cross Domain Visualization Collaboration

    NASA Astrophysics Data System (ADS)

    Moore, J.; Havig, P.

    UNITY is an International Cooperative Research and Development (ICR&D) project between the United States and Great Britain under the Research and Development Projects (RDP) Memorandum of Agreement (MOA). UNITYs objectives are to develop and evaluate the operational concepts and requirements for undertaking combined operations: a) pursuant to the interests of mission partners, b) develop, experiment, and demonstrate, transitionable emergent technologies, capabilities, or concepts, which facilitate the sharing of information and products between mission partners, and c) identify and define additional emerging technologies that may need to be developed to support current and future military information sharing. Collaboration between coalition partners is essentially for accurate and timely decision making in the ever increasing nature and tempo of global security. The purpose for this project is to develop engineering solutions in order to further investigate the human factors issues that arise while sharing information in a collaborative environment where security is an issue. The biggest difference between existing available solutions are in the presentation and interaction with the interface on both ends of the collaboration in order to preserve the expressed intent of shared situation awareness while also enabling markups and content on one screen that the other collaborator does not see and vice versa. The UNITY project stresses collaboration differently than all known realtime collaboration software in production, aka groupware, on the market today. The tradition of What You See Is What I See (WYSIWIS) as in typical implementations of shared whiteboards simply do not address the need for local and private information to be displayed in context with shareable data. This paper addresses the concerns, problems, and some solutions for shared 3D visualization and 2D tabular visualizations which are explored and presented within the space situation awareness problem set.

  20. Using a commodity high-definition television for collaborative structural biology

    PubMed Central

    Yennamalli, Ragothaman; Arangarasan, Raj; Bryden, Aaron; Gleicher, Michael; Phillips, George N.

    2014-01-01

    Visualization of protein structures using stereoscopic systems is frequently needed by structural biologists working to understand a protein’s structure–function relationships. Often several scientists are working as a team and need simultaneous interaction with each other and the graphics representations. Most existing molecular visualization tools support single-user tasks, which are not suitable for a collaborative group. Expensive caves, domes or geowalls have been developed, but the availability and low cost of high-definition televisions (HDTVs) and game controllers in the commodity entertainment market provide an economically attractive option to achieve a collaborative environment. This paper describes a low-cost environment, using standard consumer game controllers and commercially available stereoscopic HDTV monitors with appropriate signal converters for structural biology collaborations employing existing binary distributions of commonly used software packages like Coot, PyMOL, Chimera, VMD, O, Olex2 and others. PMID:24904249

  1. Overview of Human-Centric Space Situational Awareness Science and Technology

    DTIC Science & Technology

    2012-09-01

    AGI), the developers of Satellite Tool Kit ( STK ), has provided demonstrations of innovative SSA visualization concepts that take advantage of the...needs inherent with SSA. RH has conducted CTAs and developed work-centered human-computer interfaces, visualizations , and collaboration technologies...all end users. RH’s Battlespace Visualization Branch researches methods to exploit the visual channel primarily to improve decision making and

  2. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.

  3. Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization.

    PubMed

    Bernal-Rusiel, Jorge L; Rannou, Nicolas; Gollub, Randy L; Pieper, Steve; Murphy, Shawn; Robertson, Richard; Grant, Patricia E; Pienaar, Rudolph

    2017-01-01

    In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView , a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution.

  4. AuthorSynth: a collaboration network and behaviorally-based visualization tool of activation reports from the neuroscience literature.

    PubMed

    Sochat, Vanessa V

    2015-01-01

    Targeted collaboration is becoming more challenging with the ever-increasing number of publications, conferences, and academic responsibilities that the modern-day researcher must synthesize. Specifically, the field of neuroimaging had roughly 10,000 new papers in PubMed for the year 2013, presenting tens of thousands of international authors, each a potential collaborator working on some sub-domain in the field. To remove the burden of synthesizing an entire corpus of publications, talks, and conference interactions to find and assess collaborations, we combine meta-analytical neuroimaging informatics methods with machine learning and network analysis toward this goal. We present "AuthorSynth," a novel application prototype that includes (1) a collaboration network to identify researchers with similar results reported in the literature; and (2) a 2D plot-"brain lattice"-to visually summarize a single author's contribution to the field, and allow for searching of authors based on behavioral terms. This method capitalizes on intelligent synthesis of the neuroimaging literature, and demonstrates that data-driven approaches can be used to confirm existing collaborations, reveal potential ones, and identify gaps in published knowledge. We believe this tool exemplifies how methods from neuroimaging informatics can better inform researchers about progress and knowledge in the field, and enhance the modern workflow of finding collaborations.

  5. A Cross-Cultural Collaboration: Using Visual Culture for the Creation of a Socially Relevant Mural in Mexico

    ERIC Educational Resources Information Center

    Hubbard, Kathy

    2010-01-01

    In this article, the author describes how high school and university students in Georgia and members of a small weaving pueblo in Oaxaca, Mexico, collaborated in designing and creating a mural in the central market ("mercado") of the pueblo. A number of lessons emerged from this multi-cultural collaboration. First they learned that using…

  6. Developing Visual Literacy: Historical and Manipulated Photography in the Social Studies Classroom

    ERIC Educational Resources Information Center

    Cruz, Bárbara C.; Ellerbrock, Cheryl R.

    2015-01-01

    The importance of visual literacy development is demonstrated using social studies examples from an innovative, collaborative arts program. Discussion of the Visual Thinking Strategies approach, connections to the Common Core State Standards, prompts for higher-order critical thinking, and the application of historical and social science ideas in…

  7. Belle2VR: A Virtual-Reality Visualization of Subatomic Particle Physics in the Belle II Experiment.

    PubMed

    Duer, Zach; Piilonen, Leo; Glasson, George

    2018-05-01

    Belle2VR is an interactive virtual-reality visualization of subatomic particle physics, designed by an interdisciplinary team as an educational tool for learning about and exploring subatomic particle collisions. This article describes the tool, discusses visualization design decisions, and outlines our process for collaborative development.

  8. Information-Pooling Bias in Collaborative Security Incident Correlation Analysis.

    PubMed

    Rajivan, Prashanth; Cooke, Nancy J

    2018-03-01

    Incident correlation is a vital step in the cybersecurity threat detection process. This article presents research on the effect of group-level information-pooling bias on collaborative incident correlation analysis in a synthetic task environment. Past research has shown that uneven information distribution biases people to share information that is known to most team members and prevents them from sharing any unique information available with them. The effect of such biases on security team collaborations are largely unknown. Thirty 3-person teams performed two threat detection missions involving information sharing and correlating security incidents. Incidents were predistributed to each person in the team based on the hidden profile paradigm. Participant teams, randomly assigned to three experimental groups, used different collaboration aids during Mission 2. Communication analysis revealed that participant teams were 3 times more likely to discuss security incidents commonly known to the majority. Unaided team collaboration was inefficient in finding associations between security incidents uniquely available to each member of the team. Visualizations that augment perceptual processing and recognition memory were found to mitigate the bias. The data suggest that (a) security analyst teams, when conducting collaborative correlation analysis, could be inefficient in pooling unique information from their peers; (b) employing off-the-shelf collaboration tools in cybersecurity defense environments is inadequate; and (c) collaborative security visualization tools developed considering the human cognitive limitations of security analysts is necessary. Potential applications of this research include development of team training procedures and collaboration tool development for security analysts.

  9. Understanding Digital Note-Taking Practice for Visualization.

    PubMed

    Willett, Wesley; Goffin, Pascal; Isenberg, Petra

    2015-05-13

    We present results and design implications from a study of digital note-taking practice to examine how visualization can support revisitation, reflection, and collaboration around notes. As digital notebooks become common forms of external memory, keeping track of volumes of content is increasingly difficult. Information visualization tools can help give note-takers an overview of their content and allow them to explore diverse sets of notes, find and organize related content, and compare their notes with their collaborators. To ground the design of such tools, we conducted a detailed mixed-methods study of digital note-taking practice. We identify a variety of different editing, organization, and sharing methods used by digital note-takers, many of which result in notes becoming "lost in the pile''. These findings form the basis for our design considerations that examine how visualization can support the revisitation, organization, and sharing of digital notes.

  10. Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Watson, Val; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. (5) The scenes can be viewed in 3D using stereo vision. (6) The network bandwidth for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.) This talk will illustrate the use of these new technologies and present a proposal for using these technologies to improve science education.

  11. Desktop Cloud Visualization: the new technology to remote access 3D interactive applications in the Cloud.

    PubMed

    Torterolo, Livia; Ruffino, Francesco

    2012-01-01

    In the proposed demonstration we will present DCV (Desktop Cloud Visualization): a unique technology that allows users to remote access 2D and 3D interactive applications over a standard network. This allows geographically dispersed doctors work collaboratively and to acquire anatomical or pathological images and visualize them for further investigations.

  12. Visual Thinking Routines: A Mixed Methods Approach Applied to Student Teachers at the American University in Dubai

    ERIC Educational Resources Information Center

    Gholam, Alain

    2017-01-01

    Visual thinking routines are principles based on several theories, approaches, and strategies. Such routines promote thinking skills, call for collaboration and sharing of ideas, and above all, make thinking and learning visible. Visual thinking routines were implemented in the teaching methodology graduate course at the American University in…

  13. Collaboration in Visual Culture Learning Communities: Towards a Synergy of Individual and Collective Creative Practice

    ERIC Educational Resources Information Center

    Karpati, Andrea; Freedman, Kerry; Castro, Juan Carlos; Kallio-Tavin, Mira; Heijnen, Emiel

    2017-01-01

    A visual culture learning community (VCLC) is an adolescent or young adult group engaged in expression and creation outside of formal institutions and without adult supervision. In the framework of an international, comparative research project executed between 2010 and 2014, members of a variety of eight self-initiated visual culture groups…

  14. Ingredients to Successful Students Presentations: It's More Than Just a Sum of Raw Materials.

    ERIC Educational Resources Information Center

    Kerns, H. Dan; Johnson, Nial

    Recognizing the decline in student visual communication skills, faculty from different disciplines collaborated in the design of a visual literacy course. The visual literacy skills developed in the course are that students learn in the following ways: (1) through faculty presentation and demonstration of the various tools available; (2) with…

  15. Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization

    PubMed Central

    Bernal-Rusiel, Jorge L.; Rannou, Nicolas; Gollub, Randy L.; Pieper, Steve; Murphy, Shawn; Robertson, Richard; Grant, Patricia E.; Pienaar, Rudolph

    2017-01-01

    In this paper we present a web-based software solution to the problem of implementing real-time collaborative neuroimage visualization. In both clinical and research settings, simple and powerful access to imaging technologies across multiple devices is becoming increasingly useful. Prior technical solutions have used a server-side rendering and push-to-client model wherein only the server has the full image dataset. We propose a rich client solution in which each client has all the data and uses the Google Drive Realtime API for state synchronization. We have developed a small set of reusable client-side object-oriented JavaScript modules that make use of the XTK toolkit, a popular open-source JavaScript library also developed by our team, for the in-browser rendering and visualization of brain image volumes. Efficient realtime communication among the remote instances is achieved by using just a small JSON object, comprising a representation of the XTK image renderers' state, as the Google Drive Realtime collaborative data model. The developed open-source JavaScript modules have already been instantiated in a web-app called MedView, a distributed collaborative neuroimage visualization application that is delivered to the users over the web without requiring the installation of any extra software or browser plugin. This responsive application allows multiple physically distant physicians or researchers to cooperate in real time to reach a diagnosis or scientific conclusion. It also serves as a proof of concept for the capabilities of the presented technological solution. PMID:28507515

  16. Sciologer: Visualizing and Exploring Scientific Communities

    ERIC Educational Resources Information Center

    Bales, Michael Eliot

    2009-01-01

    Despite the recognized need to increase interdisciplinary collaboration, there are few information resources available to provide researchers with an overview of scientific communities--topics under investigation by various groups, and patterns of collaboration among groups. The tools that are available are designed for expert social network…

  17. Collaborative WorkBench (cwb): Enabling Experiment Execution, Analysis and Visualization with Increased Scientific Productivity

    NASA Astrophysics Data System (ADS)

    Maskey, Manil; Ramachandran, Rahul; Kuo, Kwo-Sen

    2015-04-01

    The Collaborative WorkBench (CWB) has been successfully developed to support collaborative science algorithm development. It incorporates many features that enable and enhance science collaboration, including the support for both asynchronous and synchronous modes of interactions in collaborations. With the former, members in a team can share a full range of research artifacts, e.g. data, code, visualizations, and even virtual machine images. With the latter, they can engage in dynamic interactions such as notification, instant messaging, file exchange, and, most notably, collaborative programming. CWB also implements behind-the-scene provenance capture as well as version control to relieve scientists of these chores. Furthermore, it has achieved a seamless integration between researchers' local compute environments and those of the Cloud. CWB has also been successfully extended to support instrument verification and validation. Adopted by almost every researcher, the current practice of downloading data to local compute resources for analysis results in much duplication and inefficiency. CWB leverages Cloud infrastructure to provide a central location for data used by an entire science team, thereby eliminating much of this duplication and waste. Furthermore, use of CWB in concert with this same Cloud infrastructure enables co-located analysis with data where opportunities of data-parallelism can be better exploited, thereby further improving efficiency. With its collaboration-enabling features apposite to steps throughout the scientific process, we expect CWB to fundamentally transform research collaboration and realize maximum science productivity.

  18. Exploring Interhemispheric Collaboration in Older Compared to Younger Adults

    ERIC Educational Resources Information Center

    Cherry, Barbara J.; Yamashiro, Mariana; Anderson, Erin; Barrett, Christopher; Adamson, Maheen M.; Hellige, Joseph B.

    2010-01-01

    Physical and Name Identity letter-matching tasks were used to explore differences in interhemispheric collaboration in younger and older adults. To determine whether other factors might also be related to across/within-hemisphere processing or visual field asymmetries, neuropsychological tests measuring frontal/executive functioning were…

  19. Understanding How to Build Long-Lived Learning Collaborators

    DTIC Science & Technology

    2016-03-16

    discrimination in learning, and dynamic encoding strategies to improve visual encoding for learning via analogical generalization. We showed that spatial concepts...a 20,000 sketch corpus to examine the tradeoffs involved in visual representation and analogical generalization. 15. SUBJECT TERMS...strategies to improve visual encoding for learning via analogical generalization. We showed that spatial concepts can be learned via analogical

  20. Visual Communication in Transition: Designing for New Media Literacies and Visual Culture Art Education across Activities and Settings

    ERIC Educational Resources Information Center

    Zuiker, Steven J.

    2014-01-01

    As an example of design-based research, this case study describes and analyses the enactment of a collaborative drawing and animation studio in a Singapore secondary school art classroom. The design embodies principles of visual culture art education and new media literacies in order to organize transitions in the settings of participation and…

  1. "This Is the Best Lesson Ever, Miss...": Disrupting Linear Logics of Visual Arts Teaching Practice

    ERIC Educational Resources Information Center

    Mitchell, Donna Mathewson

    2016-01-01

    Research in visual arts education is often focused on philosophical issues or broad concerns related to approaches to curriculum. In focusing on the everyday work of teaching, this article addresses a gap in the literature to report on collaborative research exploring the experiences of secondary visual arts teachers in regional New South Wales,…

  2. Connecting Art and the Brain: An Artist's Perspective on Visual Indeterminacy

    PubMed Central

    Pepperell, Robert

    2011-01-01

    In this article I will discuss the intersection between art and neuroscience from the perspective of a practicing artist. I have collaborated on several scientific studies into the effects of art on the brain and behavior, looking in particular at the phenomenon of “visual indeterminacy.” This is a perceptual state in which subjects fail to recognize objects from visual cues. I will look at the background to this phenomenon, and show how various artists have exploited its effect through the history of art. My own attempts to create indeterminate images will be discussed, including some of the technical problems I faced in trying to manipulate the viewer's perceptual state through paintings. Visual indeterminacy is not widely studied in neuroscience, although references to it can be found in the literature on visual agnosia and object recognition. I will briefly review some of this work and show how my attempts to understand the science behind visual indeterminacy led me to collaborate with psychophysicists and neuroscientists. After reviewing this work, I will discuss the conclusions I have drawn from its findings and consider the problem of how best to integrate neuroscientific methods with artistic knowledge to create truly interdisciplinary approach. PMID:21887141

  3. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  4. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  5. The Importance of Data Visualization: Incorporating Storytelling into the Scientific Presentation

    NASA Technical Reports Server (NTRS)

    Babiak-Vazquez, A.; Cornett, A. N.; Wear, M. L.; Sams, C.

    2014-01-01

    From its inception in 2000, one of the primary tasks of the Biomedical Data Reduction Analysis (BDRA) group has been translation of large amounts of data into information that is relevant to the audience receiving it. BDRA helps translate data into an integrated model that supports both operational and research activities. This data integrated model and subsequent visual data presentations have contributed to BDRA's success in delivering the message (i.e., the story) that its customers have needed to communicate. This success has led to additional collaborations among groups that had previously not felt they had much in common until they worked together to develop solutions in an integrated fashion. As more emphasis is placed on working with "big data" and on showing how NASA's efforts contribute to the greater good of the American people and of the world, it becomes imperative to visualize the story of our data to communicate the greater message we need to share. METHODS To create and expand its data integrated model, BDRA has incorporated data from many different collaborating partner labs and other sources. Data are compiled from the repositories of the Lifetime Surveillance of Astronaut Health and the Life Sciences Data Archive, and from the individual laboratories at Johnson Space Center that support collection of data from medical testing, environmental monitoring, and countermeasures, as designated in the Medical Requirements Integration Documents. Ongoing communication with the participating collaborators is maintained to ensure that the message and story of the data are retained as data are translated into information and visual data presentations are delivered in different venues and to different audiences. RESULTS We will describe the importance of storytelling through an integrated model and of subsequent data visualizations in today's scientific presentations and discuss the collaborative methods used. We will illustrate the discussion with examples of graphs from BDRA's past work supporting operations and/or research efforts.

  6. Incidence of Group Awareness Information on Students' Collaborative Learning Processes

    ERIC Educational Resources Information Center

    Pifarré, M.; Cobos, R.; Argelagós, E.

    2014-01-01

    This paper studies how the integration of group awareness tools in the knowledge management system called KnowCat (Knowledge Catalyser), which promotes collaborative knowledge construction, may both foster the students' perception about the meaningfulness of visualization of group awareness information and promote better collaborative…

  7. The Brussels Metro: Accessibility through Collaboration

    ERIC Educational Resources Information Center

    Strickfaden, Megan; Devlieger, Patrick

    2011-01-01

    This article describes and analyzes the development of a navigation and orientation system for people with visual impairments as it evolved over three decades. It includes reflections on how users have been involved in the redesign process and illustrates how people with and without disabilities have collaborated to create a more suitable and…

  8. Collaborative Outcome Measurement: Development of the Nationally Standardized Minimum Data Set

    ERIC Educational Resources Information Center

    Stephens, Barry C.; Kirchner, Corinne; Orr, Alberta L.; Suvino, Dawn; Rogers, Priscilla

    2009-01-01

    This article discusses the challenging process of developing a common data set for independent living programs serving older adults who are visually impaired. The three-year project, which included collaborative efforts among many stakeholders that encompass diverse program models, resulted in the development of the Internet-based Nationally…

  9. Collaborative Processes in Species Identification Using an Internet-Based Taxonomic Resource

    ERIC Educational Resources Information Center

    Kontkanen, Jani; Kärkkäinen, Sirpa; Dillon, Patrick; Hartikainen-Ahia, Anu; Åhlberg, Mauri

    2016-01-01

    Visual databases are increasingly important resources through which individuals and groups can undertake species identification. This paper reports research on the collaborative processes undertaken by pre-service teacher students when working in small groups to identify birds using an Internet-based taxonomic resource. The student groups are…

  10. Measuring and Visualizing Group Knowledge Elaboration in Online Collaborative Discussions

    ERIC Educational Resources Information Center

    Zheng, Yafeng; Xu, Chang; Li, Yanyan; Su, You

    2018-01-01

    Knowledge elaboration plays a critical role in promoting knowledge acquisition and facilitating the retention of target knowledge in online collaborative discussions. Adopting a key-term-based automated analysis approach, we proposed an indicator framework to measure the level of knowledge elaboration in terms of coverage, activation, and…

  11. Bridging Theory with Practice: An Exploratory Study of Visualization Use and Design for Climate Model Comparison

    DOE PAGES

    Dasgupta, Aritra; Poco, Jorge; Wei, Yaxing; ...

    2015-03-16

    Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration between domainmore » experts and visualization researchers. To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a number of examples and discuss the lessons learnt and implications of our findings.« less

  12. Bridging Theory with Practice: An Exploratory Study of Visualization Use and Design for Climate Model Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Poco, Jorge; Wei, Yaxing

    Evaluation methodologies in visualization have mostly focused on how well the tools and techniques cater to the analytical needs of the user. While this is important in determining the effectiveness of the tools and advancing the state-of-the-art in visualization research, a key area that has mostly been overlooked is how well established visualization theories and principles are instantiated in practice. This is especially relevant when domain experts, and not visualization researchers, design visualizations for analysis of their data or for broader dissemination of scientific knowledge. There is very little research on exploring the synergistic capabilities of cross-domain collaboration between domainmore » experts and visualization researchers. To fill this gap, in this paper we describe the results of an exploratory study of climate data visualizations conducted in tight collaboration with a pool of climate scientists. The study analyzes a large set of static climate data visualizations for identifying their shortcomings in terms of visualization design. The outcome of the study is a classification scheme that categorizes the design problems in the form of a descriptive taxonomy. The taxonomy is a first attempt for systematically categorizing the types, causes, and consequences of design problems in visualizations created by domain experts. We demonstrate the use of the taxonomy for a number of purposes, such as, improving the existing climate data visualizations, reflecting on the impact of the problems for enabling domain experts in designing better visualizations, and also learning about the gaps and opportunities for future visualization research. We demonstrate the applicability of our taxonomy through a number of examples and discuss the lessons learnt and implications of our findings.« less

  13. Enhancing radiological volumes with symbolic anatomy using image fusion and collaborative virtual reality.

    PubMed

    Silverstein, Jonathan C; Dech, Fred; Kouchoukos, Philip L

    2004-01-01

    Radiological volumes are typically reviewed by surgeons using cross-sections and iso-surface reconstructions. Applications that combine collaborative stereo volume visualization with symbolic anatomic information and data fusions would expand surgeons' capabilities in interpretation of data and in planning treatment. Such an application has not been seen clinically. We are developing methods to systematically combine symbolic anatomy (term hierarchies and iso-surface atlases) with patient data using data fusion. We describe our progress toward integrating these methods into our collaborative virtual reality application. The fully combined application will be a feature-rich stereo collaborative volume visualization environment for use by surgeons in which DICOM datasets will self-report underlying anatomy with visual feedback. Using hierarchical navigation of SNOMED-CT anatomic terms integrated with our existing Tele-immersive DICOM-based volumetric rendering application, we will display polygonal representations of anatomic systems on the fly from menus that query a database. The methods and tools involved in this application development are SNOMED-CT, DICOM, VISIBLE HUMAN, volumetric fusion and C++ on a Tele-immersive platform. This application will allow us to identify structures and display polygonal representations from atlas data overlaid with the volume rendering. First, atlas data is automatically translated, rotated, and scaled to the patient data during loading using a public domain volumetric fusion algorithm. This generates a modified symbolic representation of the underlying canonical anatomy. Then, through the use of collision detection or intersection testing of various transparent polygonal representations, the polygonal structures are highlighted into the volumetric representation while the SNOMED names are displayed. Thus, structural names and polygonal models are associated with the visualized DICOM data. This novel juxtaposition of information promises to expand surgeons' abilities to interpret images and plan treatment.

  14. A Collaborative Education Network for Advancing Climate Literacy using Data Visualization Technology

    NASA Astrophysics Data System (ADS)

    McDougall, C.; Russell, E. L.; Murray, M.; Bendel, W. B.

    2013-12-01

    One of the more difficult issues in engaging broad audiences with scientific research is to present it in a way that is intuitive, captivating and up-to-date. Over the past ten years, the National Oceanic and Atmospheric Administration (NOAA) has made significant progress in this area through Science On a Sphere(R) (SOS). SOS is a room-sized, global display system that uses computers and video projectors to display Earth systems data onto a six-foot diameter sphere, analogous to a giant animated globe. This well-crafted data visualization system serves as a way to integrate and display global change phenomena; including polar ice melt, projected sea level rise, ocean acidification and global climate models. Beyond a display for individual data sets, SOS provides a holistic global perspective that highlights the interconnectedness of Earth systems, nations and communities. SOS is now a featured exhibit at more than 100 science centers, museums, universities, aquariums and other institutions around the world reaching more than 33 million visitors every year. To facilitate the development of how this data visualization technology and these visualizations could be used with public audiences, we recognized the need for the exchange of information among the users. To accomplish this, we established the SOS Users Collaborative Network. This network consists of the institutions that have an SOS system or partners who are creating content and educational programming for SOS. When we began the Network in 2005, many museums had limited capacity to both incorporate real-time, authentic scientific data about the Earth system and interpret global change visualizations. They needed not only the visualization platform and the scientific content, but also assistance with methods of approach. We needed feedback from these users on how to craft understandable visualizations and how to further develop the SOS platform to support learning. Through this Network and the collaboration among members, we have, collectively, been able to advance all of our efforts. The member institutions, through regular face-to-face workshops and an online community, share practices in creation and cataloging of datasets, new methods for delivering content via SOS, and updates on the SOS system and software. One hallmark of the SOS Users Collaborative Network is that it exemplifies an ideal partnership between federal science agencies and informal science education institutions. The science agencies (including NOAA, NASA, and the Department of Energy) provide continuously updated global datasets, scientific expertise, funding, and support. In turn, museums act as trusted public providers of scientific information, provide audience-appropriate presentations, localized relevance to global phenomena and a forum for discussing the complex science and repercussions of global change. We will discuss the characteristics of this Network that maximize collaboration and what we're learning as a community to improve climate literacy.

  15. Visual Narrative: A Technique to Enhance Secondary Students' Contribution to the Development of Inclusive, Socially Just School Environments--Lessons from a Box of Crayons

    ERIC Educational Resources Information Center

    Carrington, Suzanne; Allen, Kate; Osmolowski, Daniel

    2007-01-01

    This paper reports on a project that involved Australian secondary school students working as participatory researchers in collaboration with a researcher and two teachers. Research methodology using visual narrative techniques provided the students with a conceptual lens to view their school community. The examples of visual narrative shared in…

  16. The Kaleidoscope of Visual Poetry: New Approaches to Visual Literacy

    ERIC Educational Resources Information Center

    Bennett, Tamryn

    2011-01-01

    What are the possibilities for poetry? This paper introduces approaches to creating and teaching poetry through a critical survey of contemporary practitioners within the field. Analysis of ekphrastic traditions, comics and concrete poetry, artists books, graffiti poems, film, performance and interdisciplinary collaborations reveal new…

  17. The biodigital human: a web-based 3D platform for medical visualization and education.

    PubMed

    Qualter, John; Sculli, Frank; Oliker, Aaron; Napier, Zachary; Lee, Sabrina; Garcia, Julio; Frenkel, Sally; Harnik, Victoria; Triola, Marc

    2012-01-01

    NYU School of Medicine's Division of Educational Informatics in collaboration with BioDigital Systems LLC (New York, NY) has created a virtual human body dataset that is being used for visualization, education and training and is accessible over modern web browsers.

  18. Integrating visualization and interaction research to improve scientific workflows.

    PubMed

    Keefe, Daniel F

    2010-01-01

    Scientific-visualization research is, nearly by necessity, interdisciplinary. In addition to their collaborators in application domains (for example, cell biology), researchers regularly build on close ties with disciplines related to visualization, such as graphics, human-computer interaction, and cognitive science. One of these ties is the connection between visualization and interaction research. This isn't a new direction for scientific visualization (see the "Early Connections" sidebar). However, momentum recently seems to be increasing toward integrating visualization research (for example, effective visual presentation of data) with interaction research (for example, innovative interactive techniques that facilitate manipulating and exploring data). We see evidence of this trend in several places, including the visualization literature and conferences.

  19. Applications of image processing and visualization in the evaluation of murder and assault

    NASA Astrophysics Data System (ADS)

    Oliver, William R.; Rosenman, Julian G.; Boxwala, Aziz; Stotts, David; Smith, John; Soltys, Mitchell; Symon, James; Cullip, Tim; Wagner, Glenn

    1994-09-01

    Recent advances in image processing and visualization are of increasing use in the investigation of violent crime. The Digital Image Processing Laboratory at the Armed Forces Institute of Pathology in collaboration with groups at the University of North Carolina at Chapel Hill are actively exploring visualization applications including image processing of trauma images, 3D visualization, forensic database management and telemedicine. Examples of recent applications are presented. Future directions of effort include interactive consultation and image manipulation tools for forensic data exploration.

  20. Author in the Arts: Composing and Collaborating in Text, Music, and the Visual Arts

    ERIC Educational Resources Information Center

    Gerben, Chris

    2015-01-01

    Many disciplines share similar terminology for making: creating, composing, writing, and authoring. The last term authoring, however, is problematic in how it privileges an end goal of individual authority and reward. To interrogate this term, and argue for its importance in future collaborative, interdisciplinary work, this article examines a…

  1. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    ERIC Educational Resources Information Center

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  2. Advanced engineering environment collaboration project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less

  3. Collaborative Visualization Project: shared-technology learning environments for science learning

    NASA Astrophysics Data System (ADS)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  4. Concept of Operations Visualization for Ares I Production

    NASA Technical Reports Server (NTRS)

    Chilton, Jim; Smith, David Alan

    2008-01-01

    Establishing Computer Aided Design models of the Ares I production facility, tooling and vehicle components and integrating them into manufacturing visualizations/simulations allows Boeing and NASA to collaborate real time early in the design/development cycle. This collaboration identifies cost effective and lean solutions that can be easily shared with Ares stakeholders (e.g., other NASA Centers and potential science users). These Ares I production visualizations and analyses by their nature serve as early manufacturing improvement precursors for other Constellation elements to be built at the Michoud Assembly Facility such as Ares V and the Altair Lander. Key to this Boeing and Marshall Space Flight Center collaboration has been the use of advanced virtual manufacturing tools to understand the existing Shuttle era infrastructure and trade potential modifications to support Ares I production. These approaches are then used to determine an optimal manufacturing configuration in terms of labor efficiency, safety and facility enhancements. These same models and tools can be used in an interactive simulation of Ares I and V flight to the Space Station or moon to educate the human space constituency (e.g., government, academia, media and the public) in order to increase national and international understanding of Constellation goals and benefits.

  5. Vroom: designing an augmented environment for remote collaboration in digital cinema production

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; Cornish, Tracy

    2013-03-01

    As media technologies become increasingly affordable, compact and inherently networked, new generations of telecollaborative platforms continue to arise which integrate these new affordances. Virtual reality has been primarily concerned with creating simulations of environments that can transport participants to real or imagined spaces that replace the "real world". Meanwhile Augmented Reality systems have evolved to interleave objects from Virtual Reality environments into the physical landscape. Perhaps now there is a new class of systems that reverse this precept to enhance dynamic media landscapes and immersive physical display environments to enable intuitive data exploration through collaboration. Vroom (Virtual Room) is a next-generation reconfigurable tiled display environment in development at the California Institute for Telecommunications and Information Technology (Calit2) at the University of California, San Diego. Vroom enables freely scalable digital collaboratories, connecting distributed, high-resolution visualization resources for collaborative work in the sciences, engineering and the arts. Vroom transforms a physical space into an immersive media environment with large format interactive display surfaces, video teleconferencing and spatialized audio built on a highspeed optical network backbone. Vroom enables group collaboration for local and remote participants to share knowledge and experiences. Possible applications include: remote learning, command and control, storyboarding, post-production editorial review, high resolution video playback, 3D visualization, screencasting and image, video and multimedia file sharing. To support these various scenarios, Vroom features support for multiple user interfaces (optical tracking, touch UI, gesture interface, etc.), support for directional and spatialized audio, giga-pixel image interactivity, 4K video streaming, 3D visualization and telematic production. This paper explains the design process that has been utilized to make Vroom an accessible and intuitive immersive environment for remote collaboration specifically for digital cinema production.

  6. One Giant Leap for Categorizers: One Small Step for Categorization Theory

    PubMed Central

    Smith, J. David; Ell, Shawn W.

    2015-01-01

    We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so. PMID:26332587

  7. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  8. Visual Arts in the Schools: A Joint Venture.

    ERIC Educational Resources Information Center

    Sproll, Paul A. C.

    1998-01-01

    In 1994, the Rhode Island School of Design (RISD) launched a customized professional development program for art teachers, funded through a coalition of hospitals, colleges, and universities. It fostered a collaboration between RISD and city art teachers, which resulted in development of an overall strategic reform plan for visual arts education…

  9. Students from Non-Dominant Linguistic Backgrounds Making Sense of Cosmology Visualizations

    ERIC Educational Resources Information Center

    Buck Bracey, Zoë E.

    2017-01-01

    This article presents the results of exploratory research with community college students from non-dominant linguistic backgrounds (NDLB) in an introductory astronomy class as they collaborated to reconstruct dynamic cosmology visualizations through drawing. Data included student discourse during the drawing activity, post-activity interviews, and…

  10. Breeder survey, tools, and resources to visualize diversity and pedigree relationships at MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    In collaboration with maize researchers, the MaizeGDB Team prepared a survey to identify breeder needs for visualizing pedigrees, diversity data, and haplotypes, and distributed it to the maize community on behalf of the Maize Genetics Executive Committee (Summer 2015). We received 48 responses from...

  11. Acts of Discovery: Using Collaborative Research to Mobilize and Generate Knowledge about Visual Arts Teaching Practice

    ERIC Educational Resources Information Center

    Mitchell, Donna Mathewson

    2014-01-01

    Visual arts teachers engage in complex work on a daily basis. This work is informed by practical knowledge that is rarely examined or drawn on in research or in the development of policy. Focusing on the work of secondary visual arts teachers, this article reports on a research program conducted in a regional area of New South Wales, Australia.…

  12. High performance visual display for HENP detectors

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael; Smith, Gordon; Spiletic, John; Fine, Valeri; Nevski, Pavel

    2001-08-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactive control, including the ability to slice, search and mark areas of the detector. We incorporate the ability to make a high quality still image of a view of the detector and the ability to generate animations and a fly through of the detector and output these to MPEG or VRML models. We develop data compression hardware and software so that remote interactive visualization will be possible among dispersed collaborators. We obtain real time visual display for events accumulated during simulations.

  13. The Collaborative Coordination of Special Interest Groups on the Telemedicine University Network (RUTE) in Brazil.

    PubMed

    de Lima Verde Brito, Thiago Delevidove; Baptista, Roberto Silva; de Lima Lopes, Paulo Roberto; Haddad, Ana Estela; Messina, Luiz Ary; Torres Pisa, Ivan

    2015-01-01

    In Brazil the Telemedicine University Network (Rede Universitária de Telemedicina RUTE) is an initiative that among others promotes collaboration between university hospitals, universities, and health professionals through information technology infrastructure and special interest groups (SIGs) support. This paper presents results of analyses on collaboration during implementation and coordination activities of RUTE SIGs. This study is based on descriptive statistics and data visualization previously collected by RUTE national coordination relative to the status in July 2014. The analysis through collaboration graph identified the strongest collaboration RUTE units. The graph also highlights the collaborative relationship of RUTE units in form of communities, the most collaborative with each other in a communion in the same SIGs, and the less the collaborative units in the network. It should be stated that the most active units are also the oldest in the community.

  14. An Agent Based Collaborative Simplification of 3D Mesh Model

    NASA Astrophysics Data System (ADS)

    Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro

    Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.

  15. Forging a link between mentoring and collaboration: a new training model for implementation science.

    PubMed

    Luke, Douglas A; Baumann, Ana A; Carothers, Bobbi J; Landsverk, John; Proctor, Enola K

    2016-10-13

    Training investigators for the rapidly developing field of implementation science requires both mentoring and scientific collaboration. Using social network descriptive analyses, visualization, and modeling, this paper presents results of an evaluation of the mentoring and collaborations fostered over time through the National Institute of Mental Health (NIMH) supported by Implementation Research Institute (IRI). Data were comprised of IRI participant self-reported collaborations and mentoring relationships, measured in three annual surveys from 2012 to 2014. Network descriptive statistics, visualizations, and network statistical modeling were conducted to examine patterns of mentoring and collaboration among IRI participants and to model the relationship between mentoring and subsequent collaboration. Findings suggest that IRI is successful in forming mentoring relationships among its participants, and that these mentoring relationships are related to future scientific collaborations. Exponential random graph network models demonstrated that mentoring received in 2012 was positively and significantly related to the likelihood of having a scientific collaboration 2 years later in 2014 (p = 0.001). More specifically, mentoring was significantly related to future collaborations focusing on new research (p = 0.009), grant submissions (p = 0.003), and publications (p = 0.017). Predictions based on the network model suggest that for every additional mentoring relationships established in 2012, the likelihood of a scientific collaboration 2 years later is increased by almost 7 %. These results support the importance of mentoring in implementation science specifically and team science more generally. Mentoring relationships were established quickly and early by the IRI core faculty. IRI fellows reported increasing scientific collaboration of all types over time, including starting new research, submitting new grants, presenting research results, and publishing peer-reviewed papers. Statistical network models demonstrated that mentoring was strongly and significantly related to subsequent scientific collaboration, which supported a core design principle of the IRI. Future work should establish the link between mentoring and scientific productivity. These results may be of interest to team science, as they suggest the importance of mentoring for future team collaborations, as well as illustrate the utility of network analysis for studying team characteristics and activities.

  16. The Use of Visual Approach in Teaching and Learning the Epsilon-Delta Definition of Continuity

    ERIC Educational Resources Information Center

    Pešic, Duška; Pešic, Aleksandar

    2015-01-01

    In this paper we introduce a new collaborative technique in teaching and learning the epsilon-delta definition of a continuous function at the point from its domain, which connects mathematical logic, combinatorics and calculus. This collaborative approach provides an opportunity for mathematical high school students to engage in mathematical…

  17. A Methodological Approach to Support Collaborative Media Creation in an E-Learning Higher Education Context

    ERIC Educational Resources Information Center

    Ornellas, Adriana; Muñoz Carril, Pablo César

    2014-01-01

    This article outlines a methodological approach to the creation, production and dissemination of online collaborative audio-visual projects, using new social learning technologies and open-source video tools, which can be applied to any e-learning environment in higher education. The methodology was developed and used to design a course in the…

  18. Making It All Count: A Cross-Disciplinary Collaboration Model Incorporating Scholarship, Creative Activity, and Student Engagement

    ERIC Educational Resources Information Center

    Dailey, Rocky; Hauschild-Mork, Melissa

    2017-01-01

    This study takes a grounded theory approach as a basis for a case study examining a cross-disciplinary artistic and academic collaborative project involving faculty from the areas of English, music, dance, theatre, design, and visual journalism resulting in the creation of research, scholarly, and creative activity that fosters student engagement…

  19. Educational Visualizations in 3D Collaborative Virtual Environments: A Methodology

    ERIC Educational Resources Information Center

    Fominykh, Mikhail; Prasolova-Forland, Ekaterina

    2012-01-01

    Purpose: Collaborative virtual environments (CVEs) have become increasingly popular in educational settings and the role of 3D content is becoming more and more important. Still, there are many challenges in this area, such as lack of empirical studies that provide design for educational activities in 3D CVEs and lack of norms of how to support…

  20. Effective Collaboration between Physical Therapists and Teachers of Students with Visual Impairments Who Are Working with Students with Multiple Disabilities and Visual Impairments

    ERIC Educational Resources Information Center

    Stearns, Erica

    2017-01-01

    In this article, Erica Stearns writes that she has worked as a physical therapist assistant in various settings for nearly 20 years. Her experiences have been in long-term and acute care settings, short-term rehabilitation and the school system. For the past three years she has also worked as a teacher of students with visual impairments.…

  1. A Grass-Roots Endeavor To Develop a Permanent University Program for Vision Professionals: The North Carolina Model.

    ERIC Educational Resources Information Center

    Walker, Brad R.; Bozeman, Laura A.

    2002-01-01

    This article describes a collaborative process that parents, teachers, consumers, and advocacy groups in North Carolina used to successfully establish a permanently funded university training program specializing in visual impairments, the Visual Impairment Training Program. Within this process several factors were identified that contributed to…

  2. Seventh Grade Students and the Visual Messages They Love

    ERIC Educational Resources Information Center

    De Abreu, Belinha

    2008-01-01

    Most seventh grade students partially define themselves through everyday media messages. As a part of understanding how these images and the media impacts their lives, the author collaborated with her colleagues to develop a unit to help teens learn how visual messages such as those in pictures, media icons, logos, slogans, clothing, toys, and…

  3. What's Going on in This Picture? Visual Thinking Strategies and Adult Learning

    ERIC Educational Resources Information Center

    Landorf, Hilary

    2006-01-01

    The Visual Thinking Strategies (VTS) curriculum and teaching method uses art to help students think critically, listen attentively, communicate, and collaborate. VTS has been proven to enhance reading, writing, comprehension, and creative and analytical skills among students of all ages. The origins and procedures of the VTS curriculum are…

  4. The DaVinci Project: Multimedia in Art and Chemistry.

    ERIC Educational Resources Information Center

    Simonson, Michael; Schlosser, Charles

    1998-01-01

    Provides an overview of the DaVinci Project, a collaboration of students, teachers, and researchers in chemistry and art to develop multimedia materials for grades 3-12 visualizing basic concepts in chemistry and visual art. Topics addressed include standards in art and science; the conceptual framework for the project; and project goals,…

  5. Consultation and Collaboration on Health Self-Management for People Who Are Visually Impaired from Diabetes.

    ERIC Educational Resources Information Center

    Cleary, Margaret E.

    1993-01-01

    The expertise of rehabilitation teachers and diabetes nurse educators can complement each other in components of diabetes management for people who have become visually impaired. The role of each professional involves education; integration of diabetes self-management into a comprehensive rehabilitation program; nutrition; exercise; medication,…

  6. Becoming Theatrical: Performing Narrative Research, Staging Visual Representation

    ERIC Educational Resources Information Center

    Valle, Jan W.; Connor, David J.

    2012-01-01

    This article describes a collaborative project among the author of a book about mothers and special education (based on a collection of oral narratives of mothers who represent diverse generations, races, and social classes), a playwright, and an artist. Together, they created a theatrical and visual staging of the author's narrative research. The…

  7. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data.

    PubMed

    Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T

    2015-01-01

    To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.

  8. A Graph Based Interface for Representing Volume Visualization Results

    NASA Technical Reports Server (NTRS)

    Patten, James M.; Ma, Kwan-Liu

    1998-01-01

    This paper discusses a graph based user interface for representing the results of the volume visualization process. As images are rendered, they are connected to other images in a graph based on their rendering parameters. The user can take advantage of the information in this graph to understand how certain rendering parameter changes affect a dataset, making the visualization process more efficient. Because the graph contains more information than is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and animation.

  9. Improving collaboration between Primary Care Research Networks using Access Grid technology.

    PubMed

    Nagykaldi, Zsolt; Fox, Chester; Gallo, Steve; Stone, Joseph; Fontaine, Patricia; Peterson, Kevin; Arvanitis, Theodoros

    2008-01-01

    Access Grid (AG) is an Internet2-driven, high performance audio-visual conferencing technology used worldwide by academic and government organisations to enhance communication, human interaction and group collaboration. AG technology is particularly promising for improving academic multi-centre research collaborations. This manuscript describes how the AG technology was utilised by the electronic Primary Care Research Network (ePCRN) that is part of the National Institutes of Health (NIH) Roadmap initiative to improve primary care research and collaboration among practice-based research networks (PBRNs) in the USA. It discusses the design, installation and use of AG implementations, potential future applications, barriers to adoption, and suggested solutions.

  10. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed andmore » simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.« less

  11. Collaborative Visual Analytics: A Health Analytics Approach to Injury Prevention

    PubMed Central

    Fisher, Brian; Smith, Jennifer; Pike, Ian

    2017-01-01

    Background: Accurate understanding of complex health data is critical in order to deal with wicked health problems and make timely decisions. Wicked problems refer to ill-structured and dynamic problems that combine multidimensional elements, which often preclude the conventional problem solving approach. This pilot study introduces visual analytics (VA) methods to multi-stakeholder decision-making sessions about child injury prevention; Methods: Inspired by the Delphi method, we introduced a novel methodology—group analytics (GA). GA was pilot-tested to evaluate the impact of collaborative visual analytics on facilitating problem solving and supporting decision-making. We conducted two GA sessions. Collected data included stakeholders’ observations, audio and video recordings, questionnaires, and follow up interviews. The GA sessions were analyzed using the Joint Activity Theory protocol analysis methods; Results: The GA methodology triggered the emergence of ‘common ground’ among stakeholders. This common ground evolved throughout the sessions to enhance stakeholders’ verbal and non-verbal communication, as well as coordination of joint activities and ultimately collaboration on problem solving and decision-making; Conclusions: Understanding complex health data is necessary for informed decisions. Equally important, in this case, is the use of the group analytics methodology to achieve ‘common ground’ among diverse stakeholders about health data and their implications. PMID:28895928

  12. Collaborative Visual Analytics: A Health Analytics Approach to Injury Prevention.

    PubMed

    Al-Hajj, Samar; Fisher, Brian; Smith, Jennifer; Pike, Ian

    2017-09-12

    Background : Accurate understanding of complex health data is critical in order to deal with wicked health problems and make timely decisions. Wicked problems refer to ill-structured and dynamic problems that combine multidimensional elements, which often preclude the conventional problem solving approach. This pilot study introduces visual analytics (VA) methods to multi-stakeholder decision-making sessions about child injury prevention; Methods : Inspired by the Delphi method, we introduced a novel methodology-group analytics (GA). GA was pilot-tested to evaluate the impact of collaborative visual analytics on facilitating problem solving and supporting decision-making. We conducted two GA sessions. Collected data included stakeholders' observations, audio and video recordings, questionnaires, and follow up interviews. The GA sessions were analyzed using the Joint Activity Theory protocol analysis methods; Results : The GA methodology triggered the emergence of ' common g round ' among stakeholders. This common ground evolved throughout the sessions to enhance stakeholders' verbal and non-verbal communication, as well as coordination of joint activities and ultimately collaboration on problem solving and decision-making; Conclusion s : Understanding complex health data is necessary for informed decisions. Equally important, in this case, is the use of the group analytics methodology to achieve ' common ground' among diverse stakeholders about health data and their implications.

  13. Supporting Trust in Globally Distributed Software Teams: The Impact of Visualized Collaborative Traces on Perceived Trustworthiness

    ERIC Educational Resources Information Center

    Trainer, Erik Harrison

    2012-01-01

    Trust plays an important role in collaborations because it creates an environment in which people can openly exchange ideas and information with one another and engineer innovative solutions together with less perceived risk. The rise in globally distributed software development has created an environment in which workers are likely to have less…

  14. SERVIR Regional Visualization and Monitoring System: A Brief Overview

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh

    2011-01-01

    SERVIR is a joint USAID NASA effort, which uses remotely sensed data and products for societal benefit. SERVIR currently has three hubs, in Central America, East Africa and Himalaya. Science Applications, IT infrastructure and capacity building is central to SERVIR efforts. Collaborations are key. SERVIR is continuing to develop strong, working collaborations with government entities in the region, such as KMD.

  15. Review of experience with a collaborative eye care clinic in inpatient stroke rehabilitation.

    PubMed

    Herron, Sarah

    2016-02-01

    Visual deficits following stroke are frequently subtle and are often overlooked. Even though these visual deficits may be less overt in nature, they are still debilitating to survivors. Visual deficits have been shown to negatively impact cognition, mobility, and activities of daily living (ADL). There is little consistency across healthcare facilities regarding protocol for assessing vision following stroke. This research was designed to describe a profile for patients exhibiting visual deficits following stroke, examine the role of occupational therapists in vision assessment, and discuss a potential model to provide a protocol for collaboration with an eye care professional as part of the rehabilitation team. The sample consisted of 131 patients in an inpatient rehabilitation (IPR) unit who were identified as having potential visual deficits. Occupational therapists on an IPR unit administered initial vision screenings and these patients were subsequently evaluated by the consulting optometrist. Frequencies were calculated for the appearance of functional symptoms, diagnoses, and recommendations. Correlations were also computed relating diagnoses and recommendations made. All patients referred by the occupational therapist for optometrist evaluation had at least one visual diagnosis. The most frequent visual diagnoses included: saccades (77.7%), pursuits (61.8%), and convergence (63.4%). There was also a positive correlation between number of functional symptoms seen by occupational therapists and visual diagnoses made by the optometrist (r  =  0.209, P  =  0.016). Results of this study support the need for vision assessment following stroke in IPR, confirm the role of occupational therapists in vision assessment, and support the need for an optometrist as a member of the rehabilitation team.

  16. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.

  17. Drawing from Freirian empowerment methods to develop and use innovative learning maps: increasing enrollment of uninsured children on Detroit's eastside.

    PubMed

    Lopez, Ellen D S; Lichtenstein, Richard; Lewis, Alonzo; Banaszak-Holl, Jane; Lewis, Cheryl; Johnson, Penni; Riley, Scherry; Baum, Nancy M

    2007-04-01

    In 2001, virtually every child on Detroit's eastside was eligible for health coverage, yet approximately 3,000 children remained uninsured. The primary aim of the Eastside Access Partnership (EAP), a community-based participatory research collaboration, was to increase enrollment of uninsured children in state programs. To achieve this aim, one of the approaches that EAP is using is the innovative Learning Map titled Choosing the Healthy Path, which was developed in collaboration with Root Learning, Inc. Although Learning Maps were originally developed to assist corporations in implementing strategic change, their integration of visualization and interactive dialogue incorporates Freirian principles of empowerment education, making them a viable option for providing meaningful learning opportunities for community residents. This article presents the collaborative process involving the University of Michigan, local community-based organizations, community members, and Root Learning consultants to develop a visual map that enables community residents to understand and overcome the barriers that prevent them from obtaining health insurance for their children.

  18. Situated Knowledge and Visual Education: Patrick Geddes and Reclus's Geography (1886-1932)

    ERIC Educational Resources Information Center

    Ferretti, Federico

    2017-01-01

    This article addresses Patrick Geddes's relationship with geography and visual education by focusing on his collaboration with the network of the anarchist geographers Élie, Élisée, and Paul Reclus. Drawing on empirical archival research, it contributes to the current debates on geographies of anarchist education and on geographic teaching. The…

  19. Collaborative Action Research Approach Promoting Professional Development for Teachers of Students with Visual Impairment in Assistive Technology

    ERIC Educational Resources Information Center

    Argyropoulos, Vassilios; Nikolaraizi, Magda; Tsiakali, Thomai; Kountrias, Polychronis; Koutsogiorgou, Sofia-Marina; Martos, Aineias

    2014-01-01

    This paper highlights the framework and discusses the results of an action research project which aimed to facilitate the adoption of assistive technology devices and specialized software by teachers of students with visual impairment via a digital educational game, developed specifically for this project. The persons involved in this…

  20. How Can Visual Arts Help Doctors Develop Medical Insight?

    ERIC Educational Resources Information Center

    Edmonds, Kathleen; Hammond, Margaret F.

    2012-01-01

    This research project examines how using the visual arts can develop medical insight, as part of a pilot programme for two groups of medical students. It was a UK study; a collaboration between Liverpool and Glyndw University's and Tate Liverpool's learning team. Tate Liverpool is the home of the National Collection of Modern Arts in the North of…

  1. "Whoa! We're Going Deep in the Trees!": Patterns of Collaboration around an Interactive Information Visualization Exhibit

    ERIC Educational Resources Information Center

    Davis, Pryce; Horn, Michael; Block, Florian; Phillips, Brenda; Evans, E. Margaret; Diamond, Judy; Shen, Chia

    2015-01-01

    In this paper we present a qualitative analysis of natural history museum visitor interaction around a multi-touch tabletop exhibit called "DeepTree" that we designed around concepts of evolution and common descent. DeepTree combines several large scientific datasets and an innovative visualization technique to display a phylogenetic…

  2. Deconstructing Immigrant Girls' Identities through the Production of Visual Narratives in a Catalan Urban Primary School

    ERIC Educational Resources Information Center

    Rifa-Valls, Montserrat

    2009-01-01

    In this article, the research findings of a deconstructive visual ethnography focused on the production of immigrant girls' identities will be analysed. This collaborative research project involved experimentation with a dialogic curriculum aimed at creating diverse identity narratives with immigrant girls at an urban primary school in Barcelona.…

  3. Visual Arts as a Lever for Social Justice Education: Labor Studies in the High School Art Curriculum

    ERIC Educational Resources Information Center

    Sosin, Adrienne Andi; Bekkala, Elsa; Pepper-Sanello, Miriam

    2010-01-01

    This collaborative action research study of pedagogy examines an introductory high school visual arts curriculum that includes artworks pertinent to labor studies, and their impact on students' understanding of the power of art for social commentary. Urban students with multicultural backgrounds study social realism as an historical artistic…

  4. The Integration of Visual Expression in Music Education for Children

    ERIC Educational Resources Information Center

    Roels, Johanna Maria; Van Petegem, Peter

    2014-01-01

    This study is the result of a two-year experimental collaboration with children from my piano class. Together, the children and I designed a method that uses visual expression as a starting point for composing and visualising music-theoretical concepts. In this method various dimensions of musicality such as listening, creating, noting down and…

  5. Visualization of Expert Chat Development in a World of Warcraft Player Group

    ERIC Educational Resources Information Center

    Chen, Mark

    2009-01-01

    This article describes expertise development in a player group in the massively multiplayer online game World of Warcraft using visualization of chat log data. Charts were created to get a general sense of chat trends in a specific player group engaged in "high-end raiding", a 40-person collaborative activity. These charts helped identify patterns…

  6. Constructing a Streaming Video-Based Learning Forum for Collaborative Learning

    ERIC Educational Resources Information Center

    Chang, Chih-Kai

    2004-01-01

    As web-based courses using videos have become popular in recent years, the issue of managing audio-visual aids has become pertinent. Generally, the contents of audio-visual aids may include a lecture, an interview, a report, or an experiment, which may be transformed into a streaming format capable of making the quality of Internet-based videos…

  7. The Effect of Color Choice on Learner Interpretation of a Cosmology Visualization

    ERIC Educational Resources Information Center

    Buck, Zoe

    2013-01-01

    As we turn more and more to high-end computing to understand the Universe at cosmological scales, dynamic visualizations of simulations will take on a vital role as perceptual and cognitive tools. In collaboration with the Adler Planetarium and University of California High-Performance AstroComputing Center (UC-HiPACC), I am interested in better…

  8. Advancing Collaboration through Hydrologic Data and Model Sharing

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.

    2015-12-01

    HydroShare is an online, collaborative system for open sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined primarily by standardized metadata, content data models for each resource type, and an overarching resource data model based on the Open Archives Initiative's Object Reuse and Exchange (OAI-ORE) standard and a hierarchical file packaging system called "BagIt". HydroShare expands the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated to include geospatial and multidimensional space-time datasets commonly used in hydrology. HydroShare also includes new capability for sharing models, model components, and analytical tools and will take advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. It also supports web services and server/cloud based computation operating on resources for the execution of hydrologic models and analysis and visualization of hydrologic data. HydroShare uses iRODS as a network file system for underlying storage of datasets and models. Collaboration is enabled by casting datasets and models as "social objects". Social functions include both private and public sharing, formation of collaborative groups of users, and value-added annotation of shared datasets and models. The HydroShare web interface and social media functions were developed using the Django web application framework coupled to iRODS. Data visualization and analysis is supported through the Tethys Platform web GIS software stack. Links to external systems are supported by RESTful web service interfaces to HydroShare's content. This presentation will introduce the HydroShare functionality developed to date and describe ongoing development of functionality to support collaboration and integration of data and models.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrinan, Thomas; Leigh, Jason; Renambot, Luc

    Mixed presence collaboration involves remote collaboration between multiple collocated groups. This paper presents the design and results of a user study that focused on mixed presence collaboration using large-scale tiled display walls. The research was conducted in order to compare data synchronization schemes for multi-user visualization applications. Our study compared three techniques for sharing data between display spaces with varying constraints and affordances. The results provide empirical evidence that using data sharing techniques with continuous synchronization between the sites lead to improved collaboration for a search and analysis task between remotely located groups. We have also identified aspects of synchronizedmore » sessions that result in increased remote collaborator awareness and parallel task coordination. It is believed that this research will lead to better utilization of large-scale tiled display walls for distributed group work.« less

  10. Collaboration and Synergy among Government, Industry and Academia in M&S Domain: Turkey’s Approach

    DTIC Science & Technology

    2009-10-01

    Analysis, Decision Support System Design and Implementation, Simulation Output Analysis, Statistical Data Analysis, Virtual Reality , Artificial... virtual and constructive visual simulation systems as well as integrated advanced analytical models. Collaboration and Synergy among Government...simulation systems that are ready to use, credible, integrated with C4ISR systems.  Creating synthetic environments and/or virtual prototypes of concepts

  11. Regional Visualization and Monitoring System SERVIR: A Brief Overview, Water Resources Challenges and Approaches

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh

    2011-01-01

    SERVIR is a joint USAID -- NASA effort, which uses remotely sensed data and products for societal benefit. SERVIR currently has three hubs, in Mesoamerica, East Africa and Himalaya. Collaborations are key. SE RVIR is continuing to develop strong, working collaborations with government entities, such as KMD. Science Applications, IT infrastructure and capacity building is central to SERVIR efforts.

  12. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  13. The D3 Middleware Architecture

    NASA Technical Reports Server (NTRS)

    Walton, Joan; Filman, Robert E.; Korsmeyer, David J.; Lee, Diana D.; Mak, Ron; Patel, Tarang

    2002-01-01

    DARWIN is a NASA developed, Internet-based system for enabling aerospace researchers to securely and remotely access and collaborate on the analysis of aerospace vehicle design data, primarily the results of wind-tunnel testing and numeric (e.g., computational fluid-dynamics) model executions. DARWIN captures, stores and indexes data; manages derived knowledge (such as visualizations across multiple datasets); and provides an environment for designers to collaborate in the analysis of test results. DARWIN is an interesting application because it supports high-volumes of data. integrates multiple modalities of data display (e.g., images and data visualizations), and provides non-trivial access control mechanisms. DARWIN enables collaboration by allowing not only sharing visualizations of data, but also commentary about and views of data. Here we provide an overview of the architecture of D3, the third generation of DARWIN. Earlier versions of DARWIN were characterized by browser-based interfaces and a hodge-podge of server technologies: CGI scripts, applets, PERL, and so forth. But browsers proved difficult to control, and a proliferation of computational mechanisms proved inefficient and difficult to maintain. D3 substitutes a pure-Java approach for that medley: A Java client communicates (though RMI over HTTPS) with a Java-based application server. Code on the server accesses information from JDBC databases, distributed LDAP security services, and a collaborative information system. D3 is a three tier-architecture, but unlike 'E-commerce' applications, the data usage pattern suggests different strategies than traditional Enterprise Java Beans - we need to move volumes of related data together, considerable processing happens on the client, and the 'business logic' on the server-side is primarily data integration and collaboration. With D3, we are extending DARWIN to handle other data domains and to be a distributed system, where a single login allows a user transparent access to test results from multiple servers and authority domains.

  14. Bringing "Scientific Expeditions" Into the Schools

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as simulations or measurements of fluid dynamics). The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics (CFD) and wind tunnel testing. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualiZation of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: 1. The visual is much higher in resolution (1280xl024 pixels with 24 bits of color) than typical video format transmitted over the network. 2. The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). 3. A rich variety of guided expeditions through the data can be included easily. 4. A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of the analysis can be passed from site to site. 5. The scenes can be viewed in 3D using stereo vision. 6. The network bandwidth used for the visualization using this new technology is much smaller than when using video format. (The measured peak bandwidth used was 1 Kbit/sec whereas the measured bandwidth for a small video picture was 500 Kbits/sec.)

  15. Visualizing Progress

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Reality Capture Technologies, Inc. is a spinoff company from Ames Research Center. Offering e-business solutions for optimizing management, design and production processes, RCT uses visual collaboration environments (VCEs) such as those used to prepare the Mars Pathfinder mission.The product, 4-D Reality Framework, allows multiple users from different locations to manage and share data. The insurance industry is one targeted commercial application for this technology.

  16. Visualizing Biological Data in Museums: Visitor Learning with an Interactive Tree of Life Exhibit

    ERIC Educational Resources Information Center

    Horn, Michael S.; Phillips, Brenda C.; Evans, Evelyn Margaret; Block, Florian; Diamond, Judy; Shen, Chia

    2016-01-01

    In this study, we investigate museum visitor learning and engagement at an interactive visualization of an evolutionary tree of life consisting of over 70,000 species. The study was conducted at two natural history museums where visitors collaboratively explored the tree of life using direct touch gestures on a multi-touch tabletop display. In the…

  17. The Avian Knowledge Network : A partnership to organize, analyze, and visualize bird observation data for education, conservation, research, and land management

    Treesearch

    Marshall Iliff; Leo Salas; Ernesto Ruelas Inzunza; Grant Ballard; Denis Lepage; Steve Kelling

    2009-01-01

    The Avian Knowledge Network (AKN) is an international collaboration of academic, nongovernment, and government institutions with the goal of organizing observations of birds into an interoperable format to enhance access, data visualization and exploration, and scientifi c analyses. The AKN uses proven cyberinfrastructure and informatics techniques as the foundation of...

  18. The Creation of the "Hong Kong Visual Arts Education Web" and the Use of the Inquiry-Based Teaching Approach

    ERIC Educational Resources Information Center

    Sang, Anita Ng Heung

    2009-01-01

    This article describes a collaborative action research conducted by a lecturer and several primary school art teachers, who between 2001 and 2006 created the Visual Arts Education Web ("iii web") in Hong Kong. The creation of the "iii web" was accomplished through research that employed questionnaires, focus group discussions…

  19. Using Virtual Microscopy to Scaffold Learning of Pathology: A Naturalistic Experiment on the Role of Visual and Conceptual Cues

    ERIC Educational Resources Information Center

    Nivala, Markus; Saljo, Roger; Rystedt, Hans; Kronqvist, Pauliina; Lehtinen, Erno

    2012-01-01

    New representational technologies, such as virtual microscopy, create new affordances for medical education. In the article, a study on the following two issues is reported: (a) How does collaborative use of virtual microscopy shape students' engagement with and learning from virtual slides of tissue specimen? (b) How do visual and conceptual cues…

  20. Using visual art and collaborative reflection to explore medical attitudes toward vulnerable persons

    PubMed Central

    Kidd, Monica; Nixon, Lara; Rosenal, Tom; Jackson, Roberta; Pereles, Laurie; Mitchell, Ian; Bendiak, Glenda; Hughes, Lisa

    2016-01-01

    Background Vulnerable persons often face stigma-related barriers while seeking health care. Innovative education and professional development methods are needed to help change this. Method We describe an interdisciplinary group workshop designed around a discomfiting oil portrait, intended to trigger provocative conversations among health care students and practitioners, and we present our mixed methods analysis of participant reflections. Results After the workshop, participants were significantly more likely to endorse the statements that the observation and interpretive skills involved in viewing visual art are relevant to patient care and that visual art should be used in medical education to improve students’ observational skills, narrative skills, and empathy with their patients. Subsequent to the workshop, significantly more participants agreed that art interpretation should be required curriculum for health care students. Qualitative comments from two groups from two different education and professional contexts were examined for themes; conversations focused on issues of power, body image/self-esteem, and lessons for clinical practice. Conclusions We argue that difficult conversations about affective responses to vulnerable persons are possible in a collaborative context using well-chosen works of visual art that can stand in for a patient. PMID:27103949

  1. Using visual art and collaborative reflection to explore medical attitudes toward vulnerable persons.

    PubMed

    Kidd, Monica; Nixon, Lara; Rosenal, Tom; Jackson, Roberta; Pereles, Laurie; Mitchell, Ian; Bendiak, Glenda; Hughes, Lisa

    2016-01-01

    Vulnerable persons often face stigma-related barriers while seeking health care. Innovative education and professional development methods are needed to help change this. We describe an interdisciplinary group workshop designed around a discomfiting oil portrait, intended to trigger provocative conversations among health care students and practitioners, and we present our mixed methods analysis of participant reflections. After the workshop, participants were significantly more likely to endorse the statements that the observation and interpretive skills involved in viewing visual art are relevant to patient care and that visual art should be used in medical education to improve students' observational skills, narrative skills, and empathy with their patients. Subsequent to the workshop, significantly more participants agreed that art interpretation should be required curriculum for health care students. Qualitative comments from two groups from two different education and professional contexts were examined for themes; conversations focused on issues of power, body image/self-esteem, and lessons for clinical practice. We argue that difficult conversations about affective responses to vulnerable persons are possible in a collaborative context using well-chosen works of visual art that can stand in for a patient.

  2. BrainBrowser: distributed, web-based neurological data visualization.

    PubMed

    Sherif, Tarek; Kassis, Nicolas; Rousseau, Marc-Étienne; Adalat, Reza; Evans, Alan C

    2014-01-01

    Recent years have seen massive, distributed datasets become the norm in neuroimaging research, and the methodologies used to analyze them have, in response, become more collaborative and exploratory. Tools and infrastructure are continuously being developed and deployed to facilitate research in this context: grid computation platforms to process the data, distributed data stores to house and share them, high-speed networks to move them around and collaborative, often web-based, platforms to provide access to and sometimes manage the entire system. BrainBrowser is a lightweight, high-performance JavaScript visualization library built to provide easy-to-use, powerful, on-demand visualization of remote datasets in this new research environment. BrainBrowser leverages modern web technologies, such as WebGL, HTML5 and Web Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser into any web-based platform. BrainBrowser is simple enough to produce a basic web-based visualization in a few lines of code, while at the same time being robust enough to create full-featured visualization applications. BrainBrowser can dynamically load the data required for a given visualization, so no network bandwidth needs to be waisted on data that will not be used. BrainBrowser's integration into the standardized web platform also allows users to consider using 3D data visualization in novel ways, such as for data distribution, data sharing and dynamic online publications. BrainBrowser is already being used in two major online platforms, CBRAIN and LORIS, and has been used to make the 1TB MACACC dataset openly accessible.

  3. Integrating Visualizations into Modeling NEST Simulations

    PubMed Central

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  4. BrainBrowser: distributed, web-based neurological data visualization

    PubMed Central

    Sherif, Tarek; Kassis, Nicolas; Rousseau, Marc-Étienne; Adalat, Reza; Evans, Alan C.

    2015-01-01

    Recent years have seen massive, distributed datasets become the norm in neuroimaging research, and the methodologies used to analyze them have, in response, become more collaborative and exploratory. Tools and infrastructure are continuously being developed and deployed to facilitate research in this context: grid computation platforms to process the data, distributed data stores to house and share them, high-speed networks to move them around and collaborative, often web-based, platforms to provide access to and sometimes manage the entire system. BrainBrowser is a lightweight, high-performance JavaScript visualization library built to provide easy-to-use, powerful, on-demand visualization of remote datasets in this new research environment. BrainBrowser leverages modern web technologies, such as WebGL, HTML5 and Web Workers, to visualize 3D surface and volumetric neuroimaging data in any modern web browser without requiring any browser plugins. It is thus trivial to integrate BrainBrowser into any web-based platform. BrainBrowser is simple enough to produce a basic web-based visualization in a few lines of code, while at the same time being robust enough to create full-featured visualization applications. BrainBrowser can dynamically load the data required for a given visualization, so no network bandwidth needs to be waisted on data that will not be used. BrainBrowser's integration into the standardized web platform also allows users to consider using 3D data visualization in novel ways, such as for data distribution, data sharing and dynamic online publications. BrainBrowser is already being used in two major online platforms, CBRAIN and LORIS, and has been used to make the 1TB MACACC dataset openly accessible. PMID:25628562

  5. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of themore » collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.« less

  6. Resource Exchange: Making Art to Make a Difference--A Review of a Collaborative Project between an Arts and a Social Service Organization

    ERIC Educational Resources Information Center

    Barniskis, Becca; Oxton, Jane

    2013-01-01

    The Resource Exchange design team met in May 2013 to learn about and respond to a multifaceted collaboration between the Paramount Theatre & Visual Arts Center and Hands Across the World (HAW), a social service agency that serves the needs of new refugees and immigrants in St. Cloud, Minnesota. In recent years a significant immigrant…

  7. hackseq: Catalyzing collaboration between biological and computational scientists via hackathon.

    PubMed

    2017-01-01

    hackseq ( http://www.hackseq.com) was a genomics hackathon with the aim of bringing together a diverse set of biological and computational scientists to work on collaborative bioinformatics projects. In October 2016, 66 participants from nine nations came together for three days for hackseq and collaborated on nine projects ranging from data visualization to algorithm development. The response from participants was overwhelmingly positive with 100% (n = 54) of survey respondents saying they would like to participate in future hackathons. We detail key steps for others interested in organizing a successful hackathon and report excerpts from each project.

  8. hackseq: Catalyzing collaboration between biological and computational scientists via hackathon

    PubMed Central

    2017-01-01

    hackseq ( http://www.hackseq.com) was a genomics hackathon with the aim of bringing together a diverse set of biological and computational scientists to work on collaborative bioinformatics projects. In October 2016, 66 participants from nine nations came together for three days for hackseq and collaborated on nine projects ranging from data visualization to algorithm development. The response from participants was overwhelmingly positive with 100% (n = 54) of survey respondents saying they would like to participate in future hackathons. We detail key steps for others interested in organizing a successful hackathon and report excerpts from each project. PMID:28417000

  9. New insight into California’s drought through open data

    USGS Publications Warehouse

    Read, Emily K.; Bucknell, Mary; Hines, Megan K.; Kreft, James M.; Lucido, Jessica M.; Read, Jordan S.; Schroedl, Carl; Sibley, David M.; Stephan, Shirley; Suftin, Ivan; Thongsavanh, Phethala; Van Den Hoek, Jamon; Walker, Jordan I.; Wernimont, Martin R; Winslow, Luke A.; Yan, Andrew N.

    2015-01-01

    Historically unprecedented drought in California has brought water issues to the forefront of the nation’s attention. Crucial investigations that concern water policy, management, and research, in turn, require extensive information about the quality and quantity of California’s water. Unfortunately, key sources of pertinent data are unevenly distributed and frequently hard to find. Thankfully, the vital importance of integrating water data across federal, state, and tribal, academic, and private entities, has recently been recognized and addressed through federal initiatives such as the Climate Data Initiative of President Obama’s Climate Action Plan and the Advisory Committee on Water Information’sOpen Water Data Initiative. Here, we demonstrate an application of integrated open water data, visualized and made available online using open source software, for the purpose of exploring the impact of the current California drought. Our collaborative approach and technical tools enabled a rapid, distributed development process. Many positive outcomes have resulted: the application received recognition within and outside of the Federal Government, inspired others to visualize open water data, spurred new collaborations for our group, and strengthened the collaborative relationships within the team of developers. In this article, we describe the technical tools and collaborative process that enabled the success of the application. 

  10. The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited.

    PubMed

    Xu, Guangyu; Jackson, Darrell R; Bemis, Karen G

    2017-03-01

    The relative importance of suspended particles and turbulence as backscattering mechanisms within a hydrothermal plume located on the Endeavour Segment of the Juan de Fuca Ridge is determined by comparing acoustic backscatter measured by the Cabled Observatory Vent Imaging Sonar (COVIS) with model calculations based on in situ samples of particles suspended within the plume. Analysis of plume samples yields estimates of the mass concentration and size distribution of particles, which are used to quantify their contribution to acoustic backscatter. The result shows negligible effects of plume particles on acoustic backscatter within the initial 10-m rise of the plume. This suggests turbulence-induced temperature fluctuations are the dominant backscattering mechanism within lower levels of the plume. Furthermore, inversion of the observed acoustic backscatter for the standard deviation of temperature within the plume yields a reasonable match with the in situ temperature measurements made by a conductivity-temperature-depth instrument. This finding shows that turbulence-induced temperature fluctuations are the dominant backscattering mechanism and demonstrates the potential of using acoustic backscatter as a remote-sensing tool to measure the temperature variability within a hydrothermal plume.

  11. "Barriers to Cognitive Behavioral Therapy Homework Completion Scale- Depression Version": Development and Psychometric Evaluation.

    PubMed

    Callan, Judith A; Dunbar-Jacob, Jacqueline; Sereika, Susan M; Stone, Clement; Fasiczka, Amy; Jarrett, Robin B; Thase, Michael E

    2012-01-01

    We conducted a two-phase study to develop and evaluate the psychometric properties of an instrument to identify barriers to Cognitive Behavioral Therapy (CBT) homework completion in a depressed sample. In Phase I, we developed an item pool by interviewing 20 depressed patients and 20 CBT therapists. In Phase II, we created and administered a draft instrument to 56 people with depression. Exploratory Factor Analysis revealed a 2-factor oblique solution of "Patient Factors" and "Therapy/Task Factors." Internal consistency coefficients ranged from .80 to .95. Temporal stability was demonstrated through Pearson correlations of .72 (for the therapist/task subscale) to .95 (for the patient subscale) over periods of time that ranged from 2 days to 3 weeks. The patient subscale was able to satisfactorily classify patients (75 to 79 %) with low and high adherence at both sessions. Specificity was .66 at both time points. Sensitivity was .80 at sessions B and .77 at session C. There were no consistent predictors of assignment compliance when measured by the Assignment Compliance Rating Scale (Primakoff, Epstein, & Covi, 1986). The Rating Scale and subscale scores did, however, correlate significantly with assignment non-compliance (.32 to .46).

  12. “Barriers to Cognitive Behavioral Therapy Homework Completion Scale- Depression Version”: Development and Psychometric Evaluation

    PubMed Central

    Callan, Judith A.; Dunbar-Jacob, Jacqueline; Sereika, Susan M.; Stone, Clement; Fasiczka, Amy; Jarrett, Robin B.; Thase, Michael E.

    2013-01-01

    We conducted a two-phase study to develop and evaluate the psychometric properties of an instrument to identify barriers to Cognitive Behavioral Therapy (CBT) homework completion in a depressed sample. In Phase I, we developed an item pool by interviewing 20 depressed patients and 20 CBT therapists. In Phase II, we created and administered a draft instrument to 56 people with depression. Exploratory Factor Analysis revealed a 2-factor oblique solution of “Patient Factors” and “Therapy/Task Factors.” Internal consistency coefficients ranged from .80 to .95. Temporal stability was demonstrated through Pearson correlations of .72 (for the therapist/task subscale) to .95 (for the patient subscale) over periods of time that ranged from 2 days to 3 weeks. The patient subscale was able to satisfactorily classify patients (75 to 79 %) with low and high adherence at both sessions. Specificity was .66 at both time points. Sensitivity was .80 at sessions B and .77 at session C. There were no consistent predictors of assignment compliance when measured by the Assignment Compliance Rating Scale (Primakoff, Epstein, & Covi, 1986). The Rating Scale and subscale scores did, however, correlate significantly with assignment non-compliance (.32 to .46). PMID:24049556

  13. World scientific collaboration in coronary heart disease research.

    PubMed

    Yu, Qi; Shao, Hongfang; He, Peifeng; Duan, Zhiguang

    2013-08-10

    Coronary heart disease (CHD) will continue to exert a heavy burden for countries all over the world. Scientific collaboration has become the only choice for progress in biomedicine. Unfortunately, there is a scarcity of scientific publications about scientific collaboration in CHD research. This study examines collaboration behaviors across multiple collaboration types in the CHD research. 294,756 records about CHD were retrieved from Web of Science. Methods such as co-authorship, social network analysis, connected component, cliques, and betweenness centrality were used in this study. Collaborations have increased at the author, institution and country/region levels in CHD research over the past three decades. 3000 most collaborative authors, 572 most collaborative institutions and 52 countries/regions are extracted from their corresponding collaboration network. 766 cliques are found in the most collaborative authors. 308 cliques are found in the most collaborative institutions. Western countries/regions represent the core of the world's collaboration. The United States ranks first in terms of number of multi-national publications, while Hungary leads in the ranking measured by their proportion of collaborative output. The rate of economic development in the countries/regions also affects the multi-national collaboration behavior. Collaborations among countries/regions need to be encouraged in the CHD research. The visualization of overlapping cliques in the most collaborative authors and institutions are considered "skeleton" of the collaboration network. Eastern countries/regions should strengthen cooperation with western countries/regions in the CHD research. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. iClimate: a climate data and analysis portal

    NASA Astrophysics Data System (ADS)

    Goodman, P. J.; Russell, J. L.; Merchant, N.; Miller, S. J.; Juneja, A.

    2015-12-01

    We will describe a new climate data and analysis portal called iClimate that facilitates direct comparisons between available climate observations and climate simulations. Modeled after the successful iPlant Collaborative Discovery Environment (www.iplantcollaborative.org) that allows plant scientists to trade and share environmental, physiological and genetic data and analyses, iClimate provides an easy-to-use platform for large-scale climate research, including the storage, sharing, automated preprocessing, analysis and high-end visualization of large and often disparate observational and model datasets. iClimate will promote data exploration and scientific discovery by providing: efficient and high-speed transfer of data from nodes around the globe (e.g. PCMDI and NASA); standardized and customized data/model metrics; efficient subsampling of datasets based on temporal period, geographical region or variable; and collaboration tools for sharing data, workflows, analysis results, and data visualizations with collaborators or with the community at large. We will present iClimate's capabilities, and demonstrate how it will simplify and enhance the ability to do basic or cutting-edge climate research by professionals, laypeople and students.

  15. Exploring Vaccine Hesitancy Through an Artist-Scientist Collaboration : Visualizing Vaccine-Critical Parents' Health Beliefs.

    PubMed

    Koski, Kaisu; Holst, Johan

    2017-09-01

    This project explores vaccine hesitancy through an artist-scientist collaboration. It aims to create better understanding of vaccine hesitant parents' health beliefs and how these influence their vaccine-critical decisions. The project interviews vaccine-hesitant parents in the Netherlands and Finland and develops experimental visual-narrative means to analyse the interview data. Vaccine-hesitant parents' health beliefs are, in this study, expressed through stories, and they are paralleled with so-called illness narratives. The study explores the following four main health beliefs originating from the parents' interviews: (1) perceived benefits of illness, (2) belief in the body's intelligence and self-healing capacity, (3) beliefs about the "inside-outside" flow of substances in the body, and (4) view of death as a natural part of life. These beliefs are interpreted through arts-based diagrammatic representations. These diagrams, merging multiple aspects of the parents' narratives, are subsequently used in a collaborative meaning-making dialogue between the artist and the scientist. The resulting dialogue contrasts the health beliefs behind vaccine hesitancy with scientific knowledge, as well as the authors' personal, and differing, attitudes toward these.

  16. A Collaborative Decision Environment for UAV Operations

    NASA Technical Reports Server (NTRS)

    D'Ortenzio, Matthew V.; Enomoto, Francis Y.; Johan, Sandra L.

    2005-01-01

    NASA is developing Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAV's). The IMM groundbased component is the Collaborative Decision Environment (CDE), a ground system that provides the Mission/Science team with situational awareness, collaboration, and decisionmaking tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, satellite data products, and topographic maps by leveraging established and emerging Open Geospatial Consortium (OGC) standards to acquire external data products via the Internet, and an industry standard geographic information system (GIs) toolkit for visualization As a Science/Mission team may be geographically dispersed, the CDE is capable of providing access to remote users across wide area networks using Web Services technology. A prototype CDE is being developed for an instrument checkout flight on a manned aircraft in the fall of 2005, in preparation for a full deployment in support of the US Forest Service and NASA Ames Western States Fire Mission in 2006.

  17. IN31A-1734 Development and Evaluation of a Gridded CrIS/ATMS Visualization for Operational Forecasting

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Smith, Nadia; Dostalek, Jack; Stevens, Eric; Nelson, Kristine; Weisz, Elisabeth; Berndt, Emily; Line, Bill; Barnet, Chris; Gambacorta, Antonia; hide

    2016-01-01

    A collaborative effort between SPoRT, CIMSS, CIRA, GINA, and NOAA has produced a unique gridded visualization of real-time CrIS/ATMS sounding products. This product uses the NUCAPS retrieval algorithm and polar2grid software to generate plan-view and cross-section visualization for forecast challenges associated with cold air aloft and convective potential. Forecasters at select partner offices have been able to view the Gridded NUCAPS products in AWIPS alongside other operational data products with generally favorable feedback.

  18. My recollections of Hubel and Wiesel and a brief review of functional circuitry in the visual pathway

    PubMed Central

    Alonso, Jose-Manuel

    2009-01-01

    The first paper of Hubel and Wiesel in The Journal of Physiology in 1959 marked the beginning of an exciting chapter in the history of visual neuroscience. Through a collaboration that lasted 25 years, Hubel and Wiesel described the main response properties of visual cortical neurons, the functional architecture of visual cortex and the role of visual experience in shaping cortical architecture. The work of Hubel and Wiesel transformed the field not only through scientific discovery but also by touching the life and scientific careers of many students. Here, I describe my personal experience as a postdoctoral student with Torsten Wiesel and how this experience influenced my own work. PMID:19525563

  19. Kameleon Live: An Interactive Cloud Based Analysis and Visualization Platform for Space Weather Researchers

    NASA Astrophysics Data System (ADS)

    Pembroke, A. D.; Colbert, J. A.

    2015-12-01

    The Community Coordinated Modeling Center (CCMC) provides hosting for many of the simulations used by the space weather community of scientists, educators, and forecasters. CCMC users may submit model runs through the Runs on Request system, which produces static visualizations of model output in the browser, while further analysis may be performed off-line via Kameleon, CCMC's cross-language access and interpolation library. Off-line analysis may be suitable for power-users, but storage and coding requirements present a barrier to entry for non-experts. Moreover, a lack of a consistent framework for analysis hinders reproducibility of scientific findings. To that end, we have developed Kameleon Live, a cloud based interactive analysis and visualization platform. Kameleon Live allows users to create scientific studies built around selected runs from the Runs on Request database, perform analysis on those runs, collaborate with other users, and disseminate their findings among the space weather community. In addition to showcasing these novel collaborative analysis features, we invite feedback from CCMC users as we seek to advance and improve on the new platform.

  20. Participatory Visual Methods: Revisioning the Future of Adult Education

    ERIC Educational Resources Information Center

    Lawrence, Randee Lipson

    2017-01-01

    This chapter brings together significant themes in the previous chapters, including collaborative research partnerships, voice and agency, self-image, relationships, multiple ways of knowing, difficult conversations, social change, and alternative adult education.

  1. Student Visual Communication of Evolution

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Cook, Kristin

    2017-06-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  2. Visualising the body in art and medicine: a visual art course for medical students at King's College Hospital in 1999.

    PubMed

    Weller, Kathy

    2002-11-01

    For many centuries science and art have been studied as completely separate disciplines, and career paths likewise, have diverged. However, in recent years there has been a renewed cultural interest in art/science collaborations, coupled with the perception that a medical education which did not embrace the humanities 'tended to brutalize and dehumanize' (Weatherall, British Medical Journal 309 (1994) 1671-1672) future doctors. It was against this background of the growth of multi-disciplinary collaborative projects and a dissatisfaction with an 'incomplete' medical education, that an opportunity arose for a visual arts course to be set up at a London teaching hospital in 1999. The following dialogue sets out to explore the difficulties, the great joys and the emotions generated by a 'Special Study Module' created by both artists and clinicians.

  3. Supporting Communication and Coordination in Collaborative Sensemaking.

    PubMed

    Mahyar, Narges; Tory, Melanie

    2014-12-01

    When people work together to analyze a data set, they need to organize their findings, hypotheses, and evidence, share that information with their collaborators, and coordinate activities amongst team members. Sharing externalizations (recorded information such as notes) could increase awareness and assist with team communication and coordination. However, we currently know little about how to provide tool support for this sort of sharing. We explore how linked common work (LCW) can be employed within a `collaborative thinking space', to facilitate synchronous collaborative sensemaking activities in Visual Analytics (VA). Collaborative thinking spaces provide an environment for analysts to record, organize, share and connect externalizations. Our tool, CLIP, extends earlier thinking spaces by integrating LCW features that reveal relationships between collaborators' findings. We conducted a user study comparing CLIP to a baseline version without LCW. Results demonstrated that LCW significantly improved analytic outcomes at a collaborative intelligence task. Groups using CLIP were also able to more effectively coordinate their work, and held more discussion of their findings and hypotheses. LCW enabled them to maintain awareness of each other's activities and findings and link those findings to their own work, preventing disruptive oral awareness notifications.

  4. Visualizing collaborative electronic health record usage for hospitalized patients with heart failure.

    PubMed

    Soulakis, Nicholas D; Carson, Matthew B; Lee, Young Ji; Schneider, Daniel H; Skeehan, Connor T; Scholtens, Denise M

    2015-03-01

    To visualize and describe collaborative electronic health record (EHR) usage for hospitalized patients with heart failure. We identified records of patients with heart failure and all associated healthcare provider record usage through queries of the Northwestern Medicine Enterprise Data Warehouse. We constructed a network by equating access and updates of a patient's EHR to a provider-patient interaction. We then considered shared patient record access as the basis for a second network that we termed the provider collaboration network. We calculated network statistics, the modularity of provider interactions, and provider cliques. We identified 548 patient records accessed by 5113 healthcare providers in 2012. The provider collaboration network had 1504 nodes and 83 998 edges. We identified 7 major provider collaboration modules. Average clique size was 87.9 providers. We used a graph database to demonstrate an ad hoc query of our provider-patient network. Our analysis suggests a large number of healthcare providers across a wide variety of professions access records of patients with heart failure during their hospital stay. This shared record access tends to take place not only in a pairwise manner but also among large groups of providers. EHRs encode valuable interactions, implicitly or explicitly, between patients and providers. Network analysis provided strong evidence of multidisciplinary record access of patients with heart failure across teams of 100+ providers. Further investigation may lead to clearer understanding of how record access information can be used to strategically guide care coordination for patients hospitalized for heart failure. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  5. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    NASA Astrophysics Data System (ADS)

    Baron, T.; Domaracky, M.; Duran, G.; Fernandes, J.; Ferreira, P.; Gonzalez Lopez, J. B.; Jouberjean, F.; Lavrut, L.; Tarocco, N.

    2014-06-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  6. What whiteboards in a trauma center operating suite can teach us about emergency department communication.

    PubMed

    Xiao, Yan; Schenkel, Stephen; Faraj, Samer; Mackenzie, Colin F; Moss, Jacqueline

    2007-10-01

    Highly reliable, efficient collaborative work relies on excellent communication. We seek to understand how a traditional whiteboard is used as a versatile information artifact to support communication in rapid-paced, highly dynamic collaborative work. The similar communicative demands of the trauma operating suite and an emergency department (ED) make the findings applicable to both settings. We took photographs and observed staff's interaction with a whiteboard in a 6-bed surgical suite dedicated to trauma service. We analyzed the integral role of artifacts in cognitive activities as when workers configure and manage visual spaces to simplify their cognitive tasks. We further identified characteristics of the whiteboard as a communicative information artifact in supporting coordination in fast-paced environments. We identified 8 ways in which the whiteboard was used by physicians, nurses, and with other personnel to support collaborative work: task management, team attention management, task status tracking, task articulation, resource planning and tracking, synchronous and asynchronous communication, multidisciplinary problem solving and negotiation, and socialization and team building. The whiteboard was highly communicative because of its location and installation method, high interactivity and usability, high expressiveness, and ability to visualize transition points to support work handoffs. Traditional information artifacts such as whiteboards play significant roles in supporting collaborative work. How these artifacts are used provides insights into complicated information needs of teamwork in highly dynamic, high-risk settings such as an ED.

  7. Visualizando el desarrollo de la nanomedicina en México.

    PubMed

    Robles-Belmont, Eduardo; Gortari-Rabiela, Rebeca de; Galarza-Barrios, Pilar; Siqueiros-García, Jesús Mario; Ruiz-León, Alejandro Arnulfo

    2017-01-01

    In this article we present a set of different visualizations of Mexico's nanomedicine scientific production data. Visualizations were developed using different methodologies for data analysis and visualization such as social network analysis, geography of science maps, and complex network communities analysis. Results are a multi-dimensional overview of the evolution of nanomedicine in Mexico. Moreover, visualizations allowed to identify trends and patterns of collaboration at the national and international level. Trends are also found in the knowledge structure of themes and disciplines. Finally, we identified the scientific communities in Mexico that are responsible for the new knowledge production in this emergent field of science. Copyright: © 2017 SecretarÍa de Salud

  8. Four types of ensemble coding in data visualizations.

    PubMed

    Szafir, Danielle Albers; Haroz, Steve; Gleicher, Michael; Franconeri, Steven

    2016-01-01

    Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.

  9. Visualization of regulations to support design and quality control--a long-term study.

    PubMed

    Blomé, Mikael

    2012-01-01

    The aim of the study was to visualize design regulations of furniture by means of interactive technology based on earlier studies and practical examples. The usage of the visualized regulations was evaluated on two occasions: at the start when the first set of regulations was presented, and after six years of usage of all regulations. The visualized regulations were the result of a design process involving experts and potential users in collaboration with IKEA of Sweden AB. The evaluations by the different users showed a very positive response to using visualized regulations. The participative approach, combining expertise in specific regulations with visualization of guidelines, resulted in clear presentations of important regulations, and great attitudes among the users. These kinds of visualizations have proved to be applicable in a variety of product areas at IKEA, with a potential for further dissemination. It is likely that the approaches to design and visualized regulations in this case study could function in other branches.

  10. KNMI DataLab experiences in serving data-driven innovations

    NASA Astrophysics Data System (ADS)

    Noteboom, Jan Willem; Sluiter, Raymond

    2016-04-01

    Climate change research and innovations in weather forecasting rely more and more on (Big) data. Besides increasing data from traditional sources (such as observation networks, radars and satellites), the use of open data, crowd sourced data and the Internet of Things (IoT) is emerging. To deploy these sources of data optimally in our services and products, KNMI has established a DataLab to serve data-driven innovations in collaboration with public and private sector partners. Big data management, data integration, data analytics including machine learning and data visualization techniques are playing an important role in the DataLab. Cross-domain data-driven innovations that arise from public-private collaborative projects and research programmes can be explored, experimented and/or piloted by the KNMI DataLab. Furthermore, advice can be requested on (Big) data techniques and data sources. In support of collaborative (Big) data science activities, scalable environments are offered with facilities for data integration, data analysis and visualization. In addition, Data Science expertise is provided directly or from a pool of internal and external experts. At the EGU conference, gained experiences and best practices are presented in operating the KNMI DataLab to serve data-driven innovations for weather and climate applications optimally.

  11. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  12. Arctic Collaborative Environment: A New Multi-National Partnership for Arctic Science and Decision Support

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A,; Kress, Martin P.; McCracken, Jeff E.; Spehn, Stephen L.; Tanner, Steve

    2011-01-01

    The Arctic Collaborative Environment (ACE) project is a new international partnership for information sharing to meet the challenges of addressing Arctic. The goal of ACE is to create an open source, web-based, multi-national monitoring, analysis, and visualization decision-support system for Arctic environmental assessment, management, and sustainability. This paper will describe the concept, system architecture, and data products that are being developed and disseminated among partners and independent users through remote access.

  13. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    NASA Technical Reports Server (NTRS)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  14. Spontaneous Group Learning in Ambient Learning Environments

    NASA Astrophysics Data System (ADS)

    Bick, Markus; Jughardt, Achim; Pawlowski, Jan M.; Veith, Patrick

    Spontaneous Group Learning is a concept to form and facilitate face-to-face, ad-hoc learning groups in collaborative settings. We show how to use Ambient Intelligence to identify, support, and initiate group processes. Learners' positions are determined by widely used technologies, e.g., Bluetooth and WLAN. As a second step, learners' positions, tasks, and interests are visualized. Finally, a group process is initiated supported by relevant documents and services. Our solution is a starting point to develop new didactical solutions for collaborative processes.

  15. VISUAL3D - An EIT network on visualization of geomodels

    NASA Astrophysics Data System (ADS)

    Bauer, Tobias

    2017-04-01

    When it comes to interpretation of data and understanding of deep geological structures and bodies at different scales then modelling tools and modelling experience is vital for deep exploration. Geomodelling provides a platform for integration of different types of data, including new kinds of information (e.g., new improved measuring methods). EIT Raw Materials, initiated by the EIT (European Institute of Innovation and Technology) and funded by the European Commission, is the largest and strongest consortium in the raw materials sector worldwide. The VISUAL3D network of infrastructure is an initiative by EIT Raw Materials and aims at bringing together partners with 3D-4D-visualisation infrastructure and 3D-4D-modelling experience. The recently formed network collaboration interlinks hardware, software and expert knowledge in modelling visualization and output. A special focus will be the linking of research, education and industry and integrating multi-disciplinary data and to visualize the data in three and four dimensions. By aiding network collaborations we aim at improving the combination of geomodels with differing file formats and data characteristics. This will create an increased competency in modelling visualization and the ability to interchange and communicate models more easily. By combining knowledge and experience in geomodelling with expertise in Virtual Reality visualization partners of EIT Raw Materials but also external parties will have the possibility to visualize, analyze and validate their geomodels in immersive VR-environments. The current network combines partners from universities, research institutes, geological surveys and industry with a strong background in geological 3D-modelling and 3D visualization and comprises: Luleå University of Technology, Geological Survey of Finland, Geological Survey of Denmark and Greenland, TUBA Freiberg, Uppsala University, Geological Survey of France, RWTH Aachen, DMT, KGHM Cuprum, Boliden, Montan Universität Leoben, Slovenian National Building and Civil Engineering Institute, Tallinn University of Technology and Turku University. The infrastructure within the network comprises different types of capturing and visualization hardware, ranging from high resolution cubes, VR walls, VR goggle solutions, high resolution photogrammetry, UAVs, lidar-scanners, and many more.

  16. Programming (Tips) for Physicists & Engineers

    ScienceCinema

    Ozcan, Erkcan

    2018-02-19

    Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.

  17. Programming (Tips) for Physicists & Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Erkcan

    2010-07-13

    Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.

  18. HydroShare: A Platform for Collaborative Data and Model Sharing in Hydrology

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Couch, A.; Hooper, R. P.; Dash, P. K.; Stealey, M.; Yi, H.; Bandaragoda, C.; Castronova, A. M.

    2017-12-01

    HydroShare is an online, collaboration system for sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined by standardized content types for data formats and models commonly used in hydrology. With HydroShare you can: Share your data and models with colleagues; Manage who has access to the content that you share; Share, access, visualize and manipulate a broad set of hydrologic data types and models; Use the web services application programming interface (API) to program automated and client access; Publish data and models and obtain a citable digital object identifier (DOI); Aggregate your resources into collections; Discover and access data and models published by others; Use web apps to visualize, analyze and run models on data in HydroShare. This presentation will describe the functionality and architecture of HydroShare highlighting its use as a virtual environment supporting education and research. HydroShare has components that support: (1) resource storage, (2) resource exploration, and (3) web apps for actions on resources. The HydroShare data discovery, sharing and publishing functions as well as HydroShare web apps provide the capability to analyze data and execute models completely in the cloud (servers remote from the user) overcoming desktop platform limitations. The HydroShare GIS app provides a basic capability to visualize spatial data. The HydroShare JupyterHub Notebook app provides flexible and documentable execution of Python code snippets for analysis and modeling in a way that results can be shared among HydroShare users and groups to support research collaboration and education. We will discuss how these developments can be used to support different types of educational efforts in Hydrology where being completely web based is of value in an educational setting as students can all have access to the same functionality regardless of their computer.

  19. Science and the city: A visual journey towards a critical place based science education

    NASA Astrophysics Data System (ADS)

    Ibrahim, Sheliza

    The inclusion of societal and environmental considerations during the teaching and learning of science and technology has been a central focus among science educators for many decades. Major initiatives in science and technology curriculum advocate for science, technology, society and environment (STSE). Yet, it is surprising that despite these longstanding discussions, it is only recently that a handful of researchers have turned to students' 'places' (and the literature of place based education) to serve as a source of teaching and learning in science education. In my study, I explore three issues evident in place based science education. First, it seems that past scholarship focused on place-based projects which explore issues usually proposed by government initiatives, university affiliation, or community organizations. Second, some of the studies fail to pay extended attention to the collaborative and intergenerational agency that occurs between researcher, teacher, student, and community member dynamics, nor does it share the participatory action research process in order to understand how teacher practice, student learning, and researcher/local collaborations might help pedagogy emerge. The third issue is that past place-based projects, rarely if ever, return to the projects to remember the collaborative efforts and question what aspects sustained after they were complete. To address these issues, I propose a critical place based science education (CPBSE) model. I describe a participatory action research project that develops and explores the CPBSE model. The data were gathered collaboratively among teachers, researchers, and students over 3 years (2006-2008), via digital video ethnography, photographs, and written reflections. The data were analysed using a case study approach and the constant comparative method. I discuss the implications for its practice in the field of STSE and place based education. I conclude that an effective pedagogical model of CPBSE comprises of three stages: critical visualizing, investigating, remembering, by sharing Science and the City (a case study that connects science to place using visual imagery).

  20. Client-side Medical Image Colorization in a Collaborative Environment.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2015-01-01

    The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities.

  1. Computer-assisted concept mapping: Visual aids for knowledge construction

    PubMed Central

    Mammen, Jennifer R.

    2016-01-01

    Background Concept mapping is a visual representation of ideas that facilitates critical thinking and is applicable to many areas of nursing education. Computer-Assisted Concept Maps are more flexible and less constrained than traditional paper methods, allowing for analysis and synthesis of complex topics and larger amounts of data. Ability to iteratively revise and collaboratively create computerized maps can contribute to enhanced interpersonal learning. However, there is limited awareness of free software that can support these types of applications. Discussion This educational brief examines affordances and limitations of Computer-Assisted Concept Maps and reviews free software for development of complex, collaborative malleable maps. Free software such as VUE, Xmind, MindMaple, and others can substantially contribute to utility of concept-mapping for nursing education. Conclusions Computerized concept-mapping is an important tool for nursing and is likely to hold greater benefit for students and faculty than traditional pen and paper methods alone. PMID:27351610

  2. David Hubel and Torsten Wiesel.

    PubMed

    Hubel, David; Wiesel, Torsten

    2012-07-26

    While attending medical school at McGill, David Hubel developed an interest in the nervous system during the summers he spent at the Montreal Neurological Institute. After heading to the United States in 1954 for a Neurology year at Johns Hopkins, he was drafted by the army and was assigned to the Neuropsychiatry Division at the Walter Reed Hospital, where he began his career in research and did his first recordings from the visual cortex of sleeping and awake cats. In 1958, he moved to the lab of Stephen Kuffler at Johns Hopkins, where he began a long and fruitful collaboration with Torsten Wiesel. Born in Sweden, Torsten Wiesel began his scientific career at the Karolinska Institute, where he received his medical degree in 1954. After spending a year in Carl Gustaf Bernhard's laboratory doing basic neurophysiological research, he moved to the United States to be a postdoctoral fellow with Stephen Kuffler. It was at Johns Hopkins where he met David Hubel in 1958, and they began working together on exploring the receptive field properties of neurons in the visual cortex. Their collaboration continued until the late seventies. Hubel and Wiesel's work provided fundamental insight into information processing in the visual system and laid the foundation for the field of visual neuroscience. They have had many achievements, including--but not limited to--the discovery of orientation selectivity in visual cortex neurons and the characterization of the columnar organization of visual cortex through their discovery of orientation columns and ocular-dominance columns. Their work earned them the Nobel Prize for Physiology or Medicine in 1981, which they shared with Roger Sperry. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. VAMPS: a website for visualization and analysis of microbial population structures.

    PubMed

    Huse, Susan M; Mark Welch, David B; Voorhis, Andy; Shipunova, Anna; Morrison, Hilary G; Eren, A Murat; Sogin, Mitchell L

    2014-02-05

    The advent of next-generation DNA sequencing platforms has revolutionized molecular microbial ecology by making the detailed analysis of complex communities over time and space a tractable research pursuit for small research groups. However, the ability to generate 10⁵-10⁸ reads with relative ease brings with it many downstream complications. Beyond the computational resources and skills needed to process and analyze data, it is difficult to compare datasets in an intuitive and interactive manner that leads to hypothesis generation and testing. We developed the free web service VAMPS (Visualization and Analysis of Microbial Population Structures, http://vamps.mbl.edu) to address these challenges and to facilitate research by individuals or collaborating groups working on projects with large-scale sequencing data. Users can upload marker gene sequences and associated metadata; reads are quality filtered and assigned to both taxonomic structures and to taxonomy-independent clusters. A simple point-and-click interface allows users to select for analysis any combination of their own or their collaborators' private data and data from public projects, filter these by their choice of taxonomic and/or abundance criteria, and then explore these data using a wide range of analytic methods and visualizations. Each result is extensively hyperlinked to other analysis and visualization options, promoting data exploration and leading to a greater understanding of data relationships. VAMPS allows researchers using marker gene sequence data to analyze the diversity of microbial communities and the relationships between communities, to explore these analyses in an intuitive visual context, and to download data, results, and images for publication. VAMPS obviates the need for individual research groups to make the considerable investment in computational infrastructure and bioinformatic support otherwise necessary to process, analyze, and interpret massive amounts of next-generation sequence data. Any web-capable device can be used to upload, process, explore, and extract data and results from VAMPS. VAMPS encourages researchers to share sequence and metadata, and fosters collaboration between researchers of disparate biomes who recognize common patterns in shared data.

  4. A survey on sensor coverage and visual data capturing/processing/transmission in wireless visual sensor networks.

    PubMed

    Yap, Florence G H; Yen, Hong-Hsu

    2014-02-20

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.

  5. A Survey on Sensor Coverage and Visual Data Capturing/Processing/Transmission in Wireless Visual Sensor Networks

    PubMed Central

    Yap, Florence G. H.; Yen, Hong-Hsu

    2014-01-01

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs. PMID:24561401

  6. Distributed visualization of gridded geophysical data: the Carbon Data Explorer, version 0.2.3

    NASA Astrophysics Data System (ADS)

    Endsley, K. A.; Billmire, M. G.

    2016-01-01

    Due to the proliferation of geophysical models, particularly climate models, the increasing resolution of their spatiotemporal estimates of Earth system processes, and the desire to easily share results with collaborators, there is a genuine need for tools to manage, aggregate, visualize, and share data sets. We present a new, web-based software tool - the Carbon Data Explorer - that provides these capabilities for gridded geophysical data sets. While originally developed for visualizing carbon flux, this tool can accommodate any time-varying, spatially explicit scientific data set, particularly NASA Earth system science level III products. In addition, the tool's open-source licensing and web presence facilitate distributed scientific visualization, comparison with other data sets and uncertainty estimates, and data publishing and distribution.

  7. XVIS: Visualization for the Extreme-Scale Scientific-Computation Ecosystem Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geveci, Berk; Maynard, Robert

    The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. The XVis project brought together collaborators from predominant DOE projects for visualization on accelerators and combining their respectivemore » features into a new visualization toolkit called VTK-m.« less

  8. Picturing the Earth: Geoscience in Public Art Abstract for AGU 2013: Geoscience through the Lens of Art. Author: Stacy Levy, Sere Ltd., Spring Mills, PA (Invited)

    NASA Astrophysics Data System (ADS)

    Levy, S.

    2013-12-01

    Public places such as parks, urban plazas, transportation centers and educational institutions offer the opportunity to reach many people in the course of daily life. Yet these public spaces are often devoid of any substantive information about the local environment and natural processes that have shaped it. Art is a particularly effective means to visualize environmental phenomena. Art has the ability to translate the processes of nature into visual information that communicates with clarity and beauty. People often have no connection to the world through which they walk: no sense of their place in the local watershed or where the rainwater goes once it hits the ground. Creating an awareness of place is critical first step for people to understand the changes in their world. Art can be a gateway for understanding geo-scientific concepts that are not frequently made accessible in a visual manner And art requires scientific knowledge to inform an accurate visualization of nature. Artists must collaborate with scientists in order to create art that informs the public about environmental processes. There is a new current in the design world that combines art and technology to create artful solutions to site issues such as storm water runoff, periodic flooding and habitat destruction. Instead of being considered functionless, art is now given a chance to do some real work on the site. This new combination of function and aesthetic concerns will have a major impact on how site issues are perceived. Site concerns that were once considered obstacles can become opportunities to visualize and celebrate how problems can be solved. This sort of artful solutions requires teamwork across many disciplines. In my presentation I will speak about various ways of I have visualized the invisible processes of the natural world in my projects. I will share eight of my permanent and temporary art commissions that are collaborations with scientists and engineers. These works reveal wetland habitats, tides, prevailing winds, rain and microorganisms, and water pollution. In examining each project I will detail the essential collaborations with scientists and engineers that brought the projects to fruition. I will discuss how the cross-discipline approach of scientists, engineers and designers made effective and artful solutions to site issues, and created visually stimulating and educational places. I will also look at the role of truth and metaphor in art and compare how accuracy and data collection have differing thresholds in art and in science.

  9. Tactile Sun: Bringing an Invisible Universe to the Visually Impaired

    NASA Astrophysics Data System (ADS)

    Isidro, G. M.; Pantoja, C. A.

    2014-07-01

    A tactile model of the Sun has been created as a strategy for communicating astronomy to the blind or visually impaired, and as a useful outreach tool for general audiences. The model design was a collaboration between an education specialist, an astronomy specialist and a sculptor. The tactile Sun has been used at astronomy outreach events in Puerto Rico to make activities more inclusive and to increase public awareness of the needs of those with disabilities.

  10. Finding Waldo: Learning about Users from their Interactions.

    PubMed

    Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco

    2014-12-01

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.

  11. Cross-Hemispheric Collaboration and Segregation Associated with Task Difficulty as Revealed by Structural and Functional Connectivity

    PubMed Central

    Cabeza, Roberto

    2015-01-01

    Although it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks. PMID:26019335

  12. Visualized analysis of developing trends and hot topics in natural disaster research.

    PubMed

    Shen, Shi; Cheng, Changxiu; Yang, Jing; Yang, Shanli

    2018-01-01

    This study visualized and analyzed the developing trends and hot topics in natural disaster research. 19694 natural disaster-related articles (January 1900 to June 2015) are indexed in the Web of Science database. The first step in this study is using complex networks to visualize and analyze these articles. CiteSpace and Gephi were employed to generate a countries collaboration network and a disciplines collaboration network, and then attached hot topics to countries and disciplines, respectively. The results show that USA, China, and Italy are the three major contributors to natural disaster research. "Prediction model", "social vulnerability", and "landslide inventory map" are three hot topics in recent years. They have attracted attention not only from large countries like China but also from small countries like Panama and Turkey. Comparing two hybrid networks provides details of natural disaster research. Scientists from USA and China use image data to research earthquakes. Indonesia and Germany collaboratively study tsunamis in the Indian Ocean. However, Indonesian studies focus on modeling and simulations, while German research focuses on early warning technology. This study also introduces an activity index (AI) and an attractive index (AAI) to generate time evolution trajectories of some major countries from 2000 to 2013 and evaluate their trends and performance. Four patterns of evolution are visible during this 14-year period. China and India show steadily rising contributions and impacts, USA and England show relatively decreasing research efforts and impacts, Japan and Australia show fluctuating activities and stable attraction, and Spain and Germany show fluctuating activities and increasing impacts.

  13. Visualized analysis of developing trends and hot topics in natural disaster research

    PubMed Central

    Shen, Shi; Cheng, Changxiu; Yang, Jing; Yang, Shanli

    2018-01-01

    This study visualized and analyzed the developing trends and hot topics in natural disaster research. 19694 natural disaster-related articles (January 1900 to June 2015) are indexed in the Web of Science database. The first step in this study is using complex networks to visualize and analyze these articles. CiteSpace and Gephi were employed to generate a countries collaboration network and a disciplines collaboration network, and then attached hot topics to countries and disciplines, respectively. The results show that USA, China, and Italy are the three major contributors to natural disaster research. “Prediction model”, “social vulnerability”, and “landslide inventory map” are three hot topics in recent years. They have attracted attention not only from large countries like China but also from small countries like Panama and Turkey. Comparing two hybrid networks provides details of natural disaster research. Scientists from USA and China use image data to research earthquakes. Indonesia and Germany collaboratively study tsunamis in the Indian Ocean. However, Indonesian studies focus on modeling and simulations, while German research focuses on early warning technology. This study also introduces an activity index (AI) and an attractive index (AAI) to generate time evolution trajectories of some major countries from 2000 to 2013 and evaluate their trends and performance. Four patterns of evolution are visible during this 14-year period. China and India show steadily rising contributions and impacts, USA and England show relatively decreasing research efforts and impacts, Japan and Australia show fluctuating activities and stable attraction, and Spain and Germany show fluctuating activities and increasing impacts. PMID:29351350

  14. Researching Reflexively With Patients and Families: Two Studies Using Video-Reflexive Ethnography to Collaborate With Patients and Families in Patient Safety Research.

    PubMed

    Collier, Aileen; Wyer, Mary

    2016-06-01

    Patient safety research has to date offered few opportunities for patients and families to be actively involved in the research process. This article describes our collaboration with patients and families in two separate studies, involving end-of-life care and infection control in acute care. We used the collaborative methodology of video-reflexive ethnography, which has been primarily used with clinicians, to involve patients and families as active participants and collaborators in our research. The purpose of this article is to share our experiences and findings that iterative researcher reflexivity in the field was critical to the progress and success of each study. We present and analyze the complexities of reflexivity-in-the-field through a framework of multilayered reflexivity. We share our lessons here for other researchers seeking to actively involve patients and families in patient safety research using collaborative visual methods. © The Author(s) 2015.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean

    A new field of research, visual analytics, has recently been introduced. This has been defined as “the science of analytical reasoning facilitated by visual interfaces." Visual analytic environments, therefore, support analytical reasoning using visual representations and interactions, with data representations and transformation capabilities, to support production, presentation and dissemination. As researchers begin to develop visual analytic environments, it will be advantageous to develop metrics and methodologies to help researchers measure the progress of their work and understand the impact their work will have on the users who will work in such environments. This paper presents five areas or aspects ofmore » visual analytic environments that should be considered as metrics and methodologies for evaluation are developed. Evaluation aspects need to include usability, but it is necessary to go beyond basic usability. The areas of situation awareness, collaboration, interaction, creativity, and utility are proposed as areas for initial consideration. The steps that need to be undertaken to develop systematic evaluation methodologies and metrics for visual analytic environments are outlined.« less

  16. Crowdsourcing Broad Absorption Line Properties and Other Features of Quasar Outflow Using Zooniverse Citizen Science Project Platform

    NASA Astrophysics Data System (ADS)

    Crowe, Cassie; Lundgren, Britt; Grier, Catherine

    2018-01-01

    The Sloan Digital Sky Survey (SDSS) regularly publishes vast catalogs of quasars and other astronomical objects. Previously, the SDSS collaboration has used visual inspection to check quasar redshift validity and flag instances of broad absorption lines (BALs). This information helps researchers to easily single out the quasars with BAL properties and study their outflows and other intervening gas clouds. Due to the ever-growing number of new SDSS quasar observations, visual inspections are no longer possible using previous methods. Currently, BAL information is being determined entirely computationally, and the accuracy of that information is not precisely known. This project uses the Zooniverse citizen science platform to visually inspect quasar spectra for BAL properties, to check the accuracy of the current autonomous methods, and to flag multi-phase outflows and find candidates for in-falling gas into the quasar central engine. The layout and format of a Zooniverse project provides an easier way to inspect and record data on each spectrum and share the workload via crowdsourcing. Work done by the SDSS collaboration members is serving as a beta test for a public project upon the official release of the DR14 quasar catalog by SDSS.

  17. SWATShare- A Platform for Collaborative Hydrology Research and Education with Cyber-enabled Sharing, Running and Visualization of SWAT Models

    NASA Astrophysics Data System (ADS)

    Rajib, M. A.; Merwade, V.; Song, C.; Zhao, L.; Kim, I. L.; Zhe, S.

    2014-12-01

    Setting up of any hydrologic model requires a large amount of efforts including compilation of all the data, creation of input files, calibration and validation. Given the amount of efforts involved, it is possible that models for a watershed get created multiple times by multiple groups or organizations to accomplish different research, educational or policy goals. To reduce the duplication of efforts and enable collaboration among different groups or organizations around an already existing hydrology model, a platform is needed where anyone can search for existing models, perform simple scenario analysis and visualize model results. The creator and users of a model on such a platform can then collaborate to accomplish new research or educational objectives. From this perspective, a prototype cyber-infrastructure (CI), called SWATShare, is developed for sharing, running and visualizing Soil Water Assessment Tool (SWAT) models in an interactive GIS-enabled web environment. Users can utilize SWATShare to publish or upload their own models, search and download existing SWAT models developed by others, run simulations including calibration using high performance resources provided by XSEDE and Cloud. Besides running and sharing, SWATShare hosts a novel spatio-temporal visualization system for SWAT model outputs. In temporal scale, the system creates time-series plots for all the hydrology and water quality variables available along the reach as well as in watershed-level. In spatial scale, the system can dynamically generate sub-basin level thematic maps for any variable at any user-defined date or date range; and thereby, allowing users to run animations or download the data for subsequent analyses. In addition to research, SWATShare can also be used within a classroom setting as an educational tool for modeling and comparing the hydrologic processes under different geographic and climatic settings. SWATShare is publicly available at https://www.water-hub.org/swatshare.

  18. Technology and Science Education: Starting Points, Research Programs, and Trends.

    ERIC Educational Resources Information Center

    Linn, Marcia C.

    2003-01-01

    Explores technology in science education in five paths: (1) science texts and lectures; (2) science discussions and collaboration; (3) data collection and representation; (4) science visualization; and (5) science simulation and modeling. (Contains 92 references.) (Author/SOE)

  19. Traffic flow visualization and control (TFVC) : final report

    DOT National Transportation Integrated Search

    1998-11-01

    The TFVC system was developed in collaboration with the New York State Department of Transportation, the Federal Highway Administration, and the US Air Force Research Laboratory. It is a video-camera-based, wide-area, traffic surveillance and detecti...

  20. Reducing the Analytical Bottleneck for Domain Scientists: Lessons from a Climate Data Visualization Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Poco, Jorge; Bertini, Enrico

    2016-01-01

    The gap between large-scale data production rate and the rate of generation of data-driven scientific insights has led to an analytical bottleneck in scientific domains like climate, biology, etc. This is primarily due to the lack of innovative analytical tools that can help scientists efficiently analyze and explore alternative hypotheses about the data, and communicate their findings effectively to a broad audience. In this paper, by reflecting on a set of successful collaborative research efforts between with a group of climate scientists and visualization researchers, we introspect how interactive visualization can help reduce the analytical bottleneck for domain scientists.

  1. Applications of Java and Vector Graphics to Astrophysical Visualization

    NASA Astrophysics Data System (ADS)

    Edirisinghe, D.; Budiardja, R.; Chae, K.; Edirisinghe, G.; Lingerfelt, E.; Guidry, M.

    2002-12-01

    We describe a series of projects utilizing the portability of Java programming coupled with the compact nature of vector graphics (SVG and SWF formats) for setup and control of calculations, local and collaborative visualization, and interactive 2D and 3D animation presentations in astrophysics. Through a set of examples, we demonstrate how such an approach can allow efficient and user-friendly control of calculations in compiled languages such as Fortran 90 or C++ through portable graphical interfaces written in Java, and how the output of such calculations can be packaged in vector-based animation having interactive controls and extremely high visual quality, but very low bandwidth requirements.

  2. Geoscience Through the Lens of Art: a collaborative course of science and art for undergraduates of various disciplines

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Eriksson, S. C.; Samsel, F.; Lavier, L.

    2017-12-01

    A new undergraduate, upper level geoscience course was developed and taught by faculty and staff of the UT Austin Jackson School of Geosciences, the Center for Agile Technology, and the Texas Advanced Computational Center. The course examined the role of the visual arts in placing the scientific process and knowledge in a broader context and introduced students to innovations in the visual arts that promote scientific investigation through collaboration between geoscientists and artists. The course addressed (1) the role of the visual arts in teaching geoscience concepts and promoting geoscience learning; (2) the application of innovative visualization and artistic techniques to large volumes of geoscience data to enhance scientific understanding and to move scientific investigation forward; and (3) the illustrative power of art to communicate geoscience to the public. In-class activities and discussions, computer lab instruction on the application of Paraview software, reading assignments, lectures, and group projects with presentations comprised the two-credit, semester-long "special topics" course, which was taken by geoscience, computer science, and engineering students. Assessment of student learning was carried out by the instructors and course evaluation was done by an external evaluator using rubrics, likert-scale surveys and focus goups. The course achieved its goals of students' learning the concepts and techniques of the visual arts. The final projects demonstrated this, along with the communication of geologic concepts using what they had learned in the course. The basic skill of sketching for learning and using best practices in visual communication were used extensively and, in most cases, very effectively. The use of an advanced visualization tool, Paraview, was received with mixed reviews because of the lack of time to really learn the tool and the fact that it is not a tool used routinely in geoscience. Those senior students with advanced computer skills saw the importance of this tool. Students worked in teams, more or less effectively, and made suggestions for improving future offerings of the course.

  3. ClimatePipes: User-Friendly Data Access, Manipulation, Analysis & Visualization of Community Climate Models

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; DeMarle, D.; Burnett, B.; Harris, C.; Silva, W.; Osmari, D.; Geveci, B.; Silva, C.; Doutriaux, C.; Williams, D. N.

    2013-12-01

    The impact of climate change will resonate through a broad range of fields including public health, infrastructure, water resources, and many others. Long-term coordinated planning, funding, and action are required for climate change adaptation and mitigation. Unfortunately, widespread use of climate data (simulated and observed) in non-climate science communities is impeded by factors such as large data size, lack of adequate metadata, poor documentation, and lack of sufficient computational and visualization resources. We present ClimatePipes to address many of these challenges by creating an open source platform that provides state-of-the-art, user-friendly data access, analysis, and visualization for climate and other relevant geospatial datasets, making the climate data available to non-researchers, decision-makers, and other stakeholders. The overarching goals of ClimatePipes are: - Enable users to explore real-world questions related to climate change. - Provide tools for data access, analysis, and visualization. - Facilitate collaboration by enabling users to share datasets, workflows, and visualization. ClimatePipes uses a web-based application platform for its widespread support on mainstream operating systems, ease-of-use, and inherent collaboration support. The front-end of ClimatePipes uses HTML5 (WebGL, Canvas2D, CSS3) to deliver state-of-the-art visualization and to provide a best-in-class user experience. The back-end of the ClimatePipes is built around Python using the Visualization Toolkit (VTK, http://vtk.org), Climate Data Analysis Tools (CDAT, http://uv-cdat.llnl.gov), and other climate and geospatial data processing tools such as GDAL and PROJ4. ClimatePipes web-interface to query and access data from remote sources (such as ESGF). Shown in the figure is climate data layer from ESGF on top of map data layer from OpenStreetMap. The ClimatePipes workflow editor provides flexibility and fine grained control, and uses the VisTrails (http://www.vistrails.org) workflow engine in the backend.

  4. Distributed visualization framework architecture

    NASA Astrophysics Data System (ADS)

    Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger

    2010-01-01

    An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and debug cycle.

  5. OpenSpace: From Data Visualization Research to Planetariums and Classrooms Worldwide

    NASA Astrophysics Data System (ADS)

    Emmart, C.; Ynnerman, A.; Bock, A.; Kuznetsova, M. M.; Kinzler, R. J.; Trakinski, V.; Mac Low, M. M.; Ebel, D. S. S.

    2016-12-01

    "OpenSpace" is a new NASA supported open source software that brings the latest techniques from data visualization research to the planetarium community and general public. The American Museum of Natural History (AMNH), in collaboration with informal science institutions (ISI), academic partners, key vendors that support planetariums worldwide, and NASA mission teams and Subject Matter Experts (SME), is creating OpenSpace to enable STEM education and improve U.S. scientific literacy by engaging a broad spectrum of the American public and STEM learners in cutting-edge NASA science and engineering content. The project's primary focus is the interactive presentation of dynamic data from observations (image sequences), astrophysical simulation (volumetric rendering), and space missions (observation geometry visualization). Development of the software began several years ago in collaboration with NASA Goddard's space weather modeling center and in conjunction with academic support from Linköping University (LiU) in Sweden, and continued last year with visualizations of NASA's New Horizons mission and ESA's Rosetta mission. For the New Horizons Pluto encounter, a dozen sites around the world running OpenSpace networked simultaneously to view the close approach to Pluto as narrated in real time by mission control scientists at NASA's Jet Propulsion Laboratory. Subsequent image data from the Long Range Reconnaissance Imaging (LORRI) camera was released by NASA as it downloaded from the spacecraft in the following months. These images, along with post encounter navigation reconstruction data (NASA SPICE) were then used to update the OpenSpace New Horizons visualization, and create a February 2016 public program in which Deputy Project Scientist, Cathy Olkin, demonstrated these results visualized in OpenSpace to a sold out crowd in the AMNH Hayden Planetarium. As demonstrated with the New Horizons visualization in OpenSpace, the goals of the project are to make visible mission planning, discoveries and theoretical simulations within an evolving software designed for live demonstration accompanied by authoritative description.

  6. Science.

    ERIC Educational Resources Information Center

    Roach, Linda E., Ed.

    This document contains the following papers on science instruction and technology: "A 3-D Journey in Space: A New Visual Cognitive Adventure" (Yoav Yair, Rachel Mintz, and Shai Litvak); "Using Collaborative Inquiry and Interactive Technologies in an Environmental Science Project for Middle School Teachers: A Description and…

  7. Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas

    2016-04-01

    1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of terabytes. The combination of different data sources (e.g., MOLA, HRSC, HiRISE) and selection of presented data (e.g., infrared, spectral, imagery) is also supported. Furthermore, the data is presented unchanged and with the highest possible resolution for the target setup (e.g., power-wall, workstation, laptop) and view distance. The visualization techniques for the volumetric data sets can handle VTK [6] based data sets and also support different grid types as well as a time component. In detail, the integrated volume rendering uses a GPU based ray casting algorithm which was adapted to work in spherical coordinate systems. This approach results in interactive frame-rates without compromising visual fidelity. Besides direct visualization via volume rendering the prototype supports interactive slicing, extraction of iso-surfaces and probing. The latter can also be used for side-by-side comparison and on-the-fly diagram generation within the application. Similarily to the surface data a combination of different data sources is supported as well. For example, the extracted iso-surface of a scalar pressure field can be used for the visualization of the temperature. The software development is supported by the ViSTA VR-toolkit [7] and supports different target systems as well as a wide range of VR-devices. Furthermore, the prototype is scalable to run on laptops, workstations and cluster setups. REFERENCES [1] A. S. Garcia, D. J. Roberts, T. Fernando, C. Bar, R. Wolff, J. Dodiya, W. Engelke, and A. Gerndt, "A collaborative workspace architecture for strengthening collaboration among space scientists," in IEEE Aerospace Conference, (Big Sky, Montana, USA), 7-14 March 2015. [2] W. Engelke, "Mars Cartography VR System 2/3." German Aerospace Center (DLR), 2015. Project Deliverable D4.2. [3] E. Hivon, F. K. Hansen, and A. J. Banday, "The healpix primer," arXivpreprint astro-ph/9905275, 1999. [4] K. M. Gorski, E. Hivon, A. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, "Healpix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere," The Astrophysical Journal, vol. 622, no. 2, p. 759, 2005. [5] R. Westerteiger, A. Gerndt, and B. Hamann, "Spherical terrain render- ing using the hierarchical healpix grid," VLUDS, vol. 11, pp. 13-23, 2011. [6] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit. Kitware, 4 ed., 2006. [7] T. van Reimersdahl, T. Kuhlen, A. Gerndt, J. Henrichs, and C. Bischof, "ViSTA: a multimodal, platform-independent VR-toolkit based on WTK, VTK, and MPI," in Proceedings of the 4th International Immersive Projection Technology Workshop (IPT), 2000.

  8. Efficient OCT Image Enhancement Based on Collaborative Shock Filtering

    PubMed Central

    2018-01-01

    Efficient enhancement of noisy optical coherence tomography (OCT) images is a key task for interpreting them correctly. In this paper, to better enhance details and layered structures of a human retina image, we propose a collaborative shock filtering for OCT image denoising and enhancement. Noisy OCT image is first denoised by a collaborative filtering method with new similarity measure, and then the denoised image is sharpened by a shock-type filtering for edge and detail enhancement. For dim OCT images, in order to improve image contrast for the detection of tiny lesions, a gamma transformation is first used to enhance the images within proper gray levels. The proposed method integrating image smoothing and sharpening simultaneously obtains better visual results in experiments. PMID:29599954

  9. Efficient OCT Image Enhancement Based on Collaborative Shock Filtering.

    PubMed

    Liu, Guohua; Wang, Ziyu; Mu, Guoying; Li, Peijin

    2018-01-01

    Efficient enhancement of noisy optical coherence tomography (OCT) images is a key task for interpreting them correctly. In this paper, to better enhance details and layered structures of a human retina image, we propose a collaborative shock filtering for OCT image denoising and enhancement. Noisy OCT image is first denoised by a collaborative filtering method with new similarity measure, and then the denoised image is sharpened by a shock-type filtering for edge and detail enhancement. For dim OCT images, in order to improve image contrast for the detection of tiny lesions, a gamma transformation is first used to enhance the images within proper gray levels. The proposed method integrating image smoothing and sharpening simultaneously obtains better visual results in experiments.

  10. Louisiana: a model for advancing regional e-Research through cyberinfrastructure.

    PubMed

    Katz, Daniel S; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-06-28

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date.

  11. TUTORIAL: Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity

    NASA Astrophysics Data System (ADS)

    Fernández, E.; Pelayo, F.; Romero, S.; Bongard, M.; Marin, C.; Alfaro, A.; Merabet, L.

    2005-12-01

    Clinical applications such as artificial vision require extraordinary, diverse, lengthy and intimate collaborations among basic scientists, engineers and clinicians. In this review, we present the state of research on a visual neuroprosthesis designed to interface with the occipital visual cortex as a means through which a limited, but useful, visual sense could be restored in profoundly blind individuals. We review the most important physiological principles regarding this neuroprosthetic approach and emphasize the role of neural plasticity in order to achieve desired behavioral outcomes. While full restoration of fine detailed vision with current technology is unlikely in the immediate near future, the discrimination of shapes and the localization of objects should be possible allowing blind subjects to navigate in a unfamiliar environment and perhaps even to read enlarged text. Continued research and development in neuroprosthesis technology will likely result in a substantial improvement in the quality of life of blind and visually impaired individuals.

  12. Using a Teaching Intervention and Calibrated Peer Review™ Diagnostics to Improve Visual Communication Skills.

    PubMed

    Saterbak, Ann; Moturu, Anoosha; Volz, Tracy

    2018-03-01

    Rice University's bioengineering department incorporates written, oral, and visual communication instruction into its undergraduate curriculum to aid student learning and to prepare students to communicate their knowledge and discoveries precisely and persuasively. In a tissue culture lab course, we used a self- and peer-review tool called Calibrated Peer Review™ (CPR) to diagnose student learning gaps in visual communication skills on a poster assignment. We then designed an active learning intervention that required students to practice the visual communication skills that needed improvement and used CPR to measure the changes. After the intervention, we observed that students performed significantly better in their ability to develop high quality graphs and tables that represent experimental data. Based on these outcomes, we conclude that guided task practice, collaborative learning, and calibrated peer review can be used to improve engineering students' visual communication skills.

  13. WebMedSA: a web-based framework for segmenting and annotating medical images using biomedical ontologies

    NASA Astrophysics Data System (ADS)

    Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra

    2015-12-01

    Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.

  14. An extreme events laboratory to provide network centric collaborative situation assessment and decision making

    NASA Astrophysics Data System (ADS)

    Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.

    2009-05-01

    Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.

  15. The GLOBAL Learning and Observations to Benefit the Environment (GLOBE) Collaboration System. Building a robust international collaboration environment for teachers, scientists and students.

    NASA Astrophysics Data System (ADS)

    Overoye, D.; Lewis, C.

    2016-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is a worldwide hands-on, primary and secondary school-based science and education program founded on Earth Day 1995. Implemented in 117 countries, GLOBE promotes the teaching and learning of science, supporting students, teachers and scientists worldwide to collaborate with each other on inquiry-based investigations of the Earth system. As an international platform supporting a large number and variety of stakeholders, the GLOBE Data Information System (DIS) was re-built with the goal of providing users the support needed to foster and develop collaboration between teachers, students and scientists while supporting the collection and visualization of over 50 different earth science investigations (protocols). There have been many challenges to consider as we have worked to prototype and build various tools to support collaboration across the GLOBE community - language, security, time zones, user roles and the Child Online Protection Act (COPA) to name a few. During the last 3 years the re-built DIS has been in operation we have supported user to user collaboration, school to school collaboration, project/campaign to user collaboration and scientist to scientist collaboration. We have built search tools to facilitate finding collaboration partners. The tools and direction continue to evolve based on feedback, evolving needs and changes in technology. With this paper we discuss our approach for dealing with some of the collaboration challenges, review tools built to encourage and support collaboration, and analyze which tools have been successful and which have not. We will review new ideas for collaboration in the GLOBE community that are guiding upcoming development.

  16. 1+1=3: Cross-Discipline Collaboration Really Adds Up!

    ERIC Educational Resources Information Center

    Breen, Mindy

    2006-01-01

    The Department of Engineering & Design at Eastern Washington University (EWU) offers a bachelor of arts degree in visual communication design and bachelor of science degrees in mechanical engineering technology, manufacturing technology, construction technology, design technology, electrical engineering, computer engineering technology and…

  17. Integrated Modeling Environment

    NASA Technical Reports Server (NTRS)

    Mosier, Gary; Stone, Paul; Holtery, Christopher

    2006-01-01

    The Integrated Modeling Environment (IME) is a software system that establishes a centralized Web-based interface for integrating people (who may be geographically dispersed), processes, and data involved in a common engineering project. The IME includes software tools for life-cycle management, configuration management, visualization, and collaboration.

  18. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    ScienceCinema

    None

    2018-02-07

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  19. Wireless Communications Infrastructure for Collaboration in Common Space

    DTIC Science & Technology

    2004-03-01

    creation tools accessible to a broad range of computer graphics professionals in the film, broadcast, industrial design, visualization, game ... development and web design industries. It is one of the leading full 3D production solutions. Maya Complete is available for Windows 2000 Professional

  20. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-09-30

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  1. MyGeoHub: A Collaborative Geospatial Research and Education Platform

    NASA Astrophysics Data System (ADS)

    Kalyanam, R.; Zhao, L.; Biehl, L. L.; Song, C. X.; Merwade, V.; Villoria, N.

    2017-12-01

    Scientific research is increasingly collaborative and globally distributed; research groups now rely on web-based scientific tools and data management systems to simplify their day-to-day collaborative workflows. However, such tools often lack seamless interfaces, requiring researchers to contend with manual data transfers, annotation and sharing. MyGeoHub is a web platform that supports out-of-the-box, seamless workflows involving data ingestion, metadata extraction, analysis, sharing and publication. MyGeoHub is built on the HUBzero cyberinfrastructure platform and adds general-purpose software building blocks (GABBs), for geospatial data management, visualization and analysis. A data management building block iData, processes geospatial files, extracting metadata for keyword and map-based search while enabling quick previews. iData is pervasive, allowing access through a web interface, scientific tools on MyGeoHub or even mobile field devices via a data service API. GABBs includes a Python map library as well as map widgets that in a few lines of code, generate complete geospatial visualization web interfaces for scientific tools. GABBs also includes powerful tools that can be used with no programming effort. The GeoBuilder tool provides an intuitive wizard for importing multi-variable, geo-located time series data (typical of sensor readings, GPS trackers) to build visualizations supporting data filtering and plotting. MyGeoHub has been used in tutorials at scientific conferences and educational activities for K-12 students. MyGeoHub is also constantly evolving; the recent addition of Jupyter and R Shiny notebook environments enable reproducible, richly interactive geospatial analyses and applications ranging from simple pre-processing to published tools. MyGeoHub is not a monolithic geospatial science gateway, instead it supports diverse needs ranging from just a feature-rich data management system, to complex scientific tools and workflows.

  2. Finding Waldo: Learning about Users from their Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eli T.; Ottley, Alvitta; Zhao, Helen

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, wemore » conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.« less

  3. C-ME: A 3D Community-Based, Real-Time Collaboration Tool for Scientific Research and Training

    PubMed Central

    Kolatkar, Anand; Kennedy, Kevin; Halabuk, Dan; Kunken, Josh; Marrinucci, Dena; Bethel, Kelly; Guzman, Rodney; Huckaby, Tim; Kuhn, Peter

    2008-01-01

    The need for effective collaboration tools is growing as multidisciplinary proteome-wide projects and distributed research teams become more common. The resulting data is often quite disparate, stored in separate locations, and not contextually related. Collaborative Molecular Modeling Environment (C-ME) is an interactive community-based collaboration system that allows researchers to organize information, visualize data on a two-dimensional (2-D) or three-dimensional (3-D) basis, and share and manage that information with collaborators in real time. C-ME stores the information in industry-standard databases that are immediately accessible by appropriate permission within the computer network directory service or anonymously across the internet through the C-ME application or through a web browser. The system addresses two important aspects of collaboration: context and information management. C-ME allows a researcher to use a 3-D atomic structure model or a 2-D image as a contextual basis on which to attach and share annotations to specific atoms or molecules or to specific regions of a 2-D image. These annotations provide additional information about the atomic structure or image data that can then be evaluated, amended or added to by other project members. PMID:18286178

  4. Open Source Next Generation Visualization Software for Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Rinker, George

    2016-01-01

    Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).

  5. Ultrascale Visualization of Climate Data

    NASA Technical Reports Server (NTRS)

    Williams, Dean N.; Bremer, Timo; Doutriaux, Charles; Patchett, John; Williams, Sean; Shipman, Galen; Miller, Ross; Pugmire, David R.; Smith, Brian; Steed, Chad; hide

    2013-01-01

    Fueled by exponential increases in the computational and storage capabilities of high-performance computing platforms, climate simulations are evolving toward higher numerical fidelity, complexity, volume, and dimensionality. These technological breakthroughs are coming at a time of exponential growth in climate data, with estimates of hundreds of exabytes by 2020. To meet the challenges and exploit the opportunities that such explosive growth affords, a consortium of four national laboratories, two universities, a government agency, and two private companies formed to explore the next wave in climate science. Working in close collaboration with domain experts, the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) project aims to provide high-level solutions to a variety of climate data analysis and visualization problems.

  6. Probability with Collaborative Data Visualization Software

    ERIC Educational Resources Information Center

    Willis, Melinda B. N.; Hay, Sue; Martin, Fred G.; Scribner-MacLean, Michelle; Rudnicki, Ivan

    2015-01-01

    Mathematics teachers continually look for ways to make the learning of mathematics more active and engaging. Hands-on activities, in particular, have been demonstrated to improve student engagement and understanding in mathematics classes. Likewise, many scholars have emphasized the growing importance of giving students experience with the…

  7. Beyond Information Retrieval: Ways To Provide Content in Context.

    ERIC Educational Resources Information Center

    Wiley, Deborah Lynne

    1998-01-01

    Provides an overview of information retrieval from mainframe systems to Web search engines; discusses collaborative filtering, data extraction, data visualization, agent technology, pattern recognition, classification and clustering, and virtual communities. Argues that rather than huge data-storage centers and proprietary software, we need…

  8. Learning Dashboards

    ERIC Educational Resources Information Center

    Charleer, Sven; Klerkx, Joris; Duval, Erik

    2014-01-01

    This article explores how information visualization techniques can be applied to learning analytics data to help teachers and students deal with the abundance of learner traces. We also investigate how the affordances of large interactive surfaces can facilitate a collaborative sense-making environment for multiple students and teachers to explore…

  9. Making sense of sparse rating data in collaborative filtering via topographic organization of user preference patterns.

    PubMed

    Polcicová, Gabriela; Tino, Peter

    2004-01-01

    We introduce topographic versions of two latent class models (LCM) for collaborative filtering. Latent classes are topologically organized on a square grid. Topographic organization of latent classes makes orientation in rating/preference patterns captured by the latent classes easier and more systematic. The variation in film rating patterns is modelled by multinomial and binomial distributions with varying independence assumptions. In the first stage of topographic LCM construction, self-organizing maps with neural field organized according to the LCM topology are employed. We apply our system to a large collection of user ratings for films. The system can provide useful visualization plots unveiling user preference patterns buried in the data, without loosing potential to be a good recommender model. It appears that multinomial distribution is most adequate if the model is regularized by tight grid topologies. Since we deal with probabilistic models of the data, we can readily use tools from probability and information theories to interpret and visualize information extracted by our system.

  10. An End-User Participatory Approach to Collaboratively Refine HIV Care Data, The New York State Experience.

    PubMed

    Swain, Carol-Ann; Sawicki, Steven; Addison, Diane; Katz, Benjamin; Piersanti, Kelly; Baim-Lance, Abigail; Gordon, Daniel; Anderson, Bridget J; Nash, Denis; Steinbock, Clemens; Agins, Bruce

    2018-04-02

    Existing data dissemination structures primarily rely on top-down approaches. Unless designed with the end user in mind, this may impair data-driven clinical improvements to Human Immunodeficiency Virus (HIV) prevention and care. In this study, we implemented a data visualization activity to create region-specific data presentations collaboratively with HIV providers, consumers of HIV care, and New York State (NYS) Department of Health AIDS Institute staff for use in local HIV care decision-making. Data from the NYS HIV Surveillance Registry (2009-2013) and HIV care facilities (2010-2015) participating in a Health Resources and Services Administration (HRSA) Systems Linkages and Access to Care project were used. Each data package incorporated visuals for: linkage to HIV care, retention in care and HIV viral suppression. End-users were vocal about their data needs and their capacity to interpret public health data. This experience suggests that data dissemination strategies should incorporate input from the end user to improve comprehension and optimize HIV care.

  11. Computer-Assisted Concept Mapping: Visual Aids for Knowledge Construction.

    PubMed

    Mammen, Jennifer R

    2016-07-01

    Concept mapping is a visual representation of ideas that facilitates critical thinking and is applicable to many areas of nursing education. Computer-assisted concept maps are more flexible and less constrained than traditional paper methods, allowing for analysis and synthesis of complex topics and larger amounts of data. Ability to iteratively revise and collaboratively create computerized maps can contribute to enhanced interpersonal learning. However, there is limited awareness of free software that can support these types of applications. This educational brief examines affordances and limitations of computer-assisted concept maps and reviews free software for development of complex, collaborative malleable maps. Free software, such as VUE, XMind, MindMaple, and others, can substantially contribute to the utility of concept mapping for nursing education. Computerized concept-mapping is an important tool for nursing and is likely to hold greater benefit for students and faculty than traditional pen-and-paper methods alone. [J Nurs Educ. 2016;55(7):403-406.]. Copyright 2016, SLACK Incorporated.

  12. Using the Browser for Science: A Collaborative Toolkit for Astronomy

    NASA Astrophysics Data System (ADS)

    Connolly, A. J.; Smith, I.; Krughoff, K. S.; Gibson, R.

    2011-07-01

    Astronomical surveys have yielded hundreds of terabytes of catalogs and images that span many decades of the electromagnetic spectrum. Even when observatories provide user-friendly web interfaces, exploring these data resources remains a complex and daunting task. In contrast, gadgets and widgets have become popular in social networking (e.g. iGoogle, Facebook). They provide a simple way to make complex data easily accessible that can be customized based on the interest of the user. With ASCOT (an AStronomical COllaborative Toolkit) we expand on these concepts to provide a customizable and extensible gadget framework for use in science. Unlike iGoogle, where all of the gadgets are independent, the gadgets we develop communicate and share information, enabling users to visualize and interact with data through multiple, simultaneous views. With this approach, web-based applications for accessing and visualizing data can be generated easily and, by linking these tools together, integrated and powerful data analysis and discovery tools can be constructed.

  13. Collaborated measurement of three-dimensional position and orientation errors of assembled miniature devices with two vision systems

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Zhang, Wei; Luo, Yi; Yang, Weimin; Chen, Liang

    2013-01-01

    In assembly of miniature devices, the position and orientation of the parts to be assembled should be guaranteed during or after assembly. In some cases, the relative position or orientation errors among the parts can not be measured from only one direction using visual method, because of visual occlusion or for the features of parts located in a three-dimensional way. An automatic assembly system for precise miniature devices is introduced. In the modular assembly system, two machine vision systems were employed for measurement of the three-dimensionally distributed assembly errors. High resolution CCD cameras and high position repeatability precision stages were integrated to realize high precision measurement in large work space. The two cameras worked in collaboration in measurement procedure to eliminate the influence of movement errors of the rotational or translational stages. A set of templates were designed for calibration of the vision systems and evaluation of the system's measurement accuracy.

  14. Designing for competence: spaces that enhance collaboration readiness in healthcare.

    PubMed

    Lamb, Gerri; Shraiky, James

    2013-09-01

    Many universities in the United States are investing in classrooms and campuses designed to increase collaboration and teamwork among the health professions. To date, we know little about whether these learning spaces are having the intended impact on student performance. Recent advances in the identification of interprofessional teamwork competencies provide a much-needed step toward a defined outcome metric. Rigorous study of the relationship between design and student competence in collaboration also requires clear specification of design concepts and development of testable frameworks. Such theory-based evaluation is crucial for design to become an integral part of interprofessional education strategies and initiatives. Current classroom and campus designs were analyzed for common themes and features in collaborative spaces as a starting place for specification of design concepts and model development. Four major themes were identified: flexibility, visual transparency/proximity, technology and environmental infrastructure. Potential models linking this preliminary set of design concepts to student competencies are proposed and used to generate hypotheses for future study of the impact of collaborative design spaces on student outcomes.

  15. Cognitive Aspects of Collaboration in 3d Virtual Environments

    NASA Astrophysics Data System (ADS)

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  16. Capturing Public Interest in Astronomy through Art and Music

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Sabraw, J.; Salgado, J. F.; Statler, T.; Summers, F.

    2008-11-01

    This is a summary of our 90-minute International Year of Astronomy (IYA) symposium workshop about engaging greater public interest in astronomy during the International Year of Astronomy 2009 through art and music. The session focused on: (i) plans for visually interesting and challenging astronomy presentations to connect with an audience at venues such as museums, concert halls, etc that might be apprehensive about science but open to creative experiences; (ii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations; (iii) balancing scientific accuracy with artistic license; and (iv) how scientists, Education and Public Outreach (EPO) professionals, artists, musicians et al. can bridge the ``two cultures''---starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters shared with the EPO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of astronomical images that can accompany live performances of Holst's The Planets and Mussorgsky's Pictures at an Exhibition; and SCALE, a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.

  17. Reducing Time to Science: Unidata and JupyterHub Technology Using the Jetstream Cloud

    NASA Astrophysics Data System (ADS)

    Chastang, J.; Signell, R. P.; Fischer, J. L.

    2017-12-01

    Cloud computing can accelerate scientific workflows, discovery, and collaborations by reducing research and data friction. We describe the deployment of Unidata and JupyterHub technologies on the NSF-funded XSEDE Jetstream cloud. With the aid of virtual machines and Docker technology, we deploy a Unidata JupyterHub server co-located with a Local Data Manager (LDM), THREDDS data server (TDS), and RAMADDA geoscience content management system. We provide Jupyter Notebooks and the pre-built Python environments needed to run them. The notebooks can be used for instruction and as templates for scientific experimentation and discovery. We also supply a large quantity of NCEP forecast model results to allow data-proximate analysis and visualization. In addition, users can transfer data using Globus command line tools, and perform their own data-proximate analysis and visualization with Notebook technology. These data can be shared with others via a dedicated TDS server for scientific distribution and collaboration. There are many benefits of this approach. Not only is the cloud computing environment fast, reliable and scalable, but scientists can analyze, visualize, and share data using only their web browser. No local specialized desktop software or a fast internet connection is required. This environment will enable scientists to spend less time managing their software and more time doing science.

  18. Large-Scale Astrophysical Visualization on Smartphones

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Massimino, P.; Costa, A.; Gheller, C.; Grillo, A.; Krokos, M.; Petta, C.

    2011-07-01

    Nowadays digital sky surveys and long-duration, high-resolution numerical simulations using high performance computing and grid systems produce multidimensional astrophysical datasets in the order of several Petabytes. Sharing visualizations of such datasets within communities and collaborating research groups is of paramount importance for disseminating results and advancing astrophysical research. Moreover educational and public outreach programs can benefit greatly from novel ways of presenting these datasets by promoting understanding of complex astrophysical processes, e.g., formation of stars and galaxies. We have previously developed VisIVO Server, a grid-enabled platform for high-performance large-scale astrophysical visualization. This article reviews the latest developments on VisIVO Web, a custom designed web portal wrapped around VisIVO Server, then introduces VisIVO Smartphone, a gateway connecting VisIVO Web and data repositories for mobile astrophysical visualization. We discuss current work and summarize future developments.

  19. (Re)visualizing Black lesbian lives, (trans)masculinity, and township space in the documentary work of Zanele Muholi.

    PubMed

    Imma, Z'étoile

    2017-04-03

    This article explores the politics of representing Black queer and trans subjectivities in the recent documentary film and photography of South African lesbian visual activist Zanele Muholi. While Muholi's work has been most often been positioned as an artistic response to the hate-crimes and violence perpetuated against Black lesbians in South African townships, most notably acts of sexual violence known increasingly as corrective rape, I argue that Muholi's documentary texts trouble the spatial, gendered, and highly racialized articulations that make up an increasingly global corrective rape discourse. The article considers how her visual texts foreground and (re)visualize Black queer and trans gender experiences that relocate, challenge, collaborate with, and at times, perform, masculinity as means to subvert heterosexist and racist constructions of township space and the Black gendered body.

  20. Harnessing the web information ecosystem with wiki-based visualization dashboards.

    PubMed

    McKeon, Matt

    2009-01-01

    We describe the design and deployment of Dashiki, a public website where users may collaboratively build visualization dashboards through a combination of a wiki-like syntax and interactive editors. Our goals are to extend existing research on social data analysis into presentation and organization of data from multiple sources, explore new metaphors for these activities, and participate more fully in the web!s information ecology by providing tighter integration with real-time data. To support these goals, our design includes novel and low-barrier mechanisms for editing and layout of dashboard pages and visualizations, connection to data sources, and coordinating interaction between visualizations. In addition to describing these technologies, we provide a preliminary report on the public launch of a prototype based on this design, including a description of the activities of our users derived from observation and interviews.

  1. Quality of life in newly diagnosed glaucoma patients : The Collaborative Initial Glaucoma Treatment Study.

    PubMed

    Janz, N K; Wren, P A; Lichter, P R; Musch, D C; Gillespie, B W; Guire, K E

    2001-05-01

    The Collaborative Initial Glaucoma Treatment Study (CIGTS) was designed to determine whether patients with newly diagnosed open-angle glaucoma are better treated initially by medicine or immediate filtering surgery. This paper describes the quality-of-life (QOL) measurement approach, instruments included, and the CIGTS participants' QOL findings at the time of diagnosis. Baseline results from a randomized, controlled clinical trial. Six hundred seven patients from 14 clinical centers were enrolled. Patients randomized to initial medication received a stepped medical regimen (n = 307). Those randomized to initial surgery underwent a trabeculectomy (n = 300). The baseline interview was conducted before treatment initiation. All baseline and posttreatment QOL assessments were conducted by telephone from a centralized interviewing center. The primary outcome measure described in this paper was QOL. The QOL instrument is multidimensional and incorporates both disease-specific and generic measures, including the Visual Activities Questionnaire, Sickness Impact Profile, and a Symptom and Health Problem CHECKLIST: The correlations between QOL measures and clinical outcomes were in the expected direction, but relatively weak. At initial diagnosis, difficulty with bright lights and with light and dark adaptation were the most frequently reported symptoms related to visual function, whereas visual distortion was the most bothersome. Approximately half of the patients reported at least some worry or concern about the possibility of blindness. Within the Visual Activities Questionnaire, higher scores on the Peripheral Vision subscale were associated with more field loss (P < 0.01). In regression analyses controlling for sociodemographics and nonocular comorbidities, increased visual field loss was significantly associated with higher dysfunction among five disease-specific QOL measures (P < 0.05). Newly diagnosed glaucoma patients reported experiencing some visual function symptoms at the time of diagnosis that would not be intuitively expected based on clinical testing. Some discussion about the association between clinical presentation and worry about blindness may reduce unnecessary concern. These results provide the basis for long-term comparisons of the QOL effects of initial medical and surgical treatment for open-angle glaucoma.

  2. Visual interaction: models, systems, prototypes. The Pictorial Computing Laboratory at the University of Rome La Sapienza.

    PubMed

    Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele

    2006-06-01

    This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.

  3. Interactive Visualization of DGA Data Based on Multiple Views

    NASA Astrophysics Data System (ADS)

    Geng, Yujie; Lin, Ying; Ma, Yan; Guo, Zhihong; Gu, Chao; Wang, Mingtao

    2017-01-01

    The commission and operation of dissolved gas analysis (DGA) online monitoring makes up for the weakness of traditional DGA method. However, volume and high-dimensional DGA data brings a huge challenge for monitoring and analysis. In this paper, we present a novel interactive visualization model of DGA data based on multiple views. This model imitates multi-angle analysis by combining parallel coordinates, scatter plot matrix and data table. By offering brush, collaborative filter and focus + context technology, this model provides a convenient and flexible interactive way to analyze and understand the DGA data.

  4. A Location Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    DTIC Science & Technology

    2017-09-14

    Information Discovery and Retrieval Andrew J.M. Compton Follow this and additional works at: https://scholar.afit.edu/etd Part of the Digital...and Dissertations by an authorized administrator of AFIT Scholar. For more information , please contact richard.mansfield@afit.edu. Recommended Citation...

  5. PC-Based Virtual Reality for CAD Model Viewing

    ERIC Educational Resources Information Center

    Seth, Abhishek; Smith, Shana S.-F.

    2004-01-01

    Virtual reality (VR), as an emerging visualization technology, has introduced an unprecedented communication method for collaborative design. VR refers to an immersive, interactive, multisensory, viewer-centered, 3D computer-generated environment and the combination of technologies required to build such an environment. This article introduces the…

  6. Why Color Matters: The Effect of Visual Cues on Learner's Interpretation of Dark Matter in a Cosmology Visualization

    NASA Astrophysics Data System (ADS)

    Buck, Z.

    2013-04-01

    As we turn more and more to high-end computing to understand the Universe at cosmological scales, visualizations of simulations will take on a vital role as perceptual and cognitive tools. In collaboration with the Adler Planetarium and University of California High-Performance AstroComputing Center (UC-HiPACC), I am interested in better understanding the use of visualizations to mediate astronomy learning across formal and informal settings. The aspect of my research that I present here uses quantitative methods to investigate how learners are relying on color to interpret dark matter in a cosmology visualization. The concept of dark matter is vital to our current understanding of the Universe, and yet we do not know how to effectively present dark matter visually to support learning. I employ an alternative treatment post-test only experimental design, in which members of an equivalent sample are randomly assigned to one of three treatment groups, followed by treatment and a post-test. Results indicate significant correlation (p < .05) between the color of dark matter in the visualization and survey responses, implying that aesthetic variations like color can have a profound effect on audience interpretation of a cosmology visualization.

  7. The role of 3-D interactive visualization in blind surveys of H I in galaxies

    NASA Astrophysics Data System (ADS)

    Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.

    2015-09-01

    Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.

  8. Louisiana: a model for advancing regional e-Research through cyberinfrastructure

    PubMed Central

    Katz, Daniel S.; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D.; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-01-01

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date. PMID:19451102

  9. Internet-based distributed collaborative environment for engineering education and design

    NASA Astrophysics Data System (ADS)

    Sun, Qiuli

    2001-07-01

    This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the same geometric model simultaneously over the Internet and communicate with each other through a chat room. They can also conduct finite element analysis collaboratively on the same object over the Internet. They can mesh the same object, apply and edit the same boundary conditions and forces, obtain the same analysis results, and then discuss the results through the Internet.

  10. Principles and tools for collaborative entity-based intelligence analysis.

    PubMed

    Bier, Eric A; Card, Stuart K; Bodnar, John W

    2010-01-01

    Software tools that make it easier for analysts to collaborate as a natural part of their work will lead to better analysis that is informed by more perspectives. We are interested to know if software tools can be designed that support collaboration even as they allow analysts to find documents and organize information (including evidence, schemas, and hypotheses). We have modified the Entity Workspace system, described previously, to test such designs. We have evaluated the resulting design in both a laboratory study and a study where it is situated with an analysis team. In both cases, effects on collaboration appear to be positive. Key aspects of the design include an evidence notebook optimized for organizing entities (rather than text characters), information structures that can be collapsed and expanded, visualization of evidence that emphasizes events and documents (rather than emphasizing the entity graph), and a notification system that finds entities of mutual interest to multiple analysts. Long-term tests suggest that this approach can support both top-down and bottom-up styles of analysis.

  11. Image Recommendation Algorithm Using Feature-Based Collaborative Filtering

    NASA Astrophysics Data System (ADS)

    Kim, Deok-Hwan

    As the multimedia contents market continues its rapid expansion, the amount of image contents used in mobile phone services, digital libraries, and catalog service is increasing remarkably. In spite of this rapid growth, users experience high levels of frustration when searching for the desired image. Even though new images are profitable to the service providers, traditional collaborative filtering methods cannot recommend them. To solve this problem, in this paper, we propose feature-based collaborative filtering (FBCF) method to reflect the user's most recent preference by representing his purchase sequence in the visual feature space. The proposed approach represents the images that have been purchased in the past as the feature clusters in the multi-dimensional feature space and then selects neighbors by using an inter-cluster distance function between their feature clusters. Various experiments using real image data demonstrate that the proposed approach provides a higher quality recommendation and better performance than do typical collaborative filtering and content-based filtering techniques.

  12. Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science

    NASA Astrophysics Data System (ADS)

    Lui, Michelle Mei Yee

    This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective visualizations in the activity. Discrete findings demonstrate how the above variables, through their design as inquiry components (i.e., activity, room, scripts and scaffolds on devices, collective visualizations), can mediate the students' interactions with one another, with their teacher, and impact the outcomes of their inquiry. A set of design recommendations is drawn from the results of this research to guide future design or research efforts.

  13. Team Leader: Tom Peters--TAP Information Services

    ERIC Educational Resources Information Center

    Library Journal, 2005

    2005-01-01

    Tom Peters packs 36 hours of work into the confines of a 24-hour day. Without breaking a sweat, he juggles multiple collaborative projects, which currently include an Illinois academic library shared storage facility; a multistate virtual reference and instruction service for blind and visually impaired individuals (InfoEyes); a virtual meeting…

  14. Visual Narrative Research Methods as Performance in Industrial Design Education

    ERIC Educational Resources Information Center

    Campbell, Laurel H.; McDonagh, Deana

    2009-01-01

    This article discusses teaching empathic research methodology as performance. The authors describe their collaboration in an activity to help undergraduate industrial design students learn empathy for others when designing products for use by diverse or underrepresented people. The authors propose that an industrial design curriculum would benefit…

  15. Internet 2 Health Sciences Initiative.

    ERIC Educational Resources Information Center

    Simco, Greg

    2003-01-01

    The Internet 2 (I2) health sciences initiative (I2HSI) involves the formulation of applications and supporting technologies, and guidelines for their use in the health sciences. Key elements of I2HSI include use of visualization, collaboration, medical informatics, telemedicine, and educational tools that support the health sciences. Specific…

  16. Oral Conversations Online: Redefining Oral Competence in Synchronous Environments

    ERIC Educational Resources Information Center

    Lamy, Marie-Noelle

    2004-01-01

    In this article the focus is on methodology for analysing learner-learner oral conversations mediated by computers. With the increasing availability of synchronous voice-based groupware and the additional facilities offered by audio-graphic tools, language learners have opportunities for collaborating on oral tasks, supported by visual and textual…

  17. Assessment of Students with Sensory Disabilities: Evidence-Based Practices

    ERIC Educational Resources Information Center

    Bruce, Susan M.; Luckner, John L.; Ferrell, Kay A.

    2018-01-01

    This article presents an overview of recommended practices for assessing students who are deaf/hard of hearing, visually impaired, or deafblind. These recommendations were originally derived from a systematic review of research studies, policy documents, and professional literature on assessment (1990-2013) for the Collaboration for Effective…

  18. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    ERIC Educational Resources Information Center

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  19. Constructive, Collaborative, Contextual, and Self-Directed Learning in Surface Anatomy Education

    ERIC Educational Resources Information Center

    Bergman, Esther M.; Sieben, Judith M.; Smailbegovic, Ida; de Bruin, Anique B. H.; Scherpbier, Albert J. J. A.; van der Vleuten, Cees P. M.

    2013-01-01

    Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and…

  20. Increasing Secondary Teachers' Capacity to Integrate the Arts

    ERIC Educational Resources Information Center

    Richard, Byron; Treichel, Christa J.

    2013-01-01

    Examples from a team of collaborating secondary teachers--one visual arts teacher and one science teacher--highlight key aspects of this professional development project in arts integration. The article traces a regional network designed to build teacher capacity with implications for the design, effectiveness, and sustainability of professional…

  1. Dancing in Place: Site-Specific Work

    ERIC Educational Resources Information Center

    Metal-Corbin, Josie

    2012-01-01

    In her lecture the 2012 NDA Scholar/Artist, Josie Metal-Corbin, chronicles four decades of working with artists, educators, librarians, and scientists. The kinetic language of dance and the visual impact of specific environments provide provocative opportunities for collaboration, wherein the site becomes the framework or map for the dance design.…

  2. Qualitative Network Analysis Tools for the Configurative Articulation of Cultural Value and Impact from Research

    ERIC Educational Resources Information Center

    Oancea, Alis; Florez Petour, Teresa; Atkinson, Jeanette

    2017-01-01

    This article introduces a methodological approach for articulating and communicating the impact and value of research: qualitative network analysis using collaborative configuration tracing and visualization. The approach was proposed initially in Oancea ("Interpretations and Practices of Research Impact across the Range of Disciplines…

  3. The Scratch Programming Language and Environment

    ERIC Educational Resources Information Center

    Maloney, John; Resnick, Mitchel; Rusk, Natalie; Silverman, Brian; Eastmond, Evelyn

    2010-01-01

    Scratch is a visual programming environment that allows users (primarily ages 8 to 16) to learn computer programming while working on personally meaningful projects such as animated stories and games. A key design goal of Scratch is to support self-directed learning through tinkering and collaboration with peers. This article explores how the…

  4. 50 Years of renal physiology from one man and the perfused tubule: Maurice B. Burg.

    PubMed

    Hamilton, Kirk L; Moore, Antoni B

    2016-08-01

    Technical advancements in research techniques in science are made in slow increments. Even so, large advances from insight and hard work of an individual with a single technique can have astonishing ramifications. Here, we examine the impact of Dr. Maurice B. Burg and the isolated perfused renal tubule technique and celebrate the 50th anniversary of the publication by Dr. Burg and his colleagues of their landmark paper in the American Journal of Physiology in 1966. In this study, we have taken a scientific visualization approach to study the scientific contributions of Dr. Burg and the isolated perfused tubule preparation as determining research impact by the number of research students, postdoctoral fellows, visiting scientists, and national and international collaborators. Additionally, we have examined the research collaborations (first and second generation scientists), established the migrational visualization of the first generation scientists who worked directly with Dr. Burg, quantified the metrics indices, identified and quantified the network of coauthorship of the first generation scientists with their second generation links, and determined the citations analyses of outputs of Dr. Burg and/or his first generation collaborators as coauthors. We also review the major advances in kidney physiology that have been made with the isolated perfused tubule technique. Finally, we are all waiting for the discoveries that the isolated perfused preparation technique will bring during the next 50 years. Copyright © 2016 the American Physiological Society.

  5. Treatment of hyperkalemia: something old, something new.

    PubMed

    Sterns, Richard H; Grieff, Marvin; Bernstein, Paul L

    2016-03-01

    Treatment options for hyperkalemia have not changed much since the introduction of the cation exchange resin, sodium polystyrene sulfonate (Kayexalate, Covis Pharmaceuticals, Cary, NC), over 50 years ago. Although clinicians of that era did not have ready access to hemodialysis or loop diuretics, the other tools that we use today-calcium, insulin, and bicarbonate-were well known to them. Currently recommended insulin regimens provide too little insulin to achieve blood levels with a maximal kalemic effect and too little glucose to avoid hypoglycemia. Short-acting insulins have theoretical advantages over regular insulin in patients with severe kidney disease. Although bicarbonate is no longer recommended for acute management, it may be useful in patients with metabolic acidosis or intact kidney function. Kayexalate is not effective as acute therapy, but a new randomized controlled trial suggests that it is effective when given more chronically. Gastrointestinal side effects and safety concerns about Kayexalate remain. New investigational potassium binders are likely to be approved in the coming year. Although there are some concerns about hypomagnesemia and positive calcium balance from patiromer, and sodium overload from ZS-9 (ZS Pharma, Coppell, TX), both agents have been shown to be effective and well tolerated when taken chronically. ZS-9 shows promise in the acute treatment of hyperkalemia and may make it possible to avoid or postpone the most effective therapy, emergency hemodialysis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. A neurocomputational theory of how explicit learning bootstraps early procedural learning.

    PubMed

    Paul, Erick J; Ashby, F Gregory

    2013-01-01

    It is widely accepted that human learning and memory is mediated by multiple memory systems that are each best suited to different requirements and demands. Within the domain of categorization, at least two systems are thought to facilitate learning: an explicit (declarative) system depending largely on the prefrontal cortex, and a procedural (non-declarative) system depending on the basal ganglia. Substantial evidence suggests that each system is optimally suited to learn particular categorization tasks. However, it remains unknown precisely how these systems interact to produce optimal learning and behavior. In order to investigate this issue, the present research evaluated the progression of learning through simulation of categorization tasks using COVIS, a well-known model of human category learning that includes both explicit and procedural learning systems. Specifically, the model's parameter space was thoroughly explored in procedurally learned categorization tasks across a variety of conditions and architectures to identify plausible interaction architectures. The simulation results support the hypothesis that one-way interaction between the systems occurs such that the explicit system "bootstraps" learning early on in the procedural system. Thus, the procedural system initially learns a suboptimal strategy employed by the explicit system and later refines its strategy. This bootstrapping could be from cortical-striatal projections that originate in premotor or motor regions of cortex, or possibly by the explicit system's control of motor responses through basal ganglia-mediated loops.

  7. Effectiveness of a 10-week tier-1 response to intervention program in improving fine motor and visual-motor skills in general education kindergarten students.

    PubMed

    Ohl, Alisha M; Graze, Hollie; Weber, Karen; Kenny, Sabrina; Salvatore, Christie; Wagreich, Sarah

    2013-01-01

    This study examined the efficacy of a 10-wk Tier 1 Response to Intervention (RtI) program developed in collaboration with classroom teachers to improve the fine motor and visual-motor skills of general education kindergarten students. We recruited 113 students in six elementary schools. Two general education kindergarten classrooms at each school participated in the study. Classrooms were randomly assigned to the intervention and control groups. Fine motor skills, pencil grip, and visual-motor integration were measured at the beginning of the school year and after the 10-wk intervention. The intervention group demonstrated a statistically significant increase in fine motor and visual-motor skills, whereas the control group demonstrated a slight decline in both areas. Neither group demonstrated a change in pencil grip. This study provides preliminary evidence that a Tier 1 RtI program can improve fine motor and visual-motor skills in kindergarten students. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  8. Visualizing Dynamic Bitcoin Transaction Patterns.

    PubMed

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J

    2016-06-01

    This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network.

  9. Visualizing Dynamic Bitcoin Transaction Patterns

    PubMed Central

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J.

    2016-01-01

    Abstract This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715

  10. ICASE/LaRC Symposium on Visualizing Time-Varying Data

    NASA Technical Reports Server (NTRS)

    Banks, D. C. (Editor); Crockett, T. W. (Editor); Stacy, K. (Editor)

    1996-01-01

    Time-varying datasets present difficult problems for both analysis and visualization. For example, the data may be terabytes in size, distributed across mass storage systems at several sites, with time scales ranging from femtoseconds to eons. In response to these challenges, ICASE and NASA Langley Research Center, in cooperation with ACM SIGGRAPH, organized the first symposium on visualizing time-varying data. The purpose was to bring the producers of time-varying data together with visualization specialists to assess open issues in the field, present new solutions, and encourage collaborative problem-solving. These proceedings contain the peer-reviewed papers which were presented at the symposium. They cover a broad range of topics, from methods for modeling and compressing data to systems for visualizing CFD simulations and World Wide Web traffic. Because the subject matter is inherently dynamic, a paper proceedings cannot adequately convey all aspects of the work. The accompanying video proceedings provide additional context for several of the papers.

  11. A reference web architecture and patterns for real-time visual analytics on large streaming data

    NASA Astrophysics Data System (ADS)

    Kandogan, Eser; Soroker, Danny; Rohall, Steven; Bak, Peter; van Ham, Frank; Lu, Jie; Ship, Harold-Jeffrey; Wang, Chun-Fu; Lai, Jennifer

    2013-12-01

    Monitoring and analysis of streaming data, such as social media, sensors, and news feeds, has become increasingly important for business and government. The volume and velocity of incoming data are key challenges. To effectively support monitoring and analysis, statistical and visual analytics techniques need to be seamlessly integrated; analytic techniques for a variety of data types (e.g., text, numerical) and scope (e.g., incremental, rolling-window, global) must be properly accommodated; interaction, collaboration, and coordination among several visualizations must be supported in an efficient manner; and the system should support the use of different analytics techniques in a pluggable manner. Especially in web-based environments, these requirements pose restrictions on the basic visual analytics architecture for streaming data. In this paper we report on our experience of building a reference web architecture for real-time visual analytics of streaming data, identify and discuss architectural patterns that address these challenges, and report on applying the reference architecture for real-time Twitter monitoring and analysis.

  12. NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.

    PubMed

    Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus

    2014-12-01

    We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.

  13. Physical and Visual Accessibilities in Intensive Care Units: A Comparative Study of Open-Plan and Racetrack Units.

    PubMed

    Rashid, Mahbub; Khan, Nayma; Jones, Belinda

    2016-01-01

    This study compared physical and visual accessibilities and their associations with staff perception and interaction behaviors in 2 intensive care units (ICUs) with open-plan and racetrack layouts. For the study, physical and visual accessibilities were measured using the spatial analysis techniques of Space Syntax. Data on staff perception were collected from 81 clinicians using a questionnaire survey. The locations of 2233 interactions, and the location and length of another 339 interactions in these units were collected using systematic field observation techniques. According to the study, physical and visual accessibilities were different in the 2 ICUs, and clinicians' primary workspaces were physically and visually more accessible in the open-plan ICU. Physical and visual accessibilities affected how well clinicians' knew their peers and where their peers were located in these units. Physical and visual accessibilities also affected clinicians' perception of interaction and communication and of teamwork and collaboration in these units. Additionally, physical and visual accessibilities showed significant positive associations with interaction behaviors in these units, with the open-plan ICU showing stronger associations. However, physical accessibilities were less important than visual accessibilities in relation to interaction behaviors in these ICUs. The implications of these findings for ICU design are discussed.

  14. a Kml-Based Approach for Distributed Collaborative Interpretation of Remote Sensing Images in the Geo-Browser

    NASA Astrophysics Data System (ADS)

    Huang, L.; Zhu, X.; Guo, W.; Xiang, L.; Chen, X.; Mei, Y.

    2012-07-01

    Existing implementations of collaborative image interpretation have many limitations for very large satellite imageries, such as inefficient browsing, slow transmission, etc. This article presents a KML-based approach to support distributed, real-time, synchronous collaborative interpretation for remote sensing images in the geo-browser. As an OGC standard, KML (Keyhole Markup Language) has the advantage of organizing various types of geospatial data (including image, annotation, geometry, etc.) in the geo-browser. Existing KML elements can be used to describe simple interpretation results indicated by vector symbols. To enlarge its application, this article expands KML elements to describe some complex image processing operations, including band combination, grey transformation, geometric correction, etc. Improved KML is employed to describe and share interpretation operations and results among interpreters. Further, this article develops some collaboration related services that are collaboration launch service, perceiving service and communication service. The launch service creates a collaborative interpretation task and provides a unified interface for all participants. The perceiving service supports interpreters to share collaboration awareness. Communication service provides interpreters with written words communication. Finally, the GeoGlobe geo-browser (an extensible and flexible geospatial platform developed in LIESMARS) is selected to perform experiments of collaborative image interpretation. The geo-browser, which manage and visualize massive geospatial information, can provide distributed users with quick browsing and transmission. Meanwhile in the geo-browser, GIS data (for example DEM, DTM, thematic map and etc.) can be integrated to assist in improving accuracy of interpretation. Results show that the proposed method is available to support distributed collaborative interpretation of remote sensing image

  15. The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.

    2005-12-01

    The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy-to-use system for constructing SHA computations, a browser-based workflow assembly web portal has been developed. Users can compose complex SHA calculations, specifying SCEC/CME data sets as inputs to calculations, and calling SCEC/CME computational programs to process the data and the output. Knowledge-based software tools have been implemented that utilize ontological descriptions of SHA software and data can validate workflows created with this pathway assembly tool. Data visualization software developed by the collaboration supports analysis and validation of data sets. Several programs have been developed to visualize SCEC/CME data including GMT-based map making software for PSHA codes, 4D wavefield propagation visualization software based on OpenGL, and 3D Geowall-based visualization of earthquakes, faults, and seismic wave propagation. The SCEC/CME Project also helps to sponsor the SCEC UseIT Intern program. The UseIT Intern Program provides research opportunities in both Geosciences and Information Technology to undergraduate students in a variety of fields. The UseIT group has developed a 3D data visualization tool, called SCEC-VDO, as a part of this undergraduate research program.

  16. Collaborating and sharing data in epilepsy research.

    PubMed

    Wagenaar, Joost B; Worrell, Gregory A; Ives, Zachary; Dümpelmann, Matthias; Matthias, Dümpelmann; Litt, Brian; Schulze-Bonhage, Andreas

    2015-06-01

    Technological advances are dramatically advancing translational research in Epilepsy. Neurophysiology, imaging, and metadata are now recorded digitally in most centers, enabling quantitative analysis. Basic and translational research opportunities to use these data are exploding, but academic and funding cultures prevent this potential from being realized. Research on epileptogenic networks, antiepileptic devices, and biomarkers could progress rapidly if collaborative efforts to digest this "big neuro data" could be organized. Higher temporal and spatial resolution data are driving the need for novel multidimensional visualization and analysis tools. Crowd-sourced science, the same that drives innovation in computer science, could easily be mobilized for these tasks, were it not for competition for funding, attribution, and lack of standard data formats and platforms. As these efforts mature, there is a great opportunity to advance Epilepsy research through data sharing and increase collaboration between the international research community.

  17. Collaboratively Conceived, Designed and Implemented: Matching Visualization Tools with Geoscience Data Collections and Geoscience Data Collections with Visualization Tools via the ToolMatch Service.

    NASA Astrophysics Data System (ADS)

    Hoebelheinrich, N. J.; Lynnes, C.; West, P.; Ferritto, M.

    2014-12-01

    Two problems common to many geoscience domains are the difficulties in finding tools to work with a given dataset collection, and conversely, the difficulties in finding data for a known tool. A collaborative team from the Earth Science Information Partnership (ESIP) has gotten together to design and create a web service, called ToolMatch, to address these problems. The team began their efforts by defining an initial, relatively simple conceptual model that addressed the two uses cases briefly described above. The conceptual model is expressed as an ontology using OWL (Web Ontology Language) and DCterms (Dublin Core Terms), and utilizing standard ontologies such as DOAP (Description of a Project), FOAF (Friend of a Friend), SKOS (Simple Knowledge Organization System) and DCAT (Data Catalog Vocabulary). The ToolMatch service will be taking advantage of various Semantic Web and Web standards, such as OpenSearch, RESTful web services, SWRL (Semantic Web Rule Language) and SPARQL (Simple Protocol and RDF Query Language). The first version of the ToolMatch service was deployed in early fall 2014. While more complete testing is required, a number of communities besides ESIP member organizations have expressed interest in collaborating to create, test and use the service and incorporate it into their own web pages, tools and / or services including the USGS Data Catalog service, DataONE, the Deep Carbon Observatory, Virtual Solar Terrestrial Observatory (VSTO), and the U.S. Global Change Research Program. In this session, presenters will discuss the inception and development of the ToolMatch service, the collaborative process used to design, refine, and test the service, and future plans for the service.

  18. Networks of Collaboration among Scientists in a Center for Diabetes Translation Research

    PubMed Central

    Harris, Jenine K.; Wong, Roger; Thompson, Kellie; Haire-Joshu, Debra; Hipp, J. Aaron

    2015-01-01

    Background Transdisciplinary collaboration is essential in addressing the translation gap between scientific discovery and delivery of evidence-based interventions to prevent and treat diabetes. We examined patterns of collaboration among scientists at the Washington University Center for Diabetes Translation Research. Methods Members (n = 56) of the Washington University Center for Diabetes Translation Research were surveyed about collaboration overall and on publications, presentations, and grants; 87.5% responded (n = 49). We used traditional and network descriptive statistics and visualization to examine the networks and exponential random graph modeling to identify predictors of collaboration. Results The 56 network members represented nine disciplines. On average, network members had been affiliated with the center for 3.86 years (s.d. = 1.41). The director was by far the most central in all networks. The overall and publication networks were the densest, while the overall and grant networks were the most centralized. The grant network was the most transdisciplinary. The presentation network was the least dense, least centralized, and least transdisciplinary. For every year of center affiliation, network members were 10% more likely to collaborate (OR: 1.10; 95% CI: 1.00–1.21) and 13% more likely to write a paper together (OR: 1.13; 95% CI: 1.02–1.25). Network members in the same discipline were over twice as likely to collaborate in the overall network (OR: 2.10; 95% CI: 1.40–3.15); however, discipline was not associated with collaboration in the other networks. Rank was not associated with collaboration in any network. Conclusions As transdisciplinary centers become more common, it is important to identify structural features, such as a central leader and ongoing collaboration over time, associated with scholarly productivity and, ultimately, with advancing science and practice. PMID:26301873

  19. Networks of Collaboration among Scientists in a Center for Diabetes Translation Research.

    PubMed

    Harris, Jenine K; Wong, Roger; Thompson, Kellie; Haire-Joshu, Debra; Hipp, J Aaron

    2015-01-01

    Transdisciplinary collaboration is essential in addressing the translation gap between scientific discovery and delivery of evidence-based interventions to prevent and treat diabetes. We examined patterns of collaboration among scientists at the Washington University Center for Diabetes Translation Research. Members (n = 56) of the Washington University Center for Diabetes Translation Research were surveyed about collaboration overall and on publications, presentations, and grants; 87.5% responded (n = 49). We used traditional and network descriptive statistics and visualization to examine the networks and exponential random graph modeling to identify predictors of collaboration. The 56 network members represented nine disciplines. On average, network members had been affiliated with the center for 3.86 years (s.d. = 1.41). The director was by far the most central in all networks. The overall and publication networks were the densest, while the overall and grant networks were the most centralized. The grant network was the most transdisciplinary. The presentation network was the least dense, least centralized, and least transdisciplinary. For every year of center affiliation, network members were 10% more likely to collaborate (OR: 1.10; 95% CI: 1.00-1.21) and 13% more likely to write a paper together (OR: 1.13; 95% CI: 1.02-1.25). Network members in the same discipline were over twice as likely to collaborate in the overall network (OR: 2.10; 95% CI: 1.40-3.15); however, discipline was not associated with collaboration in the other networks. Rank was not associated with collaboration in any network. As transdisciplinary centers become more common, it is important to identify structural features, such as a central leader and ongoing collaboration over time, associated with scholarly productivity and, ultimately, with advancing science and practice.

  20. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    NASA Technical Reports Server (NTRS)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  1. Collaboration in Controller-Pilot Communication

    NASA Technical Reports Server (NTRS)

    Morrow, Daniel; Lebacqz, J. Victor (Technical Monitor)

    1994-01-01

    Like other forms of dialogue, air traffic control (ATC) communication is an act of collaboration between two or more people. Collaboration progresses more or less smoothly depending on speaker and listener strategies. For example, we have found that the way controllers organize and deliver messages influences how easily pilots understand these messages, which in turn determines how much time and effort is needed to successfully complete the transaction. In this talk, I will introduce a collaborative framework for investigating controller-pilot communication and then describe a set of studies that investigate ATC communication from two complementary directions. First, we focused on the impact of ATC message factors (e.g., length, speech rate) on the cognitive processes involved in ATC: communication. Second, we examined pilot factors that influence the amount of cognitive resources available for these communication processes. These studies also illustrate how the collaborate framework can help analyze the impact of proposed visual data link systems on ATC communication. Examining the joint effects of communication medium, message factors, and pilot/controller factors on performance should help improve air safety and communication efficiency. Increased efficiency is important for meeting the growing demands on the National Air System.

  2. Overview of EVE - the event visualization environment of ROOT

    NASA Astrophysics Data System (ADS)

    Tadel, Matevž

    2010-04-01

    EVE is a high-level visualization library using ROOT's data-processing, GUI and OpenGL interfaces. It is designed as a framework for object management offering hierarchical data organization, object interaction and visualization via GUI and OpenGL representations. Automatic creation of 2D projected views is also supported. On the other hand, it can serve as an event visualization toolkit satisfying most HEP requirements: visualization of geometry, simulated and reconstructed data such as hits, clusters, tracks and calorimeter information. Special classes are available for visualization of raw-data. Object-interaction layer allows for easy selection and highlighting of objects and their derived representations (projections) across several views (3D, Rho-Z, R-Phi). Object-specific tooltips are provided in both GUI and GL views. The visual-configuration layer of EVE is built around a data-base of template objects that can be applied to specific instances of visualization objects to ensure consistent object presentation. The data-base can be retrieved from a file, edited during the framework operation and stored to file. EVE prototype was developed within the ALICE collaboration and has been included into ROOT in December 2007. Since then all EVE components have reached maturity. EVE is used as the base of AliEve visualization framework in ALICE, Firework physics-oriented event-display in CMS, and as the visualization engine of FairRoot in FAIR.

  3. High End Visualization of Geophysical Datasets Using Immersive Technology: The SIO Visualization Center.

    NASA Astrophysics Data System (ADS)

    Newman, R. L.

    2002-12-01

    How many images can you display at one time with Power Point without getting "postage stamps"? Do you have fantastic datasets that you cannot view because your computer is too slow/small? Do you assume a few 2-D images of a 3-D picture are sufficient? High-end visualization centers can minimize and often eliminate these problems. The new visualization center [http://siovizcenter.ucsd.edu] at Scripps Institution of Oceanography [SIO] immerses users into a virtual world by projecting 3-D images onto a Panoram GVR-120E wall-sized floor-to-ceiling curved screen [7' x 23'] that has 3.2 mega-pixels of resolution. The Infinite Reality graphics subsystem is driven by a single-pipe SGI Onyx 3400 with a system bandwidth of 44 Gbps. The Onyx is powered by 16 MIPS R12K processors and 16 GB of addressable memory. The system is also equipped with transmitters and LCD shutter glasses which permit stereographic 3-D viewing of high-resolution images. This center is ideal for groups of up to 60 people who can simultaneously view these large-format images. A wide range of hardware and software is available, giving the users a totally immersive working environment in which to display, analyze, and discuss large datasets. The system enables simultaneous display of video and audio streams from sources such as SGI megadesktop and stereo megadesktop, S-VHS video, DVD video, and video from a Macintosh or PC. For instance, one-third of the screen might be displaying S-VHS video from a remotely-operated-vehicle [ROV], while the remaining portion of the screen might be used for an interactive 3-D flight over the same parcel of seafloor. The video and audio combinations using this system are numerous, allowing users to combine and explore data and images in innovative ways, greatly enhancing scientists' ability to visualize, understand and collaborate on complex datasets. In the not-distant future, with the rapid growth in networking speeds in the US, it will be possible for Earth Sciences Departments to collaborate effectively while limiting the amount of physical travel required. This includes porting visualization content to the popular, low-cost Geowall visualization systems, and providing web-based access to databanks filled with stock geoscience visualizations.

  4. Capturing Public Interest in Astronomy through Art and Music

    NASA Astrophysics Data System (ADS)

    Sharma, Mangala; Sabraw, J.; Salgado, J. F.; Statler, T. S.; Summers, F.

    2008-05-01

    Our 90-minute interactive panel and brainstorming session is about engaging greater public interest in astronomy during IYA 2009 through art and music. This session will focus on: (i) plans for visually interesting and challenging astronomy presentations (examples below) to connect with an audience at venues such as museums, concert halls, etc. that might be apprehensive about science but open to creative experiences (ii) ways to capitalize on interest generated through the arts to inspire lifelong appreciation of astronomy (iii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations (iv) balancing scientific accuracy with artistic license (v) ways to publicize and disseminate programs at the interface of astronomy and the fine arts; and (vi) how scientists, E/PO professionals, artists, musicians et al. can bridge the "two cultures" - starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters will share with the E/PO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of Solar System images that can accompany live performances of Holst's The Planets; and SCALE: a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.

  5. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities.more » The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.« less

  6. Documenting women's postoperative bodies: Knowing Stephanie and "Remembering Stephanie" as collaborative cancer narratives.

    PubMed

    DeShazer, Mary K

    2014-12-01

    Photographic representations of women living with or beyond breast cancer have gained prominence in recent decades. Postmillennial visual narratives are both documentary projects and dialogic sites of self-construction and reader-viewer witness. After a brief overview of 30 years of breast cancer photography, this essay analyzes a collaborative photo-documentary by Stephanie Byram and Charlee Brodsky, Knowing Stephanie (2003), and a memorial photographic essay by Brodsky written ten years after Byram's death, "Remembering Stephanie" (2014). The ethics of representing women's postsurgical bodies and opportunities for reader-viewers to engage in "productive looking" (Kaja Silverman's concept) are the focal issues under consideration.

  7. Learning as "Knowing": Towards Retaining and Visualizing Use in Virtual Settings

    ERIC Educational Resources Information Center

    Akoumianakis, Demosthenes

    2011-01-01

    The paper elaborates on the assumption that in modern organisations collaborative learning is an enacted capability that is more about "acting" and co-engaging in shared practices. In such settings, virtual learning can be conceived as an emergent knowledge process with no pre-determined outcomes that occupies multiple online and offline…

  8. Promoting Social Network Awareness: A Social Network Monitoring System

    ERIC Educational Resources Information Center

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  9. ScienceDesk Project Overview

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  10. Sketching Up New Geographies: Open Sourcing and Curriculum Development

    ERIC Educational Resources Information Center

    Boyd, William; Ellis, David

    2013-01-01

    The functionality of web 2.0 technologies has caused academics to rethink their development of teaching and learning methods and approaches. The editable, open access nature of web 2.0 encourages the innovative collaboration of ideas, the creation of equitable visual and tactile learning environments, and opportunity for academics to develop…

  11. Learner Perspectives on Task Design for Oral-Visual eTandem Language Learning

    ERIC Educational Resources Information Center

    El-Hariri, Yasmin

    2016-01-01

    Constituting a more specific form of online collaboration, eTandem Language Learning (eTLL) shows great potential for non-formal, self-directed language learning. Research in this field, particularly regarding task design, is still scarce. Focusing on their beliefs and attitudes, this article examines what learners think about how…

  12. Concept Maps Provide a Window onto Preservice Elementary Teachers' Knowledge in the Teaching and Learning of Mathematics

    ERIC Educational Resources Information Center

    Chichekian, Tanya; Shore, Bruce M.

    2013-01-01

    This collaborative concept-mapping exercise was conducted in a second-year mathematics methods course. Teachers' visual representations of their mathematical content and pedagogical knowledge provided insight into their understanding of how students learn mathematics. We collected 28 preservice student teachers' concept maps and analyzed them by…

  13. Sounds and Meanings Working Together: Word Learning as a Collaborative Effort

    ERIC Educational Resources Information Center

    Saffran, Jenny

    2014-01-01

    Over the past several decades, researchers have discovered a great deal of information about the processes underlying language acquisition. From as early as they can be studied, infants are sensitive to the nuances of native-language sound structure. Similarly, infants are attuned to the visual and conceptual structure of their environments…

  14. Creating Meaning through Multimodality: Multiliteracies Assessment and Photo Projects for Online Portfolios

    ERIC Educational Resources Information Center

    Schmerbeck, Nicola; Lucht, Felecia

    2017-01-01

    Actively engaged in online media, learners today are surrounded by texts overtly and covertly transmitted by visual images, sound effects, and voices as well as the written word. Language learning portfolios can engage students in the literacy-oriented learning processes of interpretation, collaboration, and problem solving as outlined by Kern…

  15. Converging Recommendations for Culturally Responsive Literacy Practices: Students with Learning Disabilities, English Language Learners, and Socioculturally Diverse Learners

    ERIC Educational Resources Information Center

    Piazza, Susan V.; Rao, Shaila; Protacio, Maria Selena

    2015-01-01

    This study examines culturally responsive pedagogy across the fields of special education, multicultural literacy education, and teaching English language learners. A systematic review of recommendations identified culturally responsive practices in five key areas: dialogue, collaboration, visual representation, explicit instruction, and inquiry.…

  16. Developing Visualization Tools for Geographic Literacy in a Museum Exhibit: An Interdisciplinary Collaboration

    ERIC Educational Resources Information Center

    Bloodworth, Gina; Petersen, Naomi Jeffery

    2011-01-01

    As a result of reduced formal instruction and reduced direct experience in the natural environment, students suffer from a deficiency in geographic literacy. Informal learning environments, such as a model railroad exhibit at a history museum, can be exploited to introduce key geographic concepts (e.g., scalar compression, landscape…

  17. An REU Experience with Micro Assembly Workcell Research

    ERIC Educational Resources Information Center

    Stapleton, William; Asiabanpour, Bahram; Jimenez, Jesus; Um, Dugan

    2010-01-01

    Under an NSF REU center grant REU-0755355 entitled "Micro/Nano Assembly Workcell Via Micro Visual Sensing and Haptic Feedback", Texas A&M University-Corpus Christi and Texas State University-San Marcos collaboratively hosted two groups of 10 students from different backgrounds for 10 weeks each in Summer 2008 and 2009 respectively.…

  18. Reflective Assessment in Knowledge Building by Students with Low Academic Achievement

    ERIC Educational Resources Information Center

    Yang, Yuqin; van Aalst, Jan; Chan, Carol K. K.; Tian, Wen

    2016-01-01

    This study investigated whether and how students with low prior achievement can carry out and benefit from reflective assessment supported by the Knowledge Connections Analyzer (KCA) to collaboratively improve their knowledge-building discourse. Participants were a class of 20 Grade 11 students with low achievement taking visual art from an…

  19. Arts Education and Creativity Enhancement in Young Children in Hong Kong

    ERIC Educational Resources Information Center

    Hui, Anna N. N.; He, Mavis W. J.; Ye, Shengquan Sam

    2015-01-01

    The present study aimed at assessing Hong Kong young children's gains in creativity and their teachers' application of arts education after a one-year artists-teachers collaborative arts education project that involves various art forms (i.e. drama, visual arts and integrated). Participants included 790 young children, 217 parents and 65 teachers…

  20. Visualization and Analysis of Arena Data, Wound Ballistics Data, and Vulnerability/Lethality (V/L) Data

    DTIC Science & Technology

    2012-02-01

    engineering simulation in mind. In fact, it was originally developed for Walt Disney . This engine was made open source in 2002 in order to collaborate... Disney VR studios and is still used in Disney Imagineering [5]. There are many similarities in overall design between PANDA and Prospect; however

  1. Humane Education for Students with Visual Impairments: Learning about Working Dogs

    ERIC Educational Resources Information Center

    Bruce, Susan M.; Feinstein, Jennie Dapice; Kennedy, Meghan C.; Liu, Ming

    2015-01-01

    Introduction: This study examined the effect of an animal-assisted humane education course on the knowledge of students about caring for dogs physically and psychologically and making informed decisions about dog ownership, including working dogs. Method: This collaborative action-research study employed case study design to examine the effect of…

  2. 75 FR 28331 - Meaningful Access to United States Currency for Blind and Visually Impaired Persons

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... impaired relating to the identification of U.S. currency through focus groups, surveys, and usability tests.... SUPPLEMENTARY INFORMATION: By statute, the Secretary of the Treasury has sole authority for approving designs of U.S. Federal Reserve notes (U.S. currency). To develop the designs, Treasury works in collaboration...

  3. Sociograms as a Tool for Teaching and Learning: Discoveries from a Teacher Research Study

    ERIC Educational Resources Information Center

    Sobieski, Cindy; Dell'Angelo, Tabitha

    2016-01-01

    This collaborative article by a middle school teacher and her college faculty mentor explores the use of visual representations of data--specifically, using sociograms to explore peer relationships in an eighth-grade setting. The sociograms revealed the complexity and changing nature of relationships among students and informed classroom-based…

  4. Teaching Poetry through Collaborative Art: An Analysis of Multimodal Ensembles for Transformative Learning

    ERIC Educational Resources Information Center

    Wandera, David B.

    2016-01-01

    This study is anchored on two positions: that every communication is multimodal and that different modalities within multimodal communication have particular affordances. Written and oral language and other modalities, such as body language and audio/visual media, are interwoven in classroom communication. What might it look like to strategically…

  5. Science Instruction through the Visual Arts in Special Collections

    ERIC Educational Resources Information Center

    Brown, Amanda H.; Losoff, Barbara; Hollis, Deborah R.

    2014-01-01

    The University of Colorado Boulder (CU-Boulder) is known for strong programming in the sciences and a teaching faculty at the forefront of science education and reform. Librarians at CU-Boulder, in collaboration with science faculty, are challenged to improve undergraduate science education. Using rare, historic, and artistic works from Special…

  6. Interactive Visual Tools as Triggers of Collaborative Reasoning in Entry-Level Pathology

    ERIC Educational Resources Information Center

    Nivala, Markus; Rystedt, Hans; Saljo, Roger; Kronqvist, Pauliina; Lehtinen, Erno

    2012-01-01

    The growing importance of medical imaging in everyday diagnostic practices poses challenges for medical education. While the emergence of novel imaging technologies offers new opportunities, many pedagogical questions remain. In the present study, we explore the use of a new tool, a virtual microscope, for the instruction and the collaborative…

  7. Towards Analytics for Wholistic School Improvement: Hierarchical Process Modelling and Evidence Visualization

    ERIC Educational Resources Information Center

    Crick, Ruth Deakin; Knight, Simon; Barr, Steven

    2017-01-01

    Central to the mission of most educational institutions is the task of preparing the next generation of citizens to contribute to society. Schools, colleges, and universities value a range of outcomes--e.g., problem solving, creativity, collaboration, citizenship, service to community--as well as academic outcomes in traditional subjects. Often…

  8. Collaborative SDOCT Segmentation and Analysis Software.

    PubMed

    Yun, Yeyi; Carass, Aaron; Lang, Andrew; Prince, Jerry L; Antony, Bhavna J

    2017-02-01

    Spectral domain optical coherence tomography (SDOCT) is routinely used in the management and diagnosis of a variety of ocular diseases. This imaging modality also finds widespread use in research, where quantitative measurements obtained from the images are used to track disease progression. In recent years, the number of available scanners and imaging protocols grown and there is a distinct absence of a unified tool that is capable of visualizing, segmenting, and analyzing the data. This is especially noteworthy in longitudinal studies, where data from older scanners and/or protocols may need to be analyzed. Here, we present a graphical user interface (GUI) that allows users to visualize and analyze SDOCT images obtained from two commonly used scanners. The retinal surfaces in the scans can be segmented using a previously described method, and the retinal layer thicknesses can be compared to a normative database. If necessary, the segmented surfaces can also be corrected and the changes applied. The interface also allows users to import and export retinal layer thickness data to an SQL database, thereby allowing for the collation of data from a number of collaborating sites.

  9. Visualizing Forensic Publication Impacts and Collaborations: Presenting at a Scientific Venue Leads to Increased Collaborations between Researchers and Information Professionals

    PubMed Central

    Makar, Susan; Malanowski, Amanda; Rapp, Katie

    2016-01-01

    The Information Services Office (ISO) of the National Institute of Standards and Technology (NIST) proactively sought out an opportunity to present the findings of a study that showed the impact of NIST’s forensic research output to its internal customers and outside researchers. ISO analyzed the impact of NIST’s contributions to the peer-reviewed forensic journal literature through citation analysis and network visualizations. The findings of this study were compiled into a poster that was presented during the Forensics@NIST Symposium in December 2014. ISO’s study informed the forensic research community where NIST has had some of the greatest scholarly impact. This paper describes the methodology used to assess the impact of NIST’s forensic publications and shares the results, outcomes, and impacts of ISO’s study and poster presentation. This methodology is adaptable and applicable to other research fields and to other libraries. It has improved the recognition of ISO’s capabilities within NIST and resulted in application of the methodology to additional scientific disciplines. PMID:27956754

  10. Crossmaps: Visualization of overlapping relationships in collections of journal papers

    PubMed Central

    Morris, Steven A.; Yen, Gary G.

    2004-01-01

    A crossmapping technique is introduced for visualizing multiple and overlapping relations among entity types in collections of journal articles. Groups of entities from two entity types are crossplotted to show correspondence of relations. For example, author collaboration groups are plotted on the x axis against groups of papers (research fronts) on the y axis. At the intersection of each pair of author group/research front pairs a circular symbol is plotted whose size is proportional to the number of times that authors in the group appear as authors in papers in the research front. Entity groups are found by agglomerative hierarchical clustering using conventional similarity measures. Crossmaps comprise a simple technique that is particularly suited to showing overlap in relations among entity groups. Particularly useful crossmaps are: research fronts against base reference clusters, research fronts against author collaboration groups, and research fronts against term co-occurrence clusters. When exploring the knowledge domain of a collection of journal papers, it is useful to have several crossmaps of different entity pairs, complemented by research front timelines and base reference cluster timelines. PMID:14762168

  11. Visualizing Collaboration Characteristics and Topic Burst on International Mobile Health Research: Bibliometric Analysis.

    PubMed

    Shen, Lining; Xiong, Bing; Li, Wei; Lan, Fuqiang; Evans, Richard; Zhang, Wei

    2018-06-05

    In the last few decades, mobile technologies have been widely adopted in the field of health care services to improve the accessibility to and the quality of health services received. Mobile health (mHealth) has emerged as a field of research with increasing attention being paid to it by scientific researchers and a rapid increase in related literature being reported. The purpose of this study was to analyze the current state of research, including publication outputs, in the field of mHealth to uncover in-depth collaboration characteristics and topic burst of international mHealth research. The authors collected literature that has been published in the last 20 years and indexed by Thomson Reuters Web of Science Core Collection (WoSCC). Various statistical techniques and bibliometric measures were employed, including publication growth analysis; journal distribution; and collaboration network analysis at the author, institution, and country collaboration level. The temporal visualization map of burst terms was drawn, and the co-occurrence matrix of these burst terms was analyzed by hierarchical cluster analysis and social network analysis. A total of 2704 bibliographic records on mHealth were collected. The earliest paper centered on mHealth was published in 1997, with the number of papers rising continuously since then. A total of 21.28% (2318/10,895) of authors publishing mHealth research were first author, whereas only 1.29% (141/10,895) of authors had published one paper. The total degree of author collaboration was 4.42 (11,958/2704) and there are 266 core authors who have collectively published 53.07% (1435/2704) of the total number of publications, which means that the core group of authors has fundamentally been formed based on the Law of Price. The University of Michigan published the highest number of mHealth-related publications, but less collaboration among institutions exits. The United States is the most productive country in the field and plays a leading role in collaborative research on mHealth. There are 5543 different identified keywords in the cleaned records. The temporal bar graph clearly presents overall topic evolutionary process over time. There are 12 important research directions identified, which are in the imbalanced development. Moreover, the density of the network was 0.007, a relatively low level. These 12 topics can be categorized into 4 areas: (1) patient engagement and patient intervention, (2) health monitoring and self-care, (3) mobile device and mobile computing, and (4) security and privacy. The collaboration of core authors on mHealth research is not tight and stable. Furthermore, collaboration between institutions mainly occurs in the United States, although country collaboration is seen as relatively scarce. The focus of research topics on mHealth is decentralized. Our study might provide a potential guide for future research in mHealth. ©Lining Shen, Bing Xiong, Wei Li, Fuqiang Lan, Richard Evans, Wei Zhang. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 05.06.2018.

  12. FastDart : a fast, accurate and friendly version of DART code.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Taboada, H.

    2000-11-08

    A new enhanced, visual version of DART code is presented. DART is a mechanistic model based code, developed for the performance calculation and assessment of aluminum dispersion fuel. Major issues of this new version are the development of a new, time saving calculation routine, able to be run on PC, a friendly visual input interface and a plotting facility. This version, available for silicide and U-Mo fuels,adds to the classical accuracy of DART models for fuel performance prediction, a faster execution and visual interfaces. It is part of a collaboration agreement between ANL and CNEA in the area of Lowmore » Enriched Uranium Advanced Fuels, held by the Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy.« less

  13. Crossing boundaries in a collaborative modeling workspace

    USGS Publications Warehouse

    Morisette, Jeffrey T.; Cravens, Amanda; Miller, Brian W.; Talbert, Marian; Talbert, Colin; Jarnevich, Catherine S.; Fink, Michelle; Decker, Karin; Odell, Eric

    2017-01-01

    There is substantial literature on the importance of bridging across disciplinary and science–management boundaries. One of the ways commonly suggested to cross boundaries is for participants from both sides of the boundary to jointly produce information (i.e., knowledge co-production). But simply providing tools or bringing people together in the same room is not sufficient. Here we present a case study documenting the mechanisms by which managers and scientists collaborated to incorporate climate change projections into Colorado’s State Wildlife Action Plan. A critical component of the project was the use of a collaborative modeling and visualization workspace: the U.S. Geological Survey’s Resource for Advanced Modeling (RAM). Using video analysis and pre/post surveys from this case study, we examine how the RAM facilitated cognitive and social processes that co-produced a more salient and credible end product. This case provides practical suggestions to scientists and practitioners who want to implement actionable science.

  14. Neuroscience thinks big (and collaboratively).

    PubMed

    Kandel, Eric R; Markram, Henry; Matthews, Paul M; Yuste, Rafael; Koch, Christof

    2013-09-01

    Despite cash-strapped times for research, several ambitious collaborative neuroscience projects have attracted large amounts of funding and media attention. In Europe, the Human Brain Project aims to develop a large-scale computer simulation of the brain, whereas in the United States, the Brain Activity Map is working towards establishing a functional connectome of the entire brain, and the Allen Institute for Brain Science has embarked upon a 10-year project to understand the mouse visual cortex (the MindScope project). US President Barack Obama's announcement of the BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies Initiative) in April 2013 highlights the political commitment to neuroscience and is expected to further foster interdisciplinary collaborations, accelerate the development of new technologies and thus fuel much needed medical advances. In this Viewpoint article, five prominent neuroscientists explain the aims of the projects and how they are addressing some of the questions (and criticisms) that have arisen.

  15. Data-Driven Synthesis for Investigating Food Systems Resilience to Climate Change

    NASA Astrophysics Data System (ADS)

    Magliocca, N. R.; Hart, D.; Hondula, K. L.; Munoz, I.; Shelley, M.; Smorul, M.

    2014-12-01

    The production, supply, and distribution of our food involves a complex set of interactions between farmers, rural communities, governments, and global commodity markets that link important issues such as environmental quality, agricultural science and technology, health and nutrition, rural livelihoods, and social institutions and equality - all of which will be affected by climate change. The production of actionable science is thus urgently needed to inform and prepare the public for the consequences of climate change for local and global food systems. Access to data that spans multiple sectors/domains and spatial and temporal scales is key to beginning to tackle such complex issues. As part of the White House's Climate Data Initiative, the USDA and the National Socio-Environmental Synthesis Center (SESYNC) are launching a new collaboration to catalyze data-driven research to enhance food systems resilience to climate change. To support this collaboration, SESYNC is developing a new "Data to Motivate Synthesis" program designed to engage early career scholars in a highly interactive and dynamic process of real-time data discovery, analysis, and visualization to catalyze new research questions and analyses that would not have otherwise been possible and/or apparent. This program will be supported by an integrated, spatially-enabled cyberinfrastructure that enables the management, intersection, and analysis of large heterogeneous datasets relevant to food systems resilience to climate change. Our approach is to create a series of geospatial abstraction data structures and visualization services that can be used to accelerate analysis and visualization across various socio-economic and environmental datasets (e.g., reconcile census data with remote sensing raster datasets). We describe the application of this approach with a pilot workshop of socio-environmental scholars that will lay the groundwork for the larger SESYNC-USDA collaboration. We discuss the particular challenges of supporting an integrated, repeatable workflow for socio-environmental data synthesis, and the advantages and limitations to using data as a launching point for interdisciplinary research projects.

  16. Explanatory and illustrative visualization of special and general relativity.

    PubMed

    Weiskopf, Daniel; Borchers, Marc; Ertl, Thomas; Falk, Martin; Fechtig, Oliver; Frank, Regine; Grave, Frank; King, Andreas; Kraus, Ute; Müller, Thomas; Nollert, Hans-Peter; Rica Mendez, Isabel; Ruder, Hanns; Schafhitzel, Tobias; Schär, Sonja; Zahn, Corvin; Zatloukal, Michael

    2006-01-01

    This paper describes methods for explanatory and illustrative visualizations used to communicate aspects of Einstein's theories of special and general relativity, their geometric structure, and of the related fields of cosmology and astrophysics. Our illustrations target a general audience of laypersons interested in relativity. We discuss visualization strategies, motivated by physics education and the didactics of mathematics, and describe what kind of visualization methods have proven to be useful for different types of media, such as still images in popular science magazines, film contributions to TV shows, oral presentations, or interactive museum installations. Our primary approach is to adopt an egocentric point of view: The recipients of a visualization participate in a visually enriched thought experiment that allows them to experience or explore a relativistic scenario. In addition, we often combine egocentric visualizations with more abstract illustrations based on an outside view in order to provide several presentations of the same phenomenon. Although our visualization tools often build upon existing methods and implementations, the underlying techniques have been improved by several novel technical contributions like image-based special relativistic rendering on GPUs, special relativistic 4D ray tracing for accelerating scene objects, an extension of general relativistic ray tracing to manifolds described by multiple charts, GPU-based interactive visualization of gravitational light deflection, as well as planetary terrain rendering. The usefulness and effectiveness of our visualizations are demonstrated by reporting on experiences with, and feedback from, recipients of visualizations and collaborators.

  17. Supporting tactical intelligence using collaborative environments and social networking

    NASA Astrophysics Data System (ADS)

    Wollocko, Arthur B.; Farry, Michael P.; Stark, Robert F.

    2013-05-01

    Modern military environments place an increased emphasis on the collection and analysis of intelligence at the tactical level. The deployment of analytical tools at the tactical level helps support the Warfighter's need for rapid collection, analysis, and dissemination of intelligence. However, given the lack of experience and staffing at the tactical level, most of the available intelligence is not exploited. Tactical environments are staffed by a new generation of intelligence analysts who are well-versed in modern collaboration environments and social networking. An opportunity exists to enhance tactical intelligence analysis by exploiting these personnel strengths, but is dependent on appropriately designed information sharing technologies. Existing social information sharing technologies enable users to publish information quickly, but do not unite or organize information in a manner that effectively supports intelligence analysis. In this paper, we present an alternative approach to structuring and supporting tactical intelligence analysis that combines the benefits of existing concepts, and provide detail on a prototype system embodying that approach. Since this approach employs familiar collaboration support concepts from social media, it enables new-generation analysts to identify the decision-relevant data scattered among databases and the mental models of other personnel, increasing the timeliness of collaborative analysis. Also, the approach enables analysts to collaborate visually to associate heterogeneous and uncertain data within the intelligence analysis process, increasing the robustness of collaborative analyses. Utilizing this familiar dynamic collaboration environment, we hope to achieve a significant reduction of time and skill required to glean actionable intelligence in these challenging operational environments.

  18. NASA's Spaceflight Visual Impairment and Intracranial Hypertension Research Plan: An accelerated Research Collaboration

    NASA Technical Reports Server (NTRS)

    Otto, Christian; Fogarty, J.; Grounds, D.; Davis, J.

    2010-01-01

    To date six long duration astronauts have experienced in flight visual changes and post flight signs of optic disc edema, globe flattening, choroidal folds, hyperoptic shifts and or raised intracranial pressure. In some cases the changes were transient while in others they are persistent with varying degrees of visual impairment. Given that all astronauts exposed to microgravity experience a cephalad fluid shift, and that both symptomatic and asymptomatic patients have exhibited optic nerve sheath edema on MRI, there is a high probability that all astronauts develop in-flight idiopathic intracranial hypertension to some degree. Those who are susceptible, have an increased likelihood of developing treatment resistant papilledema resulting in visual impairment and possible long-term vision loss. Such an acquired disability would have a profound mission impact and would be detrimental to the long term health of the astronaut. The visual impairment and increased intracranial pressure phenomenon appears to have multiple contributing factors. Consequently, the working "physiological fault bush" with elevated intracranial pressure at its center, is divided into ocular effects, and CNS and other effects. Some of these variables have been documented and or measured through operational data gathering, while others are unknown, undocumented and or hypothetical. Both the complexity of the problem and the urgency to find a solution require that a unique, non-traditional research model be employed such as the Accelerated Research Collaboration(TM) (ARC) model that has been pioneered by the Myelin Repair Foundation. In the ARC model a single entity facilitates and manages all aspects of the basic, translational, and clinical research, providing expert oversight for both scientific and managerial efforts. The result is a comprehensive research plan executed by a multidisciplinary team and the elimination of stove-piped research. The ARC model emphasizes efficient and effective communication between management and investigators; and real-time sharing of scientific discoveries in an effort to solve complex problems.

  19. Mobile, Collaborative Situated Knowledge Creation for Urban Planning

    PubMed Central

    Zurita, Gustavo; Baloian, Nelson

    2012-01-01

    Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations. PMID:22778639

  20. Mobile, collaborative situated knowledge creation for urban planning.

    PubMed

    Zurita, Gustavo; Baloian, Nelson

    2012-01-01

    Geo-collaboration is an emerging research area in computer sciences studying the way spatial, geographically referenced information and communication technologies can support collaborative activities. Scenarios in which information associated to its physical location are of paramount importance are often referred as Situated Knowledge Creation scenarios. To date there are few computer systems supporting knowledge creation that explicitly incorporate physical context as part of the knowledge being managed in mobile face-to-face scenarios. This work presents a collaborative software application supporting visually-geo-referenced knowledge creation in mobile working scenarios while the users are interacting face-to-face. The system allows to manage data information associated to specific physical locations for knowledge creation processes in the field, such as urban planning, identifying specific physical locations, territorial management, etc.; using Tablet-PCs and GPS in order to geo-reference data and information. It presents a model for developing mobile applications supporting situated knowledge creation in the field, introducing the requirements for such an application and the functionalities it should have in order to fulfill them. The paper also presents the results of utility and usability evaluations.

  1. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    NASA Astrophysics Data System (ADS)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    Today, the principal investigators of NASA Earth Science missions develop their own software to manipulate, visualize, and analyze the data collected from Earth, space, and airborne observation instruments. There is very little, if any, collaboration among these principal investigators due to the lack of collaborative tools, which would allow these scientists to share data and results. At NASA's Jet Propulsion Laboratory (JPL), under the Lunar Mapping and Modeling Project (LMMP), we have built a web portal that exposes a set of common services to users to allow search, visualization, subset, and download lunar science data. Users also have access to a set of tools that visualize, analyze and annotate the data. These services are developed according to industry standards for data access and manipulation, such REST and Open Geospatial Consortium (OGC) web services. As a result, users can access the datasets through custom written applications or off-the-shelf applications such as Google Earth. Even though it's currently used to store and process lunar data, this web portal infrastructure has been designed to support other solar system bodies such as asteroids and planets, including Earth. The infrastructure uses a combination of custom, commercial, and open-source software as well as off-the-shelf hardware and pay-by-use cloud computing services. The use of standardized web service interfaces facilitates platform and application-independent access to the services and data. For instance, we have software clients for the LMMP portal that provide a rich browsing and analysis experience from a variety of platforms including iOS and Android mobile platforms and large screen multi-touch displays with 3-D terrain viewing functions. The service-oriented architecture and design principles utilized in the implementation of the portal lends itself to be reusable and scalable and could naturally be extended to include a collaborative environment that enables scientists and principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.

  2. Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William

    2014-01-01

    BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS Through this study, we have developed a set of techniques and tools for analyzing research collaboration networks and conducted a comprehensive case study focusing on a CTSA institution. Our findings demonstrate the promising future of these techniques and tools in understanding the generative mechanisms of research collaborations and helping identify beneficial collaborations to members in the research community. PMID:24560679

  3. Integrated instrumentation & computation environment for GRACE

    NASA Astrophysics Data System (ADS)

    Dhekne, P. S.

    2002-03-01

    The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.

  4. The Computable Catchment: An executable document for model-data software sharing, reproducibility and interactive visualization

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Duffy, C.

    2015-12-01

    This paper proposes the concept of a "Computable Catchment" which is used to develop a collaborative platform for watershed modeling and data analysis. The object of the research is a sharable, executable document similar to a pdf, but one that includes documentation of the underlying theoretical concepts, interactive computational/numerical resources, linkage to essential data repositories and the ability for interactive model-data visualization and analysis. The executable document for each catchment is stored in the cloud with automatic provisioning and a unique identifier allowing collaborative model and data enhancements for historical hydroclimatic reconstruction and/or future landuse or climate change scenarios to be easily reconstructed or extended. The Computable Catchment adopts metadata standards for naming all variables in the model and the data. The a-priori or initial data is derived from national data sources for soils, hydrogeology, climate, and land cover available from the www.hydroterre.psu.edu data service (Leonard and Duffy, 2015). The executable document is based on Wolfram CDF or Computable Document Format with an interactive open-source reader accessible by any modern computing platform. The CDF file and contents can be uploaded to a website or simply shared as a normal document maintaining all interactive features of the model and data. The Computable Catchment concept represents one application for Geoscience Papers of the Future representing an extensible document that combines theory, models, data and analysis that are digitally shared, documented and reused among research collaborators, students, educators and decision makers.

  5. How social network analysis can be used to monitor online collaborative learning and guide an informed intervention

    PubMed Central

    Fors, Uno; Tedre, Matti; Nouri, Jalal

    2018-01-01

    To ensure online collaborative learning meets the intended pedagogical goals (is actually collaborative and stimulates learning), mechanisms are needed for monitoring the efficiency of online collaboration. Various studies have indicated that social network analysis can be particularly effective in studying students’ interactions in online collaboration. However, research in education has only focused on the theoretical potential of using SNA, not on the actual benefits they achieved. This study investigated how social network analysis can be used to monitor online collaborative learning, find aspects in need of improvement, guide an informed intervention, and assess the efficacy of intervention using an experimental, observational repeated-measurement design in three courses over a full-term duration. Using a combination of SNA-based visual and quantitative analysis, we monitored three SNA constructs for each participant: the level of interactivity, the role, and position in information exchange, and the role played by each participant in the collaboration. On the group level, we monitored interactivity and group cohesion indicators. Our monitoring uncovered a non-collaborative teacher-centered pattern of interactions in the three studied courses as well as very few interactions among students, limited information exchange or negotiation, and very limited student networks dominated by the teacher. An intervention based on SNA-generated insights was designed. The intervention was structured into five actions: increasing awareness, promoting collaboration, improving the content, preparing teachers, and finally practicing with feedback. Evaluation of the intervention revealed that it has significantly enhanced student-student interactions and teacher-student interactions, as well as produced a collaborative pattern of interactions among most students and teachers. Since efficient and communicative activities are essential prerequisites for successful content discussion and for realizing the goals of collaboration, we suggest that our SNA-based approach will positively affect teaching and learning in many educational domains. Our study offers a proof-of-concept of what SNA can add to the current tools for monitoring and supporting teaching and learning in higher education. PMID:29566058

  6. How social network analysis can be used to monitor online collaborative learning and guide an informed intervention.

    PubMed

    Saqr, Mohammed; Fors, Uno; Tedre, Matti; Nouri, Jalal

    2018-01-01

    To ensure online collaborative learning meets the intended pedagogical goals (is actually collaborative and stimulates learning), mechanisms are needed for monitoring the efficiency of online collaboration. Various studies have indicated that social network analysis can be particularly effective in studying students' interactions in online collaboration. However, research in education has only focused on the theoretical potential of using SNA, not on the actual benefits they achieved. This study investigated how social network analysis can be used to monitor online collaborative learning, find aspects in need of improvement, guide an informed intervention, and assess the efficacy of intervention using an experimental, observational repeated-measurement design in three courses over a full-term duration. Using a combination of SNA-based visual and quantitative analysis, we monitored three SNA constructs for each participant: the level of interactivity, the role, and position in information exchange, and the role played by each participant in the collaboration. On the group level, we monitored interactivity and group cohesion indicators. Our monitoring uncovered a non-collaborative teacher-centered pattern of interactions in the three studied courses as well as very few interactions among students, limited information exchange or negotiation, and very limited student networks dominated by the teacher. An intervention based on SNA-generated insights was designed. The intervention was structured into five actions: increasing awareness, promoting collaboration, improving the content, preparing teachers, and finally practicing with feedback. Evaluation of the intervention revealed that it has significantly enhanced student-student interactions and teacher-student interactions, as well as produced a collaborative pattern of interactions among most students and teachers. Since efficient and communicative activities are essential prerequisites for successful content discussion and for realizing the goals of collaboration, we suggest that our SNA-based approach will positively affect teaching and learning in many educational domains. Our study offers a proof-of-concept of what SNA can add to the current tools for monitoring and supporting teaching and learning in higher education.

  7. Not Just a Game … When We Play Together, We Learn Together: Interactive Virtual Environments and Gaming Engines for Geospatial Visualization

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Anderson, J. W.

    2017-12-01

    An ideal tool for ecologists and land managers to investigate the impacts of both projected environmental changes and policy alternatives is the creation of immersive, interactive, virtual landscapes. As a new frontier in visualizing and understanding geospatial data, virtual landscapes require a new toolbox for data visualization that includes traditional GIS tools and uncommon tools such as the Unity3d game engine. Game engines provide capabilities to not only explore data but to build and interact with dynamic models collaboratively. These virtual worlds can be used to display and illustrate data that is often more understandable and plausible to both stakeholders and policy makers than is achieved using traditional maps.Within this context we will present funded research that has been developed utilizing virtual landscapes for geographic visualization and decision support among varied stakeholders. We will highlight the challenges and lessons learned when developing interactive virtual environments that require large multidisciplinary team efforts with varied competences. The results will emphasize the importance of visualization and interactive virtual environments and the link with emerging research disciplines within Visual Analytics.

  8. PRODIGEN: visualizing the probability landscape of stochastic gene regulatory networks in state and time space.

    PubMed

    Ma, Chihua; Luciani, Timothy; Terebus, Anna; Liang, Jie; Marai, G Elisabeta

    2017-02-15

    Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists' understanding of phenotypic behavior associated with specific genes. We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks. The analysis tool combines in a novel way existing, expanded, and new visual encodings to capture the time-varying characteristics of probability distributions: spaghetti plots over one dimensional projection, heatmaps of distributions over 2D projections, enhanced with overlaid time curves to display temporal changes, and novel individual glyphs of state information corresponding to particular peaks. We demonstrate the effectiveness of the tool through two case studies on the computed probabilistic landscape of a gene regulatory network and of a toggle-switch network. Domain expert feedback indicates that our visual approach can help biologists: 1) visualize probabilities of stable states, 2) explore the temporal probability distributions, and 3) discover small peaks in the probability landscape that have potential relation to specific diseases.

  9. Changes in search rate but not in the dynamics of exogenous attention in action videogame players.

    PubMed

    Hubert-Wallander, Bjorn; Green, C Shawn; Sugarman, Michael; Bavelier, Daphne

    2011-11-01

    Many previous studies have shown that the speed of processing in attentionally demanding tasks seems enhanced following habitual action videogame play. However, using one of the diagnostic tasks for efficiency of attentional processing, a visual search task, Castel and collaborators (Castel, Pratt, & Drummond, Acta Psychologica 119:217-230, 2005) reported no difference in visual search rates, instead proposing that action gaming may change response execution time rather than the efficiency of visual selective attention per se. Here we used two hard visual search tasks, one measuring reaction time and the other accuracy, to test whether visual search rate may be changed by action videogame play. We found greater search rates in the gamer group than in the nongamer controls, consistent with increased efficiency in visual selective attention. We then asked how general the change in attentional throughput noted so far in gamers might be by testing whether exogenous attentional cues would lead to a disproportional enhancement in throughput in gamers as compared to nongamers. Interestingly, exogenous cues were found to enhance throughput equivalently between gamers and nongamers, suggesting that not all mechanisms known to enhance throughput are similarly enhanced in action videogamers.

  10. CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.

    PubMed

    Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj

    2018-01-01

    Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.

  11. Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...

    2016-10-02

    Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less

  12. iCanPlot: Visual Exploration of High-Throughput Omics Data Using Interactive Canvas Plotting

    PubMed Central

    Sinha, Amit U.; Armstrong, Scott A.

    2012-01-01

    Increasing use of high throughput genomic scale assays requires effective visualization and analysis techniques to facilitate data interpretation. Moreover, existing tools often require programming skills, which discourages bench scientists from examining their own data. We have created iCanPlot, a compelling platform for visual data exploration based on the latest technologies. Using the recently adopted HTML5 Canvas element, we have developed a highly interactive tool to visualize tabular data and identify interesting patterns in an intuitive fashion without the need of any specialized computing skills. A module for geneset overlap analysis has been implemented on the Google App Engine platform: when the user selects a region of interest in the plot, the genes in the region are analyzed on the fly. The visualization and analysis are amalgamated for a seamless experience. Further, users can easily upload their data for analysis—which also makes it simple to share the analysis with collaborators. We illustrate the power of iCanPlot by showing an example of how it can be used to interpret histone modifications in the context of gene expression. PMID:22393367

  13. Language and the Body as Resources for Collaborative Action: A Study of Word Searches in Japanese Conversation.

    ERIC Educational Resources Information Center

    Hayashi, Makoto

    2003-01-01

    Explores a range of vocal and visual practices deployed by Japanese speakers during the course of a word search in naturally occurring conversation and shows how such embodied practices provide publicly available resources for recipients to organize their relevant participation in the ongoing word search. (Author/VWL)

  14. Selecting Advanced Software Technology in Two Small Manufacturing Enterprises

    DTIC Science & Technology

    2004-05-01

    improving workflow to further reduce delivery times, enhance customer service, and obtain a competitive advantage . The company wanted help... environment , stakeholders’ needs, ecommerce , shop floor visualization, and collaboration capability. These statements are not significantly different...for the purpose of describing a software environment . This identification does not imply any recommendation or endorsement by NIST, the SEI, CMU, or

  15. Tactical Mission Command (TMC)

    DTIC Science & Technology

    2016-03-01

    capabilities to Army commanders and their staffs, consisting primarily of a user-customizable Common Operating Picture ( COP ) enabled with real-time... COP viewer and data management capability. It is a collaborative, visualization and planning application that also provides a common map display... COP ): Display the COP consisting of the following:1 Friendly forces determined by the commander including subordinate and supporting units at

  16. Not Your Run-of-the-Mill Art-Room Stools

    ERIC Educational Resources Information Center

    Chrzanowski, Rose-Ann C.

    2010-01-01

    An art room should be a garden of visual stimulation, born of creativity, inquiry, critical thinking and intellectual conversation--and a little collaboration is not a bad thing either! When the author unpacked the new stools for her art room at the high school, she envisioned something more beautiful than the brown masonite circles that…

  17. Word on the Street: Investigating Linguistic Landscapes with Urban Canadian Youth

    ERIC Educational Resources Information Center

    Burwell, Catherine; Lenters, Kimberly

    2015-01-01

    This article reports on a case study inspired by the concept of "linguistic landscapes." We collaborated with a group of Humanities teachers to design and implement the "Word on the Street" project, in which Grade 10 students took on the role of researchers to explore the linguistic, visual and spatial texts of their…

  18. Collaborative Inquiry with Technology in Secondary Science Classrooms: Professional Learning Community Development at Work

    ERIC Educational Resources Information Center

    Harnisch, Delwyn L.; Comstock, Sharon L.; Bruce, Bertram C.

    2014-01-01

    The development of critical scientific literacy in primary and secondary school classrooms requires authentic inquiry with a basis in the real world. Pairing scientists with educators and employing informatics and visualization tools are two successful ways to achieve this. This article is based on rich data collected over eight years from middle…

  19. More than a Body's Work: Widening Cultural Participation through an International Exploration of Young People's Construction of Visual Image and Identity

    ERIC Educational Resources Information Center

    Bianchi, June

    2008-01-01

    The article presents the rationale, methodology, and selected outcomes from "More than a body's work," a collaborative, international, arts educational interactive research project. The project, taking place in both New York and England, explored the ways in which young people construct and "perform" identity through the…

  20. Towards Academic Generativity: Working Collaboratively with Visual Artefacts for Self-Study and Social Change

    ERIC Educational Resources Information Center

    Pithouse-Morgan, Kathleen; van Laren, Linda

    2012-01-01

    There appears to be a mounting consciousness in academia that knowledge production and the scholarly dissemination of knowledge do not necessarily lead to general well-being or improvement in society. In this article we start with ourselves by initiating an exploration into generative possibilities for becoming agents of social change through our…

  1. Benefits of Interhemispheric Collaboration Can Be Eliminated by Mixing Stimulus Formats that Involve Different Cortical Access Routes

    ERIC Educational Resources Information Center

    Patel, Urvi J.; Hellige, Joseph B.

    2007-01-01

    Previous studies indicate that the benefits of dividing an information processing load across both cerebral hemispheres outweigh the costs of interhemispheric transfer as tasks become more difficult or cognitively complex. This is demonstrated as better performance when two stimuli to be compared are presented one to each visual field and…

  2. An Examination of Critical Approaches to Interdisciplinary Dance Performance

    ERIC Educational Resources Information Center

    Kennedy, Michelle

    2009-01-01

    As artists seek new ways to reflect an increasingly digital and global culture, theatrical dance in the UK and Europe has seen a growing collaboration and cross-fertilisation between forms of dance, theatre, visual art, film and technology. As the boundaries between artistic disciplines continue to blur, it seems clear that dance audiences need to…

  3. The Orion Constellation as an Installation: An Innovative Three-Dimensional Teaching and Learning Environment

    ERIC Educational Resources Information Center

    Brown, Daniel

    2013-01-01

    Visualizing the three-dimensional distribution of stars within a constellation is highly challenging for both students and educators, but when carried out in an interactive collaborative way, it can create an ideal environment to explore common misconceptions about size and scale within astronomy. We present how the common tabletop activities…

  4. Investigating the Limitations of Advanced Design Methods through Real World Application

    DTIC Science & Technology

    2016-03-31

    36 War Room Laptop Display ( MySQL , JMP 9 Pro, 64-bit Windows) Georgia Tech Secure Collaborative Visualization Environment ( MySQL , JMP 9 Pro...investigate expanding the EA for VC3ATS • Would like to consider both an expansion of the use of current Java -based BPM approach and other potential EA

  5. The Collaborative Instructional Design System (CIDS): Visualizing the 21st Century Learning

    ERIC Educational Resources Information Center

    Zain, Ismail Md.

    2017-01-01

    Learning is the act of acquiring new, or reinforcing existing knowledge, characters, skills, and values, affecting a potential change of the learners towards nurturing creativity and innovation. The 21st-century learning framework from the 21st-Century Partnership, 2002 and the component of the Four-Dimensional Education written by Fadel, Bialik…

  6. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  7. Provide Natural Light | Efficient Windows Collaborative

    Science.gov Websites

    illumination when desired. Providing Balanced Lighting A balance of light is important both for visual comfort protected from excessive light levels. The balance of light in a space depends on the overall number and furnishings. An improved balance of light can be created by providing light from at least two directions, such

  8. Revisualising Innovative Online Learning Spaces in an Early Childhood Teacher Education Programme

    ERIC Educational Resources Information Center

    Pohio, Lesley; Lee, Maryann

    2012-01-01

    This paper presents a descriptive analysis of the challenges and rewards of revisualising and designing an innovative online space for a first-year Bachelor of Education Early Childhood Education course, Visual Arts in the Early Years. The perspectives offered are drawn from a design project involving collaboration between the course lecturer and…

  9. A visual progression of the Fort Valley Restoration Project treatments using remotely sensed imagery (P-53)

    Treesearch

    Joseph E. Crouse; Peter Z. Fule

    2008-01-01

    The landscape surrounding the Fort Valley Experimental Forest in northern Arizona has changed dramatically in the past decade due to the Fort Valley Restoration Project, a collaboration between the Greater Flagstaff Forest Partnership, Coconino National Forest, and Rocky Mountain Research Station. Severe wildfires in 1996 sparked community concern to start restoration...

  10. "Deveiling" Body Stories: Muslim Girls Negotiate Visual, Spatial, and Ethical "Hijabs"

    ERIC Educational Resources Information Center

    Hamzeh, Manal

    2011-01-01

    This article describes a collaborative research project that took place in two south-western US border towns and sought to understand how four "muslim" girls (age 14-17) expressed and negotiated their bodily learning experiences. Drawing on both the work of "arab-muslim" critical feminist Fatima Mernissi who utilized classical Islamic tools of…

  11. Drawing Partners Together: A Report on the Practice of Responding to Partnership Requests for Community and University Arts Collaboration

    ERIC Educational Resources Information Center

    Mason, Stephanie

    2014-01-01

    NSCAD University is a visual arts university in Halifax, Nova Scotia, Canada, that houses the NSCAD-TD Centre for Community Service Learning (the Centre). The Centre's purpose is to manage and promote community partnership requests with the institution. While community service learning and community--university partnership approaches necessarily…

  12. Supporting Collaborative Learning and E-Discussions Using Artificial Intelligence Techniques

    ERIC Educational Resources Information Center

    McLaren, Bruce M.; Scheuer, Oliver; Miksatko, Jan

    2010-01-01

    An emerging trend in classrooms is the use of networked visual argumentation tools that allow students to discuss, debate, and argue with one another in a synchronous fashion about topics presented by a teacher. These tools are aimed at teaching students how to discuss and argue, important skills not often taught in traditional classrooms. But how…

  13. How Much Have They Retained? Making Unseen Concepts Seen in a Freshman Electromagnetism Course at MIT

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Hult, Erin; Breslow, Lori; Belcher, John W.

    2007-01-01

    The introductory freshmen electromagnetism course at MIT has been taught since 2000 using a studio physics format entitled TEAL--Technology Enabled Active Learning. TEAL has created a collaborative, hands-on environment where students carry out desktop experiments, submit web-based assignments, and have access to a host of visualizations and…

  14. Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Lynnes, C.

    2009-05-01

    A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues' expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable "software appliance" to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish "talkoot" (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a "science story" in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be discoverable using tag search, and advertised using "service casts" and "interest casts" (Atom feeds). Multiple science workflow systems will be plugged into the system, with initial support for UAH's Mining Workflow Composer and the open-source Active BPEL engine, and JPL's SciFlo engine and the VizFlow visual programming interface. With the ability to share and execute analysis workflows, Talkoot portals can be used to do collaborative science in addition to communicate ideas and results. It will be useful for different science domains, mission teams, research projects and organizations. Thus, it will help to solve the "sociological" problem of bringing together disparate groups of researchers, and the technical problem of advertising, discovering, developing, documenting, and maintaining inter-agency science workflows. The presentation will discuss the goals of and barriers to Science 2.0, the social web technologies employed in the Talkoot software appliance (e.g. CMS, social tagging, personal presence, advertising by feeds, etc.), illustrate the resulting collaborative capabilities, and show early prototypes of the web interfaces (e.g. embedded workflows).

  15. A highlight of data products from IRIS Data Services

    NASA Astrophysics Data System (ADS)

    Hutko, A. R.; Bahavar, M.; Trabant, C. M.; Van Fossen, M.; Weekly, R. T.

    2014-12-01

    Since 2009 the IRIS Data Management Center has served the seismology community in a variety of ways by offering higher order data products generated internally or by the research community in addition to raw times series data traditionally managed at the DMC. These products are intended to facilitate research as baseline standards, tools for data visualization or characterization, and teaching & outreach material. We currently serve 25 data products of which 7 are event-based that provide quick looks at many aspects of interest to researchers, often within a few hours of real-time. Among our new offerings is an expansion of the visualization capabilities of the Earth Model Collaboration, a repository of author contributed tomography and other Earth models. Currently EMC tools allow users to make 2D plots slicing through models. New 3D visualization tools being developed will bridge the gap between 2D slices and advanced and sometimes complicated 3D visualization packages with common 3D capabilities that can be set up and learned within minutes. The newly released Global Stacks is a project that stacks up to a million seismograms to illuminate the global seismic wavefield. Seismograms are processed and stacked for three component data across many frequency bands. The resulting stacks lead to high-fidelity wavefield images that clearly highlight characteristics such as dispersion in surface waves and many phases not commonly observed such as P'P'P'P'. Another recent addition is the Automated Surface Wave Phase Velocity Measuring System, which is an automated do-it-yourself surface wave tomography package requiring minimal user input and produces research quality tomography results. To further enhance our effort to support the research community, we invite proposals for collaborative data product development. This is an excellent opportunity for researchers to put forward unique and useful data product ideas and collaborate with the DMC in the development of the product. While we do not offer funding, this is an opportunity to utilize our resources to make a new data product that will be shared with the community. In the near future, DOIs will be provided for products we host, thereby improving contributor recognition. Details on our data products are available at: http://www.iris.edu/ds/products

  16. A collaborative visual analytics suite for protein folding research.

    PubMed

    Harvey, William; Park, In-Hee; Rübel, Oliver; Pascucci, Valerio; Bremer, Peer-Timo; Li, Chenglong; Wang, Yusu

    2014-09-01

    Molecular dynamics (MD) simulation is a crucial tool for understanding principles behind important biochemical processes such as protein folding and molecular interaction. With the rapidly increasing power of modern computers, large-scale MD simulation experiments can be performed regularly, generating huge amounts of MD data. An important question is how to analyze and interpret such massive and complex data. One of the (many) challenges involved in analyzing MD simulation data computationally is the high-dimensionality of such data. Given a massive collection of molecular conformations, researchers typically need to rely on their expertise and prior domain knowledge in order to retrieve certain conformations of interest. It is not easy to make and test hypotheses as the data set as a whole is somewhat "invisible" due to its high dimensionality. In other words, it is hard to directly access and examine individual conformations from a sea of molecular structures, and to further explore the entire data set. There is also no easy and convenient way to obtain a global view of the data or its various modalities of biochemical information. To this end, we present an interactive, collaborative visual analytics tool for exploring massive, high-dimensional molecular dynamics simulation data sets. The most important utility of our tool is to provide a platform where researchers can easily and effectively navigate through the otherwise "invisible" simulation data sets, exploring and examining molecular conformations both as a whole and at individual levels. The visualization is based on the concept of a topological landscape, which is a 2D terrain metaphor preserving certain topological and geometric properties of the high dimensional protein energy landscape. In addition to facilitating easy exploration of conformations, this 2D terrain metaphor also provides a platform where researchers can visualize and analyze various properties (such as contact density) overlayed on the top of the 2D terrain. Finally, the software provides a collaborative environment where multiple researchers can assemble observations and biochemical events into storyboards and share them in real time over the Internet via a client-server architecture. The software is written in Scala and runs on the cross-platform Java Virtual Machine. Binaries and source code are available at http://www.aylasoftware.org and have been released under the GNU General Public License. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. GeoChronos: An On-line Collaborative Platform for Earth Observation Scientists

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Kiddle, C.; Curry, R.; Markatchev, N.; Zonta-Pastorello, G., Jr.; Rivard, B.; Sanchez-Azofeifa, G. A.; Simmonds, R.; Tan, T.

    2009-12-01

    Recent advances in cyberinfrastructure are offering new solutions to the growing challenges of managing and sharing large data volumes. Web 2.0 and social networking technologies, provide the means for scientists to collaborate and share information more effectively. Cloud computing technologies can provide scientists with transparent and on-demand access to applications served over the Internet in a dynamic and scalable manner. Semantic Web technologies allow for data to be linked together in a manner understandable by machines, enabling greater automation. Combining all of these technologies together can enable the creation of very powerful platforms. GeoChronos (http://geochronos.org/), part of a CANARIE Network Enabled Platforms project, is an online collaborative platform that incorporates these technologies to enable members of the earth observation science community to share data and scientific applications and to collaborate more effectively. The GeoChronos portal is built on an open source social networking platform called Elgg. Elgg provides a full set of social networking functionalities similar to Facebook including blogs, tags, media/document sharing, wikis, friends/contacts, groups, discussions, message boards, calendars, status, activity feeds and more. An underlying cloud computing infrastructure enables scientists to access dynamically provisioned applications via the portal for visualizing and analyzing data. Users are able to access and run the applications from any computer that has a Web browser and Internet connectivity and do not need to manage and maintain the applications themselves. Semantic Web Technologies, such as the Resource Description Framework (RDF) are being employed for relating and linking together spectral, satellite, meteorological and other data. Social networking functionality plays an integral part in facilitating the sharing of data and applications. Examples of recent GeoChronos users during the early testing phase have included the IAI International Wireless Sensor Networking Summer School at the University of Alberta, and the IAI Tropi-Dry community. Current GeoChronos activities include the development of a web-based spectral library and related analytical and visualization tools, in collaboration with members of the SpecNet community. The GeoChronos portal will be open to all members of the earth observation science community when the project nears completion at the end of 2010.

  18. Weaving the native web: using social network analysis to demonstrate the value of a minority career development program.

    PubMed

    Buchwald, Dedra; Dick, Rhonda Wiegman

    2011-06-01

    American Indian and Alaska Native scientists are consistently among the most underrepresented minority groups in health research. The authors used social network analysis (SNA) to evaluate the Native Investigator Development Program (NIDP), a career development program for junior Native researchers established as a collaboration between the University of Washington and the University of Colorado Denver. The study focused on 29 trainees and mentors who participated in the NIDP. Data were collected on manuscripts and grant proposals produced by participants from 1998 to 2007. Information on authorship of manuscripts and collaborations on grant applications was used to conduct social network analyses with three measures of centrality and one measure of network reach. Both visual and quantitative analyses were performed. Participants in the NIDP collaborated on 106 manuscripts and 83 grant applications. Although three highly connected individuals, with critical and central roles in the program, accounted for much of the richness of the network, both current core faculty and "graduates" of the program were heavily involved in collaborations on manuscripts and grants. This study's innovative application of SNA demonstrates that collaborative relationships can be an important outcome of career development programs for minority investigators and that an analysis of these relationships can provide a more complete assessment of the value of such programs.

  19. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    PubMed Central

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  20. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios.

    PubMed

    Kovanci, Gökhan; Ghaffar, Mehmood; Sommer, Björn

    2016-12-21

    The CELLmicrocosmos 4.2 PathwayIntegration (CmPI) is a tool which provides hybrid-dimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies – Three.js, D3.js and PHP – as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  1. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios.

    PubMed

    Kovanci, Gökhan; Ghaffar, Mehmood; Sommer, Björn

    2016-10-01

    The CELLmicrocosmos 4.2 PathwayIntegration (CmPI) is a tool which provides hybriddimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies - Three.js, D3.js and PHP - as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  2. Visualizing Breath using Digital Holography

    NASA Astrophysics Data System (ADS)

    Hobson, P. R.; Reid, I. D.; Wilton, J. B.

    2013-02-01

    Artist Jayne Wilton and physicists Peter Hobson and Ivan Reid of Brunel University are collaborating at Brunel University on a project which aims to use a range of techniques to make visible the normally invisible dynamics of the breath and the verbal and non-verbal communication it facilitates. The breath is a source of a wide range of chemical, auditory and physical exchanges with the direct environment. Digital Holography is being investigated to enable a visually stimulating articulation of the physical trajectory of the breath as it leaves the mouth. Initial findings of this research are presented. Real time digital hologram replay allows the audience to move through holographs of breath-born particles.

  3. Video and Visualization to Communicate Current Geoscience at Museums and Science Centers

    NASA Astrophysics Data System (ADS)

    Allen, L.; Trakinski, V.; Gardiner, N.; Foutz, S.; Pisut, D.

    2012-12-01

    Science Bulletins, a current-science video exhibition program produced by the American Museum of Natural History, was developed to communicate scientific concepts and results to a wide public and educator audience. Funded by a NOAA Environmental Literacy Grant and developed in collaboration with scientists, a series of Science Bulletins pieces mixes data visualization, video, and non-narrated text to highlight recent issues and findings relevant to short and long-term change in the Earth system. Some of the pieces have been evaluated with audiences to assess learning outcomes and improve practices. Videos, evaluation results, and multiplatform dissemination strategies from this series will be shared and discussed.

  4. Exploratory visualization of astronomical data on ultra-high-resolution wall displays

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; del Campo, Fernando; Ibsen, Amanda; Primet, Romain; Appert, Caroline; Chapuis, Olivier; Hempel, Maren; Muñoz, Roberto; Eyheramendy, Susana; Jordan, Andres; Dole, Hervé

    2016-07-01

    Ultra-high-resolution wall displays feature a very high pixel density over a large physical surface, which makes them well-suited to the collaborative, exploratory visualization of large datasets. We introduce FITS-OW, an application designed for such wall displays, that enables astronomers to navigate in large collections of FITS images, query astronomical databases, and display detailed, complementary data and documents about multiple sources simultaneously. We describe how astronomers interact with their data using both the wall's touchsensitive surface and handheld devices. We also report on the technical challenges we addressed in terms of distributed graphics rendering and data sharing over the computer clusters that drive wall displays.

  5. Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing

    PubMed Central

    Vandivort, Kirby L.; Barragan, Angela; Singharoy, Abhishek; Teo, Ivan; Ribeiro, João V.; Isralewitz, Barry; Liu, Bo; Goh, Boon Chong; Phillips, James C.; MacGregor-Chatwin, Craig; Johnson, Matthew P.; Kourkoutis, Lena F.; Hunter, C. Neil

    2016-01-01

    The cellular process responsible for providing energy for most life on Earth, namely photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers. PMID:27274603

  6. Enhancing AFLOW Visualization using Jmol

    NASA Astrophysics Data System (ADS)

    Lanasa, Jacob; New, Elizabeth; Stefek, Patrik; Honaker, Brigette; Hanson, Robert; Aflow Collaboration

    The AFLOW library is a database of theoretical solid-state structures and calculated properties created using high-throughput ab initio calculations. Jmol is a Java-based program capable of visualizing and analyzing complex molecular structures and energy landscapes. In collaboration with the AFLOW consortium, our goal is the enhancement of the AFLOWLIB database through the extension of Jmol's capabilities in the area of materials science. Modifications made to Jmol include the ability to read and visualize AFLOW binary alloy data files, the ability to extract from these files information using Jmol scripting macros that can be utilized in the creation of interactive web-based convex hull graphs, the capability to identify and classify local atomic environments by symmetry, and the ability to search one or more related crystal structures for atomic environments using a novel extension of inorganic polyhedron-based SMILES strings

  7. JackIn Head: Immersive Visual Telepresence System with Omnidirectional Wearable Camera.

    PubMed

    Kasahara, Shunichi; Nagai, Shohei; Rekimoto, Jun

    2017-03-01

    Sharing one's own immersive experience over the Internet is one of the ultimate goals of telepresence technology. In this paper, we present JackIn Head, a visual telepresence system featuring an omnidirectional wearable camera with image motion stabilization. Spherical omnidirectional video footage taken around the head of a local user is stabilized and then broadcast to others, allowing remote users to explore the immersive visual environment independently of the local user's head direction. We describe the system design of JackIn Head and report the evaluation results of real-time image stabilization and alleviation of cybersickness. Then, through an exploratory observation study, we investigate how individuals can remotely interact, communicate with, and assist each other with our system. We report our observation and analysis of inter-personal communication, demonstrating the effectiveness of our system in augmenting remote collaboration.

  8. Overview of sports vision

    NASA Astrophysics Data System (ADS)

    Moore, Linda A.; Ferreira, Jannie T.

    2003-03-01

    Sports vision encompasses the visual assessment and provision of sports-specific visual performance enhancement and ocular protection for athletes of all ages, genders and levels of participation. In recent years, sports vision has been identified as one of the key performance indicators in sport. It is built on four main cornerstones: corrective eyewear, protective eyewear, visual skills enhancement and performance enhancement. Although clinically well established in the US, it is still a relatively new area of optometric specialisation elsewhere in the world and is gaining increasing popularity with eyecare practitioners and researchers. This research is often multi-disciplinary and involves input from a variety of subject disciplines, mainly those of optometry, medicine, physiology, psychology, physics, chemistry, computer science and engineering. Collaborative research projects are currently underway between staff of the Schools of Physics and Computing (DIT) and the Academy of Sports Vision (RAU).

  9. Mapping students' ideas to understand learning in a collaborative programming environment

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle Boyd; Leak, Anne Emerson

    2014-07-01

    Recent studies in learning programming have largely focused on high school and college students; less is known about how young children learn to program. From video data of 20 students using a graphical programming interface, we identified ideas that were shared and evolved through an elementary school classroom. In mapping these ideas and their resulting changes in programs and outputs, we were able to identify the contextual features which contributed to how ideas moved through the classroom as students learned. We suggest this process of idea mapping in visual programming environments as a viable method for understanding collaborative, constructivist learning as well as a context under which experiences can be developed to improve student learning.

  10. Prevalence of eye disease and visual impairment in Île de la Gonave, Haïti.

    PubMed

    Tousignant, B; Brûlé, J

    2017-08-01

    Epidemiological data describing the prevalence of blindness and visual impairment in Haiti are sparse. The Haitian National Committee for the Prevention of Blindness (CNPC) estimates the prevalence of blindness at 1 %. Other regional data estimate moderate and severe visual impairment at 5% and 22%, respectively. IRIS Mundial (IM) is a non-governmental organization collaborating with the CNPC to develop eye care infrastructure in Haiti. To estimate the prevalence and causes of blindness and visual impairment on the Haitian island of Gonâve, to assist in planning of relevant eye care infrastructure. Results from eye exams carried out by a team from IM in January 2013 have been compiled and analyzed. In all, 1724 patients were examined (38% men, 62% women). In the best eye, 87% of patients had visual acuity, 6% had moderate visual impairment, and 7% had severe visual impairment. Moreover, 1% of patients had high myopia, 1% high hyperopia, 1% high astigmatism, and 32% were presbyopic. Clinically significant binocular cataracts were found in 1.5 % of patients, while 2 % were diagnosed with probable glaucoma. Our data give a glimpse of the prevalence of visual impairment and ocular disease on Gonâve Island in Haiti. Uncorrected refractive error, cataracts, and glaucoma are confirmed as prevalent conditions in this population and their presence should guide the planning of relevant eye care interventions.

  11. Arctic Research Mapping Application (ARMAP): visualize project-level information for U.S. funded research in the Arctic

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Score, R.; Dover, M.; Gaylord, A. G.; Manley, W. F.; Habermann, T.; Tweedie, C. E.

    2015-12-01

    The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information. The mapping application includes new reference data layers and an updated ship tracks layer. Visual enhancements are achieved by redeveloping the front-end from FLEX to HTML5 and JavaScript, which now provide access to mobile users utilizing tablets and cell phone devices. New tools have been added that allow users to navigate, select, draw, measure, print, use a time slider, and more. Other module additions include a back-end Apache SOLR search platform that provides users with the capability to perform advance searches throughout the ARMAP database. Furthermore, a new query builder interface has been developed in order to provide more intuitive controls to generate complex queries. These improvements have been made to increase awareness of projects funded by numerous entities in the Arctic, enhance coordination for logistics support, help identify geographic gaps in research efforts and potentially foster more collaboration amongst researchers working in the region. Additionally, ARMAP can be used to demonstrate past, present, and future research efforts supported by the U.S. Government.

  12. The Arctic Research Mapping Application (ARMAP): a Geoportal for Visualizing Project-level Information About U.S. Funded Research in the Arctic

    NASA Astrophysics Data System (ADS)

    Kassin, A.; Cody, R. P.; Barba, M.; Gaylord, A. G.; Manley, W. F.; Score, R.; Escarzaga, S. M.; Tweedie, C. E.

    2016-12-01

    The Arctic Research Mapping Application (ARMAP; http://armap.org/) is a suite of online applications and data services that support Arctic science by providing project tracking information (who's doing what, when and where in the region) for United States Government funded projects. In collaboration with 17 research agencies, project locations are displayed in a visually enhanced web mapping application. Key information about each project is presented along with links to web pages that provide additional information, including links to data where possible. The latest ARMAP iteration has i) reworked the search user interface (UI) to enable multiple filters to be applied in user-driven queries and ii) implemented ArcGIS Javascript API 4.0 to allow for deployment of 3D maps directly into a users web-browser and enhanced customization of popups. Module additions include i) a dashboard UI powered by a back-end Apache SOLR engine to visualize data in intuitive and interactive charts; and ii) a printing module that allows users to customize maps and export these to different formats (pdf, ppt, gif and jpg). New reference layers and an updated ship tracks layer have also been added. These improvements have been made to improve discoverability, enhance logistics coordination, identify geographic gaps in research/observation effort, and foster enhanced collaboration among the research community. Additionally, ARMAP can be used to demonstrate past, present, and future research effort supported by the U.S. Government.

  13. Innovative Visualization Techniques applied to a Flood Scenario

    NASA Astrophysics Data System (ADS)

    Falcão, António; Ho, Quan; Lopes, Pedro; Malamud, Bruce D.; Ribeiro, Rita; Jern, Mikael

    2013-04-01

    The large and ever-increasing amounts of multi-dimensional, time-varying and geospatial digital information from multiple sources represent a major challenge for today's analysts. We present a set of visualization techniques that can be used for the interactive analysis of geo-referenced and time sampled data sets, providing an integrated mechanism and that aids the user to collaboratively explore, present and communicate visually complex and dynamic data. Here we present these concepts in the context of a 4 hour flood scenario from Lisbon in 2010, with data that includes measures of water column (flood height) every 10 minutes at a 4.5 m x 4.5 m resolution, topography, building damage, building information, and online base maps. Techniques we use include web-based linked views, multiple charts, map layers and storytelling. We explain two of these in more detail that are not currently in common use for visualization of data: storytelling and web-based linked views. Visual storytelling is a method for providing a guided but interactive process of visualizing data, allowing more engaging data exploration through interactive web-enabled visualizations. Within storytelling, a snapshot mechanism helps the author of a story to highlight data views of particular interest and subsequently share or guide others within the data analysis process. This allows a particular person to select relevant attributes for a snapshot, such as highlighted regions for comparisons, time step, class values for colour legend, etc. and provide a snapshot of the current application state, which can then be provided as a hyperlink and recreated by someone else. Since data can be embedded within this snapshot, it is possible to interactively visualize and manipulate it. The second technique, web-based linked views, includes multiple windows which interactively respond to the user selections, so that when selecting an object and changing it one window, it will automatically update in all the other windows. These concepts can be part of a collaborative platform, where multiple people share and work together on the data, via online access, which also allows its remote usage from a mobile platform. Storytelling augments analysis and decision-making capabilities allowing to assimilate complex situations and reach informed decisions, in addition to helping the public visualize information. In our visualization scenario, developed in the context of the VA-4D project for the European Space Agency (see http://www.ca3-uninova.org/project_va4d), we make use of the GAV (GeoAnalytics Visualization) framework, a web-oriented visual analytics application based on multiple interactive views. The final visualization that we produce includes multiple interactive views, including a dynamic multi-layer map surrounded by other visualizations such as bar charts, time graphs and scatter plots. The map provides flood and building information, on top of a base city map (street maps and/or satellite imagery provided by online map services such as Google Maps, Bing Maps etc.). Damage over time for selected buildings, damage for all buildings at a chosen time period, correlation between damage and water depth can be analysed in the other views. This interactive web-based visualization that incorporates the ideas of storytelling, web-based linked views, and other visualization techniques, for a 4 hour flood event in Lisbon in 2010, can be found online at http://www.ncomva.se/flash/projects/esa/flooding/.

  14. Enhancing Tele-robotics with Immersive Virtual Reality

    DTIC Science & Technology

    2017-11-03

    graduate and undergraduate students within the Digital Gaming and Simulation, Computer Science, and psychology programs have actively collaborated...investigates the use of artificial intelligence and visual computing. Numerous fields across the human-computer interaction and gaming research areas...invested in digital gaming and simulation to cognitively stimulate humans by computers, forming a $10.5B industry [1]. On the other hand, cognitive

  15. Bioenergy Knowledge Discovery Framework Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Bioenergy Knowledge Discovery Framework (KDF) supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner.

  16. Implementing and Evaluating a Sequence of Instruction on Gaseous Pressure with Pre-Service Primary School Student Teachers.

    ERIC Educational Resources Information Center

    Taylor, Neil; Lucas, Keith B.

    2000-01-01

    Describes a teaching sequence on gaseous pressure implemented in a group of pre-service primary teachers in Fiji that provides subjects with a strong visual model of particle behavior which they then applied to a series of collaborative science activities for which they attempted to construct explanations. Suggests that this teaching sequence…

  17. ISTI Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eidenbenz, Stephan Johannes

    2016-01-10

    The Information Science & Technology Institute (ISTI) enables the execution of LANL’s institutional IS&T pillar through revitalization of technical IS&T areas, recruiting, and retention of IS&T staff. ISTI manages, organizes, and/or provides funding for (1) summer schools, (2) university collaborations, (3) workshops, (4) the IS&T seminar series, (5) program development, and (6) the visualization collaboratory at LARP all with a focus on IS&T.

  18. Digital Humanities: Envisioning a Collaborative Tool for Mapping, Evaluating, and Sharing Reconstructed Colonial American Parcel Maps

    ERIC Educational Resources Information Center

    Ruvane, Mary Brent

    2012-01-01

    The use of GIS technology for the humanities has opened up new avenues for visually exploring and asking questions of our nation's historical record. The potential to harness new knowledge with tools designed to capture and preserve geographic links to the artifacts of our past is within our grasp. This research explores the common information…

  19. Analyzing Lead Content in Ancient Bronze Coins by Flame Atomic Absorption Spectroscopy: An Archaeometry Laboratory with Nonscience Majors

    ERIC Educational Resources Information Center

    Donais, Mary Kate; Whissel, Greg; Dumas, Ashley; Golden, Kathleen

    2009-01-01

    A unique, interdisciplinary collaboration between chemistry and classics has led to the development of an experiment for nonscience majors. This instrumental analysis experiment was designed for use in an archaeology course to quantify the amount of lead in ancient bronze coins. The coins were corroded beyond visual identification, so provenance…

  20. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  1. A Summary of the Communication and Literacy Evidence-Based Practices for Students Who Are Deaf or Hard of Hearing, Visually Impaired, and Deafblind

    ERIC Educational Resources Information Center

    Luckner, John L.; Bruce, Susan M.; Ferrell, Kay Alicyn

    2016-01-01

    The Collaboration for Effective Educator Development, Accountability, and Reform (CEEDAR) Center at the University of Florida (http://ceedar.education.ufl.edu/) is a national technical assistance center dedicated to supporting states in their efforts to develop teachers and leaders who can successfully prepare students with disabilities to achieve…

  2. Low Latency Audio Video: Potentials for Collaborative Music Making through Distance Learning

    ERIC Educational Resources Information Center

    Riley, Holly; MacLeod, Rebecca B.; Libera, Matthew

    2016-01-01

    The primary purpose of this study was to examine the potential of LOw LAtency (LOLA), a low latency audio visual technology designed to allow simultaneous music performance, as a distance learning tool for musical styles in which synchronous playing is an integral aspect of the learning process (e.g., jazz, folk styles). The secondary purpose was…

  3. Children as Artists: The Preschool as a Community of Creative Practice

    ERIC Educational Resources Information Center

    Cutcher, Alexandra; Boyd, Wendy

    2016-01-01

    Picasso once famously said "All children are artists. The problem is how to remain an artist once he grows up." This visual inquiry is engaged through a community of creative practice in two rural children's centers where the researchers along with 4- and 5-year-old children collaborated to create a large-scale canvas and several smaller…

  4. The Programmers' Collective: Fostering Participatory Culture by Making Music Videos in a High School Scratch Coding Workshop

    ERIC Educational Resources Information Center

    Fields, Deborah; Vasudevan, Veena; Kafai, Yasmin B.

    2015-01-01

    We highlight ways to support interest-driven creation of digital media in Scratch, a visual-based programming language and community, within a high school programming workshop. We describe a collaborative approach, the programmers' collective, that builds on social models found in do-it-yourself and open source communities, but with scaffolding…

  5. Emerging CAE technologies and their role in Future Ambient Intelligence Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2011-03-01

    Dramatic improvements are on the horizon in Computer Aided Engineering (CAE) and various simulation technologies. The improvements are due, in part, to the developments in a number of leading-edge technologies and their synergistic combinations/convergence. The technologies include ubiquitous, cloud, and petascale computing; ultra high-bandwidth networks, pervasive wireless communication; knowledge based engineering; networked immersive virtual environments and virtual worlds; novel human-computer interfaces; and powerful game engines and facilities. This paper describes the frontiers and emerging simulation technologies, and their role in the future virtual product creation and learning/training environments. The environments will be ambient intelligence environments, incorporating a synergistic combination of novel agent-supported visual simulations (with cognitive learning and understanding abilities); immersive 3D virtual world facilities; development chain management systems and facilities (incorporating a synergistic combination of intelligent engineering and management tools); nontraditional methods; intelligent, multimodal and human-like interfaces; and mobile wireless devices. The Virtual product creation environment will significantly enhance the productivity and will stimulate creativity and innovation in future global virtual collaborative enterprises. The facilities in the learning/training environment will provide timely, engaging, personalized/collaborative and tailored visual learning.

  6. Force production and time-averaged flow structure around thin, non-slender delta wings

    NASA Astrophysics Data System (ADS)

    Tu, Han; Green, Melissa

    2017-11-01

    Experimental force measurement and time-averaged three dimensional flow visualization of low Reynolds number baseline cases have been carried out on a steady flat plate delta wing. Current data will serve as steady reference for future unsteady flow and actuation cases. The comprehensive study will compare force production in highly unsteady environments, which is necessary to consider in unmanned combat aerial vehicle (UCAV) control strategies. Force measurements are carried out at angles of attack 10, 15, 20, 25 and 30 degrees. The coefficient of drag increases with angle of attack, while the coefficient of lift reaches a maximum value at 20 degrees. Time-averaged flow visualization conducted at angles of attack of 20, 25 and 30 degrees shows vortices with larger magnitude that persist farther into wake are generated at higher angles of attack. These results compare analogously with similar steady baseline experiment results of high Reynolds number conducted by collaborators. This work was supported by the Office of Naval Research under ONR Award No. N00014-16-1-2732. We also acknowledge the collaborative support of Dr. David Rival and Mr. Matthew Marzanek at Queen's University.

  7. Data Curation and Visualization for MuSIASEM Analysis of the Nexus

    NASA Astrophysics Data System (ADS)

    Renner, Ansel

    2017-04-01

    A novel software-based approach to relational analysis applying recent theoretical advancements of the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) accounting framework is presented. This research explores and explains underutilized ways software can assist complex system analysis across the stages of data collection, exploration, analysis and dissemination and in a transparent and collaborative manner. This work is being conducted as part of, and in support of, the four-year European Commission H2020 project: Moving Towards Adaptive Governance in Complexity: Informing Nexus Security (MAGIC). In MAGIC, theoretical advancements to MuSIASEM propose a powerful new approach to spatial-temporal WEFC relational analysis in accordance with a structural-functional scaling mechanism appropriate for biophysically relevant complex system analyses. Software is designed primarily with JavaScript using the Angular2 model-view-controller framework and the Data-Driven Documents (D3) library. These design choices clarify and modularize data flow, simplify research practitioner's work, allow for and assist stakeholder involvement and advance collaboration at all stages. Data requirements and scalable, robust yet light-weight structuring will first be explained. Following, algorithms to process this data will be explored. Data interfaces and data visualization approaches will lastly be presented and described.

  8. Understanding ill-structured engineering ethics problems through a collaborative learning and argument visualization approach.

    PubMed

    Hoffmann, Michael; Borenstein, Jason

    2014-03-01

    As a committee of the National Academy of Engineering recognized, ethics education should foster the ability of students to analyze complex decision situations and ill-structured problems. Building on the NAE's insights, we report about an innovative teaching approach that has two main features: first, it places the emphasis on deliberation and on self-directed, problem-based learning in small groups of students; and second, it focuses on understanding ill-structured problems. The first innovation is motivated by an abundance of scholarly research that supports the value of deliberative learning practices. The second results from a critique of the traditional case-study approach in engineering ethics. A key problem with standard cases is that they are usually described in such a fashion that renders the ethical problem as being too obvious and simplistic. The practitioner, by contrast, may face problems that are ill-structured. In the collaborative learning environment described here, groups of students use interactive and web-based argument visualization software called "AGORA-net: Participate - Deliberate!". The function of the software is to structure communication and problem solving in small groups. Students are confronted with the task of identifying possible stakeholder positions and reconstructing their legitimacy by constructing justifications for these positions in the form of graphically represented argument maps. The argument maps are then presented in class so that these stakeholder positions and their respective justifications become visible and can be brought into a reasoned dialogue. Argument mapping provides an opportunity for students to collaborate in teams and to develop critical thinking and argumentation skills.

  9. Familiarity Vs Trust: A Comparative Study of Domain Scientists' Trust in Visual Analytics and Conventional Analysis Methods.

    PubMed

    Dasgupta, Aritra; Lee, Joon-Yong; Wilson, Ryan; Lafrance, Robert A; Cramer, Nick; Cook, Kristin; Payne, Samuel

    2017-01-01

    Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems.

  10. Effects of the timing and identity of retrieval cues in individual recall: an attempt to mimic cross-cueing in collaborative recall.

    PubMed

    Andersson, Jan; Hitch, Graham; Meudell, Peter

    2006-01-01

    Inhibitory effects in collaborative recall have been attributed to cross-cueing among partners, in the same way that part-set cues are known to impair recall in individuals. However, studies of part-set cueing in individuals typically involve presenting cues visually at the start of recall, whereas cross-cueing in collaboration is likely to be spoken and distributed over time. In an attempt to bridge this gap, three experiments investigated effects of presenting spoken part-set or extra-list cues at different times during individual recall. Cues had an inhibitory effect on recollection in the early part of the recall period, especially when presented in immediate succession at the start of recall. There was no difference between the effects of part-set and extra-list cues under these presentation conditions. However, more inhibition was generated by part-set than extra-list cues when cue presentation was distributed throughout recall. These results are interpreted as suggesting that cues presented during recall disrupt memory in two ways, corresponding to either blocking or modifying retrieval processes. Implications for explaining and possibly ameliorating inhibitory effects in collaborative recall are discussed.

  11. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. In this paper, we present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. Finally, we describemore » the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  12. APEX_SCOPE: A graphical user interface for visualization of multi-modal data in inter-disciplinary studies.

    PubMed

    Kanbar, Lara J; Shalish, Wissam; Precup, Doina; Brown, Karen; Sant'Anna, Guilherme M; Kearney, Robert E

    2017-07-01

    In multi-disciplinary studies, different forms of data are often collected for analysis. For example, APEX, a study on the automated prediction of extubation readiness in extremely preterm infants, collects clinical parameters and cardiorespiratory signals. A variety of cardiorespiratory metrics are computed from these signals and used to assign a cardiorespiratory pattern at each time. In such a situation, exploratory analysis requires a visualization tool capable of displaying these different types of acquired and computed signals in an integrated environment. Thus, we developed APEX_SCOPE, a graphical tool for the visualization of multi-modal data comprising cardiorespiratory signals, automated cardiorespiratory metrics, automated respiratory patterns, manually classified respiratory patterns, and manual annotations by clinicians during data acquisition. This MATLAB-based application provides a means for collaborators to view combinations of signals to promote discussion, generate hypotheses and develop features.

  13. Visual analysis of geocoded twin data puts nature and nurture on the map.

    PubMed

    Davis, O S P; Haworth, C M A; Lewis, C M; Plomin, R

    2012-09-01

    Twin studies allow us to estimate the relative contributions of nature and nurture to human phenotypes by comparing the resemblance of identical and fraternal twins. Variation in complex traits is a balance of genetic and environmental influences; these influences are typically estimated at a population level. However, what if the balance of nature and nurture varies depending on where we grow up? Here we use statistical and visual analysis of geocoded data from over 6700 families to show that genetic and environmental contributions to 45 childhood cognitive and behavioral phenotypes vary geographically in the United Kingdom. This has implications for detecting environmental exposures that may interact with the genetic influences on complex traits, and for the statistical power of samples recruited for genetic association studies. More broadly, our experience demonstrates the potential for collaborative exploratory visualization to act as a lingua franca for large-scale interdisciplinary research.

  14. VERS: a virtual environment for reconstructive surgery planning

    NASA Astrophysics Data System (ADS)

    Montgomery, Kevin N.

    1997-05-01

    The virtual environment for reconstructive surgery (VERS) project at the NASA Ames Biocomputation Center is applying virtual reality technology to aid surgeons in planning surgeries. We are working with a craniofacial surgeon at Stanford to assemble and visualize the bone structure of patients requiring reconstructive surgery either through developmental abnormalities or trauma. This project is an extension of our previous work in 3D reconstruction, mesh generation, and immersive visualization. The current VR system, consisting of an SGI Onyx RE2, FakeSpace BOOM and ImmersiveWorkbench, Virtual Technologies CyberGlove and Ascension Technologies tracker, is currently in development and has already been used to visualize defects preoperatively. In the near future it will be used to more fully plan the surgery and compute the projected result to soft tissue structure. This paper presents the work in progress and details the production of a high-performance, collaborative, and networked virtual environment.

  15. Web based tools for visualizing imaging data and development of XNATView, a zero footprint image viewer

    PubMed Central

    Gutman, David A.; Dunn, William D.; Cobb, Jake; Stoner, Richard M.; Kalpathy-Cramer, Jayashree; Erickson, Bradley

    2014-01-01

    Advances in web technologies now allow direct visualization of imaging data sets without necessitating the download of large file sets or the installation of software. This allows centralization of file storage and facilitates image review and analysis. XNATView is a light framework recently developed in our lab to visualize DICOM images stored in The Extensible Neuroimaging Archive Toolkit (XNAT). It consists of a PyXNAT-based framework to wrap around the REST application programming interface (API) and query the data in XNAT. XNATView was developed to simplify quality assurance, help organize imaging data, and facilitate data sharing for intra- and inter-laboratory collaborations. Its zero-footprint design allows the user to connect to XNAT from a web browser, navigate through projects, experiments, and subjects, and view DICOM images with accompanying metadata all within a single viewing instance. PMID:24904399

  16. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that weremore » used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  17. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE PAGES

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.; ...

    2015-12-12

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. In this paper, we present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. Finally, we describemore » the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  18. Realistic realtime illumination of complex environment for immersive systems. A case study: the Parthenon

    NASA Astrophysics Data System (ADS)

    Callieri, M.; Debevec, P.; Pair, J.; Scopigno, R.

    2005-06-01

    Offine rendering techniques have nowadays reached an astonishing level of realism but paying the cost of a long computational time. The new generation of programmable graphic hardware, on the other hand, gives the possibility to implement in realtime some of the visual effects previously available only for cinematographic production. In a collaboration between the Visual Computing Lab (ISTI-CNR) with the Institute for Creative Technologies of the University of Southern California, has been developed a realtime demo that replicate a sequence from the short movie "The Parthenon" presented at Siggraph 2004. The application is designed to run on an immersive reality system, making possible for a user to perceive the virtual environment with a cinematographic visual quality. In this paper we present the principal ideas of the project, discussing design issues and technical solution used for the realtime demo.

  19. Ophthalmic public health; the way ahead.

    PubMed

    Heidary, F; Rahimi, A; Gharebaghi, R

    2012-01-01

    Visual sciences have been progressing quickly in recent decades through globalization phenomenon. An enormous change has taken place in ocular health issues, however, there are various problems facing ophthalmic public health worldwide. In the previous years, the World Health Organization and the International Agency for the Prevention of Blindness in partnership launched the global initiative to eradicate avoidable blindness by the year 2020, VISION 2020 the Right to Sight. It has concentrated on the prevention of blindness disability and recognized a health issue-sight as a human right. In view of challenges ahead of visual sciences, close collaboration between international agencies at the global level to implement new strategies and monitor the progress will be mandatory. In these circumstances non-governmental organizations should not be neglected. World Sight Day 2012 would be a great opportunity to be a focus on importance of visual impairment as an important public health issue and discovering new challenges ahead.

  20. Drowning in Data: Going Beyond Traditional Data Archival to Educate Data Users

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Smith, T.; Smith, D. K.; Bugbee, K.; Sinclair, L.

    2017-12-01

    Increasing quantities of Earth science data and information prove overwhelming to new and unfamiliar users. Data discovery and use challenges faced by these users are compounded with atmospheric science field campaign data collected by a variety of instruments and stored, visualized, processed and analyzed in different ways. To address data and user needs assessed through annual surveys and user questions, the NASA Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC), in collaboration with a graphic designer, has developed a series of resources to help users learn about GHRC science focus areas, field campaigns, instruments, data, and data processing techniques. In this talk, GHRC data recipes, micro articles, interactive data visualization techniques, and artistic science outreach and education efforts, such as ESRI story maps and research as art, will be overviewed. The objective of this talk is to stress the importance artistic information visualization has in communicating with and educating Earth science data users.

  1. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III

    2014-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.

  2. Maximizing Impact: Pairing interactive web visualizations with traditional print media

    NASA Astrophysics Data System (ADS)

    Read, E. K.; Appling, A.; Carr, L.; De Cicco, L.; Read, J. S.; Walker, J. I.; Winslow, L. A.

    2016-12-01

    Our Nation's rapidly growing store of environmental data makes new demands on researchers: to take on increasingly broad-scale, societally relevant analyses and to rapidly communicate findings to the public. Interactive web-based data visualizations now commonly supplement or comprise journalism, and science journalism has followed suit. To maximize the impact of US Geological Survey (USGS) science, the USGS Office of Water Information Data Science team builds tools and products that combine traditional static research products (e.g., print journal articles) with web-based, interactive data visualizations that target non-scientific audiences. We developed a lightweight, open-source framework for web visualizations to reduce time to production. The framework provides templates for a data visualization workflow and the packaging of text, interactive figures, and images into an appealing web interface with standardized look and feel, usage tracking, and responsiveness. By partnering with subject matter experts to focus on timely, societally relevant issues, we use these tools to produce appealing visual stories targeting specific audiences, including managers, the general public, and scientists, on diverse topics including drought, microplastic pollution, and fisheries response to climate change. We will describe the collaborative and technical methodologies used; describe some examples of how it's worked; and challenges and opportunities for the future.

  3. NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen

    2006-01-01

    The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.

  4. Technical note: The Linked Paleo Data framework - a common tongue for paleoclimatology

    NASA Astrophysics Data System (ADS)

    McKay, Nicholas P.; Emile-Geay, Julien

    2016-04-01

    Paleoclimatology is a highly collaborative scientific endeavor, increasingly reliant on online databases for data sharing. Yet there is currently no universal way to describe, store and share paleoclimate data: in other words, no standard. Data standards are often regarded by scientists as mere technicalities, though they underlie much scientific and technological innovation, as well as facilitating collaborations between research groups. In this article, we propose a preliminary data standard for paleoclimate data, general enough to accommodate all the archive and measurement types encountered in a large international collaboration (PAGES 2k). We also introduce a vehicle for such structured data (Linked Paleo Data, or LiPD), leveraging recent advances in knowledge representation (Linked Open Data).The LiPD framework enables quick querying and extraction, and we expect that it will facilitate the writing of open-source community codes to access, analyze, model and visualize paleoclimate observations. We welcome community feedback on this standard, and encourage paleoclimatologists to experiment with the format for their own purposes.

  5. Streamlining Collaborative Planning in Spacecraft Mission Architectures

    NASA Technical Reports Server (NTRS)

    Misra, Dhariti; Bopf, Michel; Fishman, Mark; Jones, Jeremy; Kerbel, Uri; Pell, Vince

    2000-01-01

    During the past two decades, the planning and scheduling community has substantially increased the capability and efficiency of individual planning and scheduling systems. Relatively recently, research work to streamline collaboration between planning systems is gaining attention. Spacecraft missions stand to benefit substantially from this work as they require the coordination of multiple planning organizations and planning systems. Up to the present time this coordination has demanded a great deal of human intervention and/or extensive custom software development efforts. This problem will become acute with increased requirements for cross-mission plan coordination and multi -spacecraft mission planning. The Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center is taking innovative steps to define collaborative planning architectures, and to identify coordinated planning tools for Cross-Mission Campaigns. Prototypes are being developed to validate these architectures and assess the usefulness of the coordination tools by the planning community. This presentation will focus on one such planning coordination too], named Visual Observation Layout Tool (VOLT), which is currently being developed to streamline the coordination between astronomical missions

  6. Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher R. Johnson, Charles D. Hansen

    2001-10-29

    The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less

  7. Visual and tactile interfaces for bi-directional human robot communication

    NASA Astrophysics Data System (ADS)

    Barber, Daniel; Lackey, Stephanie; Reinerman-Jones, Lauren; Hudson, Irwin

    2013-05-01

    Seamless integration of unmanned and systems and Soldiers in the operational environment requires robust communication capabilities. Multi-Modal Communication (MMC) facilitates achieving this goal due to redundancy and levels of communication superior to single mode interaction using auditory, visual, and tactile modalities. Visual signaling using arm and hand gestures is a natural method of communication between people. Visual signals standardized within the U.S. Army Field Manual and in use by Soldiers provide a foundation for developing gestures for human to robot communication. Emerging technologies using Inertial Measurement Units (IMU) enable classification of arm and hand gestures for communication with a robot without the requirement of line-of-sight needed by computer vision techniques. These devices improve the robustness of interpreting gestures in noisy environments and are capable of classifying signals relevant to operational tasks. Closing the communication loop between Soldiers and robots necessitates them having the ability to return equivalent messages. Existing visual signals from robots to humans typically require highly anthropomorphic features not present on military vehicles. Tactile displays tap into an unused modality for robot to human communication. Typically used for hands-free navigation and cueing, existing tactile display technologies are used to deliver equivalent visual signals from the U.S. Army Field Manual. This paper describes ongoing research to collaboratively develop tactile communication methods with Soldiers, measure classification accuracy of visual signal interfaces, and provides an integration example including two robotic platforms.

  8. Mobile assistive technologies for the visually impaired.

    PubMed

    Hakobyan, Lilit; Lumsden, Jo; O'Sullivan, Dympna; Bartlett, Hannah

    2013-01-01

    There are around 285 million visually impaired people worldwide, and around 370,000 people are registered as blind or partially sighted in the UK. Ongoing advances in information technology (IT) are increasing the scope for IT-based mobile assistive technologies to facilitate the independence, safety, and improved quality of life of the visually impaired. Research is being directed at making mobile phones and other handheld devices accessible via our haptic (touch) and audio sensory channels. We review research and innovation within the field of mobile assistive technology for the visually impaired and, in so doing, highlight the need for successful collaboration between clinical expertise, computer science, and domain users to realize fully the potential benefits of such technologies. We initially reflect on research that has been conducted to make mobile phones more accessible to people with vision loss. We then discuss innovative assistive applications designed for the visually impaired that are either delivered via mainstream devices and can be used while in motion (e.g., mobile phones) or are embedded within an environment that may be in motion (e.g., public transport) or within which the user may be in motion (e.g., smart homes). Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Visual- and Vestibular-Autonomic Influence on Short-Term Cardiovascular Regulatory Mechanisms

    NASA Technical Reports Server (NTRS)

    Mullen, Thomas J.; Ramsdell, Craig D.

    1999-01-01

    This synergy project was a one-year effort conducted cooperatively by members of the NSBRI Cardiovascular Alterations and Neurovestibular Adaptation Teams in collaboration with NASA Johnson Space Center (JSC) colleagues. The objective of this study was to evaluate visual autonomic interactions on short-term cardiovascular regulatory mechanisms. Based on established visual-vestibular and vestibular-autonomic shared neural pathways, we hypothesized that visually induced changes in orientation will trigger autonomic cardiovascular reflexes. A second objective was to compare baroreflex changes during postural changes as measured with the new Cardiovascular System Identification (CSI) technique with those measured using a neck barocuff. While the neck barocuff stimulates only the carotid baroreceptors, CSI provides a measure of overall baroreflex responsiveness. This study involved a repeated measures design with 16 healthy human subjects (8 M, 8 F) to examine cardiovascular regulatory responses during actual and virtual head-upright tilts. Baroreflex sensitivity was first evaluated with subjects in supine and upright positions during actual tilt-table testing using both neck barocuff and CSI methods. The responses to actual tilts during this first session were then compared to responses during visually induced tilt and/or rotation obtained during a second session.

  10. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees.

    PubMed

    He, Zilong; Zhang, Huangkai; Gao, Shenghan; Lercher, Martin J; Chen, Wei-Hua; Hu, Songnian

    2016-07-08

    Evolview is an online visualization and management tool for customized and annotated phylogenetic trees. It allows users to visualize phylogenetic trees in various formats, customize the trees through built-in functions and user-supplied datasets and export the customization results to publication-ready figures. Its 'dataset system' contains not only the data to be visualized on the tree, but also 'modifiers' that control various aspects of the graphical annotation. Evolview is a single-page application (like Gmail); its carefully designed interface allows users to upload, visualize, manipulate and manage trees and datasets all in a single webpage. Developments since the last public release include a modern dataset editor with keyword highlighting functionality, seven newly added types of annotation datasets, collaboration support that allows users to share their trees and datasets and various improvements of the web interface and performance. In addition, we included eleven new 'Demo' trees to demonstrate the basic functionalities of Evolview, and five new 'Showcase' trees inspired by publications to showcase the power of Evolview in producing publication-ready figures. Evolview is freely available at: http://www.evolgenius.info/evolview/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.

    PubMed

    Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd

    2018-07-01

    Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.

  12. Using Auditory Cues to Perceptually Extract Visual Data in Collaborative, Immersive Big-Data Display Systems

    NASA Astrophysics Data System (ADS)

    Lee, Wendy

    The advent of multisensory display systems, such as virtual and augmented reality, has fostered a new relationship between humans and space. Not only can these systems mimic real-world environments, they have the ability to create a new space typology made solely of data. In these spaces, two-dimensional information is displayed in three dimensions, requiring human senses to be used to understand virtual, attention-based elements. Studies in the field of big data have predominately focused on visual representations and extractions of information with little focus on sounds. The goal of this research is to evaluate the most efficient methods of perceptually extracting visual data using auditory stimuli in immersive environments. Using Rensselaer's CRAIVE-Lab, a virtual reality space with 360-degree panorama visuals and an array of 128 loudspeakers, participants were asked questions based on complex visual displays using a variety of auditory cues ranging from sine tones to camera shutter sounds. Analysis of the speed and accuracy of participant responses revealed that auditory cues that were more favorable for localization and were positively perceived were best for data extraction and could help create more user-friendly systems in the future.

  13. Scalable metadata environments (MDE): artistically impelled immersive environments for large-scale data exploration

    NASA Astrophysics Data System (ADS)

    West, Ruth G.; Margolis, Todd; Prudhomme, Andrew; Schulze, Jürgen P.; Mostafavi, Iman; Lewis, J. P.; Gossmann, Joachim; Singh, Rajvikram

    2014-02-01

    Scalable Metadata Environments (MDEs) are an artistic approach for designing immersive environments for large scale data exploration in which users interact with data by forming multiscale patterns that they alternatively disrupt and reform. Developed and prototyped as part of an art-science research collaboration, we define an MDE as a 4D virtual environment structured by quantitative and qualitative metadata describing multidimensional data collections. Entire data sets (e.g.10s of millions of records) can be visualized and sonified at multiple scales and at different levels of detail so they can be explored interactively in real-time within MDEs. They are designed to reflect similarities and differences in the underlying data or metadata such that patterns can be visually/aurally sorted in an exploratory fashion by an observer who is not familiar with the details of the mapping from data to visual, auditory or dynamic attributes. While many approaches for visual and auditory data mining exist, MDEs are distinct in that they utilize qualitative and quantitative data and metadata to construct multiple interrelated conceptual coordinate systems. These "regions" function as conceptual lattices for scalable auditory and visual representations within virtual environments computationally driven by multi-GPU CUDA-enabled fluid dyamics systems.

  14. Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2017-01-01

    NASA is developing a system to safely enable low altitude unmanned aerial system (UAS) operations. The system is referred to as UAS Traffic Management (UTM). The UTM will safely enable a variety of business models and multiple operations in the same airspace. The UTM will provide services such as airspace configuration and geo-fencing, weather and wind integration, demand-capacity imbalance management, and separation management, and contingency management. The UTM research and development has been conducted in collaboration with many in industry, academia, and government. The UTM system will evolve through four builds. Each build will be collaboratively tested with partners. The final prototype will be available for persistent daily use of UAS operations beyond visual line of sight (BVLOS).

  15. Open cyberGIS software for geospatial research and education in the big data era

    NASA Astrophysics Data System (ADS)

    Wang, Shaowen; Liu, Yan; Padmanabhan, Anand

    CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.

  16. The Role of Research Institutions in Building Visual Content for the Geowall

    NASA Astrophysics Data System (ADS)

    Newman, R. L.; Kilb, D.; Nayak, A.; Kent, G.

    2003-12-01

    The advent of the low-cost Geowall (http://www.geowall.org) allows researchers and students to study 3-D geophysical datasets in a collaborative setting. Although 3-D visual objects can aid the understanding of geological principles in the classroom, it is often difficult for staff to develop their own custom visual objects. This is a fundamentally important aspect that research institutions that store large (terabyte) geophysical datasets can address. At Scripps Institution of Oceanography (SIO) we regularly explore gigabyte 3-D visual objects in the SIO Visualization Center (http://siovizcenter.ucsd.edu). Exporting these datasets for use with the Geowall has become routine with current software applications such as IVS's Fledermaus and iView3D. We have developed visualizations that incorporate topographic, bathymetric, and 3-D volumetric crustal datasets to demonstrate fundamental principles of earth science including plate tectonics, seismology, sea-level change, and neotectonics. These visualizations are available for download either via FTP or a website, and have been incorporated into graduate and undergraduate classes at both SIO and the University of California, San Diego. Additionally, staff at the Visualization Center develop content for external schools and colleges such as the Preuss School, a local middle/high school, where a Geowall was installed in February 2003 and curriculum developed for 8th grade students. We have also developed custom visual objects for researchers and educators at diverse education institutions across the globe. At SIO we encourage graduate students and researchers alike to develop visual objects of their datasets through innovative classes and competitions. This not only assists the researchers themselves in understanding their data but also increases the number of visual objects freely available to geoscience educators worldwide.

  17. Holographic data visualization: using synthetic full-parallax holography to share information

    NASA Astrophysics Data System (ADS)

    Dalenius, Tove N.; Rees, Simon; Richardson, Martin

    2017-03-01

    This investigation explores representing information through data visualization using the medium holography. It is an exploration from the perspective of a creative practitioner deploying a transdisciplinary approach. The task of visualizing and making use of data and "big data" has been the focus of a large number of research projects during the opening of this century. As the amount of data that can be gathered has increased in a short time our ability to comprehend and get meaning out of the numbers has been brought into attention. This project is looking at the possibility of employing threedimensional imaging using holography to visualize data and additional information. To explore the viability of the concept, this project has set out to transform the visualization of calculated energy and fluid flow data to a holographic medium. A Computational Fluid Dynamics (CFD) model of flow around a vehicle, and a model of Solar irradiation on a building were chosen to investigate the process. As no pre-existing software is available to directly transform the data into a compatible format the team worked collaboratively and transdisciplinary in order to achieve an accurate conversion from the format of the calculation and visualization tools to a configuration suitable for synthetic holography production. The project also investigates ideas for layout and design suitable for holographic visualization of energy data. Two completed holograms will be presented. Future possibilities for developing the concept of Holographic Data Visualization are briefly deliberated upon.

  18. Tips for better visual elements in posters and podium presentations.

    PubMed

    Zerwic, J J; Grandfield, K; Kavanaugh, K; Berger, B; Graham, L; Mershon, M

    2010-08-01

    The ability to effectively communicate through posters and podium presentations using appropriate visual content and style is essential for health care educators. To offer suggestions for more effective visual elements of posters and podium presentations. We present the experiences of our multidisciplinary publishing group, whose combined experiences and collaboration have provided us with an understanding of what works and how to achieve success when working on presentations and posters. Many others would offer similar advice, as these guidelines are consistent with effective presentation. FINDINGS/SUGGESTIONS: Certain visual elements should be attended to in any visual presentation: consistency, alignment, contrast and repetition. Presentations should be consistent in font size and type, line spacing, alignment of graphics and text, and size of graphics. All elements should be aligned with at least one other element. Contrasting light background with dark text (and vice versa) helps an audience read the text more easily. Standardized formatting lets viewers know when they are looking at similar things (tables, headings, etc.). Using a minimal number of colors (four at most) helps the audience more easily read text. For podium presentations, have one slide for each minute allotted for speaking. The speaker is also a visual element; one should not allow the audience's view of either the presentation or presenter to be blocked. Making eye contact with the audience also keeps them visually engaged. Health care educators often share information through posters and podium presentations. These tips should help the visual elements of presentations be more effective.

  19. Collaborative Web-Enabled GeoAnalytics Applied to OECD Regional Data

    NASA Astrophysics Data System (ADS)

    Jern, Mikael

    Recent advances in web-enabled graphics technologies have the potential to make a dramatic impact on developing collaborative geovisual analytics (GeoAnalytics). In this paper, tools are introduced that help establish progress initiatives at international and sub-national levels aimed at measuring and collaborating, through statistical indicators, economic, social and environmental developments and to engage both statisticians and the public in such activities. Given this global dimension of such a task, the “dream” of building a repository of progress indicators, where experts and public users can use GeoAnalytics collaborative tools to compare situations for two or more countries, regions or local communities, could be accomplished. While the benefits of GeoAnalytics tools are many, it remains a challenge to adapt these dynamic visual tools to the Internet. For example, dynamic web-enabled animation that enables statisticians to explore temporal, spatial and multivariate demographics data from multiple perspectives, discover interesting relationships, share their incremental discoveries with colleagues and finally communicate selected relevant knowledge to the public. These discoveries often emerge through the diverse backgrounds and experiences of expert domains and are precious in a creative analytics reasoning process. In this context, we introduce a demonstrator “OECD eXplorer”, a customized tool for interactively analyzing, and collaborating gained insights and discoveries based on a novel story mechanism that capture, re-use and share task-related explorative events.

  20. A virtual environment for medical radiation collaborative learning.

    PubMed

    Bridge, Pete; Trapp, Jamie V; Kastanis, Lazaros; Pack, Darren; Parker, Jacqui C

    2015-06-01

    A software-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students' understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 % of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of "invisible" physical principles and increased opportunity for experimentation and collaborative problem-based learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.

  1. The Integration of Climate Science and Collaborative Processes in Building Regional Climate Resiliency in Southeast Florida

    NASA Astrophysics Data System (ADS)

    Jurado, J.

    2016-12-01

    Southeast Florida is widely recognized as one of the most vulnerable regions in the United States to the impacts of climate change, especially sea level rise. Dense urban populations, low land elevations, flat topography, complex shorelines and a porous geology all contribute to the region's challenges. Regional and local governments have been working collaboratively to address shared climate mitigation and adaptation concerns as part of the four-county Southeast Florida Regional Climate Change Compact (Compact). This partnership has emphasized, in part, the use of climate data and the development of advanced technical tools and visualizations to help inform decision-making, improve communications, and guide investments. Prominent work products have included regional vulnerability maps and assessments, a unified sea level rise projection for southeast Florida, the development and application of hydrologic models in scenario planning, interdisciplinary resilient redesign planning workshops, and the development of regional climate indicators. Key to the Compact's efforts has been the engagement and expertise of academic and agency partners, including a formal collaboration between the Florida Climate Institute and the Compact to improve research and project collaborations focused on southeast Florida. This presentation will focus on the collaborative processes and work products that have served to accelerate resiliency planning and investments in southeast Florida, with specific examples of how local governments are using these work products to modernize agency processes, and build support among residents and business leaders.

  2. Weaving the Native Web: Using Social Network Analysis to Demonstrate the Value of a Minority Career Development Program

    PubMed Central

    Buchwald, Dedra; Dick, Rhonda Wiegman

    2011-01-01

    Purpose American Indian and Alaska Native scientists are consistently among the most underrepresented minority groups in health research. The authors used social network analysis (SNA) to evaluate the Native Investigator Development Program (NIDP), a career development program for junior Native researchers established as a collaboration between the University of Washington and the University of Colorado Denver. Method The study focused on 29 trainees and mentors who participated in the NIDP. Data were collected on manuscripts and grant proposals produced by participants from 1998 to 2007. Information on authorship of manuscripts and collaborations on grant applications was used to conduct social network analyses with 3 measures of centrality and 1 measure of network reach. Both visual and quantitative analyses were performed. Results Participants in the NIDP collaborated on 106 manuscripts and 83 grant applications. Although 3 highly connected individuals, with critical and central roles in the program, accounted for much of the richness of the network, both current core faculty and “graduates” of the program were heavily involved in collaborations on manuscripts and grants. Conclusions This study’s innovative application of SNA demonstrates that collaborative relationships can be an important outcome of career development programs for minority investigators, and that an analysis of these relationships can provide a more complete assessment of the value of such programs. PMID:21512364

  3. Mother ship and physical agents collaboration

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Budulas, Peter P.; Emmerman, Philip J.

    1999-07-01

    This paper discusses ongoing research at the U.S. Army Research Laboratory that investigates the feasibility of developing a collaboration architecture between small physical agents and a mother ship. This incudes the distribution of planning, perception, mobility, processing and communications requirements between the mother ship and the agents. Small physical agents of the future will be virtually everywhere on the battlefield of the 21st century. A mother ship that is coupled to a team of small collaborating physical agents (conducting tasks such as Reconnaissance, Surveillance, and Target Acquisition (RSTA); logistics; sentry; and communications relay) will be used to build a completely effective and mission capable intelligent system. The mother ship must have long-range mobility to deploy the small, highly maneuverable agents that will operate in urban environments and more localized areas, and act as a logistics base for the smaller agents. The mother ship also establishes a robust communications network between the agents and is the primary information disseminating and receiving point to the external world. Because of its global knowledge and processing power, the mother ship does the high-level control and planning for the collaborative physical agents. This high level control and interaction between the mother ship and its agents (including inter agent collaboration) will be software agent architecture based. The mother ship incorporates multi-resolution battlefield visualization and analysis technology, which aids in mission planning and sensor fusion.

  4. Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Lynnes, C.

    2009-12-01

    A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues’ expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable “software appliance” to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish “talkoot” (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a “science story” in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be discoverable using tag search, and advertised using “service casts” and “interest casts” (Atom feeds). Multiple science workflow systems will be plugged into the system, with initial support for UAH’s Mining Workflow Composer and the open-source Active BPEL engine, and JPL’s SciFlo engine and the VizFlow visual programming interface. With the ability to share and execute analysis workflows, Talkoot portals can be used to do collaborative science in addition to communicate ideas and results. It will be useful for different science domains, mission teams, research projects and organizations. Thus, it will help to solve the “sociological” problem of bringing together disparate groups of researchers, and the technical problem of advertising, discovering, developing, documenting, and maintaining inter-agency science workflows. The presentation will discuss the goals of and barriers to Science 2.0, the social web technologies employed in the Talkoot software appliance (e.g. CMS, social tagging, personal presence, advertising by feeds, etc.), illustrate the resulting collaborative capabilities, and show early prototypes of the web interfaces (e.g. embedded workflows).

  5. Accident/Mishap Investigation System

    NASA Technical Reports Server (NTRS)

    Keller, Richard; Wolfe, Shawn; Gawdiak, Yuri; Carvalho, Robert; Panontin, Tina; Williams, James; Sturken, Ian

    2007-01-01

    InvestigationOrganizer (IO) is a Web-based collaborative information system that integrates the generic functionality of a database, a document repository, a semantic hypermedia browser, and a rule-based inference system with specialized modeling and visualization functionality to support accident/mishap investigation teams. This accessible, online structure is designed to support investigators by allowing them to make explicit, shared, and meaningful links among evidence, causal models, findings, and recommendations.

  6. Strategic Engagement in Global S&T: Opportunities for Defense Research

    DTIC Science & Technology

    2014-01-01

    local customization, gaining access to new markets, and placing technical staff close to manufacturing and design centers, but also because the...visit Visual access to research process; can talk to more people about the work Collaboration Designing , carrying out, and analyzing research...Development, and Acquisition DASN(RDT&E) Deputy Assistant Secretary of the Navy for Research, Development, Testing , and Evaluation Chief of Naval Research

  7. Interdisciplinary Collaboration in the Choice of an Adapted Mobility Device for a Child with Cerebral Palsy and Visual Impairment.

    ERIC Educational Resources Information Center

    Glanzman, Allan; Ducret, Walter

    2003-01-01

    To select an adapted mobility device for a 5-year-old boy with blindness and spastic diplegic cerebral palsy, a multidisciplinary team used 8-millimeter videography to evaluate the subject's joint angle during ambulation with one of three canes and with no cane. The I-style cane provided optimal posture and gait pattern. (Contains references.) (CR)

  8. Probing and Improving Student's Understanding of Protein a-Helix Structure Using Targeted Assessment and Classroom Interventions in Collaboration with a Faculty Community of Practice

    ERIC Educational Resources Information Center

    Loertscher, Jennifer; Villafañe, Sachel M.; Lewis, Jennifer E.; Minderhout, Vicky

    2014-01-01

    The increasing availability of concept inventories and other assessment tools in the molecular life sciences provides instructors with myriad avenues to probe student understanding. For example, although molecular visualization is central to the study of biochemistry, a growing body of evidence suggests that students have substantial limitations…

  9. After Action Review Tools For Team Training with Chat Communications

    DTIC Science & Technology

    2009-11-01

    collaborative learning environments. The most relevant work is being done by the CALO ( Cognitive Agent that Learns and Organizes) project, a joint...emoticons, and other common stylistic practices. To a lesser degree, some research has yielded methods and tools to analyze or visualize chat...information sources, and overall cognitive effort. AAR Challenges The most significant challenge to conducting an effective after action review of

  10. Creating Meaningful Art Experiences with Assistive Technology for Students with Physical, Visual, Severe, and Multiple Disabilities

    ERIC Educational Resources Information Center

    Coleman, Mari Beth; Cramer, Elizabeth Stephanie

    2015-01-01

    Various levels of assistive technology can be used in the art classroom to provide a fulfilling artmaking experience for all levels of learners. The purpose of this article is to add to the body of knowledge by providing ideas generated from collaboration between the fields of special education and art education that the authors feel will benefit…

  11. Logic Models: A Tool for Effective Program Planning, Collaboration, and Monitoring. REL 2014-025

    ERIC Educational Resources Information Center

    Kekahio, Wendy; Lawton, Brian; Cicchinelli, Louis; Brandon, Paul R.

    2014-01-01

    A logic model is a visual representation of the assumptions and theory of action that underlie the structure of an education program. A program can be a strategy for instruction in a classroom, a training session for a group of teachers, a grade-level curriculum, a building-level intervention, or a district-or statewide initiative. This guide, an…

  12. GABBs: Cyberinfrastructure for Self-Service Geospatial Data Exploration, Computation, and Sharing

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Zhao, L.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2016-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. In addressing these needs, the Geospatial data Analysis Building Blocks (GABBs) project aims at building geospatial modeling, data analysis and visualization capabilities in an open source web platform, HUBzero. Funded by NSF's Data Infrastructure Building Blocks initiative, GABBs is creating a geospatial data architecture that integrates spatial data management, mapping and visualization, and interfaces in the HUBzero platform for scientific collaborations. The geo-rendering enabled Rappture toolkit, a generic Python mapping library, geospatial data exploration and publication tools, and an integrated online geospatial data management solution are among the software building blocks from the project. The GABBS software will be available through Amazon's AWS Marketplace VM images and open source. Hosting services are also available to the user community. The outcome of the project will enable researchers and educators to self-manage their scientific data, rapidly create GIS-enable tools, share geospatial data and tools on the web, and build dynamic workflows connecting data and tools, all without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the GABBs architecture, toolkits and libraries, and showcase the scientific use cases that utilize GABBs capabilities, as well as the challenges and solutions for GABBs to interoperate with other cyberinfrastructure platforms.

  13. Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort.

    PubMed

    Gao, Ying-Duo; Hu, Yuan; Crespo, Alejandro; Wang, Deping; Armacost, Kira A; Fells, James I; Fradera, Xavier; Wang, Hongwu; Wang, Huijun; Sherborne, Brad; Verras, Andreas; Peng, Zhengwei

    2018-01-01

    The 2016 D3R Grand Challenge 2 includes both pose and affinity or ranking predictions. This article is focused exclusively on affinity predictions submitted to the D3R challenge from a collaborative effort of the modeling and informatics group. Our submissions include ranking of 102 ligands covering 4 different chemotypes against the FXR ligand binding domain structure, and the relative binding affinity predictions of the two designated free energy subsets of 15 and 18 compounds. Using all the complex structures prepared in the same way allowed us to cover many types of workflows and compare their performances effectively. We evaluated typical workflows used in our daily structure-based design modeling support, which include docking scores, force field-based scores, QM/MM, MMGBSA, MD-MMGBSA, and MacroModel interaction energy estimations. The best performing methods for the two free energy subsets are discussed. Our results suggest that affinity ranking still remains very challenging; that the knowledge of more structural information does not necessarily yield more accurate predictions; and that visual inspection and human intervention are considerably important for ranking. Knowledge of the mode of action and protein flexibility along with visualization tools that depict polar and hydrophobic maps are very useful for visual inspection. QM/MM-based workflows were found to be powerful in affinity ranking and are encouraged to be applied more often. The standardized input and output enable systematic analysis and support methodology development and improvement for high level blinded predictions.

  14. Antineutrophil cytoplasmic antibody-associated vasculitides: a scientometric approach visualizing worldwide research activity.

    PubMed

    Gerber, Alexander; Klingelhoefer, Doris; Groneberg, David; Bundschuh, Matthias

    2014-09-01

    To provide a critical evaluation of quality and quantity regarding scientific efforts on antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) during the past 20 years. Scientometric benchmark procedures, density-equalizing mapping and large-scale data analysis were used to visualize bi- and multilateral research cooperation and institutional collaborations, and to identify the most successful countries, institutions, authors and journals concerned with AAV. The USA are the most productive supplier and have established their position as center of international cooperation with 22.5% of all publications, followed by Germany, the United Kingdom, France and Japan, respectively. The most successful international cooperation proved to be the one between the USA, Germany and the UK. A distinct global pattern of research productivity and citation activity was revealed, with the USA and Germany holding both the highest h-index and the highest number of total citations, but Denmark, Sweden and the Netherlands leading with regards to the citation rate. Some large and productive countries such as Japan, China and Turkey show only a few international cooperations. The present study represents the first detailed scientometric analysis and visualization of research quality and quantity on 'ANCA- associated vasculitides'. It was shown that scientometric indicators such as h-index, citation rate and impact factor, commonly used for assessment of scientific quality, have to be seen critically due to distortion by self-citation, co-authorship and language bias. Countries with considerable numbers of patients should enhance international collaboration behavior for the benefit of international scientific and clinical progress. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  15. Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort

    NASA Astrophysics Data System (ADS)

    Gao, Ying-Duo; Hu, Yuan; Crespo, Alejandro; Wang, Deping; Armacost, Kira A.; Fells, James I.; Fradera, Xavier; Wang, Hongwu; Wang, Huijun; Sherborne, Brad; Verras, Andreas; Peng, Zhengwei

    2018-01-01

    The 2016 D3R Grand Challenge 2 includes both pose and affinity or ranking predictions. This article is focused exclusively on affinity predictions submitted to the D3R challenge from a collaborative effort of the modeling and informatics group. Our submissions include ranking of 102 ligands covering 4 different chemotypes against the FXR ligand binding domain structure, and the relative binding affinity predictions of the two designated free energy subsets of 15 and 18 compounds. Using all the complex structures prepared in the same way allowed us to cover many types of workflows and compare their performances effectively. We evaluated typical workflows used in our daily structure-based design modeling support, which include docking scores, force field-based scores, QM/MM, MMGBSA, MD-MMGBSA, and MacroModel interaction energy estimations. The best performing methods for the two free energy subsets are discussed. Our results suggest that affinity ranking still remains very challenging; that the knowledge of more structural information does not necessarily yield more accurate predictions; and that visual inspection and human intervention are considerably important for ranking. Knowledge of the mode of action and protein flexibility along with visualization tools that depict polar and hydrophobic maps are very useful for visual inspection. QM/MM-based workflows were found to be powerful in affinity ranking and are encouraged to be applied more often. The standardized input and output enable systematic analysis and support methodology development and improvement for high level blinded predictions.

  16. Trend-Centric Motion Visualization: Designing and Applying a New Strategy for Analyzing Scientific Motion Collections.

    PubMed

    Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M; Nuckley, David; Carlis, John; Keefe, Daniel F

    2014-12-01

    In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection's trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool's effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics.

  17. Multi-focused geospatial analysis using probes.

    PubMed

    Butkiewicz, Thomas; Dou, Wenwen; Wartell, Zachary; Ribarsky, William; Chang, Remco

    2008-01-01

    Traditional geospatial information visualizations often present views that restrict the user to a single perspective. When zoomed out, local trends and anomalies become suppressed and lost; when zoomed in for local inspection, spatial awareness and comparison between regions become limited. In our model, coordinated visualizations are integrated within individual probe interfaces, which depict the local data in user-defined regions-of-interest. Our probe concept can be incorporated into a variety of geospatial visualizations to empower users with the ability to observe, coordinate, and compare data across multiple local regions. It is especially useful when dealing with complex simulations or analyses where behavior in various localities differs from other localities and from the system as a whole. We illustrate the effectiveness of our technique over traditional interfaces by incorporating it within three existing geospatial visualization systems: an agent-based social simulation, a census data exploration tool, and an 3D GIS environment for analyzing urban change over time. In each case, the probe-based interaction enhances spatial awareness, improves inspection and comparison capabilities, expands the range of scopes, and facilitates collaboration among multiple users.

  18. Information-computational platform for collaborative multidisciplinary investigations of regional climatic changes and their impacts

    NASA Astrophysics Data System (ADS)

    Gordov, Evgeny; Lykosov, Vasily; Krupchatnikov, Vladimir; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    Analysis of growing volume of related to climate change data from sensors and model outputs requires collaborative multidisciplinary efforts of researchers. To do it timely and in reliable way one needs in modern information-computational infrastructure supporting integrated studies in the field of environmental sciences. Recently developed experimental software and hardware platform Climate (http://climate.scert.ru/) provides required environment for regional climate change related investigations. The platform combines modern web 2.0 approach, GIS-functionality and capabilities to run climate and meteorological models, process large geophysical datasets and support relevant analysis. It also supports joint software development by distributed research groups, and organization of thematic education for students and post-graduate students. In particular, platform software developed includes dedicated modules for numerical processing of regional and global modeling results for consequent analysis and visualization. Also run of integrated into the platform WRF and «Planet Simulator» models, modeling results data preprocessing and visualization is provided. All functions of the platform are accessible by a user through a web-portal using common graphical web-browser in the form of an interactive graphical user interface which provides, particularly, capabilities of selection of geographical region of interest (pan and zoom), data layers manipulation (order, enable/disable, features extraction) and visualization of results. Platform developed provides users with capabilities of heterogeneous geophysical data analysis, including high-resolution data, and discovering of tendencies in climatic and ecosystem changes in the framework of different multidisciplinary researches. Using it even unskilled user without specific knowledge can perform reliable computational processing and visualization of large meteorological, climatic and satellite monitoring datasets through unified graphical web-interface. Partial support of RF Ministry of Education and Science grant 8345, SB RAS Program VIII.80.2 and Projects 69, 131, 140 and APN CBA2012-16NSY project is acknowledged.

  19. Interpreting intracorporeal landscapes: how patients visualize pathophysiology and utilize medical images in their understanding of chronic musculoskeletal illness.

    PubMed

    Moore, Andrew J; Richardson, Jane C; Bernard, Miriam; Sim, Julius

    2018-02-26

    Medical science and other sources, such as the media, increasingly inform the general public's understanding of disease. There is often discordance between this understanding and the diagnostic interpretations of health care practitioners (HCPs). In this paper - based on a supra-analysis of qualitative interview data from two studies of joint pain, including osteoarthritis - we investigate how people imagine and make sense of the pathophysiology of their illness, and how these understandings may affect self-management behavior. We then explore how HCPs' use of medical images and models can inform patients' understanding. In conceptualizing their illness to make sense of their experience of the disease, individuals often used visualizations of their inner body; these images may arise from their own lay understanding, or may be based on images provided by HCPs. When HCPs used anatomical models or medical images judiciously, patients' orientation to their illness changed. Including patients in a more collaborative diagnostic event that uses medical images and visual models to support explanations about their condition may help them to achieve a more meaningful understanding of their illness and to manage their condition more effectively. Implications for Rehabilitation Chronic musculoskeletal pain is a leading cause of pain and years lived with disability, and despite its being common, patients and healthcare professionals often have a different understanding of the underlying disease. An individual's understanding of his or her pathophysiology plays an important role in making sense of painful joint conditions and in decision-making about self-management and care. Including patients in a more collaborative diagnostic event using medical images and anatomical models to support explanations about their symptoms may help them to better understand their condition and manage it more effectively. Using visually informed explanations and anatomical models may also help to reassure patients about the safety and effectiveness of core treatments such as physical exercise and thereby help restore or improve patients' activity levels and return to social participation.

  20. Visual Impairment/Intracranial Pressure Risk Assessment

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer A.; Durham, T.; Otto, C.; Grounds, D.; Davis, J. R.

    2010-01-01

    Since 2006 there have been 6 reported cases of altered visual acuity and intracranial pressure (ICP) in long duration astronauts. In order to document this risk and develop an integrated approach to its mitigation, the NASA Space Life Sciences Directorate (SLSD) and Human Research Program (HRP) have chosen to use the Human System Risk Board (HSRB) and the risk management analysis tool (RMAT). The HSRB is the venue in which the stakeholders and customers discuss and vet the evidence and the RMAT is the tool that facilitates documentation and comparison of the evidence across mission profiles as well as identification of risk factors, and documentation of mitigation strategies. This process allows for information to be brought forward and dispositioned so that it may be properly incorporated into the RMAT and contribute to the design of the research and mitigation plans. The evidence thus far has resulted in the identification of a visual impairment/intracranial pressure (VIIP) project team, updating of both short and long duration medical requirements designed to assess visual acuity, and a research plan to characterize this issue further. In order to understand this issue more completely, a plan to develop an Accelerated Research Collaboration (ARC) has been approved by the HSRB. The ARC is a novel research model pioneered by the Myelin Repair Foundation. It is a patient centered research model that brings together researchers and clinicians, under the guidance of a scientific advisory panel, to collaborate and produce results much quickly than accomplished through traditional research models. The data and evidence from the updated medical requirements and the VIIP ARC will be reviewed at the HSRB on a regular basis. Each review package presented to the HSRB will include an assessment and recommendation with respect to continuation of research, countermeasure development, occupational surveillance modalities, selection criteria, etc. This process will determine the course of the VIIP project and ultimately how SLSD and HRP mitigate this emerging human health and performance risk.

  1. Integrated Visualization of Multi-sensor Ocean Data across the Web

    NASA Astrophysics Data System (ADS)

    Platt, F.; Thompson, C. K.; Roberts, J. T.; Tsontos, V. M.; Hin Lam, C.; Arms, S. C.; Quach, N.

    2017-12-01

    Whether for research or operational decision support, oceanographic applications rely on the visualization of multivariate in situ and remote sensing data as an integral part of analysis workflows. However, given their inherently 3D-spatial and temporally dynamic nature, the visual representation of marine in situ data in particular poses a challenge. The Oceanographic In situ data Interoperability Project (OIIP) is a collaborative project funded under the NASA/ACCESS program that seeks to leverage and enhance higher TRL (technology readiness level) informatics technologies to address key data interoperability and integration issues associated with in situ ocean data, including the dearth of effective web-based visualization solutions. Existing web tools for the visualization of key in situ data types - point, profile, trajectory series - are limited in their support for integrated, dynamic and coordinated views of the spatiotemporal characteristics of the data. Via the extension of the JPL Common Mapping Client (CMC) software framework, OIIP seeks to provide improved visualization support for oceanographic in situ data sets. More specifically, this entails improved representation of both horizontal and vertical aspects of these data, which inherently are depth resolved and time referenced, as well as the visual synchronization with relevant remotely-sensed gridded data products, such as sea surface temperature and salinity. Electronic tagging datasets, which are a focal use case for OIIP, provide a representative, if somewhat complex, visualization challenge in this regard. Critical to the achievement of these development objectives has been compilation of a well-rounded set of visualization use cases and requirements based on a series of end-user consultations aimed at understanding their satellite-in situ visualization needs. Here we summarize progress on aspects of the technical work and our approach.

  2. The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.

    2003-12-01

    The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.

  3. The nature of the (visualization) game: Challenges and opportunities from computational geophysics

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    As the geosciences enters the era of big data, modeling and visualization become increasingly vital tools for discovery, understanding, education, and communication. Here, we focus on modeling and visualization of the structure and dynamics of the Earth's surface and interior. The past decade has seen accelerated data acquisition, including higher resolution imaging and modeling of Earth's deep interior, complex models of geodynamics, and high resolution topographic imaging of the changing surface, with an associated acceleration of computational modeling through better scientific software, increased computing capability, and the use of innovative methods of scientific visualization. The role of modeling is to describe a system, answer scientific questions, and test hypotheses; the term "model" encompasses mathematical models, computational models, physical models, conceptual models, statistical models, and visual models of a structure or process. These different uses of the term require thoughtful communication to avoid confusion. Scientific visualization is integral to every aspect of modeling. Not merely a means of communicating results, the best uses of visualization enable scientists to interact with their data, revealing the characteristics of the data and models to enable better interpretation and inform the direction of future investigation. Innovative immersive technologies like virtual reality, augmented reality, and remote collaboration techniques, are being adapted more widely and are a magnet for students. Time-varying or transient phenomena are especially challenging to model and to visualize; researchers and students may need to investigate the role of initial conditions in driving phenomena, while nonlinearities in the governing equations of many Earth systems make the computations and resulting visualization especially challenging. Training students how to use, design, build, and interpret scientific modeling and visualization tools prepares them to better understand the nature of complex, multiscale geoscience data.

  4. LabKey Server: an open source platform for scientific data integration, analysis and collaboration.

    PubMed

    Nelson, Elizabeth K; Piehler, Britt; Eckels, Josh; Rauch, Adam; Bellew, Matthew; Hussey, Peter; Ramsay, Sarah; Nathe, Cory; Lum, Karl; Krouse, Kevin; Stearns, David; Connolly, Brian; Skillman, Tom; Igra, Mark

    2011-03-09

    Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers. Sharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at http://www.labkey.org. Documentation and source code are available under the Apache License 2.0.

  5. Preparations for Integrating Space-Based Total Lightning Observations into Forecast Operations

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuell, Kevin K.; Molthan, Andrew L.

    2016-01-01

    NASA's Short-term Prediction Research and Transition (SPoRT) Center has been a leader in collaborating with the United States National Weather Service (NWS) offices to integrate ground-based total lightning (intra-cloud and cloud-to-ground) observations into the real-time operational environment. For much of these collaborations, the emphasis has been on training, dissemination of data to the NWS AWIPS system, and focusing on the utility of these data in the warning decision support process. A shift away from this paradigm has occurred more recently for several reasons. For one, SPoRT's collaborations have expanded to new partners, including emergency managers and the aviation community. Additionally, and most importantly, is the impending launch of the GOES-R Geostationary Lightning Mapper (GLM). This has led to collaborative efforts to focus on additional forecast needs, new data displays, develop training for GLM uses based on the lessons learned from ground-based lightning mapping arrays, and ways to better relate total lightning data to other meteorological parameters. This presentation will focus on these efforts to prepare the operational end user community for GLM with an eye towards sharing lessons learned as EUMETSAT prepares for the Meteosat Third Generation Lightning Imager. This will focus on both software and training needs. In particular, SPoRT has worked closely with the Meteorological Development Laboratory to create the total lightning tracking tool. This software allows for NWS forecasters to manually track storms of interest and display a time series trend of observations. This tool also has been expanded to work on any gridded data set allowing for easy visual comparisons of multiple parameters in addition to total lightning. A new web display has been developed for the ground-based observations that can be easily extended to satellite observations. This paves the way for new collaborations outside of the NWS, both domestically and internationally, as the web display will be functional on PCs and mobile devices. Furthermore, SPoRT has helped developed the software plug-in to visualize GLM data. Examples using the official GLM proxy product will be used to provide a glimpse as to what real-time GLM and likely MTG-LI data will be in the near future.

  6. LabKey Server: An open source platform for scientific data integration, analysis and collaboration

    PubMed Central

    2011-01-01

    Background Broad-based collaborations are becoming increasingly common among disease researchers. For example, the Global HIV Enterprise has united cross-disciplinary consortia to speed progress towards HIV vaccines through coordinated research across the boundaries of institutions, continents and specialties. New, end-to-end software tools for data and specimen management are necessary to achieve the ambitious goals of such alliances. These tools must enable researchers to organize and integrate heterogeneous data early in the discovery process, standardize processes, gain new insights into pooled data and collaborate securely. Results To meet these needs, we enhanced the LabKey Server platform, formerly known as CPAS. This freely available, open source software is maintained by professional engineers who use commercially proven practices for software development and maintenance. Recent enhancements support: (i) Submitting specimens requests across collaborating organizations (ii) Graphically defining new experimental data types, metadata and wizards for data collection (iii) Transitioning experimental results from a multiplicity of spreadsheets to custom tables in a shared database (iv) Securely organizing, integrating, analyzing, visualizing and sharing diverse data types, from clinical records to specimens to complex assays (v) Interacting dynamically with external data sources (vi) Tracking study participants and cohorts over time (vii) Developing custom interfaces using client libraries (viii) Authoring custom visualizations in a built-in R scripting environment. Diverse research organizations have adopted and adapted LabKey Server, including consortia within the Global HIV Enterprise. Atlas is an installation of LabKey Server that has been tailored to serve these consortia. It is in production use and demonstrates the core capabilities of LabKey Server. Atlas now has over 2,800 active user accounts originating from approximately 36 countries and 350 organizations. It tracks roughly 27,000 assay runs, 860,000 specimen vials and 1,300,000 vial transfers. Conclusions Sharing data, analysis tools and infrastructure can speed the efforts of large research consortia by enhancing efficiency and enabling new insights. The Atlas installation of LabKey Server demonstrates the utility of the LabKey platform for collaborative research. Stable, supported builds of LabKey Server are freely available for download at http://www.labkey.org. Documentation and source code are available under the Apache License 2.0. PMID:21385461

  7. Multiuser Collaboration with Networked Mobile Devices

    NASA Technical Reports Server (NTRS)

    Tso, Kam S.; Tai, Ann T.; Deng, Yong M.; Becks, Paul G.

    2006-01-01

    In this paper we describe a multiuser collaboration infrastructure that enables multiple mission scientists to remotely and collaboratively interact with visualization and planning software, using wireless networked personal digital assistants(PDAs) and other mobile devices. During ground operations of planetary rover and lander missions, scientists need to meet daily to review downlinked data and plan science activities. For example, scientists use the Science Activity Planner (SAP) in the Mars Exploration Rover (MER) mission to visualize downlinked data and plan rover activities during the science meetings [1]. Computer displays are projected onto large screens in the meeting room to enable the scientists to view and discuss downlinked images and data displayed by SAP and other software applications. However, only one person can interact with the software applications because input to the computer is limited to a single mouse and keyboard. As a result, the scientists have to verbally express their intentions, such as selecting a target at a particular location on the Mars terrain image, to that person in order to interact with the applications. This constrains communication and limits the returns of science planning. Furthermore, ground operations for Mars missions are fundamentally constrained by the short turnaround time for science and engineering teams to process and analyze data, plan the next uplink, generate command sequences, and transmit the uplink to the vehicle [2]. Therefore, improving ground operations is crucial to the success of Mars missions. The multiuser collaboration infrastructure enables users to control software applications remotely and collaboratively using mobile devices. The infrastructure includes (1) human-computer interaction techniques to provide natural, fast, and accurate inputs, (2) a communications protocol to ensure reliable and efficient coordination of the input devices and host computers, (3) an application-independent middleware that maintains the states, sessions, and interactions of individual users of the software applications, (4) an application programming interface to enable tight integration of applications and the middleware. The infrastructure is able to support any software applications running under the Windows or Unix platforms. The resulting technologies not only are applicable to NASA mission operations, but also useful in other situations such as design reviews, brainstorming sessions, and business meetings, as they can benefit from having the participants concurrently interact with the software applications (e.g., presentation applications and CAD design tools) to illustrate their ideas and provide inputs.

  8. [Multimedia (visual collaboration) brings true nature of human life].

    PubMed

    Tomita, N

    2000-03-01

    Videoconferencing system, high-quality visual collaboration, is bringing Multimedia into a society. Multimedia, high quality media such as TV broadcast, looks expensive because it requires broadband network with 100-200 Mpbs bandwidth or 3,700 analog telephone lines. However, thanks to the existing digital-line called N-ISDN (Narrow Integrated Service Digital Network) and PictureTel's audio/video compression technologies, it becomes far less expensive. N-ISDN provides 128 Kbps bandwidth, over twice wider than analog line. PictureTel's technology instantly compress audio/video signal into 1/1,000 in size. This means, with ISDN and PictureTel technology. Multimedia is materialized over even single ISDN line. This will allow doctor to remotely meet face-to-face with a medical specialist or patients to interview, conduct physical examinations, review records, and prescribe treatments. Bonding multiple ISDN lines will further improve video quality that enables remote surgery. Surgeon can perform an operation on internal organ by projecting motion video from Endoscope's CCD camera to large display monitor. Also, PictureTel provides advanced technologies of eliminating background noise generated by surgical knives or scalpels during surgery. This will allow sound of the breath or heartbeat be clearly transmitted to the remote site. Thus, Multimedia eliminates the barrier of distance, enabling people to be just at home, to be anywhere in the world, to undergo up-to-date medical treatment by expertise. This will reduce medical cost and allow people to live in the suburbs, in less pollution, closer to the nature. People will foster more open and collaborative environment by participating in local activities. Such community-oriented life-style will atone for mass consumption, materialistic economy in the past, then bring true happiness and welfare into our life after all.

  9. Reimagining the microscope in the 21(st) century using the scalable adaptive graphics environment.

    PubMed

    Mateevitsi, Victor; Patel, Tushar; Leigh, Jason; Levy, Bruce

    2015-01-01

    Whole-slide imaging (WSI), while technologically mature, remains in the early adopter phase of the technology adoption lifecycle. One reason for this current situation is that current methods of visualizing and using WSI closely follow long-existing workflows for glass slides. We set out to "reimagine" the digital microscope in the era of cloud computing by combining WSI with the rich collaborative environment of the Scalable Adaptive Graphics Environment (SAGE). SAGE is a cross-platform, open-source visualization and collaboration tool that enables users to access, display and share a variety of data-intensive information, in a variety of resolutions and formats, from multiple sources, on display walls of arbitrary size. A prototype of a WSI viewer app in the SAGE environment was created. While not full featured, it enabled the testing of our hypothesis that these technologies could be blended together to change the essential nature of how microscopic images are utilized for patient care, medical education, and research. Using the newly created WSI viewer app, demonstration scenarios were created in the patient care and medical education scenarios. This included a live demonstration of a pathology consultation at the International Academy of Digital Pathology meeting in Boston in November 2014. SAGE is well suited to display, manipulate and collaborate using WSIs, along with other images and data, for a variety of purposes. It goes beyond how glass slides and current WSI viewers are being used today, changing the nature of digital pathology in the process. A fully developed WSI viewer app within SAGE has the potential to encourage the wider adoption of WSI throughout pathology.

  10. Data Mining Research with the LSST

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; Strauss, M. A.; Tyson, J. A.

    2007-12-01

    The LSST catalog database will exceed 10 petabytes, comprising several hundred attributes for 5 billion galaxies, 10 billion stars, and over 1 billion variable sources (optical variables, transients, or moving objects), extracted from over 20,000 square degrees of deep imaging in 5 passbands with thorough time domain coverage: 1000 visits over the 10-year LSST survey lifetime. The opportunities are enormous for novel scientific discoveries within this rich time-domain ultra-deep multi-band survey database. Data Mining, Machine Learning, and Knowledge Discovery research opportunities with the LSST are now under study, with a potential for new collaborations to develop to contribute to these investigations. We will describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. We also give some illustrative examples of current scientific data mining research in astronomy, and point out where new research is needed. In particular, the data mining research community will need to address several issues in the coming years as we prepare for the LSST data deluge. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; visual data mining algorithms for visual exploration of the data; indexing of multi-attribute multi-dimensional astronomical databases (beyond RA-Dec spatial indexing) for rapid querying of petabyte databases; and more. Finally, we will identify opportunities for synergistic collaboration between the data mining research group and the LSST Data Management and Science Collaboration teams.

  11. Narratives of health and illness: Arts-based research capturing the lived experience of dementia.

    PubMed

    Moss, Hilary; O'Neill, Desmond

    2017-01-01

    Introduction This paper presents three artists' residencies in a geriatric medicine unit in a teaching hospital. The aim of the residencies was creation of new work of high artistic quality reflecting the lived experience of the person with dementia and greater understanding of service user experience of living with dementia. This paper also explores arts-based research methodologies in a medical setting. Method Arts-based research and narrative enquiry were the method used in this study. Artists had extensive access to service users with dementia, family carers and clinical team. Projects were created through collaboration between clinical staff, arts and health director, artist, patients and family carers. Each performance was accompanied by a public seminar discussing dementia. Evaluations were undertaken following each residency. The process of creating artistic responses to dementia is outlined, presented and discussed. Results The artworks were well received with repeat performances and exhibitions requested. Evaluations of each residency indicated increased understanding of dementia. The narratives within the artworks aided learning about dementia. The results are a new chamber music composition, a series of visual artworks created collaboratively between visual artist and patients and family carers and a dance film inspired by a dancer's residency, all created through narrative enquiry. These projects support the role of arts-based research as creative process and qualitative research method which contributes to illuminating and exploring the lived experience of dementia. The arts act as a reflective tool for learning and understanding a complex health condition, as well as creating opportunities for increased understanding and public awareness of dementia. Issues arising in arts-based research in medical settings are highlighted, including ethical issues, the importance of service user narrative and multidisciplinary collaboration in arts and health practice and research.

  12. Reimagining the microscope in the 21st century using the scalable adaptive graphics environment

    PubMed Central

    Mateevitsi, Victor; Patel, Tushar; Leigh, Jason; Levy, Bruce

    2015-01-01

    Background: Whole-slide imaging (WSI), while technologically mature, remains in the early adopter phase of the technology adoption lifecycle. One reason for this current situation is that current methods of visualizing and using WSI closely follow long-existing workflows for glass slides. We set out to “reimagine” the digital microscope in the era of cloud computing by combining WSI with the rich collaborative environment of the Scalable Adaptive Graphics Environment (SAGE). SAGE is a cross-platform, open-source visualization and collaboration tool that enables users to access, display and share a variety of data-intensive information, in a variety of resolutions and formats, from multiple sources, on display walls of arbitrary size. Methods: A prototype of a WSI viewer app in the SAGE environment was created. While not full featured, it enabled the testing of our hypothesis that these technologies could be blended together to change the essential nature of how microscopic images are utilized for patient care, medical education, and research. Results: Using the newly created WSI viewer app, demonstration scenarios were created in the patient care and medical education scenarios. This included a live demonstration of a pathology consultation at the International Academy of Digital Pathology meeting in Boston in November 2014. Conclusions: SAGE is well suited to display, manipulate and collaborate using WSIs, along with other images and data, for a variety of purposes. It goes beyond how glass slides and current WSI viewers are being used today, changing the nature of digital pathology in the process. A fully developed WSI viewer app within SAGE has the potential to encourage the wider adoption of WSI throughout pathology. PMID:26110092

  13. Virtual Interactive Presence in Global Surgical Education: International Collaboration Through Augmented Reality.

    PubMed

    Davis, Matthew Christopher; Can, Dang D; Pindrik, Jonathan; Rocque, Brandon G; Johnston, James M

    2016-02-01

    Technology allowing a remote, experienced surgeon to provide real-time guidance to local surgeons has great potential for training and capacity building in medical centers worldwide. Virtual interactive presence and augmented reality (VIPAR), an iPad-based tool, allows surgeons to provide long-distance, virtual assistance wherever a wireless internet connection is available. Local and remote surgeons view a composite image of video feeds at each station, allowing for intraoperative telecollaboration in real time. Local and remote stations were established in Ho Chi Minh City, Vietnam, and Birmingham, Alabama, as part of ongoing neurosurgical collaboration. Endoscopic third ventriculostomy with choroid plexus coagulation with VIPAR was used for subjective and objective evaluation of system performance. VIPAR allowed both surgeons to engage in complex visual and verbal communication during the procedure. Analysis of 5 video clips revealed video delay of 237 milliseconds (range, 93-391 milliseconds) relative to the audio signal. Excellent image resolution allowed the remote neurosurgeon to visualize all critical anatomy. The remote neurosurgeon could gesture to structures with no detectable difference in accuracy between stations, allowing for submillimeter precision. Fifteen endoscopic third ventriculostomy with choroid plexus coagulation procedures have been performed with the use of VIPAR between Vietnam and the United States, with no significant complications. 80% of these patients remain shunt-free. Evolving technologies that allow long-distance, intraoperative guidance, and knowledge transfer hold great potential for highly efficient international neurosurgical education. VIPAR is one example of an inexpensive, scalable platform for increasing global neurosurgical capacity. Efforts to create a network of Vietnamese neurosurgeons who use VIPAR for collaboration are underway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Black Pine Circle Project

    ScienceCinema

    Mytko, Christine

    2018-05-18

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  15. Evaluation of Domain-Specific Collaboration Interfaces for Team Command and Control Tasks

    DTIC Science & Technology

    2012-05-01

    Technologies 1.1.1. Virtual Whiteboard Cognitive theories relating the utilization, storage, and retrieval of verbal and spatial information, such as...AE Spatial emergent SE Auditory linguistic AL Spatial positional SP Facial figural FF Spatial quantitative SQ Facial motive FM Tactile figural...driven by the auditory linguistic (AL), short-term memory (STM), spatial attentive (SA), visual temporal (VT), and vocal process (V) subscales. 0

  16. 76 FR 59307 - Nondiscrimination on the Basis of Disability in Air Travel: Accessibility of Web Sites and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... collaboratively on the site will become comments in the docket when they are submitted to DOT by CeRI. At any time..., it has amended the rule eleven times.\\1\\ On May 13, 2008, the Department issued the most recent... changes to a substantial portion of the site (e.g., visual design (``look and feel'') of the site, an...

  17. Developing Participatory Approaches for Use in an Action Research Project with Teachers Who Support Children with Visual Impairment in Kenya and Uganda: Reflections on the Relational Praxis between Participants and Research Institutions

    ERIC Educational Resources Information Center

    Lynch, Paul; McLinden, Mike; Douglas, Graeme; McCall, Steve; Muturi, Mary; Bayo, Asher; Mwaura, Martha; Muga, John

    2012-01-01

    Participatory research is a broad term covering a range of approaches that are characterised by a focus on "action-oriented" research involving researchers and participants working in collaboration to bring about positive change. These approaches emphasise engagement with co-researchers and the development and implementation of…

  18. Can visual arts training improve physician performance?

    PubMed

    Katz, Joel T; Khoshbin, Shahram

    2014-01-01

    Clinical educators use medical humanities as a means to improve patient care by training more self-aware, thoughtful, and collaborative physicians. We present three examples of integrating fine arts - a subset of medical humanities - into the preclinical and clinical training as models that can be adapted to other medical environments to address a wide variety of perceived deficiencies. This novel teaching method has promise to improve physician skills, but requires further validation.

  19. Black Pine Circle Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  20. Sounds of Waitakere: Using Practitioner Research to Explore How Year 6 Recorder Players Compose Responses to Visual Representations of a Natural Environment

    ERIC Educational Resources Information Center

    Locke, Linda; Locke, Terry

    2011-01-01

    How might primary students utilise the stimulus of a painting in a collaborative composition drawing on a non-conventional sound palette of their own making? This practitioner research features 17 recorder players from a Year 6 class (10-11-year-olds) who attend a West Auckland primary school in New Zealand. These children were invited to…

Top